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Abstract

In the AI and machine learning research field, adversarial machine learning(AML), a

technique that tries to deceive models using erroneous data, is becoming a major con-

cern. By exploiting the inherent vulnerability of ML models’ data reliance, AML can be

used to generate adversarial attacks. Researches have shown that a small perturbation

in input image can create disastrous results for an autonomous car system e.g. miscalssi-

fying stop sign as speed limit sign near school. To counter these adversarial attacks,

several defense mechanisms have been proposed. Some of the most prominent defenses

are adversarial training, pre-processing-based defenses, Generative Adversarial Network-

based defenses. However, most of these defenses are either computationally expensive

or become in-effective under the white-box threat model or against the decision-based

attacks (Adversarial attacks that exploit the final decision of the attack under black-box

settings). Therefore, there is a dire need to develop efficient defense mechanisms that

can effectively counter the attacks while maintaining the classification accuracy. In this

thesis, we propose to develop a computationally efficient and effective defense mech-

anism that effectively counters the score-based and decision-based adversarial attack

under black-box settings while maintaining the classification accuracy on clean images.
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Chapter 1

Introduction

In the AI and machine learning research field, adversarial machine learning(AML), a

technique that tries to deceive models using erroneous data, is becoming a major con-

cern. By exploiting the inherent vulnerability of ML models’ data reliance, AML can

be used to generate adversarial attacks. According to the National security commission

on artificial intelligence, very little ML research is focused on safeguarding ML models

against adversarial attacks. Researchers have shown that a small perturbation in the

input image can create disastrous results for an autonomous car system, e.g., misclassi-

fying a stop sign as a speed limit sign near the school. By adding imperceptible noise

in the undergoing-test image, medical analysis can be compromised by classifying ma-

lignant moles as benign. With each passing day, adversarial attacks are increasing as

the world is inclining towards ML-based systems. Based on the attacker’s access to ML

models’ information, adversarial attacks can be classified into two types White box and

Black Box attacks.

If an attacker has access to the ML model’s internal parameters along with inputs

and outputs, it is known as a white-box attack. Commonly used attacks generate

adversarial examples under white-box settings are [1, 3–5]. As these all attacks works

under white-box stetting these can easily defended by [6], defensive distillation [7, 8] and

pre-processing defenses [9, 10]. In a real-world scenario, producing adversarial instances

from data is difficult due to the attacker’s lack of access to ML models’ parameters

or the training process. For this, score-based attacks are developed under black-box

settings, which use probability scores of the ML model [11–14]. These attacks can be

nullified by attack mentioned by Tramer or by the use of above-mentioned gradient-
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Chapter 1: Introduction

based attacks in model stealing settings. Currently, decision-based evasion attacks has

been proposed by [15? , 16], which uses final predicted decision of the ML model to

generate adversarial examples. These all attacks use a random search algorithm to find

the adversarial sample on the classification boundary, which increases the number of

queries as well as the convergence time of the attack. FaDec [17] proposed to use the

half-interval algorithm instead of the random search algorithm to find the adversarial

example on the classification boundary. Although FaDec is near to practical scenarios,

if the number of queries is limited to 100 or 200, then it fails to produce adversarial

examples with acceptable perturbation. Moreover, it takes more time to converge in a

time-constrained environment. For cloud-based ML systems, each query comes with a

cost, which can increase the cost of attack many folds in monetary terms if queries are not

limited. These observations raise a research question about how to develop an attack

that uses a limited number of queries while minimizing the adversarial noise. Fault

injection attacks can be performed on ML systems depending on their configurations.

In summary, the state-of-the-art attacks have the following limitations:
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Figure 1.1: The motivation analysis shows the convergence time and number of queries required
for a decision-based attack to perform successful misclassification.

• Most state-of-the-art black-box attacks require a large number of queries. To elab-

orate this limitation, we analyzed two the fastest state-of-the-art decision-based

attacks, i.e., query efficient attack [16] and FaDec [17], as shown in Fig. 1.1. These

results show that the imperceptibility of the adversarial perturbation increases as

2



Chapter 1: Introduction

the increase in allowed queries. Therefore, the attacker needs more resources and

more number of queries, which can be defended by limiting the queries per user.

• Most state-of-the-art does not consider the complete pipeline of the ML-based

system.

These limitations raise an important research question, “Can new decision-based attacks

be devised that can operate successfully in real-time resource-constrained applications

while ensuring imperceptibility and robustness of attacks?”

1.1 Parallel Decision-based attack

To address the above-mentioned research question, we proposed using the man-in-middle

concept to parallelize the queries for developing a query-efficient and cost-effective

decision-based attack called ParDec. The parallelism of the queries leads to a significant

reduction in the number of required queries and attack convergence time. The ParDec

consists of the following two steps:

1. parallelism of the queries: In this phase, the attack generate multiple images near

the target images and then perform the half-interval search algorithm to find a

adversarial image near the classification boundary.

2. Optimization of Adversarial Noise: In this phase, random noise is added to the

selected sample to generate multiple perturbed images. Then the closest image

from the target image is selected, and the classification boundary is selected. Then

half-interval search algorithm is applied to that image. This process is repeated

until the optimized adversarial image is generated.

To evaluate the effectiveness of ParDec, we performed this attack on the DNN model

trained on GTSRB and CiFAR-10 datasets. The results of experiments show that

ParDec is achieving significantly higher (more than 400%) imperceptibility with 5x a

smaller number of queries.

3



Chapter 1: Introduction

1.2 Defenses against Adversarial Attacks

For defenses there are many defenses in the literature review. There are multiple types

of the defenses, e.g., training on Adversarial images, squeezing the features, GAN-based

attacks, Defense GAN attacks, augmenting the datasets, Quantization activation dy-

namically, and pre-processing filter-based defenses. All of these defenses are not resource

constraints and cannot be applied to real-world scenarios. But our proposed defense of-

fers resource-constraint applications, which exclude the process of adversarial training

on adversarial examples, masking and training a separate model. Most of the attacks

tackle white-box and black-box attacks as a combined, while others use a separate.

We checked our defense in black box setting and decision-based attack and evaluated

it against the state-of-the-art adversarial machine learning decision-based attacks. In

summary, the state-of-the-art defenses exhibit the following limitations:

1. Most of the defenses require re-training, which in most of the cases is costly and

also have an impact on the clean classification accuracy.

2. Some of the defenses are only applicable to the known adversarial attacks.

These limitations raise an important research question, “How to defend against efficient

decision-based adversarial attack with minimum overhead?”

1.3 Random filter Switching-based Defense

To counter the above-mentioned research challenge, we propose to expand the existing

pre-processing-based defense by randomly switching the filter configuration and type of

filter in the pre-processing layer, called RaFiS. The main motivation behind this idea is

that the adversarial image passes through a different pre-processing layer for every query.

This leads to an increment in the convergence time and number of required queries. It

is important to note that the increment in the number of filters in the pre-processing

layer increases the attack complexity but it also increases the cost.

To evaluate the effectiveness of RaFiS, we defended the DNN model trained for GT-

SRB and CiFAR-10 against the proposed ParDec and the fastest decision-based attack,

FaDec. The experimental results show that in all cases, RaFis nullify the attack by

4



Chapter 1: Introduction

preventing it from misclassification. However, In the case of FaDec, RaFiS decreases

the perturbation norm by 21% and increases the perturbation norm by 6.667 times.

1.4 Novel Contributions

In summary, this thesis has the following novel contributions:

1. Parallel Decision-based attack: We proposed to use the concept of man-in-

middle to parallelize the queries for developing a query-efficient and cost-effective

decision-based attack called ParDec (see Chapter 4).

2. Random filter Switching-based Defense: We propose to expand the existing

pre-processing-based defense by randomly switching the filter configuration and

type of filter in the pre-processing layer, called RaFiS (see Chapter 6).

1.5 Organization of the Thesis

For the flow of the thesis, the first chapter (see Chapter 1) is about introduction, the

second chapter (Chapter 2) gives a detailed overview of the background and terminolo-

gies used in the thesis, the third chapter (Chapter 3) gives the literature review of the

past work done in the area. The fourth chapter (Chapter 4) gives the methodology of

the proposed attack. The fifth chapter (Chapter 5) presents the results of the proposed

attack, the sixth chapter (see Chapter 6) discusses defense methodology, and the seventh

chapter (see Chapter 7) discusses the defense results. Finally, the eighth chapter (see

Chapter 7.2.2) concludes the thesis.

5



Chapter 2

Background

In this chapter, we discuss some preliminaries that facilitate the reader’s understanding

of the thesis’s key concepts, results, and observations. Towards this, we provide the

details of parameters related to threat models, which are assumed in the adversarial

attacks on neural networks. Moreover, we briefly discuss the parameters that are used

to define and measure the human imperceptibility related to adversarial noise.

2.1 Threat Models

Machine learning systems, especially neural network-based systems, are used in many

safety-critical applications. e.g., healthcare, autonomous driving, etc. These systems

are by nature not secure because of their dependency on data, which can be manipu-

lated to perform misclassification. Several researchers have exploited this behavior to

design adversarial attacks. The efficacy of these adversarial attacks depends on a set of

assumptions and parameters. These assumptions and parameters are often referred to

as threat models for adversarial attacks, as shown in Fig. 2.1. In any threat model, the

attacker is typically called an adversary. An adversary can change the configurations

of these assumptions and parameters to generate different forms of attack for a specific

scenario. For example, if an attacker has access to the training process, then its param-

eters configurations will be different from those who do not have access to the training

process. These different scenarios of configurations are known as threat models. For

ML security, a threat model consists of the following set of parameters.

• Attacker’s Knowledge is the details or information about an ML-based system that

6



Chapter 2: Background

Threat Model for 

Adversarial Attacks

Poisoning (Training time)

Evasion (Inference time)

Attack 

Type

Targeted

Un-targeted
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Training Dataset
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Figure 2.1: A set of assumptions and parameters is typically used to make the threat model
for performing any adversarial attack. The red highlighted text represents the
assumptions and parameters assumed in the proposed attack and defense.

is accessible to the adversary, i.e., how much an attacker has access to inputs, ML-

based model, and outputs. If an attacker can manipulate inference by adding noise

to the input. If an attacker has access to ML model parameters, it can compromise

the model for wrong outputs by adding a bug in the model’s architecture. If an

attacker has access to the ML model’s output probability vectors, it can exploit these

probabilities to generate adversarial examples. The attack can be categorized as

follows based on the attacker’s knowledge:

⋄ White-Box Attack: An attacker has full access to inputs, ML model, and out-

puts. To perform these kinds of attacks, an attacker can exploit information of

inputs, ML model architectures, and outputs separately or in the combination of

any or all parameters.

⋄ Black-Box Attack: An attacker can only access inputs and outputs of an ML

system. It has no access to model architecture or parameters. In such a scenario,

the attacker must generate its attack by using inputs and inferred results of the

ML module.

• Attacker’s Goal is defined as the malicious intent of the attacker, which it wants

to obtain from a particular adversarial attack. Based on the different payloads of the

attack, It can be classified into two categories given below.

7



Chapter 2: Background

⋄ Targeted Attack: In this category of attack, an attacker tries to misclassify the

input into a specific class by performing the attack. This attack typically modifies

ML model parameters, poisons inputs, and exploits outputs. For example, the stop

sign in traffic signs can be misclassified into a 60 mph speed sign which may lead

to catastrophic consequences.

⋄ Un-Targeted Attack: An attacker’s goal is to misclassify the input into any

available class other than ground truth. An attacker can redouble the prediction

error by decreasing the prediction score of the true class during the attack. For

example, the stop sign in traffic signs can be misclassified into any traffic sign

except the stop sign.

• Attacker’s Frequency: Attacker can perform the attack in a single query or mul-

tiple queries through the ML model, known as attacker’s frequency. Based on this

query scenario, an attack can be classified into two types.

⋄ One-Shot Attack: In this type of attack, the attacker performs the attack in a

single query through the ML model. The attack can only be optimized once in a

one-shot attack.

⋄ Iterative Attack: In this type of attack, the attacker performs the attack in

multiple queries through the ML model. The attack is optimized in each iteration

of the model query. Iterative attacks have a relatively slow convergence rate, but

attack efficiency is significantly better than one-shot attacks.

• Attack Falsification: In this type of attack, the attack is classified based on the

types of misclassifications given below.

⋄ False-positive attack: In this type of attack, the prediction of the ML model

is falsely classified as the positive class. For example, a benign mole, a negative

sample, can be falsely classified as a malignant mole, a positive mole.

⋄ False-negative attack: In this type of attack, the prediction of ML molded

is falsely classified to negative class. For example, a malignant mole, a positive

sample, can be falsely classified as a benign mole, a negative mole.

• Attack Type is defined as the phase of the ML system architecture on which an

attack is performed. This depends on the attacker’s knowledge, i.e., how much the

attacker has access to ML model information related to inputs, model architecture,

8



Chapter 2: Background

and outputs. Depending upon the available information, the attack can be classified

as follows.

⋄ Training-phase attack: In this type of attack, the attacker tries to compromise

the model by poisoning training data. This attack can only be performed if the

attacker has access to the training process. For example, if an organization out-

sources the training process, the adversary (from the outsourced organization) has

access training process and can poison the data.

⋄ Inference-phase attack: In this type of attack, the attacker tricks the model in-

ference by exploiting model parameters or model architecture. This attack can only

be performed if the attacker has access to ML model parameters and architecture.

⋄ Hardware of ML model: In this type of attack, the attacker tries to malfunction

the ML system at the hardware level in any cyber-security system.

2.1.1 White-box Attack

In the white-box attack, an attacker has full access to input, trained ML model ar-

chitecture, and predicted probabilities of labels. For example, an attacker can exploit

the information available at any of the above-mentioned information and perform an

adversarial attack, as shown in Fig. 2.2(b). If an attacker has access to gradients of the

ML model, the gradients can be used to generate an attack, known as gradient-based

attacks. For example, Fast Gradient Sign Method (FGSM) [1], a white-box attack, gen-

erates attacks by adding the perturbation noise in the direction which has maximum

effect on ML model inference. The direction is determined by using the cost function of

the model(available in a white-box setting).Iterative-FGSM (iFGSM) [18], a white-box

attack performs targeted attack, i.e., misclassifying the image to a specific class(target

class). It utilizes the model’s gradients to find the direction of adding noise in each step.

It is important to note that the above-mentioned white-box attacks need to know about

the model information, e.g., parameters and gradients. They require a white-box setting

to generate an adversarial attack.

9



Chapter 2: Background
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Figure 2.2: (a) Adversarial attack is defined as a crafted imperceptible noise to misclassify the
ML-based System. (b) In white-box attacks, the attacker has complete access to
the model parameters and other key components of the neural network. In this
attack, the attacker derives the cost function, which is the difference between the
ground truth and attack target; and propagates it layer-by-layer. (b) In a black-
box attack, attacker access is limited to the input and output of the ML model.

2.1.2 Black-box Atatck

In the black-box attack, an attacker only has access to an ML model’s input and output.

There is no access to the probability of output, as shown in Fig. 2.2(c). In this adversarial

setting, the adversary can only change the input of the ML model to malfunction the

model. Typically, based on the attacker’s access to the output, these attacks can be

classified into score-based attacks and decision-based attacks. In the score-based attack,

10
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the attacker has access to the top-1 probability of the output and can exploit it to

generate the adversarial attacks by doing multiple queries. In the decision-based attack,

the attacker has access to the top-1 label, hence making it very difficult to generate

the adversarial noise. For example, in decision-based attacks, first, the attacker tries to

alter the input by adding large noise, which can misclassify model inference [17]. The

attacker’s goal in such an attack is to find an adversarial example with a different label

than the actual class near the classification boundary. For this, first, a random example

having a label other than the actual class is picked. Second, an adversarial example is

generated by moving a random example towards a classification boundary such that the

label of the adversarial example is different from the actual class. Lastly, the distance

between the generated adversarial example and the target example should be minimum

in moving the random example so that the minimum amount of noise will be added to

the clean image.

It is important to note that each iteration costs one query to the model in moving

random examples toward the classification boundary. Therefore, a large number of

queries are required to converge adversarial examples near the classification boundary.

Such attacks can struggle in query-restricted environments, but they operate in realistic

environments. Note that all the white-box attacks can be implemented in the black-

box setting if combined with the model stealing attacks, known as transfer attacks (see

Fig. 2.2(c)).

2.1.3 Threat Model for the Proposed Attack and Defense

In this thesis, to analyze the security of the neural network with practical assumptions,

we assumed the decision-based black-box settings. In this setting, the attacker has access

to the top-1 label of the ML classification. The set of assumptions based on the threat

model discussed in Section 2.1 are given below (see red highlighted text in Fig. 2.1):

⋄ Attacker’s Knowledge: Adversary has no access to the training dataset, ML model

parameters, model gradients, and classification probabilities. Adversary can only

access input and also have access to the top-1 label of the output.

⋄ Attacker’s Frequency: The proposed attack can either be targeted or un-targeted.

⋄ Attacker’s Frequency: The proposed attack is an iterative attack.

11



Chapter 2: Background

⋄ Attack Falsification: The proposed attack can misclassify negative class to positive

class and positive class to negative class. Hence it can generate False-positive attacks

as well as False-negative attacks. For example, speed more than 40 mph is a negative

class, and other is a positive class. This attack can malfunction 40 mph speed sign to

a 60 mph speed sign and vice versa for the high-speed motorway.

⋄ Attack Type: The proposed attack exploits the model inference by adding pertur-

bation in the input. Moreover, this attack can also work on the hardware level in

any cyber-security system. Hence, it can attack the ML system’s inference phase and

hardware level.

2.2 Human Imperceptibility

The key goal in the adversarial attack is to add imperceptible noise that can lead to

misclassification. Human imperceptibility in adversarial ML is defined as difficulty in

perceiving the added noise in clean input. It is used to check the quality and stealthiness

of the attack; the more the attack is imperceptible, the more that attack is effective

and stealthy. Therefore, all adversarial attacks try to maximize imperceptibility. Any

attack perceptible to human can not produce the desired result in practical scenarios.

For example, the subjective analysis (see Fig. 2.2(a)) can detect perceptible noise like

the manual checking in face recognition systems. Similarly, in a traffic sign of 60 mph,

if noise added by the attack is perceptible to a human, then this perturbed image can

be reported as malicious input by any human, which will make the attack ineffective.

Therefore, to measure human imperceptibility, researchers have used several parameters,

and some of them are discussed below:

• Perturbation Norm is known as the mean square difference between attacked im-

age and the clean image. This is the most commonly used parameter to ensure

imperceptibility in adversarial noise. It is denoted by d. Mathematically it is shown

as follows.

d = 1/n
n∑

i=1
(yi − y′

i)
2 (2.2.1)

where yi and y′
i are the ith pixel from the clean input image and adversarial image,

respectively. n is the total number of pixels in the images. Human imperceptibility

12
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should be near “0 “ for high imperceptibility.

• Cross Cor-relation Coefficient is known as the probability of the linear relation-

ship between the given two images. It has range between 0 and 1; 0 for minimum

human imperceptibility and 1 for maximum human imperceptibility. For two same

images CC will be ’1’. It is denoted by CC. Mathematically, it is shown as follow.

d =
∑

(xi − x′
i)(yi − y′

i)/
√∑

(xi − x′
i)

2 ∑
(yi − y′

i)
2 (2.2.2)

where r = correlation coefficient

xi = pixel values of clean image

x′ = mean of pixel values in clean image

yi = pixel values of clean image

y′ = mean of pixel values in perturbed image

• Structural Similarity Index: Structure Similarity Index is interpreted as percep-

tual similarity between two reference image and distorted or perturbed image. It is

used to quantify degradation caused by data compression in an image. It is calculated

using contrast, luminance and structure comparison. It is denoted by SSIM. It has

range between 0 and 1. For maximum human imperceptibility, SSIM of two images

should be 1.

SSIM = (2µxµy + c1)(2µxy + c2)/(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2) (2.2.3)

Note that in this work, we have used all three parameters to ensure imperceptibility in

adversarial attacks. The rationale for this is that the perturbation norm cannot detect a

sudden change in a few pixels. Therefore, to cover this limitation, we incorporated SSI

and CCI for the evaluation of adversarial attacks and their defenses.
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Literature Review

In this chapter, we briefly discuss the impact of adversarial attacks on ML-based systems

and existing literature on adversarial attacks and their respective defenses.

3.1 Adversarial Attack on Machine Learning

In this digital age, Machine Learning (ML) applications, especially safety-critical ap-

plications, are expanding in various fields as the number of collected data increases.

Machine Learning algorithms follow the technique of extricating information from the

data and using it for specific purposes. This shows that ML algorithms are highly

dependent on training data. This dependency can be exploited to perform security at-

tacks like generating adversarial examples, as shown in Fig. 2.2. Many ML algorithms

struggle to perform against adversarial examples and misclassify these examples. This

is because of the intrinsic dependency of ML algorithms on training data [1]. Hence,

ML-based safety-critical applications are becoming vulnerable to simple but effective

security attacks. Several techniques have been proposed to exploit these security flaws,

known as adversarial attacks. Mainly, these attacks have been classified into poisoning

and evasion attacks [2].

3.1.1 Poisoning Attacks

If the adversary has access to the training dataset and training process, it can manipulate

both the training process and the training dataset, as discussed in Section 2.1. The

attacks performed by such an adversary are known as poisoning attacks. These attacks
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perform misclassification by manipulating the training dataset, training algorithm, or

un-trained model (before or during training). As this noise poisoning in the training

dataset and training algorithm act as a cause to generate the attack, they are also known

as causative attacks. These attacks can be categorized into two types.

• Dataset Poisoning: In this type of attacks, attacks are formulated by adding ran-

dom or crafted noise in the training dataset. As perturbation is added through

backdoor channel, these attacks are also known as backdoor attacks. In this, at-

tacker tries to maximize the classification error or target misclassification. Poisoning

Attack on SVM target to misclassify Support Vector Machines inference by adding

adversarial labels in the training data. The adversarial labels are generated by in-

troducing carefully crafted noise in the training data to generate targeted attack.

Targeted Clean-Label Poisoning [19] proposed to generate clean-label targeted poi-

soning attack, which is transferable. To generate poisonous images, this attack trains

substitute models on training dataset for adversarial objective function. Watermark-

ing [20] starts the attack by making apparently non-poisonous images open-source

on web and wait for the victim to add this in its training dataset. This attack can be

used to perform targeted attack. BadNets explore the aspects of backdoor channel

attacks, when an adversary trains back-door network which have the same accuracy

as of original trained network but misbehaves on some specific examples, controlled

by adversary. Dynamic Backdoor Attacks [21] improved the backdoor channel attacks

by introducing dynamic triggers.

Limitations: Although these dataset poisoning attacks are very effective, in these

attacks adversary needs to access the training dataset of the ML model, which is very

difficult in the practical scenario. In addition, these attacks can easily be defended by

limiting access to the training dataset. For example, an organization can distribute

its training process among multiple users while outsourcing to limit access.

• Model Poisoning attacks are formulated when the attacker slightly modifies the

architecture of the ML model to misclassify the inferred results or maximize the

classification error. One of the examples of model poisoning attacks is weight poi-

soning [22], which starts the attack when a victim downloads untrusted pre-trained

weights from the internet. These compromised model weights can be used to open

backdoor channel attacks. Similarly, another example is the Local Model Poisoning
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Table 3.1: A brief comparison of the state-of-the-art adversarial attacks (Evasion attacks) on
ML-based systems [2].

Adversarial Attacks Iterative/
One-shot

Targeted/
Un-Targted

Imperceptibility
Parameter

Gradient-
based
Attacks

Limited memory Broyden-
Fletcher-Goldfarb-Shanno
(L-BFGS) [1]

Iterative T l2 norms

Fast GradientSign Method
(FGSM) [1] One-shot T/U l0, l2, l∞ norms
Iterative FGSM (iFGSM) [1] Iterative T/U l0, l2, l∞ norms
Basic Iterative Method (BIM) Iterative T/U l0, l2, l∞ norms
Jacobian-based Saliency Map
Attack (JSMA) Iterative T l0 norm
Carlini & Wagner l2 attack [3] Iterative T l2 norm
Carlini & Wagner l∞ attack [3] Iterative T l∞ norm
DeepFool [4] Iterative U l2 norm
Universal Perturbations Iterative U l_p norm
NewtonFool Iterative U Tuning parameter
TrISec [5] Iterative T/U SSI, CC

Transfer
Attacks

Ensemble Transfer T l2, l∞ norms
FGSM transfer Iterative U l0, l2, l∞ norms

Score-
based
Attacks

Zeorth Order Optimization
(ZOO) [11] Iterative T l2 norm
Local Search Iterative U
HopskipJump [23] Iterative T/U l2 norm

Decision-
based
Attack

Query Efficient [16] Iterative T/U l2 norm
Decision-based [15] Iterative T/U l2 norm
FaDec-Attack [17] Iterative T l2 norm, SSI, CC
Multi-Query Attack (This Work) Iterative T/U l2 norm

attack, which proposes to poison parameters of local models in a federated learning

system that is used to formulate an attack on a global model.

Limitations: One of the biggest challenges in the model poisoning attack is that it

requires access to the parameters, including the weight of the trained ML model.

However, it is challenging to get access to the model’s parameters in real-world sce-

narios. These attacks can be defended by deploying any ML model in black-box form,

which prohibits the user from accessing the parameters of the model.

3.1.2 Evasion Attacks

In these type of attacks, a perturbation is added in the input of the trained ML model

during inference stage, which can misclassify the model’s inference. This perturbation

is is known as adversarial noise. These attacks can be used to generate targated and

un-targeted attacks. Due to evasive nature during inference of these attacks, they are

also known as evasion attack. These attacks are classified into three categories (given

in Table 3.1).

• Gradient-based Attacks: These attacks use the parameters of the ML model in
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computing the gradients to generate adversarial noise. Fast Gradient Sign Method

(FGSM) [1], a gradient-based attack, uses cost function with input, model parame-

ters, and output to find out the gradient direction in which perturbed noise will have

the greatest effect, as shown in Fig. 3.1(a). After that, a small adversarial noise is

added in the acquired direction of the gradient in a single iteration. Iterative Fast

Sign Method [18] is a variant of FGSM, and it adds perturbation in an iterative man-

ner while generating the attack. Its cost function corresponds to a specific target.

Hence it performs targeted misclassification. Jacobian Saliency Map Attack deter-

mines the derivative with respect to all input nodes to construct a saliency map, as

shown in Fig. 3.1(b). This map can be used to determine the perturbation, which can

generate a successful attack using the minimum number of input nodes. Carlini and

Wagner attack [3] is a gradient-based attack, which minimizes the added noise with

respect to a specific label and optimizes the objective function of misclassification of

the targeted label. TrISec [5] uses a back propagation algorithm on a pre-trained ML

model, without any information about the training data set, to generate an adver-

sarial attack. Similar to the Iterative Fast Sign Method, this attack also considers

the perturbation finding as an optimization problem.

Projected Gradient Descent(PGD) considers the perturbed noise as a large-scale con-

strained optimization problem of loss landscape on multiple data sets. It uses pro-

jected gradient descent to explore large spaces in a loss landscape. Auto-PGD im-

proved step size, objective function, and proposed parameter-free attack. It can be

used to generate target and un-targeted attacks. Iterative Frame Saliency [24] com-

putes gradients through the classifier and optical flow to generate an attack for action

recognition. For computing optical flow gradient, it used FlowNet2 as it estimates

optical flow between successive frames. DeepFool [4] improved the approximation

of the optimal perturbation vectors in FGSM while computing gradients. Universal

Perturbations tries to find the perturbation vectors that fool the model on almost all

images from a specific data distribution. This attack usually works in an iterative

manner and usually performs un-targeted attacks. Newton Fool introduced a gradi-

ent descent algorithm for performing the attack and computing adversarial examples.

It also improved the metric to check the imperceptibility of adversarial examples by

introducing tuning parameters. Feature Adversaries tries to find small perturbations

to the source image given a source image iteratively by using internal layers of DNN.
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Figure 3.1: A pictorial view of gradient-based evasion attacks. (a) FGSM Attack (b) JSMA
Attack

Adversarial Patch [25, 26] proposed the attack to generate an adversarial patch in

case an adversary is not restricted to imperceptibility. Elastic-Net [27] focused on

imperceptibility metric L1 norm instead of L2 and L∞, while generating attack and

showed attack’s transferability. DPATCH [28] extends the attack of the adversarial

patch to manipulate bounding box regression and object classification to generate

location-independent targeted and un-targeted attacks. It also shows the attack’s

transferability between different ML networks. Wasserstein Attack [29] used Wasser-

stein distance as imperceptibility norm instead of Lp norm while computing the

gradients of the classifier. It can perform targeted and un-targeted attacks. Shadow

Attack [30] generates adversarial examples by focusing on manipulating certificates
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issued by certified classifiers along with model classifiers.

Limitations: Most of the gradient-based attacks mentioned above require information

about ML model parameters or gradients [3–5, 18, 31–33]. Hiding the gradients of

the ML model, known as Gradient masking, can counterbalance these gradient-based

attacks [6]. Moreover, deployed ML model does not provide access to gradients in a

realistic environment.

• Score-based Evasion Attacks: In this type of attack, an adversary has access to

the scores of prediction or probabilities of the ML model. Any change in the input

corresponds to the change in the prediction scores and can be used to compute the

strength and direction of perturbation. Zeroth Order Optimization attack [11] used

confidence scores of output with input to compute gradients of the ML model for

generating adversarial examples for a targeted attack. This attack does not use the

internal information of the model. Local Search [12] considers the ML model as a

black-box model, adds significant perturbation in a random set of pixels, and uses a

greedy search algorithm to make added perturbation small and minimize the score

of the true class label. This attack performs un-targeted attacks. Square Attack

performs a random search near the classification boundary and uses perturbation

updates in square form to generate the attack. Copy and Paste attack [13] used

the approach of copying patches of specific properties from other images to original

images and manipulating these patches with respect to changes in confidence scores

to generate adversarial examples. It also focuses on making the attack query-efficient.

It can be used to perform targeted and un-targeted attacks. One pixel attack [14]

proposed to generate an attack by adding perturbation in one pixel or a few pixels

with respect to probabilities of labels.

Limitations: In a realistic environment, an adversary can only access the ML model’s

inputs and outputs. For example, cloud-based ML services like Google Cloud Au-

toML, Amazon, Microsoft Azure and IBM Watson provide black-box access to their

trained model. For this, black-box attacks have been developed. Papermnot et al. [34]

trains substitute model with the help of synthetic input and inferred output. Gao

et al. [35] developed a score-based strategy to find and modify the most important

words that can malfunction Deep Neural Network(DNN). C. Guo et al. used con-

fidence scores of inference to generate adversarial examples. However, this attack
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requires confidence scores continuously. F. Tramer et al. [? ] introduce Ensemble

Adversarial Training, which can neutralize score-based attacks by hiding informa-

tion about scores probabilities. Cao. et al. compute gradients using transfer-based

prior for generating an attack in the black-box setting. Suya utilizes the techniques

of transfer as well as score-based attacks. All above-mentioned black-box attacks

and [11, 12, 36] uses output score probabilities for computing gradients or stealing

models for developing adversarial examples. Model stealing attacks can be coun-

tered by using above mentioned white-box dense techniques like gradient masking,

pre-processing filtering, and defensive distillation.

• Decision-based Evasion Attacks: If the attacker does not have access to the

output model probabilities, then researchers have developed the attacks that require

an only a top-1 label. These attacks act in black-box settings and depends solely

on the decision model. The process starts with introducing random noise in the

input image, which causes misclassification. Then, added noise is reduced to make

it imperceptible while conforming to the misclassification. These attacks are also

known as boundary attacks as they try to find adversarial examples of classifica-

tion boundaries. HopskipJump [23] generates targeted and un-targeted attacks by

computing gradient estimation for perturbation by using binary search on the classifi-

cation boundary. Query Efficient Attack [16] formulate the attack by performing the

random walk on the classification boundary and using the zeroth order optimization

algorithm to optimize the cost function, which is not always continuous in score-

based attacks, to reduce the number of queries. Decision-based Attack [15] proposes

to explore the classification boundary by using a random search for generating ad-

versarial attacks near the classification boundary. Geometry-Inspired Decision-based

(qFool) started the attack by introducing random perturbation and then exploited

the geometric properties of the decision boundary to compute gradient estimation

direction for generating targeted and un-targeted attacks. Query Efficient Bound-

ary Attack (QEBA) improved the attack by proposing a framework to consume less

number of queries for gradient estimation on classification boundary. This framework

improves the number of queries by reducing the dimension of higher-dimension data

while computing gradient estimation. FaDec [17] reduced the number of queries by

using an iterative half-interval search instead of a random search algorithm to explore

classification boundaries. It also improves imperceptibility by using distance-based
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gradient sign estimation along with a half-interval search algorithm.Y. Dong et al.

generate an attack by exploring the classification boundary by modeling the local

geometry of search directions near the boundary. J. Chen et al. incorporate gradient

estimation in searching adversarial examples near the classification boundary.

Limitations: Above mentioned decision-based attacks use the inferred decision of ML

model instead of scores probability vector. Most of these decision-based attacks use a

random search algorithm and multiple reference images to generate imperceptible at-

tacks near the classification boundary, which notably increases the number of queries

to the ML model.

3.1.3 Limitations of state-of-art-adversarial Attacks

To reduce the number of queries in decision-based evasion attacks, Fadec [17] proposed

to use a half-interval search algorithm instead of a random search algorithm in exploring

classification boundaries and also uses one sample example as a reference image instead

of multiple reference images. It is applicable in practical scenarios to some extent, but

in a query-restricted environment, if queries are restricted to 100 or 200 for a single user

instead of 1000, Fadec fails to generate adversarial images with acceptable imperceptible

noise. Moreover, Fadec takes more time in the timing-constrained environment as its

queries depend on previous query results during the gradient search part. Therefore, in

this work, we have proposed a more efficient attack that perform successful attack with

very limited number of queries.

3.2 Defense against Adversarial Attacks

To counter the above mentioned attacks, various defenses have been proposed, as sum-

marized in Table 3.2. Training ML model on generated adversarial examples is intro-

duced by [1] known as adversarial examples. It follows the assumption that adversarial

examples to misclassify one ML model will create malfunction on other ML models.

Thus, this defense will work only against known attacks and struggle against unknown

attacks.
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Table 3.2: Comparison of methodology the state-of-the-art defenses for adversarial attacks on
ML-based systems

Defenses Brief Methodology Threat Model
White-Box Black-Box

Adversarial Learning [1] Trains the CNNs for generated
adversarial examples ✓ ✓

Feature Squeezing [37] Input transformation ✓ ✓

BReLU + GDA [38] Input transformation with
adversarial learning ✓ ✓

APE-GAN [39] Input transformation with
adversarial learning using GANs ✓ ✓

Defense-GAN [40] Input transformation ✓ ✓
Defensive Distillation [6? –8] Gradient masking ✓

Data Augmentation [41] Improve the diversity of the
training data ✓ ✓

Dynamic Quantization Activation [42] Quantized activation with
gradient masking ✓ ✓

SSCNets [9] Add pre-processing layer before
training ✓ ✓

QuSecNets [43] Add pre-processing layer before
training ✓ ✓

RandFil (This work) Add pre-processing filter before
each query ✓ ✓

3.2.1 Adversarial Training:

One of the very naive methods is to train the ML model on generated adversarial

examples, introduced by [1], known as adversarial training, as shown in Fig. 3.2. It

assumes that adversarial examples of misclassifying one ML model are transferable to

other ML models. Thus, this defense will work only against known attacks and struggle

against unknown attacks. The main purpose of adversarial training is to train a model

on adversarial examples by adding them to training data [1, 44, 45]. For this, a defender

generates a lot of adversarial examples by using existing attacks and augmenting its

training data with [46]. By using generated adversarial examples, the ML model can be

trained with a modified objective function in a way that model will predict the same

output for clean and perturbed example [1].

Limitations: One of the biggest drawbacks of adversarial training is that it only works for

known adversarial attacks. Although it shows some resilience toward unknown attacks,

it does not nullify misclassification or significantly improve perceptibility. Moreover, the

adversarial training approach does not work against black-box attacks, which generate

adversarial examples using locally trained models as the original model is trained on

adversarial examples generated on the original model [34]. Adversarial training can be

bypassed by applying random probabilities on an instance, and then any existing attack

is performed on it [? ].
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Figure 3.2: A pictorial view of methodology for adversarial training [1].

3.2.2 Gradient Masking:

Gradient-based Attacks mentioned in Section 3.1.2 use information about model pa-

rameters’ gradients to generate attacks, as shown in Fig. 3.3. Such attacks can be

neutralized by hiding the information about gradients, known as gradient masking or

gradient hiding [6? ].

Limitations: All gradient masking defenses mentioned in Section 3.2.2 could be fooled

by learning a substitute model having gradients and generating attacks with it [34].

Moreover, any black box that does not need model parameters information can break

gradient masking defense [17].

3.2.3 Defensive Distillation:

Defensive distillation is the process of using two-step ML models. First, an ML model

is trained for the classification into hard and soft labels, and then the soft labels are

given to the second ML model with the same architecture, as shown in Fig. 3.3. The

distilled model makes output robust against adversarial examples [7, 8]. Moreover, in

defensive distillation, labels are smoothed and converted into soft targets. ML model is
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Figure 3.3: A pictorial view of the Gradient Masking and Defensive Distillation-based defenses
against adversarial attacks [6? ].

trained on these modified values. The results of defensive distillation are improved in

Papernot2017.

Limitations: Recent developments in black-box attacks, i.e., score-based and decision-

based attacks, can avoid defensive distillation and its smoothing method [3, 34].

3.2.4 Pre-processing-based Defenses:

In pre-processing-based defenses, input is pre-processed to filter out the perturbations

that are added by the attacks [9, 10], as shown in Fig. 3.4. Some of the pre-processing-

based defenses are given below.

• Feature Squeezing: Feature squeezing defensive technique hardens the model by

using two heuristics. First, it reduces the pixel’ color depth by using fewer colors to

encode the colors. Second, it uses a filter to smooth multiple inputs [37].

Limitations: This technique defends the ML model against adversarial attacks, but

empirically they also reduce the accuracy of models on clean examples significantly.

• Input transformation-based defenses: In this type of defense, input is trans-

formed into the manifold of training data, and the ML model is trained into it.

MagNet proposed a defensive approach that uses a classifier on the last layer of ML
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Figure 3.4: A pictorial view of the pre-processing-based defense against adversarial attacks.

model and checks whether a test example is adversarial. It checks by using a trained

model how a example under test differs net from normal examples by measuring dis-

tance. If that distance is more than a specific threshold, classify it as an adversarial

example and reform it using reformer [47]. APE-GAN and Defense-GAN proposed

to leverage the power of GAN to reduce adversarial noise. In this, input is projected

to the generator of GAN, which can differentiate between adversarial and normal

examples, before sending it to the ML model.

Limitations: MagNet [47], APE-GAN [39], and Defense GAN [40] require a trained

model, GANs, for detecting an example as adversarial or normal. They cannot be

performed on resource-constrained applications. Moreover, MagNet defense cannot

perform well in white-box attacks where attacks know all about the parameters of

an ML model. For APE-GAN and Defense-GAN, GANs are difficult to train if they

are not trained well. They can reduce the accuracy of the ML model significantly.

• SScNets: A relatively better resource-constrained defense SScNets which performs

edge detection using one convolution filter and pre-processes the input using one

sigmoid and one multiplication layer.

Limitations: SScNets reduce features from an input image by extracting features
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based on the filters. Experiments have shown that it can increase the robustness of

the ML model on adversarial examples, but it reduces the accuracy of the ML model

on clean inputs.

In summary, most of the existing defenses against adversarial attacks cannot be di-

rectly applied to decision-based attacks, especially in multi-resource decision-based at-

tacks. Therefore, there is a dire need to develop a simple, efficient, and effective solution

to defend against decision-based adversarial attacks.
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ParDec: Parallel Decision-based

attack

In this chapter, we present and provide the detailed explanation of the proposed attack,

which uses the concept of man-in-the-middle cyber attack to perform parallel-query

based adversarial attack.

4.1 ParDec

The goal of our proposed methodology is to create minimum adversarial noise or per-

turbation, which can perform random misclassification of target image (in case of un-

targeted attack) or perform targeted miscalssification of target image(in case of targeted

image). Pictorial view of the proposed methodology is presented in Fig. 4.1.

1. First, it chooses a reference image reference image (IB)(see step 1 from 4.1), whose

label is different from target image (IA), from the input(camera).

2. Second, it selects(three images in given example) multiple images having minimum

perturbation (belongs to class A) with reference image (IB)((see step 2 from 4.1)), if

adversary has its own collected dataset otherwise it will skip this step.

3. Third, it applies half-interval search algorithm to find the example i.e., reference

image (Iis) near the classification boundary(see step 3 from 4.1). Example near

classification boundary means that generated example has δmin distance with the

classification boundary.
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4. After that, it adds perturbations from multiple sources in the generated example,

both in positive and negative directions((see step 4 from 4.1)) such that label of

generated image (Iis) is different from the target image (IA).

5. Then, it applies half-interval search algorithm in parallel i.e., on multiple sources to

bring the perturbed examples near classification boundary (see step 4 from 4.1).

6. It selects the example, from the perturbed examples generated in step 4, having the

minimum perturbation with target image (IA)(see step 5 from 4.1).

7. It again performs the step 4 and step 5 till it finds generated image (Iis) with ∆max

distance with target image (IA) or the number of queries reaches to limited allowed

number of queries Qmax (see step 6/results from 4.1).

4.2 Mathematical Formulation of Multi-Query Attack

To compute the adversarial example, we use the cost function from the state-of-the art

decision-based attack(FaDec) which is the improved version of the cost function defined

by [3], which is given as.

cost = c × (f(Xadv)! = f(Xtarget)) +
∑

(X − Xadv)2 (4.2.1)

Xadv, Xtarget and c are adversarial image, targeted image and constant. The reason for

selecting this cost is that in this perturbation norm is minimized between target image,

Xtarget and adversarial image, Xadv. we choose c as 1 in 4.2.1, because large value of

c increases convergence time. The gradients of the cost function given below. if the

updated adversarial example does not belong to the target class then X = Xtarget+Xadv

2

and the computed gradient is.

∂cost

∂Xadv
= Xadv − Xtarget (4.2.2)

If the instant adversarial example belongs to targeted class then X = Xtarget and the

computed gradient is.
∂cost

∂Xadv
= 2 × (Xadv − X) (4.2.3)

For the gradients of the cost function in 4.2.2 and 4.2.3 , the new adversarial gradient

update will be:
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Figure 4.1: Visualization of the step-by-step methodology of the proposed ParDec.

Xadv,new = Xadv,old − α × ∂cost

∂Xadv
(4.2.4)

The cost function mentioned in 4.2.4 searches the adversarial example linearly on clas-

sification boundary. This cost function is updated by —— To compute the adversarial
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Figure 4.2: Algorithmic flow of the proposed multi-query attack

example, we use the cost function mentioned in the state-of-the art decision-based at-

tack(FaDec).
cost =

∑
(Xadv − X)2 (4.2.5)

The cost function mentioned in 4.2.4 use half-interval search algorithm shown in 2. When

we apply half-interval search algorithm, adversarial example generated linearly causes

infinite oscillation at the classification boundary. To address this problem, this cost

function uses maximum allowed perturbation δmin near classification boundary 2. To

optimize this cost function by the use of stochastic Zeroth-Order Optimization. Firstly,

n number of pixels in Xadv are selected. Secondly, random perturbations are added in

the selected pixels to calculate
−
Xadv. The zeroth-order gradient for 4.2.5 follows.

∂cost

∂Xadv
=

∑
(Xadv − X)2 −

∑
(

−
Xadv − X)2

Xadv −
−
Xadv

(4.2.6)

Xadv,new = Xadv,old − λ × ∂cost

∂Xadv
(4.2.7)
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Algorithm 1 Attack flow of the proposed ParDec Attack
Input:
IA = Target image; IB = Reference image;
∆max = Maximum tolerable l2 square distance;
Qmax = Query restrictions; n = Number of pixels to be perturbed;
θ = Perturbation in a pixel; δmin = maximum perturbation value;
Output:
Ii = Adversarial Image;

1: Select multiple images near IA

2: Compute Iis = Iiselect using Algo.2;
3: repeat
4: Update Ii = Iit using Algo. 3;
5: until (

∑
(IA − Ii)2 > ∆max) & Q ≤ Qmax

“λ” is the factor that controls the jump in

4.3 Estimating the Adversarial Example Ii on the Classi-

fication Boundary

First, we outline the problem statement of estimating the sample near classification

boundary in the given below goal.

Goal: Suppose IA, IB and δmin are the target image (class: A), random (reference)

image (class: other than A) and maximum allowed perturbation margin. The goal of

this given algorithm is to generate a perturbed image Iis near classification boundary

having tolerable δmin distance from the classification boundary. It uses IAs, if available

otherwise will it use IA as input to the image. Mathematically, it can be defined as:

∃ Iis : f(Iis) ̸= f(IA) ∧ max(Iis − IA) ≤ δmin (4.3.1)

This algorithm tries to find the Iis near the classification boundary having tolerable

δmin distance from the classification boundary. To this, it calculates Ipi by computing

the mean image between target image IA and reference image IB (see line 1 in 2). If the

label of generated image Ipi is equal to IA it replace the IB and if the label of generated

image Ipi is equal to IB it replace the IA. (see line 5-8). The algorithm performs this

process iteratively until maximum distance of Iis from the IA is less than δmin while

f(Iis) is not equal to f(IA).
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Algorithm 2 Estimating the sample image near Classification Boundary
Input
IA = Target image; OR IAs = Selected images near IA

IB = Reference image; δmin = Max. Allowed Perturbation;
Output
Isi = Adversarial Image;

1: Isi = IAi+IB
2 ;

2: repeat
3: labeli = f(IAi);
4: Q(query) = Q(query) +1
5: if labeli ≡ f(IAi then
6: IAi = Isi;


in parallel for i

7: else
8: IB = Isi;
9: δ = max(IA − Isi);

10: until δi ≤ δmin

Select Iis with min.(IA − Isi)

4.4 Optimize the perturbed image Iis on the Classification

Boundary

Goal: Suppose IA, IB and δmin are the target image (class: A), random(reference)

image (class: other than A) and maximum allowed perturbation margin. The goal of

the given algorithm is to minimize the distance of the perturbed image Ii to the target

image IA, while label of Ii is not equal to IA, to make sure imperceptibility of generated

adversarial image Iis. Mathematically, it can be defined as:

∀ Ii min(Ii − IA) : f(Ii) ̸= f(IA) (4.4.1)

For this, this algorithm starts with initializing I0 image by setting all pixels to zero(see

line 1 in 3). After that, it randomly selects n pixels from I0 and set them to maximum

value. After that it adds perturbation in in positive and negative direction in Ii parallel

process, to generate multiple perturbed images(see line 3-6 in 3). After that, half

interval search from 2 is applied in parallel process to bring perturbed images near to

classification boundary.(see line 8 2). Moreover, the magnitude of added random noise

is decreased by half after 10 queries to converge to minima on classification boundary(see

line 7 in 3). Finally, from all generated images Iit it chooses the image with minimum

distance with target image IA.

All above-mentioned algorithms are integrated to make final adversarial example Ii

shown in 1. First, it computes Is using 2. Then it performs 3 iteratively to optimize
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the added perturbation until (
∑

(IA − Ii)2 > ∆max)) and number of allowed queries

crosses to Qmax.

Algorithm 3 Moving Adversarial examples to min. perturbation
Input
IA = Target image;
n = Number of pixels to perturb;
θ = Relative Perturbation in each pixel;
factor = random noise factor;
scalep = [1, 50, 100, 1, 50, 100]
Output
Iis = Adversarial Image;

1: Define a zeroed I0 of size Ii;
2: Choose n number of pixels in I0 and equal them to the maximum values of the pixel;
3: if t < thresh. then
4: Ipt = Ii + factor ∗ scalep[t];
5: else
6: Ipt = Ii − factor ∗ scalep[t];


in parallel for t

7: factor = factor
2 ; after 10 queries

8: Update Iit = Ii2 using Algo. 2;
9: Select Iit with min.(IA − Iit);
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Experimental Results for

Proposed Attack

5.1 Experimental setup

To evaluate the proposed Multi-query attack, we performed multiple un-targeted attacks

using the experimental setup given below.

1. Datasets: GTSRB, CIFAR-10

2. DNN for GTSRB: Lambda (lambda t: t/255.0 - 0.5) Conv2D(3, 1x1) - Conv2D(16,

5x5, (2, 2)) - Conv2D(32, 3x3) - MaxPool2D( (2, 2), (2, 2)) - Conv2D(64, 3x3)

- Conv2D(128, 3x3) - Flatten() - Dropout (0.4) - Dense (128) - Dropout(0.7) -

Dense(34) – Dropout - softmax()

3. DNN for CIFAR-10 (cifar10vgg): Conv2D(64, 3x3) - Conv2D(64, 3x3)- Max-

Pool2D((2, 2)) - Conv2D(128, 3x3) - Conv2D(128, 3x3) - MaxPool2D((2, 2))- Conv2D(256,

(3, 3))- Conv2D(256, (3, 3))- Conv2D(256, (3, 3))- MaxPool2D((2, 2)) -Conv2D(212,

(3, 3))- Conv2D(512, (3, 3)) -Conv2D(512, (3, 3))-MaxPool2D((2, 2)) - Dense(512) -

Dense(10) - Softmax()

4. Training parameters for DNN (DNN for CIFAR-10): Epoch = 250; Batch

Size = 128; Activation = relu, Optimizer = Adam; Learning Rate = 0.0001; Decay

= 1 × 10−6.

5. Number of parallel sources : 6 sources are used in given expermental setup.
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5.2 Evaluation Parameters

To evaluate the effect of hyper parameters on Multi-query attack, we use the following

parameters and their values are given below:

1. δmin is the maximum allowed perturbation in the target image IA i.e., the distance

between the actual classification boundary and the estimated classification boundary.

It is calculated as the maximum distance between two samples in algorithm 2 (line

9). Note, we vary is from 1 to 15, i.e., 1, 5, 10, and 15.

2. n is the number of random pixels to be perturbed for introducing perturbation in the

initial adversarial image Ii in algorithm 2(line 2). Note, we vary is from 5 to 50, i.e.,

5, 10, 20, 30 and 50.

3. θ is the relative perturbation in each pixel i.e., magnitude of the perturbation in each

pixel randomly selected. Note, we vary is from 0.0392 to 0.1962, i.e., 0.0196, 0.0392,

0.1176, 0.1962. These are same values used in FaDec attack paper [17].

5.2.1 Metrics of Imperceptibility Evaluation

To evaluate the imperceptibility, we use the evaluation metrics given below.

1. Perturbation Norm (d) is most commonly used parameter and it measures the

mean square difference between two images (adversarial image and clean input im-

age). Note, lower the value of perturbation norm higher the imperceptibility (ex-

plained in Section 2.2).

2. Cross Co-relation Coefficient (CC) is the probability of the linear dependencies

between two images. It is calculated by using the Pearson’s correlation coefficient.

It has range between 0 and 1; ”0” for minimum human imperceptibility and ”1” for

maximum human imperceptibility (explained in Section 2.2).

3. Structural Similarity Index (SSIM) is perceptual similarity between two given

images (reference image and perturbed image). It has range between 0 and 1. For

maximum human imperceptibility, SSIM should be ”1” (explained in Section 2.2).
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Figure 5.1: Visual example of adversarial images at different number of queries during the
decision-based adversarial attacks, i.e., FaDec and ParDec.

5.2.2 Evaluation and Discussion

Number of Queries (n) Multi-query attack and FaDec attack are evaluated against

same sample images and evaluation parameters from Section 5.2 for 100000 queries

shown in Fig. 5.3. It can be shown that Multi-query attack converges at 10000 queries,

while FaDec is still converging after 100000 queries. It can be shown that Multi-query at-

tack converges approx. 10 times faster than FaDec which is the state-of-the art decision-

based attack [17]. Fig. 5.1 shows that perceptibly of the adversarial noise in the case

of ParDec is far less than the in the case of FaDec attack. Hence, it shows that the

proposed Pardec attack converges approximately, 5× than to the fastest state-of-the-art

attack (FaDec).

Max. allowed perturbation(δmin) Multi-query attack and FaDec attack are evalu-

ated against same sample images and δmin is changed except all other evaluation param-

eters as shown in fig. ??. It can be shown as the value of δmin is increased perturbation

norm(d) of adversarial image increases, which results in the decreasing the quality of
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Figure 5.2: Different examples attack cases, e.g., proposed ParDec and state-of-the-art FaDec
attacks on different samples of dataset.

adversarial image. This is due to the fact that increasing the δmin increases the margin

to add perturbation in target image which allows Multi-query attack to converge at

higher perturbation. Same results in observed for FaDec.

Max. allowed perturbation(θ) Multi-query attack and FaDec attack are evaluated

against same sample images and θ is changed except all other evaluation parameters as

shown in fig. 5.3.By increasing θ trend similar to increasing the δmin is observed. An

optimal value of θ for GTSRB dataset is 20. Moreover, smaller values of theta gives

stable convergences.

Key Insights By analyzing all the results in Figs. 5.3 and 5.4, we made the following

key observations:

1. ParDec is achieving significantly higher (more than 400%) imperceptibility with 5x

a smaller number of queries. Hence, it can be unimplemented on a very resource-

constrained devices, like battery-operated edge device in IoT.

2. It is also observed that targeted attack takes more time to converge as compared to

un-targeted attack.
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Figure 5.3: The effect of changing the δmin on the convergence of the proposed ParDec attack
and the state-of-the-art FaDec attack. These results show that in all cases the
ParDec is converging much faster than FaDec, and achieving very high impercep-
tibility (low perturbation norm.)
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Figure 5.4: Experimental results to compare the the number of quesries required to converge
the proposed attack and the fastest state-of-the-art attack, i.e., FaDec.

3. Increasing the number of parallel sources can further decrease the number of queries.

Imperceptibility Imperceptibility of different adversarial images as number of queries

increases is shown in Fig. 5.3. In this figure, it is observed that in all cases the ParDec

is converging much faster than FaDec, and achieving very high imperceptibility (low

perturbation norm). The detailed results of ParDec for the 50 percent of the GTSRB

dataset are given in the Appendix A.
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RaFiS: Random filter

Switching-based Defense

In this chapter, we present and provide the detailed explanation of the proposed defense

against decision-based adversarial attacks, which randomly switches the existing pre-

processing-based defense.

6.1 RaFiS

To counter the limitations of the mentioned state-of-the-art defenses, we propose to use

random filters switching as pre-processing step. The methodology to use random filters

is explained below.

1. Suppose X is an colored image with three channels X = [x0, x1, ...xk], where xk is

the number of cahnnel of the input image, k = 2 in aboce mentione case. A filter F

used to extract features will have the form.

F = [f0, f1, ....., fk] (6.1.1)

where fk is the k-th channel of the filter.

2. First, convolution is applied between image and the randomly selected filter F for

extracting the edges of the input image.

E = X ⊛ F (6.1.2)
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E is a gray-scale image of extracted edges X.

3. Second, strong edges are selected from the E from 6.1.2 for a threshold, tk. All the

edges less than the tk will be set to 0 while other will be set to 1 i.e., ignoring the

weaker edges and selecting the stronger edges. Sigmoid function(σ) is used to select

stronger edges and is given below.

σ(x) = 1
1 + e−x

(6.1.3)

The output with stronger edges S is obtained after applying threshold on 6.1.3 and

is given below.

S = σ(E, tk) (6.1.4)

4. After that, the output S from 6.1.4 is multiplied by with the input image channel-wise

to preserve color information.

I = X × S (6.1.5)

5. Finally, I is given as input to the ML model.

6. It is important to mention that filter F is selected randomly from the set of filters

consists of multiple filters e.g. laplacian, high-pass and low-Pass filters etc.

40



Chapter 7

Experimental Results for

Proposed Defense

7.1 Experimental setup

To evaluate the Random Filter-Switching-based Defense, we performed multiple un-

targeted attacks using the experimental setup given below.

1. Datasets: GTSRB, CIFAR-10

2. Attacks : Multi-query attack and FaDec atatck

3. DNN for GTSRB: Lambda (lambda t: t/255.0 - 0.5) Conv2D(3, 1x1) - Conv2D(16,

5x5, (2, 2)) - Conv2D(32, 3x3) - MaxPool2D( (2, 2), (2, 2)) - Conv2D(64, 3x3)

- Conv2D(128, 3x3) - Flatten() - Dropout (0.4) - Dense (128) - Dropout(0.7) -

Dense(34) – Dropout - softmax()

4. DNN for CIFAR-10 (cifar10vgg): Conv2D(64, 3x3) - Conv2D(64, 3x3)- Max-

Pool2D((2, 2)) - Conv2D(128, 3x3) - Conv2D(128, 3x3) - MaxPool2D((2, 2))- Conv2D(256,

(3, 3))- Conv2D(256, (3, 3))- Conv2D(256, (3, 3))- MaxPool2D((2, 2)) -Conv2D(212,

(3, 3))- Conv2D(512, (3, 3)) -Conv2D(512, (3, 3))-MaxPool2D((2, 2)) - Dense(512) -

Dense(10) - Softmax()

5. Set of Filters: Three filters in set of filters, which are Laplacian, High-Pass Filter

and Low-Pass Filter.

6. Number of parallel sources : 6 sources are used in given expermental setup.
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Figure 7.1: Experimental evaluation of the proposed RaFiS, which shows it decreases the per-
turbation norm in FaDec but it increases the perturbation norm in ParDec case.

7.2 Evaluation Parameters

To evaluate the Random Filter-Switching-based Defense, we use the following parame-

ters.

1. Threshold for edges(tk): is the threshold for selecting the edges on the convolved

image i.e., edges less than tk will be "0" and others will be set to "1".

7.2.1 Evaluation Metrics for defense success

To evaluate out proposed defense, we use the following the metrics.

1. Label changing of Adversarial Image: if the label of the adversarial image is

same as the target image after applying the attack, it is defined success of the defense.

For a successful defense, label changing of adversarial image should be "0".

2. Number of queries: If the given defense prevents the attack to generate adversarial

example, which can misclassify the target image, in the given number of queries is

considered as the successful defense.

3. Perturbation Norm(d): If a defense fails to prevent label changing of the adver-

sarial but if restricts the perturbation norm to the value which is easily perceptible

to human eye can be considered as the successful attack.
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Figure 7.2: This experimental results show the impact of RaFiS on perturbation norm during
the attack with respect to number of queries. From analyzing this, we observe that
in case of FaDec, RaFiS decreases the perturbation norm by 21% but in case of
ParDec, RaFiS increases the perturbation norm by 6.667 times.
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Figure 7.3: Different examples of defense agaisnt multiple attack cases, e.g., proposed ParDec
and state-of-the-art FaDec attacks on different samples of dataset.

7.2.2 Evaluation and Discussion

All the attacks performed in section 5.1 are tested against the Random Filter-Switching-

based Defense and the results are discussed below.

1. Multi-query attack is performed on same sample images but defended by Random

Filter Switching based defense, and evaluation parameters from section 5.2 for 100000
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queries shown in Fig. 7.1. It can be seen that performing Multi-query attack con-

verges at perturbation norm of 39, which is approximately 20 times more than with-

out defense, while keeping the label of adversarial image same as target image, which

shows the success of our proposed. It prevents the label changing perturbed image

and resists the decrease in the perturbation norm.

2. FaDec attack is performed on same sample images but defended by Random Fil-

ter Switching based defense, and evaluation parameters from section 5.2 for 100000

queries shown in fig. 7.1. It can be seen that that FaDec attack converges at pertur-

bation norm of 21, which is twice than the one without defense, while keeping the

label of the adversarial image same as target image.

Key Insights

1. For using random filtering in each query, the perturbation added by the attack is

filtered out in each iteration of attack. In start, perturbation norm decreases signif-

icantly because the magnitude of the added perturbation norm is large initially and

reduces as the iterations of attack increases.

2. If high pass filter is selected form the set of filters it performs sharpening of the edges

which is further refined by the edge triggering threshold tk. This helps to remove the

perturbation added near the edges of the target image.

3. If Laplacian filter is selected, it performs the same process of edge detection as high

pass filter. It removes the perturbation added near the edges of in the target image.

4. If the low pass filter is selected from the set of filters, it will reduce the perturbation

in the areas of adversarial image other than edges as it smooths the image.

5. Our proposed defense evaluated on GTSRB and CIFAR-10 and it successfully de-

fended the test images without changing the label of adversarial images to 100000

queries.

It is important to note that the increment in the number of filters in the pre-processing

layer increases the attack complexity but it also increase the cost.
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Conclusion

In this thesis, we first developed a novel approach to perform a Multi-query attack. It

finds initial adversarial image near classification boundary by using half interval search

algorithm and optimize the added perturbation in initial adversarial image from multi-

ple sources by using half interval search-based algorithm in parallel to converge faster

and selects the adversarial image based on perturbed norm with target Image. We eval-

uate it on multiple samples from GTSRB and CIFAR-10 datasets. Multi-query attack

converges 10x faster when compared to the state-of-the art decision-based attack, i.e.

FaDec [17]. For Perturbation norm, we showed that Multi-query attack converges to low

perturbation norm as compared to FaDec, which provides high human imperceptibility

for adversarial image. Moreover, we also proposed a Random Filter-Switching-based

Defense against decision-based adversarial attacks. It uses the mechanism of switching

filters randomly in pre-processing step of DNN inference. For each query, it selects a

filter randomly form the set of pre-defined filters and performs convolution and thresh-

olding on the input image to reduce the noise or make the noise perceptible. We evaluate

Random Filter-Switching-based Defense on Multi-query attack and FaDec for multiple

samples of GTSRB and CIFAR-10. We showed that Random Filter-Switching-based

Defense prevents the label changing of the adversarial image and resists the decrease in

perturbation norm on Multi-query attack and FaDec attack.
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Appendix A

To compute overall accuracy or success rate of our attack on given GTSRB dataset,

we evaluate our proposed attack ParDec on 50 percent of GTSRB dataset. We select

image from each class and mapped it on all other classes (which 42 in every case), e.g.,

we select class1 which is 20 Kmph from dataset and mapped it into all other classes

except class1. For valid adversarial images, we set perturbation norm <= 15 and

number of queries=200 for generated adversarial images in this experimental setup.

We calculate accuracy or success rate of the attack on for each class by taking average

of the accuracy, when of the target class is mapped onto all other classes. After that,

we take the mean of the accuracy for each target class, which was calculated in previous

step. For example, for each class, we calculate the accuracy of the selected class 1 against

all other classes and take its mean. For the given dataset which has 43 class of road

signs, we take mean of 42(one less than the overall classes) accuracy values for target

class. When we calculate accuracy of all classes, i.e., 43, we have 43 accuracy values.

Finally we take the mean of these 43 values to compute the overall accuracy. All above

mentioned, steps are performed on FaDec and ParDec attack and their comparison is

given in the table A.1. From the Table A.1, it can be seen that ParDec achieves 2.7

times more accuracy than FaDec, state-of-the-art decision-based attack.

53



Appendix A: Appendix A

Table A.1: Accuracy or Success Rate Comparison FaDec vs ParDec
FaDec ParDec

Target Class Accuracy(%) Target Class Accuracy(%)
0 50 0 86.03
1 0 1 0.7
2 7.5 2 28.1
3 0 3 0.3
4 0 4 0.4
5 0 5 38.1
6 2.5 6 25.4
7 30.7 7 68.5
8 25 8 49
9 0 9 14.6
10 17 10 39
11 8 11 20
12 32.2 12 73.1
13 0 13 0
14 0 14 0.8
15 12.3 15 37.5
16 0 16 20
17 0 17 0
18 0 18 1
19 0 19 8
20 0 20 19.7
21 7.1 21 22.7
22 9.5 22 28.1
23 5.5 23 14.6
24 27.8 24 76
25 11.1 25 30.2
26 22.2 26 64.4
27 17.1 27 31.2
28 0 28 0.2
29 12 29 26
30 37 30 54
31 21 31 32.7
32 22 32 44.5
33 5.7 33 10.5
34 6.1 34 22
35 3 35 16.5
36 0 36 17.5
37 0 37 16.7
38 0 38 3.26
39 0 39 11.3
40 32 40 45
41 5.9 41 35
42 7.12 42 31
Overall Average Accuracy 10.17023 Overall Average Accuracy 27.06023
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Appendix B

For the proposed defense, RaFis, all the adversarial images generated in A are defended

in 1000 number of queries.
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