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Abstract

In bio-related applications privacy is an essential element. While most of the techniques

in Deep Learning rely on single modality, spoofing attacks can be minimized by em-

ploying multi-modal approaches. Purpose of this research is to develop a technique

in which a person will be given some sentences to speak, audio-visual features will be

merged and using this amalgam of both modalities, language model will validate if the

text read actually validates against the passage given to read. This can be used as an

authentication method to check if the user is actually live and hence can prevent the

print attacks in case of mobile applications.
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Chapter 1

Introduction

The ability to identify what is being said only based on visual information, is a remark-

able skill that is extremely difficult for a novice to master. Homophones — separate

characters that create the exact same lip sequence (e.g. ’p’ and ’b’) – make it intrin-

sically confusing at the word level. However, given the context of nearby words in a

sentence and/or a language model, such ambiguities can be resolved to some extent.

Lip reading technology can be used for a variety of tasks, including ’dictating’ in-

structions or messages to a phone in a noisy environment, transcribing and re-dubbing

archival silent films, resolving multi-talker simultaneous speech, and improving auto-

mated speech recognition performance in general.

The usage of deep neural network models [30, 44, 47] and the availability of a large

scale dataset for training [41] are two developments that are well recognised through-

out computer vision jobs that have enabled such automation. The lip reading models

in this context are based on recently published encoder-decoder architectures for voice

recognition and machine translation [5, 7, 22, 23, 46].

Goal of this research is to develop a miulti-modal based authentication system which, if

used alongside other recognition/verifications system, can allow for added information

security. Automatic biometric identification systems face a significant obstacle in the

interactive recognition of individuals. Solution approaches include speaker verification

1



Chapter 1: Introduction

systems based on image sequences. But as the field of adversarial learning is advancing,

several state of the art models based on single modalities can be jsut easily fooled by

adversarial attacks.

Apart from that with the growing consumer market there has been considerable increase

in the no. of mobile using perople. Each mobile has got few sensors including camera

and microphone which can be used not only to collect the datasets for such models but

also to make the authentication process more smooth and allowing for use of multiple

technologies.

2



Chapter 2

Background Information

In this chapter some terminologies related to the domain of biometrics and authentic

ation will be defined.

2.1 Recognition

Figure 2.1: Person recognition

Case of recognition refers to a 1xN matching case where the actual question at hand is:

"What is the id of person?" So essentially this is how such a system proceeds:

• person presents his identity

• system has a database associated with it

• database has templates of all the registered users

• all templates get matched against the query template

3



Chapter 2: Background Information

• the template with highest matching score refers to the person ID

2.2 Verification

Case of verification refers to a 1x1 matching case where the actual question at hand is:

"Is the claim made by person right or wrong?" So essentially this is how such a system

proceeds:

• person presents his identity

• person claims that i am "A"

• system has a database associated with it

• database has templates of all the registered users

• template corresponding to the person’s claimed id gets matched

• decision is made if the claim of user is right or wrong

Figure 2.2: Person verification

2.3 Authentication

Authentication assumes that there exists a secret phrase only known by a specific user

and which, if validated will allow the user to access the system. Think of it like a

4



Chapter 2: Background Information

password of a key-word phrase which is just known to a user so the system doesnot know

who the speaker / typer is but relying on the authenticity of information provided, it

will authorize the user. Here is how a typical authentication system will look like:

Figure 2.3: Person Authentication

• person types / speaks a secret phrase only known to user and the system

• database matches it against the credentials

• if the credentials are correct, user is authenticated

This can also be seen as a use case where a user is asked to enter the password while

the mobile restarts, although the device already has a record of user’s fingerprints. This

is in a sense two factor authentication for ensuring the security of information systems.

2.4 Motivation

With the ever increasing use of mobile phones and their connectivity with almost every

application from email to buying grocery items, information security is a major concern.

One of the recent studies[10] performs adversarial attacks on one of the most accurate

public face recognition model and finds it to be spoof-able at 98% of the attempts. 98%
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Chapter 2: Background Information

is a large number. Advances in deep adversarial learning have made single modality

basead systems un-reliable.

There is another dimension to it. Most of the people today use mobile phones and

almost all of them have atleast a frontal camera and microphone. So audio-video based

multiple modality authentication solutions are totally viable. Apart from that for the

disabled people or the people who have got no limbs to type in a password or a pin code

will be at more ease using speech based authentication method.

2.5 Scope

Here formal scope of the research will be defined. This researh aims for the development

of a multi-modal authentication system. So given that the user has been presented with

a secret key phrase and asked to utter it, the system will transform the audio visual

features as well as the actual secret key phrase into an arbitrary N-dimensional space

where metrics like L2 norm and cosine similarity will be applicable to them.

cos similarity = Va − Vs
| Va∥∥Vs∥

(2.5.1)

Model will transform the Vs and Va both into a projected space where similarity or

dissimilarity can be measured on the basis of metrics like:

Vs ∈ R384

Va ∈ R384

Vs = spokenphraseembedding

Va = actualsecretkeywordphraseembedding

(2.5.2)
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Chapter 3

Literature Review

Foundation of early works in audio-visual speech-based person authentication was laid

by [1]. They proposed a method by representing apparent lip movement by change in

brightness intensity, then fusing it with speech-audio features and then passing it on to

a GMM based feature vector representation. They tested their model on the XM2VTS

dataset which contained around 300 identities. This dataset was the state-of-the art

of that era and they reported very high and optimistic recognition rates on the said

dataset. Apart from being the verification task, "liveness" detection as a byproduct of

their method was also proposed [1].

Das et al. proposed a technique based on neural network classifiers. They used nearest-

neighbor classification technique in conjunction with neural networks. They captured

multiple face views from their in-house generated dataset and proposed a technique to

convert voice data into "VSF" spectrograms. They also introduced a method to remove

un-voiced portions from the VSF features. These features where fed-in to a neural

network and nearest-neighbor classification conjuncture. They reported an EER of 0%

on their in-house dataset by testing their method with imposter and real attempts of

speaking the spoken password [2]. Later, Das et al. proposed a method to compress the

audio spectrograms by to a very light 1D representation by using the FGRAM method.

The same methodology was used to convert images of multiple faces to represent them

in lower dimension. An improvement to the fusion and training techniques along with

additive improvements to the verification pipeline was also proposed [3].

As improvements in the field of person verification grew, Li et al. proposed a detailed

overview of an audio-visual biometric system. They discussed in detail the pipeline of

7



Chapter 3: Literature Review

authentication, as well as audio-visual fusion technique. Moreover, they discussed effects

of early, mid and late fusion and their effect on overall performance on the system [4].

As deep neural network based techniques grew in popularity, Noda et al. laid grounds for

deep-learning based audio-visual speech representation for speech recognition purposes.

They used a DNN based autoencoder for denoising and also representing the voice

features into a 1D vector representation. And for every time instance they extracted, a

1D feature vector through using a CNN feature vector extractor. These features were

fed into a multi-stream implementation of HMM for audio-visual feature integration.

They conducted tests on closed-speaker open-vocabulary environment and also included

experimentation of the effects of varying SNR and by changing different hyperparameters

of their proposed system [5].

[6] has used contrastive loss with novel coupling technique to obtain EER of 13.5%.

[8] Used LSTM and proposed and novel Audio-Visual Fusion Strategy to improve CER

by 30% (<20%). [9] proposed a novel transformer-based audio-visual fusion technique

and CTC loss usage for WER reduction and obtained WER of 48.3% on LRS2-BBC,

this was the beginning of use of transformers for fusing multiple modalities. Since their

self attention power has made them excel LSTM and traditional temporal models, self-

attention based encoder building blocks have found their place in multi-modality based

lip reading and AVSR tasks.

[11] has employed temporal convolutions to benchmark his approach against LRW

dataset which contains specific words spoken by a number of different speakers. Ma-

jor contribution was to rectify the limitatations of previous SOTA model for the said

dataset which comprised of Resnet+GRU and replace the temporal model with tempo-

ral convolutions. Thus instead of training in parts, they simplified the training method

in single end2end stage.

Employing the use of temporal convolutions, [12] devised a two-stage network for AVSR

purpose in high noise environments. The ist stage separates noise from target voice

by employing the use of mouth region movements along with stft based features, thus

enhancing the voice. In second stage the enhanced voice is fused with the mouth crop

regions to perform speech recognition in extreme noisy environments.

[13] has researched for a number of different features that are good for audio and video

modalities.
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Chapter 4

Design and Methodology

4.1 Dataset

According to literature review following are the datasets found to be useful for the

purpose of this research. LRS2 dataset contains less variety than LRS3 dataset. While

the former contains BBC news dataset, latter one has video clips from TED talks. In

terms of variety and vocabulary, the LRS3 dataset is the most recent and bulky dataset

available for research purposes.

Table 4.1 and 4.2 show statistics and details of these datasets. LRS3 has almost 3.9

million pretraining vocabulary as compared to the LRS2 which has almost 41k unique

words.

As for the training data samples, LRS2 has a vocabulary of almost 17k words while

LRS3 has 17k.

4.2 Preprocessing

Preprocessing of dataset is necessary with reference to two aspects:

Table 4.1

Set Utterances Words Vocabulary
Pre-train 96,318 2,064,118 41,427
Train 45,839 329,180 17,660
Val. 1,082 7,866 1,984
Test 1,243 6,663 1,698

9
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Table 4.2

Set Utterances Words Vocabulary
Pre-train 96,318 2,064,118 41,427
Train 45,839 329,180 17,660
Val. 1,082 7,866 1,984
Test 1,243 6,663 1,698

Figure 4.1: Datasets Available

• This is multi-modality based fusion scheme and hence both need to be processed

in some way to feed to the model

• Without pre-processing the training of transformer based models lags efficiency

and stability.

There are a number of steps related to pre-processing but it all depends on the type of

downstream task that the model has to perform. Generally spectrograms best suited

for audio related inference tasks whereas ML models based feature extractors are used

for transforming the video into vectors to be used by some downstream task model.

Following sections will explain these pre-processing steps further.

4.2.1 Text Preprocessing

The corpus of LRS2 and LRS3 datasets includes a number of characters which are

not suitable for direct processing. The generic operations performed for pre-processing

include :

• text should not contain small letters

• text should not contain special characters
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Chapter 4: Design and Methodology

• as for the alphabets, only english ones are allowed

• for numerics, only mathematical characters are allowed.

Common text prep-processing operations

In any machine learning task, data cleansing and preprocessing is at least as important

as model creation. This process is even more crucial when it comes to unstructured

data, such as text.

Common text preprocessing and cleaning steps include:

1. Lower casing

2. Removal of Punctuations

3. Removal of Stopwords

4. Removal of Frequent words

5. Removal of Rare words

6. Stemming

7. Lemmatization

8. Removal of emojis

9. Removal of emoticons

10. Conversion of emoticons to words

11. Conversion of emojis to words

12. Removal of URLs

13. Removal of HTML tags

14. Chat words conversion

15. Spelling correction

There are two distinct methods for sequence-decoders:

11



Chapter 4: Design and Methodology

Table 4.3: Vocabulary for the CTC decoder

Character Index Character Index
A 0 S 20
B 1 T 21
C 2 U 22
D 3 V 23
E 4 W 24
F 5 X 25
G 6 Y 26
H 7 Z 27
I 8 0 28
J 9 1 29
K 10 2 30
L 11 3 31
M 12 4 32
N 13 5 33
O 14 6 34
P 15 7 35
Q 16 8 36
R 17 9 37
space 18 <EOS> 38
’ 19

• sequence2sequence

• ctc

For the sequence to sequence models, vocabulary size is large but the model correctly

predicts the words since the actual vocabulary is predicted over the whole vocabulary

corpus. This makes them very good for language translation tasks for which the vocab-

ulary might increase upto 30k tokens. But to generate such a large vector against each

temporal unit is compute expensive so character level decoder has been chosen for the

said purpose. Following table represents the character to vocabulary index.

4.2.2 Audio Preprocessing

Each of the input videos is processed before starting the pre-training and training pro-

cess. Since the model depends on multiple modalities so length of both the modalities

needs to be somehow fixed in order to synchronize them. More specifically audio infor-

mation needs to be converted to a matrix in which each column represents information

12



Chapter 4: Design and Methodology

against a specific time step. Model doesnot directly operate on the raw video and au-

dio data and latent features from both modalities need to be saved to disk prior to

pre-training and training to lessen the amount of training time.

Figure 4.2 shows all the steps involved audio processing.

Figure 4.2: Audio pre-processing pipeline

A pipeline has been developed for processing each of the audio files. Since dataset size

is large and it is time taking to perform audio processing at runtime or during training

hence audio from all the videos has been extracted even before pretraining and training

and saved to disk in the form of .wav file.

Briefly these audio processing steps have been summarized below:

1. Perform downsampling to 16kHz

2. Ensure that length of audio is atleast equal to 4 STFT window sweeps

3. [−1, +1] normalization

4. Power normalization

5. Perform STFT according to parameters defined in the Table 4.4

6. Perform zero-padding on both sides of signal such that audio samples are 4× video

frames

In the later sections, all steps will be explained along with their importance.

13
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Downsampling

After all the videos have been processed, another iteration of processing is applied which

iterates over the .wav files. Since audio information is generally recorded at 44kHz which

is fairly large sampling rate, there is a need to down-sample audio and according to most

of the AVSR systems 16kHz is enough, all wav files are resampled at the said value of

16kHz. Figure 4.3 illustrates the sample signals. Top image represents orignally recorded

image at 44kHz while the bottom one represents 16kHz sampled image.

Figure 4.3: 44kHz and 16kHz sampling rates

Top image represents orignally recorded image at 44kHz while the bottom one represents
16kHz sampled image.

Scaling

After downsampling, next step is to squash all the varying values to a common scale

of [−1, +1] to ensure all samples have nearly equal weightage. Most supervised and

unsupervised learning methods make decisions based on the data sets supplied to them,

and algorithms frequently compute the distance metrics between data points in order to

14



Chapter 4: Design and Methodology

Table 4.4: Audio Preprocessing Parameters

Parameter Value
stftWindow hamming
Window Size 0.04 seconds * 16kHz
Hop Length 0.01 seconds * 16kHz

draw more accurate conclusions from the data. Equation 4.2.1 shows scaling operation.

Sscaled = S
max(|S|)

Sscaled = scaled signal

S = original audio signal sampled at16kHz

(4.2.1)

Power normalization

Next signal processing operation is governed by Equation 4.2.2. The denominator is the

RMS Value of given signal. Thus, can be deemed as a straightforward RMS normalisa-

tion.

It is in a sense, levelling signal’s average but still permitting some peaks to be clipped

(instead of being set to 1). In other words, standard division by the greatest absolute

value of your signal will always ensure that sample values fall inside the interval [−1, +1],

whereas RMS normalisation does not. This technique is commonly employed for audio

and voice processing.

Sn = S…∑N
i=1|S[i]2|

N

S = original signal samples at16kHz

S[i ] = ith sample

(4.2.2)

STFT

Figure 4.4 shows a sample signal. It is ensured that at least 4 stft windows sweeps are

possible with the parameters defined in Table 4.4.
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Output from STFT is a 2D matrix of shape [freq.bins, frames], Equations 4.2.3, 4.2.4

show this calculation. As the audio corresponding to a video is loaded, total samples is

already known while the fsize is the same as the 1
FPS seconds of video.

n-freq = fsize
2 + 1

fsize = generally is same as no. of samples in a window length
(4.2.3)

In the later section when synchronization will be discussed, equations 4.2.3 and 4.2.4

will be used to synchronize the audio vectors with the video.

n-frames = Ts − fsize
Hs

+ 1

Ts = total samples in the audio at 16kHz

Hs = number of samples between each FFT window

(4.2.4)

Hs = Ts − fsize
n-frames − 1

(4.2.5)

Figure 4.4: STFT strategy for audio features

16
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FT vs STFT

Equations 4.2.7 and 4.2.6 define the STFT and DFT equations respectively. By applying

the Fourier transform, we move into the frequency domain with freq on the x-axis and

the magnitude itself is a function of frequency. However, by doing so, we lose information

about time. Hence, Fourier transform gives frequency information averaging throughout

the entire time interval of a signal.

When the frequency components of a signal change over time, the STFT offers time-

localized frequency information. In STFT, there’s a trade-off between time and fre-

quency resolution. In other words, while a narrow-width window produces higher time-

domain resolution, it produces poor frequency-domain resolution, and vice versa. It

can be utilised to make representations that capture the signal’s relative temporal and

frequency information. Like Fourier transform, it also uses fixed basis functions, but it

does so using fixed-size time-shifted window functions.

x̂(k) =
N−1∑
n=0

x(n) · e−i2πn k
N (4.2.6)

S(m, k) =
N−1∑
n=0

x(n + mH) · w(n) · e−i2πn k
N

m = freq. index

k = time index

x(n + mH) = Nftpoints of x

w(n) = window

e−i2πn k
N = DFT kernel

(4.2.7)

x(n) = input signal at time n

w(n) = length M window function (e.g., Hamming)

Xm(ω) = DTFT of windowed data centered about time mR

R = hop size, in samples, between successive DTFTs.
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4.3 Video preprocessing

With reference to Table 4.5, following are the video pre-processing steps involved. These

steps are performed on each video:

As a result of pre-processing, corresponding to each video, 4 files are made:

• mp4 video only file

• wav audio only file

• png ROI only file

• npy features only file

Pre-processing steps applied to each video are shown in Fig. 4.5. Hence against each

frame in the dataset, we are extracting a latent meaningful information Vi . So we get a

pre-processed matrix V of vectors against each video.

VK = {V1, V2, V3 ... ... VN}

K = {1, 2, 3 ... ... , B}

B = total no. of videos

N = no. of frames in Kth video

Vi ∈ R512

(4.3.1)

Figure 4.5: Preprocessing pipeline overview

As per mathematical formulation in equation 4.3.1 we get a 512D feature vector against

each frame of the video. This represents the condensed representation of all the salient

features.

Table 4.6 shows the model used for pre-processing each video. Before training, all the

videos have been transformed into feature vectors using the said model. One salient
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Figure 4.6: Preprocessing steps per video

Table 4.5: Video pre-processing parameters

Parameter Value
ROI size 112
µ 0.4161
σ 0.1688
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feature of this model is the 3D − convolution layer at the beginning. This layer takes as

input a 5D tensor. The I/O from a 3D − convolution layer are defined in Equation 4.3.2.

Input : (N, Cin, Din, Hin, Win) or (Cin, Din, Hin, Win)

Output : (N, Cout , Dout , Hout , Wout ) or (Cout , Dout , Hout , Wout )
(4.3.2)

Table 4.6: Model Used for extracting features for each video

Type of Layer Kernel Stride Zero-Pad Output Shape

Conv3D 64 x (5 x 7 x 7) (1, 2, 2) (2, 3, 3) [1, 64, NF, 56, 56]

BatchNorm3D - - - [1, 64, NF, 56, 56]

ReLU - - - [1, 64, NF, 56, 56]

MaxPool3D (1 x 3 x 3) (1, 2, 2) (0, 1, 1) [1, 64, NF, 28, 28]

Transpose - - - [1, NF, 64, 28, 28]

Reshape (needed by resnet) - - - [NF, 64, 28, 28]

Conv2D 64 x (3 x 3) (1, 1) (1, 1) [NF, 64, 28, 28]

BatchNorm2D - - - [NF, 64, 28, 28]

Conv2D 64 x (3 x 3) (1, 1) (1, 1) [NF, 64, 28, 28]

Conv2D 64 x (1 x 1) (1, 1) (0, 0) [NF, 64, 28, 28]

BatchNorm2D - - - [NF, 64, 28, 28]

Conv2D 64 x (3 x 3) (1, 1) (1, 1) [NF, 64, 28, 28]

BatchNorm2D - - - [NF, 64, 28, 28]

Conv2D 64 x (3 x 3) (1, 1) (1, 1) [NF, 64, 28, 28]

BatchNorm2D - - - [NF, 64, 28, 28]

Conv2D 128 x (3 x 3) (2, 2) (1, 1) [NF, 128, 14, 14]

BatchNorm2D - - - [NF, 128, 14, 14]

Conv2D 128 x (3 x 3) (1, 1) (1, 1) [NF, 128, 14, 14]

Conv2D 128 x (1 x 1) (2, 2) (0, 0) [NF, 128, 14, 14]

BatchNorm2D - - - [NF, 128, 14, 14]

Conv2D 128 x (3 x 3) (1, 1) (1, 1) [NF, 128, 14, 14]

BatchNorm2D - - - [NF, 128, 14, 14]

Conv2D 128 x (3 x 3) (1, 1) (1, 1) [NF, 128, 14, 14]
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Table 4.6 continued from previous page

Type of Layer Kernel Stride Zero-Pad Output Shape

BatchNorm2D - - - [NF, 128, 14, 14]

Conv2D 256 x (3 x 3) (2, 2) (1, 1) [NF, 256, 7, 7]

BatchNorm2D - - - [NF, 256, 7, 7]

Conv2D 256 x (3 x 3) (1, 1) (1, 1) [NF, 256, 7, 7]

Conv2D 256 x (1 x 1) (2, 2) (0, 0) [NF, 256, 7, 7]

BatchNorm2D - - - [NF, 256, 7, 7]

Conv2D 256 x (3 x 3) (1, 1) (1, 1) [NF, 256, 7, 7]

BatchNorm2D - - - [NF, 256, 7, 7]

Conv2D 256 x (3 x 3) (1, 1) (1, 1) [NF, 256, 7, 7]

BatchNorm2D - - - [NF, 256, 7, 7]

Conv2D 512 x (3 x 3) (2, 2) (1, 1) [NF, 512, 4, 4]

BatchNorm2D - - - [NF, 512, 4, 4]

Conv2D 512 x (3 x 3) (1, 1) (1, 1) [NF, 512, 4, 4]

Conv2D 512 x (1 x 1) (2, 2) (0, 0) [NF, 512, 4, 4]

BatchNorm2D - - - [NF, 512, 4, 4]

Conv2D 512 x (3 x 3) (1, 1) (1, 1) [NF, 512, 4, 4]

BatchNorm2D - - - [NF, 512, 4, 4]

Conv2D 512 x (3 x 3) (1, 1) (1, 1) [NF, 512, 4, 4]

BatchNorm2D - - - [NF, 512, 4, 4]

AvgPool2D (4 x 4) (1, 1) (0, 0) [NF, 512, 1, 1]

Reshape - - - [NF, 512]

Table 4.6 shows model architecture. It is spatio-temporal-ResNet. With a filter width of

5 frames, the network applies 3D convolutions to the input image sequence, followed by

a 2D ResNet that shrinks the spatial size with depth. After passing each video through

the preprocessing pipeline with reference to Fig. 4.5, each video gets saved to a .npy file

containing the matrix of shape [NF , 512]1.
1no. of frames
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Table 4.7: Hyper parameters of transformer encoder
Hiden Dim Max. length for positional encoding attention heads no. of layers Feed Forward Dim. Dropout
512 2500 8 6 2048 0.1

4.4 Fusion Model details

As for the fusion of modalities standard implementation of the transformer encoder

module as presented by [7]. None of the hyper-parameters have been changed. In the

Figure 4.7 all of the three blocks i.e. video model, audio model and the fusion model

implement the exact same transformer encoder implementation.

Figure 4.7: Fusion Model

The brief overview of transformer encoder is shown in Figure 4.8. Sine and Cosine

embeddings have been used respectively for even index and odd index along the hidden

dimension.
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Table 4.7 shows all the hyper parameters of the transformer model used. It is evident

that there is no change in the standard implementation and is same as proposed by [7].

Multiheaded self attention layers are like weightage learning layers where each compo-

nent learns weightage w.r.t each other token in the sequence. These weightages are

then summed up. So it acts like a self aligning layer where tokens learn to align with

themseleves whereas the postional encodings induce absolute positional information to

them so as to make them learn temporal dependencies. All the sequences are 0 padded

to the max length and during training, the zero padding masks are provided to ignore

results aat those locaitons.

4.5 Training pipeline

Figure 4.9 shows the training pipeline of the system. It starts from pre-processing of the

audio and visual features. For each video there will be a 2D matrix for audio features

and a 2D matrix for video features. The frame dimension has been used as the sequence

dimension. So essentially teh input to transformer and output will be a 3D tensor of

shape [N, T , D] wher N is the batch size, T denote frames in that video and D represents

hidden dimension.

Training details have been shown in Figure 4.10. A learning rate of 1e − 4 has been

used for training using GTX-1080 Ti with Adam optimizer. The whole training process

took almost 7 days while the model has been trained for 40 epochs with batch size of

8. Such large training times are not uncommon for multi-modality based models. This

doesnot include the pre-processing time which alone takes almost 3 days to transform

all the samples on disk into useful features which then need to be loaded while training.

4.6 Inference Pipeline

Figure 4.14 shows the typical inference pipeline, here are the steps involved at inference

time:

• User will be asked to speak a provided secret phrase

• User records the video while uttering, from which video and audio information

have been extracted.
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Figure 4.8: Transformer Encoder
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Figure 4.9: Training pipeline for the system

• The audio-visual model alongwith decoder will transform the utterances into a

sequence of characters predicted against each temporal step

• Both the utterance and the actual secret key word phrase are transformed in

arbitrary 384D space as unique unit vectors.

• In that arbitrary space, cosine-similarity metric is computed which if greater than

a threshold.

4.7 Loss function

Figure 4.12 shows ctc loss computation process.

• all the paths which can condense to the target characters are listed

• individual losses are calculated by multiplying all values at specific nodes

• in the end all get summed up

• loss is then negative log of summed value

4.8 Decoding

At decoding time, eachn temporal segment is passed via softmax layer and the max.

value of discrete probability is chosen, which can be then mapped to hash of characters.

25



Chapter 4: Design and Methodology

Figure 4.10: Training details
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Figure 4.11: Inference pipeline

Figure 4.12: CTC loss computation
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After all temporal steps have been processed, ctc-specific condensation operation is

performed to condense the temporal predictions into reduced characters.

Figure 4.13: Decoding using CTC
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Figure 4.14: Weighted decoding with language model and CTC decoder
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Results

5.1 Evaluation metrics

To evaluate the accuracy of a biometric system, i.e., to quantify its biometric perfor-

mance, numerous authentic and fraudulent efforts are made with the system, and all

similarity scores are recorded. By applying a variable score threshold to the cosine

similarity, it is possible to calculate combinations of FRR and FAR (or FNMR and

FMR).

5.1.1 FNMR or FRR

False non match refers to a case where the user has uttered correct statement but the

algorithm rejects user. It can also be defined more precisely in terms of biometrics as

ratio of impostor attempts falsely claiming to match the blueprint of another object.

5.1.2 FMR or FAR

False match refers to a case where the user has uttered incorrect statement but the

algorithm accepts user. It can also be defined more precisely in terms of biometrics as

ratio of impostor attempts falsely claiming to match the blueprint of another object.

5.1.3 EER

Equal Error Rate refers to the point where both FNMR and FMR are equal. It is defined

as a sweet spot for a system but
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5.2 Scores Distributions

Let xi and x̂i be real and inferred text respectively, a non-linear transformation g(xi , x̂i)

has been applied to transform each into vectors Vi and V̂i where;

Vi ∈ R (5.2.1)

Fig. 5.1 shows that contrastive learning model’s performance is great on test dataset

of LRS2 as it pulls apart both of the histograms depicting the representation power of

the algorithm. It shows very less area of mutual overlap which is depictive of its good

representation power.

Figure 5.1: Histograms of the real and impostor scores

Training curves for the training subset of the LRS2 dataset have been presented here in

Figure 5.4. Training details are explained already in the training section.

Figure ?? shows a contour plot of the real (similar) and impostor (different) scores.

Similar scores means system matches the uttered secret phrase correctly. Impostor

means false attempt which means that all negative pairs of the inferred phrase vector
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Figure 5.2: Relative Histograms and Scatter plots of scores
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Figure 5.3: training and validation loss curves

against all other phrases in the dataset.
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Figure 5.4: cnto
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Conclusion

A mid-fusion model was trained using CTC loss and afterwards uttererd phrase was

transformed into vector embedding using sentence-transformer which has been pre-

trained for text similarity task on wikipedia dataset. Actual secret key phrase has

also been transformed and in that arbitrary space, cosine similarity metric defines the

authentication status.

After experimentation it is evident that phrases with greater sequence length the system

is more accurate.
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Future Work

Although the first of their kind, LRS2 and LRS3 datasets lack the multilingual informa-

tion about the data. These datasets consist solely of English language utterances. To

examine the impact of multilingual queries on the system, a multilingual dataset anal-

ysis must be conducted. In addition, the effect of accent on the authentication system

must be determined.

The training dataset solely contains british accent speech so it might have a hard time

to authenticate any other accent despite language being english.

Such authentication systems have a great deal of room for improvement if more data

from the real world are collected to examine the effects of differences in accent and

lightning conditions.

36



References

[1] Maycel-Isaac Faraj and Josef Bigun. “Audio–visual person authentication using

lip-motion from orientation maps”. en. In: Pattern Recognition Letters. Advances

on Pattern recognition for speech and audio processing 28.11 (2007), 1368–1382.

issn: 0167-8655. doi: 10.1016/j.patrec.2007.02.017.

[2] Amitava Das, Ohil K. Manyam, and Makarand Tapaswi. “Audio-Visual Person

Authentication with Multiple Visualized-Speech Features and Multiple Face Pro-

files”. In: 2008 Sixth Indian Conference on Computer Vision, Graphics Image

Processing. 2008, 39–46. doi: 10.1109/ICVGIP.2008.106.

[3] Amitava Das and Vaibhav Bedia. “Audio-visual person authentication with mul-

tiple face-profiles and compressed-feature-dynamics signatures of spoken pass-

words”. In: 2009 IEEE International Workshop on Multimedia Signal Processing.

2009, 1–6. doi: 10.1109/MMSP.2009.5293273.

[4] Kai Li. Identity Authentication based on Audio Visual Biometrics : A Survey. en.

2013. url: https://www.semanticscholar.org/paper/Identity-Authentication-

based-on-Audio-Visual-\%3A-A-Li/19c64faa7f9d8e007a1d6aa187987d6b71df615f.

[5] Kuniaki Noda et al. “Audio-visual speech recognition using deep learning”. en. In:

Applied Intelligence 42.4 (2015), 722–737. issn: 1573-7497. doi: 10.1007/s10489-

014-0629-7.

[6] Amirsina Torfi et al. “3D Convolutional Neural Networks for Cross Audio-Visual

Matching Recognition”. In: IEEE Access 5 (2017), 22081–22091. issn: 2169-3536.

doi: 10.1109/ACCESS.2017.2761539.

[7] Ashish Vaswani et al. “Attention Is All You Need”. en. In: (June 2017). doi:

10.48550/arXiv.1706.03762. url: https://arxiv.org/abs/1706.03762v5

(visited on 06/28/2022).

37

https://doi.org/10.1016/j.patrec.2007.02.017
https://doi.org/10.1109/ICVGIP.2008.106
https://doi.org/10.1109/MMSP.2009.5293273
https://www.semanticscholar.org/paper/Identity-Authentication-based-on-Audio-Visual-\%3A-A-Li/19c64faa7f9d8e007a1d6aa187987d6b71df615f
https://www.semanticscholar.org/paper/Identity-Authentication-based-on-Audio-Visual-\%3A-A-Li/19c64faa7f9d8e007a1d6aa187987d6b71df615f
https://doi.org/10.1007/s10489-014-0629-7
https://doi.org/10.1007/s10489-014-0629-7
https://doi.org/10.1109/ACCESS.2017.2761539
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/1706.03762v5


References

[8] George Sterpu, Christian Saam, and Naomi Harte. “Attention-based Audio-Visual

Fusion for Robust Automatic Speech Recognition”. In: Proceedings of the 20th

ACM International Conference on Multimodal Interaction (2018), 111–115. doi:

10.1145/3242969.3243014.

[9] Triantafyllos Afouras et al. “Deep Audio-Visual Speech Recognition”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence (2019), 1–1. issn:

0162-8828, 2160-9292, 1939-3539. doi: 10.1109/TPAMI.2018.2889052.

[10] Mikhail Pautov et al. “On adversarial patches: real-world attack on ArcFace-100

face recognition system”. en. In: (Oct. 2019). doi: 10.1109/SIBIRCON48586.2019.

8958134. url: https://arxiv.org/abs/1910.07067v3 (visited on 06/28/2022).

[11] Brais Martinez et al. “Lipreading using Temporal Convolutional Networks”. In:

arXiv:2001.08702 [cs, eess] (2020). url: http://arxiv.org/abs/2001.08702.

[12] Bo Xu et al. “Discriminative Multi-modality Speech Recognition”. In: arXiv:2005.05592

[cs, eess] (2020). url: http://arxiv.org/abs/2005.05592.

[13] Wentao Yu, Steffen Zeiler, and Dorothea Kolossa. “Multimodal Integration for

Large-Vocabulary Audio-Visual Speech Recognition”. In: 2020 28th European Sig-

nal Processing Conference (EUSIPCO). 2021, 341–345. doi: 10.23919/Eusipco47968.

2020.9287841.

https://doi.org/10.1145/3242969.3243014
https://doi.org/10.1109/TPAMI.2018.2889052
https://doi.org/10.1109/SIBIRCON48586.2019.8958134
https://doi.org/10.1109/SIBIRCON48586.2019.8958134
https://arxiv.org/abs/1910.07067v3
http://arxiv.org/abs/2001.08702
http://arxiv.org/abs/2005.05592
https://doi.org/10.23919/Eusipco47968.2020.9287841
https://doi.org/10.23919/Eusipco47968.2020.9287841

	Introduction
	Background Information
	Recognition
	Verification
	Authentication
	Motivation 
	 Scope

	Literature Review
	Design and Methodology
	Dataset
	Preprocessing
	Text Preprocessing
	Audio Preprocessing

	Video preprocessing
	Fusion Model details
	Training pipeline
	Inference Pipeline
	Loss function
	Decoding

	Results
	Evaluation metrics
	FNMR or FRR
	FMR or FAR
	EER

	Scores Distributions

	Conclusion
	Future Work

