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ABSTRACT 

Furnaces have been known as the central preliminary units employed for 

hydrocarbon processing in petrochemical industries. The most significant energy 

consumption part in refineries is associated with furnace units. Therefore, 

achieving higher thermal efficiencies is the primary concern in designing and 

during operation. Due to significant energy consumption in such systems, a minor 

improvement in thermal efficiency would lead to considerable savings. Much 

work has been done in the literature on the design and optimization of the furnace 

using different optimization methods. However, no one has focused on the 

optimization of the furnace under uncertain process conditions. The current work 

developed an Integrated Framework of Artificial Intelligence and Genetic 

Algorithm for the furnace of a petroleum refinery to predict the optimum amount 

of excess air and mass flow rates of crude oil and fuel stream in the presence of 

uncertainty in process conditions. Using optimized industrial data, a furnace model 

was regenerated in Aspen EDR. The COM server was used to build the interface 

between Aspen HYSYS and MATLAB. The data set was generated by inserting 

the variation of ±1, ±2, ±3, ±4, and ±5 in the crude oil composition as well as in 

the inlet temperature and pressure of cold crude oil, fuel, and air stream. The 

optimum amount of excess air and mass flow rates for each variation was 

determined using a single objective genetic algorithm. A total of 360 data points 

were generated. 70% were used for the Feedforward neural network (ANN) and 

the remaining data points were equally divided for the validation and testing of the 

model. The proposed artificial neural network (ANN) model achieved a correlation 

coefficient value of 0.99984. The high accuracy and robustness of the ANN model 

make it suitable for real-time industrial applications to reduce energy consumption. 

KEYWORDS 

Fired Heater, Artificial Intelligence, Genetic algorithm, Optimization, 

Uncertainty, Machine learning 
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CHAPTER 1: INTRODUCTION 

1.1. Background 

Energy, which once provided luxury to a valuable few, became a necessity without 

which the modern world could not survive. It forms the lifeline for industries that 

provide essentials like transport, electrical energy, and agriculture [1–3]. Even 

though the growing use of renewable energy resources has grabbed the interest of 

many scientists and investors, conventional fuels continue to be in high demand 

across the world. Fossil fuels are the most critical energy resource, and their 

consumption is increasing rapidly[4]. The statistics show that the global 

consumption of petroleum-based fuel is projected to increase from 85.6 million 

barrels per day (BPD) in 2008 to 112.2 million (BPD) by 2035 [5].  In order to 

bridge the energy supply-demand gap, energy production must be enhanced at the 

same pace as its consumption. The cost of manufacturing production is highly 

influenced by the amount of oil used and the fuel mixtures used. The increased 

demand for fossil fuels results in the hike in prices, environmental issues, and 

greenhouse gas emissions, which led to the number of concerns on advancement 

in the working process as well as lessening of fuel consumption of energy-

intensive equipment in the industrial and manufacturing sector across the globe 

[6–9]. In several countries, various approaches have been used to analyze energy 

consumption efficiency and manufacturing efficiencies. Researchers are currently 

devising solutions to reduce total energy demand in this market. Furthermore, 

using excess energy increases industrial thermal productivity, thereby lowering 

emissions [10]. 

One of the most significant components of the petrochemical sector is refineries. 

In the petroleum refinery, heat-intensive processes are involved. Therefore, 

effective heat transfer equipment can perform a vital role.  These effective heat 

transfer systems may play a significant role, from the preheating of the crude in 

the heated oven to the re-boiler and condensing portion in the distillation column. 

This will improve the heat transfer and thus reduce the related costs [11–13]. 
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Several procedures must be carried out at refineries to convert crude oil into 

various products. These processes are more effective at high temperatures, and at 

low temperatures, they are impossible to sort out. As a result, a system that can 

increase the fluid process temperature is needed. Therefore, furnaces (fired 

heaters) are commonly used as hot utility systems in the oil refining and 

petrochemical industries [14,15]. 

1.2. Furnace (Fired heater) 

A furnace is a type of direct-fired heat exchanger that uses hot combustion gases 

to increase the temperature of a feed that flows through coils of tubes lined in the 

heater. These instruments usually raise the temperature of the crude oil (process 

fluid) from ambient (300 K) to the target (400 K) temperature before delivering it 

to the distillation unit [15–18]. Combustion, a complex phenomenon with several 

applications in various industries, provides the necessary heat for this operation. 

Furnaces have capacities ranging from 3 to 100 MW with several arrangements 

and configurations of coils and heaters. For significant heat duty purposes (20 MW 

and higher), the box heater is used, while in the case of small or medium-duty 

(below 20 MW).), the cylindrical heater type is usually preferred [14,19].  

The heating coil, enclosure, and combustion equipment are the three main 

components of a furnace (fired heater) [20,21]. The front and cross-sectional views 

of the furnace are shown in Figure 1 and Figure 2, respectively.  

 Heating coil: A bundle of tubes is mounted together containing the process 

fluid in the heating coil. The heat energy is supplied to the process fluid 

passing through the tubes. 

 Enclosure: The enclosure contains the firebox inside its structure. The 

whole enclosure is lined with the insulating material, mainly refractory 

bricks, which accumulate heat. 

 Combustion equipment: A fuel stream is injected into a burner which 

generates heat energy. These burners are mounted on the floor or side wall. 

The coils absorb the heat generated by the burners in the radiant section 
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through radiative and convective heat transfer from the flue gases 

ultimately discharged through the chimney or stack. The combustion air is 

taken from the atmosphere and used directly or preheated to enhance 

thermal performance. 

 

Figure 1: Front View of Fired Heater (Furnace) 
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CHAPTER 2: LITERATURE REVIEW 

 2.1. Literature Review 

Several challenges and limitations are associated with the efficient designing of a 

furnace, such as ineffective heat transfer. Limitations from environmental 

agencies, heat losses from different sources including flues gases and walls of the 

furnace, usage of different fuels, and high ranged tools for data collection for 

various modeling tools. To address these challenges and limitations, many studies 

have been conducted based on mathematical modeling. These studies implemented 

and used various energy-saving approaches such as waste heat reclamation and the 

design of an air preheating system into the existing furnaces. Using such 

approaches can significantly enhance the efficiency of the furnaces, which can 

eventually reduce fuel consumption [22–25].  

For instance, a mathematical model has been proposed by [16] for the estimation 

of the performance of the furnace based on variable operating parameters. This 

study was based on the actual industrial data of the refinery based in Iran. The 

given model evaluates variations in surrounding air conditions before presenting 

an optimal furnace design that includes surplus air minimization and combustion 

air preheating procedures. The model of the furnace is first design mathematically, 

followed by the simulation in the software. Then, various optimization techniques 

were employed, where the objective function was the excess air minimization and 

preheating combustion air, to get the optimized furnace operating conditions for 

achieving maximum efficiency. The findings demonstrate that preheating the air 

to 252 degrees Celsius and decreasing the surplus air by 15% lowers the exhaust 

temperature from 537.5 to 205 degrees Celsius and boosts furnace efficiency from 

63 percent to 89 percent. In addition, by enhancing the heat transfer surface, the 

furnace throughput may be increased by up to 30% while maintaining the same 

Figure 2: : Cross-sectional View of Fired Heater (Furnace) 
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efficiency.  

In [26], two mathematical models (direct and indirect) have been proposed for 

estimating the efficiency of the refinery furnace using MATLAB software. In the 

direct method (input-output method), the net calorific value has been used and then 

the Sankey diagram is prepared for calculating the energy balances. After 

calculating the energy balances, the efficiency of the refinery furnace is 

determined. While in the indirect method (heat-loss method), the gross calorific 

value has been utilized. The MATLAB program is proposed for both the methods 

mentioned above for calculating the efficiency of the refinery furnace. In addition, 

the two case studies were proposed in this study. In the first case study, liquid fuel 

is considered while fuel gas is considered in the second case study. The proposed 

models achieved 73.81% (liquid fuel) and 75.78% (fuel gas) efficiencies of the 

refinery furnace. Therefore, the authors proposed that the direct comparison is 

more advantageous than the indirect method, as it is less time-consuming and 

requires less computing power. Figure 3 shows the schematic of the Sankey 

diagram for two case studies. 
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Figure 3: schematic of Sankey diagram for two case studies 

 

In [27], mathematical models have been proposed to estimate the temperature in 

the radiant section of the refinery furnace. In this study, three MATLAB programs 

were developed, two programs using appropriate equations and one program using 

the Newton-Rapson method were written. The authors used computer 

programming to estimate the temperature of a gas in the radiant section and the 

temperature distribution profile and the rate of heat transfer in the convection 

section. Results showed that using these methods, the gas temperature and actual 

temperature of the flame in the refinery furnace (fired heater) were successfully 

calculated. 

Furthermore, [28] developed a numerical model for estimating the influence of 

various input parameters on the process furnaces. The model was first developed 

manually by an iterative method using initial boundary conditions. The proposed 
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model was then compiled in MATLAB software and the sensitivity analysis of the 

various operating parameters was carried out. The parameters examined during 

this study include inlet air temperature, excess air, fuel composition, tube pitch, 

and fuel flow rate. Among these parameters, excess air percentage was the most 

influential parameter that greatly influenced the furnace's performance. On the 

other hand, the fuel mass flow rate showed the slightest influence on the furnace 

performance.  

In [29], developed a mathematical model for evaluating the thermal behavior of 

the refinery furnace and for the prediction of crude outlet temperature at variable 

operating parameters. All the sections of the refinery furnace, including the radiant 

section, combustion section, and convection system, were modeled using basic 

thermodynamic correlations, mass, and energy balances. The crude oil used in this 

study was comprised of twenty-one different fractions. MATLAB Simulink-based 

model was proposed for estimating the efficiency of the furnaces. Furthermore, 

different flow patterns were studies, including single and multi-phase flow. The 

results indicated that the proposed model could efficiently predict the outlet 

temperature of the hot crude based on variable operating parameters. Although 

such proven models are commonly used to assess the thermal behavior of furnaces 

in detail, they are not well suited to optimization design. The Block diagram of the 

model proposed in  [29] is shown in Figure 4. 

 



8 
 

 

Figure 4: Block diagram of the model proposed in [15] 

 

Recently, industries and researchers have used many simulation software to model 

and simulate furnaces, including Aspen software, CFD Fluent, IPSEpro, 

COILSIM1D, MATLAB, and FurnXpert. This software provides fast, accurate, 

and precise modeling and simulation of furnaces. Among these software packages, 

Aspen and CFD are widely used in chemical engineering applications. Aspen Plus 

is the leading process simulator in the world of chemical engineering. It permits a 

user to build and simulate new and existing processes using the graphical user 

interface (GUI), thermodynamic models, mathematical techniques, and complex 

calculations. Aspen plus hosts one of the largest databases or libraries of chemical 

species and their mathematically regressed parameters. Aspen plus is used for 

simulating radiant furnace section and cyanide elimination from blast furnace 

outlet in steel industry [30–32].  

ANSYS Fluent is a computational fluid dynamics software used to model complex 

fluid problems using advanced physics models. Advanced solver techniques 

provide quick, precise simulation results, detailed meshes, and better parallel 

processing. ANSYS fluent gives the user the ability to implement new models and 

customize the existing ones. Post-processing of this simulator helps stop the 

simulation, examine results, make changes and then continue along. Integration of 

fluent with ANSYS workbench enables a user with connections to significant 
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geometry modifications and complex meshing. Advance models help users model 

dynamic flow, turbulent, heat transfer, and reaction systems for a wide range of 

industrial systems like aircraft to combustion modeling inside furnaces, from 

retrofitting industrial steam cracking furnaces to furnace simulations in coupled 

run mode [33–36].  

Motivated by the rapid, precise, and accurate results provided by the software 

mentioned above packages, many studies have been published considering the 

modeling and simulation of furnaces. For instance, CFD-based models are widely 

used by researchers for analyzing and estimating the heat flux, excess air effect, 

air preheating effect, and burner design. However, using these simulations, 

particularly for process designs optimization, entails many designs of various 

arrangements, which consumes a significant amount of computational time and is 

hence unsuitable for optimization applications [37].  

In [38], developed a traditional and CFD-based model to examine the heat transfer 

in the refinery furnace (fired heater). The cylindrical furnace was used in this 

study.  In the first design approach, the traditional design calculations were 

employed following the standards of the API. Its considerations are illustrated by 

focusing on the variation of heat flux arrangement on the tubes. The authors 

pointed out that the traditional classical approaches do not consider the variabilities 

in the furnace. These uncertainties may lead to the fouling and lack of safety of the 

heater. Therefore, the CFD-based approach has been employed in this study to 

overcome variabilities in the system. A 3D CFD-based model was implemented in 

the second design approach, analyzing the system's combustion, radiation, and 

turbulence. Moreover, the influence of the tube abnormalities on circular tube heat 

flux non-uniformity is investigated by using the 2D radiative heat transfer models. 

Figure 5 and Figure 6 show the flow visualization of two case studies based on 
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CFD. 

 

 

Figure 5: Flow visualization-surface of zero vertical velocity colored by velocity magnitude of two 

case studies 

Figure 6: Flow visualization-contours of vertical velocity component on furnace cross-sections for 

two cases 
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With the beginning of the 4th industrial revolution and technological 

breakthroughs, advances in manufacturing sectors are unprecedented. Machine 

learning (ML), which may be defined as a branch of computer science and artificial 

intelligence (AI) concerned with creating models that can learn from and make 

data-based decisions and predictions. It is widely employed in industrial sectors 

such as process industries, manufacturing industries, petroleum industry, cement 

industry, pharmaceutical industry for process controls, process optimization, and 

fault diagnosis [39–41]. Some of the dominant ML methods include artificial 

neural networks (ANN), random forest (RF), decision tree (DT), and support 

vector machine (SVM). With the help of ML tools, the prediction, control, and 

optimization of nonlinear, mathematically complex, labor-intensive, and time-

consuming processes has become very easy. It has multiple advantages over 

conventional techniques and empirical approaches. ML-based models do not need 

extensive knowledge and information about the process and require only an 

experimental data set [42]. 

In [43], developed SVM and ANN models to detect fouling in the refinery furnace. 

Fouling is considered one of the main issues of the refineries that results in the low 

efficiency of equipment. Here, the rate of the fouling and allowable limit of the 

fouling in the tube of the furnace is determined. This study was based on the actual 

industrial data. The fouling rate is determined using the furnace, tube temperature, 

pressure drop, and furnace output temperature. The maximum permissible fouling 

inside the tubes was measured at 3 %. The intensity of the fouling was estimated 

in the range of 1-100%. The proposed SVM and ANN model successfully detected 

the fouling by using artificial fouling to the furnace tubes. Therefore, the authors 

suggested that the proposed model can be used for designing the expert system for 

monitoring. The figures below show the estimated fouling rate predicted by SVR 

(accuracy=91.16%) and ANN (accuracy=96.24) based on Figures 7 and 8. 
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Figure 7:  Estimated fouling rate by SVR: Prediction 

.  

Figure 8:  Estimated fouling rate by BPNN: SVR 

In [44], a novel adaptive heuristic criticism (AHC) based approach has been 

developed for controlling the various variables of the refinery furnace. In this 

study, a feedforward neural network (FFNN) based model has been proposed to 

produce the linear values of the control signals to reach the set point.  The authors 

concluded that the proposed framework performed well and successfully predicted 

the outlet temperature under variabilities in the inlet temperature.   

 

2.2. Problem Statement 

Although many research works have been published on the topic of refinery 
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furnaces. However, primarily, the literature focuses on designing and optimizing 

furnaces using different mathematical and optimization methods. In the literature, 

no article has been published on modeling and simulation of furnace in EDR 

environment. Similarly, no one has focused on the optimum operating condition's 

hybrid approach under uncertain process conditions. The process of a furnace 

under variable crude composition and process parameters roots low efficiency. 

Therefore, intelligent systems have been highly interested in coping with problems 

and realizing greater effectiveness in systems for energy management. 

2.3. Objectives 

The main contribution of this work will be as follows, 

 Detailed modeling of furnace in Aspen HYSYS and EDR environment 

 Development of an interface between Aspen EDR and MATLAB. 

 Optimization of the model using a genetic algorithm-based approach. 

 Development of Artificial Neural Network (ANN) model for prediction of 

optimum process conditions for the furnace. 

2.4. Thesis Organization 

This thesis is organized as follows. In section 1, the Introduction of this study is 

presented. Section 2 presents the literature survey of relevant published studies. 

Section 3 describes the overview of the modeling methods used. In section 4, the 

methodology adopted in this study is highlighted. In section 5, results and 

discussion is presented. Finally, the study is concluded in the conclusion and 

recommendation section at the end. 
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CHAPTER 3: OVERVIEW OF DEVELOPED MODELS 

In this chapter, the general overview of all the modeling methods developed in this 

thesis is presented. These modeling methods include exchanger design and rating 

environment (EDR), genetic algorithm (GA), and artificial neural network (ANN).  

3.1. Exchanger Design and Rating Environment: 

Aspen Exchanger Design and Rating (EDR) is an extension and add-on of Aspen 

Plus and HYSYS used for detailed designing of the furnace. EDR uses standard 

sizing and design equations. The Aspen package uses the Aspen property database 

to calculate the heat transfer coefficient and thermodynamic properties. EDR 

provides run-time integration with Aspen HYSYS allowing changes to be made 

across the platforms. EDR allows the combined modeling of firebox and 

convection sections. EDR can handle and allow box, cylindrical, twin box, and 

twin cylindrical geometries of furnace design. Aspen EDR modeling of furnace 

allows ten process streams in a single heater. EDR supports plain or finned tubes 

in the firebox section of the fired heater. Combustion analysis and calculation of 

four fuels can be performed in Aspen exchanger design and rating environment. 

Tubes surface enhancements like a solid fin, serrated fin, chamfered can be 

included. Zonal analysis can be performed for radiation information in Aspen EDR 

[45–47].  

Aspen EDR offers the following modes for fired heater designing: 

i. Simulation Mode 

In this mode, all process data and the geometry of the furnace are included. It 

calculates the outlet process stream conditions and duty based on the geometry we 

defined. This mode answers the question, " What duty will this furnace achieve?". 

In the case of a furnace, firebox and convection section geometries are defined by 

the user. Then simulation mode evaluates the outlet conditions that are achievable 

for the process streams at fixed flow rates. 

ii. Rating / Checking Mode 

As the name implies, this mode answers the question, "Can this fired heater 
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perform this duty?" It must define the entire furnace geometry as well as the 

specifics of the process stream. The findings will be shown in the form of a ratio 

of actual heat transfer area to required heat transfer area. In a furnace, this mode is 

used to determine the amount of fuel required at the defined firebox and convection 

section geometry to achieve specified outlet temperatures. 

iii. Design Mode 

In this mode, the software can measure the furnace geometry based on the required 

thermal duty. We may also set design constraints based on convection tube shape, 

tube length, arrangement. The measured fired heater geometry contains all data, 

and the geometry is chosen based on either cost optimization or minimum area. 

iv. Find Fouling Mode 

This answers the question, "What is the maximum fouling that can be achieved for 

a given thermal duty?" It uses the same input as the Rating mode to measure the 

area ratio by considering the maximum fouling that can be deposited on convection 

tubes. Figure 9 shows the calculation modes in Aspen Exchanger Design and 

Rating tool. 

 

 

 

 

 

 

Figure 9: Calculation Modes in Aspen Exchanger Design and Rating Tool 



16 
 

In this study, the rating mode is used as the complete information of fired heater 

geometry is known. First of all, the given process stream data is specified by 

clicking on the tab "set process data." Then, the crude oil and fuel properties and 

excess air steams are specified by clicking on the tab "set properties." Furthermore, 

the information related to the geometry of the fired heater, shown in table 2, is 

defined in the tab "set geometry." In the end, some construction details are defined 

before running the model.  

 

  

                

 

 

 

Figure 10: EDR Geometries of Fired Heater 
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Figure 11: Physical Properties required in EDR. 

Figure 12: Input Variables for furnace design in EDR 
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Table 1: Geometric details required for EDR furnace design 

 

 

 

 

 

 

Firebox 

 Layout 

 Height 

 Diameter 

 Fired heater type 

 Tube row layout 

 Main tube rows 

 Tube passes 

 Tube straight length 

 Tube to wall clearance 

 Tube details 

 Tube outside diameter 

 Tube wall thickness 

 Tube spacing 

Convection Banks 

 Layout 

 Tube surface enhancement type 

 Tube length 

 Flow direction 

 Tubes 
 Outside diameter 

 Tube wall thickness 

 Fins and Studs 
 Fin height, thickness and frequency 

 Stud height, thickness and frequency 

 Bundle details 

 Tube pitch 

 Number of rows of tubes 

 Number of parallel paths 

 Row arrangement 
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3.2. Genetic Algorithm 

3.2.1. Inspiration 

Genetic Algorithms (GA) is a kind of evolutionary algorithm that mimics the 

biological evolution process. Holland presented a concept for genetic algorithms 

in 1975. GA was influenced by Darwin's evolutionary theory, which mimicked the 

survival of fitter creatures and their genes. Many researchers have used GA's to 

evaluate the solution of difficult problems whose objective functions lack the 

properties of continuity, differentiability [48,49]. It is a population-based 

algorithm and is based on the concepts of natural selection and genetic inheritance. 

Each parameter indicates a gene, and each solution represents a chromosome. GA 

uses a fitness (objective) function to assess the fitness of each member in the 

population. The finest alternatives are picked arbitrarily using a selection strategy 

to improve wrong solutions. Because the probability is related to the fitness, this 

operator is somewhat more certain to select the best solutions (objective value). 

The possibility of selecting wrong solutions also increases the probability of 

avoiding local optima. It indicates that if perfect alternatives become stuck in a 

local solution, they can be extracted with the help of other solutions. This 

procedure is repeated unless an optimal solution(s) is (are) establish, or a extreme 

integer of iterations or population is grasped, or a relative difference between 

solutions is less than a specific limit [50,51].   

Because the GA method is stochastic, one could wonder how trustworthy it is. The 

practice of keeping the best answers in each generation and utilizing them to 

enhance subsequent alternatives is what makes this technique trustworthy and 

capable of estimating the global optimum for a particular problem. As a result, the 

entire population improves with each passing generation. Mutation helps this 

method as well. This operator alters the genes in the chromosomes at random, 

keeping the population's variety and increasing GA's inquisitive activity [52]. The 

flow diagram of the Genetic Algorithm is shown in Figure 17. 
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3.2.2. Genetic Algorithm Vocabulary: 

The terms used in the genetic algorithm are shown in the table below. 

Table 2: Voacbulary used in genetic algorithm  

S.No. Genetic Algorithms Explanation 

1 Chromosome (string, individual) Solution (coding) 

2 Genes (bits) Part of solution 

3 Locus Position of gene 

4 Alleles Values of gene 

5 Phenotype Decoded solution 

6 Genotype Encoded solution 

 

3.2.3. Genetic Algorithm Methodology  

a. Gene Representation 

Every chromosome, as previously described, refers to a possible solution to the 

particular problem of optimization. Multiple genes structure a chromosome 

showing the changing parameters in the optimization problem. The initial stage in 

employing the GA technique is to state the problem, followed by establishing the 

vectors. The GA consists of two variants: one is binary and the other is continuous. 

Two values could be specified to a binary version (e.g., 0 or 1). The incessant 

values having upper and lower bounds are utilized in continuous form. When 

multiple values are to be selected, this is referred to as binary GA. Other bits must 

be allocated to the variables here. For example, problem including two parameters, 

every parameter may be given eight distinct values, every parameter will require 

three genes [53,54]. Thus, log2n is employed to compute the number of genes for 

selecting n discrete values. It has been shown that chromosomes encoded using 

real value numbers result in more efficient GAs and produce better solutions. It is 

worth noting that genes may also be characters or parts of a program. The GA 



21 
 

algorithm can employ genes as long as they are put into a fitness function and 

result in a fitness value. Genetic Programming refers to distinct sections of a 

computer program for each gene [55].  

b. Initialization 

Initially, a large number of individual solutions are produced at random to establish 

an initial population. The size of the population varies depending on the situation, 

but it usually comprises several hundred or thousands of potential solutions. 

Generally, the population is created at random, encompassing all potential 

outcomes. Sometimes, solutions are "seeded" in places where the best solutions 

are most likely to occur [56]. The following code is used while using binary GA: 

where Xi is the ith gene and ri is a unique random number produced for each gene 

in the range [0,1].  

                                    Xi  =  ∫
𝒓𝒊 < 𝟎. 𝟓

𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 

𝟏           

𝟐      
……………….. (1) 

 

The following equation is used to initialize the genes in the continuous GA 

randomly: 

𝑿𝒊 = (𝒖𝒃𝒊 − 𝒍𝒃𝒊 ) ∗ 𝒓𝒊 + 𝒍𝒃𝒊……………….. (2) 

 

In the above equation, Xi represents i-th gene, ri represents the random number in 

the range [0,1] produced independently for each gene, ubi represents i-th gene's 

upper bound, and lbi represents i-th gene's lower bound. 

The major goal of the initialization stage is to distribute the solutions as evenly as 

possible over the search area to enhance population diversity and improve the 

chances of identifying exciting regions. The stages to enhance the chromosomes 

in the first population are discussed in the following sections. 
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c. Selection 

The primary source of motivation for this element of the GA algorithm is natural 

selection. The fittest individuals have a better chance of finding food and pairing 

in nature. As a result, their genes play a more significant role in developing the 

following generation of similar species [57]. The GA method, based on this simple 

concept, uses a roulette wheel to allocate probability to people and choose them 

for the subsequent generation. An illustration of a roulette wheel for six people is 

shown in Figure 4.1. Table 4.1 lists the facts for each of these people. The finest 

individual (#5) has a significant proportion, the poorest one (#4) has the smallest. 

Because a roulette wheel is a stochastic operator, poor ones have a low chance of 

contributing to the next generation's creation. When bad answer is fortunate, the 

genes are passed on following cohort. Dismissing these resolutions will limit 

population variety and should be prevented. Assignment of the probability of 

selection to individuals is a common step in all of these schemes. There are various 

methods for this assignment like a roulette wheel, linear ranking and geometric 

ranking. The roulette wheel is one of the numerous selection operators described 

in the literature  [58,59].  

 

Figure 13: Mechanism of the roulette wheel in genetic algorithm 
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Table 2: Details of individuals in Figure 14 

Individual no. Fitness value % of Total 

1 12.0 5.0 

2 55.0 24.0 

3 20..0 8.0 

4 10.0 4.0 

5 70.0 30.0 

6 60.0 26.0 

Total 227.0 100.0 

 

d. Crossover 

Individuals must be used to generate the new generation after being selected using 

a selection operator. Naturally, the chromosomes of parents genes are joined to 

form a new chromosome [60]. It is emulated by merging answers chosen by the 

rou. wheel to create two new solutions in the GA algorithm. Several crossover 

operator approaches in the literature are reported, two of which are depicted in 

Figure 15. The genes of two-parent solutions are exchanged before and after a 

single point in a single-point crossover. However, two crossing points are present 

in a double-point crossover, and only the chromosomes between them are 

exchanged [61]. Other crossover approaches that are mentioned in the literature 

contain: 

• Uniform crossover  

• Three parents crossover  

• Masked crossover 

• Multi-point crossover  

• Half uniform crossover  

• Cycle crossover  

• Heuristic cross over 

Crossover's central aim is to guarantee that genes are transferred and the offspring 

inherit the DNA from their parents. In the GA, the fundamental technique of 
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exploitation is crossover. If the crossover is done using a random crossover point 

for two given parents, the algorithm will try to verify and search for alternative 

combinations of genes from the parents. As a result, those viable solutions are 

exploited without the introduction of a single additional gene. It is worth noting 

that the Probability of the Crossover (Pc) variable in GA shows the possibility of 

admitting a new child. For every child, a random variable from the same range is 

produced. The child is conceded on to the next generation if this random number 

is smaller than Pc. The parent will be transmitted if this is not the situation. This 

also occurs in nature when not all of the offspring survive [62,63]. 

Figure 14: Single-point and double-point crossover are two prominent crossover strategies in GA. The 

chromosomes of two-parent solutions are exchanged before and after a single point in a single-point 

crossover. There are two crossing points in a double-point crossover 

 

 e. Mutation 

The final evolutionary operator, where genes are changed once children's solutions 

are created. GA has a low mutation rate because significant mutation rates turn GA 

into a rudimentary random search. By adding another degree of unpredictability to 

the population, the mutation operator keeps the population diverse [64]. In reality, 

this operator prevents solutions from becoming identical in the GA algorithm and 

increases the chances of avoiding local solutions. Figure 16 depicts a conceptual 

illustration of this operator. After the crossover (replication) phase, minor 
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alterations in some randomly chosen genes may be detected in this diagram [65]. 

The following are some of the most often used mutation strategies:  

• Varying probability of mutation 

• Uniqueness mutation 

The majority of EAs use 3 operators of selection, crossover, and mutation. Each 

generation is subjected to these operators to enhance the superiority of the genes 

in following cohort. Elitism is standard operator where excellent solutions are kept 

and passed down to the following cohort unchanged. When using the crossover or 

mutation operators, the key goal is to avoid degrading such solutions (elites). The 

GA algorithm begins with a arbitrary population of entities. Using the three 

operators stated above, this method enhances the population until the end of the 

end. For a given issue, the finest solution in the previous population is resumed as 

the best estimate of global optimum. During the optimization, the selection rate, 

crossover, and mutation can be adjusted or set to fix quantities. Following sections 

look into the influence of altering on GA presentation [66,67]. 

 

Figure 15: After the crossover phase, the mutation operator changes one or more genes in the children's solutions. 
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Figure 16: Flow diagram  of Genetic Algorithm 
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3.3. Artificial Neural Network (ANN) 

3.3.1. Fundamental Theory 

The theory of an artificial neural network (ANN) was first presented in biology, 

where neural networks play a crucial role in the human body. Hebb's rule, which 

was established on hypotheses and findings of neurophysiologic environment, was 

introduced in 1949 as the first approach for training ANN. ANN are computer 

models based on the nervous system of live organisms. They may acquire and store 

knowledge (information-based). They can be described as a collection of units 

depicted by neurons, interconnected by many interconnections, and executed by 

synaptic weights vectors and matrices [68,69]. 

3.3.2. Artificial Neuron 

The ANNs architectures were created using existing biological nervous system 

concepts as well as the human brain itself. Artificial neurons are modified replicas 

of real neurons that serve as computational components or processing units. The 

study of how a neuron's cell membrane creates and promotes electrical signals 

motivated these concepts. Artificial neurons in ANNs are nonlinear, with 

continuous outputs and fundamental functions, including collecting information 

from their inputs, combining them according to their operating units, and creating 

Figure 17: The Artificial Neuron 
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a response based on their intrinsic activation functions. Figure 18 shows the 

schematic of the artificial neuron [70,71]. 

3.3.3. ANN Architecture and Training Process 

 

Generally, ANN comprises input, hidden, and output layers, which are described as 

follows, 

(a) Input layer 

The input layer is in charge of getting data, signals, characteristics, or assessments 

from the outside world. These inputs are often normalized within the bounds of 

activation functions. This normalization improves the numerical consistency of the 

network's numerical computations. 

(b) Hidden layers  

The hidden layers are made up of neurons in charge of extracting information 

related to the system under investigation. These layers handle the majority of a 

network's internal operations. 

(c) Output layer 

Like the preceding levels, this layer is made up of neurons and is in charge of 

creating and displaying the final network outputs, which are the consequence of 

the processing done by the neurons in the preceding layer. The significant designs 

of ANNs may be classified into the following categories, given that the neuron 

disposition, interconnected, and how their layers are unruffled: There are four 

types of feedforward networks: recurrent networks, mesh networks. Single-layer 

and multilayer feedforward networks [72–74].  

3.3.4. Single-Layer Feedforward Architecture 

There is only one input layer and a single neural layer (output layer) in this ANN 

architecture. A simple-layer feedforward network with n inputs and m outputs is 

shown in Figure 19. Information always travels in one direction, from the input 

layer to the output layer (hence, unidirectional). The number of network outputs 

in networks adhering to this design would always match the number of neurons, 

as shown in Figure 19. Pattern categorization and linear filtering issues are typical 

applications for these networks [75]. 
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       Figure 18: Schematic of Simple-layer feedforward network 

3.3.5. Multiple-Layer Feedforward Architectures 

Unlike networks of the initial design, feedforward networks with many layers are 

hidden neural layers. They are used to solve various problems, including function 

approximation, pattern classification, system identification, process control, 

optimization . For example, figure 20 depicts a feedforward network with several 

layers, including an input layer with n sample signals, two hidden neural layers 

with n1 and n2 neurons, and one output neural layer with m neurons reflecting the 

problem's output values. The MLP and RBF are two of the most common networks 

that employ multiple-layer feedforward topologies [76]. The number of neurons 

that make up the first hidden layer is usually dissimilar from the number of signals 

that make up the network's input layer, as seen in Figure 20. 

In general, the number of hidden layers and the number of neurons in each layer 

are determined by the type and difficulty of the problem being addressed by the 

network and the amount and type of accessible data. However, as with simple-

layer feedforward networks, the number of output signals would always be 

equivalent to the number of neurons in that layer [77]. 
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Figure 19: Schematic of Multi-layer feedforward network 

3.4. Exergy Analysis 

The second law of thermodynamics gives designers and engineers a powerful and 

efficient tool known as Exergy analysis, which can be used to analyze heat 

exchanger performance. Exergy is a measure of how far a system's state deviates 

from that of its surroundings. It can be defined as the maximum amount of work 

obtained from the system to equilibrium with the environment. Exergy, unlike 

energy, is not conserved; instead, it is destroyed by irreversibilities. Because of 

these irreversibilities, Exergy loss during a process is proportionally associated 

with entropy generation [78,79]. The following formulas were used to calculate 

exergy. 
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CHAPTER 4: METHODOLOGY 

4.1. Overview of Methodology 

An industrial process furnace's actual design and operational data were obtained 

in this study, and a furnace model was regenerated in Aspen EDR. Mass flow rate, 

temperature, and pressure of process fluid (crude oil), fuel (field gas), and flue gas 

are among the operational parameters. The number of tubes (convection side), tube 

length, tube pitch, number of passes, number of burners, and firebox dimensions 

is among the design or mechanical parameters. 

Aspen HYSYS was then used to import the improved furnace model. To build the 

data collection, the MATLAB and Aspen HYSYS interfaces were created. While 

altering the crude composition and other process parameters, a single objective 

genetic algorithm is utilized to identify the optimal crude flow rate, fuel flow rate, 

and excess air. Finally, the data set was used to train an artificial intelligence 

system to forecast the optimal crude flow rate, fuel flow rate, and excess air under 

unknown process circumstances. 

In this work, an ANN model was developed to forecast the optimal crude oil mass 

flow rate, fuel mass flow rate, and excess air under variations in crude composition 

and other process factors such as crude oil inlet temperature and pressure, air 

stream, and fuel stream. 

Figure 21 depicts the workflow of the current research.  

Step 1: Using improved industrial data, the detailed design of the furnace was 

recreated in Aspen EDR. The Aspen EDR furnace type was later converted to 

Aspen HYSYS. 

Step 2: The link between Aspen HYSYS and MATLAB was built using the COM 

server. Furthermore, the data set is created by entering the 1, 2, 3, 4, and 5 

variations in crude oil composition, crude oil, fuel, and air inlet temperature and 

pressure. For each modification, the optimal mass flow rate and excess air were 

calculated using a single objective genetic algorithm. The function aimed to 
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increase furnace efficiency while lowering energy usage. 

Step 3: Finally, 360 data points were created, with 70% of the data set used for 

training and the remaining data set split equally for ANN model validation and 

testing. 

4.2. Furnace Process Description  

In this study, a cabin-type furnace was employed for modeling and simulation. 

Figure 22 depicts a furnace diagram with two distinct convection and radiation 

sections. The process fluid (crude oil) enters the furnace from the top and travels 

through convection sections 2 and 1 before exiting the furnace. In this section, the 

fluid is usually a one-phase liquid. High heat fluxes are applied to tubes in the 

radiation section, forcing crude oil to boil and evaporate, raising the temperature 

to around 366 oC. Heat is transferred from the fuel-burning with air to the process 

flow in this stage by direct radiation and convection from gases. The considered 

furnace's nominal flow rate is 132224 kg/hr. The inlet process pressure is 6.2 

Figure 20: Schematic of workflow of the current research. 
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kg/cm2g. Table 3 lists some of the furnace's nominal parameters. Hot exhaust 

gases first heat the process flow before being sent to the central firebox portion to 

improve thermal performance. As seen in Figure 22, the process fluid is separated 

into four-stream flows in this segment, with four streams heading to the furnace's 

center. 

 

 

Figure 21: Schematic of Industrial Process Furnace 
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Table 3: The nominal parameters of the furnace. 

 

 

 

 

 

Parameters Symbol Values 

Process fluid flow rate (kg/hr.) min 132224 

Process fluid inlet temperature (oC) Tin 294 

Process fluid outlet temperature (oC) Tout 366 

Process fluid inlet pressure (kg/cm2g) Pin 6.2 

Process fluid outlet pressure (kg/cm2g) Pout 3.4 

Fuel flow rate (kg/hr.) mfuel 971 

Fuel gas lower heating value (kcal/kg) LHV 10120 

Fouling factor (m2hoC/kcal) f 0.0014 

Allowable pressure drop Pdrop 2.8 

Tube out diameter (mm) dout 141.3 

Tube wall thickness (mm) dthickness 6.55 

Tube length (m) Ltube 7.814 

Firebox height (mm) hfirebox 9960 

Firebox inner diameter (mm) dfirebox 5120 
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Table 4: Process conditions 

Parameter Crude Oil Fuel (Field Gas) Air 

Inlet Temperature (oC) 294.9 47 47 

Outlet Temperature (oC) 366 -- -- 

Inlet Pressure (kg/cm2-g) 6.2 0.0171 0.0171 

Outlet Pressure (kg/cm2-g) 3.4 -- -- 

Inlet Mass Flow rate (kg/hr) 132224 1036 1036 

 

 

Table 5: Design parameters 

 

 

Parameters Values 

Tube out diameter (mm) 141.3 

Tube wall thickness (mm) 6.55 

Tube length (m) 7.81 

Number of tubes/rows 120/10 

Number of tubes (conv. section) 12 

Firebox height (mm) 9960 

Firebox inner diameter (mm) 5120 

Fouling factor (m2hoC/kcal) 0.0014 
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4.3. Aspen EDR Model Development 

        4.3.1. Simple Furnace (Fired Heater) 

In this study, the model of the furnace was first simulated in Aspen HYSY using the following 

steps. 

 Specify the crude assay and suitable fluid package in Aspen HYSYS. 

 Shift to the Simulation Mode 

 Select the Fired Heater model from the model palette; if the model palette is not visible, go 

to the View menu bar and select Model Palette. The currently used icon may be changed; 

the available icons will be shown in Figure 23. 

 By double-clicking on the furnace icon, you may access the fire heater connection and 

specification page. The page seen in Figure 24 displays. 

 The Simple fire heater model must be selected on the Design Parameters page. 

 Navigate to the Worksheet and enter the stream settings indicated in Figure 25. The user-

defined parameters are presented in blue, while the HYSYS-calculated parameters are used 

in black. 

  Navigate to the Worksheet's Composition page and determine the composition of both 

input streams. HYSYS calculates the output stream composition. 

Figure 22: Selection of Fire heater Model in Aspen HYSYS 
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Figure 23: Connections of streams in Fired heater model 

Figure 24: worksheet for inserting Input parameters  
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 4.3.2. Detailed Model Development 

The rigorous rating model of the furnace was developed in Aspen EDR using the following step 

 To transfer the previous Aspen HYSY model to Aspen EDR, open Aspen EDR and select 

Import from the File menu. 

 From the home menu, select the Rating mode. 

 The main menu chooses Set process data to provide the input variables for the furnace 

model, as illustrated in Figure 26. 

 Set the geometrical information for the furnace model as shown in Table 5 by clicking on 

the Set Combustion item in the main menu. Figure 28 depicts the geometrical 

information. 

 Finally, specify the geometry and start the simulation. 

 

 

Figure 25: Entering inputs for the Fired heater model 
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Figure 27: Inserting combustion information for the Fired heater model in Aspen EDR 

Figure 26: Inserting geometrical information for the Fired heater model in Aspen EDR 
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4.4. Aspen HYSYS and MATLAB Interfacing 

The detailed Aspen EDR model of the furnace was first imported to Aspen 

HYSYS. Then, the seven process variables, i.e., crude composition, inlet crude 

stream temperature, inlet crude stream pressure, temperature and pressure of field 

gas and temperature and pressure of air stream, were selected as uncertain 

variables. Next, the seven uncertain process variables and objective variables 

(crude and field gas mass flow rate and excess air) were imported to the 

spreadsheet inside Aspen HYSYS. Then, the interface between the spreadsheet of 

Aspen HYSYS and MATLAB software was developed using a COM server, as 

shown in Figure29. 

 

Figure 28:  MATLAB and Aspen HYSY interfacing 

 

4.5. Single objective Genetic algorithm for optimization 

In this study, a single objective genetic algorithm was used to optimize the mass 

flow rate of crude oil and fuel oil and the excess air under uncertainty in the 

selected seven process variables. The objective function of the genetic algorithm 

was to maximize the fired heater or furnace efficiency. The mass flow rate of inlet 

crude oil and inlet fuel oil and excess air was selected as manipulating variables 

for GA. The inbuilt function, i.e., the "ga" command of MATLAB software, was 

used to implement` GA.  The population size and number of generations were 20 

and 5, respectively.  The following lines describe the workflow for the genetic 
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algorithm.  

 First of all, the uncertainty in the selected process variables was inserted.  

 Then, the genetic algorithm generates the initial populations of size 20 

 Each chromosome in the population was put in the Aspen HYSY software 

to evaluate the objective function, i.e., fired heater efficiency 

 When one generation has completed, the population for the next generation 

was selected using GA operator, i.e., selection, crossover and mutations. 

 This process was continued up to 5 generations 

 After the completion of the number of generations, the mass flow rate of 

crude oil, the mass flow rate of fuel oil and the amount of excess air that 

gives the maximum efficiency of the fired heater were selected as the best 

solution. 

 

4.6. Data generation 

Using Aspen HYSYS and MATLAB interfacing, the data was generated to train a 

feedforward neural network (FFNN). A total of 360 data points was generated. 

The data was generated using the 5 % uncertainty in the seven selected process 

variables. Table 6 shows ten data samples of generated data for six process 

variables. The first row of data points was generated with -5 percent variation, the 

second row with -4 percent variation, the third row with -3 percent variation, and 

the last row with +1 percent variation.  
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Table 6: Ten Data sample of generated data 

Inlet Crude 

stream 

temperature 

(C) 

Inlet crude 

stream 

pressure 

(kPa) 

Inlet fuel 

temperature 

(C) 

Inlet fuel 

pressure 

(kPa) 

Inlet air 

pressure 

(kPa) 

Inlet air 

temperature 

(C) 

280.15 673.87 44.65 97.85 97.85 44.65 

268.94 646.91 42.84 93.93 93.94 42.86 

260.88 627.50 41.57 91.11 91.11 41.57 

255.66 614.95 40.74 89.29 89.29 40.74 

253.10 608.80 40.33 88.40 88.40 40.33 

255.63 614.89 40.74 89.28 89.28 40.74 

260.74 627.19 41.55 91.07 91.07 41.55 

268.57 646.01 42.80 93.80 93.80 42.80 

279.31 671.85 44.51 97.55 97.55 44.51 

293.28 705.44 46.74 102.43 102.43 46.74 
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4.7. Artificial neural network (ANN) model training and validation 

ANN model was trained using the data generated from Aspen HYSYS and 

MATLAB interfacing. Three hundred sixty data points were generated, with 70% 

used for training, 15% for validation, and 15% for testing the ANN model. A multi-

output feedforward multilayer neural network was trained with the Levenberg-

Marquardt (trainlm) training algorithm. The crude stream composition, inlet crude 

temperature, inlet crude stream pressure, fuel stream temperature and pressure, and 

air stream temperature and pressure were considered as an input to the ANN 

model. The mass flow rates of crude oil, a mass flow rate of fuel, and excess air 

were considered an output of the ANN model. The hidden layers and the number 

of neurons in the hidden layer were selected using a multi-objective genetic 

algorithm approach. The objective function for GA was the root mean square error 

(RMSE) for the three outputs of the ANN model. Both the generation and 

population of 50 were selected. The optimum architecture of ANN consists of 3 

hidden layers. The number of neurons in layers 1, 2 and 3 were 15, 15 and 27, 

respectively, as shown in Figure 30. The tansig and purlin activation functions 

were used in the hidden layer and output layer, respectively. Figure 31 shows the 

ANN model-based predicted values of excess air, the mass flow of crude oil, and 

the mass flow rate of fuel vs. the target values. The trained ANN model has a high 

correlation coefficient of 0.99984, making it suitable for industrial applications. 

 

 

Figure 29: Proposed ANN model Architecture 
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Figure 30:Actual vs. predicted value based on ANN model 
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4.8. Exergy Loss and Exergy Efficiency 

Exergy analysis, which is based on the second law of thermodynamics, gives 

designers and engineers a quick and accurate way to assess equipment efficiency. 

Exergy is a statistic for determining how different a system's condition is from its 

surroundings. It is the maximum amount of work a system can generate once it has 

achieved equilibrium with its environment. Exergy, unlike energy, is not 

conserved; rather, it is destroyed by irreversibilities. Because of these 

irreversibilities, exergy loss during a process is proportionally associated with 

entropy generation [24]. 

The total exergy rate of the furnace can be expressed as equation (3), 

𝐸�̇� =  (𝐸𝑥) ̇𝑐ℎ +  𝐸𝑥𝑝ℎ̇ …….. (3) 

Ex is the exergy rate, KW 

Ch and Ph means the chemical and physical exergy, KW   

 

In thermal systems, physical exergy is derived from enthalpy and entropy change. 

Exph =  (H −  Ho) –  To (S −  So) ------------ (4) 

Exph represents the physical exergy of the stream, To represents the environmental 

temperature (25 oC), H and S are the enthalpy and entropy of the stream, 

respectively. Whereas, Ho and So denotes the enthalpy and entropy of the stream 

at dead state (25 oC, 1 bar). 

The equation for the exergy of destruction is as follows; 

Exergy destruction =  ∑ Ex𝑖𝑛 − ∑ Exout ----------- (5)  

 

The chemical exergy of the stream can be represented as the equation (6),  

(𝐸𝑥) ̇𝑐ℎ  =  𝑚𝑒𝑥𝑐ℎ̇̇
…….. (6)  
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The exergy efficiency of the system is defined as “the ratio of the gained exergy 

and to the spent exergy “as equation (7) (Dogbe et al., 2018; Mert & Reis, 2016),  

Exergy efficiency = 
𝐸𝑥𝑔𝑎𝑖𝑛̇

𝐸𝑥𝑝𝑎𝑦̇
 × 100%....... (7)  
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1. Optimization through Genetic Algorithm 

The dataset for this study was generated by selecting the first component of crude 

oil, as well as the inlet temperatures and pressures of crude oil, fuel, and air stream 

and inserting an artificial variation of -5 % to +5%. Then, a single-objective 

genetic algorithm was used to optimize the amount of excess air and mass flow 

rates of crude and fuel streams. Similarly, the second component was chosen along 

with the same process variables and went through the same variations as the first, 

ranging from -5 % to +5 % and so on. In the same way, after inserting the 

uncertainty in the 36 components of the crude oil, a total of 360 data points were 

generated 

The inlet crude composition, crude stream inlet temperature, crude stream inlet 

pressure, fuel temperature, fuel pressure, air temperature and air pressure were all 

subjected to 5% variations. The goal of using a single objective genetic algorithm 

was to find the optimum mass flow rates of crude oil, the mass flow rate of fuel 

stream and the amount of excess air entering the fired heater under each variation 

while maximizing the furnace efficiency. The upper and lower bounds for the GA 

were determined by inserting a 5% variation in the initial values of the 

manipulating variables. The number of generations and population size of 20 and 

5 was chosen for the genetic algorithm, respectively. Table 7 compares the results 

of the straight run and the genetic algorithm for 20 data samples. In this study, 

straight run (SR) refers to the simulation of the fired heater model under 

uncertainty in the process variables without optimization. Table 7 shows that the 

genetic algorithm outperforms the straight run. In addition, the results of the 

genetic algorithm showed higher furnace efficiency than the straight run results. 
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Table 7: Comparison between SR and GA based efficiency of Furnace model 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 

Samples 

Straight Run 

Efficiency 
GA based Efficiency 

Case1 83.62 85.40 

Case2 83.62 85.55 

Case3 81.92 85.29 

Case4 83.62 85.41 

Case5 83.73 85.55 

Case6 83.62 85.41 

Case7 83.39 85.50 

Case8 83.73 85.55 

Case9 82.52 85.41 

Case10 81.92 85.10 
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5.2. Prediction through ANN 

Artificial Neural Network (ANN) model was trained using the data generated from 

Aspen HYSYS and MATLAB interfacing. A total of 360 data points were 

generated, with 70% used for training, 15% for validation, and 15% for testing the 

ANN model. A multi-output feed-forward multilayer artificial neural network was 

trained with the Levenberg-Marquardt (trainlm) training algorithm. The crude 

stream composition, inlet crude temperature, inlet crude stream pressure, fuel 

stream temperature and pressure, and air stream temperature and pressure were 

used as input parameters of the ANN model. The mass flow rates of crude oil, 

mass flow rate of fuel, and amount of excess air were considered as an output of 

the ANN model. 

Table 8 shows the comparison between the straight run (SR), genetic algorithm 

(GA) and ANN-based prediction of furnace efficiency. The number of hidden 

layers and the number of neurons in the hidden layer were selected using a multi-

objective genetic algorithm approach. The optimum architecture of ANN consists 

of 3 hidden layers. The number of neurons in layers 1, 2 and 3 was 15, 15 and 27. 

The tansig and purlin activation functions were used in the hidden layer and output 

layer, respectively. The trained ANN model achieved a high correlation coefficient 

of 0.999, which makes it suitable for industrial applications.  

Figure 32 compares the Straight (SR), ANN, and Genetic algorithms for the 

average value of furnace efficiency. The prediction based on the ANN model and 

the genetic algorithm is nearly identical. The variation of furnace efficiency over 

10 data samples was shown in Figure 33, respectively. It was observed that the 

ANN model exhibits almost the same trend as the GA. As a result of the high 

correlation coefficient and robustness of the ANN model, it is suitable for real-

time industrial applications, reducing energy consumption and increasing the 

equipment life by enhancing the effectiveness of the heat exchanger. 
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Figure 32:Average trend for the efficiency predicted by SR, GA and ANN model 
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Figure 31: Average efficiency predicted by SR, GA and ANN model 
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Table 8: Comparison of efficiency predicted by SR, GA and ANN model 

Number of 

Samples 

Straight Run 

Efficiency 
GA based Efficiency 

ANN based 

Efficiency 

Case1 83.62 85.40 85.48 

Case2 83.62 85.55 85.48 

Case3 81.92 85.29 85.34 

Case4 83.62 85.41 85.46 

Case5 83.73 85.55 85.46 

Case6 83.62 85.41 85.48 

Case7 83.39 85.50 85.49 

Case8 83.73 85.55 85.46 

Case9 82.52 85.41 85.44 

Case10 83.73 85.38 85.46 

Case11 83.39 85.47 85.48 

Case12 83.04 85.55 85.48 

Case13 82.56 85.43 85.44 

Case14 83.62 85.46 85.48 

Case15 82.52 85.45 85.44 

Case16 83.73 85.55 85.47 

Case17 83.73 85.41 85.47 

Case18 83.73 85.55 85.47 

Case19 81.92 85.38 85.34 

Case20 83.39 85.52 85.49 
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5.3. Exergy Analysis 

The analysis of the furnace is performed using SR, GA, ANN models. In the case 

of SR, exergy loss and efficiency were calculated by incorporating the artificial 

uncertainty in crude composition and process parameters while keeping the 

amount of excess air and mass flowrates of crude oil and fuel constant. A similar 

strategy was adopted for the exergy analysis based on GA but in this case, the 

amount of excess air and mass flowrates of crude oil and fuel were optimized using 

single-objective GA. Likewise, in the case of ANN, the exergy loss and efficiency 

were estimated by inserting the mass flowrates and excess air predicted by ANN 

into the Aspen HYSYS model of the furnace. 

Figures 34 and 35 depicted the contrast of Exergy loss and Exergy efficiency for 

both the straight run (SR) and ANN models for the current fired heater model. It 

was discovered that the Exergy loss and Exergy efficiency predicted by the ANN 

model and the straight run has a significant difference (SR). In comparison to the 

straight run, the ANN model-based prediction shows a high Exergy efficiency. The 

high Exergy efficiency means that there is little irreversibility in the process, which 

means that less energy is wasted and extended equipment life. 
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Figure 33: Average exergy efficiency for SR and ANN model 

 

 

Figure 34:Exergy Loss comparison for the SR and ANN model 
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5.4. Graphical User Interface (GUI) 

Figure 36 depicts an easy-to-use graphical user interface created in MATLAB. 

When the inlet process stream conditions are uncertain, the GUI is used to predict 

the mass flow rate of the inlet streams using the proposed ANN model. The GUI 

interface was created to provide an easy-to-use interface to the end-user. When the 

inlet process stream conditions are uncertain, the GUI is used to predict the mass 

flow rate of the inlet streams using the proposed ANN model. The GUI consists of 

input and output panels. In the input panel, the process condition including crude 

inlet temperature, crude inlet pressure, fuel temperature, fuel pressure, air 

temperature, and air pressure are to be inserted while the composition of the crude 

oil is inserted by clicking on the “Loadxlx.”. After that, by clicking the RUN tab 

the results are shown in the output panel. The results include the amount of excess 

air, the mass flow rate of crude oil, and mass flowrate of fuel.  

 

The following are instructions about how to get results from a GUI. 

 Put the input data for the six process variables in the Input data panel 

 Load the composition of the crude oil from the excel file using the 

'Load.xls.' 

 Press the 'Run' button to see the results in the Result panel 

 Use the Reset button to clear all the data 
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Figure 35: Graphical user interface (GUI) for the furnace 
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     CHAPTER 6: CONCLUSION AND 

RECOMMENDATIONS 

6.1. CONCLUSION 

Furnaces have long been recognized as the primary preliminary equipment used in 

the petrochemical industry for hydrocarbon processing. Furnace units account for 

the majority of energy usage in refineries. As a result, obtaining better thermal 

efficiency is the major focus in both design and operation. Since such systems 

consume a substantial amount of energy, even a modest gain in thermal efficiency 

might result in significant savings. Therefore, in this study, an ANN model was 

developed to predict the optimum mass flow rates of crude oil, mass flow rates of 

fuel, and excess air for the furnace in the presence of uncertainty in the inlet crude 

composition and six process conditions. The six process variables were the inlet 

temperature and pressure of the crude oil, fuel, and air stream. A total of 360 data 

points were generated with the help of Aspen HYSYS and MATLAB interfacing 

with the variation of ±1, ±2, ±3, ±4, and ±5 in the inlet crude composition and 

process conditions. The optimum mass flow rate for the crude and fuel stream and 

excess air for each variation was determined using a single objective genetic 

algorithm. 

The objective function for the single objective genetic algorithm was to maximize 

the overall efficiency of the furnace. The architecture of a multi-output 

feedforward neural network (MFFNN) was selected using a multi-objective 

genetic algorithm approach. The optimized ANN framework consists of three 

hidden layers. The number of neurons in layers 1, 2, and 3 was 15, 15, and 27. The 

genetic algorithm approach was incorporated using the optimization toolbox of the 

MATLAB-2019b version. The proposed ANN model achieved a high correlation 

coefficient of 0.99984.  It was discovered that the ANN model experiences almost 

the same pattern as the GA for the efficiency of the furnace. The proposed ANN 

model's reliable prediction and robustness will aid in lowering energy consumption 

and increasing equipment life by improving furnace effectiveness. The high 
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accuracy and robustness of the ANN model make it suitable for real-time industrial 

applications to reduce energy consumption. 

6.2. RECOMMENDATIONS 

 

1. The suggested approach could be broadened to the furnaces (fired heaters) used in 

industries other than oil refineries. Such as chemicals and synthetics, olefins, 

ammonia, and fertilizer plants for the estimation of optimum operating conditions 

under uncertainty. 

2. Uncertainty in process conditions can also be added to more variables such as furnace 

fuel composition and steam process conditions etc.  

3. To achieve more accurate results, a deep learning-based approach can also be 

incorporated into the proposed framework by generating a large database.   

4. The proposed framework can be extended to other unit operations in the oil refineries 

for efficient operation under uncertain process variables. 
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