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Abstract 
 

Arguably, one of the deep learning’s greatest achievements is transfer learning. It 

is proven that if we use a rich source dataset to pre-train a network (ImageNet in 

2D) and after we use a smaller target dataset to be fine-tuned, it can help to boost 

performance. It has been used in many applications including language and 

vision. In 3D scene understanding, there have been few works using this method. 

Because annotating 3D data is difficult. In this work, we aim to further facilitate 

research on 3D representation learning. To achieve this goal, we select different 

datasets and downstream tasks to find the effectiveness of unsupervised pre-

training on a large and rich source dataset of a 3D scene. The results we obtain 

are encouraging. we are using a unified backbone, source dataset, and contrastive 

objective for unsupervised pre-training, and further supervised downstream tasks 

are performed. Our method is achieving the almost same result in half time of 

recent works in both pre-training and downstream tasks like semantic 

segmentation, and instance segmentation. 

 

Keywords: Unsupervised learning, Representation learning, 3D scene 

understanding. 
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Introduction 
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1.1 Introduction 
 

Point clouds are a large collection of tiny individual points plotted in 3D space.  

Each point has its coordinates X, Y, and Z axis along the other features like color 

value, which is in RGB format, intensity, depth, and many more. These features 

are helpful while analyzing. The points have a geometric structure such as 

triangles, lines, or curved surfaces which form a model. 

Point clouds are created by scanning any physical object or structure which is 

completed by using a laser scanner or photogrammetry. Laser scanners send the 

light to the object and when light reaches the surface of the object it reflects and 

hits the scanner so by measuring the time, these are used to determine the exact 

location of points on an object and form a point cloud. Similarly, in 

photogrammetry, pictures are used to create measurements. By taking pictures of 

an object from different angles, we triangulate points on the object and plot these 

points in 3D space, and create a 3D model. There are many applications for the 

3D point clouds across different industries. For example, in the architecture 

industry, as-built models are used which is helpful for the engineer to visualize 

the site without visiting it. 3D CAD (computer-aided design) models are used for 

manufacturing parts, quality inspection, metrology, animation, and rendering. It 

is also rapidly growing in computer vision such as robotics, remote sensing, self-

driving cars, and medical care. 

 Let’s talk about the different tasks in machine learning for better understanding. 

In machine learning, classification is a process in which we categorized the given 

into one or multiple classes. Data can be structured or unstructured. Another task 

is object localization in which an object Is located in given data which can be an 

image or 3D scene. Typically, it is specified using a bounding box around the 

object. But object detection is a bit more complex than the previous two tasks. It 

combines the concept of classification and localization. In this task, a given data 

algorithm will return bounding boxes around all objects of interest and then assign 

a class to them. Image segmentation is another concept in which input is 

segmented so it can be processed with classification or object detection. It is 
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classified into different categories which are instance segmentation and semantic 

segmentation. Semantic segmentation links every pixel of an image with a class 

label such as a table, cup, etc. so it takes many objects of the same class as a single 

entity. But in instance segmentation, this processes multiple objects of the same 

class as separate single instances. These tasks can be performed using different 

learning methods which are supervised learning, unsupervised, and reinforcement 

learning. 

In supervised learning, input has the labeled dataset which is helpful in 

classification problems and regression problems. But the unsupervised learning is 

the total opposite of supervised learning means there is no labeled dataset. It is 

self-learning and the main goal is to find the patterns and predict the output. In 

simple words, we gave the machine the data and it look for the hidden features 

and crusted the understandable data.  

In computer vision, deep learning is getting a lot of attention for good reasons 

because it’s a machine learning technique that helps the computer to understand 

like humans do which is to learn by example. In deep learning, the machine can 

learn 3D data that can provide more detail such as rich geometric, shape, and scale 

information as compared to 2D data. Point clouds don’t lose the original 

geometric information in 3D space that’s why it is preferred in many scenes for 

an understanding application like autonomous driving and robotics. So, if we talk 

about the driverless car, they should enable them to recognize stop signs and 

detect other cars, cycles, or pedestrians in real-time. 

In 2D, unsupervised pre-training on a large rich dataset like ImageNet can be used 

to enhance the performance once we finetuned on a smaller dataset and it is 

successful in many applications [1]. In a 3D scene understanding task on the point 

clouds, training from scratch is time-consuming due to its sparse structure. In the 

past few years, unsupervised pre-training is gaining attention in 3D learning [2], 

[3]. 

In our thesis, a similar approach is used on the 3D point clouds. We kept our 

pretraining stage unsupervised. Which used the Scan-Net dataset and then 

perform the supervised downstream tasks (e.g., Semantic Segmentation, instance 
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segmentation) to boost the performance. The training and validation datasets, 

results and discussion will be covered next. 

1.2 Problem Statement 
 

The problem is that it is hard to collect the 3D data and even harder to annotate it. 

More, it is time-consuming to train the model from scratch. In 3D deep learning, 

the technique of unsupervised pre-training on a rich dataset and after supervised 

fine-tuning is limited to numerous factors. Some of the factors are the absence of 

unified backbone architecture, large-scale and rich datasets, and lack of high-level 

tasks for validation. 

To solve this challenge and improve the previous studies, our problem statement 

is as follows: 

It is possible to Select a large dataset (like ImageNet in 2D, for 3D it’s Scan-Netv2 

[4] which will be used in unsupervised pre-training and select a backbone 

architecture that will be shared in different supervised downstream tasks for fine-

tuning, evaluating unsupervised objectives in pre-training stage and create an 

evaluation system on different supervised downstream tasks. 

 

1.2.1 Research Hypothesis 

 

This research hypothesis is as follows: 

Unsupervised pre-training on a large dataset can be used to boost the performance 

in fine-tuning stage on different supervised downstream tasks by eliminating 

limitations. 

 

1.2.2  Research Questions 
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The research problem we want to solve, according to the above-mentioned 

hypothesis, is by eliminating limitations, the performance of the high-level tasks 

can be improved by unsupervised pre-training. 

 

• Research Question 1: what is the benefit of the unsupervised pre-training 

stage? 

Objective:  Studies shows that high-level task like Semantic 

Segmentation performance can be Improved by pre-training as compared 

to training it from scratch. 

 

• Research Question 1: which dataset will be used in the unsupervised pre-

training stage? 

Objective: The objective of this question is, that ScanNetV2 [4] is an 

RGB-D dataset containing 2.5 million views with 1500 Scans that will be 

used for this purpose. 

 

• Research Question 2: What will be the backbone architecture? 

• Objective: The goal of this question is, that Pyramid Network 

Architecture is the backbone model in unsupervised pre-training as well 

as in supervised fine-tuning in different downstream tasks. 

 

1.2.3 Overview of Proposed Approach 

 

We proposed that instead of training the 3D understanding task from scratch, 

which is time-consuming, we can use pre-training and then fine-tune our tasks. 

For this purpose, we have demonstrated a pipeline that shows that in the future, 

the scale will be preferred over the precise annotations due to unsupervised pre-

training.  
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We select a rich source dataset which is ScanNetV2  [4], on which unsupervised 

pre-training will be done and for the backbone architecture, the Pyramid network 

[5] will be utilized in our unsupervised pre-training stage as well as downstream 

tasks and focus on point cloud learning on 3D data. we want to use our 

PyraContrast for the complex 3D scene understanding so most 3D scene 

understanding uses conventional U-Net structure which has encoder layers 

followed by decoder layers. There are generally connected by the similar size of 

encoders and decoders layers. this U-net structure, however, has some drawbacks 

and the results obtain from this structure find it difficult to segment fine details. 

This is because the structure which is using the max pooling and subsampling of 

feature layers, and this results in reduced feature maps resolution. So, in each 

encoder layer, the receptive fields are decreased and this makes the U-Net 

structure very challenging to segment the small object with a high level of 

precision and accuracy. But the Pyramid Network passed features in a dense 

pyramid structure and increases the feature map dimension sharply which helps 

for improving classification accuracy. So, our network can take a second look in 

layers simultaneously and allows the network to acquire various and different 

receptive field views. PointInfoNCE [2] is contrastive loss which is computed in 

our pre-training stage. Next, we select a downstream task for fine-tuning, which 

includes semantic segmentation and instance segmentation on S3DIS [6] dataset 

as our target dataset. Our supervised downstream task also utilized the Pyramid 

Network architecture built with Minkowski Engine [7]. So, we used an 

unsupervised deep learning model for pretraining on ScanNetV2 [4] and 

experiments are performed supervised finetuning for different downstream tasks. 

The proposed approach and results are discussed in further depth in chapters 3 

and 4 of the current thesis, respectively 

 

1.3  Main Contributions 

 

The following major contributions were made during this master’s research 

project. In this thesis, we proposed a pipeline that will utilize a unified architecture 
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in the unsupervised pre-training stage on the 3D point cloud and then supervised 

fine-tuning for Semantic and instance segmentations as our downstream tasks. 

• Pyramid Network, which is our unified architecture, is shared across all 

stages and demonstrated better performance. 

• For unsupervised pre-training, ScanNetV2 [4] is used as our rich dataset. 

• For fine-tuning, semantic segmentation and instance segmentation are 

done on S3DIS [6] dataset. 

 

1.4  Structure of Thesis 
 

The remainder of this thesis is laid out as follows: 

 

1.4.1 Chapter 2: Literature Review 
 

This includes a complete review of the literature. Other ways from many 

disciplines to handle a comparable research problem are summarized along with 

their flaws. The literature review chapter will explain that the suggested 3d scene 

understanding networks, 3d Representation learning, and unsupervised 

pretraining and supervised downstream tasks techniques are giving the same 

results but faster. 

 

1.4.2 Chapter 3: Design and Methodology 
 

In this chapter, the technique of the proposed deep learning model for 

unsupervised pre-training and supervised downstream tasks are explained with 

the help of figures and tables. The methodology starts with an overview of the 

model. There are stages for our pipeline. The first one is PyraContrast which is a 

pretext task. PyraContrast contains a sampling block, transformation block, 
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Pyramid Point Network (PPN), and contrastive loss block. The second stage is 

fine-tuning different downstream tasks. 

 

1.4.3 Chapter 4: Results and Discussion 
 

This chapter contains the details of the implementation and testing performed on 

our pipeline. The detail of the rich dataset used for the pre-training stage and the 

target dataset used for the fine-tuning stage is discussed in the first section. 

Evaluation metrics used for pre-training results and fine-tuning result analysis are 

also discussed in the pre-training setting. This chapter contains the tables and 

figures to show the evaluation outcomes and comparisons of different methods 

with our methodology. 

 

1.4.4 Chapter 5: Conclusion 
 

The second last section of this thesis covers two things, in particular, a conclusion 

and a summary of our contributions. The conclusion conveys the concluding 

remarks and future discussions regarding our work. Meanwhile, the summary of 

work briefly states the contributions of this thesis for the pre-training in 3D point 

clouds with fine-tuning. 

 

1.4.5 Chapter 6: Bibliography 
 

Finally, the last section of this thesis document contains the 

bibliography/references used in the thesis in IEEE style. 
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Chapter 2 

Literature Review 
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2.1 Chapter Overview 
 

We analyze the relevant literature in this chapter to highlight the existing work on 

unsupervised pretraining and supervised downstream tasks. The understanding of 

existing work also helps us in justifying the proposed solution later in this thesis. 

 

2.2 Background 

 

Training from scratch on the target data is still the dominant approach in the 3D 

understanding tasks. Few works have been done on the unsupervised pre-training 

and supervised downstream tasks. 

 

2.3 3D Scene Understanding 
 

The 3D sensors (Lidar, depth-sensing cameras) are growing and over the last few 

years, 3d scene understanding technology is much needed that can process the 3D 

data and then it can detect objects in a scene or predict the classes. A 3D scene 

often consists of objects of interest (e.g., cycles, cars, pedestrians), and such 

technology can help in autonomous driving and many more applications. It can 

also lead to new research areas. Different neural networks help in different 3D 

scene understanding tasks which are instance segmentation and object detection 

and semantic segmentation. 

 

2.3.1 Point-based Networks 
 

Most recently, Research in deep learning on 3D point clouds has been switched 

from synthetic, single object detection classification [8]–[10] to challenging large-
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scale, real-world scene understanding. PointNet [8] and PointNet++ [9] open a 

new door to work directly on the raw point cloud.  

• PointNet [8] is a unified architecture that takes the point clouds directly as 

raw and predicts the class label for the entire point cloud or it can predict 

the per point segment or part label for the given point of input. The 

architecture of this network is simple. Each point is processed identically, 

and they are no longer dependent on each other in the initial stages. For 

simplicity, each point is represented as (x, y, z) but it can contain other 

dimensions too (local pr global features). It uses a symmetric function 

which is max pooling. The goal of the network is to learn a group of 

optimization functions that select the interested or informative points in a 

point cloud and encode it. In the end, there are fully connected layers of 

the network that will aggerate these optimal values of functions into the 

global descriptor of the entire shape (shape classification). It can also use 

to predict the per point labels which is shape segmentation. 

• The problem in PointNet [8] was that it does not capture the local 

structures which were already there in the point cloud. It only gives the 

global feature of the point cloud and local structures are important for the 

success of convolution architectures. So, it was limited only to 

generalizing complex scenes. PointNet++ [9] solve this problem by using 

its hierarchical neural network which processes a set of points 

hierarchically given by a metric space. The idea is to first generate a set of 

points into the overlapping local regions by the distance metric in a given 

space. In the small neighborhoods, local features are captured which have 

fine geometric structures. Then these local features are further grouped 

into larger units and then high-level features are produced. This process is 

repeated until the features of whole point sets are obtained. 

 

2.3.2  Sparse Convolution Networks 
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Recently, Sparse Convolution networks [11] [12] are showing more promised 

results in the deep learning for point clouds. These networks have computational 

efficiency and [11] [13] [14] show state-of-the-art performance for the 3D scene 

understanding tasks.  

In the 3D dataset, high-dimensional perception is difficult and [11] adopts a 

Sparse tensor [7] which will be used in sparse convolution networks. The 

generalized sparse convolution encodes all different convolutions as a subclass 

which is important for high-dimensional perception. It takes less memory for 

computation and is fast. 

• For the 3D instance segmentation, a bottom-up end-to-end network 

PointGroup [14] whose goal is to generate better groups of points. It 

extracts per-point semantic prediction and then performs an efficient point 

group to get the candidate's object instances. Descriptive features are 

extracted using a semantic segmentation backbone and output a semantic 

label for each point. Relative offset is learned using the offset branch 

which brings each point to its respective ground-truth instance center 

point. Given predicted semantic labels and offsets, these groups of points 

are converted to the cluster.  For reference, coordination is taken from each 

point, making a group with the same label of nearby points and then the 

group is progressively expanded. To pick the candidate group and 

evaluation, ScoreNet [14] is used. In the end, non-maximum suppression 

is used to remove the duplicate predictions. 

 

2.3.3 Pyramid Networks 
 

Instead of a conventional “U” shape structure in semantic segmentation, a dense 

pyramid structure allows the network to simultaneously reviews all the layers for 

a second time. Creating the extra layers which have less noise, helps to increase 

the contextual information. 
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• Pyramid Point [5] uses this pyramid concept and feature fusion to solve 

the issue which is decreased feature map resolution. It transfers the 

features in a dense pyramid structure. It allows the ability to transfer to 

features between various units and extra layers which restrict them to 

define a U shape path. So, by restricting the U shape path, the network has 

a different receptive field view. The network has also many shallow 

feature layers which are not covered in the entire U shape structure. The 

goal of the decoding unit is to add the noise. The features that have passed 

more than one through the decoder units, so instead of conventional four, 

they are less chance to have segmentation errors and that is important for 

small objects. This network has a Feature Kernel Point Convolution (FKP 

Convolution) whose goal is to add an element of attention to the kernel. 

This is usually used kernel point convolution. 

 

2.3.4 Graph Neural Networks 
 

A graph neural network aggregates the features along the edges and then 

iteratively updates its vertex. This aggregation is somehow the same as in set-

based deep learning, near the edges, GNN can learn more complex features. There 

is no need to be sampled and group vertices every time. [15] [16] [17] used the 

graph neural network in part segmentation, classification, and object detection 

respectively on a point cloud.  

• Point-GNN [17] uses the input of the point cloud as raw. The goal of this 

network is to output the category and bounding box of the objects to which 

every vertex of the graph belongs. It is a single-stage detector, and it can 

detect many objects in a single shot. There is translation variance in the 

point cloud so to make the Point-GNN translation invariance, an auto 

registration method is used which helps the point to align the coordinates 

baes on the features. A boxing merging and scoring operation are used to 

combine the detection results from multiple vertices accurately. 
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• DG-CNN [15] is inspired by PointNet [8] and convolution operations. 

PointNet works on the individual points, but DG-CNN [15] created a local 

neighborhood graph to use the local geometric features and then apply the 

operation similar to convolution on the edges which are connecting 

neighboring pairs of points. EdgeConv creates an edge feature which is 

the relationship between a given point and its neighbors. It is invariant to 

the ordering of neighbors in a point cloud, so it is permutation invariant. 

This graph is not fixed, and it is dynamic which updated the layers of the 

network dynamically. From layer to layer of the network, the set of K-

nearest neighbors of a point change is computed from the sequence of 

embedding. Proximity in the feature space is different from the proximity 

in input, which leads to nonlocal diffusion of information in the whole 

point cloud. 

 

2.4 3D Representation Learning 

 

In 2D representation learning, transferring learning from a big dataset to a smaller 

target dataset has become dominant. But in 3D representation learning, it is not 

widely used. 

• PointContrast [2] initiate the work on unsupervised pre-training on the rich 

dataset and supervised fine-tuning on the smaller dataset by selecting a 

large ScanNetV2 [4] which will be used in the pre-training. It has a full 

convolution design along the point-level matric learning. The Idea of full 

convolution comes from FCN [18] and FCGF [19] which take the input 

point cloud as a whole and find the corresponding without cropping the 

scene; this way from a very large number of neighboring points, a local 

descriptor can aggregate large information and gives the output full -

resolution ( i.e. for the P Points, the network gives the P corresponding 

vectors as output) due to sparse residual U-Net architecture. For metric 

learning, positive/negative pairs are defined on the point level. Select the 
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two views x1 and x2 from given a distribution-sampled point cloud and 

the source dataset is ScanNetV2 [4]. These two views x1 and x2 are 

selected from every fixed frame which are in the same world coordinates. 

There is a need to compute the similarity of these two views where the 

similarity between these two views should be a minimum of 30% so a 

mapping function is applied over the pair of view. Then two 

transformation functions are applied on the pair, by which the point cloud 

will be further transform to two different and distinct views. This 

transformation makes the work more challenging because we need to find 

an equivariance between these two transformed views. There is need to 

compute the point features for these two views, so U-Net architecture was 

chosen due to sparse residual. For the pre-training objectives, two different 

contrastive losses were chosen, Hard-contrastive loss [19], and 

PointInfoNCE loss [19]. Which is the updated version of InfoNCE [20] 

loss and used in 2D vision pretraining. So contrastive loss is applied over 

two views, if these two views are matched then it will minimize the 

distance between them and if two views are unmatched then distance will 

be maximized. After the pre-training stage on the ScanNetv2 [] dataset 

with the U-Net architecture, a huge collection of target datasets and the 

downstream task are selected.  Downstream tasks are semantic 

segmentations on S3DIS [6], ScanNetV2 [4], Synthia4D [21] and 

ShapeNetPart [22]; and object detection on the ScanNetV2 [4] and SUN 

RGB-D [23]. Backbone architecture remains the same for both pre-

training and fine-tuning. So instead of training from scratch, PointContrast 

[2] first uses unsupervised pretraining on a large dataset and then 

supervised fine-tuning by using the pre-trained weights on different 

downstream tasks and datasets which helps to gain performance.  

 

2.5  Data-Efficient Learning 
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The data-efficient learning's main goal is to learn with limited available training 

datasets or labels because Collecting and annotating 3D point clouds is an 

expensive job. In contrast, training a deep neural network is usually not data 

efficient because it relies on a large or rich source of the annotated dataset. 

• [3] uses the concept of PointContrast [2] but also gives a new way of 

learning in 3D scene understanding with limited data or supervision. There 

are two main settings for data-efficient: (1) limited scene reconstruction 

(LR) and (2) limited annotation (LA). In the 1st setting, it gives the 

possibility that there can be a bottleneck in the number of scenes that can 

be scanned and reconstructed. In the 2nd setting, there can be a case where 

in each scene, labeling is done on a small set of points. The pre-training 

objective of PointContrast [2] is to find the equivariance of points on 

which random geometric transformations are applied. Given a pair of 

points, a simple contrastive loss is applied over the point features. Which 

objective is to minimize the distance if points are matched (positive pairs) 

and maximize the distance if points are unmatched (negative pairs) but the 

simple contrastive learning in PointContrast [2] only applies to point-level 

matching, and it completely misses the spatial configuration and context 

in the scene and does not capture any spatial information: the unmatched 

pairs (negative pairs) could be sampled from random locations in many 

scenes in given mini-batches. The spatial context is the relative pose, 

distance, and direction and this information could be important for 

complex 3D tasks such as instance segmentation. So, to capture the spatial 

information in the pre-training objective, [3] takes the idea from 

ShapeContext local descriptor which helps in shape matching. The shape 

context descriptor [24] first partitions the given space into the spatially 

inhomogeneous cells and then, it has the spatial context about the shape at 

each point which it encodes in each cell. This spatial context information 

is obtained by computing a histogram over the number of neighboring 

points. At a high level, this its objective is also to capture the distribution 

over relative locations in a scene. So, a scene of the point cloud is 

partitioned into multiple regions, instead of computing a contrastive loss 
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for the whole point set sampled in a mini-batch, now contrastive learning 

is applied over multiple partitioned regions separately and, in the end, the 

loss is aggregated. 
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Chapter 3 

Design And Methodology 
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3.1 Problem Definition 

 

Because useful representation learning has been successful in the 2D domain, we 

introduce our pipeline for unsupervised pre-training on a large dataset and 

supervised fine-tuning on a small dataset for 3D point clouds. We adopt a unified 

backbone architecture [5] which is faster than state-of-the-art. 

Specifically, there are two stages in our pipeline. The first stage is PyraContrast’s 

unsupervised pre-training as a pretext task. This stage uses our unified 

architecture PyraNet on a rich ScanNetv2 [4] dataset. The second stage is 

supervised fine-tuning tasks (i.e. Semantic Segmentation, Instance Segmentation) 

on the target S3DIS [6] dataset. Instead of random initialization of weights, the 

already pre-trained weights are used and then improve the performance of the 

different downstream tasks. With this pipeline, our network leads to good 

performance in terms of time in downstream tasks. 

 

3.2  Architecture Design 
  

In the proposed pipeline as shown in figure 1 below, the first stage is unsupervised 

pretraining with PyraContrast.  

 

Figure 1  Structure of the pipeline. This is the pipeline of work. The pre-training stage is 

PyraContast which will output the pre-trained weights. The second stage is scene understanding 

and it will use the pre-trained weights instead of random initialization for semantic 

segmentation and instance segmentation. 
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And the goal is to learn the weights and pre-trained networks. After the pre-

training, different supervised downstream tasks are performed in which instead of 

random initialization of weights for the network for fine-tuning, the pre-trained 

weights W are used. 

 

3.2.1 PyraContrast as Pretext Task 
 

A good pretext task, on the other hand, aims to learn the weights of the network 

that can be transferred universally and are beneficial on many high-level 3D 

scenes understanding tasks. In terms of architecture, there is a concern about 

inference speed in registration tasks. we used Pyramid Point Network which is 

lightweight and faster. In terms of the dataset, we used the ScanNetV2 [4], and 

finally, in terms of loss design, we used contrastive loss. 

 

Algorithm 1-    PyraContrast 
 

Input: Neural Network Architecture, P= {pi ∈ RN×3} as 

Dataset, D as Point feature Dimension; 
Output: Neural Network Pre-trained weights 

for p in P do 

• From p, creates a pair of views x1 and x2. 

• Compute the correspondence M between pairs x1 

and x2 

• Sample two transformations T1 and T2 

• Compute point features f1, f2 ∈ RN×D by 

f1=NN (T1 (x1)) and f2=NN (T2 (x2)) 

• Convert the input to different partitions 

• Compute the contrastive loss Lc (f1, f2) for each 

partition 

• Aggregate the total Lc  

• Backpropagation to update NN with aggregated 

contrastive loss Lc (f1, f2) on positive/matched points 

end 

 

     

Table 1  PyraContrast Algorithm. This is the algorithm of our pre-training stage 

which takes the raw point cloud as input and outputs the pre-trained weights. 
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Figure 2  PyraContrast as a Pretext Task. this is the visualization of our pre-training stage. 

Input: takes the point cloud scene as input, and generates two views. Transformation: this 

module applies the transformation to two views. Pyramid Point Network: it is a feature 

extractor using a pyramid structure. Contrastive Scene: this will divide the point cloud into 

different partitions, calculate the contrastive loss for each partition and aggregate all the loss at 

the end. 

 

3.2.1.1 Input Module:   
 

The two views x1 and x2 are selected from a 3D scene in our ScanNetV2 [4]. So 

many pairs are generated from a single scene. The main goal of this block is to 

select only those pairs of views that are partially overlapping with each other. 

 

3.2.1.2 Transformation Module:  
 

After two views are generated, transformation needs to be done on the selected 

pair, so this module applies the rotation and translation transformation to them 

separately. The detail of transformations will be explained in Chapter 4 which is 

Implementation. 
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3.2.1.3  Pyramid Point Network (PPN) Module 

 

This is the feature extraction module of our PyraContrast. This is our unified 

network which will be used both in unsupervised pre-training and supervised fine-

tuning on different downstream tasks. Fig 3 illustrates our network architecture. 

 

 

 

Figure 3 Pyramid Point Network (PPN). InConvolution Block: this will do the sparse 

convolution on our input. PyramidModule: this module will create many inner pyramid blocks 

that will allow the network to transfer features at many levels. OutConv Block: this will perform 

sparse convolution to get the required feature map dimension. 

 

In feature extraction, the features are extracted densely and the most common 

representation of this kind of data are tensors, matrices, and vectors. But if we talk 

about the 3D data or higher dimensional features, we cannot use traditional 

representations due to the sparsity of 3D data. So, to solve this problem we can 

only use that part of space that is non-empty as its coordinated and associated 

features. Unlike the traditional sparse tensor, we will use the [11] sparse tensor. 

This tensor has the coordinates as (𝑥, 𝑦, 𝑧) along with the batch indices to 

differentiate the point the points that will occupy the same coordinate in different 

batches. We can show a set of 4D coordinates as 𝐶 = {(𝑥𝑖, 𝑦,𝑖, 𝑧𝑖 , 𝑡𝑖)} as a Matrix 
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C. There is also another Matrix F which has a set of associated features 𝐹 = {𝑓𝑖}. 

The whole sparse tensor can be represented as 

 

𝐶 =

[
 
 
 
 

𝑥1     𝑦1     𝑧1     𝑡1     𝑏1

 
⋮
 

  𝑥𝑁     𝑦𝑁     𝑧𝑁     𝑡𝑁     𝑏𝑁  ]
 
 
 
 

 , 𝐹 =

[
 
 
 
 
𝑓1

𝑇

 
⋮
 

  𝑓𝑁
𝑇]
 
 
 
 

 

 

In-Convolution Block:   This layer will use the Sparse Convolution. After the 

transformation module, our inputs are fed to our Pyramid Point Network for 

feature extraction. The first block is the convolution block which is a sparse 

convolution. 

 

Figure 4  In-Conv Block. This will apply only a single sparse convolution before 

feeding it to the Pyramid Module. 

 

This block will take the input of the point cloud to perform a sparse convolution 

and will create a required feature map. This feature map will be further used in 
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the Pyramid block. The detail of the In-Convolution block will be discussed in 

Chapter 4 which is Implementation. 

Pyramid Module:  This is our main block and this block has two main 

modules which are the encoder and decoder. The encoder will take the input and 

it will create a high-dimensional feature map by performing a sparse convolution. 

This will reduce the size of the input, but it will create the feature dimension. This 

feature dimension will further pass to the Inner Pyramid module. The Inner 

Pyramid Module is itself a pyramid Module and the network will further perform 

sparse convolution until we will reach the depth of the pyramid module. 

 

 

Figure 5 Inner Pyramid Module. The encoder will downsample the input but it will 

increase the feature dimension. The decoder will use the Transpose convolution to get the 

original size of input with a higher feature dimension map. 

 

 The output of each inner pyramid module is used as input for the next one. At the 

last depth of our pyramid block, the decoder will start it will first perform sparse 

transpose convolution and then add the lower resolution feature map will the high-

resolution feature map for the current module. This will go up until we perform 

this for every pyramid module. The output of this whole Pyramid module will be 

used as input for our final Out-Convolution block. 

Out-Convolution Block:   This is the final block of our feature extraction. 

It has two sparse convolutions layers. The first sparse convolution layer will take  
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Figure 6  Out-Convolution Block. This is the final block of our feature extractor. 

This will take input from the previous block and perform two sparse convolutions for the final 

feature map. 

the output of the whole pyramid module and perform convolution to generate the 

required feature map followed by Batch normalization and ReLU as activation 

function. The detail of this block will be also discussed in chapter 4 of 

Implementation. The output of the final convolution layer will be the out channels. 

 

3.2.1.4 Contrastive Context Module 

 

In the 3D point cloud, the spatial context such as relative pose, direction, and 

distance is crucial for difficult 3D tasks such as instance segmentation and our 

objective is to include this information in our pre-training. To achieve this goal, 

the idea came from the ShapeContext [24] local descriptor for shape matching. 

This module takes the input and divides that scene in a point cloud into various 

partitions. Thus, rather than having a single scene, now we can have multiple 

partitions of a scene. Before the contrastive loss was working for a single scene. 

there are multiple partitions now so rather than having a single contrastive loss 
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which is PointInfoNCE [3]. We perform the contrastive loss for each partition 

within a mini-batch separately for the whole point cloud sampled in a mini-batch. 

In the end, we aggregate our total loss. 

Specifically for our work, we have two partial frame point clouds that are from 

the same scene and are x and y. The correspondence mapping is present which is 

(𝒊, 𝒋)  ∈  𝑴𝒙𝒚. Where the index i in frame x corresponds to the  𝒙𝒊 ∈  𝑹𝟑 and the 

index j in frame y corresponds to a matched point  𝒚𝒋 ∈  𝑹𝟑. we sample the 

positive points as matched, and the negative points as unmatched. The space is 

subdivided into multiple regions for each anchor point xi, and other the points are 

assigned to distinct partition/regions. Based on their spatial information which 

includes relative angles along the distance to i, this allocation is made.  

At the anchor point xi, the following formula determines the distance along the 

angle information for the scene partition. 

𝐷𝑖𝑗 = √∑(𝑥𝑖
𝑑 − 𝑥𝑗

𝑑)2

3

𝑑=1

 

 

(1) 

 

𝐴𝑖𝑗 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝐷𝑖𝑗) + 2𝜋 (2) 

  

In equation (1), the D is the matrix of the relative distance and the  

𝐷𝑖𝑗  keeps the distance between the points i and j. The d represents the 3D 

dimensions.  while in equation (2), the 𝐴𝑖𝑗  contains the relative angle between the 

points i and j. Now that we have the D and A, it is simple to construct a spatial 

partitioning function similar to so a ShapeContext- spatial. 
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Figure 7  Visualization of Scene Context. This shows that a scene can be 

partitioned into different regions. It can be either 2 parts or 4 parts. 

 

In Fig 7, we show a visualization of the scene context. This demonstrates how 

regions/partitions can be created from space. If we need to compute the 2 or 4 

partitions for our space, cutting the space only needs to be done following the 

angle that is based on A. If there is a need for the cutting of space into more than 

eight partitions, then it’s necessary to determine the size of inner regions using 

the D’s distance matrix. Space is always divided evenly along the distance and 

relative angles. To the anchor point i, keep in mind that the portioning is relative. 

PointInfoNCE Loss:  If we express the functions of spatial partition 

as 𝑝𝑎𝑟𝑝 (. ) and there are the P partitions/regions, where the 𝑝 ∈  {1, . . . , P}.  The 

anchor point i is the input for the function of the partition function  𝑝𝑎𝑟𝑝 (. ), its 

output of this function is a list of negative points. As there are many partitions so, 

for each partition, a PointInfoNCE loss  𝐿𝑝 is independently calculated. 

 

𝐿𝑝 = − ∑ 𝑙𝑜𝑔
exp (f𝑗

1. f𝑗
2/𝜏)

∑ exp (f𝑗
1. f𝑗

2/𝜏)(.,𝑘)∈𝑀,𝑘∈𝑝𝑎𝑟𝑝(𝑖)
 (𝑖,𝑗) ∈ 𝑀

 

 
 

(3) 
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Equation 3 specifics and other implementations will be covered in Chapter 4 on 

Implementation. Aggregating all partitions results in the determination of the final 

total loss 𝐿 =
1

|𝑃|
∑ 𝐿𝑝𝑝 . 

 

3.2.3  Fine-tuning on Downstream Tasks 
 

Learning the features of the provided data is the most crucial and fundamental 

motivation for representation learning, and it can adapt well to various and unique 

downstream tasks. The learned representation usefulness can be measured by 

different evaluation methods. For instance, the study [25] uses a linear classifier 

to probe, and the [26] study evaluates a semi-supervised approach. The pre-

trained weights that we obtain from the pretext task are used as the initialization 

of network weights in the supervised fine-tuning technique, then further fine-

tuned on the intended downstream tasks. This approach is potentially the most 

useful way to assess transferability. With this method, we can no doubt get the 

performance gain in downstream tasks with the good, learned features. 

So, in this stage, we will use our pre-train weights which we get from our 

PyraContrast as pretext task on multiple downstream tasks, and S3DIS [6] dataset 

as our intended dataset for fine-tuning. We discuss a variety of tasks of different 

natures including instance segmentation and semantic segmentation. Pyramid 

Point Network servers as the same backbone architecture for all our experiments. 

For the pre-training using the PointInfoNCE objectives on the proposed source 

ScanNetV2 pair dataset. In Chapter 5 which is titled Experiments and results, pre-

training, semantic segmentation, and instance segmentation are further discussed 

in detail with results.  
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Chapter 4 

Implementation 
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In this section of our thesis, we discuss the detail of our implementation for the 

unsupervised pre-training as well as for the fine-tuned downstream tasks. 

 

5.1   Data Pre-processing 
 

Following the PointContrast [2], Every 25 frames, we subsample ScanNetV2 [4] 

scene’s partial frame. We identify the pairs of frames in each scene by calculating 

the overlap. 

 

Figure 8 Visualization of ScanNetV2 Pair Dataset. Each row is randomly sampled from the 

scene. The first two columns show the pairs from that scene. The last column shows the two 

views in a single frame.  
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The overlap should be a minimum of 30%. As we dive further, each frame is 

converted to world coordinates. To calculate and determine how many points are 

overlapping, we iterate through each pair of the frame. The threshold of 

overlapping is 2.5cm.  

For instance, if we find another point in frame B for each point in frame A that is 

within the 2.5 cm voxel size which is converted into a world coordinates system, 

then only those two points are considered to be a correspondence pair. When there 

is overlapping of 30% for points of 2 frames, those frames are saved for the 

training. The XYZ coordinates and RGB colors both are saved and used for 

unsupervised pre-training.  

The visualization of ScanNetV2 pair data is shown in Fig 8 which is used for the 

pre-training. There are different pairs of point clouds in each column which are 

sampled from the same scene. Whereas the different color shows that two 

different views (partial scans) are corresponding to each other. 

 

 

5.2 PyraContrast as Pretext Task 
 

The implementation and detail of different modules which are used in 

PyraContrast are discussed below. 

5.2.1 PointInfoNCE Loss 
 

Here, we describe the PointInfoNCE [3] in detail and use it as our contrastive loss 

(Equation 3 of our thesis) 

  

𝐿𝑝 = − ∑ 𝑙𝑜𝑔
exp (f𝑗

1. f𝑗
2/𝜏)

∑ exp (f𝑗
1. f𝑗

2/𝜏)(.,𝑘)∈𝑀,𝑘∈𝑝𝑎𝑟𝑝(𝑖)
 (𝑖,𝑗) ∈ 𝑀
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In the above equation, M represents the set of all corresponding matches from the 

two frames which we discussed in data pre-processing. We denoted the point 

features from frame 1 as f1 and frame 2 as f2. The points that have at least one 

match are used as negative points in the formula above. We eliminated any non-

matching points. The point feature 𝑓𝑖
1, acts as query, and the point feature 𝑓𝑗

2 acts 

positive key for the matched pair in (𝑖, 𝑗) ∈ 𝑀. The point feature  𝑓𝑘
2  contains the 

sets of negative keys where  ∃(. , 𝑘) ∈ 𝑀, 𝑘 ∈ 𝑝𝑎𝑟𝑝(𝑖) and we used 𝑘 ≠ 𝑗. A 

sample of a subset of match pairs from M is used for the training. 

  

5.2.2  Transformations 
 

We used the transformation on the partial views. In our experiments, on the two 

different views x1 and x2, we applied the transformations T1 and T2. These are the 

random rotation (0 to 360 o) along the arbitrary axis. On both views, these are 

applied independently. Ob both views, we also apply scale augmentation (0.8× to 

1.2× of the input scale). We have noticed that with the other augmentation like 

point coordinates jittering, point dropout, and translation, there was no noticeable 

difference in fine-tuning performance. 

5.2.3  Batch Normalization 
 

Mostly deep neural networks consist of tens of layers and millions of neurons, 

and they are sensitive to the weights and configurations of the learning model. 

Batch normalization is a technique that is used in very deep neural networks like 

ours where we have millions of neurons. It standardizes the input to a layer of 

each mini-batch. So, it standardized the input to a network. By using this 

technique in all layers of the network except the last layer, it can accelerate the 

training, do some regularization, and overall, reduces the generalization error. 
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Figure 9 Visualization of Batch Normalization. 

 

5.2.4  Activation Function 
 

As we know our network consists of a lot of layers and neurons. But we must 

activate our neurons to work, and an activation function defines the output of 

weight or neuron is given the input. In simple words, they decide whether the 

network should activate the neuron or not. 

 

Figure 10  Rectified Linear Unit (ReLU). The graph represents that this linear function only 

outputs if the input is positive. 
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In our case, we use the Rectifies Linear Unit (ReLU) activation for our layers 

which is the most used one. Because it is easier to train and mostly gives better 

results. The formula for this activation is 

𝐴(𝑥) = max (0, 𝑥) (4) 

  

  

As written in the formula, it is a piecewise linear function that will take the input 

x and output it directly if it is a positive value. For the negative value of x, it will 

output as zero. 

 

5.2.3  In-Convolution Block Implementation 
 

For specifically our work we used the input channel of 3 for this layer and the 

output channel is 32 for both unsupervised pre-training and supervised 

downstream tasks. The kernel size is 3 and the dilation size is 1. We use the stride 

size of 3. After the convolution, we used the Batch Normalization and at last, we 

used the ReLU as the activation function.  

 

5.2.4  Pyramid Module Implementation 
 

For the sparse convolution used in the encoder and the inner pyramid modules, 

we use the input channel as provided by the previous layer and outputs defined 

for the select module. The kernel size we used is 3 along the stride of size 1 and 

dilation 1. Same Batch Normalization technique used for In-Conv and ReLU as 

activation function. But in the decoder, with a kernel size of three and dilation 

size of one, we carried out the sparse transposed convolution, but this time we 

used the stride size 2. For the concatenation of the inner feature and original 

feature dimension of that block, we also use the sparse convolution with the kernel 

size 1, stride size 1, and dilation size 1. 
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5.2.5  Out-Convolution Block Implementation 
 

This is the last block of our feature extractor. The first layer of this block takes 

the input of the previous pyramid module and performs the sparse convolution 

with kernel size 3, stride size 1, and dilation 1. This layer uses the Batch 

normalization and ReLU activation function. The last layer of this block output 

the 32-feature dimension for the pre-training. For the semantic segmentation and 

instance segmentation, we use the feature map of dimensions according to their 

classes which is 13. The last layer doesn’t use any Batch Normalization or 

activation function. 
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Chapter 5 

Results and Discussion 
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5.1   Data 
 

In this section, we utilized ScanNetv2 as a source dataset for our PyraContrast as 

Pretext task, aiming to address the scale issue. The RGB-D video dataset 

ScanNetV2 [4] has 2.5 Million views across more than 1500 scans and is 

annotated with surface reconstruction, instance-level semantic segmentation, and 

3D camera poses. Right now, it is the biggest of its kind. There are 20 classes of 

annotated 3D objects in this dataset. We have evaluated our PyraContrast around 

10 scenes which generate around 20k pairs, and this was sufficient for good pre-

training.  

For the fine-tuning downstream tasks which are semantic segmentation and 

instance segmentation, we have used the target dataset of Stanford Large-Scale 

3D indoor spaces S3DIS [6] for both semantic segmentation and instance 

segmentation for the benchmark. It consists of a 3D point cloud of 6 different 

areas consisting of 271 rooms. Each point cloud has a medium size room, whereas 

each area includes approximately 50 rooms. The number of points in all rooms 

ranges from half a million to two and half million. Each point has an annotation 

of a semantic label from 13 different classes. Further, each point has the 3D 

coordinates along with the RGB information. We have evaluated our downstream 

tasks in Area 5 which is 1-Fold validation. For benchmarking, we follow standard 

train/test splits.  

 

5.2  Evaluation Metrics 
 

To evaluate the performance of PyraContrast, we have used PointInfoNCE loss. 

We also evaluate the iteration time both for pre-training and downstream tasks 

because in the large-scale dataset training time also matters. 

To evaluate the performance of downstream tasks semantic segmentation and 

instance semantic segmentation, we have used the Mean Intersection Over Union 
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(mIOU) strategy. Intersection Over Union is computed for the prediction score 

and the ground truth of the methodology. 

 

The mean value mIOU is calculated for the intersection of union for all classes. 

Due to the imbalance of different classes, we also used the mean Average 

Precision (mAP) and mean Average Class Accuracy (mAcc) of all classes. Hence, 

for all areas of the target S3DIS dataset, we have computed the mean intersection 

over union (mIOU) on the all-predicted results in Area 5. We choose Area 5 for 

cross-validation since the dataset we have used S3DIS, has a total of 6 areas. 

 

5.3 Training Setting 
 

We train our pipeline on a single Nvidia Titan X 12-GB GPU. Our batch size for 

the unsupervised pre-training is 6. The pre-training iteration depends on the given 

number of pairs. For the 26k pairs, our pre-training runs for 4200 iterations. The 

learning rate starts from 0.1 with a decay of 1e-6. 

To fine-tune downstream tasks such as semantic segmentation, we used the same 

single GPU as pre-training. We used a batch size of 16 with a total number of 

iterations of 60,000. The learning rate starts from 0.1 with a decay of 0.0001. 

For the instance segmentation, training is also done on a single GPU with a batch 

size of 16. There is a total of 15,000 iterations for instance segmentation with a 

learning rate of 0.1. the decay rate is 0.0001. we implemented the code in Python 

and PyTorch library in Linux. 
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5.4 Pre-training Results 
  

We use the ScanNetV2 dataset for our pre-training and we compare it with two 

different methods [2][3]. The loss comparison is below. 

 

     

Table 2  Pre-training Loss. This is the semantic loss at the end of our pre-training stage. 

 

 

Table 3  Iteration Timing in Seconds. This shows that our model is performing better in 

terms of speed which is 1.3 sec per iteration. 
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As we can see from the results, our method is performing better in terms of loss 

and iteration time. Our method computes the loss in 1.3 seconds which is 35% 

faster than both Contrastive Scene Context [3] and Point Contrast [2]. The less 

iteration time will help us to reduce the training time to half. In our work, it takes 

4200 iterations to complete the pre-training. The computation is faster due to our 

unified Pyramid Point Network which uses a pyramid structure instead of a U 

structure. We already have discussed the shortcomings of the U structure which 

is max pooling and subsampling of feature layers. The pyramid structure does not 

have any residual block and it can view the feature at different levels. 

 

5.5 Fine-tuning on Semantic Segmentation 
  

The performance of our pipeline on the S3DIS dataset is compared with another 

state-of-the-art method [3]. We used the same training setting for both pipelines 

due to a lack of resources. We have quantitatively presented this comparison in 

table 4. 

 

 

Method 

 

mIOU 

 

mAP 

 

mAcc 

 

Precision Score 

 

Iteration 

Time 

Contrastive 

Scene 

Context [3] 

68.429 

 

82.202 74.721 82.552 4.7(Sec) 

Our 68.076 82.402 74.514 87.718 

 (+4.36) 

2.2(Sec) 

(+53.1%) 

 

Table 4  Semantic Segmentation on S3DIS. Our model is achieving the same result as the 

state-of-the-art method but 53% faster. 

 

If we look at the results in Table 4 then in terms of time, our network is 53.1% 

faster in a single iteration which is a huge improvement in the training time, and 
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this is half of the training time as well as in validation compared to the state-of-

the-art method [3]. We achieve the same results but faster. The detail of semantic 

segmentation class-wise is shown in Appendix. This improvement will save a lot 

of training time in the supervised fine-tuning semantic segmentation by using 

S3DIS [6]  large-scale dataset, our pipeline performs better in Precision Score 

which is the ratio between true positive and true negative., We perform the 

validation on Area 5 which is the Fold 1 Test and if look at the per-category IOU 

performance, our method is performing better than most of the state-of-the-art 

methods.  

 

 

 

The graphs of semantic loss, precision score, validation loss, and mIOU are below 

which shows that training needs a total of 60k iteration and at 40k the curve gets 

smooth. In the original paper on Contrastive Scene Context [3], they train their 

 

Figure 11    Semantic Loss. This is our semantic 

loss in training. This figure shows that the 

training loss curve gets smoother after the 40k 

iteration. 

 

 

Figure 12    Precision score. This graph 

represents the precision score in training. 

 

Figure 13     Validation Loss. This is our 

validation loss and this also gets smoother after 

40k iterations 

 

 

Figure 14 mIOU. This graph manifests the 

mIOU in validation. 
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model on 8 GPU with 48 batch size and they get the 72.2% mIOU. But due to a 

lack of hardware, we have to train on a single GPU with a 16-batch size so we can 

compare the efficiency of our work. 

5.6 Fine-tuning on Instance Segmentation 
  

We also perform instance segmentation in our work and the performance of our 

pipeline on the S3DIS dataset is compared with another state-of-the-art method 

[3]. We used the same training setting for both pipelines for comparison. We have 

quantitatively presented this comparison in table 6. In the instance segmentation, 

our method is once again time efficient and reduces the training time to more than 

half. The original paper on Contrastive Scene Context [3] achieves the 63.4% 

mAP50 using the 8 GPU and 48 batch size in instance segmentation. For the 

comparison, we train both models using a single GPU with 16 batch size. If we 

look at Figure 15, we can see that a total of 15k iterations are enough for the fine-

tuning of instance segmentation. 

 

 

Method 

 

mIOU 

 

mAP 

 

mAcc 

 

Precision Score 

 

Iteration 

Time 

Contrastive 

Scene 

Context [3] 

69.461 84.912 76.444 89.886 4.4 

Our 67.552 83.808 74.878 89.436 2.1 (+53.3%) 

  

Table 5  Instance Segmentation on S3DIS Dataset. This table compares our method with 

state-of-the-art. 

 

The average precision (AP) is also compared with the Contrastive Scene Context 

(CSC) [3] with ours. Our method is surprisingly time efficient in all cases. We 
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Method 

 

AP 

 

AP@50% 

 

AP@25% 

CSC[3] 0.457 0.589 0.679 

Our 0.418 0.578 0.678 

   

Table 6  Average Precision in Instance Segmentation on S3DIS  [6] dataset. 

 

performs the AP50 as well as AP25. The AP50 means that we are calculating the 

AP with the IoU threshold of 50%, and the mAP is the average of all AP. 

 

 

 

 

Figure 15     Training Loss. This is our training 

loss for instance segmentation and a total of 15k 

iterations are enough for good training. 

 

 

 

Figure 16   Precision Score 

 

 

 

 

Figure 17    Validation Loss. This is the 

validation loss for a total of 15k iterations 

 

 

 

Figure 18     mIOU. This curve represents the 

mean Intersection over Union (mIOU). 
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Figure 19  mAP 50 This represents the mAP50 of our model and which shows the AP value at 50% 

IoU threshold  
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Chapter 6 

Conclusion & Future Work  
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This chapter summarizes the contribution of this research and discusses the 

possible future work for the unsupervised pre-training with the supervised 

downstream tasks. 

 

6.1 Concluding Remarks 
 

Unsupervised pre-training and supervised fine-tuning on 3D point clouds is still 

new and challenging due to the scale and annotation of the large 3D data. And 

this can be a real obstacle for transfer learning to boost performance. Few works 

have been done to tackle this problem. However, it is important that to boost the 

performance, good feature learning is important along with the spatial context of 

3D data because the spatial context is important in segmentation tasks. we took a 

step forward and provide a pipeline and our method has successfully provided an 

architecture of unsupervised pre-training which encodes the spatial information 

too and further downstream fine-tuned tasks which are faster than the recent 

works. This implementation is better than many existing works. The results are 

provided in tabular form. There is also a comparison with similar approaches. The 

results shown in chapter 5 show that our pipeline has performed well and fast both 

in the ScanNetV2 [4] source dataset used in pre-training and the S3DIS [6] target 

dataset used in downstream tasks (semantic segmentation and instance 

segmentation). Our method almost reduced the pre-training time and fine-tuning 

on different downstream tasks to half achieving the same results. 

 

6.2 Future Work Recommendations 

 
In the future, this methodology can be improved and optimized by updating the 

Minkowski Engine [7] which is being used for sparse convolution further for the 

real-time application for faster 3D scene understanding without losing important 

scene information. Another possible future work is that can adopt efficient scene 

learning. As we know that annotating the point cloud is expensive work. So 
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instead of using all scenes, downstream tasks like instance segmentation and 

semantic segmentation can use a few points or few labels with the maximum 

performance. The existing real-world applications that are based on semantic 

segmentation and instance segmentation can benefit from this methodology to 

improve their performance.  
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Appendix A 

Appendix 
 

 

 
Method 

 
Clutter 

 
Beam 

 
board 

 
bkcase 

 
Ceiling 

 
Chair 

 
Clmn 

 
Door 

 
floor 

 
sofa 

 
Tbl 

 
wall 

 
windw 

 
mIOU 

PointNet
[8] 

33.22 0.05 26.38 40.28 88.80 52.6 3.92 10.7 97.3 5.85 58.93 69.8 46.26 41.09 

PointCN
N [16] 

56.74 0.00 62.05 66.67 92.31 80.5 17.6 62.0 98.2 31.6 74.39 79.4 22.77 65.39 

PC[2] 62.32 0.11 81.49 74.66 93.26 91.5 45.9 67.8 98.6 78.2 80.09 85.5 54.41 70.32 

BAAFNe
t[27] 

57.20 0.00 68.70 70.70 92.90 87.5 23.1 69.4 97.9 61.4 78.50 82.3 65.50 65.40 

CSC [3] 58.70 0.00 81.09 72.33 94.38 88.0 27.3 76.8 98.6 73.2 81.31 85.3 52.31 68.42 

Our 57.94 0.000 77.21 72.59 94.39 89.2 35.6 71.3 98.5 69.2 78.82 84.1 55.86 68.07 

 

Table 7  Stanford Area 5 Test (Fold 1). Per-category IOU performance over 13 classes 

 

 

Table 8  Instance Segmentation on Stanford Area 5 Test [6]  mAP@0.5 over 11 classes. 
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Table 

 
wall 

 
window 

 
Avg 

CSC 89.4 
 

31.5 
 

59.6 
 

90.1 
 

35.3 
 

77.8 
 

80.4 
 

72.7 
 

31.5 
 

69.1 
 

69.0 
 

58.9 
 

Our 82.4 
 

33.9 
 

53.0 
 

84.2 
 

37.3 
 

73.7 
 

92.8 
 

63.6 
 

37.1 
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74.2 
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