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 Abstract 

The objective is to generate household electricity load-profiles by predicting device-wise 

electricity usage patterns using the time-series data, to trace the disutility of electricity. Further, 

the emphasis lies on how the socio-economic parameters of a household can combine with the 

time-series data to aid in better prediction. This is a comparative study representing a bottom-up 

model, with input granularity set to 10-min cycle power of 5 everyday household devices along 

with their associated timestamps as the building blocks and predicts, whether a device would be 

switched on or off at a given point in time.  

The model is trained and validated on REFIT dataset, comprising of 20 houses along with the 

socio-economic features of each house. For comparison purpose, two datasets are created, with 

and without the socio-economic parameters. Results point towards the impact of socio-economic 

features and how they improved the prediction accuracy by a fine margin for each device, leading 

towards promising high-resolution electricity load profiles. Using the socio-economic features, we 

were able to predict the state of a device up to an accuracy of 97%, whereas without these features 

the accuracy was 76%.   

 

Keywords: Electricity Load Profiles, Building Energy Models, Socio-economic Features, 

Granularity, Residential Data
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Chapter 1 

1. Introduction 

1.1. Introduction  

As the urbanization tends to drastically grow, we witness an exponential increase in the utilization 

of electricity. There are abundant literature references that point towards a positive correlation 

between growth and electricity consumption [1]. Electricity is the building block of development 

and economic progress within a country. It is the major driving factor for goods manufacturing 

and enabling capital and labor.  

Shortage of electricity is one of the key effectors in bringing down a country’s economy, hence 

causing precipitated growth [2][3][4][5] [6][7]. Studies like [8][9][10][11] have attributed shortage 

in electricity supply in developing countries to either poor infrastructures or low-income level. 

However, to a large extent, it is believed that environmental and energy policy design depends on 

the understanding this intermittent link [12]. Another issue that arises here to meet the rising 

demand, is the increased generation of electricity by means of coal and other fossil fuels which 

has led to a huge emission of carbon in the atmosphere leaving behind a horrendous impact [13]. 

Controlling the situation before it goes out of hand is the utmost need of the hour by taking one 

step at a time. 

To understand what a perpetual catalyst in this problem could be, our focus lies in determining 

how residential sector is contributing towards electricity wastage leading to its shortage. Since it 

is one of the key sectors when it comes to consumption [14]. 

According to the literature, around one third of the total worldwide electricity is being consumed 

by the residential buildings, in figures this consumption goes from 27% to as high as 43% 

sometimes [15] and this demand keeps growing. The exponential growth that we witness in this 

trend is credited to the increased households because of the blooming rise in urbanization and 

because of the increase in the household appliances which attribute to an increased human comfort. 

These high living standards come at a cost of increased consumption and causing a prominent peak 

in the residential electricity consumption [13].  
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1.2. Electricity Consumption Data with Smart Meters 

With the introduction of smart meters gradually replacing the traditional ones, the key advantage 

that we have earned is that it can transfer the consumption information back to a data processing 

system [16]. This provides us with sufficient data that can be used to analyze the patterns of overall 

household consumption and in a long run disintegrate the total consumption and see how 

individual applications are being used. All these analyses can lead us towards improving the power 

utilization mechanism. And moving a step further from analyses this data can be leveraged and 

combined with multiple signal processing techniques from domains like stochastic analysis and 

artificial intelligence to further enhance the building energy models (BEMs). These reasons have 

made the smart meter technology ever so popular and their installation around the world has gotten 

increasingly high. Based on rough stats from 2016 around 70 million smart meters were installed 

across the USA and around 96 million across China [17].  

1.2.1. Smart Meters in Pakistan 

Pakistan despite being an under-developed country with many issues in hand, has started the 

installation of smart meters as well, to avoid the electricity demand issues by controlling the overall 

shortage [18]. It is the need of the hour since in the recent years, the country has been on the edge 

with a shortage of 6000 MW electricity, causing a load-shedding of 10-14 hours in both the urban 

and the rural areas. Based on relatively recent statistics the demand of electricity in the country is 

around 25000 MW, however, the generation is only 18,900 MW. [19]. The mere installation of 

smart meters is not enough, a compilation of the data that can be further used to make some 

valuable prediction is required [20]. These kinds of datasets are hardly available for the under-

developed countries, especially for the ones falling under the South Asian region. The ones that 

are available are small and provide insufficient data to analyze the situation and build a worthy 

solution to model the consumption behaviors [21]. However, in 2019 an effort was made to create 

PRECON (Pakistan Residential Electricity Consumption) dataset, it is considered large enough to 

provide details and perform research in the residential electricity consumption domain. [22].  

1.3. Building Energy Models (BEMs) 

As the data sources of real-time electricity increase, the opportunity to utilize them and improve 

the current systems becomes a necessity. The key focus is to find the consumption patterns with 

high prediction accuracy, such that these load profiles can be used to enhance the current BEMs 



3 

 

and help in investigating the energy-saving potential of the buildings. Majorly there are two kinds 

of building electricity consumption behaviors, the ‘basic’ and the ‘variable’ behavior. Where basic 

is the behavior that depends on the area of the building while, variable behavior is dependent upon 

the occupancy [15]. The basic behavior standalone is insufficient to provide worthy insights on 

the electricity consumption patterns because, the pattern hardly relies on the area. As the person 

per building tends the grow, with each occupant carrying an independent behavior through which 

they consume the electricity, accounting the variable behavior when predicting the consumption 

patterns is essential.  

Mastering the behavior of the occupants is the key to generate load profiles that can make 

significant contribution in improving the BEMs and help us in understanding the performance gap 

that exists in building design and operation. The energy consumption magnitude of a building is 

highly influenced by its design and the available technologies which in turn are associated with 

the social standards and behavioral characteristics of its occupants. As per research, single houses 

similar in size, location and envelope could have an energy consumption difference as large as 

300% which is majorly because of the occupant behavior. As technology advances people focus 

solely on their comforts forgetting the deadly impact it holds on to the environment. Evidence 

proves that occupants residing in fully automated building tend to change the controls by manually 

altering them to attain the level of comfort they are aiming for [23]. To fully capture the occupant 

behavior, the key parameters to be recorded as input are the number of occupants residing, the 

appliances installed, the plug load schedules [24]. It is to be noted however, that detailed 

investigation of the occupants over a long period of time is not consider appropriate as it can harm 

the occupant’s privacy [15].  

1.3.1. Approaches for Developing BEMs 

After covering the problem and its possible solution, comes the decision on how the model for 

generating and predicting the electric load profile should be developed. One the major challenges 

is the non-linearity that exists amongst the load profiles; this can be triggered by a lot of factors 

including the occupancy behavior, the insulation of the building, the outdoor environmental 

conditions and the equipment that is installed [25]. Now, the literature till date points out towards 

two major approaches to deal with problem: modeling the probabilistic behavior of the occupants 

and modeling their deterministic behaviors. However, over the years better predictions have been 
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attributed to the probabilistic modeling which logically makes sense, since the use of electricity in 

a residential building is completely dependent on the occupants and that behavior tends to be 

random, so it is important to incorporate that randomness in the model [26]. Going further, the 

probabilistic models can cover the factors like variability and diversity in an occupant’s behavior 

by using empirical statistical data on which we estimate the probability of when a certain event 

will occur.  

We utilize probabilistic modeling through machine learning to compare how the addition of socio-

economic parameters of the occupants, to the regular time-series energy consumption data can 

enhance the prediction results [27][28]. The finalized load-profiles define the device-wise 

consumption pattern of different households. Based on the randomness of occupant behavior we 

discover how are the multiple appliances in a household being used, which combinations do the 

occupants prefer, what is the usage like during the peak load hours [29] and what we can infer 

from the predicted load profiles. For this purpose, we have chosen specific datasets that incorporate 

not only the total electricity consumption but the device-wise consumption as well. And provides 

the relevant socio-economic parameters like the numbers of occupants, size of the household, 

number of rooms, number of appliances.   

1.4. Research Objectives 

Following are the major objectives of this study 

1. Building electricity load profiles based on device-wise consumption using the time-

series data only. 

2. Building electricity load profiles based on device-wise consumption using the time-

series data and integrating socio-economic parameters with it. 

3. Comparing, how the socio-economic parameters can contribute towards making better 

predictions. 

1.5. Overview of the Proposed Approach 

To accomplish the above-mentioned research objectives, we utilize probabilistic modeling through 

machine learning. First step is to generate the electricity load profiles only based on the historic 

data and then compare how the addition of socio-economic parameters of the occupants [30], to 

the regular historic, time-series energy consumption data can enhance the prediction results. The 

finalized load-profiles define the device-wise consumption pattern of different households. Based 
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on the randomness of occupant behavior, we discover how the multiple appliances in a household 

are being used, which combinations do the occupants prefer, what is the usage like during the peak 

load hours and what we can infer from the predicted load profiles. For this purpose, we have chosen 

specific datasets that incorporate not only the total electricity consumption, but the device-wise 

consumption as well, and provides the relevant socio-economic parameters like the numbers of 

occupants, size of the household, number of rooms, and number of appliances.   

1.6. Structure of Thesis 

The rest of this thesis is organized as follows: 

• Chapter 1: Research problem is introduced in the beginning of this section followed by 

main contributions of this work. 

• Chapter 2: of the thesis presents detailed literature review. Analysis of other approaches 

from different domains to solve the similar research problem is summarized and 

discussed with shortcomings of other approaches. It will be shown with the literature 

review chapter that proposed work has not been done before and it will be useful to 

work in this area with proposed methodology. 

• Chapter 3: Presents the methodology of the proposed Household Electricity Load 

Profile Generation System. The methodology contains the description of the detailed 

analysis performed on all the selected datasets, the final granularities selected, how the 

relation with socio-economic parameters was built. And finally, brief overview of 

machine learning models is presented. 

• Chapter 4: Contains the results of this research work. The results are computed for 

individual appliances selected, their comparisons for both historic and historic plus 

socio-economic parameters are presented. 

• Chapter 5: Presents the discussion of results, comparison with related techniques and 

limitations of proposed approach. 

• Chapter 6: Presents the conclusion of the research and possible dimensions of future 

work. 
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Chapter 2 

2. Literature Review 

2.1. Chapter Overview 

In this chapter, we discuss the related literature to highlight the work that has already been 

contributed towards the research in electricity load profile generation. The discussion of the 

previous literature helps us in justifying the proposed solution, pointing out the gaps that our 

research can fill. 

2.2. Background 

We have classified the electricity load profile generation systems based on the data sources that 

are used to generate the load profiles [31]. The literature being discussed classifies electricity load 

profiles that are generated using the historic data and those generated using socio-economic 

parameters along with the historic data. The three major techniques applied when using both the 

data sources are Machine Learning, Deep Learning and Data Mining based techniques.  

2.2.1. Electric Load Profiles Based on Historic Data 

Time domain analysis is one of the most popular methods of generating electricity load profiles 

using machine or deep learning techniques. The paper, “Characterizing patterns and variability of 

building electric load profiles in time and frequency domains”, highlights how buildings are a 

major electricity consumer, leaving behind a prominent carbon footprint [24]. And, how Building 

Energy Model (BEM) can play a significant part in designing and operating buildings that are 

energy efficient, helping in maintaining predictive controls which in turn helps in energy system 

planning. They initially signify the importance of advanced metering infrastructure as it leads 

towards the generation of a new data source, that can help in building electric load profiles at a 

higher temporal resolution. The authors point towards brighter side of improved electricity load 

profiles is that they can contribute towards an enhanced building energy model (BEM). The major 

advantage of identifying these characteristics is that they can assist in detecting changes in the 

electricity demand of a building [32], which could’ve occurred due to operational issues or some 

faults in the devices.  
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The paper focuses on using the new data source to propose a two-path approach, i.e., time-domain 

analysis and frequency domain analysis, to analyze building electricity load profiles with high 

temporal resolution. The former and more commonly used approach, i.e., time domain analysis 

can help us in extracting the core parameters that contribute towards characterizing the shape of 

the load, for example, the peaking load-ratio and the high-rise time. While, on the other hand, the 

frequency domain analysis, covers the part of identifying the major periodic electricity fluctuations 

and measuring the overall load variability.  

To work around the proposed idea, the authors implemented and evaluated both the forth 

mentioned approaches, using 1 whole year’s data that was recorded through a smart meter at an 

interval of 15 minutes. This was the data of 188 commercial buildings in North California. The 

results of both the approaches as per the results remain consistent and complement each other 

while representing full dynamics of the load profile. The final conclusions drawn from this study 

are that these analyses enhance the BEM’s performance by providing highly realistic building 

operation plans and utilizing the developed variability metrics to match the simulated electricity 

load profiles against the real ones.   

The paper “A data mining-based framework for the identification of daily electricity usage patterns 

and anomaly detection in building electricity consumption data”, kicks off by claiming how the 

development in the acquisition of the smart meter data has opened a path to new research in the 

electricity sector by making a large amount of real-time electricity consumption data available 

[33]. This data helps in electricity sustainability by finding the patterns of electricity usage by 

buildings, which can assist in improving building energy management. However, the authors point 

out that majority of the previous studies have focused on using this data to generate electricity 

usage patterns but have kept the work limited in terms of finding the hidden insights and 

applications of the pattern.  

To break the limitation, the authors have proposed a framework that uses data mining techniques 

to find the typical electricity load patterns (TELPs) and then use these patterns to unfold the hidden 

insights. The framework is pipelined with three major tasks, i.e., data preparation, using various 

data mining techniques to find the electricity load pattern and finding information from within the 

discovered pattern. The authors have proposed an advanced clustering approach, consisting of a 

two-step clustering analysis to discover TELPs for individual buildings. To keep the 
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dimensionality of the load profile reduced, before clustering 5 statistical parameters are chosen 

that represents the shape of the load profile. In the two-part clustering, the first part is to detect the 

outliers from the daily electricity load profiles (DELPs) by using Density-based Spatial Clustering 

Application with Noise (DBSCAN). This clustering algorithm helps in addressing the quality 

issues in the electricity consumption data, that may have been risen because of the energy 

consumption monitoring platforms. The second phase of the approach enables the grouping of all 

the generated DELPs so that TELPs can be extracted, it uses k-means algorithm for the purpose. 

To verify the authenticity of the two-phase clustering a comparison is made with two single-step 

clustering approaches. Moving further, to gain insights from the extracted pattern Classification 

and Regression Tree (CART) algorithm is used. It also assists in improving the understanding 

gained from the clustering technique. The data used to analyze the performance of the framework 

is the time-series electricity consumption data of three commercial buildings in Chongqing, China. 

The results have shown an effectiveness and the extracted knowledge from the pattern is believed 

to help with early fault detection of anomalous electric load profiles. This framework can act as an 

electricity management framework for building managers providing them with understanding 

related to the usage pattern and the anomalies in it. 

The paper “Applying load profiles propagation to machine learning based electrical energy 

forecasting” emphasizes on how electricity production is both an environmental and an economical 

challenge and that an optimal control on its production is the need of the hour [34]. To develop 

efficient forecasting systems [35][36], it is crucial that we must model the electrical energy 

correctly. To meet this need, authors introduce a novel approach to load forecasting that utilizes 

the load profiles (LPs). The study operates around Algeria, the first thing the paper covers is to 

analyze the power consumption in Algeria so they can learn about the various factors that effect 

it. Following the analysis, the hourly temperature profiles are used to apply the seasonal 

fluctuations. They use annual, weekly, and daily as the three levels of load-profile propagation to 

perform load-profile based forecasting. Artificial intelligence is used as the base method by the 

authors for the forecasting. They have utilized multiple AI techniques for developing both short 

and mid-term forecasting models. They have pioneered in using a two-dimensional Convolutional 

Neural Network (CNN) for the purpose of load foresting. The results the authors were able to get 

using the artificial intelligence (AI)based technique 2-D CNN for the load-profile based model 

was significantly high with MAPE being equal to 0.80%, RMSE being 75.57 MW, and the 
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Willmott’s Index (WI) = 0.99. The results for the load profile propagation were MAPE being equal 

to 3.86%, RMSE being 372.68 MW and WI= 0.95. Comparison clearly shows that load-profile 

based AI model has higher tendency to produce better results.  

The paper, “How to model European electricity load profiles using artificial neural networks” 

targets on generating synthetic yearly electricity load profiles for multiple European countries by 

utilizing the weather data, along with the electricity consumption data which is considered at a 

granularity of one hour [37]. To do so, they have utilized artificial neural networks (ANN), so that 

the long-term forecasting can be accomplished. For the training purpose they have utilized the 

historic electricity consumption data of Germany ranging from years 2006 to 2015. The paper 

majorly focuses on the utility of machine learning and how it can improve the generation of 

electricity load profiles. 

The ANN is structured in a way that it has 5 hidden layers and 1024 hidden nodes on each layer. 

The key parameters fed to the model include the historic data that is stored in a calendrical manner, 

the peak loads occurring annually and the weather data. The proposed model is evaluated by 

comparing it against the current best model for generating synthetic electricity load profiles 

published by European Network of Transmission System Operators (entso-e). The year 2016 was 

selected to make the comparisons and the comparison metric was mean absolute percentage error, 

the proposed model took a precedence on the state-of-the-art approach by scoring an error of 2.8% 

as compared to 4.8%. Later, they have generated forecasts for Germany, Spain, France, and 

Sweden by utilizing the synthetic load forecasts that they have generated for the year 2025.  

Another interesting fact is that they have used their proposed research to highlight the importance 

that the external temperature has on the predicted load profile. The authors believe that one of the 

major uses of these electric load profiles is that they will enhance the overall prediction accuracies 

of the electricity forecasts.  

The paper, “Watt’s up at Home? Smart Meter Data Analytics from a Consumer-Centric 

Perspective” discusses how smart meters have the advantage of transferring consumption data to 

remote computer systems rather than traditional metering devices, which gives us the benefit of 

collecting a new dataset [16]. The data collected by these devices does not only help in the 

calculation of a customer's electricity bill, but also serves for a variety of novel purposes. While 

many of these services aim to improve the overall operation of the power grid, most of them are 
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tailored specifically to address these needs. A prominent use case would be how forecasting the 

energy consumption of a household, or the photovoltaic production can help in improving the 

power generation schedule of a power-grid. Analyzing the consumption patterns can lead towards 

detection of the anomalies which can also serve as indicators of electricity theft and warrant 

investigation. The authors emphasize on the fact that even though electricity consumption is 

something that is completely dependent on the user pattern but, the research in the sector usually 

benefits the grid more generally than the user. Keeping these stats in mind the authors use this 

research to review the range of services that can be used to benefit the end-users. Their research 

focuses on exploring the state-of-the-art methods and targets the data communication and 

processing gaps so that this research can be molded into becoming a prospective solution of a 

consumer-centric electricity problem. The major hurdles while designing a consumer-centric 

system are usually; lack of standardization in the data, algorithms that provide mediocre results 

and the privacy concerns, the authors believe that advancement in these ideas can lead towards a 

huge development shift.  

The paper “Day-Ahead Short-Term Load Forecasting for Holidays Based on Modification of 

Similar Days' Load Profiles” emphasizes on the importance of Short-Term Load Forecasting 

(STLF) and how it is getting harder every day with the introduction of more and more distributed 

resources in the power system [38]. The most common example of these distributed resources are 

behind-the-meter (BTM) PV resources that are added to the power systems. The authors in this 

study, majorly focus on overcoming the issues that are faced while performing short-term load 

forecasting by creating a framework for STLF for holidays only. For this, they have considered 

four major factors i.e., datetime (calendar), weather, trend, and the BTM-PV (which is believed to 

be a major reason for the disturbance in the STLF values), these factors play a prominent role in 

the overall generation of the electricity load profiles. 

The first thing in the framework is to pair the holiday that is being targeted with all its 

corresponding days in the history, this enables the addition of the calendar factor, all these days 

that are paired together are labeled as similar days. Moving on, to incorporate the remaining three 

factors the difference of days between the target holiday and the historic holidays is computed and 

the effect that they reflect on the load difference (difference with the factors induced) is then 
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quantified. The next process is to generate the load profile on each of the generated pairs and once 

the load profiles are generated, they are then combined for the entire holiday.  

To test the working of this framework, this solution was implemented on Korean National Holiday 

case study, the output of this test was compared with the performance of the conventional model. 

The output results clearly point out how the proposed framework outperforms the conventional 

system. The results point out that this model can be implemented for the STLF of the holidays and 

can help in improving the overall accuracy of the forecasting.  

2.2.2. Electricity Load Profiles Based on Socio-Economic Parameters 

In paper “Estimating hourly lighting load profiles of rural households in East Africa applying a 

data-driven characterization of occupant behavior and lighting devices ownership” the authors 

develop a way of estimating the electricity consumption patterns in rural East-Africa where, due 

to increased inflation and lack of resources people mostly rely on electricity only for using the 

light-based devices, through literature it was found that in an average East-African household more 

than 50% of the total electricity consumption is credited to the lightening devices [39]. Now, 

developing a model to fetch the electricity consumption pattern in a rural area is a tedious task 

because of the lack of data availability and the model complexity. Since, based on such small data 

computing the load profiles can be challenging with increased chances of error-prone results.  

The research in the current paper is built around these problems, to tackle them through a 

perspective solution. Since the easy availability is only of the lightening data, so using this small 

data as input, the authors have developed a methodology in which they generate the hourly 

lightening load profiles of the rural households in East-Africa. For the preprocessing of the data, 

to enhance the overall result quality, the authors have integrated weather data and the satellite 

imagery with the household lightening data. After the integration, they have used machine learning 

as part of the methodology to predict the behavior of the occupants based on their indoor-outdoor 

lamp usage. Based on this approach, the average prediction accuracy acquired by the authors is 

80%. 13 households in Kenya have been measured manually, so that validation data is available 

to validate the performance of the model once the light functions have been applied. The overall 

testing of the model shows that it can generate the rural household electricity consumption load 

profiles with an average normal root mean squared error of 0.7%, which is less as compared to the 

error values obtained through simulation-based approaches that use the on-site data for predictions. 
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To conclude the research and show a demonstration of the application of the research, the authors 

have computed 1 month’s load profiles of the household and projected them over the households 

in Kenya to explore the real-time outcomes.  

The paper “Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent 

Neural Network” points towards the importance of electricity load forecasting by stating how they 

contribute towards better energy management, total budgeting and in building an improved 

infrastructure, this is the reason why advanced research is being carried out in the sector [17]. Over 

the decades, as we witness a blooming increase in the installments of smart meters and other 

consumption recording sensors in buildings and even in individual households, we get an 

opportunity to make the sensor-based forecasting possible.  

The key focus of the authors is to utilize the deep learning architecture to accurately utilize the 

sensor data and make the forecasting. According to literature, the RNNs (Recurrent Neural 

Networks) are highly popular and accurate for the forecasting purpose however, one set-back of 

these models are that they are trained offline. Their learning is done based on the pre-collected 

data, losing the opportunity to train on the freshly arriving data. Another major issue is that the 

RNNs are not made to handle the concept drift, this can cause an overall negative effect on the 

forecasting for example, if the load has shifted due to the installation of a new device. If these 

issues are tackled, RNN becomes one of the best deep learning architectures for forecasting. This 

paper majorly focuses on targeting these issues, by proposing an Online-Adaptive RNN. As the 

name implies, this architecture incorporates the online learning within the traditional RNN, making 

it capable of learning new data as it arrives and changing along with the new patterns.  

The authors have modified the traditional RNN such that they utilize it for the time dependency 

factor and to incorporate the online learning they have made changes such that the model weights 

are updated as per the new incoming data. The model performance is continuously monitored, if 

at any point the accuracy starts to face degradation, the online training is activated and the model 

starts learning on the incoming data, hence upgrading the hyperparameters to meet the new need. 

To test the performance of the model, the authors have considered 5 households, the results clearly 

point out an improved forecasting accuracy as compared to the offline RNN and the regular long-

short term memory networks. It also takes precedence on 5 other online-training models. In terms 

of training time, another interesting and wining fact about the proposed model is that online 
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training only takes fraction of the time that the model would take when it is trained explicitly 

offline.  

The paper “Day-Ahead Short-Term Load Forecasting for Holidays Based on Modification of 

Similar Days' Load Profiles” emphasizes on the importance of Short-Term Load Forecasting 

(STLF) and how it is getting harder every day with the introduction of more and more distributed 

resources in the power system [38]. The most common example of these distributed resources are 

behind-the-meter (BTM) PV resources that are added to the power systems. The authors in this 

study, majorly focus on overcoming the issues that are faced while performing short-term load 

forecasting by creating a framework for STLF for holidays only. For this, they have considered 

four major factors i.e., datetime (calendar), weather, trend, and the BTM-PV (which is believed to 

be a major reason for the disturbance in the STLF values), these factors play a prominent role in 

the overall generation of the electricity load profiles. 

The first thing in the framework is to pair the holiday that is being targeted with all its 

corresponding days in the history, this enables the addition of the calendar factor, all these days 

that are paired together are labeled as similar days. Moving on, to incorporate the remaining three 

factors the difference of days between the target holiday and the historic holidays is computed and 

the effect that they reflect on the load difference (difference with the factors induced) is then 

quantified. The next process is to generate the load profile on each of the generated pairs and once 

the load profiles are generated, they are then combined for the entire holiday.  

To test the working of this framework, this solution was implemented on Korean National Holiday 

case study, the output of this test was compared with the performance of the conventional model. 

The output results clearly point out how the proposed framework outperforms the conventional 

system. The results point out that this model can be implemented for the STLF of the holidays and 

can help in improving the overall accuracy of the forecasting.  

The paper, “Modeling and analysis of the electricity consumption profile of the residential sector 

in Spain” focus on generating electricity load profiles for domestic households in Spain [14]. They 

point out, how detecting the pattern of electricity consumption in residential sector is an extremely 

tedious task, given the variations in the behavior of the residential consumers. Residential sectors 

come with a lot of diversity that is reflected in terms of the household sizes, the electronic devices, 

location of the house and most importantly the variable behaviors of the residents in the household, 
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who define the consumption patterns. Considering all these factors, computing the electricity 

consumption profiles in residential sector is a highly expensive task.  

To avoid the high costs, in this paper, a simulation model is created that utilizes a bottom-up 

stochastic approach to compute the electricity load profiles in residential sector, using the data 

provided by Survey of Time Employment of the National Institute of Statistics of Spain (INE). 

The simulated algorithm generates an average electricity consumption load profile based on two 

factors: number of people residing in the household and the current day of the week.  

The results gained through the simulated algorithm are all kept separately for each household for 

the sake of being analyzed separately. The authors have generated electricity load profiles so they 

can be utilized as a baseline for initiating multiple other research tracks. They specifically use 

these results to focus on self-consumption, how individual households can improve or stabilize 

their consumption behavior based on the consumption pattern of their house [40], [41]. Other than 

this, the study can become a perspective baseline for targeting energy-efficiency problems, 

demand-side management and for computing new energy policies. 

The paper “Generating realistic building electrical load profiles through the Generative 

Adversarial Network (GAN)”, explains how the electricity load profile of a building can provide 

a fulfilling view of the electric utilization in that building [42]. They also provide a thorough 

understanding of energy efficiency in a building and what is the measure of demand side flexibility. 

The behavior of a real-time building is both dynamic and stochastic and the current approach to 

generating the electric load profiles is slow and unable to capture this behavior properly. Another 

major issue is that some of the approaches used to generate the load profiles cross the line of 

personal security.  

The authors have relied purely on machine learning to generate realistic electricity load profiles, 

while attempting to avoid the issues mentioned before. They have utilized Generative Adversarial 

Networks (GANs), which is a powerful machine learning algorithm, capable of extracting the 

hidden probability distributions by using the data alone. The author’s proposed work is composed 

of three major steps; bringing the daily 24-hour load profiles in a normalized form, then using the 

K-means algorithm they cluster all the load-profiles. Finally, the apply GANs on each cluster to 

generate new daily load-profiles for each of the cluster. To test the pipeline, they have used the 

Building Data Genome Project data, which is an open-source database available. For the validation 
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purpose, the authors have made a comparison between the new and the real load profiles by 

computing the differences in mean, standard deviation, and the overall distribution of the key 

parameters of both load profiles. They have also utilized KL divergence and discovered that 

majority parameters of the new and real load profiles are within 0.3. 

Furthermore, the GANs proved helpful because they don’t only focus on capturing the general 

pattern but also the slight random variations that occur in a building’s load consumption. Overall, 

this approach is useful for generating the electric load profiles, verifying the other models used for 

generating load profiles, capture changes within load profiles and lastly it has ability to do all the 

above in an incognito manner, hence, avoiding any privacy breaches to the users. Thus, it enables 

a support for the research targeting energy efficiency.  

2.3. Conclusion and Comparative Summary 

The primary objective of this chapter is to explore, shortlist, and study the published research work 

in the domain of electricity load profile generation. The literature review discusses different tools 

and techniques proposed through research for better and efficient predictions. Table 2.1 

summarizes the comparison of state-of-the-art research. Research community has given great 

attention to the area of generating electricity load profiles for buildings in the past few years, 

however, it needs to be more closely observed in terms of individual devices by combining both 

historic electricity consumption data and the socio-economic parameters. 

Table 2.1: Side by side comparison of different electricity load profile generation strategies in the literature 

 Objective Historic 

Data 

Socio-

Economic 

Data 

Device-Wise 

Segregated 

Data 

Technique 

[24] Building electricity load 

profiles with high temporal 

resolution 

Yes No No Time and 

Frequency 

Domain Analysis 

[33] Generate a framework that 

can extract typical electricity 

load patterns for more useful 

insights 

Yes  No No DBSCAN, 

Classification and 

Regression Tree 
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[34] Effective load-forecasting 

approach using load profiles 

Yes No No 2D-Convolutional 

Neural Nets 

[37] Generating Annual 

electricity load profiles using 

AI 

Yes No No Artificial Neural 

Nets 

[16] Finding potential of smart-

meter data from user centric 

point of view. 

Yes  No No  

[39] Designing solutions for 

enhanced energy access in 

rural areas. 

Yes Yes Yes (only 

lighting devices) 

Cluster Analysis, 

Random Forest 

[17] Improving RNNs for 

improved load forecasting 

Yes No No Online Adaptive 

RNN 

[38] Framework that allows 

short-term load forecasting 

for consumption behaviors 

on holidays 

Yes No No Short Term Load 

Forecasting 

[14] Creating average load-

profiles for predicting daily 

electricity consumption 

patterns 

Yes Yes No Simulation with 

Bottom-up 

Stochastic 

Approach 

[42] Generating synthetic 

electricity load profiles using 

GANs 

Yes  Yes No K-means, GANs 
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Chapter 3 

3. Methodology 

In this chapter, we discuss the strategies that we have adapted to formulate the solution of our 

given research problem i.e., building electricity load profiles for residential buildings. Major focus 

will be on the data that we considered and used for the simulated solution, the analysis and the 

technicalities that have been used. 

The main target of the study is to generate electricity load profiles with improved prediction scores. 

To do this, we have defined the research objectives, as follows: 

1. Building electricity load profiles based on device-wise consumption using the historic data 

only. 

2. Building electricity load profiles based on device-wise consumption using the historic data 

and integrating socio-economic parameters with it. 

3. Comparing, how the socio-economic parameters can contribute towards making better 

predictions. 

Total energy consumption readings of a household are not enough to identify the pattern of how 

the residents within the accommodation are utilizing the energy resources and similarly the 

prediction values of total energy consumption don’t make much sense.  

The target of this research is to predict how the electricity is being consumed by the individual 

devices in a household. Our approach generates a pattern, an understanding of how residents are 

consuming electricity. For example, are the residents in a specific household using the washing 

machine and the air conditioning at the same time or are they using one at a time. The answers to 

such questions are further enhanced with the addition of socio-economic parameters. The size of 

the house, the number of rooms, number of people, answers why and when a specific device would 

be turned on or off.  

For generating a solution, we selected 4 different datasets, the first step was to analyze them in 

their raw form, to uncover any underlying insights, then we pre-processed the data and performed 

a post analysis. Once this is complete, we move towards the training of the data for which we have 

selected two different machine learning models and one deep learning model, for the sake of 
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comparison. We have selected multiple evaluation metrics to determine the performance of our 

models. Figure 3.1 provides a graphical representation of the pipeline used to generate household 

electricity load profiles.  

 

Figure 3.1: Pipeline to Generate Household electricity Load Profiles 

All the steps that serve as part of the methodology have been discussed in detail from here onward.  

3.1. Datasets  

The building unit of this research was the electricity consumption data of residential buildings. 

Though there are multiple publicly available datasets that could aid the research being done in the 

electricity sector but, the specificities that we require from the data had limited us to a few. We 

initially began with 4 different datasets  

1. REDD (Reference Energy Disaggregation Dataset) [43] 

2. PRECON (Pakistan Residential Electricity Consumption Data) [22] 

3. REFIT Electrical Load Measurements Dataset [44] 

4. Sky Electric Dataset (Publicly un-available) 

We choose a wider range of datasets to understand the underlying patterns that exists in electricity 

consumption data, how we can analyze and pre-process it in a way that we get the maximum 

information from it. Following is brief description of each dataset and the analysis performed under 

this research. 
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3.1.1. REDD  

Reference Energy Disaggregation Dataset [43] was the first data that we started processing. It is a 

large scale publicly available dataset that contains aggregated power usage data and the 

disaggregated data that is collected from each individual circuit of multiple households. The data 

is recorded for refrigerator, kettle, microwave, television, etc. The purpose of designing this dataset 

is to tackle the energy sustainability issues with assistance of machine and deep learning models. 

The task in mind while developing the dataset was to disaggregate the cumulative power usage of 

households into the device-wise consumption. But we utilize the data to understand how the 

historic data of a household can unveil important patterns presented by the electricity consumers.  

The dataset has been recorded based on two main types of electricity data:  

• High Frequency, current or voltage data from the two power mains. 

• Low frequency, current or voltage data which include data of both the mains and the 

individual circuits. 

An in-detail view of the dataset shows that the data has been recorded for 10 houses over a period 

of 119 days. For every monitored house the data has been collected for the electrical signal of the 

entire house at a frequency of 15kHz (adding current monitors on both power phases and voltage 

monitor on one phase), about 24 different individual devices in a household have been recorded; 

within the dataset they have been labeled by the name of the device they have been collected from. 

These devices have been recorded at a frequency of 0.5 Hz. 20 plug level monitors have also been 

recorded from each house at a frequency of 1 Hz, all these plug level logging devices have been 

grouped under a single circuit. After combining all these circuits there were a total of 268 

monitoring devices that enabled the generation of 1 Tb of raw data during the research period. 

3.1.1.1. Analysis of REDD 

We consider 6 houses from the dataset, with the electricity consumption duration recorded from 

2011-04 to 2011-05. For each house, the individual devices that have been recorded are different, 

hence the visualizations are different for each household. To get a clear understanding of the 

common everyday devices, we use the data from the first house and visualize the devices in an 

independent way.  
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3.1.1.1.1. Identification of Cold Appliances 

 

Figure 3.2: REDD House 1; Refrigerator Consumption Pattern with Respect to Oven 

 

 

Figure 3.3: REDD House 1; Refrigerator Consumption Pattern with Respect to Dishwasher 

 

 

Figure 3.4: REDD House 1; Refrigerator Consumption Pattern with Respect to Washer Dryer 
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Figure 3.5: REDD House 1; Lighting Device Consumption Pattern 

The first three figures point towards constant consumption of electricity by the refrigerator as we 

compare it against multiple high voltage electricity consumption devices. And the last figure points 

towards the consumption pattern of the lighting device. This allows us in categorizing the 

refrigerator and lighting devices as a cold appliance which are in a continuous state of 

consumption. We have plotted separate graphs because the consumption by power (in terms of 

Watts) of lighting devices is very small as compared to the refrigerator and hence the visualization 

is not clear.  

Since, we do not consider the cold appliances as part of this research, now, we see an overall 

pattern of consumption but, we remove the cold appliances.  

 

Figure 3.6: REDD House 1; Device-Wise Consumption Analysis 

We notice that in current raw data visualization it is hard to deduce the electricity consumption 

load profiles. 

To support the overall insights that we have gained from the analysis of house 1, we draw out a 

visualization for 4 houses, excluding all the cold appliances.  
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Figure 3.7: REDD House 2; Device-Wise Consumption Analysis 

 

Figure 3.8: REDD House 3; Device-Wise Consumption Analysis 

 

Figure 3.9: REDD House 4; Device-Wise Consumption Analysis 

Each house has a different set of parameters (the monitored devices), but we can notice that there 

is some distinction between the usage of the devices. All the devices visualized above are high 
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voltage devices, and from visualization we can tell that device like microwave has been used 

standalone in most of the cases.  

One of the major setbacks in REDD for us, was the inconsistency in the devices that were 

monitored from each house, to generate a load profile we require merging the data of all the houses 

so we can use it for the training purpose, for this we require at least 5 devices that are similar 

amongst all the houses. In addition, the data comes without the socio-economic parameters and 

the publicly available size of the data is rather limited. Hence, post this analysis we planned to 

proceed without considering REDD further for our current cause.  

3.1.2. PRECON 

Around 40% of the total electricity generated world-wide is consumed by the residential sector 

and hence, for taking energy efficient measures it is important to understand the behavior of the 

residing occupants. Data is a key for understanding the depth of a problem, but the region of South 

Asia and Pakistan in specific, has a very few, small publicly available datasets that are not enough 

to understand the underlying patterns of electricity consumption. PRECON (Pakistan’s Residential 

Electricity Consumption) is a dataset that has been specifically designed to target this issue [22].  

 

Figure 3.10: Data Collection Architecture for PRECON [22] 
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PRECON has been recorded for 42 Pakistani households at a granularity of 1 minute. The data has 

been recorded for the duration of 8 months, starting from 1st June 2018. Every 1440 rows in the 

data represent one single day, timestamp is used to keep the time record. The data is order in a way 

that the first column is always the timestamp, and the second column is always the total usage. 

The rest of the columns for each household differ, because the number of appliances vary from 

house to house.  

Other than the electricity consumption data, this dataset also comes with the socio-economic 

details of the households. They have recorded the total number of people that are living in a 

household, this attribute is further divided into number of adults, children, and elderly that are the 

residents. The demographics of the households i.e., the size of the household, total number of 

rooms; this attribute is further divided into the number of bedrooms, kitchens, drawing and living 

rooms, number of floors, height of the ceiling, the year in which the house was built, and the 

number of each electronic device in the household are also recorded. All these attributes are 

believed to have a positive correlation with the electricity consumption and can significantly 

contribute towards generating better household load profiles.  

3.1.2.1. Analysis of PRECON 

PRECON is a Pakistan-based dataset, it allows us to get an in depth understanding of how the 

Pakistani residential community is consuming electricity. For PRECON, the initial analysis will 

be displayed for only one house. The reason is that all the houses share same characteristics, similar 

devices, though the socio-economic values and the consumption patterns are different however, 

the initial insights can be captured from a single house.  

The analysis on REDD has already led us to confirm about the cold appliances and how they don’t 

influence much on the household electricity load profiles. However, as a confirmation that the cold 

appliances perform similar in Pakistan, (separate ethnic region) we will display the electricity 

consumption of refrigerator. PRECON, does not record the data of individual lighting device so, 

we are unable to capture the pattern for them. From the Figure 3.11 we can observe that for the 

entire duration for which the data has been recorded the consumption of refrigerator is constant.  
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Figure 3.11: Total Consumption Pattern of Refrigerator 

 

Figure 3.12: Total Consumption Pattern of the Individual Monitored Devices PRECON 

Figure 3.12 is a visualization of the monitored devices without considering the cold devices, the 

data does not offer a wide variety of devices that we can play with, however, it provides a very 

clear picture of consumption. The recorded values are of 3 different air-conditioners in a 

household, and we can easily see that the consumption of all three devices is done in the hotter 

temperature months (July, August, September, and some part of October). This gives us the insight 

that the electricity consumption pattern is strongly reliant upon the outdoor weather.  

This is a very broad picture, however, further ahead, we describe segmentation of the historic data 

based on different time windows and then establish a relationship between the socio-economic 

factors and the historical data. 

3.1.3. REFIT  

REFIT electrical load measurement data [44] is one of the biggest publicly available datasets that 

provides real-time electricity consumption data collected through smart meters from 20 different 
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houses in the UK over a period of two years. This dataset comprises of both historic and socio-

economic data, and other than the total electricity consumption, it also provides the monitored data 

of the appliances within the households.  

The data consists of 1,194,958,790 total readings and represents data that has been collected from 

over 250,000 appliances over a period of 2 years. The total electricity consumption reading and 

the consumption readings of the all the individual devices have been recorded at a granularity of 

8s. A total of 9 appliances have been have chosen and monitored from each household however, 

the devices are not the same but, it is to be noted that majority of the households share similar 

common devices for example, television, washing machine, dishwasher, microwave, etc. All the 

data has been recorded during active work time of the house residences and hence the data is 

referred as the real data.  

 

Figure 3.13: Schema of REFIT Data Collection [45] 

Other than the electricity consumption data, REFIT contains socio-economic information of all the 

20 households. It includes information regarding the number of occupants residing in the 

households, the estimated dwelling age of the house, the total number of appliances and the number 

of rooms in each household. All these attributes are positively corelated to the electricity 

consumption and contribute a great deal in the accurate predictions of the household load profiles.  

3.1.3.1. Analysis of REFIT 

By now we have thoroughly deduced the pattern of the cold appliances and hence, in the analysis 

of the REFIT we will no longer visualize such appliances. REFIT is one of the most thorough and 

sort out dataset and hence provides a wide range of insights. In the current visualizations, we 
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witness the consumption patterns of all the monitored devices within a single household that has 

been recorded.  

 

Figure 3.14: Total Consumption Pattern of the Individual Monitored Devices REFIT 

Based on the Figure 3.14 we have seen that the total consumption pattern of REFIT based on the 

historic data does not reveal too many details, which is justifiable because all the monitored devices 

are majorly independent from the outdoor weather conditions. However, the interesting fact is that 

all the devices have a close connection with the socio-economic parameters. Segments of the data 

will be able to give a clearer vision of how exactly we can retrieve information from the REFIT 

data.  

3.1.4. Sky Electric Dataset  

Sky Electric dataset is a very small privately owned dataset, that we have used to specifically fetch 

the patterns of electricity consumption in the Pakistani Households. The data has been collected 

over a period of one month from a single household. The data has both electricity consumption 

readings of the entire house and of the individual appliances in the household. Data has been 

recorded at a very low granularity of just 1 second. The data does not come with socioeconomic 

parameters; however, it serves as test set to evaluate the performance of historic electricity 

consumption prediction model.  

3.1.4.1. Analysis of Sky Electric Dataset 

Sky Electric is a small Pakistan-based private dataset that has limited number of data; however, 

we are utilizing the dataset as a test set to see how well we were able to predict device-wise 

consumption only based on the historic data. Like PRECON, this dataset also majorly comes with 
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monitored air-conditioning devices. Reason behind this is that till date, average Pakistani 

household doesn’t over relay on electronic devices like electric stoves or dishwashers.  

 

Figure 3.15: Total Consumption Pattern of the Individual Monitored Devices Sky Electric 

Interesting fact to note is that since we only have data for the month of September, and September 

is a hot month the use of the air conditioning is quite frequent. This coincides with the insights that 

we collected from the PRECON data regarding the weather dependency.  

3.1.5. Dataset Summary 

After the required analysis of the data, we decided to go with only REFIT and Sky Electric for the 

purpose of this research. The reason is that both the datasets provide a complete picture of the 

device-wise electricity consumption in households, whereas PRECON fails to do so. The 

monitoring is limited to only air-conditioning devices in 85% of the households. It basically means 

that we have the same device to play around with an addition to the cold appliances. 

Table 3.1: Summarized Comparison of the Datasets 

Dataset Size (Period over 

which data is 

recorded) 

Number of 

Monitored 

Devices 

Socio-Economic 

Parameters 

Selected for 

Research 

REDD Less than 1 month 24 No No 

REFIT 2 years 9 Yes Yes 

PRECON 1 year 3 or 4 Yes No 

Sky Electric 1 month 10 No Yes 
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3.2. Pre-Processing  

After dataset selection the next important step is to mold the data in a way that it caters our needs. 

Through our visual analysis, we have already seen that raw data cannot help us much in the task 

of predicting the device-wise consumption of a household accurately.  

The pre-processing steps are very straight forward and are mentioned as follows:  

1. Finalizing Data Features 

2. Finalizing Data Granularity 

3. Altering Data Representation (Converting Data to Binarized Format) 

3.2.1. Finalizing Data Features  

In every dataset the total number of devices monitored are different, however, to create a stable 

dataset that is large enough to train the model we require similar features from every household to 

be concatenated together. For this purpose, we had to find the features (devices) that are common 

in majority of the houses in the REFIT Dataset. Generally, the most common devices were fridge 

and freezer, but they are cold device, so, we went on without them. After going through the devices 

in all the households and analyzing their usage, following devices as shown in Table 3.2 were 

selected from both the datasets.  

Table 3.2: Selected Features from REFIT and Sky Electric 

 

3.3.1.1. Weekday as a Feature  

Once the devices were finalized, the next important step was to add an enhanced impact of the date 

and time values that were provided with the data. Using the dates, we extract the day of the week 

from the data. We could extract the month since month of the year provides us the weather 

information, but, for both our datasets and the devices that we have been able to extract the outdoor 
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weather doesn’t carry much effect. However, through visualizations, we can see that the day of the 

week has an interesting association with the electricity consumption.  

 

Figure 3.16: Impact of the weekday on the electricity consumption of the devices - Sky Electric 

 

Figure 3.17: Impact of the weekday on the electricity consumption of the devices – REFIT 

3.3.1.2. Merging Socio-Economic Features in REFIT 

REFIT provides us with multiple socio-economic features which can influence the prediction 

accuracy of device-wise electricity consumption leading towards improved household electricity 
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load profiles. The socio-economic features that we have selected as part of the training data are as 

follows: 

1. Occupancy, number of residents residing in the household.  

2. Appliances Owned, number of total appliances owned. 

3. Type, whether the household is detached, semi-detached or mid-terrace 

4. Size, the number of rooms in the household. 

We observe a correlation amongst all the finalized features for REFIT. 

 

Figure 3.18: Correlation Amongst All the Finalized Features – REFIT 

The correlation matrix enables us to look at how one device is being influenced by the other 

devices and brings light to the fact that device-wise consumption-based prediction is important to 

understand the overall electricity consumption. 
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3.2.2. Finalizing Data Granularity 

Granularity defines the level of detail that is present in a data structure. As we saw in section 3.1.3 

and section 3.1.4, the default granularity of REFIT is 3 or 4 seconds and for Sky Electric the 

granularity is 1s. These values of granularity can capture the slightest details, however, in our 

current situation we want to capture the on and off events of device. A granularity of this level can 

be useful in terms of forecasting but, for our classification problem we experiment with the 

granularity at different levels. Since, we have time series data we shift the granularity up from 

second to minutes. 

The granularities that we can considered are:  

1. 1 min 

 

Figure 3.19: Granularity of 1 minute - Sky Electric 

2. 5 min 

 

Figure 3.20: Granularity of 5 minutes - Sky Electric 

3. 10 min 
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Figure 3.21: Granularity of 10 minutes - Sky Electric 

4. 15 min 

 

Figure 3.22: Granularity of 15 minutes - Sky Electric 

5. 30 min 

 

Figure 3.23: Granularity of 15 minutes - Sky Electric 

The final granularity that we selected was 10 minutes because, the average duration of 

consumption of all the devices that we have selected is more than 10 minutes, so, a window of 10 

minutes is perfectly able to capture the state of the device. Going above 10 minutes makes the data 
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very abstract and a lot of details get missed out and going below 10 minutes just adds additional 

rows which doesn’t comply with our research.  

3.2.3. Altering Data Representation (Converting to Binary Representation) 

This is a classification problem, let’s say, microwave and AC are turned on at a current point in 

time then we predict whether the washing machine will be turned on along with them or not. This 

untold knowledge defines the electricity load profile of a household. Now, we classify the device 

as either on or off, hence, binary representation.  

Each electricity consuming device has 3 stages, which are as follows: 

1. Off Stage 

2. Standby Stage   

3. Consumption Stage 

The off stage simply means that the device is turned off, hence the consumption is 0 (off) and it is 

recorded as such in the dataset. The second stage i.e., the second stage, is a tricky one, even though 

the devices seem like they are not consuming much power, but it tends to add up quickly and the 

consumption elevates, hence, we consider as 1 (on). The third stage is the consumption stage, 

which means that the device is consuming electricity, which is recorded in terms of watts, so 

another case labeled as 1 (on).  

 

Figure 3.24: Total Device-wise Consumption (Binarized) - Sky Electric 
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Figure 3.25: Total Device-wise Consumption (Binarized) – REFIT 

3.3. Post Analysis  

Once the required pre-processing has been performed on the dataset, we analyze the data into 

further details before we start training the model. The post analysis has been carried out by 

segmenting REFIT into multiple window sizes which represent a specific time window of the day.  

3.3.1. Time Window Segmentation 

We selected multiple time window to segment the data, each time window has been referenced 

based on the regular activities that are associated with that time.  

1. 12 am to 7 am  

For this segment we were hoping to see less usage of all the devices because it’s midnight till 

7 am. The utilization of TV in the background makes complete sense. The pattern that we see 

is easily justifiable based on the number of residents in the house. During the night we see the 

use of dishwasher, it isn’t very common but complicit with the residents. The use of kettle after 

5 in the morning, is the most reasonable consumption pattern. 

 

Figure 3.26: REFIT Segmentation Window (12 am - 7 pm) 
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2. 7 am to 10 am 

This is a busy time window, usually within this duration the children are leaving for schools etc., 

the adults leave for offices. So as expected, we see spikes in the usage of kettle, the television has 

been used minimally, there has been a usage of washing machine, which again coincides with the 

residents. As expected, we don’t see dishwasher being used, this window covers, getting done with 

what is possible, before leaving, and leaving behind dirty dishes is very common.  

 

Figure 3.27: REFIT Segmentation Window (7 am - 10 pm) 

3. 10 am to 3 pm 

This time window is considered idle for families with children and working parents, but, if there 

is a stay-at-home person, then we expect to see usage of almost all the devices. The visualizations 

show that washing machine, kettle, microwave have been utilized within this window.  

 

Figure 3.28: REFIT Segmentation Window (10 am - 3 pm) 

4. 3 pm to 8 pm 

This time window is usually the period of the day where most of the residents are at home, we 

expect to see utilization of all the devices, majorly the television.  
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Figure 3.29: REFIT Segmentation Window (3 pm - 8 pm) 

5. 8pm to 12 am 

Another interesting time window where we expect majority of the consumption till 9.30 pm and 

beyond that, the consumption is usually made by the television devices as part of the leisure.  

 

Figure 3.30: REFIT Segmentation Window (8 pm - 12 am) 

3.4. Machine Learning and Deep Learning  

Once the data has been pre-processed and analyzed as per our need, the final step is to train the 

models that we have selected to generate the electricity load profiles. This is a classification 

problem; hence we have used 3 different types of algorithms to generate a model for device-wise 

electricity consumption predictions, that tells us whether a device is on or off, given the status of 

other devices, the historic features, and the socio-economic features (where they apply). The 

algorithms used are as follows: 

• Machine Learning 

o Random Forest Classifier (RF) 

o Hidden Markov Model (HMM) 

• Deep Learning 
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o Artificial Neural Network (ANN) 

Now, we’ll discuss the approaches that we have used, and the way parameters have been defined.  

3.4.1. Random Forest Classifier  

Random Forest is one of the strongest and most used classifiers that operates using the bagging 

approach to generate a prediction value.  The structure of the model was quite straight forward 

since we are working on binary prediction and values for only one device are predicted at a time. 

Hence, the model takes multiple inputs and generates output for a single column. 

Input: Other device, Weekday, Socio-Economic Parameters 

Output: Binary Classification of the device being predicted  

We had the data split into test and train sets, so that the model can be validated while it is being 

trained. The test train ratio has been set to 70% from the train set and 30% for the test set 

respectively. The overall setting of the hyperparameters is as follows: 

• Criterion = Gini  

• N_estimators = 100  

• max_depth = 4 

For REFIT, the model is run twice, once for data without the socio-economic features and then for 

data with socio-economic features. 

3.4.2. Hidden Markov Model  

Hidden Markov Models are popular for training data where sequences exist, they observe the 

evolutionary behavior in states that is affected by some internal factors but, those factors are not 

generally observed as something that may impact a change in behavior [46][47]. We use hidden 

Markov model as a classifier, to classify, that given a certain number of devices that are in either 

off or on state, what will be the state of the incoming device would it be turned on or off given the 

effect of the input parameters. HMM has same input and out pattern as random forest classifier[48].  

Input: Other device, Weekday, Socio-Economic Parameters 

Output: Binary Classification of the device being predicted  

The hyperparameter settings for the model include, 
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• Normal Distribution 

• N_component = 2 

The test train split ratio is also similar as in random forest i.e., 7:3, however, sequence is very 

important in HMMs hence the division is sequential and not random.  

3.4.3. Artificial Neural Nets (ANN)  

Though we majorly rely on statistical formulations for generating the electricity load profiles, 

however, we experiment with a simple deep learning model as well, to compare the results and see 

which approach provides us with an overall advantage. Since the dataset is not highly complicated 

and the number of features in both the datasets are limited, ANN felt like the best option [49].  

The input/ output paradigm and the train test split of the data is the same as that in random forest 

classifier. The hyperparameter setting done for the model are as follows: 

• Number of dense layers – 3 

• Activation Function - ReLU 

• Output layer activation function – Sigmoid 

• Loss – Binary Cross Entropy 

• Optimizer – Adam 

• Evaluation Metrics: Accuracy, F1-score 

We use sigmoid and binary cross entropy function because our data we require our final output as 

either 0 or 1.  

3.5. Evaluation Metrics 

We have selected similar evaluation metrics for all three models, because perform the same task 

of classifying into binary labels. The selected metric are as follows: 

• Area Under the Curve 

• F1- Score 

o Precision  

o Recall 
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These metrics highlight what we want from the model. We target on getting a high value of 

sensitivity for each device because in a real-time system False Negatives can cost a lot. If a device 

is off but is predicted as on, this is something that can be coped with but, if it is on and predicted 

as off then this can disrupt the applications that we plan to solve using the electricity load profiles 

of the households. 
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Chapter 4 

4. Results 

In this section, we will discuss the outcomes of all our experiments. The task at hand was to predict 

the consumption state of a device given the consumption states of other devices in a household; 

this is the definition of the household electricity load profiles that we are generating. The results 

will include the following:  

Table 4.1: Summary of Details Covered Under Results 

Dataset Dataset Types Number of Devices Algorithm Evaluation Metrics 

REFIT 1. Prediction based 

on historic data. 

2. Prediction based 

on socio-economic 

features. 

5 (Washing 

Machine, 

Dishwasher, TV, 

Microwave, and 

Kettle) 

Random Forest, 

Hidden Markov 

Model, Artificial 

Neural Nets 

1. Area under the 

curve 

2. F1-score 

a. Precision 

b. Recall 

Sky 

Electric 

Prediction based on 

historic data. 

5 (Microwave, High 

Voltage Bulb, 

Power Socket, AC 

Bedroom, AC 

Drawing Room) 

Random Forest, 

Hidden Markov 

Model, Artificial 

Neural Nets 

1. Area under the 

curve 

2. F1-score 

a. Precision 

b. Recall 

 

The results are computed separately for every single device and will be displayed accordingly. We 

will start step by step and first display all the results for each device monitored under REFIT and 

followed by that we will do the same for all the monitored devices of Sky Electric dataset.  

4.1. Results Compilation for REFIT Dataset  

As mentioned in Table 4.1, the total number of devices that we have selected from REFIT are 5. 

We have predicted each one of those 5 devices by all the three algorithms that we have selected 

and computed the evaluation metrics, respectively. 
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4.1.1. Without Socio Economic (SE) Features  

Without socio-economic features the REFIT is simply just the historic data, based on which the 

devices have been recorded. 

4.1.1.1. Washing Machine  

Washing machine was one of the most found device that was monitored under all the 20 REFIT 

houses. Washing machine is a high voltage energy consumption device and we believe that in 

many households, it is not run-in combination with other high voltage electricity consumption 

devices. 

4.1.1.1.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.2. 

Table 4.2: Random Forest Classifier for Predicting Washing Machine State – No SE Features 

 

4.1.1.1.2. Hidden Markov Model 

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.3. 
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Table 4.3: Hidden Markov Model for Predicting Washing Machine State – No SE Features 

 

4.1.1.1.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned in 

Table 4.4. 

Table 4.4: ANN for Predicting Washing Machine State - No SE Features 

 

4.1.1.2. Dishwasher 

Dishwasher was also a commonly found device, it was monitored under 80% of the 20 REFIT 

houses. Dishwasher is a high voltage energy consumption device, and we believe that in many 

households, it is not run-in combination with other high voltage electricity consumption devices. 

4.1.1.2.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.5. 
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Table 4.5: Random Forest Classifier for Predicting Dishwasher State – No SE Features 

 

4.1.1.2.2. Hidden Markov Model  

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.6. 

Table 4.6: Hidden Markov Model for Predicting Dishwasher State – No SE Features 

 

4.1.1.2.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned Table 

4.7. 



45 

 

Table 4.7: ANN for Predicting Dishwasher State - No SE Features 

 

4.1.1.3. Television 

Television was also a commonly found device, it was monitored under all the 20 REFIT houses. 

Television is a low voltage energy consumption device, and usually runs on the standby mode. 

Hence, we believe that in many households, it is consumed in a combination with other high/low 

voltage electricity consumption devices. 

4.1.1.3.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.8. 

Table 4.8: Random Forest Classifier for Predicting Television State – No SE Features 

 

4.1.1.3.2. Hidden Markov Model  

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.9. 
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Table 4.9: Hidden Markov Model for Predicting Television State – No SE Features 

 

4.1.1.3.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned in 

Table 4.10. 

Table 4.10: ANN for Predicting Television State - No SE Features 

 

4.1.1.4. Microwave 

Microwave was also a commonly found device, it was monitored under 80% of the 20 REFIT 

houses. Microwave is again, a high voltage energy consumption device. Hence, we believe that in 

many households, it is not consumed in a combination with other high voltage electricity 

consumption devices. 

4.1.1.4.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.11. 
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Table 4.11: Random Forest Classifier for Predicting Microwave State – No SE Features 

 

4.1.1.4.2. Hidden Markov Model  

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.12. 

Table 4.12: Hidden Markov Model for Predicting Microwave State – No SE Features 

 

4.1.1.4.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned Table 

4.13. 
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Table 4.13: ANN for Predicting Microwave State - No SE Features 

 

4.1.1.5. Kettle 

Kettle was not a commonly found device, it was monitored under 60% of the 20 REFIT houses. 

But, since it passed 50%, so it made the cut. Kettle, like microwave is again, a high voltage energy 

consumption device. Hence, we believe that in many households, it is not consumed in a 

combination with other high voltage electricity consumption devices. 

4.1.1.5.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.14. 

Table 4.14: Random Forest Classifier for Predicting Kettle State – No SE Features 

 

4.1.1.5.2. Hidden Markov Model  

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.15. 
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Table 4.15: Hidden Markov Model for Predicting Kettle State – No SE Features 

 

4.1.1.5.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned in 

Table 4.16 

Table 4.16: ANN for Predicting Kettle State - No SE Features 

 

4.1.2. With Socio Economic (SE) Features 

The socio-economic feature, as per our hypothesis help in improving the performance of the 

models. We saw that they have a correlation with the devices, now, this section, covers the results 

of the experiments carried out to predict the consumption of all 5 REFIT monitored devices.  

4.1.2.1. Washing Machine  

Predicting the consumption state of washing machine given the socio-economic features. 
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4.1.2.1.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.17. 

Table 4.17: Random Forest Classifier for Predicting Washing Machine State – SE Features 

 

4.1.2.1.2. Hidden Markov Model  

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.18. 

Table 4.18: Hidden Markov Model for Predicting Washing Machine State – SE Features 

 

4.1.2.1.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned in 

Table 4.19. 
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Table 4.19: ANN for Predicting Washing Machine State - SE Features 

 

4.1.2.2. Dishwasher 

Predicting the consumption state of dishwasher given the socio-economic features. 

4.1.2.2.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.20.  

Table 4.20: Random Forest Classifier for Predicting Dishwasher State – SE Features 

 

4.1.2.2.2. Hidden Markov Model  

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.21. 
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Table 4.21: Hidden Markov Model for Predicting Dishwasher State – SE Features 

 

4.1.2.2.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned in 

Table 4.22. 

Table 4.22: ANN for Predicting Dishwasher State - SE Features 

 

4.1.2.3. Television 

Predicting the consumption state of television given the socio-economic features. 

4.1.2.3.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.23. 
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Table 4.23: Random Forest Classifier for Predicting Television State – SE Features 

 

4.1.2.3.2. Hidden Markov Model  

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.24. 

Table 4.24: Hidden Markov Model for Predicting Television State – SE Features 

 

4.1.2.3.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned in 

Table 4.25. 
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Table 4.25: ANN for Predicting Television State - SE Features 

 

4.1.2.4. Microwave 

Predicting the consumption state of microwave given the socio-economic features. 

4.1.2.4.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.26. 

Table 4.26: Random Forest Classifier for Predicting Microwave State – SE Features 

 

4.1.2.4.2. Hidden Markov Model  

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.27. 
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Table 4.27: Hidden Markov Model for Predicting Microwave State – No SE Features 

 

4.1.2.4.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned in 

Table 4.28. 

Table 4.28: ANN for Predicting Microwave State - SE Features 

 

4.1.2.5. Kettle 

Predicting the consumption state of kettle given the socio-economic features. 

4.1.2.5.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.29. 
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Table 4.29: Random Forest Classifier for Predicting Kettle State – SE Features 

 

4.1.2.5.2. Hidden Markov Model  

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.30. 

Table 4.30: Hidden Markov Model for Predicting Kettle State – SE Features 

 

4.1.2.5.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned in 

Table 4.31. 
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Table 4.31: ANN for Predicting Kettle State - SE Features 

 

This was a compilation of the results that we have generated after experimenting on REFIT. Based 

on the results of all the devices, using dataset without the socio-economic features and using the 

dataset with the socio-economic features it is very clear that the performance has improved with 

the addition of the socio-economic features.  

4.2. Results Compilation for Sky Electric Dataset 

As discussed previously, sky electric is a small privately owned Pakistan-based dataset. We have 

used it to analyze how well can we predict the device-wise consumption in Pakistani Residential 

setup. The dataset doesn’t provide the socio-economic features hence, the prediction results are 

only based on the historic data. We have 5 total devices, following are the results that we were 

able to generate using sky electric dataset.  

4.2.1. Microwave 

Microwave is a very common device which is found in majority of the average Pakistani 

households. It is a high voltage power consumption device that is a part of the everyday life. Our 

intuition is that in a regular Pakistani residential settlement, the use of microwave with other high 

voltage devices is not common. We were able to predict microwave’s consumption status using 

the historical data through all three of the models that we have created.  

4.2.1.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.32. 
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Table 4.32: Random Forest Classifier for Predicting Microwave State 

 

4.2.1.2. Hidden Markov Model  

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.33. 

Table 4.33: Hidden Markov Model for Predicting Microwave State 

 

4.2.1.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned in 

Table 4.34. 
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Table 4.34: ANN for Predicting Microwave State 

 

4.2.2. Power Socket 

The power sockets do not consume any electricity unless a device is not connected to them. Sockets 

are one of the most common sites of electricity consumption. Currently, it is hard for us to predict 

the device that is connected to the socket, however, we through our current approach, we can tell 

whether a socket is being used or not i.e., it’s turned on or off.  

4.2.2.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.35. 
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Table 4.35: Random Forest Classifier for Predicting Power Socket State 

 

4.2.2.2. Hidden Markov Model  

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.36. 

Table 4.36: Hidden Markov Model for Predicting Power Socket State 

 

4.2.2.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned in 

Table 4.37. 
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Table 4.37: ANN for Predicting Power Socket State 

 

4.2.3. High Voltage Bulb 

The lightning devices that have a very low and constant consumption are termed under cold 

appliances in this research. Though this bulb comes under lightning devices, but it has a high 

electricity consumption power and is not being constantly used by the household hence, we 

consider it for the prediction purposes. 

4.2.3.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.38. 
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Table 4.38: Random Forest Classifier for Predicting HV Bulb State 

 

4.2.3.2. Hidden Markov Model  

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.39. 

Table 4.39: Hidden Markov Model for Predicting HV Bulb State 

 

4.2.3.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned in 

Table 4.40. 
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Table 4.40: ANN for Predicting HV Bulb State 

 

4.2.4. AC (Drawing Room) 

The air conditioners are the most found devices in Pakistan with a very high usage during the 

summer months. ACs are high voltage devices and in an average Pakistani household it’s use with 

other high voltage devices is very low.  

4.2.4.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.41. 
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Table 4.41: Random Forest Classifier for Predicting AC (Drawing Room) State 

 

4.2.4.2. Hidden Markov Model  

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.42. 

Table 4.42: Hidden Markov Model for Predicting AC (Drawing Room) State 

 

4.2.4.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned in 

Table 4.43. 
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Table 4.43: ANN for Predicting AC (Drawing Room) State 

 

4.2.5. AC (Bedroom) 

4.2.5.1. Random Forest Classifier  

With Random Forest Classifier, we were able to generate the results as mentioned in Table 4.44. 

Table 4.44: Random Forest Classifier for Predicting AC (Bedroom) State 

 

4.2.5.2. Hidden Markov Model 

With Hidden Markov Model as a classifier, we were able to generate the results as mentioned in 

Table 4.45. 
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Table 4.45: Hidden Markov Model for Predicting AC (Bedroom) State 

 

4.2.5.3. Artificial Neural Nets 

With Artificial Neural Nets as a classifier, we were able to generate the results as mentioned in 

Table 4.46. 

Table 4.46: ANN for Predicting AC (Bedroom) State 

 

4.3. Comparison of Approaches 

Now that the results have been formulated for all the devices based on the 3 approaches that we 

have designed, we compare the results.  

The initial comparison in Table 4.47 highlights which dataset type (with socio-economic features 

or without socio economic features) was able to provide the best results.  



67 

 

Table 4.47: Comparison of all REFIT Devices based on the Results from all Three Approaches and Type of the 

Dataset (with SE or Without SE). Results Shown in % 

Device Classifier Without Socio-

Economic Features 

With Socio-

Economic Features 

Washing Machine Random Forest 75% 87% 

Hidden Markov Model 64% 72% 

Artificial Neural Net 61% 83% 

Dishwasher Random Forest 83% 92% 

Hidden Markov Model 62% 75% 

Artificial Neural Net 64% 87% 

Television Random Forest 74% 93% 

Hidden Markov Model 50% 67% 

Artificial Neural Net 59% 80% 

Microwave Random Forest 76% 97% 

Hidden Markov Model 55% 61% 

Artificial Neural Net 63% 76% 

Kettle Random Forest 54% 74% 

Hidden Markov Model 70% 68% 

Artificial Neural Net 68% 72% 

 

The next comparison is to show which approach was able to outperform the other approaches, 

given the data only has historical data and no socio-economic features. 
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Table 4.48: A Comparison of all the Non-SE data (REFIT and Sky Electric) to compare the three approaches. 

Results Shown in % 

Device Random Forest 

Classifier 

Hidden Markov 

Model 

Artificial Neural 

Network 

Washing Machine 75% 64% 61% 

Dishwasher 83% 62% 64% 

Television 74% 50% 59% 

Microwave (REFIT) 76% 55% 63% 

Kettle 54% 70% 68% 

Microwave (Sky 

Elec.) 

53% 50% 54% 

Power Socket 67% 63% 65% 

High Voltage Bulb 56% 51% 52% 

AC (Drawing Room) 59% 55% 57% 

AC (Bedroom) 53% 49% 51% 
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Chapter 5 

5. Discussions 

This chapter majorly focusses on the findings that we have discovered over the course of this 

research. In addition, we point out the current limitations of our work.  

5.1. Summary of the Findings 

The target of this research was to be able to generate electricity load profiles that captures the 

device-wise consumption pattern of residential households.  

Now, we discuss the results that we were able to generate. We decided on using two machine 

learning (statistical) models and 1 deep learning model. The initial comparison was to prove our 

hypothesis that the socio-economic features enhance the overall prediction accuracy of the devices. 

A device’s consumption status is highly reliant on the residents that are using the device. For 

example, if there is 1 person living in an apartment who goes to work at 9 am and returns at 5pm, 

then there will be no one left to consume any devices except the cold appliances. The relationship 

between the usage and the demographics is very clear. We only had socio-economic features 

provided with the REFIT, so we computed the prediction scores for all the devices, once without 

the socio-economic features and once with them. We were able to achieve maximum prediction 

accuracy for the microwave which was 97% when predicted on a dataset that had socio-economic 

features merged. On the other hand, without socioeconomic features the prediction accuracy was 

76%. So, we see a clear jump of 26% in the overall accuracy of microwave using random forest 

classifier. Similarly, through HMM and ANN the accuracy of the microwave was higher with the 

SE features. The results followed in a similar pattern for Washing Machine, Television and 

Dishwasher and Kettle. This completely complies with the theory that the consumption pattern of 

the devices is associated with the household’s demography. Washing machine and dishwasher are 

the two devices that are highly dependent on the number of residents in a household. Higher the 

number of residents, the more frequent would be the usage of these two devices. Television, Kettle, 

and Microwave, go both ways. 1 person could use them just as much as a family would, they are 

completely dependent on user’s lifestyle. The comparative analysis has been given in  

Following this, the next comparison was to choose which model is the best in terms of 

performance. We performed this comparative analysis using all the devices from both REFIT and 
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Sky Electric data and made predictions without considering the socio-economic features. Random 

Forest classifier was coined as the best classifier for predicting device-wise electricity 

consumption, as it outperformed both Hidden Markov Model and Artificial Neural Network in 8 

out of 10 total devices. The second in line was the ANN, however, the HMM could not make its 

mark given the current condition of the data.  

The reason we believe why the ANN was not able to perform as well as the Random Forest is 

because the data is not large enough to allow the model to train accurately. 

This comparative analysis has been shown in  

5.2. Comparison with Existing Work 

Through Chapter 2, we were able to review the existing literature in the domain of generating 

electricity load profiles. Majority of the work currently being done, targets the infrastructure of 

developed countries, where the consumption of electricity is being monitored to some extent. 

However, in Pakistan, we lack the basic monitoring. Our hypothesis has shown how device-wise 

prediction of electricity consumption provides us with better insights on understanding the 

consumption pattern of a household which has previously been done using minimalistic devices 

like lightening device [39]. Also, we have shown how the introduction of socio-economic 

parameters can further improve the load profiles by comparing the results against only historic 

data. The results show that our hypothesis is a success and device-wise consumption can be 

predicted more accurately with the introduction of the socio-economic parameters.  

5.3. Limitations 

Our electricity load profiles are dependent upon the existence of device-wise data, however, 

majority of the publicly available datasets that target problem solving in the domain of residential 

electricity consumption, don’t provide data from many household appliances. In our current 

situation, we selected REFIT as the major research dataset because, it covered all the 3 things that 

we require in a dataset i.e., historic data, device-wise monitored data, and socio-economic features 

of the households. The data was recorded over a period of 2 years, so, it was capturing the 

seasonality. However, the recorded devices in almost all the 20 houses of the dataset were different. 

To finalize the data, we had to select the devices that were common in all the houses, the number 

was small and hence we also had to select devices that were found in majority of the houses. This 
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meant, that for all the houses where that specific device was not present the value would be 

recorded as 0 and the device would be considered off. This cause extreme class imbalance, 

specifically in devices that don’t have a prolonged consumption time.  

 

Figure 5.1: Fall in the Precision of Kettle Due to Class Imbalance 

Through Figure 5.1, we can see that the results of the kettle, in terms of precision of class 1 are 

extremely affected because of the huge imbalance. 

Another limitation is that most of the household residents consider sharing the socio-economic 

features as a breach to their privacy and hence avoid sharing information [16][50]. This makes us 

lose a lot of houses that could otherwise be sources of data.  
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Chapter 6 

6. Conclusions 

This chapter concludes all the research work done under this thesis, by describing the contributions 

and indicating the direction for future work in the domain of generating electricity load profiles 

based on device-wise consumption pattern. First, we will talk about the core contributions of our 

research and then highlight the possible dimensions of the future work. 

6.1. Summary of Research Contributions 

In terms of electricity consumption, knowing the behavior of every individual device is extremely 

important because it cultivates the entire electricity consumption pattern. If we can correctly 

identify when devices are being utilized in a household and under which circumstances, then we 

can establish limits to the amount of electricity that is being supplied to the household. In majority 

of the current literature, the load profiles of residential households have not been generated on 

such a small scale. Though the entire idea of the research is not new, however, creating electricity 

load profiles by considering device-wise consumption and the socio-economic features in one 

single model, is a novel approach.  

To understand the relation between socio-economic features and the electricity consumption data 

we analyzed the data by segmenting it into smaller time windows, to get a better understanding. 

To further emphasize that the socio-economic features add an improvement to the overall device-

wise predictions, we have computed predictions on two different machine learning models i.e., 

Random Forest Classifier, Hidden Markov Model and, one deep learning model i.e., Artificial 

Neural Network for two types of datasets. One in which REFIT is associated with socio-economic 

features and one in which it is not associated. Then to finalize the which model performs best, we 

have predicted device state based only on historical data. This has been done for both REFIT and 

Sky Electric data. We have been able to achieve outstanding accuracy, e.g., on microwave, random 

forest classifier provided an accuracy of 97% with the socio-economic features and 76% without 

the socio-economic features. Similarly, dishwasher was predicted up to an accuracy of 92% with 

SE features and 84% without the SE features.  
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6.2. Future Work 

The possible dimensions that we foresee as the future work of this research, are as follows: 

• The datasets that we had access to for this research were limited, in terms of size and the 

devices provided. Also, the datasets lack consistency in the devices that have been 

monitored from each household. In addition to these, we require more datasets that have 

the socio-economic features provided. The creation of such large datasets is important to 

take this research a step further.  

• We have currently worked with only one deep learning model; however, we can try training 

with multiple, more complex deep learning models to see how they perform. 

•  The research can be taken one step further, and the generated load profiles can be used to 

forecast early load shedding.  
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