
Detection of Malicious SSH Sessions:
A Machine Learning Approach

By

Hamid Mujtaba Khalil

Fall 2018-MS(IS) - 00000274017

Supervisor

Dr. Hasan Tahir

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree

of Masters of Science in Information Security (MS IS)

In

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(December 2021)

Approval

Signature: ______________________

Date: __________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Online Printing Date & Time: Thursday, 02 December 2021 17:18:30

It is certified that the contents and form of the thesis entitled "Detection of Malicious SSH
Sessions: A Machine Learning Approach" submitted by HAMID KHALIL have been
found satisfactory for the requirement of the degree

01-Dec-2021

Committee Member 1:Dr. Sana Qadir

02-Dec-2021

Committee Member 2:Dr. Razi Arshad

01-Dec-2021

Publish Date & Time: Thursday, 02 December 2021 , 09:42:39PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

Advisor : Dr. Hasan Tahir

i

Dedication

I dedicate this work to my parents for all their sacrifices in life, their trust

in my decisions and giving me the freedom to create my own life.

ii

Certificate of Originality

Student Signature: ______________

Online Printing Date & Time: Thursday, 02 December 2021 17:51:30

I hereby declare that this submission titled "Detection of Malicious SSH Sessions: A

Machine Learning Approach" is my own work. To the best of my knowledge it contains no

materials previously published or written by another person, nor material which to a

substantial extent has been accepted for the award of any degree or diploma at NUST

SEECS or at any other educational institute, except where due acknowledgement has

been made in the thesis. Any contribution made to the research by others, with whom I

have worked at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis. I

also declare that the intellectual content of this thesis is the product of my own work,

except for the assistance from others in the project’s design and conception or in style,

presentation and linguistics, which has been acknowledged. I also verified the originality of

contents through plagiarism software.

Student Name: HAMID KHALIL

Publish Date & Time: Thursday, 02 December 2021 , 09:42:39PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

iii

THESIS ACCEPTANCE CERTIFICATE

Signature: ________________________________

Name of Advisor:

Date: ___________________________________

Signature (HOD): __________________________

Date: ___________________________________

Signature (Dean/Principal): __________________

Date: ___________________________________

Online Printing Date & Time: Thursday, 02 December 2021 17:55:55

Certified that final copy of MS/MPhil thesis entitled "Detection of Malicious SSH Sessions:
A Machine Learning Approach" written by HAMID KHALIL, (Registration No
00000274017), of SEECS has been vetted by the undersigned, found complete in all
respects as per NUST Statutes/Regulations, is free of plagiarism, errors and mistakes and
is accepted as partial fulfillment for award of MS/M Phil degree. It is further certified that
necessary amendments as pointed out by GEC members of the scholar have also been
incorporated in the said thesis.

01-Dec-2021

Publish Date & Time: Thursday, 02 December 2021 , 09:42:39PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

 Dr. Hasan Tahir

iv

Acknowledgment

First of all, I would like to express my sincere gratitude to my supervisor, Dr.

Hasan Tahir, for believing in me and his continuous guidance and support

from inception of this idea to its completion. This work would not have been

possible without him.

I am also thankful to my Guidance and Evaluation Committee, Dr. Sana

Qadir and Dr. Razi Arshad for providing valuable insights and constructive

feedback during this research work.

Last but not the least, I would like to thank my wife Ammara, my sister

Madeeha and my friends for continuously pushing me to get this done.

v

Table of Contents

1 Introduction 1

1.1 Traditional SSH Security Controls 2

1.1.1 Using strong passwords 2

1.1.2 Moving SSH listeners from default to a random port . 2

1.1.3 Using public-key based authentication 3

1.1.4 Firewall to allow-list IPs from which node can be accessed 4

1.2 Attacker Models . 4

1.2.1 Malicious Insider . 4

1.2.2 Outside Attacker . 6

1.3 Problem Statement . 7

1.4 Solution Definition/Description 7

1.5 Thesis Motivation . 8

1.6 Thesis Contribution . 8

1.7 Thesis Organization . 9

1.8 Summary . 10

2 Literature Review 11

2.1 What is Secure Shell (SSH)? 11

vi

TABLE OF CONTENTS

2.2 Attacks on SSH . 12

2.2.1 Brute-Force Attacks 12

2.2.2 Keystroke Timing Attacks on SSH 14

2.2.3 Man-in-the-Middle (MITM) Attacks on SSH 14

2.3 Post-Quantum SSH Security 14

2.4 Can SSH Honeypots Help? . 14

2.4.1 Usecase #1: Using SSH Honeypots for Attacker Profiling 15

2.4.2 Usecase #2: Using SSH Honeypots for Botnet Detection 15

2.4.3 Usecase #3: Using SSH Honeypots for Detetcion of

Malicious SSH Sessions 16

2.5 Summary . 16

3 Research Methodology 18

3.1 Steps involved in the carried out research 18

3.1.1 Data Collection & Parsing 19

3.1.2 Data Cleaning . 20

3.1.3 Exploratory Data Analysis (EDA) 20

3.1.4 Feature Engineering 21

3.1.5 Model Evaluation and Tuning 21

3.2 Tools & Technologies Used . 22

3.3 Summary . 23

4 Data Collection 24

4.1 Benign Data Collection . 24

4.2 Malicious Data Collection . 25

4.3 Data Parsing . 27

vii

TABLE OF CONTENTS

4.4 Data Summary . 30

5 Exploratory Data Analysis & Feature Engineering 31

5.1 System Exploratory Commands 34

5.2 Deletion Commands . 35

5.3 Echo File Writes . 35

5.4 Difference in IP and URL Based Downloads 36

5.5 Directory Navigation Commands 37

5.6 Access Manipulation Commands 37

5.7 Feature Selection . 38

5.8 Summary . 42

6 Model Training & Evaluation 43

6.1 Evaluation Metrics . 43

6.1.1 Accuracy . 44

6.1.2 True Positive Rate (TPR) 44

6.1.3 True Negative Rate (TNR) 44

6.1.4 False Positive Rate (FPR) 44

6.1.5 False Negative Rate (FNR) 45

6.2 Model Selection . 45

6.3 Initial Results . 45

6.4 K-Fold Cross Validation with Hyper-Parameters Tuning 46

6.5 Discussion . 50

7 Conclusion & Future Work 51

7.1 Conclsuion . 51

viii

TABLE OF CONTENTS

7.2 Future Work . 52

7.2.1 An Improved Approach for Benign Data Collection . . 52

7.2.2 Generalizing for Other Linux and IOT Shells 53

7.2.3 Training Models for Specialized Services / Dedicated

Nodes . 53

7.3 Summary . 54

Bibliography 55

ix

List of Tables

3.1 Tools technologies used during this research work 22

4.1 Dataset summary . 30

5.1 Extracted features based on domain knowledge 39

5.2 Finalized features after extensive EDA processing 41

6.1 Initial results of different classifiers 46

6.2 RF results before and after model tuning 49

x

List of Figures

1.1 Attacker models . 5

3.1 Research methodology flowchart 19

4.1 Deployed honeypot architecture 26

5.1 Word cloud for malicious data 32

5.2 Frequency of highly used words in malicious data 32

5.3 Word cloud for benign data 33

5.4 Frequency of highly used words in benign data 33

5.5 System exploratory commands example from a malicious session 34

5.6 Echo file write example from a malicious session 35

5.7 IP based downloads example from a malicious session 36

5.8 Access manipulation commands example from a malicious ses-

sion . 37

5.9 Correlation matrix for features 41

6.1 K-Fold Cross Validation for K = 3 48

6.2 Confusion matrix for RF after tuning 49

xi

Abstract

Cloud computing has enabled organizations to run their workloads on multi-

node clusters in different private and public cloud service providers (CSPs).

Most nodes run some distribution of Linux which is accessed through Secure

Shell (SSH). The infrastructure is not only accessed by the engineering team

members, but also by automated scripts and bots that help manage those

machines. This study formulates a machine learning based technique to

classify those SSH sessions into Malicious and Benign by solely using the

commands executed in the shell. Thus, this research will help identify any

malicious insider in an engineering team or a compromised automation script

or bot that was written to help manage that infrastructure. This study also

provides a capability to help reduce the damage done by those malign entities

by timely notifying the security personnel.

xii

Chapter 1

Introduction

Cloud computing is the on-demand provisioning of services like storage, or-

chestration systems, infrastructure, virtualized network functions and many

other services over the internet. With the adaptation of cloud computing,

most organizations have moved their workloads from on premise implementa-

tion to their choice of cloud service providers (CSPs). This trend has shown

growth over the past few years and is anticipated to grow in the upcoming

years as well due to the ease of infrastructure management provided by the

cloud. Having the ability to procure on-demand Infrastructure-as-a-Service

(IaaS) on the cloud to scale workloads as per the needs across multiple ma-

chines has enabled organizations to run their workloads on multi-node clus-

ters. More than 95% of those nodes are running some flavor or distribution

of Linux [1]. These nodes are not only accessed by the members of the engi-

neering and security teams for the management of the node itself, but also by

the bots and scripts responsible for maintaining the Continuous-Integration

Continues-Delivery (CICD) pipelines of the workload instance running on

1

CHAPTER 1. INTRODUCTION

top of it. While having your workloads publicly accessible over the internet

addresses the business needs, it also raises the questions of adequacy of the

security controls implemented to secure the infrastructure those workloads

are executing on.

Secure Shell (SSH) [2] is the protocol which sanctions the remote shell

access of Linux based machines, and it is also one of the highly used protocols

for management of Linux based cloud infrastructure. Traditional security

controls implemented via secure SSH involve some approaches are described

below.

1.1 Traditional SSH Security Controls

1.1.1 Using strong passwords

A recent research shows that password based SSH authentication is still being

used at more than 65% of the publicly available machines on the internet [3].

While having the strongest of passwords does help, but this security control

is still susceptible to brute forcing, dictionary attacks and password reuse

with a combination of data breaches. Also, with the continuously increasing

computing power day by day, the password space is narrowing down.

1.1.2 Moving SSH listeners from default to a random

port

SSH by default runs on port 22 but moving this listening port to any other

random port is implemented sometimes to confuse attackers into believing

2

CHAPTER 1. INTRODUCTION

that SSH is not enabled on the device. This trick has worked for a time but

now it is seen that during the initial reconnaissance process, the bots that

are constantly attacking the publicly accessible infrastructure perform scans

for all open ports within the 1-65535 range. These bots have evolved over the

years and they do try SSH based attacks on all open ports to see responses

and correlate the response with the SSH protocol specific responses. This

evolution of the attack bots have rendered this security control insufficient.

1.1.3 Using public-key based authentication

This is one of the highly used approach where password-based authentica-

tion while establishing a SSH connection is completely disabled. Instead,

only public key based authentication is allowed with only a few known and

white-listed public keys placed in the authorized keys file within the /.ssh

directory on the remote node. This allows SSH connections to be made only

from the entities owning the corresponding private keys to the public keys

already added in the authorized keys file on the node. While this approach

provides satisfactory level of security, it is still not enough. The concerns with

this approach involve: Private keys can be compromised with or without the

knowledge of the owner and the window between the credentials compro-

mise and the owner’s realization could very well be the attack window; This

approach also opens up a whole new issue of keeping the updated keys on

the node, removal of stale public keys from the authorized keys file and keys

management in general.

3

CHAPTER 1. INTRODUCTION

1.1.4 Firewall to allow-list IPs from which node can

be accessed

Another security control is to allow SSH access to the node from only an

allow-listed set of IPs or IPs based on geolocation. This approach employs the

use of some kind of host or network based firewall to achieve this objective.

This technique, when used in combination with any of the above mentioned

controls, provides adequate amount of security. But, it still does not shield

us from a scenario where an attacker gets ahold of the access credentials and

also has access to the allow-listed IPs, which is typically a case of a malicious

insider.

1.2 Attacker Models

Let us a define the attacker models that are basically able to bypass every

single one of the SSH security controls mentioned previously, graphically

represented in Figure 1.1. Let’s assume an organization has its workload

W1 running on a public cloud on a multi-node cluster consisting of three

nodes N1, N2 and N3. Assuming the organization has enabled all four of

the security controls on all of the nodes, the following attacks will still be

successful but will also go unnoticed:

1.2.1 Malicious Insider

As described in the graphical representation above, a malicious insider will

have legitimate access to the N1, N2 and N3 cluster nodes with the appro-

4

CHAPTER 1. INTRODUCTION

Figure 1.1: Attacker models

5

CHAPTER 1. INTRODUCTION

priate credentials to access each node separately.

1.2.2 Outside Attacker

Another attack model represented is an outsider who has a Remote Access

Trojan (RAT) tool installed on one of the compromised nodes in organi-

zation’s on-premise infrastructure. Now if that compromised node was an

access point to the cluster nodes in cloud by the organization’s team then it

will have an authorized private key whose corresponding public key is already

added in the authorized keys file in the cluster nodes. Also, since this com-

promised node resides in the organization’s own network, therefore all the

geolocation-based firewalls will be bypassed as all the attacks by the attacker

will be proxied from this compromised node. This gives the attacker free ac-

cess to cluster nodes and with the ability to perform any hostile actions on

the cluster nodes in cloud.

We have established by now that these traditional security controls typ-

ically employed to secure SSH on the cloud are not ample. However, if we

detect every malicious session based on the commands entered on the shell,

we would have the capability to actually remediate all of the previously men-

tioned attack models. This can be achieved by classifying every SSH session

into malicious or benign in real-time with the help of machine learning. On

identification of a malicious session, a variety of appropriate actions could be

performed like generating alerts for the incident response team, termination

of the session and blacklisting the session access credentials to help control

the damage.

6

CHAPTER 1. INTRODUCTION

1.3 Problem Statement

The use of SSH in the cloud along with the 22% of the security incidents

involving an insider has questioned the security posture of the cloud infras-

tructure for organizations [4]. Based on this identified problem the following

problem statement accurately describes the thesis motivation and the solu-

tion proposed:

“Cloud infrastructure based on Linux is widely accessed by SSH

protocol. Traditional methods to secure the SSH are insufficient

against a malicious insider or a compromised set of credentials.

This project will explore the efficacy of detecting malicious SSH

sessions with the help of machine learning by purely engineering

features using the domain knowledge from the commands entered

on the shell.”

1.4 Solution Definition/Description

The research proposes the following solution:

• Detection of malign SSH sessions using only the commands entered on

shell.

• Engineering light-weight features by purely relying on domain-knowledge.

• Generate high accuracy non-intrusive models to detect malicious ses-

sions in real time.

7

CHAPTER 1. INTRODUCTION

1.5 Thesis Motivation

Although many studies have been conducted that focus on botnet detection

using the SSH based honeypots, but to the best of our knowledge, we have

found that no previous work has been done to detect the malicious SSH

sessions using the commands entered on the shell except for [5]. The lack

of the study in the domain along with the abrupt adoption of cloud by the

organizations presents a severe threat against the attacker model presented

earlier in this study. Thus, the motivation of this research is to show a novel

approach for the detection of malicious SSH sessions using machine learning

by purely relying on the domain knowledge for feature engineering. The

results of this work have been compared with the only previous work [5].

1.6 Thesis Contribution

This research work makes the following novel contributions:

• Establishment of a custom dataset by compiling the extracted malicious

sessions from [6] and the non-malicious SSH commands history of actual

users from Github Search API [7].

• To the best of our knowledge, this is the first research that explores the

Cybernet honeypot dataset [6].

• Identification of malicious SSH sessions by extracting features from the

commands executed on the shell by purely relying on domain knowl-

edge.

8

CHAPTER 1. INTRODUCTION

• Training multiple classifiers with the extracted features to show the

efficacy of domain knowledge in identification of malicious sessions.

• Provide a capability to detect malicious insiders or a compromised set

of credentials.

• Unlike the work previously done, the proposed methodology can not

be evaded easily by the attacker.

1.7 Thesis Organization

The following is an outline of the thesis structure. Chapter 2 provides a

review of the literature on the core ideas related to this thesis. The research

methodology along with the tools and technologies used during the research

have been discussed in Chapter 3. Complete details of malicious and benign

data collection are discussed separately in the Chapter 4 and also a summary

of the final dataset is also provided in the same chapter. The exploratory data

analysis (EDA), feature engineering and feature selection process is discussed

in Chapter 5. In chapter 6, we start by defining our evaluation metrics

followed by the model training and evaluation. We also discuss the model

tuning using K-fold Cross-Validation in Chapter 6 and provide a comparison

of our results with the previously published work. Finally, we conclude this

research in chapter 7 and also discuss potential future work that can be

carried out on basis of this research.

9

CHAPTER 1. INTRODUCTION

1.8 Summary

This chapter led the foundation of the cloud based infrastructure access and

the challenges related to that access. It also highlighted how the traditional

security controls are not sufficient. It also provides an overview of the the-

sis goals and scope, the research work’s main objectives, and overall thesis

organization. In the upcoming chapter, we will look at the literature review

that has been conducted for this thesis.

10

Chapter 2

Literature Review

In this chapter, the important research work linked to this study are discussed

in this chapter. A concerted effort has been made to cover the most recent

studies completed in recent years. In addition, additional research has been

incorporated to help the reader have a better understanding of the suggested

strategy as they read through this thesis.

2.1 What is Secure Shell (SSH)?

Secure shell [2] is a network protocol that allows open a secure remote ter-

minal and execute commands in its most basic form. However, the protocol

can also be used for file transfer (SCP, SFTP); as an encrypted transport

protocol for other potentially less secure protocols; and for port forwarding,

which is a technique for allowing machines on opposite sides of a firewall

to communicate by redirecting requests for specific ports to ports on other

servers.

11

CHAPTER 2. LITERATURE REVIEW

2.2 Attacks on SSH

Research has shown that SSH is among one of the highly attacked services

on the exposed hosts on public clouds [8]. The SSH attack types involve port

scanning and brute-force attacks. In SSH port scanning attacks, attacking

entities perform scans for all the open ports and correlate the responses to

guess the SSH port of the target host. However, brute force attacks are the

most common type of attacks on SSH target hosts.

2.2.1 Brute-Force Attacks

Brute-force attacks are performed in a variety of ways. In this attack type, an

attacking entity performs brute force on access credentials of the target host

across the complete password space. Sometimes brute force attack is also

performed using a large dictionary of already stolen username and password

sets, called the dictionary attack. SSH brute force can also be sometimes

performed using a limited set of username password credential sets when the

attacker is trying to guess the password, called the guessing attack. The sole

purpose of these attacks are to acquire a valid set of SSH credentials to the

underlying host. Different types of brute-force attack mitigation techniques

involving flow-record analysis, SSH log analysis and machine learning based

approaches have been published by researchers. In this section, we present

the recently published research in the SSH attack mitigation domain.

• One of the approach that uses Long Short Term Memory (LSTM), a

deep learning model based SSH brute force attack detection is [9]. It

uses the infamous CICIDS2017 dataset [10].

12

CHAPTER 2. LITERATURE REVIEW

• Most of the techniques easily detect the aggressive amount of of SSH

guessing attacks, which forced attackers to come up with novel ideas.

One approach adopted by the attackers is to run very slow guessing

attacks i.e. one password guessing attempt in a span of an hour, a day

or a week. An approach to detect such attacks is described in [11].

• Even unsuccessful brute-force attacks are costly for the target in terms

of resources as a lot of the system resources are wasted which could

have been useful for legitimate users. The scarcity of these resources is

much higher in IoT devices. A study quantifies the resources acquired

by an intrusion detection system (IDS) as it detects and mitigates a

SSH brute force attacks in IoT devices [12].

• In order to infiltrate a system, adversaries employ a variety of user

name and password combinations in SSH brute forcing assaults. Be-

cause such operations are easily detectable in log files, sophisticated

attackers spread brute-force attacks over a wide range of origins. How-

ever, effectively locating such dispersed efforts proved to be a difficult

task. In practise, when attackers distribute brute-force attacks over

several sources, they would most likely reuse the same software across

all of them to streamline their operations and save money. This means

that if we can figure out what tools were used in these attempts, we can

group similar tool usage together. A study focused on fingerprinting

the publicly available and custom developed SSH brute force tooling

is [13].

13

CHAPTER 2. LITERATURE REVIEW

2.2.2 Keystroke Timing Attacks on SSH

SSH protocol by default, sends the typed key information immediately to

the remote server. This behaviour of the protocol has been exploited in the

past by analyzing keystroke timings over SSH connections to gather user or

password related information [14].

2.2.3 Man-in-the-Middle (MITM) Attacks on SSH

A recent study explores how SSH key exchange process can result into a

possible Man-in-the-Middle attack on Raspberry Pi 2 Model B [15].

2.3 Post-Quantum SSH Security

With the practicality of quantum computers becoming clearer day by day, re-

searchers have started evaluating different protocols’ cryptography in possible

presence of a quantum adversary. Such an effort for key exchange mechanism

of SSH protocol has been published [16]. Another research that evaluates the

post quantum cryptographic overhead in the SSH and TLS protocols is [17].

2.4 Can SSH Honeypots Help?

SSH honeypot is an emulated environment that accepts SSH connections

and acts as close to a real system as possible. SSH honeypots are decoys

that imitate an actual system to lure attackers into revealing their own or

the attack related information. All of the prior mentioned approaches are

effective before an attack has succeeded. Think of the possibilities of all the

14

CHAPTER 2. LITERATURE REVIEW

sabotages an attacker can perform given an SSH session with a malicious

intent has been established. This establishment of SSH session could have

been resulted by either a successful brute force attack, a malicious insider

or an attacker who has gained access to legitimate target credentials though

a spyware or other tools and techniques. The attacker model presented in

the previous section in Figure 1.1 can be refereed here for the graphical

illustration. SSH honeypots can help in controlling such uneventful scenarios.

The tool at hand in this scenario is the commands entered on the shell

which can be utilized isolating SSH sessions with malicious intent from be-

nign.

2.4.1 Usecase #1: Using SSH Honeypots for Attacker

Profiling

A study that uses SSH honeypots for post-compromise attacker profiling

using the commands and utilizing the domain knowledge of shell commands is

[18]. Another interesting approach that employs Bash commands for attacker

profiling is [19].

2.4.2 Usecase #2: Using SSH Honeypots for Botnet

Detection

Another study focusing detection of SSH botnet infection is [20]. It uses

commands executed on the shell along with other network features to detect

SSH botnet infection stage. Again, there is not much domain knowledge

extracted from the set of commands to build features.

15

CHAPTER 2. LITERATURE REVIEW

2.4.3 Usecase #3: Using SSH Honeypots for Detet-

cion of Malicious SSH Sessions

While there are plenty of researches done employing SSH based honeypots in

one way or another, but to the best of our knowledge, there is only one study

that is directed towards detection of malicious SSH sessions using machine

learning [5]. While it addresses the problem in the right fashion with a

smart approach of data collection and classification, we argue that there is

still room for improvement. First of all, it employs N-grams as features which

is a Natural Language Processing (NLP) based technique. We can make use

of domain knowledge to extract and curate features which could be simpler

while producing as good results. Secondly, this research employs K-Nearest-

Neighbors (KNN) for classification which is a memory hungry algorithm as

it keeps all the training data in memory. This trait of the model renders

into a directly proportional relationship between the training data and the

prediction time as well as the training data and memory used, which makes

the model a bit intrusive on the node when deployed in production. Another

study that aims at detecting malicious shell commands and binaries of IoT

devices is [21]. This study also uses NLP based term and character-level

features.

2.5 Summary

In this section, we presented the possible usages of SSH protocol, the common

attacks on SSH and their mitigation techniques. Apart from the preemptive

16

CHAPTER 2. LITERATURE REVIEW

techniques to detect an SSH attack, we also discussed the published research

that can tell a malicious SSH session from a benign one after it has been

established. We also discussed the imperfections in the already published

work and the ways it can be improved.

17

Chapter 3

Research Methodology

In this section we present the methodology employed during this research

work. We will discuss the steps in sequence that were carried out to reach

the desired outcomes. Since this research can be categorized as a machine

learning classification problem, the steps involved include all the processes

involved in a typical machine learning pipeline including data collection pars-

ing, data cleaning, exploratory data analysis (EDA), feature engineering and

model evaluation and tuning. The complete process is graphically repre-

sented in the Figure 1.1. After the process description, this section will

also provide details about the tools and technologies that will be used in this

research work.

3.1 Steps involved in the carried out research

Research methodology used is graphically represented in Figure 3.1.

18

CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.1: Research methodology flowchart

3.1.1 Data Collection & Parsing

This process involves collection of malicious and benign data. We will collect

both data classes and compile it into a process-able format.

19

CHAPTER 3. RESEARCH METHODOLOGY

3.1.2 Data Cleaning

During this process data is cleaned to make sure it is free from out-liars and

observations that could negatively impact the final results. A number of

techniques including removal of empty and duplicate entries are performed

in this process. It is to be noted that for our specific case, we will not need

the data labelling process that is a step usually followed by the data cleaning

process. The data collected from the benign sources will be automatically

tagged as the benign data and the data collected from the malicious sources

will automatically be tagged as malicious data.

3.1.3 Exploratory Data Analysis (EDA)

Datasets range from a few hundred records to millions of records with each

record containing attributes up to thousands. Therefore, it is very hard to

look at the numbers if the dataset is numerical or the millions of lines of text

if the dataset is textual and make sense out of this. Datasets are very hard

to understand in their original form. Exploratory data analysis is a process

used to make inference and generate insights of the data. During this research

step, data is converted into different statistical and graphical representations

which better reflect the data state. This step is usually crafted according

to the dataset at hand as different type of datasets require different type of

exploratory techniques. For the numerical datasets, statistical functions like

mean, median, standard deviation etc are applied to get an idea of the values

within the data attributes. Also, researchers apply different type of visual

representations like Bar graphs, Frequency distributions and word clouds to

20

CHAPTER 3. RESEARCH METHODOLOGY

see what’s in the data. The outcome of this technique is to engineer features

that amplify the model results.

3.1.4 Feature Engineering

Usually the exploratory data analysis and the feature engineering go hand

in hand. Based on the insights collected in previous step, the features are

engineered on which the model is trained and the results are generated. This

is a cycle as represented in the the diagram as well where researchers have

to keep going back and forth between the exploratory data analysis and the

feature engineering steps. The ultimate goal of both of these steps is to

curate features that generate models with improved results.

3.1.5 Model Evaluation and Tuning

In this step, a machine learning model is trained and evaluated against the

desired outcomes or the previously published work. If the results are not

satisfying against the evaluation metrics, the model tuning is performed. It

is to be noted here that defining the evaluation metrics prior to the model

evaluation is important so that the results can be quantified. Model tuning

sometimes involves changing the model parameters from default to a few

other random values. If the results are not close to the desired outcomes,

then the researcher might have to go a step back to feature engineering and

tune the selected features more. Model evaluation and tuning is performed

repeatedly until the results surpass the previously published work against

the defined evaluation metrics or the satisfying level of results are obtained.

21

CHAPTER 3. RESEARCH METHODOLOGY

3.2 Tools & Technologies Used

Table 3.1 lists the tools and technologies used during this research.

Tool / Technology Rationale behind usage

Python [22]
Python programming language was used to
write scripts for pulling and compiling data
from Github Search API

numpy [23]
numpy is a python library that provides
capability of performing complex
mathematical operations

pandas [24]
All data processing was done in
pandas.Dataframe [25] datatype

matplotlib [26]
This library was used for drawing
graphical representations like the confusion
matrix

scikit-learn [27]
Python library for machine learning
implementations

wordcloud [28]
This library was added to generate word
clouds from raw text

Github Search API [7]
Github Search API was used to pull
publicly available user’s bash history
files

Cowrie SSH Honeypot [29]
Cowie honeypot was deployed for
collection of malicious data

Docker [30]
Docker was used for containerization of
honeypot’s deployments

jupyter [31]
Jupyter is a project that enables interactive
computing and it was used while performing
the machine learning section

Google Colab [32]
Google Colab was used to run jupyter
notebooks for all machine learning related
tasks

Google Cloud Platform [33]
Honeypot was run on GCP for collection
of malicious data

pycharm [34]
This IDE from JetBrains was used for writing
the python scripts

Table 3.1: Tools technologies used during this research work

22

CHAPTER 3. RESEARCH METHODOLOGY

3.3 Summary

In this section, we presented a graphical as well as textual representation

of the complete research methodology that was followed while conducting

this research. We also listed all the tools and technologies that were used

during this work along with the rationale behind using each of those tool /

technology in Table 3.1.

23

Chapter 4

Data Collection

This chapter provides the in-depth insight into the the complete data collec-

tion and cleaning technique used in this research.

4.1 Benign Data Collection

Bash [35], a Linux shell, stores its commands history in the .bash history file

in user’s home directory by default. Programmers, sometimes publish their

.bash history files on their Github [36] repositories with or without their

knowledge. This makes their commands history publicly available and can

be pulled by anyone. Since these commands were written with non-malicious

intent by actual engineers on their shell, therefore, we can treat these history

files as the benign dataset [5]. For the actual collection of those files, we make

use of the Github Search API [7]. While we found a total of 10,654 results on

Github with our initial query, it is to be noted that Github neither through

its web interface, nor the API returns more than 1000 results per query. To

24

CHAPTER 4. DATA COLLECTION

get past this blocker, we exploited the size parameter of Github Search API

to design a set of queries based on determined size ranges which limited the

number of records to less than 1000 per query. Using this approach, we were

able to collect a total of 9,623 files from Github. After removing empty files

and files containing duplicate content, we were left with 5,577 unique records.

4.2 Malicious Data Collection

First, we established our own cloud-based honeypot network for the collection

of malicious data. For this purpose, we ran a Docker containerized version

of Cowrie [29] honeypot on three Ubuntu OS [37] based virtual machines

(VMs) in Google Cloud from 1st of September 2021 to 15th of October.

Along with these nodes, we also created a managed MySQL database [38]

which was acting the storage backend for the honeypot VMs. All the activity

on the honeypot was automatically being pushed to that managed database.

Graphical representation of the deloyed honeypot architecture is presented

in Figure 4.1.

We burned through the 300$ free credit provided by Google on 15th of

October 2021. Due to the lack of resources, all three honeypots were run in

low-interaction mode. After analyzing the data collected during that month

and a half period, we realized that the low-interaction mode of the honeypot

was not generating quality interactions by the attackers. We found that the

low interaction honeypots were detectable by the attacking bots rendering

into very low interactions before termination of the connection. Quantifying

the detectability of those low-interaction honeypots by the attacking bots

25

CHAPTER 4. DATA COLLECTION

Figure 4.1: Deployed honeypot architecture

is perhaps a topic of research for another day. Upon further looking, we

were able to find Cyberlab Honeypot dataset [6] that was collected on a

similar model as ours but with a very high number of machines run in low

to high interaction modes over the span of 10 months. This dataset was

also collected using Cowrie SSH honeypot [17]. The data was collected in 10

months by running Cowrie on more than 50 Linux nodes in United States

and European region in different companies and institutions. Initially, the

honeypot was run in low-interaction mode running Cowrie version 1.6.0. On

8th of November 2019, the honeypot was re-run in high-interaction mode by

backing it up with actual Linux machines made possible by Cowrie version

2.0.2.

26

CHAPTER 4. DATA COLLECTION

4.3 Data Parsing

This data, after expansion comprised of 215.63 GB and each entry in the data

contained session related information, timestamp, shell commands written,

source and destination identifiers as well as geolocation data based on the

source IP address. An example record in JSON format [39] is given below:

{

"session_id":␣"db517f7638ee",

"dst_host_identifier":␣"2b143c5ed9d9b0bc00109e3db0258c672eda7ca7b8da0bf379a1a73c9ca6ba38",

"eventid":␣"cowrie.command.input",

"timestamp":␣"2019-12-01T00:09:45.540815Z",

"src_ip_identifier":␣"4617b44fd42fdbe4871bce9421561ed2b6c6d15fd8f570af627443c43927f727",

"dst_ip_identifier":␣null,

"message":␣"CMD:␣cat␣/proc/cpuinfo␣|␣grep␣name␣|␣wc␣-l",

"protocol":␣null,

"src_port":␣null,

"sensor":␣"cowrie-deployment-v02-pcrn5",

"geolocation_data":␣{

"postal_code":␣"48034",

"continent_code":␣"NA",

"country_code3":␣"US",

"region_name":␣"Michigan",

"ip":␣"4617b44fd42fdbe4871bce9421561ed2b6c6d15fd8f570af627443c43927f727",

"latitude":␣42.4753,

"country_name":␣"United␣States",

27

CHAPTER 4. DATA COLLECTION

"longitude":␣-83.2845,

"location":␣{

"lat":␣42.4753,

"lon":␣-83.2845

},

"timezone":␣"America/Detroit",

"country_code2":␣"US",

"dma_code":␣505,

"region_code":␣"MI",

"city_name":␣"Southfield"

},

"arch":␣null,

"duration":␣null,

"ssh_client_version":␣null,

"username":␣null,

"password":␣null,

"hasshAlgorithms":␣null,

"macCS":␣null,

"langCS":␣null,

"compCS":␣null,

"encCS":␣null,

"hassh":␣null,

"kexAlgs":␣null,

"keyAlgs":␣null,

"fingerprint":␣null,

28

CHAPTER 4. DATA COLLECTION

"key":␣null,

"type":␣null,

"outfile":␣null,

"destfile":␣null,

"duplicate":␣null,

"shasum":␣null,

"url":␣null,

"ttylog":␣null,

"size":␣null,

"filename":␣null,

"data":␣null

}

The most relevant attributes for our usecase include session id, message

and timestamp. It is to be noted here that this one data point does not

represent the complete session information. We extracted all data points

with the correlated session id to get all the the information for a session.

Also, one data point only included a single command that was entered on

the shell. So a complete session will comprise of multiple data points each

containing the same session id but different message and timestamp. After

collecting all the data points for a single session, we sorted them based on

the timestamp to get the exact order of the commands entered on the shell

in a single session.

Then we wrote Python scripts to parse and extract all the SSH ses-

sions from the dataset which contained at least one executed command and

29

CHAPTER 4. DATA COLLECTION

dropped all sessions with no executed commands. We were able to collect

a total of 2,98,667 sessions. Since the same attacks were performed against

all the nodes multiple times from multiple sources, it resulted into a lot of

sessions containing duplicate sequences of commands. After dropping all the

sessions with duplicate sequence of commands, we were left with 2,835 unique

sessions.

4.4 Data Summary

Table 4.1 represents the complete dataset details:

Total collected benign data points 9,623
Unique benign data points 5,577
Total collected malicious data points 2,98,667
Unique malicious data points 2,835
Total dataset entries 8,412

Table 4.1: Dataset summary

30

Chapter 5

Exploratory Data Analysis &

Feature Engineering

Previous studies targeting the detection of malicious sessions like [5] and [21],

primarily focused on using NLP based features like N-grams or character

grams. We decided to curate some simpler features by purely relying on

the domain knowledge while achieving similar if not better results. We only

had the single dimensional textual data in our dataset which limited our

options to explore it using the variety of traditional visualizations. First,

we generated the word cloud for the malicious data without removing any

command arguments or flags just to get a gist of what is present in the data,

displayed in Figure 5.1.

Apart from this, we also generated bar graph for highly used words in the

malicious data, word cloud for benign dataset and bar graph for highly used

words in benign dataset represented in Figure 5.2, Figure 5.3 and Figure

5.4 respectively.

31

CHAPTER 5. EXPLORATORY DATA ANALYSIS & FEATURE
ENGINEERING

Figure 5.1: Word cloud for malicious data

Figure 5.2: Frequency of highly used words in malicious data

32

CHAPTER 5. EXPLORATORY DATA ANALYSIS & FEATURE
ENGINEERING

Figure 5.3: Word cloud for benign data

Figure 5.4: Frequency of highly used words in benign data

33

CHAPTER 5. EXPLORATORY DATA ANALYSIS & FEATURE
ENGINEERING

By looking at the word cloud, we were able to make the following obser-

vations:

5.1 System Exploratory Commands

We instantly noticed a trend of words which were either device exploratory

commands or could potentially be used as an argument to a command to col-

lect information about the underlying system. These words included cpuinfo,

uname, which, free, system, mem, shell, w, proc, lscpu, top, etc. Our initial

observations were backed by the number of occurrences of the device ex-

ploratory words in the Figure 5.2. These observations helped us curate our

first feature, system exploratory cmds, a count of all the system exploratory

commands, including system, device, OS, shell, disk, memory and process

exploratory commands. An example session from malicious data containing

system exploratory commands is shown in Figure 5.5.

Figure 5.5: System exploratory commands example from a malicious session

34

CHAPTER 5. EXPLORATORY DATA ANALYSIS & FEATURE
ENGINEERING

5.2 Deletion Commands

Deletion is also a very common form of sabotage by the attacking bots on

their targets. We noticed a very high number of rm, and -rf which is a

deletion command and the recursive deletion flag passed to it respectively.

Using this information, we curated our next feature, deletion cmds, a count

of all the deletion commands in a single SSH session.

5.3 Echo File Writes

The third highest word occurrence in the malicious data was the echo. It is

a Linux command used to display variables and other information onto the

shell or to a file. We know this by experience that benign users hardly ever

use echo to write files. Instead, it is mostly used to display the values of an

environment variable onto the shell. An example session from the malicious

data containing file writes using echo command is displayed in 5.6.

Figure 5.6: Echo file write example from a malicious session

35

CHAPTER 5. EXPLORATORY DATA ANALYSIS & FEATURE
ENGINEERING

5.4 Difference in IP and URL Based Down-

loads

The most common commands on the Linux to download stuff from the inter-

net are wget and curl and we saw a very wide usage of these commands in the

malicious as well as the benign. But the distinctive difference we observed

from multiple records was that the source of the downloads in malicious

data was an IP address instead of a domain name almost all of the time.

This makes sense as attackers would want to hide their identity thus not

using a domain name to host their malicious scripts as doing so could reveal

their identity. On the other hand, for benign data the downloads were from

domain names almost all the time. Using this information, we calculated

two new numerical features called ip downloads and url downloads. These

were simply the number of IP and URL downloads in a single SSH session

respectively. An example of IP based downloads is given in Figure 5.7.

Figure 5.7: IP based downloads example from a malicious session

36

CHAPTER 5. EXPLORATORY DATA ANALYSIS & FEATURE
ENGINEERING

5.5 Directory Navigation Commands

The change directory command cd, has the second highest number of oc-

currences in benign data (Figure 5.3 Figure 5.4). Using this information,

we calculated a new feature called dir nav cmds, a total count of directory

navigational commands in a single SSH session.

5.6 Access Manipulation Commands

Another technique attackers use is to automate their bots to change the ac-

cess credentials of the target in case of a successful attack. This is done to

keep access for further remote sessions while blocking the access of the legiti-

mate user permanently. Later, detailed exploration of the compromised hosts

is done by the attackers. This is usually done using the passwd and chpasswd

commands in the malicious SSH sessions. Since these access manipulation

commands were found in a very high number in the malicious data points,

we calculated another feature called access manipulation cmds, a count of

all these access manipulation attempts in a single SSH session. An example

of IP based downloads is given in Figure 5.8.

Figure 5.8: Access manipulation commands example from a malicious session

37

CHAPTER 5. EXPLORATORY DATA ANALYSIS & FEATURE
ENGINEERING

Apart for these observations, some manual observations were done by

looking at the data. The first thing that was noticeable was that the benign

data used one command per line, while in the malicious data, multiple com-

mands were put into single line separated by either a comma, a logical AND

(&&) or the logical OR ∥ sign. This difference was so distinctive in both

of the data classes that we calculated two new features out of these namely

total lines and total cmds. Table 5.1 summarizes the initial set of features

we calculated for the dataset.

5.7 Feature Selection

Feature selection was performed with intuition as well as the generating the

correlations between the features and removing one of the strongly correlated

features. While the baseline features as listed in Table 5.1 produced very

promising results in our initial tests, we believe transforming some of these

raw counts into percentage-based features could produce much better results.

For example, percentage of deletion and system exploratory commands in to-

tal commands could better reflect their weight in the model as compared to

raw counts. To elaborate on this, assume a benign SSH session of 100 com-

mands with 2 rm commands with respect to a malicious SSH session of only

10 commands with 2 rm commands. Both of these sessions have the same

number of deletion commands but if we look at the percentage, it varies from

2% in the benign session to 20% in the malicious session. Similarly, having

5 system exploratory commands in a benign session of 50 commands versus

having 5 of those commands in a session of only 10 commands hugely vary in

38

CHAPTER 5. EXPLORATORY DATA ANALYSIS & FEATURE
ENGINEERING

Feature Description Example(s)

system exploratory cmds

A total count
of System,
OS, Device,
Memory / Disk,
Process and
Shell exploratory
commands

sh, shell, /bin/sh, enable,
uname, dmidecode, lshw,
lscpu, lspci, df, which,
top, atop, htop, free, fdisk,
disk, ps

deletion cmds
A count of remove
commands

rm,
rm -rf, rm- rf ./

echo file writes
A count of file
writes using echo
command

echo ”rm -rf .” >hack.sh

ip downloads

A count of
downloads from
an IP address
using wget or curl
command

wget
https://55.5.5.5/dir/hack.sh

url downloads

A count of
downloads from
a URL using
wget or curl
command

wget
http://dummyurl.com/file.sh

dir nav cmds

A count of
directory
navigational
commands

cd
cd /this
cd ∼/.ssh/

access manipulation cmds
A count of access
manipulation
commands

passwd
chpasswd

total lines

Total number of
lines the attack
commands are
spanning

-

total cmds
A total count
of commands in
all lines

-

Table 5.1: Extracted features based on domain knowledge

39

CHAPTER 5. EXPLORATORY DATA ANALYSIS & FEATURE
ENGINEERING

percentage despite having the same number of commands. Building on this

theory, we transformed system exploratory cmds and deletion cmds to sys-

tem exploratory cmds percentage and deletion cmds percentage by dividing

these values by total cmds.

system exploratory cmds percentage =
system exploratory cmds

total cmds

deletion cmds percentage =
deletion cmds

total cmds

Our initial tests also proved that System exploratory cmds percentage

and deletion cmds percentage outperformed the non-percentage distributions

of these variables. After this we generated the correlation matrix for the

remaining features given in Figure 5.9.

We can clearly see that there is a very strong correlation between the

total cmds and the total cmd lines features. To remove this correlation, we

converted them into a single ratio based feature called lines to cmds ratio.

lines to cmds ratio =
total lines

total cmds

Table 5.2 lists all of the selected features.

40

CHAPTER 5. EXPLORATORY DATA ANALYSIS & FEATURE
ENGINEERING

Figure 5.9: Correlation matrix for features

Feature Description

sys exploratory cmds percentage
system exploratory cmds divided by
total cmds

deletion cmds percentage deletion cmds divided by total cmds

echo file writes
A count of file writes
using echo command

ip downloads A count of downloads from an IP
url downloads A count of downloads from a URL

dir nav cmds
A count of directory navigational
commands

access manipulation cmds A count of access manipulation commands
lines to cmd ratio total lines divided by total cmds

Table 5.2: Finalized features after extensive EDA processing

41

CHAPTER 5. EXPLORATORY DATA ANALYSIS & FEATURE
ENGINEERING

5.8 Summary

In this section, first we conducted the exploratory data analysis of the data.

Word cloud and bar graphs were generated for malicious and benign data to

get a clear picture of data contents. Based on the observations, initial features

were designed. Then, a theory was developed regarding percentage based

feature over-performing normal number based features. Based on this theory,

feature transformation was done to convert some of the normal features into

percentage based features. Then, feature correlation was calculated and the

correlated features were dropped. In the upcoming section, we will start the

evaluation on our finalized set of features.

42

Chapter 6

Model Training & Evaluation

In this chapter, we first define our evaluation metrics. After that we discuss of

model training methodology and the results obtained by our models against

the defined evaluation metrics. Finally, we provide the comparative analysis

of our results with the published work in the domain.

6.1 Evaluation Metrics

Having precise evaluation metrics helps gauge the results better. Therefore,

before jumping to the results, lets define the evaluation metrics for our re-

sults. Given TP, TN, FP and FN as True Positive, True Negative, False

Positive and False Negative respectively, we define our evaluation metrics as:

43

CHAPTER 6. MODEL TRAINING & EVALUATION

6.1.1 Accuracy

The number of accurately anticipated data points out of all the data points

is known as accuracy.

Accuracy(Acc) =
TP + TN

TP + TN + FP + FN

6.1.2 True Positive Rate (TPR)

True positive rate, also known as sensitivity is the chance that a true positive

will test positive.

TPR =
TP

TP + FN

6.1.3 True Negative Rate (TNR)

True negative rate, also known as specificity is the chance that a true negative

will test negative.

TNR =
TP

TN + FN

6.1.4 False Positive Rate (FPR)

The false-positive rate is the relative frequency of not positive when positive

is predicted.

FPR = 1− TPR

44

CHAPTER 6. MODEL TRAINING & EVALUATION

6.1.5 False Negative Rate (FNR)

The false-negative rate is the relative frequency of not negative when negative

is predicted.

FNR = 1− TNR

6.2 Model Selection

We experimented on the following frequently used binary classification mod-

els:

• Support Vector Machines

• Decision Trees

• Random Forests

• Näıve Bayes

6.3 Initial Results

We did an 80/20 split of our data and trained the Support Vector Machines

(SVM), Random Forest (RF), Decision Tree (DT) and Näıve Bayes (NB)

classifiers with the 80% of the training data. The testing was done using the

remaining 20% of the data. Among these classifiers, Random Forest showed

the best results with an accuracy of 99.70%, TPR and TNR of 99.72% and

99.67% respectively.

With our initial tests in python’s machine learning library scikit-learn,

while using all the default parameters for each classifier, Random Forest

45

CHAPTER 6. MODEL TRAINING & EVALUATION

(RF) produced the most promising results. Initial results are documented in

Table 6.1.

Classifier Accuracy TPR TNR FPR FNR

Random Forest 0.9970 0.9972 0.9967 0.0027 0.0032
Decision Tree 0.9952 0.9962 0.9934 0.0037 0.0065
Naive Bayes 0.9322 0.8984 0.9918 0.1015 0.0081
SVM 0.9019 0.9757 0.7721 0.0242 0.2278

Table 6.1: Initial results of different classifiers

6.4 K-Fold Cross Validation with Hyper-Parameters

Tuning

Even though the results produced by RF are satisfactory, we see two prob-

lems here. First, testing on a single distribution of data does not represent

how a model will actually perform when deployed in a production environ-

ment. Doing so could result into model overfitting where the models will

report great results when tested on the initial distribution but will perform

poorly when tested on unseen data. Second problem is that using the model’s

default hyperparameters could potentially rob us from much better results.

Hyperparameters are the parameters specific to each classifier which control

the learning rate while training and are set before the model is trained. The

default values might not be the most optimal therefore there are couple of

techniques which could provide insight towards improvement. Hyperparam-

eters can be tuned using the brute force method, random search method and

grid search method. In brute force method, you try each and every possible

46

CHAPTER 6. MODEL TRAINING & EVALUATION

value for every hyperparameter on a data distribution and select the set of

parameter values that produce the best results. In random search method,

a large set of grid hyperparameter values is provided and model is trained

on random set of values from the grid. Grid search selects a grid of hy-

perparameter values and compares them all for the best performing set of

grid.

It is to be noted here that hyperparameter tuning alone does not guar-

antee better results for unseen data as the tuning is specific to a single dis-

tribution of data points. Therefore, we consolidate hyperparameter tuning

using GridSearch along with K-Fold Cross-Validation technique to get the

best performing hyperparameters on multiple data point distributions. K-

Fold Cross-Validation is a technique where the training data is split into K

folds with 1 fold as the validation set and the k-1 folds for training. This

process is repeated K times until every fold has played a role of the validation

set. An example of 3-Fold Cross Validation is depicted in Figure 6.1.

Since the results are averaged in K-Fold Cross Validation, we dropped the

low performing classifiers based on the fact that their initial low prediction

results will bring their overall averages low. We performed hyperparameters

tuning on RF, our best performing classifier with the 10-Fold Cross Valida-

tion in hope of optimizing the max depth and the n estimators parameters.

The 10-Fold Cross Validation is performed on every possible combination of

the input hyperparameters. The input was given in the form of a python

dictionary and the GridSearchCV method of scikit-learn was used with cv

value of 10.

47

CHAPTER 6. MODEL TRAINING & EVALUATION

Figure 6.1: K-Fold Cross Validation for K = 3

param_grid={

’max_depth’:[None,50,100,150],

’n_estimators’:[100,200,300,400],

}

A model was fit a total of 160 times (4 * 4 * 10 folds = 160). Based on the

results, the best performing values for max depth and n estimators were None

and 400 respectively. Training an RF classifier with these hyperparameters

and testing on the test set further increased the accuracy to 0.9976 along

with other attributes. Also, test dataset can easily be called as purely unseen

data so we can say with confidence the final trained model will produce in

similar results when deployed in production. Results of RF classifier before

the model tuning as well as the results after tuning are documented in Table

48

CHAPTER 6. MODEL TRAINING & EVALUATION

Before Tuning After Tuning Difference

Accuracy 0.9970 0.9976 + 0.0006
TPR 0.9972 0.9981 + 0.0009
TNR 0.9967 0.9967 Same
FPR 0.0027 0.0018 - 0.0009
FNR 0.0032 0.0032 Same

Table 6.2: RF results before and after model tuning

6.2.

Results of RF with the testing data after the hyperparameters tuning are

displayed in Figure 6.2.

Figure 6.2: Confusion matrix for RF after tuning

49

CHAPTER 6. MODEL TRAINING & EVALUATION

6.5 Discussion

Due to the lack of study in this exact niche field, we were only able to

compare our results with [5]. We extracted the features from the commands

entered on the shell purely based on the domain knowledge and it produced

much better accuracy and true positive rate. The previous study depends on

the continuity of malicious commands in a sliding window in order to detect

the malicious sessions in a robust way, our approach is independent of such

assumptions. Also, we use random forest classifier which does not need to

store the training data in memory unlike KNN and thus it results into a very

minimalistic system which sits on the nodes without much interference. The

results were further improved by applying hyperparameters tuning along with

the 10-fold cross validation to add more generalization aspect to the model.

50

Chapter 7

Conclusion & Future Work

7.1 Conclsuion

Securing the cloud infrastructure is the key to securing workloads running

in cloud and it acts as the baseline security control that needs to be imple-

mented before an organization starts their cloud migration journey. While

SSH is the highly used protocol to access Linux based cloud infrastructure,

the traditional controls do not provide adequate amount of security against a

malicious insider or a compromised set of credentials in hands of an attacker.

This research has verified that employing machine learning to classify each

SSH session into Malicious or Benign using only the commands entered in

the shell produces promising results against the presented attack model. It

has also been verified that the light-weight features extracted purely based on

the domain knowledge perform better than other natural language processing

(NLP) based features like word-grams and character-grams as proposed in

previous works. We extracted the malicicous SSH sessions from a published

51

CHAPTER 7. CONCLUSION & FUTURE WORK

dataset and wrote scripts for collection of benign dataset. Both of these indi-

vidual datasets were then compiled to form a single dataset. A comprehensive

data exploration was performed and feature extraction was done based on

the findings. Those initial features were segmented through a series of trans-

formations for improvement and also the correlated features were dropped.

Last, but not the least, we conducted our tests and further improved the re-

sults by performing K-Fold Cross Validation and Hyper-Parameters tuning.

Finally, we compared our results with the previously published work, There

is very little work done on the field previously and I believe it is important

to address this issue in multiple ways to help contribute towards the safe

adoption of cloud in the coming era.

7.2 Future Work

We believe that this research could easily be expanded into the following

potential directions:

7.2.1 An Improved Approach for Benign Data Collec-

tion

While our approach already produces near optimal results, we believe these

results can still be improved. Our benign dataset was collected from the

publicly accessible bash history files available on Github repositories which is

a closer representation of commands used in a staging environment. Usually,

the commands entered in the staging or testing environments tend to include

52

CHAPTER 7. CONCLUSION & FUTURE WORK

the large variety of commands which are also common in actual malicious

datasets. To elaborate on this, there is a very good probability of commands

like rm, passwd, uname etc. being run on a staging environment than on

a production environment. The actual production systems might never see

a manual rm or a passwd command due to more restricted access and lack

of change to the underlying system once it is hosting production workloads.

Typically, a limited and same set of commands are run on production nodes

repeatedly. Therefore, collecting a benign commands dataset which is purely

from the SSH sessions logged on production nodes will produce even better

results with lesser false positives and false negatives.

7.2.2 Generalizing for Other Linux and IOT Shells

This work was done on data collected using the Bash shell of Linux. There

are variety of shells available with each having a unique set of executable

commands. We believe this work can be further generalized for all other

available shells of Linux and Linux based shells for Internet-of-Things (IoTs).

7.2.3 Training Models for Specialized Services / Ded-

icated Nodes

All production services can be categorized into a small set of categories.

These categories include containerized services, database services, proxy ser-

vices, etc. Also, the commands that are run on a node are dictated by the

type of service running on the node. Therefore, training specialized models

for each type of services and using those dedicated models on nodes which

53

CHAPTER 7. CONCLUSION & FUTURE WORK

are running same category of services could further improve the results.

7.3 Summary

We conclude our research in this section and provide a few potential research

directions that can be explored to further enhance this work.

54

Bibliography

[1] “Realising the Value of Cloud Computing with Linux.”

https://www.rackspace.com/en-gb/blog/realising-the-value-of-cloud-

computing-with-linux (accessed Oct. 25, 2021).

[2] R. W. Scheifler and J. Gettys, “The Secure Shell (SSH) Connection

Protocol,” p. 1000, 1992, Accessed: Nov. 17, 2021. [Online]. Available:

https://tools.ietf.org/html/rfc4251

[3] R. Andrews, D. A. Hahn and A. G. Bardas, ”Measuring the Prevalence

of the Password Authentication Vulnerability in SSH,” ICC 2020 - 2020

IEEE International Conference on Communications (ICC), 2020, pp. 1-7,

doi: 10.1109/ICC40277.2020.9148912.

[4] “Insider Threat Statistics You Should Know: Updated 2021 - Tes-

sian.” https://www.tessian.com/blog/insider-threat-statistics/ (accessed

Nov. 05, 2021).

[5] P. Dumont, D. Gugelmann, R. Meier, and V. Lenders, “Detection of

Malicious Remote Shell Sessions.”

55

BIBLIOGRAPHY

[6] U. Sedlar, M. Kren, L. Štefanič Južnič, and M. Volk, “CyberLab honeynet

dataset,” Feb. 2020, doi: 10.5281/ZENODO.3687527.

[7] “GitHub Search API.” https://docs.github.com/en/rest/reference/search

(accessed Oct. 20, 2021).

[8] D. Bove and T. Muller, “Investigating Characteristics of Attacks on Pub-

lic Cloud Systems,” in Proceedings - 6th IEEE International Conference

on Cyber Security and Cloud Computing, CSCloud 2019 and 5th IEEE In-

ternational Conference on Edge Computing and Scalable Cloud, EdgeCom

2019, Jun. 2019, pp. 89–94. doi: 10.1109/CSCloud/EdgeCom.2019.00-13.

[9] M. D. Hossain, H. Ochiai, F. Doudou and Y. Kadobayashi, ”SSH and

FTP brute-force Attacks Detection in Computer Networks: LSTM and

Machine Learning Approaches,” 2020 5th International Conference on

Computer and Communication Systems (ICCCS), 2020, pp. 491-497, doi:

10.1109/ICCCS49078.2020.9118459.

[10] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, “To-

ward Generating a New Intrusion Detection Dataset and Intrusion Traffic

Characterization,” 4th International Conference on Information Systems

Security and Privacy (ICISSP), Portugal, January 2018.

[11] G. K. Sadasivam, C. Hota, and A. Bhojan, “Detection of stealthy

single-source SSH password guessing attacks,” Evolving Systems, 2021,

doi: 10.1007/s12530-020-09360-3.

[12] M. M. Raikar and S. M. Meena, ”SSH brute force attack mitiga-

tion in Internet of Things (IoT) network : An edge device security

56

BIBLIOGRAPHY

measure,” 2021 2nd International Conference on Secure Cyber Comput-

ing and Communications (ICSCCC), 2021, pp. 72-77, doi: 10.1109/IC-

SCCC51823.2021.9478131.

[13] Vincent Ghiette, Harm Griffioen, and Christian Doerr. 2019. Finger-

printing Tooling used for SSH Compromisation Attempts. In International

Symposium on Research in Attacks, Intrusions and Defenses (RAID).

[14] Song, D.X., Wagner, D., Tian, X.: Timing analysis of keystrokes and

timing attacks on SSH. In: USENIX Security Symposium, vol. (2001)

[15] H. H. Alsaadi, M. Aldwairi, M. Al Taei, M. AlBuainain and M.

AlKubaisi, ”Penetration and Security of OpenSSH Remote Secure Shell

Service on Raspberry Pi 2,” 2018 9th IFIP International Conference on

New Technologies, Mobility and Security (NTMS), 2018, pp. 1-5, doi:

10.1109/NTMS.2018.8328710.

[16] E. Crockett, C. Paquin, D. Stebila, Prototyping post-quantum and hy-

brid key exchange and authentication in TLS and SSH, in NIST 2nd Post-

Quantum Cryptography Standardization Conference 2019 (2019)

[17] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. 2020.

Assessing the Overhead of Post-Quantum Cryptography in TLS 1.3 and

SSH. In Proceedings of the 16th International Conference on Emerging

Networking EXperiments and Technologies (Barcelona, Spain) (CoNEXT

’20). Association for Computing Machinery, New York, NY, USA, 149–156.

https://doi.org/10.1145/3386367.3431305

57

BIBLIOGRAPHY

[18] D. Ramsbrock, R. Berthier, and M. Cukier, “Profiling Attacker Behavior

Following SSH Compromises,” 2007.

[19] J. Hance and J. Straub, “Use of Bash History Novelty Detection for

Identification of Similar Source Attack Generation,” in 2020 IEEE 19th

International Conference on Trust, Security and Privacy in Computing

and Communications (TrustCom), 2020, pp. 759–766. doi: 10.1109/Trust-

Com50675.2020.00104.

[20] J. T. Mart́ınez Garre, M. Gil Pérez, and A. Ruiz-Mart́ınez, “A novel

Machine Learning-based approach for the detection of SSH botnet infec-

tion,” Future Generation Computer Systems, vol. 115, pp. 387–396, Feb.

2021, doi: 10.1016/j.future.2020.09.004.

[21] H. Alasmary et al., “SHELLCORE: Automating Malicious IoT Soft-

ware Detection Using Shell Commands Representation,” IEEE Internet of

Things Journal, 2021, doi: 10.1109/JIOT.2021.3086398.

[22] “Welcome to Python.org.” https://www.python.org/ (accessed Nov. 17,

2021).

[23] “NumPy.” https://numpy.org/ (accessed Nov. 17, 2021).

[24] “pandas - Python Data Analysis Library.” https://pandas.pydata.org/

(accessed Nov. 17, 2021).

[25] “pandas.DataFrame — pandas 1.3.4 documentation.”

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

(accessed Nov. 17, 2021).

58

BIBLIOGRAPHY

[26] “Matplotlib: Python plotting — Matplotlib 3.4.3 documentation.”

https://matplotlib.org/ (accessed Nov. 17, 2021).

[27] “scikit-learn: machine learning in Python — scikit-learn 1.0.1 documen-

tation.” https://scikit-learn.org/stable/ (accessed Nov. 17, 2021).

[28] “wordcloud · PyPI.” https://pypi.org/project/wordcloud/ (accessed

Nov. 17, 2021).

[29] “Cowrie SSH/Telnet Honeypot: https://cowrie.readthedocs.io.”

https://github.com/cowrie/cowrie (accessed Oct. 20, 2021).

[30] “Empowering App Development for Developers — Docker.”

https://www.docker.com/ (accessed Nov. 17, 2021).

[31] “Project Jupyter — Home.” https://jupyter.org/ (accessed Nov. 17,

2021).

[32] “Welcome to Colaboratory - Colaboratory.”

https://colab.research.google.com/?utmsource = scs −

index(accessedNov.17, 2021).

[33] “Cloud Computing Services — Google Cloud.” https://cloud.google.com/

(accessed Nov. 17, 2021).

[34] “PyCharm: the Python IDE for Professional Developers by JetBrains.”

https://www.jetbrains.com/pycharm/ (accessed Nov. 17, 2021).

[35] “Bash - GNU Project - Free Software Foundation.”

https://www.gnu.org/software/bash/ (accessed Oct. 25, 2021).

59

BIBLIOGRAPHY

[36] “GitHub.” https://github.com/ (accessed Oct. 20, 2021).

[37] “Enterprise Open Source and Linux — Ubuntu.” https://ubuntu.com/

(accessed Nov. 17, 2021).

[38] “MySQL.” https://www.mysql.com/ (accessed Nov. 17, 2021).

[39] “JSON Format - rfc7159.” https://datatracker.ietf.org/doc/html/rfc7159

(accessed Nov. 17, 2021).

60

