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Abstract: 

The hallmark of cancerous cells is chronic proliferation for which they rely heavily on nutrients 

like essential amino acids. Membrane transporters strictly control the uptake of essential amino 

acids across the cell membrane. Among many membrane transporters, LAT1 (SLC7A5), an L-

type amino acid transporter, has been frequently reported overexpressed in a wide range of 

malignancies. Many studies confirm that LAT1 modulation inhibits protein synthesis in cancer 

cells by downregulation of the mTORC1 signaling pathway and by the activation of General 

Amino Acid Control (GAAC) pathway. LAT1 is thus a potential molecular target for cancer 

diagnostics and treatment.  

This study aims to explore LAT1 as a potential drug target against variety of cancers and helps in the 

identification of most important features of LAT1 inhibitors. For this purpose, approaches like MD 

simulation has been used for the structural modeling of LAT1. Inhibitors data against LAT1 is 

collected from through literature study and chembl database, which leads to database of 72 

inhibitors against LAT1. Most stable 3D binding conformation of the target protein after MD 

simulation was used for 3D Molecular modeling and predictive modeling. The docking 

experiments have been used to probe the best binding conformation of the ligands with the target 

protein and to formulate a binding hypothesis. To further investigate our binding hypothesis, pose 

analysis was performed which leads to the discovery of some important protein-ligand interactions. 

To validate this hypothesis, MD simulation of some ligand complexes was performed to evaluate the 

ligand-protein interaction profiles and to evaluate protein residues responsible for binding highly 

active compounds towards target protein such as Ser66, Lys204, Tyr259 and Phe252. The most 

stable complex after the MD simulations was selected as a template for the pharmacophore query 

building. The model was developed with the accuracy of 95% having one hydrogen bond donor 

(Ser66), and three hydrophobic features (Tyr259, Lys204, and Phe252), which might have the ability 

to inhibit LAT1 in variety of cancers. The LAT1 inhibitors dataset was used for screening the 

pharmacophore model. The resultant hits proposed that our model can differentiate between active 

and inactive compounds with up to 95% accuracy. In this research work, we outline recent 

breakthroughs in our understanding of LAT1's role in cancer, as well as preclinical studies. 

Because of LAT1 inhibitors' unique mode of action, it could help treat several cancers that are 
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resistant to conventional treatments, whether alone or in combination with other anti-tumor 

medications.  
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1.1 Importance of amino acid transporter in cancer 

Transporters are membrane proteins that allow selected organic and inorganic solutes to pass 

through the plasma membrane and the membrane of intracellular organelles. System-L refers to a 

group of amino acid transporters that are sodium and pH independent and transport large neutral 

amino acids across the plasma membrane [4]. Amino acids are required for cellular development, 

protein synthesis, and metabolism to occur. LAT1, LAT2, LAT3, and LAT4 are the four 

transporters that make up this system. Only LAT1 and LAT2 are heterodimers with a disulfide 

bond connecting one catalytic light chain (SLC7A5) and a heavy chain (CD98). In this order, 

LAT1 mediates the transport of aromatic branched chain or bulky neutral amino acids: Phe > Trp 

> Leu > Ile > Met > His > Tyr > Val [15]. Despite the fact that it is unable to transport anionic or 

cationic amino acids, it has a tissue distribution that is distinct from that of other system L 

transporters. It is always highly expressed in cells that require a steady supply of energy, such as 

placental cells, blood-brain-barrier endothelial cells, neural glial cells, and activated T-cells [41]. 

Furthermore, LAT1 is invariably overexpressed in metastases and malignancies among all the 

system L transporters. LAT has many different types and there is huge similarity between LAT1 and 

LAT2 and many inhibitors are unable to differentiate between these two such as BCH. This highly 

similarity of these two transporters can lead to the off-target toxicity which can be controlled by 

increasing the specificity of drug towards the LAT1 such as JPH203. It is designed using the 

structure-activity (SAR) relationship of LAT1 ligands. In preclinical tests, it reduces tumor 

growth in vivo without causing severe harm at dosages sufficient to suppress tumor growth. 

Overexpression of LAT1 has been linked to a poor prognosis and patient survival in a variety of 

malignancies, including breast, lungs, prostate, head and neck, colorectal, and gliomas. As a 

result, LAT1 has sparked a lot of interest as a diagnostic medicine, but more crucially as a 

therapeutic drug target that can stop cancer cells from multiplying [37].   
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Figure 1.1: Downstream regulation of LAT1 and how it enhances cancer progression. 

Many chemotherapeutic drugs such as BCH, Quinolones are developed to prevent nucleic acid 

biosynthesis in rapidly proliferating cells. As a result, systematic chemotherapies are thought to 

be highly cytotoxic to the physiologically fast development of some normal cells, resulting in a 

variety of negative side effects [61]. As a result, many established targeted medications in recent 

decades have been engineered to target specific molecular cancer cells, sparing non-target organs 

while maintaining therapeutic impact [12]. Despite the availability of the most advanced targeted 

drug therapies, as monotherapy or in combination to combat the heterogeneous character of 

tumors, they are insufficient to prevent drug resistance from developing. As a result, novel 

molecular targets are urgently needed to overcome these difficult anti-cancer hurdles [10]. 

Cancer cells regulate their metabolic needs on their own, and they almost always find a method 

to fuel their uncontrolled reproduction and growth. Glucose hyper metabolism (GLUT1 

overexpression) has been used as a cancer biomarker; however, it is not unique to cancer [8]. On 

the other hand, because no normal organ hyper metabolizes amino acids physiologically, hyper 

metabolism of amino acids is regarded a potential cancer biomarker in relation to tumor 

selectivity and has fewer negative effects for normal cells [5]. 
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The major transporter of large neutral and branched chain amino acids, L-type amino acid 

transporter 1 (LAT1), provides critical amino acids and is overexpressed in many cancers [11]. 

LAT1 contributes to the increased need for bulk protein synthesis, which in turn promotes cell 

survival and proliferation. Various studies have shown that inhibiting LAT1 causes a delay in 

tumor growth by inhibiting the uptake of essential amino acids, proving that LAT1 is a 

promising molecular target for targeted cancer treatment [3].  

1.2 L-Type Amino Acid Transporter 1 

LAT1 (SLC7A5) belongs to the L type system transporter subfamily, which also contains LAT2, 

LAT3, and LAT4 of the SLC7 amino acid transporter family. It aids in the movement of large 

and neutral branched-chain amino acids. As a LAT1/CD98 complex, LAT1 forms a 

heterodimeric complex with CD98, also known as 4F2hc (SLC3A2). Although CD98 is not 

directly engaged in the transportation mechanism, it serves as a molecular chaperone, providing 

stability to the complex at the plasma membrane, allowing it to carry out its function 

appropriately [13]. 

LAT1 is primarily responsible for transporting necessary amino acids through the BBB and 

placenta. Many medicines that are related to amino acids, such as melphalan, L-DOPA, BCH, 

baclofen, thyroxine (T4), triiodothyronine (T3), and gabapentin, are transported through LAT1  

[17]. Breast cancer, glioma, pancreatic cancer, stomach cancer, cancer of the oesophagus, 

tongue, larynx, hypopharynx, hepatic cancer, renal cell carcinoma, and ovarian cancer are among 

the malignancies in which LAT1 is invariably elevated. LAT1 expression is very low in normal 

cells. BBB epithelial cells, monocytes, macrophages, the placenta, pancreatic beta cells, and the 

testis are all known to express it. As a result, LAT1 is an excellent molecular target for cancer 

treatment. When compared to external substrates, LAT1 has a high affinity for intracellular 

substrates, indicating that intracellular substrate concentration influences the rate of substrate 

transport [25]. As a result, rational drug design for LAT1-targeting medicines requires the 

following: 1) LAT1-specific inhibitors, 2) non-transportable inhibitors, and 3) viable with high 

affinity LAT1 substrates are critical not just for protein synthesis, but also for the replenishment 

of tricarboxylic acid cycle intermediates, which are used to create other macromolecules such as 

nucleotides, which are required for malignant cells' survival and uncontrolled growth [31]. 

Sestrin2 recognizes one of LAT1's substrates, Leucine, which activates mTORC1 (Mechanistic 
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target of rapamycin kinase complex 1), which promotes cell survival and proliferation while 

inhibiting autophagy and apoptosis [22]. In Figure 1.2 3D molecular structure of LAT1 is shown 

which is downloaded from PDB in inward open conformation (ID: 6IRT) [28]. LAT1 has two 

subunits, one is heavy chain subunit (4F2hc), and the other is light chain subunit (LAT1). Blue 

represents the CD98 while the Turquoise color represents the transporter unit LAT1. These two 

subunits form a heterodimeric amino acid transporter complex together. LAT1 interacts with 4F2 

cell surface antigen heavy chain which is also known as the type II Glycoprotein, essential for 

the stabilization of LAT1 on plasma membrane.  

 

 

Figure 1.2: MD Molecular structure of LAT1 retrieved from Protein Data Bank under the PDB 

ID 6IRT. Upper part shows the CD98/SLC3A2 subunit which act as a molecular chaperone and 

help in the stabilization of LAT1 during transportation, while the lower part is LAT1/SLC7A5 

which has the main transporter role. 
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1.3 Structural features of LAT1-CD98 complex 

Lat1 being a significant member of heterodimeric amino acid transporter family (HATs), which 

are made up of two subunits: the light chain subunit (SLC7), which facilitates amino acid 

transport, and the heavy chain subunit (SLC3), which acts as a molecular chaperone and aids in 

the localization and stabilization of the transporter unit (light chain unit) at the cell membrane. 

LAT1 is made up of 12 hypothetical trans membrane segments (TMs) organized in two layers. 

TMs (1, 3, 6, 8, and 10) make up the inward layer, which is encircled by TMs on the outside (2, 

4, 5, 7, 9, 11, and 12) [23]. 

LAT1's N and C terminals are found intracellularly, while CD98's N and C terminals are found 

both intracellularly and extracellularly [17]. The 4F2hc heavy chain subunit is a TYPE II 

membrane N-glycoprotein with four potential N-glycosylation sites: N264, 280, 323, and 405. It 

has one big extracellular domain and one trans membrane domain (ECD) [18]. Through a 

conserved disulfide bond, LAT1 and CD98 are covalently connected. This link exists between 

the light chain's putative extracellular loop and the heavy chain's cysteine (C164, C109), which 

are placed significantly apart from the TMs of 4F2hc. Extracellularly, LAT1 is believed to be 

covered by CD98's extracellular domain, and both subunits are involved in suspected non-

covalent interactions [22]. In figure 1.3, Cryo-EM map of LAT1-4F2fc co plex is shown, Blue 

color represents CD98 subunit while the turquoise color represents LAT1 subunit, respectively. 

The trans membrane segments are shown and numbered from 1 to 12, LAT1's 12 trans 

membrane segments are folded into the conventional LeuT fold. A short loop disrupts LAT1's 

TM1 and TM6, resulting in the half helices TM1a/1b and TM6a/6b. The cryo-EM map did not 

show the N-terminal residues 1–162 for 4F2hc and 1–50 for LAT1. LAT1's extracellular loop 5–

6 (EL5–6) joins the TM5 and TM6 trans membrane regions. Because of its flexibility and the 

side chains in this, it was poorly resolved. There were no loops assigned. The sequences, except 

for these locations, Both LAT1 and 4F2hc were resolved clearly [13]. 
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Figure 1.3:  LAT1–4F2hc topology model. LAT1 has 12 putative trans membrane segments 

(TMs) and connects to 4F2hc via a conserved disulfide bridge between C164 and C109. 4F2hc is 

a type II membrane N-glycoprotein having an internal N-terminus and an extracellular C-

terminus (one TM; four glycosylation sites in the extracellular domain: N264, N280, N323, and 

N405).  

 

1.4 Mechanism of Substrate Translocation 

The so-called "Rocking Bundle Alternating Access Method" is the most probable mechanism for 

the translocation of substrate through the plasma-membrane of LAT1 and other proteins with a 

"LeuT-like fold" [12]. The coupling of intracellular and extracellular gates at a centrally 

positioned substrate binding site is promoted in this classic paradigm by the binding of substrate 

between two structurally dissimilar domains. The scaffold domain is represented by TM3, TM4, 

TM8, and TM9 in the LeuT-fold mechanism, while the core domain is represented by TM2, 

TM1, TM6, and TM7 [11]. 

Between the two domains, the TM5 and TM10 serve as a linker (Figure 1.4). The substrate 

binding is enabled when the outward facing gate opens. The substrate is subsequently released 
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into the cytosol once the intracellular gate is opened. To transport substrate across the plasma 

membrane, LAT1 undergoes several conformational changes [32]. Based on the structural 

findings, a workable model for HATs was presented in figure 1.4, in which the core domain 

rotated towards the hash domain to close the inward gate as an inner facing conformation 

transited to an outward facing conformation, which might be evoked by substrate interaction. 

Meanwhile, the unwinding regions of TM1 and TM6 undergo a conformational shift to allow 

substrate to be accommodated in the LAT1's outward facing conformations [38]. Following that, 

TM1b and TM6a undergo further rotations to start the transition to the outward facing open 

conformation and push the gating residue Phe252 out of the occluded state, causing substrate 

release. TM1a and TM6b essentially remain in the same position throughout the operation, but 

TM2 and TM7 rotate somewhat. The extracellular domain of the heavy chain CD98 rotates as 

well, assisting in the stability of LAT1 during the transport cycle [37].  

 

Figure 1.4: A Functional working model for the LAT1-4F2hc complex substrate translocation. 

The model depicts (figure 1.4) the LAT1 transport mechanism. TM1a and TM6b spin to the 

hash domain to close the inward gate when LAT1 loads substrates in the cytoplasm. TM1a and 

TM6b continue to spin throughout the switch from the inward-facing conformation to the 

outward-facing conformation, whereas TM1b and TM6a begin to rotate away from the hash 

domain. The gating residue Phe252 is then pushed away from the occluded conformation by 

TM1b and TM6a, enabling substrate release. The core domain's TM2 and TM7, as well as the 
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hash domain's TM8, are not presented here for clarity. ECD stands for extracellular domain. The 

letter H stands for helix. TM stands for transmembrane helix [29].                                                                                                                                                                          

1.5 Risk factors 

Molecular heterogeneity associated with cancers are responsible for the least understood 

molecular pathogenesis mechanisms. Among the most influential risk factors of cancer some of 

the most important ones are lifestyle/demographic factors, genetic and epigenetic alterations and 

uncontrolled signaling pathways that collectively adds toward inception and proliferation of 

cancers. In addition to all these factors, some other germline mutations play key roles in the 

process of tumor initiation and progression. Moreover, the hyper activation of gene products in 

the integrated signaling networks is primarily responsible for the uncontrolled growth of signals, 

leading towards cell proliferation, cell differentiation and cell motility.  

1.6 Proposed Strategy 

Increased uptake of amino acids by L-type amino acid transporter 1 may induces cell growth and 

proliferation in different types of cancers causing uncontrolled cellular growth and proliferation. 

To overcome this problem, we proposed the modulation of LAT-1 by drug like compounds 

which may add in the regulation of cell growth/apoptosis in cancerous cells.  

1.7 Objectives 

These are some of the objectives of my research: 

• To probe the binding hypothesis of new chemical agents for the chemotherapeutic 

treatment of cancer 

• Validation of Binding Hypothesis and to evaluate the stability of extracted 3D feature.  

• Predictive Pharmacophore model building and validation strategies 
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2.1 Structural Topology of LAT1 

LAT1's structure is made up of 12 transmembrane helices (TMs) structured in a 5+5 two-fold 

inverted repeat pattern. The other component is CD98hc (4F2hc, SLC3A2), a glycoprotein that is 

covalently linked to LAT1 via a conserved disulfide bond. According to reports, LAT1 is the 

lone transporter unit, whereas 4F2hc serves as a molecular chaperone that aids in the localization 

and stability of LAT1 at the plasma membrane [25]. LAT1 is a light chain protein, whereas 

CD98hc is a heavy chain protein, and the two are linked by a conserved disulfide bond to create 

a heterodimeric complex that belongs to the HATs family of heterodimeric amino acid 

transporters. LAT1 has 12 transmembrane helices (TMs) figure 2.2, which are architecturally 

similar to other bacterial members of the amino acid polyamine organocation family, commonly 

known as the APC family. A "LeuT-like fold" is embraced by this family [34]. The 12 TMs are 

made up of 10 core TMs as well as TM11 and TM12. The ten core TMs, like the rest of the APC 

family, are separated into three functional domains: hash (TMs 3, 4, 8, and 9), bundle (TMs 1, 2, 

6, and 7) and arms (TMs 1, 2, 6, and 7). (TMs 5 and 10). The fragmented structure of the TM1 

and TM6 helices is disentangled in the center to create 1a-1b; 6a-6b, which houses the ligand 

binding site figure 2.2. 

Trans membrane unit 1a and 1b are connected by residues Ile64-Ser66, whereas TM6a and 6b 

are joined by residues Y254-N258 [41]. The cryo-EM map resolves the majority of the loops. On 

the extracellular side, there are six extracellular loops (EL1-6) and five intracellular loops (IL1-

5) while on the intrinsic side, there are five intracellular loops (IL1-5) The longest extended loop 

in this model is EL3, which is 26 residues long and connects TM5 and TM6 with V217-N242 

[11]. Because modelling such large loops is difficult, the predicted loop structure must be 

regarded as speculative, and it may or may not have a major impact on the outcomes of docking 

experiments. TM1a and 6b fluctuate towards the lipid bilayer, forming a solvent-exposed region 

on the cytoplasmic side, according to structural studies [15]. Many hydrophilic residues border 

this region, forming a possible substrate route. This cavity creates a cytoplasmic gate in other 

APC members, hence LAT1's cytoplasmic gate is open in the current circumstance. There is a 

conserved substrate binding site at the end of this cavity that is seen in all APC transporters. 

Sitemap was used to investigate if LAT1 has a well-defined binding pocket. TMs 1, 3, 6, 8, and 

10 surround the binding site [31]. The amphiphilic helices that surround the binding site are 

generally made up of both hydrophilic and hydrophobic residues. Tyr62, Ile63, Ile64, Ser66, 
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Gly67, Phe252, Asn253, Tyr259, and Glu255 are the anticipated binding site residues, which are 

consistent with earlier findings. The binding pocket's site score is 1.18, with a value of >1 being 

regarded promising [30]. The pocket has a total surface area of 5382, with hydrophobic and 

hydrophilic areas of 1682 and 2852, respectively. Unlike LAT1, the AdiC pocket has a surface 

area of 324.582, with hydrophobic and hydrophilic areas of 75.12 and 216.32, respectively. The 

existence of a big non-polar region in LAT-1 might clarify why hydrophobic and neutral amino 

acids are preferentially transported with a high affinity (Km = 1550 M), whereas AdiC largely 

transfers charged arginine and agmatine [29]. 

 

Figure 2.2: Model of LAT1-topology. 4F2hc's The conserved disulfide bridge between C164 

and C109 connects LAT1, which has 12 putative transmembrane segments (TMs), to 4F2hc. The 

protein 4F2hc is a type II membrane N-glycoprotein with an internal N-terminus and an 

extracellular C-terminus (one TM, in yellow; four glycosylation sites in the extracellular domain: 

N264, N280, N323, and N405 are depicted in space-filling style with carbon atoms coloured 
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maroon). LAT1, in contrast, lacks glycosylation and possesses an intracellular N- and C-

terminus. The extracellular domain (ED) of human 4F2hc's crystal structure is depicted in ribbon 

form (PDB ID: 2DH2) [38]. 

F394, the hypothesized upper front gating residue of LAT1, whereas Ser66 and Phe252 are the 

proximal gating residues, and Ser342 is the intermediate layer. LAT1 distal residues, like AdiC, 

engage in a hydrogen bond network, indicating that the transport mechanism is conserved. Many 

hydrophobic residues in LAT1, such as aliphatic Ile139, Ile140, Val148, and aromatic Phe252, 

Phe402, and Trp405, appear to promote binding of substrate via hydrophobic interactions and 

Vander  Waals  forces (e.g., π−π and alkyl) [11]. The proximal pocket, distal pocket, positive and 

negative poles make up LAT1's substrate binding site. Primary side chains are accommodated in 

the proximal pocket, whereas hydrophobic secondary substitutions are bound in the distal pocket. 

The carboxyl and amino groups of the substrate are recognized by the positive and negative 

poles, respectively [43]. The aromatic and heavy branched chain amino acids, notably leucine, 

tryptophan, and phenylalanine, have a high affinity for LAT1. It has a lesser affinity for 

glutamine, threonine, and proline, and it does not recognize alanine or charged amino acids. 

LAT1 is implicated in "Glutamine addiction," a basic characteristic of cancer, due to its 

propensity to swap glutamine with other amino acids. LAT1 and its companion ASCT2 are 

involved in the glutamine and leucine transport cycle figure 2.3, which is important for cancer 

development and progression. It is, in fact, regarded as a prognostic indicator of malignancy 

[23]. 

2.2 Ongoing Treatments and Research Involving LAT1 

Because LAT1 is highly expressed in tumors, it is thought that blocking its activity might 

diminish tumor cell growth, indicating that it could be a promising target for new anticancer 

medicines [13]. As a result, a cancer therapy that targets LAT1 might be an inhibitor that denies 

vital nutrients to malignant cells or a cytotoxic LAT1 substrate with an inherent target. LAT1 

inhibitors are commonly used in conjunction with chemotherapy to improve anti-tumor efficacy. 

Despite widespread pharmacological interest, there are currently just a few strong LAT1 

inhibitors on the market, necessitating the discovery of new inhibitors in the field [32]. 

BCH, or 2-amino-2-norbornane carboxylic acid, is a low affinity, non-selective inhibitor of the 

L-type amino acid transporter family that is reported to reduce tumor cell proliferation and death. 
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The antiproliferative actions of BCH need a very high concentration (>10mM). With an IC50 of 

0.14 in S2 cells and 0.06 in human colon cancer cells, the new tyrosine analogue JPH-203 is a 

very potent and specific inhibitor of LAT1 [25]. Other amino acid-based LAT1 inhibitors, such 

as substrate tyrosine derivatives like Diiodo-Tyr, various meta-substituted phenylalanine 

derivatives, and KMH-233, have been described in addition to JPH203 and JPH203-related 

structures. Other modified amino acids, such as conformationally limited phenylalanine 

derivatives, have been found to be enhanced LAT-1 substrates in addition to amino acid-based 

inhibitors [31]. When compared to the clinically approved drug melphalan, the alkylating agent 

DL-2-amino-7-bis[(2-chloroethyl) amino]-l,2,3,4-tetrahydro-2-naphthoic acid has been shown to 

be a potent competitive inhibitor of BCH transport in murine L1210 leukemic cells, with 

enhanced in vitro antitumor activity and reduced myeloid-suppressive activity 36[]. Furthermore, 

a recent study found that irreversible inhibitors based on 1,2,3-dithiazole had a high effect 

inhibition potential against LAT1 in proteoliposomes [31]. 

In several tests, upregulation of LAT1 has been shown in human cancers such as 

cholangiocarcinoma, malignant glioma, multiple myeloma, and lung, bladder, bone, pancreatic, 

thyroid, prostate, uterine cervix, breast cancer, and other malignancies compared to benign tissue 

as a control [8]. The importance of LAT1 as a prognostic biomarker for the prediction of 

outcomes of many forms of cancer has been highlighted by a relationship between LAT1 

overexpression and considerably shorter survival in several types of malignancies. Amino acids 

are essential nutrients that drive translation, transcription, and cell development via the 

mammalian target of rapamycin (mTORC1) pathway [9]. It also serve as substrates for protein 

synthesis and cellular ATP production. In vitro, the biological importance of overexpressed 

LAT1 was linked to its contribution to cellular proliferation via mTORC1 pathway control. 

LAT1 dysregulation affects a variety of functions, ranging from intracellular-energy metabolism 

to neurotransmission, and pointers to metabolic reprogramming, triggering carcinogenic 

progression by maintaining an amino acid puddle in the cytosol and being implicated in the 

progression of various cancers [10]. 

2.3 Signaling pathway of LAT1 

The most efficient strategy for LAT1 to stimulate the activity of Mechanistic Target of 

Rapamycin Kinase Complex 1 is to increase leucine absorption into cells (mTORC1). In cancer 
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cells, LAT1 not only promotes mTORC1 activity, but it also promotes MYC and EZH2 

signaling. A huge supporting cast of proteins, including a chaperone protein, glutamine 

transporters, and upstream regulators of LAT1 expression, is required for the maintenance of 

high LAT1 expression and activity in cancer. By enhancing cancer cell metabolism, epigenetic 

regulation, and protein production, all of these variables contribute to the fast development of 

cancer. Upregulation of LAT1 in tumor cells affects caspase activity, causing apoptosis to be 

altered. Down regulation of LAT1 by BCH has shown to decrease cellular growth by inducing 

apoptosis via caspase-3 and caspase-7 [12, 13]. Because it transports an amino acid into the 

cytosol, such as (leu) and one amino acid to extracellular environment such as Glutamine, in this 

way it acts as an Antiporter. Leu is essential for mTORC1 activation, which phosphorylates the 

downstream regulator S6K1, a ribosomal protein, and 4E-BP1 which is an eukaryotic translation 

initiation factor [11]. All these proteins have a vital role in protein synthesis and mRNA 

regulation, as well as cellular growth.  

Proto-oncogenes and tumour suppressor genes, such as c-Myc and E2F, has been shown to bind 

to promoter regions of the ASCT2 gene in the nucleus, causing altered metabolism of glutamine 

via SLC1A5 dysregulation Figure 2.3. ASCT2 is responsible for the transport of glutamine 

(Gln) to the extracellular environment, as well as the transport of a neutral amino acid (AA). Gln 

is utilised to make glutathione (GSH), an antioxidant that protects against oxidative stress. 

Oxidative stress suppresses apoptosis in a cascade that includes ASCT2-related caspases-2 and -

9 downregulation and LAT1-related caspases-3 and -7 downregulation. Instead, Gln can be 

utilised to biosynthesize other components crucial for cell development, or it can be transferred 

in the mitochondria and entered in the glutaminolysis proocess, which produces metabolites 

including -KG, pyruvate, and lactate, as well as FADH2 and NADPH, which are required for the 

ATP synthesis figure 2.3. All of these variables have a role in cancer growth and proliferation, 

making LAT1 a promising target for anticancer treatment [15]. 
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Figure 2.3: A) ASCT2 expression via Glutamine transportation into the cell. B) LAT1 

expression via exchange of leucine and Glutamine.  

 

2.4 Downregulation of LAT1 and Tumor Cell Growth 

LAT1 expression was lowered through gene downregulation in numerous investigations to 

investigate the association between LAT1 and tumour development. Breast [14], endometrial 

[36], gastric [83], oral [84], ovarian [90], pancreatic [92], and prostate [17,93,94] cancer cell 

lines have all been shown to be inhibited by LAT1 downregulation via RNA interference. The 

research done in breast [14] and endometrial [36] cancer cell lines is particularly useful because 

it also shows that LAT1 is upregulated in patient-derived tumour tissues, implying that LAT1 

has a functional role in these cancers. Zinc finger nuclease-mediated deletion of LAT1 in lung 

and colorectal cancer cell lines resulted in considerable reductions in cell proliferation [78]. 
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Furthermore, downregulation of LAT1 inhibited migration and invasion of gastric and prostate 

cancer cell lines [17,83], indicating that the higher LAT1 expression found in metastatic lesions 

relative to the originating location [104] may play a role in metastasis development. 

2.5 Drug-Mediated Inhibition of LAT1  

Finding new chemotherapeutic medicines to use in conjunction with current anticancer 

medications for the treatment of various tumors was the primary motivation behind the early 

discovery of LAT1-targeting ligands [8, 9]. Despite the intense pharmacological interest, there 

are now just a few strong LAT1 inhibitors, which make the discovery of new drugs in this field 

necessary. Based on several studies showing that LAT1 is overexpressed in a variety of 

malignancies and the effectiveness of down regulating LAT1 to reduce tumor cell development, 

attempts were made to synthesize and identify strong inhibitors of LAT1-mediated amino-acid 

transport (summarized in Table 2). Among these, BCH (2-aminobicyclo [2.2.1] heptane-2-

carboxylic acid) has been demonstrated to inhibit the proliferation of a range of cancer cell lines, 

including breast [14,73], prostate [93,95], and lung [30]. (see Table 2). BCH, on the other hand, 

is an L-type amino acid transporter inhibitor that inhibits LAT1–4 [9,105–107]. As a result, it's 

uncertain if inhibiting LAT1 alone is enough to alter cell proliferation in these experiments. Oda 

et al. published a drug (KYT-0353 or JPH203) in 2010 that selectively inhibited LAT1 in HT-29 

colon cancer cells with an IC50 value of 0.06 M but did not block LAT2 at this dose [79]. 

JPH203 effectively reduced tumor growth in a xenograft model and inhibited HT-29 colon 

cancer cell proliferation with an IC50 of 4.1 M [79]. JPH203 is a tyrosine analogue inspired by 

the structure of the thyroid hormone triiodothyronine (T3), which is a LAT1 and LAT2 substrate 

[108,109]. 

JPH203 was next investigated in different cancer types and found to inhibit the growth of cell 

lines from the brain [71], stomach [80], head and neck [86], leukemia [50], lung [78], kidney 

[78], prostate [95], thymic carcinoma [96], and thyroid cancer [59]. Importantly, JPH203 

inhibition of LAT1 has been found to reduce tumor growth in xenograft models of human 

leukemia cells [50] and colon cancer cells [79]. Furthermore, we recently demonstrated that 

JPH203 caused cytostatic growth halt in a genetically engineered mouse model (GEMM) of 

anaplastic thyroid cancer [59], despite the mice's immune systems being intact. Interestingly, we 

found that LAT1 expression levels may not always predict JPH203 sensitivity in thyroid cancer 
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cells [59], suggesting that they may not be the main determining factor of a therapeutic response 

to JPH203. 

Another group recently found similar results in gastric cancer cells independently [80]. In 

addition, the action of JPH203 in vitro is strongly reliant on the concentration of LAT1 substrates 

in the culture media, implying that JPH203 functions as a competitive inhibitor of LAT1 [59]. 

Most conventional culture media include EAA concentrations that are significantly higher than 

those observed in plasma. As a result, research examining the effect of JPH203 in vitro should be 

conducted in a tailored medium that closely resembles clinical settings. It's important to note that 

cancer patients' plasma levels of LAT1 substrate amino acids differ significantly: plasma LAT1 

substrates were discovered to be higher in lung [110,111], prostate [112], and breast cancer 

patients [113,114]. Furthermore, EAA were considerably higher in the most aggressive tumor 

subtype of breast cancer than in the least aggressive subtype [113]. LAT1 substrates, on the other 

hand, were reported to be lower in gastrointestinal [115,116], myeloma [117], and pancreatic 

cancer patients [118]. Because the control of plasma amino acid concentrations in cancer patients 

is exceedingly complex, the reason(s) for cancer-specific variations of plasma EAA remains 

largely unclear. 

Multiple factors influence plasma EAA levels, including food, whole-body protein metabolism, 

and tumor amino acid intake. Late-stage cancer patients, for example, are frequently 

malnourished due to a lack of appetite, which can lead to lower plasma levels of LAT1 substrates 

[119,120]. It's still unclear whether changes in plasma LAT1 substrates are constant in the tumor 

microenvironment and whether plasma EAA can predict LAT1 inhibition response. Because 

JPH203 is a competitive inhibitor, it's possible that high intra-tumoral LAT1 substrate amino 

acids will lessen or eliminate the drug's action. In order to determine if the intra-tumoral 

concentration of LAT1 substrates effects the efficacy of competitive LAT1 inhibitors like 

JPH203 in vivo, more research is needed. Furthermore, the influence of plasma EAA on the 

outcome of patients who are not malnourished has not been studied to our knowledge. Future 

research should focus on the impact of plasma EAA levels on patient outcomes and whether 

plasma EAA can be used to predict LAT1 inhibitor response, particularly in the case of the 

competitive LAT1 inhibitor JPH203. 
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Among the most notable instances is 2-Amino-2-norbornanecarboxylic acid (BCH) (Figure 2.4-

1), which is regarded as a common inhibitor of all large amino acid transporters (LAT14, or 

System L), and which is said to cause the suppression of cancer growth and apoptosis. To 

achieve anti-proliferative effects, however, a very high concentration (>10 mM) of BCH is 

needed because it is a low-affinity and non-selective substrate of LAT1. An effective and 

selective LAT1 inhibitor, KYT-0353 (JPH-203) (Figure 2.4-2) has an IC50 of 0.14 M in S2 cells 

and 0.06 M in human colon cancer (HT-29) cells. Additionally, it prevented tumours from 

xenografts and cancer cells from growing. Additionally, 1,2,3-dithiazole-based irreversible 

covalent inhibitors were identified in a recent paper (Figure 2.4-3) (Figure 2.4-3) that showed 

potent inhibition of human LAT1 reconstituted in proteoliposomes. 

 

Figure 2.4: Following are the chemical structure of the compounds that are involved in LAT1 

inhibition, BCH (1), KYT0353 (2), and Z-4-Chloro-N-4-trifluoromethoxy phenyl-5H-1,2,3-

dithiazol-5-imine (3). 

The development of novel substances that can imitate LAT1 substrate and can compete for the 

binding of target has been a key factor in the drug discovery of LAT1 inhibitors. However, the 

substances discovered using this method need to be present in large quantities in order to have an 

impact on biology, such as BCH (10 mM). Moreover, many inhibitors of LAT1 were also 

designed and one of them is JPH203 which is by far the most selective and potential inhibitor of 

LAT1. It blocks LAT1 substrate binding site with high activity i.e., IC50 of 60-790nm, depending 
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on the type of tissue. On the other hand, BCH is a non-selective inhibitor of LAT1 so it is 

problematic to use this inhibitor because it can also block LAT2, LAT3 and LAT4.   

The virtual screening exertions have facilitated the documentation of novel ligands, signifying 

that AdiC-based LAT1 models can be valuable for structure–function studies.   

Table 2.1:  Inducers of LAT1 with specific IC50 in clinical trials. 

 

Drug Chemical Name IC50 Mol.weight 

 

 

JPH203/KYT-0353 

 

 

 

0.14 μM 

 

 

545.24 

 

 

KMH233 

 

 

 

 

0.98 μM 

 

 

587.60 

 

 

BCH 

 

 

 

112 μM 

 

 

155.2 
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3.1 Methodology Overview:  

The overall methodology of this research study is given in figure 3.1. The research methodology of 

this project is a structure-based method for understanding the binding pattern of LAT1 with their 

respective inhibitors. This will help us identify the significant binding residues of proteins and 3D 

features of ligands. The structure-based method started by collecting data of Target protein (LAT1) 

and inhibitor datasets against this protein. Then molecular dynamic simulation was used to stabilize 

the protein structures. This is followed by the molecular docking protocol, optimization to probe the 

binding pockets of LAT1. Pose analysis was performed after docking to select the best binding pose. 

A molecular dynamic simulation was employed to stabilize the docking complexes. After that a 

structure-based pharmacophore modelling was performed. 

Figure 3.1: The flow diagram of methodology (Molecular Modeling). First, the data collection 

was done. LAT1 structural and chemical data was collected and preprocessed. The screening set 

of LAT1 ligands was generated using molecular docking. Molecular modeling steps were 

performed on LAT1 dataset. Docking results were evaluated using molecular dynamics (MD) 

simulations. The binding pattern was identified which helped in the selection of template. 

Further, the predictive modeling was executed using template and rest of dataset to generate 

conformations. Template was used for the selection of features. The final model was evaluated.  
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3.2 Structure-Based Methodology:  

The structure-based methodology is used in drug discovery research when structural information 

about protein is present and structural data of ligand is limited. This method aid in the recognition of 

unique binding features of the protein, which in turn help in the identification of potential drug 

compounds for a protein. The structure-based methodology is used in this research to identify the 

interaction pattern of a protein with respective ligands. This will facilitate us to construct a binding 

hypothesis for LAT1. For this purpose, first co-crystallized structure of LAT1 was downloaded from 

PDB and then it is stabilized using MD simulation for further analysis. 

3.3 Collection of Dataset 

A dataset of 72 compounds was selected from ChEMBL database and literature along with their 

IC50 values in nM against L-type amino acid transporter 1. After data preprocessing, which 

includes removal of duplicates, 58 compounds are left, which are amino acid derivatives and 

belong to different classes of compounds. These selected compounds are assembled into 3D 

structures and their energy is minimized through Molecular Operating Environment 2015. 

Chembl contains the chemical data of different compounds and their IC50 against different 

protein targets. Table 3.1 represents the complete inhibitor data against LAT1 that was used in 

this study. 

 

CODE 

 

LIGAND ID 

 

IC50 VALUE (nM) 

 

Molecular Weight 

L1 Lig_1 790 472.33 

L2 Lig_2 980 313.71 

L3 Lig_3 3480 441.75 
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L4 Lig_4 6600 241.29 

L5 Lig_5 7300 255.32 

L6 Lig_6 9100 271.32 

L7 Lig_7 17000 265.31 

L8 Lig_8 18200 587.6 

L9 Lig_9 20000 155.16 

L10 Lig_10 27700 396.83 

L11 Lig_11 29000 253.25 

L12 Lig_12 32380 380.83 

L13 Lig_13 36000 223.23 

L14 Lig_14 46000 165.19 

L15 Lig_15 68000 181.19 

L16 Lig_16 69000 165.19 

L17 Lig_17 76000 237.25 

L18 Lig_18 83000 195.22 
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L19 Lig_19 85000 131.18 

L20 Lig_20 92000 207.23 

L21 Lig_21 95000 237.25 

L22 Lig_22 96000 222.24 

L23 Lig_23 100000 197.19 

L24 Lig_24 100000 166.18 

L25 Lig_25 101000 180.21 

L26 Lig_26 110000 222.24 

L27 Lig_27 110000 155.16 

L28 Lig_28 112000 155.20 

L29 Lig_29 120000 149.22 

L30 Lig_30 130000 209.20 

L31 Lig_31 130000 179.22 

L32 Lig_32 130000 181.19 

L33 Lig_33 140000 131.18 
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L34 Lig_34 150000 223.23 

L35 Lig_35 160000 166.18 

L36 Lig_36 160000 204.23 

L37 Lig_37 160000 156.14 

L38 Lig_38 170000 245.28 

L39 Lig_39 170000 149.22 

L40 Lig_40 190000 169.18 

L41 Lig_41 200000 171.24 

L42 Lig_42 220000 131.18 

L43 Lig_43 240000 239.34 

L44 Lig_44 260000 223.23 

L45 Lig_45 260000 171.24 

L46 Lig_46 340000 206.21 

L47 Lig_47 380000 181.19 

L48 Lig_48 380000 204.23 
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L49 Lig_49 440000 170.17 

L50 Lig_50 460000 155.16 

L51 Lig_51 470000 194.23 

L52 Lig_52 680000 223.23 

L53 Lig_53 810000 179.22 

L54 Lig_54 1000000 186.17 

L55 Lig_55 1000000 170.17 

L56 Lig_56 1000000 232.24 

L57 Lig_57 3000000 131.18 

L58 Lig_58 50000000 117.15 

3.4 Pre-processing of Chemical Data  

Specific pre-processing techniques were applied to the chemical data to filter the initial dataset 

against LAT1 to get the precise, targeted and valuable inhibitors with significant IC50 value 

against the potential target. The chemical dataset is filtered based on following criteria: 

• Duplicate compounds having the same ChEMBL ID are deleted because they belong to 

the same study, causing the noise during the analysis of results. 

• Deletion of compounds that are not published in scientific research articles and biological 

assays. 
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• Deletion of those compounds that have insignificant structural variation with the identical 

biological activity values (IC50). 

• Deletion of compounds which have same simplified molecular input line entry system 

(SMILES) codes because this also leads to duplication of compounds. 

• Deletion of compounds that have molecular weight less than 100 because these molecules 

are unable to dock within the binding pocket of protein during docking. 

• Deletion of those compounds which have IC50 value with the sign “<” or “>” because 

exact IC50 value is unknown which leads to plausible justification of results.  

Shortlisted and finalized dataset of inhibitors, comprising of 58 compounds has been selected. 

Furthermore, after the cleaning of dataset, inhibitors dataset is subjected to energy minimization 

through force field of MMFF94 and conserved into 3D structures via Molecular Operating 

Environment (MOE) 2019 software. This energy minimized dataset of ligand is further used in 

Docking protocol.  

3.5 Physiochemical Properties 

A drug’s activity depends on two main factors, that are its ability to bind to the target’s active 

site and its way to the target protein. The way to the target explains the transport behavior of 

potential inhibitors to reach the target site by overcoming the difficulties of complex system. 

Therefore, to observe the transportation properties of LAT1 ligands inhibitor dataset, certain 

properties such as logP, molecular weight and pIC50 has been calculated via MOE software and a 

correlation graph was plotted between descriptors and pIC50 to see how these descriptors 

influenced biological activity.  
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3.6 Biological Data 

The second requirement for docking protocol is the 3D structure of target protein which should 

also be energy minimized. Therefore, respective crystal structure of therapeutic target protein 

that is L-type amino acid protein 1 (LAT1) was downloaded from protein data bank (PDB) under 

PDB ID of 6IRT with resolution of 3.5Å. furthermore, this protein crystal structure is then 

subjected to energy minimization using AMBER99 force field via Molecular Operating 

Environment (MOE) 2019 software. This stable energy minimized structure is then used further 

stabilized by Molecular Dynamic simulation using SCHRODINGER.  

3.7 Target protein preparation 

Further, the human LAT1 protein was stabilized by molecular dynamics (MD) simulations using 

SCHRODINGER because a stable protein structure will lead to better binding interactions. MD 

simulation uses Newton’s law of motion to monitor the movement of atoms and molecules for 

the specified time interval usually in nanoseconds to check the stability of molecular interactions. 

MD simulation steps include preparation of structure (optimization and minimization), Periodic 

boundary conditions (selection of force fields, shape, and size of boundary box), Solvation 

(Addition of ions), and Energy minimization of the system and MD production (for simulation 

the specified time).  Initially, the protein complex was prepared and refined using a protein 

preparation wizard. The hydrogens were added, and disulfide bonds were created. The pH of the 

protein was changed to 7.4. During refinement, the water molecules beyond 3Å were removed, 

and the protein was minimized. After protein preparation, the system was build using the TIP3P 

water model in a cubic box using Desmond software. The system was neutralized by adding 

sodium ions. The molecular dynamics simulation was run at 200ns to stabilize the protein. The 

stable protein was analyzed using protein RMSD. This stable structure was retrieved for further 

molecular modeling analysis.  
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3.8 Molecular Docking 

Molecular docking protocol was used to target LAT1, to predict the most preferential and 

potential binding modes of the ligands of LAT1 within the binding pocket of LAT1. Because 

favorable binding poses of ligands helps in understanding of the 3D properties of ligands and 

their native conformation. Docking protocol was performed using the dataset of 58 potential 

inhibitors of LAT1 that are docked within the binding pocket of stabilized structure of LAT1 

under PDB ID 6IRT.  

To initiate docking, firstly crystalized structure of LAT1 was energy minimized using Molecular 

Operating environment (MOE) using AMBER99 force field. Secondly, the dataset of inhibitors 

is also energy minimized using MMFF94 force field using the same software MOE for the stable 

ligand-protein interaction during docking protocol. Thirdly, GOLD suite (Genetic Optimization 

for Ligand Docking) software (version 5.6.1), is used for the execution of docking. The binding 

pocket was selected using the point selection method, and the x, y, and z coordinates were 

adjusted to select the specific binding pocket residues reported previously. The binding pocket 

coordinated for LAT1 are shown in the table. 

Table 3.2 X, Y, Z Coordinates selected in GOLD for the binding pocket. 

Protein X Y Z 

LAT1 3.7800 3.4725 -0.9642 
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Figure 3.2: Binding pocket of LAT1 along with binding residues which are important in binding 

the substrate to LAT1 and are proved crucial in Mutagenesis studies.  

Moreover, the binding site area for the protein was at 15Å to facilitate all the possible and likely 

ligand protein interaction and also to include all the crucial amino acid residues confirmed 

through literature. The important amino acid residues include I62, I63, I64, G65, G67, S66, 

I139, I140, A144, V148, F252, A253, G256, G255, W257, N258, F262, C335, S338, S342, 

F402, W405 and C407. After this a maximum of 100 genetic runs per ligand against LAT1 are 
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generated and are ranked based on the GOLD score scoring function. GOLD fitness score is 

calculated using the following formula: 

∆G(BIND)= ∆G(hb_ext) + ∆G(hb_int) + ∆G(vdw_ext) + ∆G(vdw_int) 

hb_ext = Intermolecular H-bonds  

hb_int = Intramolecular H-bonds 

vdw_ext = Van der waals interactions 

vdw_int = Intramolecular van der waals interactions 

No other constrains are applied and all the other features are set to default. However, the slow 

protocol is used to increase the precision and accuracy of results. The general workflow of the 

docking protocol has been shown in the following diagram: 

 

 

Figure 3.2.1: Workflow of Molecular Docking. The biological data was retrieved from Protein 

Databank under the PDB id 6IRT. However, the chemical data of 58 ligands were collected from 

Chembl, and Literature. Then molecular docking was performed by GOLD software where 

binding pocket was identified. By taking the coordinates 3.7800 (X), 3.4725 (Y), and -0.9642 (Z) 

docking was performed. After that, the pose analysis and selection were made for correlation 

analysis and binding hypothesis formation. 
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3.9 Pose Analysis:  

Docking resulted in different docked poses of inhibitors within binding site of LAT1. We 

adopted the strategy of correlating the docking score with the pIC50 value. The pIC50 represents 

the activity of the inhibitor against a particular target. pIC50 was calculated from the IC50 given in 

Table 2 using the following formula.  

pIC50 = 1/LOG10[IC50(M)] 

OR 

pIC50 = -[LOG10(IC50(M))] 

pIC50 was plotted against the Gold fitness score/ Gold fitness score represents the binding energy. 

Secondly, correlation of molecular weight of inhibitors with pIC50 for was also studied as it 

represents the biological activity due to the transport of ligand towards the target. LogP (o/w) 

was also studies in correlation with pIC50. LogP (o/w) is the partition coefficient of the between 

octanal and water also known as Lipophilicity. It is a physicochemical feature describe the 

solubility of given substance in fat. As to reach the target a drug compound must cross many 

lipophilic and hydrophobic barrier, but the high lipophilicity can dissolve the drug hence low 

activity. 

3.10 Molecular Dynamic Simulation  

Some of the protein-ligand complexes generated after docking the LAT1 data set were stabilized 

by molecular dynamic simulation. The top poses of the ligands with the highest Gold score were 

used. A total of SIX complexes were stabilized using SCHRODINGER. So to stabilize the 

interacting complex, molecular dynamic simulations (MDS) were executed using Maestro-

SCHRODINGER software [87]. For this purpose, ligand and protein complex was prepared in 

MOE [88]. Then, the complex was prepared in Desmond-SCHRODINGER software at pH 7.4 

[89]. The workplace structure was preprocessed by adding hydrogen and refined by optimizing 

the H-bond assessment at pH 7.4. A default force field of OPLS4 was selected for energy 

minimization to remove any strong van der Waals interactions that may cause structure distortion 

within the complex. The complex was then solvated in a TIP3P water modeled cubic box of 5Ao, 

where Na+ or Cl- were added to neutralize the system [90]. After equilibrating the protein-ligand 

complex, MDS production was made at the standard temperature (300K) and pressure (1.01325 
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bar) for 100 Nano sec. The stability of complexes was analyzed by αC RMSD, αC RMSF, and 

the hydrogen bond analysis. 

 

Figure 3.3: Overall workflow of Molecular Dynamics Simulations of selected ligand complex. 

This process was done by moving LAT1 complexes from the docked complex and processed 

towards system building. After energy minimization MD production for 100nsec was made and 

the results were analyzed by means of trajectory analysis. 

3.11 Pharmacophore Modelling 

Pharmacophore Modelling is a key tool for the identification of hit compounds. A 

pharmacophore model represents the essential steric and electronic features that are required for 

the recognition of a ligand by a specific biological target to produce a specific biological 

response. This model distinguishes between actives and inactive via identifying pharmacophore 

features named as hydrophobic, hydrogen bond donor/acceptor, and aromatic rings. These 

features with specific radii and distance assist in forming a pharmacophore query.  
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3.11.1 Pharmacophore model development 

Pharmacophore model was constructed for all the ligands by applying a threshold of >=18200nM 

biological activity values. LAT1 ligands were classified into active and inactive based on the 

defined activity threshold. Compounds having IC50<=18200nM were considered as active and 

those having IC50>=18200nM were marked as inactive. Pharmacophore model was generated by 

using LIGANDSCOUT 4.1.3 version. The most stable complex with highest activity value was 

selected as a template. After the formation of features with their specified radius, and selecting 

minimum number of similar features, hit identifications were made. The conformational database 

was used as input in the pharmacophore search. The algorithm searched for all possible hits with 

features similar to the input ones. By evaluating the number of actives and inactive in the internal 

hits, the respected pharmacophore model validation was made. This step was crucial to predict 

the reliability of a model.  

 

Figure 3.4: Overall workflow of structure-based Pharmacophore Model Generation using stable 

complex from MD simulation studies. The step was done by extracting the feature from the 

template and generation of confirmation from rest of the ligand data. Based on features, model 

was generated and screened against the packed confirmation for internal set validation. 
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3.11.2 Pharmacophore Model Evaluation 

To evaluate the quality of pharmacophore model, certain statistical parameters were calculated 

that validated the predictive ability of model in differentiating active from inactive compounds.  

Those ligands which were actives and predicted actives by the model were stated a True 

positives (TP). Similarly, True negative (TN) were those inactive compounds that were predicted 

as inactive by model. While those that are actives in nature but do not appear in hits, i.e., 

predicted as inactive, were False Negatives (FN). Likewise, False Positives (FP) were those 

ligands that were inactive but recognized as actives by the model. After classification of ligands, 

evaluations were made on certain statistical parameters such as Specificity (true negative rate), 

Sensitivity (true positive rate), Accuracy (overall prediction rate), and Precision (positively 

predicted values). However, the decision was clarified based on Matthews Correlation 

Coefficient (MCC), which correlated the actual and predicted value by taking all classified 

variables (TP, TN, FP, and FN). The model was predicted best by its prediction statistics and 

utilized further for the virtual screening of different libraries. 

TP= True positive       TN= True negative 

FP= False positive       FN= False negative 

𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 (𝐓𝐫𝐮𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐫𝐚𝐭𝐞): 𝑇𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
……………………………….…… Eq 1 

𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 (𝐓𝐫𝐮𝐞 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞 𝐫𝐚𝐭𝐞): 𝑇𝑁 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
…………………………………… Eq 2 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲:                                               𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
……………….….… Eq 3 

𝐌𝐚𝐭𝐡𝐞𝐰′𝐬𝐜𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝑡: C =
TPXTN−FPXFN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
…………...Eq 4 
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4.1 Target protein preparation 

The X-ray crystallographic structure of L-type amino acid transporter1 LAT1-4F2hc complex 

bound with BCH having the resolution of 3.5A0 in active state was used, it has two chains, heavy 

chain (CD98) and light chain (LAT1). Lat1 has transporter activity while CD98 has chaperone 

function. Therefore, we remove the heavy chain from the complex structure and only use the 

Light chain (LAT1). The Lat1 chain is then stabilized using MD simulation at 200 nano second 

simulation time. The stability of the LAT1 chain was evaluated by the deviation of αC of the 

backbone of a protein in terms of root mean square deviation (RMSD). 

4.2 Molecular Dynamics Simulations (MDS) of LAT1 

The modeled protein was further subjected to molecular dynamics simulations (MDS) utilizing 

Maestro-Schrodinger for further optimization. The stability of structures was measured in terms 

of the deviation of backbone (α-carbon) structure with reference to its initial confirmation [98]. 

For this purpose, the root mean square deviation (RMSD) plot was visualized for all structures. 

RMSD (eq1) measured the average change in dislocation of atoms in a protein with a simulation 

time frame. It was measured by 

𝑅𝑀𝑆𝐷 = √ 1 𝑁 ∑ (𝑟 ′(𝑡𝑥 )) − 𝑟′(𝑡𝑟𝑒𝑓) 𝑁 𝑖=1 2…………………………Eq1 

Where N and r' were selected atoms and position of modeled protein, tref was time reference of 

the first-time; step, and tx was the total simulation trajectory time frame. The simulation took 

time due to the presence of loops at the middle and end of the structure. The structure was 

stabilized at 200 nano seconds due to presence of loops. The figure 4.1 represents the RMSD 

values in association with the time frame required for the stabilization of the structure. The peaks 

are stable at 2.2 RMSD value.  
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Figure 4.1: Protein RMSD plot of LAT1 protein after MD. RMSD stabilized after 200ns at 2.0-

2.4Å. 

However, the RMSF versus residue Index graph showed high peaks at the middle and end of the 

structure as represented in the figure 4.2. These peaks are due to the presence of long loops in 

the middle and end of the LAT1 chain. The loops are present in the following regions:  

• From amino acid 221-243 

• From amino acid 421-424 

Both the RMSF versus Residue index graph and the highlighted amino acid residues ion LAT1 

chain depicts the reason for the extended stabilization of the protein structure in MD simulation. 
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Figure 4.2. Protein RMSF plot of stabilized LAT1 complex Two regions (221-243 & 421-424) 

showed fluctuations due to the presence of loops. 

The root mean square fluctuation (RMSF) of the LAT1 complex was also calculated to evaluate 

the mobility of individual residues. Figure 4.2 shows the instability in 221-243 and 421-424 

regions between RMSF 1-5.1 Å. These residues are the small loops between the α-helices of the 

LAT1 complex. Below in figure 4.2.1 are the two images that shows the amino acid residues of 

loop region.  
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Figure 4.2.1: The 3D structure of LAT1. The pink region shows the loop area in both diagram 

which corresponds to amino acid residues (Lys221-Asp223) and (Arg421-Glu424) respectively.  
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4.3 Molecular Docking 

Molecular docking is the most effective approach in molecular modelling for modelling atomic-

level interactions between protein and ligands. It enables the understanding of fundamental 

biological processes by analyzing the behavior of chemical compounds in the target protein’s 

binding region. The goal of molecular docking is to acquire the most probable binding 

conformations of ligands for virtual screening. The dataset of 58 ligands was docked against the 

LAT1 protein obtained after MD simulation. The GOLD (Genetic Algorithm for Ligand 

Docking) software was used [18]. The previously reported binding pocket residues were selected 

using the x, y, and z coordinates from the central point as 3.7800, 3.4725, and -0.9642, with the 

cavity size of 15Å. The ligands were docked on the same binding pocket as reported previously. 

For 58 ligands a total of 3149 poses were generated. The ligands bind at the binding pocket of 

LAT1 validate the accuracy of the docking procedure. For each ligand, 100 poses were generated 

with the high precision protocol. The resultant GOLD fitness score (eq 2) [100] was calculated by 

considering all the energy values as follow:  

GOLD Fitness = Score(hb_ext) + Score(vdw_ext) + Score(hb_int) + Score (vdw_int) …………. Eq2  

 

The GOLD fitness score is the sum of all external H-bond and Vander Waal energies of 

interacting ligand and protein and ligand’s internal energies such as torsion strain energy, 

intramolecular H-bond energy, and Vander Waal energy between the ligand’s atoms. However, 

the fitness score for each ligand was in the continuous range.  

To analyze the interacting binding pattern of 3149 poses with a specific GOLD fitness score, a 

correlation plot (R) was made by taking the GOLD fitness score on the x-axis and pIC50 on the y-

axis (Figure 4.4). The resultant graph showed a correlation of (R=0.6495), which suggested a 

strong positive correlation between the GOLD score and activity values. The positive correlation 

value represents that Gold Score has a high correlation with the pIC50 which means the biological 

activity value of each inhibitor is defined by the interaction pattern of each inhibitor with the LAT1 

protein. Moreover, it was also observed that inhibitors have a high pIC50 as well as high Gold score 

as displayed in the (Figure 4.5 displayed in red color) but difference in Gold score is not of greater 

than 5 which indicated that pIC50 behavior is also depended by an additional physiochemical property 

i.e., Molecular weight. These inhibitors biological activity value was further investigated with the 
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help of Molecular weight. (Figure 4.3) shows the correlation of pIC50 with Molecular Weight 

(g/mol). It shows that the correlation between pIC50 and Molecular weight is R=0.6466 and R2 = 

0.4181, which also represents a positive correlation. This means that some inhibitor may have 

activity due to the proximity towards the target. To validate the stability of these complexes MD 

simulation of the complexes of these inhibitors with the LAT1 protein was performed. This will also 

validate our docking protocol as biological activity (pIC50) have direct correlation with binding 

affinity i.e., Gold score.  Generally, it is assumed that the highly active compound should have a 

stable binding pattern, thus a high GOLD fitness score [88]. However, in the plot in Figure 4.5 it 

can be observed that some of the ligands show the outlier behavior such as ligand 2, 8, 13, and 

57. 

 

Figure 4.3: Correlation plots between biological activity values (pIC50) and Molecular weight. The R 

in the plots denotes the correlation coefficient which shows direct positive correlation. 
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Figure 4.5: The docking results of Top poses of LAT1 Representation of Gold Score on X-axis 

and biological activity (pIC50) on Y-axis. The red data points are ligand 1,2,8,13,54 and 58. 

The analysis of (Figure 4.5) shows some anomaly cases, the red datapoints 1 and 8 represent two 

inhibitors with a greater difference in the pIC50 but a small difference in the Gold Score. The red data 

points 2 represent the data points that have high pIC50 but less gold score, 13 and 57 with greater 

difference in pIC50 value but with same GOLD score which indicates these inhibitors pIC50 is not 

sufficiently defined by the docking interaction. Moreover, the correlation of activity value and 

logP (lipophilicity) was also analyzed to determine ligands' physiochemical behavior and 

transport properties. There is a positive correlation R= 0.6149 between logP and pIC50 values of 

ligands as shown in the (Figure 4.6). To validate the binding pattern and explore the stability of 

these inhibitors’ complexes with the LAT1, MD simulation was used. 
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Figure 4.6: Correlation plots between biological activity values and logP(o/w). The R2 in the plots 

denotes the correlation coefficient. 

The highly active compound- ligand 1 (790nM) showed the highest GOLD score of 79.4881 and 

pIC50 value of 14.0512 while the least active ligand 61 showed the lowest GOLD score of 

33.6394 with pIC50 Value of 2.9957. From the docking interaction pattern, we formulated a 

hypothesis, i.e., the larger the R group associated with amino group of ligands-greater will be 

their activity value because ligands having high molecular weight has high activity values which 

conclude that Molecular weight may not have bad impact in the lead optimization. Therefore, for 

the stabilization of binding interaction and confirmation of the hypothesis further processing was 

necessary. So, for this reason, a highly active ligand, a least active ligand, and the ligands that 

show outlier behavior are selected for MD simulations. We selected ligand 1, 2, 8, 13, 57 and 58 

for further analysis because of their abnormal behavior which is evident is docking results. The 

analyses of protein-ligand interaction of these ligands showed the prevalence of following protein 

residues occurring in both actives and in-actives. These include Tyr259, and Arg144. The detailed 

interaction diagrams of selected ligands are given in Figure 4.7. The ligand_2 showed no 

interactions pattern before MD simulation despite of the fact that it has 2nd highest pIC50 value. This 

may be because as we know a ligand’s efficiency depends on two factors: 
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• Number of interactions with the target protein 

• Way to the target protein. 

So, may be ligand 2 has better solubility and way to the target proteins which explains it’s high 

activity value. 

By comparing the interacting pattern before and after molecular dynamics simulations of LAT1 

complex, it is revealed that the ligand translocated its position during MD simulation when an 

external force field was (OPLS4) applied. The interacting residues during the docking studies 

were Ile58, Val60, Gly61, Thr62, Ile64, Gly65, Ser66, Gly67, Tyr103 and Asp116, stabilized to 

the actual binding cavity of LAT1. The resultant stable interacting pattern was observed among 

residues Ile64, Gly65, Ser66, Gly67, Tyr103, which were the reported residues in the literature. 

The ligand after MD achieved its stable conformation and persisted for 100nsec time step at the 

end. Here, the ligands atom remained enact with the binding cavity residues, the final ligand 

structure was subjected to 3D feature extraction based on its new stable 3D conformation. 
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Figure 4.7: Protein-ligand interactions of selected ligands docked on LAT1 complex. (A.) 

Ligand_1 showed interactions with P336, G197, T259, L333 (B.) Ligand_2 does not show any 

interaction before MD simulation (C.) Liagnd_3 showed unique interactions with P142, P338, 

G341 (D.) Ligand_4 showed interactions with I140, A141, P336 and (E.) Ligand_5 interacted 

with I140, A141. (F.) Ligand_6 interacted with S144. 

4.4 Molecular Dynamic Simulation of Docking Complexes: 

The molecular dynamic simulation of the selected inhibitors complexes with LAT1 will help us 

in achieving stability at the human body temperature and pressure. The stability of protein-ligand 

interactions was analyzed by giving an artificial body environment to the system. The selected 

inhibitors i.e., Lig_1, Lig_2, Lig_8, Lig_13, Lig_54 and Lig_58. The most active ligand (Ligand 

1) docked with protein was stabilized at 100ns therefore, all other complexes were also observed at a 

100ns time frame. The stability of the complexes was evaluated using the root mean square deviation 

(RMSD) plot. However, the H-bond stability graph was also evaluated to validate the docking 

interactions. CαRMSD measured the average deviation in atomic disruption of the Carbon-α 

backbone with simulation time frame. It was measured by  

Cα𝑅𝑀𝑆𝐷=√1𝑁Σ(𝑟′(𝑡𝑥))−𝑟′(𝑡𝑟𝑒𝑓)𝑁𝑖=1 2…………………………Eq3 
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The protein-ligand complex of the most active ligand (Lig-1) was stabilized at 100ns, with the 

protein RSMD between 1.5-2.4 Å and ligand RMSD of 2-2.8 Å (figure 4.8). 

 

Figure 4.8: RMSD plots of protein-ligand complex_1 of active ligand 1, the complex showed less 

deviation after 40ns. 

The RMSD plot proposed the complex_2 (Lig-2) complex stabilized after 70ns with protein RMSD 

of 2.8-3.2 Å and ligand RMSD of 7.0-8.0 Å. Figure 4.9 
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Figure 4.9: RMSD plots of protein-ligand complex_2 with active ligand 2, ligand_2 stabilized after 

40ns with less deviations. 

The complex_3 (Lig-8) showed vigorous fluctuations at the start and stabilized after a simulation 

time of 80ns with protein and ligand RMSD between 2-2.4 Å and 2-2.6 Å, respectively (figure 4.10) 

 

Figure 4.10: RMSD plots of protein-ligand complex_3 of active ligand 8, ligand_8 stabilized after 

50ns with less deviations. 

Complex_4 (Lig-54) was unstable initially and stabilized with a simulation time of 100ns, and after 

60ns, the complex stabilized with protein RMSD around 2-2.4 Å and ligand around 0.8-2.4 Å. 

Figure 4.11 
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Figure 4.11: RMSD plots of protein-ligand complexes of inactive ligand_54. 

Complex_5 (Lig-13) was unstable initially and stabilized with a simulation time of 100ns, and after 

60ns, the complex stabilized with protein RMSD around 1.6-2.4 Å and ligand around 3.6-4.2 Å. 

 

Figure 4.12: RMSD plots of protein-ligand complexes of active ligand_13. 

Complex_6 (Lig-58) does not show stability. The protein remained stable with RMSD 2-2.4 Å at the 

start. However, the ligand remained unstable at the end with a RMSD of 2-4 Å (figure 4.9). At last, 



RESULTS 

69 

 

the complex with Lig-61 having the lowest pIC50 was unstable throughout the period of 100ns 

simulation (Figure 4.12). This can also be due to the small molecular weight of Lig-61. Figure 4.13 

 

Figure 4.13: RMSD plots of protein-ligand complex_6 of inactive ligand_58 which does not show 

stability throughout 100ns simulation time. 

The MD simulation of in-active ligand (Ligand 54 and 58) complexes indicated unstable complexes 

with unstable interactions. The RMSD plot of the ligand_54 complex proposed an unstable complex 

throughout the simulation time of 100ns with robust fluctuations towards the end. The ligand_58 

protein complex had an irregular pattern with an increase in instability after 50ns.  

The protein-ligand interactions of MD stabilized complexes were analyzed and validated using the 

H-bond stability plot. Few new protein-ligand interactions were observed after MD stabilization. The 

protein residues, Phe252, Lys204, Ser66, made interactions with ligands that were absent before MD 

simulation. The protein-ligand complexes with active ligands remained stable on the proposed 

binding pocket. After MD, the ligand_1 complex changed its interaction patterns and made stable 

interactions with S66, G136, A141, L204, T259, and P252. The stability of interactions can be 

visualized using H-bond plot. Protein residues like Glu136, Arg141, Ser66, Lys204 made stable 

interactions which remained stable throughout the MD simulation. Some of these residues were part 

of the previously reported LAT1 interface. The Ser66, Glu136 and Arg141 was involved in making 

H-bond with ligand whereas Lys204 and Tyr259 had hydrophobic interactions. 
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Figure 4.14: H-bond plot analysis of protein complex with ligand_1. The protein residues, S66, 

L204, T259, A141, G136, P252, Ser338 had a stable interaction with ligand. 
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Figure 4.15: H-bond plot of ligand_2 protein complex. T259, Arg141, Gly256, Phe252, Phe400 

had interaction in the simulation time of 100ns.  

Analyzing the interaction pattern of the protein with ligand_2 indicated the abnormal behavior as 

no stable interaction was observed. However, slight interactions were indicated with Tyr259, 

Arg141 and Gly256 (figure 4.15). This may be due to the reason the ligand 2 has less molecular 

weight which might cause no optimal fit in the binding pocket, but it’s increase activity may be 

due to some other factors like good Pharmacokinetics. 
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Figure 4.16: Some protein residues Arg141, Lys204, Tyr259, Phe252, Ser338, Gly197, Ser66 

showed highly stable interaction pattern throughout simulation time in protein complex with 

ligand_3. 
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Figure 4.17: H-bond plot of ligand_4. The residues Arg141, Ser144, Ser342, Tyr259, Ile140, 

Ser338 showed stable interactions throughout the simulation time.  
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Figure 4.18: H-bond plot of ligand_5. Asp116, Lys132, Asn258, Gly136, Tyr259, Ser342, 

Tyr103 had stable interactions throughout the simulation time.  
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Figure 4.19: H-bond plot of ligand_6 protein complex. Ligand showed a stable interaction with 

protein residues, Ser144, Phe252, Tyr259.  

Analyzing the before MD and after MD interaction patterns indicated the contrasting differences. 

Only few of the frequent occurring protein residues retained after MD stabilization which are 

Tyr259, Gly197, Arg141, Ser144. After MD, the three crucial protein residues, Ser66, Lys204 

and Phe252 interactions were observed. These are residues present in the reported binding 
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cavity, made stable interactions after MD. After MD, the protein residues, Ser66, Lys204, 

Phe252 interacted with 1, 1, 3, 1, 3, 6 and 4 ligands, respectively, out of 6 ligands. The Lys204, 

Tyr259 and Arg141 interacted with three of the active ligands (1, 2, 8). Moreover, the protein 

residues, Phe336, Ser338, and Ile140 indicated multiple interactions before MD were deficient 

after MD. Therefore, the Lys204, Ser66, Phe252, Ser338 and Tyr259 were the crucial residues 

for inhibiting LAT1 interaction identified after MD. Furthermore, the pharmacophore modeling 

was done using ligand_1 complex as a template to discover more compounds inhibiting LAT1.  

Comparison of protein-ligand interaction patterns of LAT1 with its inhibitors before and after 

MD is shown in the Table 4.1. The protein residues in bold were retained before and after MD. 

 

No  Molecule ID  Before MD   After MD  

Protein 

Residue  

  Interaction  

Type  

Protein 

Residue  

  Interaction 

Type  

1.  CHEMBL4538666 

Lig_1 

Phe336  

Gln197 

Tyr259 

Leu333  

 
H-bond  

H-bond 

Hydrophobic 

H-bond 

Ser66 

Gly136 

Arg141 

Lys204 

Tyr259 

Ser338 

Phe252 

  

 
H-bond  

H-bond  

H-bond  

Hydrophobic 

Hydrophobic 

H-bond  

H-bond  

2.  CHEMBL4526588 

Lig_2 

  

  
Tyr259 

Arg141 

Gly256  

Phe400 

Phe252  

 
Hydrophobic 

H-bond  

H-bond  

Hydrophobic 

Hydrophobic 

  
3.   CHEMBL4522605 

Lig_8 

Pro142 

Ser338 

Gly341 

 
H-bond 

Hydrophobic 

 H-bond  

Arg141 

Lys204 

Tyr259 

Phe252 

Ser338 

Gly197  

Ser66  

 
H-bond  

H-bond  

Hydrophobic 

Hydrophobic 

Hydrophobic 

H-bond  

H-bond   
4. CHEMBL4241703 

Lig_13 

Ile140 

Arg141 

Phe336 

 Hydrophobic 

H-bond 

H-bond 

Arg141 

Ser144 

Ser342 

 H-bond  

H-bond  

H-bond  
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Tyr259 

Ile140 

 

Hydrophobic 

Hydrophobic 

5. CHEMBL4569744 

Lig_54 

Ile140 

Arg141 

 

 Hydrophobic 

H-bond 

Asp116 

Lys132 

Asn258 

Gly136 

Tyr103 

Ser342 

Tyr259 

 

 H-bond  

H-bond  

Hydrophobic 

H-bond  

H-bond  

H-bond  

Hydrophobic 

6. CHEMBL1232398 

Lig_58 

Ser144  H-bond  

 

Ser144 

Phe252 

Tyr259 

 H-bond  

Hydrophobic 

Hydrophobic 
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Figure 4.20: Interaction pattern of active ligand-protein complexes after MD. (A.) ligand_1 (B.) 

ligand_2 (C.) ligand_3 (D.) ligand_4 (E.) ligand_5 and (F.) Ligand_6 

 

1. Overall, after the Structural methodology analysis, it can be concluded that the identified 

binding site of LAT1 is highly significant for its inhibition as it remains stable during MD 

simulation  

2. The analysis of binding residues and interaction suggest that the Ser66 forming the hydrogen 

bond is highly significant as it was found common in the highly active inhibitors and Lys204, 

Tyr259, Phe252 are also important residues because they are involved in the Hydrophobic 

interactions after the MD simulation.  

3. Moreover, binding site before and after the MD simulation is hydrogen doner Hydrophobic 

residues so the inhibitor of the LAT1 should be hydrogen bond acceptor.  

4. The LAT1 binding site identified by the docking protocol remains somehow stable during MD 

simulation.  

  



RESULTS 

81 

 

4.5 Pharmacophore Modeling 

The Complex-1 (ligand_1) after MD was chosen as a template for structure-based 

Pharmacophore modeling due to its stability during MD simulation and highest inhibitory 

activity value (IC50 790 nM). The activity threshold was defined to divide the dataset into active 

and in-actives. The activity threshold of 20,000nM was used and the IC50 < 20,000nM were 

selected as actives, and the IC50 > 20,000nM were selected as in-actives. Therefore, the first 9 

ligands (ligand_1-ligand_9) lay in the active category, and the remaining ligands (ligand_10-

ligand_58) came in the in-active category.  

After the selection of the template, the Pharmacophore quires of ligand_1 were generated using 

LIGANDSCOUT 4.4.3. The features such as hydrogen bond donor (D), hydrogen bond acceptor 

(A), aromatic ring (R), hydrophobic (H), positive ionic charges (P), and negative ionic charges 

(N) were explored. A minimum of four features was used to build the model.  

The final model generated using ligand_1 as a template had four features. Those include three 

hydrophobic features and 1 hydrogen bond donor (D).  
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Figure 4.22: Pharmacophore model using ligand_1 complex as a template. Four features were 

used to build a model. The feature in green represents hydrogen bond donor, and yellow is 

hydrophobic feature. The lines represent the distance between features. 

Table 4.2 Distance between the Four Pharmacophore features (F1_Don, F2_Don, F3_Don and 

F4_Hyd) and their radius in Ao. 

 F1_Don F2_Don F3_Don F4_Hyd Radius for Model 

F1_Don --------- 4.94 10.08 8.88 0.9Ao 

F2_Don 4.94 ---------- 5.46 7.18 0.9Ao 

F3_Don 10.08 5.46 ------------ 7.22 0.9Ao 

F4_Don 8.88 7.18 7.22 --------- 0.9Ao 

The accuracy of the model was evaluated. The model had an accuracy of 95% for the overall 

dataset. Due to the availability of diverse dataset, it was difficult to develop a perfect 

Pharmacophore model to predict inhibitors from an external dataset. The selected features were 

like the interacting residues after MD (Lys204, Ser66, Phe252, Ser338 and Tyr259). The model 

developed had seven true positives and fifty true negatives with two false positives and one false 

negative. The Pharmacophore model was then screened from the rest of the docked dataset for 

internal test validation. The model was able to classify the ligands as TP = 7, TN = 50, FP = 2 

and FN =1. The statistics of the classification were then evaluated via a confusion matrix. The 

resultant of the matrix showed an accuracy of 95%, asserting that the Pharmacophore model was 

able to predict and classify the ligands as precisely (actives as actives, inactive as inactive). 

However, the value of precision and specificity or True Negative Rate (TNR), i.e., 0.96, declared 

that the model is specified. Similarly, the model’s sensitivity or True Positive Rate (TPR) (0.87) 

indicated that the model is sensitive for all features associated with actives compounds (TP). The 

specificity (TNR) of 0.96 declared the given feature predicted inactive more precisely than 

actives (table 4.2).  
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Table 4.3 Statistical evaluation of the Pharmacophore model w.r.t internal Data 

 Accuracy TP Rate 

(Sensitivity) 

TN Rate 

(Specificity) 

FP Rate Precision MCC 

Value 

 
0.95 0.875 0.96 0.038 0.78 0.7964 

 

Another statistical parameter was used to measure the predictive ability of the model. The 

Matthews Correlation Coefficient (MCC) measures the quality of agreement between predicted 

and actual values. Furthermore, the model was evaluated using the Matthews correlation 

coefficient (MCC). The model had an MCC of 0.79, indicating the presence of all features for 

inhibition of LAT1. Therefore, the model was considered as the potential model for virtual 

screening. The model evaluation statistics are given in table 4.2. 

It is a correlation coefficient that takes all variables (TP, TN, FP, and FN) and gives scores based 

on model classification. The value near to or closer to 1 indicates the best agreement between 

predicted and actual responses. The MCC value (calculated via eq 4) [102] for the 

Pharmacophore model was 0.79, which indicated that the selected template and all true positive 

compounds with respective features have the ability to induce LAT1 Inhibition.  

MCC= 𝑇𝑃. 𝑇𝑁−𝐹𝑃. 𝐹𝑁√(𝑇𝑃+𝐹𝑃). (𝑇𝑃+𝐹𝑁). (𝑇𝑁+𝐹𝑃). (𝑇𝑁+𝐹𝑁) …………………………Eq4 
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Discussion: 

LAT1 is the most predominant L-type amino acid transporter in the human malignancies, 

wherever it supplies essential amino acids for growth and proliferation. As the biological 

significance of this transporter has become evident, our understanding of its structure and 

function has evolved significantly in recent decades. LAT1 is the most often overexpressed 

system L transporter in variety of tumor growths which makes it  a promising therapeutic target. 

The increased localization and overexpression of LAT1 in cancers has made it a valuable target 

in cancer treatments because of its ability to decrease cancer cell proliferation and growth by 

reducing the supply of essential amino acids to the tumor cell. As a result, inhibiting LAT1 

activity is considered as a promising target for cancer treatment. Some inhibitors inhibit LAT1 

and ASCT2 in a powerful and irreversible manner. Because ASCT2 and LAT1 work together to 

control leucine transport and activate the mTOR pathway, these covalent inhibitors may be 

effective in inhibiting tumor development by acting on both pathways. Acivicin is an excellent 

example of a drug that inhibits cancer growth by inhibiting both LAT1 and ASCT2 and binding 

to metabolic enzymes (e.g., the aldehyde dehydrogenase enzyme family). Many LAT1 selective 

inhibitors have been identified because of SAR-guided experimental research, with KYT-0353 

emerging as a promising and robust molecule now undergoing clinical trials. Thanks to the 

growing availability of X-ray crystallographic structures of many trans membrane transporters, 

including LAT1, MD simulation in conjunction with molecular docking has been successfully 

utilized in the creation of novel ligands for various protein targets of the SLC family. 

Furthermore, these computational models have demonstrated their use in elucidating the 

molecular basis of drug transporter interaction for therapeutic targets. We provide a successful 

structure-based design method that resulted in the discovery of potent novel LAT1 inhibitors 

with an exceptional hit rate. The aim of this study was the investigation of the inhibitors and 

binding interaction and identification of the important residues for the inhibition of LAT1. The study 

of the interaction pattern is not possible without the 3D molecular structure of the protein. In this 

case, the PDB had the 3D X-ray crystallographic structure of LAT1 available. An approach to further 

increase stability of the binding of complexes, MD simulation was employed. MD simulation before 

docking protein will lead to better binding poses as well as a more stable protein-ligand complex 

during the docking. The LAT1 protein was stable at 250 ns with RMSD between 2.0-2.4 Å. This step 

not only reduces the number of loops in the structure but also increases the stability of LAT1. For the 
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inhibitors data against LAT1, it was collected from literature and ChEMBL database. A total of fifty-

eight inhibitors were retrieved from the CHEMBL Database. 

After the structure is stabilized by the MD simulation, the docking of proteins was next the step. As 

the exhaustive literature review and Chembl Database led to discovery of 58 inhibitors against LAT1. 

Docking of LAT1 was performed by selecting the binding cavity near the residues reported in the 

previous docking studies. For each inhibitor 100 poses were generated within the binding cavity. The 

correlation between the Gold Score of the best binding poses and affinity of the compound expressed 

as pIC50 for LAT1 was found to be R2 =0.64 which demonstrates the strong direct correlation. This 

correlation validates the docking protocol and explains the activity of most of the inhibitors due to 

the binding energy of compounds. Few exceptions were also observed; these inhibitors may have the 

activity due to the transport of compound towards the target rather than the interaction of inhibitor 

with the target. To get a deeper look, a correlation between the molecular weight and pIC50 was also 

studied which relived that a positive correlation of 0.64 exists between these variables. This 

correlation value also shows direct positive correlation; it shows that the selected inhibitor had a high 

difference in the molecular weight which cause the change in the pIC50 value. From this we can say 

that High molecular weight may not have a bad impact on the lead optimization.  

MD simulation of selected complexes of LAT1 was performed and it was found that almost all the 

active ligand complexes achieved a stable RMSD between 2.0 to 7.0 Å for the simulation of 100 ns 

duration. The MD simulation is the process that helps in the identification of the actively meaningful 

interaction for a specific period under the human body temperature and pressure [53]. The continuous 

force exerted on the molecules of complex only sustains the most stable interaction while breaking 

the less stable bonds. This resulted in the change of the binding site from the docking results. This 

change in binding site is more stable than docking results, as docking only provides a single snapshot 

of many interactions and docking score is also restricted by the binding cavity definition based on 

before docking studies. 

Although LAT1 lack a common interaction between all the selected inhibitor, it was found that 

try259, Ser66, Lys204 and Phe252 were present in more than one highly active inhibitor interaction 

and hence are significant for inhibition. Moreover, the hydrogen bond interactions were common in 

all the selected inhibitors of LAT1 which represents that ligand with complimentary properties can 

be used for inhibition. 
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LAT1's X ray crystallographic structure revealed significant details about the substrate binding 

region. LAT1's binding site is well-organized and centrally positioned, having hydrophilic and 

hydrophobic areas that mediate the binding of the amino acid moiety and side chain. Docking 

results revealed that the hydrogen bond contacts of the amino acid moiety are sustained between 

LAT1 and AdiC, and the residues on TM1 and TM6 are important for ligand binding. The 

positively charged amino group is bound by Ile63, Phe252, and Gly255 of the GSG motif, 

whereas the negatively charged carboxyl group is bound by Ser66 and Gly67 of the GSG motif 

via backbone hydrogen bond interactions. Moreover, the side chains of residues Ser66 and 

Ser338 engage with the carboxyl group electrostatically. Hydrophobic interactions with aromatic 

Phe252, Phe402, Trp405, and aliphatic Ile139 and Ile140 are involved in the ligand's side chain 

binding. Phe252A mutation completely abolishes LAT1 transport activity, indicating that Phe252 

serves as a proximal gate that prevents the substrate from entering the periplasm, according to 

Napolitano and colleagues [29]. Moreover, it was identified that lig_1, lig_2 and lig_8 made the 

most stable complexes with the protein after MD. These ligands had interactions with protein 

residues Ser66, Lys204, Tyr259 and Phe252. Furthermore, lig_1 complex with the highest 

inhibitory activity value (IC50 790nM) obtained after MD was used as a template to develop a 

pharmacophore model to predict potential hits for inhibiting LAT1.  We uncovered critical 

pharmacophoric properties of active ligands that are involved in binding by adding dynamics 

into structure-based pharmacophores. Four pharmacophoric features were identified during the 

structure-based Pharmacophore Modeling; those four features include three-hydrophobic features 

(H1, H2, and H3) and one Hydrogen bond donor feature. Furthermore, this study will expand the 

area of future SAR analyses, which might aid in the rational drug design and production of novel 

LAT1 inhibitors. In conclusion, our endorsed structure-based technique might be applied in 

drug-discovery operations aimed at additional transporters which are important biologically.  
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CONCLUSION  

In conclusion, the present study was designed with the therapeutic intervention of Inhibiting the 

L-Type amino acid transporter 1 for anti-cancer treatment. It was accomplished by stabilizing the 

target protein through MD simulation and then performing molecular docking to elucidate the 

binding hypothesis between LAT1 and its inhibitors. Based on docking results, a highly active 

ligand, a least active ligand along with some ligands that show outlier behavior were selected and 

subjected to MD simulation to accomplished stable interaction and validate our binding 

hypothesis. The stable residues in the actual binding cavity demonstrating the energy contours in 

the virtual receptor site were Ser66, Lys204, Tyr259 and Phe252. After MD simulation, the 

highly active ligand complex (lig_1) was then used as a template for the feature extraction and 

predictive model formation. The structure-based Pharmacophore model was generated to predict 

LAT1 inhibitors. The bioactive pharmacophore model exhibits one H-bond donor and three 

hydrophobic features. With respective features, the statistical evaluation was made against the 

rest of the ligand dataset. The accuracy of 95% declared the significance of the model. Overall, 

the presented project gives a new in-silico dimension in the therapeutics of anti-cancer 

treatments and will provide insightful measures in rational drug designing in the future. 
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