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Abstract

Quantum metrology is one of the most sophisticated disciplines of quantum technologies. The

primary purpose of this research domain is to investigate unknown physical quantities by us-

ing quantum mechanical resources. Quantum metrology has an extensive range of applications

including, in the development of quantum sensors, photonic quantum systems, and various

metrological tasks. Quantum resources have shown better improvement in phase estimation as

compared to classical measurements which are limited by standard quantum limit. Quantum

entanglement has been considered one of the counter-intuitive concepts in quantum physics

which has played a vital role in overcoming the standard quantum limit. Herein we have de-

ployed the quantum Fisher information approach and used various quantum mechanical states

for phase estimation. Our main focus was using squeezed states in different modes to develop

ways for quantum metrology. We have found better results that surpass the shot-noise limit and

approach the more fundamental Heisenberg’s limit in modified structures with given schemes.

Moreover, we have introduced an entangled squeezed vacuum state (ESVS) as the best quan-

tum resource for phase estimation. This research aims to contribute to the area of precision

measurements and hence to develop photonic quantum sensing.

Keywords: Quantum Metrology, Quantum Cramer-Rao bound, Quantum Fisher information,

Phase uncertainty

viii



Chapter 1

Introduction

1.1 Prologue

In science, measurement is one of the best ways to study the nature of an event or process.

To better understand the behavior of nature, physicists have drawn their attention to preci-

sion measurements and in these endeavors, they developed the theory of quantum mechanics

in 1900 intending to achieve insights into nature that were previously unreachable. Three steps

participate in the measurement process: the experimental setup (laboratory, instruments, de-

tectors, etc.), the experimental process (doing experiment), and then reading the scales on the

experimental setup. Statistical or systematic errors are responsible for reducing the precision

in the measurement and may be caused due to insufficient control of the probes or arise due to

environmental situations. Whatever the situation is the error can be minimized by repeating the

experiment many times and taking averages of the results. Additionally, there are fundamental

restrictions on uncertainty for example Heisenberg’s uncertainty inequalities that are enforced

by the principles of quantum physics. Since quantum theory has been the most victorious theory

for explaining events at the atomic and subatomic dimensions throughout history. This implies

that the estimation techniques, along with the resultant precision limits, must be conducted in

the context of such a paradigm.

Astonishingly, the deployment of quantum mechanical resources to measure the required

(unknown) parameters surpass the precision bounds that can be established through classical

resources. This is the basic idea behind the fast-growing field of quantum metrology which

is the theoretical and experimental study of elevated resolution and high precision processes
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Chapter 1: Introduction

for the estimation of physical quantities using the aspects of quantum mechanics, particularly

by exploiting quantum entanglement. Various quantum states including entangled photonic

quantum states and squeezed states can be used for achieving the ultimate limit on the precision

of the measurement, some of which are within the scope of this thesis.
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Chapter 1: Introduction

1.2 Preliminary Introduction

To study nature fundamentally, physics provides the best platform for this purpose. For exam-

ple, measurement is the first step toward the research of nature and events occurring around

us. Physics has offered a various detailed understanding of the basic workings of nature, by

providing and devising highly accurate theories and instruments respectively, which have en-

lightened the knowledge of humans in different areas including, medicines, archaeology, biology,

chemistry, material science, astronomy, etc. Optics enables extremely sensitive ways of measur-

ing ultra-small physical components. The quantum nature of the electromagnetic field bounds

the ultimate sensitivity in these investigations, as it does in every optical measurement. The

example of the optical interferometer has been thoroughly investigated, and it has also been

demonstrated that interferometer-induced vacuum disturbances causes the so-called standard

quantum limit or shot noise limit. It has long been acknowledged that the shot-noise limit, does

not constitute the fundamental bound in photonic quantum metrology, and non-classical states

(quantum states) of light may be helpful to enhance measurements. The development of con-

temporary quantum optics has been oriented toward improving interferometric measurements

using non-classical states of light.

As quoted by Galileo, the motive of experimental science as being to, “Measure what is

measurable and make measurable what is not so” [1]. While this idea is great, it raises the

question of what would happen if there was a fundamental bound to what we could estimate.

Such a deadlock would create a problem in scientific development because it would bound how

deeply one can estimate. The precision of measurements is limited by the shot-noise limit or

standard quantum limit upon using classical estimation theory [2]. However, these concepts

were changed when quantum theory was introduced.

In the advancement of physical theories to study nature at the atomic and subatomic level

physicists of the 20th century have developed the theory of quantum mechanics, which has been

considered the most successful and predictive theory of all time regardless of its indeterministic

nature [3]. Since the precision of measurement is the basic factor behind every technological de-

velopment so, the theory or experimental setup for ultimate bounds on precision must be raised

under the paradigm of quantum mechanics. The laws and concepts of quantum mechanics gov-

ern all measuring operations. Quantum mechanics also impose fundamental limits (Heisenberg’s

3



Chapter 1: Introduction

limit) on the precision of measurements [4]. However, the measurements which are performed

by using the resources of quantum mechanics are overly sensitive and précised and cannot be

done through classical resources. Quantum metrology is the study of elevated accuracy mea-

surements and high precision resolutions by the deployment of quantum resources, particularly

by using quantum entanglement. Furthermore, quantum correlated light may be utilized to

circumvent the standard quantum limit, hence this field’s primary focus is on developing strate-

gies to improve optical measurement precision. Quantum metrology is the way of measuring

physical parameters, which uses quanta (individual packets of energy) for elevated precision

research. Typically, four steps are involved in quantum metrological tasks for the measurement

of unknown variables: preparation of probe state, parameterization (interaction between probe

state and the system being studied), measurement of the system, and final readout or classical

estimation process [5]. Particularly, phase estimation is the primary goal of quantum metrology

that can be conducted by using an interferometric setup. To realize quantum metrological tasks

and other quantum information processes various physical systems can be deployed, photons

have been considered the most fundamental because of their different properties [6–9]. In the

recent several years, there has been exponential growth in the field of quantum metrology, as

documented in numerous review articles on theoretical exposures of quantum measurements and

phase estimation dilemmas [10–14], optical metrology [15], multiparameter problems [16–18] and

other physical systems used for metrological tasks [5, 14, 19].

The best error estimation through ‘m’ classical probes (classically correlated states), each

interacting with the system under consideration will scale at ∆ϕ = 1/
√
m. This classical

bound is the result of the central limit theorem and is called the shot-noise limit or standard

quantum limit (SQL) [20]. However, if quantum resources and probes are used the standard

quantum limit can be circumvented, and the uncertainty will approach the more fundamental

limit ∆ϕ = 1/m. This fundamental limit, known as the Heisenberg’s limit (HL) improves the

precision by a factor of
√
m over the classical limit [20].

Quantum metrology has widespread applications in addition to the underlying interest in

ultimate accuracy bounds. Therefore, numerous scientific disciplines can benefit quantum-

enhanced sensitivity, including measurement on biological systems [5, 21], atomic clocks [21, 22],

interferometry with atomic and molecular matter waves [5, 23], gravitational waves detection

[24, 25], magnetometry [26, 27], plasmonic sensing [16, 28], spectroscopy [29] and frequency
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Chapter 1: Introduction

measurement [30], microscopy and imaging [5, 31–36], Hamiltonian estimation [37, 38] and

other general sensing technologies [39].

A vital role has been played in the estimation theory by quantum entanglement. This phe-

nomenon has been considered the most counter-intuitive in quantum mechanics and is com-

pletely juxtaposed with the classical world as recognized by Einstein et al [40]. Quantum

entanglement has widely been researched for quantum metrological tasks as discussed in these

papers [11, 41–45]. Furthermore, squeezed states of electromagnetic field has also been suggested

as a quantum mechanical tool for the problem of quantum metrology.

Non-classical states, such as squeezed states of light, are the most relevant in quantum optics

because they have less uncertainty in one quadrature component at the expense of another

quadrature component [46]. The non-classicality of squeezed states can be measured through

Glauber-Sudarshan P-function [47]. The positivity of the P-function demonstrates that the

state is classical for example coherent state (|α⟩) or a mixture of coherent states. However, if

the P-function is negative it confirms that the state is quantum mechanical since the negativity

of the P-function is an adequate and inevitable condition for a state to be non-classical [47].

One of the dominant characteristics of the squeezed state is that its zero-point fluctuations are

no longer distributed randomly as compared to coherent states where the zero-point fluctu-

ations are random [46]. Squeezed states have been widely researched for various applications

including quantum optical communication [48–50], improving the sensitivity of laser interferom-

eters [2, 51], gravitational waves detection [52], and quantum key distribution (secure quantum

communication) [53, 54]. In this study, the author has used squeezed states, squeezed vacuum

states (|χ⟩ = S(χ)|0⟩), squeezed coherent states (|α, χ⟩), and entangled squeezed vacuum states

(|ψ⟩χ00χ) for quantum metrology and hence overcome the shot-noise limit (standard quantum

limit). Moreover, the results of these states are compared with each other for further analysis.

1.3 Outline of the Thesis

The paradigm of the thesis is organized as follows:

Chapter 2 provides the basic concepts of quantum optical states. We introduced well known

quantum states and their connections with quantum mathematical entities. In short, this sec-

tion discussed all the tools and background of the study. First, the quantum state is explained,

5



Chapter 1: Introduction

then tools have been discussed that are useful for further descriptions.

Chapter 3 describes basic formalism of quantum estimation theory. We provided all the for-

malism that we may use for quantum metrological tasks, including Fisher information, Cramer

Rao bound classically and then quantum mechanical framework has presented. Moreover, other

quantum resources have been investigated like quantum entanglement and non-classicality.

Chapter 4 deals with the applications of various photonic states for the problem of photonic

quantum metrology and compares the results of quantum states with each other.

Chapter 5 puts concluding remarks on the work that has been presented in this thesis. More-

over, the quantum states presented in this work are thoroughly discussed and analyzed.

6



Chapter 2

Quantum Optical States:

Fundamentals

2.1 A Quantum State

Quantum mechanics has stimulated the scientific and technological advancements that have

impacted our daily lives in many respects ranging from super-fast computing to elevated pre-

cision measurements and secure communication [1, 55–57]. Quantum mechanics explains the

behavior of matter and light at the atomic and subatomic levels, at these levels, the physical

systems behave very differently from what we are experiencing in daily life. The information

about these physical systems can be encoded into a proper state called a “quantum state”.

However, quantum mechanically it is impossible to extract all the information exactly because

of the uncertainty principle so, a probabilistic way is introduced to collect information about

the physical system by using proper mathematics of quantum mechanics. This implies that

quantum states are important objects in quantum physics. The quantum states are usually

symbolized by a Greek letter Psi (ψ) in a quantum mechanical notation introduced by Dirac

called bra and ket. Therefore, the quantum state |ψ⟩ is a ket and the ⟨ψ|, is a bra, representing

the states of a quantum system. Usually, quantum physicists are always dealing with bra-ket

notation for various purposes to know about a quantum system. For example, let us consider

two states represented by |ψ⟩, and |ϕ⟩ respectively, if we invert the direction of one state and

combine it like,

⟨ϕ|ψ⟩, (2.1.1)

7
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is called the inner product. When we calculate this inner product, it gives a probability ampli-

tude, and its absolute square provides the probability of the system going from state |ϕ⟩ to the

state |ψ⟩. Similarly, the observables (e.g., momentum) are of immense importance in quantum

mechanics which are represented by an operator and act on a quantum state. In literature, an

operator acts on a state ket from the left, let the operator be Â, then

Â|ψ⟩ = A|ψ⟩, (2.1.2)

which is another ket. However, if we sandwich the operator Â in a bra-ket, we will get an

important result called the expectation value of a particular observable under consideration

⟨ψ|Â|ψ⟩ = A⟨ψ|ψ⟩, (2.1.3)

where the product ⟨ψ|ψ⟩ is called the inner product and is equal to 1. Similarly, if we put

quantum states in the following way then it is called an identity operator

∑
ψ

|ψ⟩⟨ψ| = 1. (2.1.4)

The unity on the right side of the equation (2.1.4) confirms that this is an identity operator and

is also called completeness relation or closure. However, the detailed mathematical descriptions

for quantum mechanics are available in various outstanding books, some of them are encoded

here in references for the ease of readers [58–62].

2.2 Density Operator or Density Matrix

Quantum states can be pure or mixed. Pure states can be easily characterized through simple

wave functions, while mixed states are statistical composites with unequal or bizarre information

about the given system. The quantum state is mixed if it is considered an ensemble of a

microscopic or macroscopic system having no initial phase connection between elements of the

mixture [63]. In other words, state vectors can explain pure quantum states, while mixed states

cannot be represented by state vectors, which cannot be separated or explained individually.

Such types of states can be well understood through density operator or density matrix as given

by,

8



Chapter 2: Quantum Optical States: Fundamentals

ρ̂ =
∑
λ

Pλ|ψλ⟩⟨ψλ|, (2.2.1)

where, Pλ are the probabilities of estimating the system in the λth members of the ensemble

(quantum system). For pure states, the probability is equal to one otherwise are,

0 ≤ Pλ ≤ 1,
∑
λ

Pλ = 1, and
∑
λ

P 2
λ = 1. (2.2.2)

Similarly, if one wants to calculate the average value of a state of the ensemble, |ψλ⟩ for an

operator Ô then, expectation value can be written as

⟨Ô⟩ = ⟨ψλ|Ô|ψλ⟩. (2.2.3)

Equation (2.2.3) can be further defined for mixed states in the following way,

⟨Ô⟩ =
∑
λ

Pλ⟨ψλ|Ô|ψλ⟩. (2.2.4)

In terms of density matrix or density operator, equation (2.2.4) can be easily obtained as,

⟨Ô⟩ = Tr(Ôρ̂). (2.2.5)

The density matrix is Hermitian in nature that is ρ̂∗ = ρ̂ and if Tr(ρ2) = 1, then the state

is pure, however for entangled states Tr(ρ2) < 1 [47]. Furthermore, we have investigated the

principles of quantum mechanics in quantum optics by exploiting some basic quantum states.

Quantum optics is one of the advanced areas of physics where semi-classical physics and quantum

mechanics are used to research and deal with how photons of the electromagnetic field interact

with matter. The great pace of research in quantum optics can be linked with the quantum states

that have no classical analogs. These include single-photon states, squeezed states, EPR states,

and other complex scenarios that can be involved [46, 64, 65]. Moreover, we have considered

some basic quantum states that can be later used for quantum optical metrology.

2.3 Number State or Fock State

The number state is a quantum mechanical state that belongs to Fock-space and has well-

defined photons (or particles). The Number states are named after Soviet theoretical physicist

9



Chapter 2: Quantum Optical States: Fundamentals

Vladimir Fock. Fock states have significant importance in quantum mechanics and here, we have

presented its applications in quantum metrology [66]. As the quantization of a single-mode field

satisfy Maxwell’s equation under certain boundary condition that is,

Ex(z, t) =
(

2ω2

V ϵ0

) 1
2

q(t)Sin(kz). (2.3.1)

Since a quantized electromagnetic field can be considered as an infinite pack of uncoupled

harmonic oscillators, each can be explained through a Hamiltonian obtained by using Maxwell

equations with minor mathematical manipulation

H = 1
2(p2 + ω2q2), (2.3.2)

where the magnetic and electric field plays the role of canonical momentum and position respec-

tively. Consequently, using the correspondence rule these variables can be used as operators

that are, q = q̂ and p = p̂ and they must satisfy the following commutation relations

[q̂, p̂] = iℏÎ , (2.3.3)

so, the corresponding Hamiltonian becomes,

H = 1
2(p̂2 + ω2q̂2). (2.3.4)

Now, we will look at the non-Hermitian annihilation and creation operators, which are denoted

as,

â = 1
2ℏω (ωq̂ + ip̂), (2.3.5)

and,

â† = 1
2ℏω (ωq̂ − ip̂). (2.3.6)

These annihilation and creation operators, along with the commutation relation [â, â†] = 1, are

used. We get the following result for the Hamiltonian,

Ĥ = ℏω
[
â†â+ 1

2

]
. (2.3.7)

10
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The product of annihilation and creation operator â†â has particular importance and is called

number operator denoted by n̂. The corresponding Fock or number state is |n⟩. If one applies

the Hamiltonian operator on a number state a new eigenvalue equation can be formed as given

by

Ĥ|n⟩ = ℏω
[
â†â+ 1

2

]
|n⟩ = En|n⟩, (2.3.8)

for ground state n = 0 the operation of Ĥ on the ground, the state gives us zero-point energy

and is given by ℏω/2. Let us consider a general state |ψn⟩ is an eigenstate of the number

operator n̂ then the following eigenvalue equation is obtained,

n̂|ψn⟩ = n|ψn⟩, (2.3.9)

where, (n) is the eigenvalue. The number operator is Hermitian in nature and therefore its

eigenvectors build a complete set of orthogonal states with real eigenvalues as given by,

⟨ψn|n̂|ψn⟩ = ⟨ψn|â†â|ψn⟩ = n⟨ψn|ψn⟩ = n. (2.3.10)

Now let us apply the annihilation operator on the number state and using the commutation

relation, [â, â†] = 1 in the following manner we get,

n̂â|n⟩ = (ââ† − 1)a|n⟩ = (n− 1)a|n⟩. (2.3.11)

This indicate that if |n⟩ is an eigen-state of number operator then a|n⟩ is also the eigen-state

of the same operator with eigenvalue (n− 1) as a result, we are free to write,

â|n⟩ = Cn|n− 1⟩. (2.3.12)

By using the normalization condition one can find the value of Cn =
√
n so,

â|n⟩ =
√
n|n− 1⟩, (2.3.13)

and similar calculations can be done for the creation operator and are found as,

â†|n⟩ =
√
n+ 1|n+ 1⟩. (2.3.14)

11
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For nth Fock states we can operate the creation operator on the ground state in the following

manner

|n⟩ = (â†)n√
n!

|0⟩, (2.3.15)

as eigenvectors of number operators are orthogonal and make a complete set of orthonormal

states, ⟨n|m⟩ = δnm and
∑
n |n⟩⟨n| = Î where, Î is an identity operator in the Hilbert space

[47].

2.4 Coherent State

Coherent states provide a critical role in the development of quantum dynamics, especially

when the quantum evolution is closed to classical. Erwin Schrödinger was the first one who

introduced the coherent states as Gaussian wave packets to explain the transformation of a

harmonic oscillator in 1926 [67]. The coherent states have gained more significance with the

invention of the laser and to study of quantum electrodynamics with coherent systems. Because

the electromagnetic field in free space is a superposition of numerous classical modes, each one

is governed by a simple harmonic oscillator equation. In this regard, the coherent states have

been considered a remarkable tool to connect quantum and classical optics. These minimum

uncertainty states have been studied for a long time however, the discussion became hot after the

pioneer works of Glauber and Sudarshan in the 1960s in the context of quantum optics [68, 69].

Coherent states have several applications however, we are interested to study these classical

states in quantum metrology to find, which bound can be saturated with coherent states [70]?

Coherent states can be generated by three methods as reported in the literature. In the ladder

operator approach, where a coherent or Glauber state (|α⟩) is considered as an eigenstate of the

annihilation operator (â), or vacuum state can be displaced with the displacement operator to

generate a coherent state and the other way is to consider the minimum uncertainty condition

where the Heisenberg’s relation equate ℏ/2. Here, we used the first approach to develop equation

for coherent states

â|α⟩ = (α)|α⟩, (2.4.1)

and,

12
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⟨α|â† = (α∗)⟨α|, (2.4.2)

where α ∈ C and is called displacement. Since a coherent state contains an indefinite number

of photons so, we can expand it on the following basis,

|α⟩ =
∑
n

|n⟩⟨n|α⟩. (2.4.3)

The term ⟨n|α⟩ is called the transition amplitude and let us call it Cn. Also, we know the

operation of annihilation and creation operator on number state as well as on coherent state

that are, â†|n⟩ = (
√
n+ 1)|n+ 1⟩ and ⟨n|â = (

√
n+ 1)⟨n+ 1| using these relations one can find

the following compact form for the coherent state,

|α⟩ = Cn

∞∑
n=0

αn√
n!

|n⟩. (2.4.4)

Now, using the normalization condition to get the value for Cn and above equation can be

written in compact form for normalized coherent states as,

|α⟩ = exp
[
−|α|2

2

] ∞∑
n=0

αn√
n!

|n⟩. (2.4.5)

Therefore, coherent state can be thought as a superposition of number state or coherent state

has infinite number of photons and can be expanded in number state basis.

2.5 Squeezed States of Light

An electric field may be decomposed into two quadratures Sinωt and Cosωt for a monochro-

matic plane wave. The coherent state has been considered the most classical state having

minimum uncertainty divided into the two quadratures given by Heisenberg’s uncertainty prod-

uct. These fluctuations in the quadratures are called zero-point fluctuations and are distributed

randomly in phase space. Moreover, this zero-point noise shows the short noise limit (SNL) to

the minimization of noise in a wave signal. One can manipulate these vacuum fluctuations in

the two quadratures in a way to increase the fluctuations in one quadrature at the expense of

other quadratures, this will create fewer or zero fluctuations in one of the quadratures. Such

states have been referred to as quadrature squeezed states of light or generalized coherent states

13
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where quantum noise is no more available haphazardly [46]. On the other hand, we have photon-

number-squeezed states where the uncertainty in photon number is less as compared to that

of a coherent state (∆n <
√

⟨n⟩). This decrease in uncertainty can only be achieved at the

expense of squeezing in phase uncertainty. These states obey sub-Poissonian distribution and

are referred by different names like sub-Poisson light, quit light [71]. Squeezed states offer vari-

ous applications in different areas including optical communication, quantum information, and

precision measurements [72]. Before discussing various examples of squeezed states, we need to

provide some prerequisites for further explanation.

To generate single-mode squeezed states mathematically, an operator is acted on some general

state corresponding to a physical process. The squeezing operator is defined as follows,

Ŝ(χ) = exp
[1

2
(
χ∗â2 − χâ†2

)]
, (2.5.1)

the factor χ is a complex number and is defined as χ = reiθ, where r is called the squeezing

parameter and ranges as 0 ≤ r < ∞ and θ is the squeezing angle (0 ≤ θ ≤ 2π). Furthermore,

the nature of the squeezing operator is unitary, and one can write Ŝ(χ)Ŝ(−χ) = I, which

implies that Ŝ(χ)Ŝ†(χ) = I. Let us consider an arbitrary state, |ψ⟩ for the moment and apply

the squeezing parameter given by the above equation (2.5.1) to see the action of the squeeze

parameter,

|ψs⟩ = Ŝ(χ)|ψ⟩. (2.5.2)

The operation of the squeezing operator Ŝ(χ) on the general state |ψ⟩ is visible in equation

(2.5.2), where the squeezed state is denoted by |ψs⟩. Moreover, to find variances and photon

number statistics of the quadratures X̂1 and X̂2, defined as (â + â†)/2 and (â − â†)/2i then

one must find the following relations, by using the Baker-Hausdorf lemma [47]. For details, and

calculations visit A.2

Ŝ†(χ)âŜ(χ) = âCoshr − â†eiθSinhr, (2.5.3)

and,

Ŝ†(χ)â†Ŝ(χ) = â†Coshr − âe−iθSinhr, (2.5.4)
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if we have two operators let us say Â and B̂ then, the Baker-Hausdorf lemma can be written

as [73],

exp(Â)B̂exp(−Â) = B̂ + [Â, B̂] +

[
Â
[
Â, B̂

]]
2! +

[
Â
[
Â
[
Â, B̂

]]]
3! . (2.5.5)

Next, we have considered some particular cases, where the arbitrary state can be replaced with

vacuum states and also if one applies both displacement and squeeze operator on vacuum states.

2.5.1 Squeezed Vacuum State

Squeezed vacuum state can be generated mathematically by applying the squeezing operator

Ŝ(χ) on a vacuum. The vacuum means here zero average amplitude however, the average

photons number is not zero. Squeezed vacuum state can be established as,

|χ⟩ = Ŝ(χ)|0⟩. (2.5.6)

Experimentally these states can be created or produced from a vacuum state by deploying some

non-linear optical interactions [74–76]. For example, a squeezed vacuum with less noise in one

quadrature component can be generated by using optical parametric amplifiers with injected

input as the vacuum [77].

2.5.2 Squeezed Coherent State

Moreover, from previous definitions of squeezed state, we can conclude that squeezed coherent

state can be generated by first squeezing the vacuum and then displacing the vacuum in phase

space as given by [76],

|α, χ⟩ = D̂(α)Ŝ(χ)|0⟩, (2.5.7)

where we know that coherent and squeezed vacuum states (2.5.6) can be constructed as,

|α⟩ = D̂(α)|0⟩, (2.5.8)

where D̂(α) and Ŝ(χ) is displacement and squeezing operator (2.5.1) respectively, and is defined

as follows,

D̂(α) = exp
[
αâ† − α∗â

]
. (2.5.9)
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Therefore, these states are also known as displaced squeezed vacuum states. Furthermore,

squeezed coherent states are also the minimum uncertainty states having less noise in one

quadrature component at the expense of another component. This amazing characteristic of

displaced squeezed vacuum state has been used in many quanta informational tasks including

precision measurements, secure communications, gravitational wave detection, and others [76,

78, 79].

2.6 The Entangled Quantum States

Quantum entanglement has been considered one of the bizarre phenomena where separated

quantum states get connected in such a way, that no matter how far they are in space, these

states remain connected [80]. In simple words, they share the same quantum state. Therefore,

measurements of one state can directly affect the other state regardless of the distance between

them. The fundamental notions about quantum entanglement were put forward as physicists

investigated the mechanics of the quantum world in the early decades. They found something

called a quantum state to properly describe the mechanics of the subatomic world. The strong

correlation between quantum states can destroy the individual quantum states and instead

share the same or unified state known as a quantum entangled state as recognized by EPR in

1935 [40]. Quantum entanglement is a quantum mechanical resource like other physical entities

having unusual non-classical correlations between separated quantum states. Entangled quan-

tum systems can be used for various quantum informational tasks like quantum information,

quantum computations, quantum metrology, quantum cryptography, and others [16, 81]. Let us

build a quantum mechanical framework for a better understanding of quantum entanglement.

Suppose we have two arbitrary quantum systems P and Q having corresponding Hilbert spaces

HP and HQ respectively. Then we know that, the tensor product of individual Hilbert spaces

can be considered as the Hilbert space of a composite system as given by,

H = Hp ⊗HQ. (2.6.1)

Moreover, if system P is in a state |ψ⟩P and system Q is in state |ψ⟩Q then state for the

composite system can be constructed as,

|ψ⟩ = |ψ⟩P ⊗ |ψ⟩Q. (2.6.2)
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Quantum states that can be written in the format of equation (2.6.2) are called separable or

pure states. Since all states cannot be product states, therefore, we are free to write the most

general state as,

|ψ⟩PQ =
∑
ij

Cij |i⟩P ⊗ |j⟩Q. (2.6.3)

The state is product state or separable if there exist vectors
[
CPi

]
,
[
CQj

]
satisfies Cij = CPi C

Q
j .

Therefore, one can write the following results

|ψ⟩p =
∑
i

CPi |i⟩P , (2.6.4)

and,

|ϕ⟩Q =
∑
j

CQj |j⟩Q. (2.6.5)

However, for entangled or inseparable state Cij ̸= CPi C
Q
j at least for one pair of coordinates. For

example, if we have basis vectors corresponding to each Hilbert space HP and HQ as {|0⟩P , |1⟩P }

of HP and {|0⟩Q, |1⟩Q} of HQ then the entangled quantum state can be written for such system

as,

1√
2

(|0⟩P ⊗ |1⟩Q + |1⟩P ⊗ |0⟩Q) . (2.6.6)

Other particular examples can be also considered as entangled states like GHZ states, Bell states,

Cat states (not necessarily), etc [82, 83]. However, other particular examples can be seen in a

later chapter and their applications to quantum metrology have also been investigated.
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Chapter 3

Quantum Estimation Theory: Basic

Formalism

3.1 Estimation Process

Measurement is one of the fundamental entities that have applications in every field of science

and technology ranging from astronomical measurements to atomic scale investigations. The

purpose of measurement is to relate a particular value to a physical quantity or parameter under

measurement, providing an estimate of it. Since no estimation process is perfect, therefore,

there will be an associated uncertainty with estimated values. These uncertainties are due to

statistical errors that may be technical or fundamental. Systematic or insufficient control of

probes or environmental difficulties may be considered technical errors however, on the hand

there are fundamental bounds imposed by physical laws [84]. Because quantum theory has

been considered the most fundamental so these bounds can be raised and studied under the

regime of such theory. Astonishingly, measurements through quantum resources surpass the

precision bounds that can be attained by using classical systems. Consequently, the process

is an estimation process that can be measuring any unknown parameter encoded in a system

physical. The estimation process can be done in the following four phases. (i): initial state

preparation, (ii): interaction of probe state with the system under consideration or parameter

encoding through unitary evolution, (iii): extracting useful information from the output results,

and final (iv): a suitable estimator is used to provide an approximate value of the unknown

parameter θ as shown in the figure [5]. An estimator is a function that provides an estimate of an

unknown parameter from the obtained results. Various estimators can be used to post-process
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the available data however we used a maximum likelihood estimator (MLE) that maximizes the

likelihood probability [85]. Moreover, we considered an unbiased estimator whose mean value

converges to the true value of the unknown parameter θ

⟨θ⟩ =
∑
ξ

P (ξ|θ)θest(ξ) = θ, (3.1.1)

where P (ξ|θ) is known is the conditional output probability of getting a series of measurement ξ

for a certain value of parameter θ. The Born rule P (ξ|θ) = Tr(Eξρθ) provides such a probability,

which is also known as likelihood.

To investigate the accuracy of an estimation process we need to define the mean square error,

which is provided by,

MSE(θ) =
∑
ξ

(θ(ξ) − θ)2 P (ξ|θ). (3.1.2)

Furthermore, we have considered an unbiased estimator therefore, the mean square error is

equal to the variance on the estimated value of the unknown parameter θ

∆θ2 ≡
∑
ξ

(θ(ξ) − ⟨θ⟩)2 P (ξ|θ). (3.1.3)

In the later section, this equation can be connected to the bound of precision of any unbiased

estimator.

Figure 3.1: Conceptual illustration of parameter estimation process
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3.2 Quantum Estimation Theory

Many parameters of relevance in physics cannot be measured directly, either theoretically or

experimentally. Because some quantum mechanical properties, such as quantum entanglement

and purity, are nonlinear functions of density matrices, they cannot even be used to describe

appropriate quantum observables. So, in such a scenario one should consider indirect measure-

ment and estimate the parameter of interest from a set of data obtained from the estimation

of various observables. This is nothing but a parameter evaluation problem and can be for-

mally described in the paradigm of quantum estimation theory (QET) [86]. The framework

of quantum estimation theory is further classified into two parts. Global quantum estimation

theory seeks out the POVM (positive operator-valued measure) with the lowest cost functional,

averaging all potential values of the parameter to be evaluated. In contrast, local quantum

estimation theory seeks out the POVM that maximizes Fisher information while reducing esti-

mator variance for a given parameter value [87–89]. As a side note, one can predict excellent

performances through local QET, because it only works with a single value of a parameter,

it requires some sort of back-action technique to reach ultimate limits [90]. Global QET has

widely been researched to study lower bounds on accuracy for the measurement of parameters

evolved under linear transformation [91, 92]. On the other hand, local quantum estimation the-

ory (LQET) has been used to estimate quantum phase [93], open quantum systems, and other

non-unitary transformations [94]. To obtain the required quantity, classical estimation theory

employs a suitable estimator, such as the mean square error (MSE) estimation technique, which

is lower-limited by the Cramer-Rao bound. In this section, we have presented concepts that

are related to the estimation of an unknown parameter, ultimate bounds on the precision (sen-

sitivity). Furthermore, we developed explicit relations for Fisher information, quantum Fisher

information, and their relationships with the symmetric logarithmic derivative (SLD) and the

Cramer-Rao inequality.

3.2.1 Fisher Information and Cramer-Rao Bound

Researchers in quantum metrology is concerned with the ultimate limits on the resolution or

sensitivity of the estimation process, one of the fundamental tools to study and achieve bounds

on the precision is Fisher information (F). The information that is encrypted in the resultant

probabilities of the measurement process is known as Fisher information or expected information
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F (θ) =
∑
ξ

P (ξ|θ)
[
∂log(P (ξ|θ))

∂θ

]2
(3.2.1)

or,

F (θ) =
∑
ξ

1
P (ξ|θ)

[
∂(P (ξ|θ))

∂θ

]2
. (3.2.2)

P (ξ|θ) is known as conditional or provisional probability. When the parameter has the value

“θ”, P (ξ|θ) is the conditional probability of getting ξ. The result in equation (3.2.2) can be

easily extended for continuous measurement outcomes just by replacing sum with integral, the

calculations are presented in A.1. From the above equations, the greater amount of information

is proportional to a greater change in the output probabilities which implies that Fisher infor-

mation is a great concept to measure the sensitivity or uncertainty of a given setup (quantum

system). The compact form of this formalism is abridged into a rudimental equation, called

the Cramer-Rao bound (CRB), given by equation (3.2.4) that links Fisher information to the

ultimately achievable bounds. Furthermore, µ is the number of observations and F (θ) is the

so-called Fisher information.

The main concern about the parameter estimation problem is to calculate the estimator, and

various estimators have been used for different situations [5, 95]. Let us consider an example

from a set of measurement outcomes θ = θ(ξ1, ξ2, ξ3...), the optimal estimators that can be re-

alized in classical estimation theory (CET) are those satisfying the Cramer-Rao inequality [96].

Visit A.1 for detailed calculations of the below equations. As Fisher information is proportional

to the changes in the output probabilities with respect to the parameter. This allow us to mea-

sure the system’s sensitivity to fluctuations in θ. This concept was used with fundamental result

known as Cramer Rao inequality that connects Fisher information to the optimum attainable

limit on the variance of any unbiased estimator. Therefore,

∆θ2 =
∑
ξ

(θ(ξ) − ⟨θ⟩)2 P (ξ|θ) ≥ (∂⟨θ⟩/∂θ)2

µF (θ) . (3.2.3)

However, in the presence of an unbiased estimator (∂⟨θ⟩/∂θ = 1), the Cramer Rao bound

becomes

∆θ2 ≥ 1
µF (θ) . (3.2.4)

21



Chapter 3: Quantum Estimation Theory: Basic Formalism

Equation (3.2.4) develops a lower limit on the mean square error (MSE) that is, MSE =

V ar(θ) = Eθ[(θ(ξ) − ⟨θ⟩)2] on any estimator of the parameter θ and for unbiased estimators

where the mean value agreed with the true value of the parameter of interest.

3.2.2 Quantum Fisher Information and Quantum Cramer-Rao Bound

Quantum Fisher information is a core concept in quantum metrology that defines a bottom,

limit to the variance of an unbiased estimator for the quantity of interest under the estimation

process. Now, if we consider a quantum system then the estimation problem is no longer simply

because the system is now an ensemble of quantum states,also known as a quantum statistical

representation and is defined by ρθ. In this case, the parameter θ does not represent any

quantum observable so, we need to find its values through the measurement of observables on

ρθ. Even under ideal conditions, this indirect technique introduces extra uncertainty in the

calculated value that cannot be eliminated. Therefore, the primary goal of the QET is nothing

but to reduce this extra uncertainty which will lead to higher precision in the measurement.

Typically, one knows a quantum system in a state ρθ that is a function of the required variable

θ to be estimated for quantum parameter estimation. The quantum system can be further

manipulated with a suitable measurement procedure and the outcomes of the measurement are

processed with an estimator to get a true value for the required parameter.

The Born rule in quantum physics gives the likelihood probability, which is stated as follows:

P (ξ|θ) = Tr(Eξρ̂θ), (3.2.5)

where, ρ̂θ is the density operator and Eξ is a selected positive operator value measure (POVM).

Therefore, quantum Fisher information is the maximization over all POVMs Eξ. According

to [97, 98] the quantum Fisher information FQ is defined like FQ = Tr(ρL2), where L is a

significant quantity and is known as the symmetric logarithmic derivative (SLD). Let θ be the

parameter of interest to estimate, then the SLD satisfy the following equation,

∂θρθ = (ρθL+ Lρθ)
2 . (3.2.6)

The symmetric logarithmic derivative has been widely researched because of its core role in

metrological tasks and its importance can be linked in two ways: first, if the SLD operator is
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known then quantum Fisher information (QFI) can be directly defined as FQ = ⟨∆2L⟩, this

indicates that the variance of the symmetric logarithmic derivative (SLD) operator represents

the quantum Fisher information (QFI) [89, 99]. Equation (3.2.5) can be further written as,

∂θ(P (ξ|θ)) = Re (Tr(ρθEξLθ)) . (3.2.7)

This leads to the following relation for Fisher information, which is linked to symmetric loga-

rithmic derivative (SLD) operator as,

F (θ) =
∑
ξ

Re (Tr(ρθEξLθ))2

Tr(ρθEξ)
. (3.2.8)

This puts a classical limit on the precision, which can be obtained by using proper data process-

ing or using a proper estimator like a maximum likelihood estimator. However, if one wants to

measure the ultimate bound to precision, it is crucial to optimize the Fisher information over

quantum estimation. In this situation, the Fisher information can be expressed as,

F (θ) ≤

∣∣∣∣∣∣Tr(ρθEξLθ)√
Tr(ρθEξ)

∣∣∣∣∣∣
2

, (3.2.9)

after a little mathematical manipulations above equation (3.2.9) can be further reduce as,

F (θ) ≤ Tr(ρθL2
θ). (3.2.10)

It is apparent from the above inequalities that any quantum measurement’s Fisher informa-

tion (F) is bounded by the so-called quantum Fisher information (QFI), let suppose FQ(θ) =

Tr(ρθL2
θ) then,

F (θ) ≤ FQ(θ). (3.2.11)

A huge amount of information provides better estimation protocols, so we have maximized the

classical Fisher information. Therefore, it can be estimated from the above equation (3.2.11)

that quantum Fisher information (QFI) puts a fundamental upper limit on classical Fisher

information (F). So, the Cramer-Rao bound can be qualified to quantum Cramer Rao bound

(QCRB) for unbiased estimator as follows,
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∆θ2 ≥ 1
µFQ(θ) . (3.2.12)

This implies that the quantum Cramer Rao bound depends on the geometrical behavior of the

quantum statistical representation and is independent of the measurement [10, 100]. Moreover,

we have provided a relation for quantum fisher information that can be used for any general

system. Let us consider an N-dimensional system (quantum statistical model) with the density

operator ρθ (the density matrix is a function of the parameter θ) given by,

ρ̂θ =
z∑

λ=1
Pλ|ψλ⟩⟨ψλ|, (3.2.13)

where Pλ, is an eigenvalue, |ψλ⟩ is the eigen-state and “z” is the dimension of a set. Since we

found that the following relation defines quantum fisher information

FQ(θ) = Tr(ρθL2
θ). (3.2.14)

The symmetric logarithmic derivative (SLD) is determined by the Lyapunov matrix relation,

which is provided by

∂θρθ = (ρθL+ Lρθ)
2 . (3.2.15)

Let us expand equation (3.2.15) in the basis of ρθ, we get the following result

⟨ψλ|∂θρθ|ψk⟩ = (Pλ + Pk)Lλk
2 , (3.2.16)

where Lλk = ⟨ψλ|L|ψk⟩ and ∂θ = ∂
∂θ

. From equation (3.2.16) one can get the idea that Lλk
can take any value for λ, k > z, because this equation can be establish for any value of Lλk.

This can be seen in the following equation if one uses equation (3.2.13) and the normalization

equation given by equation (3.2.17)

Î =
N∑
k=1

|ψk⟩⟨ψk|. (3.2.17)

In equation (3.2.14), one can get the following result

FQ(θ) =
z∑

λ=1

N∑
k=1

PλLkλLλk. (3.2.18)
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The identity operator is given by equation (3.2.17) and all Pλ > 0 which satisfies
∑s
λ=1 Pλ = 1

so, equation (3.2.16) can be modified as,

Lλk = 2⟨ψλ|∂θρθ|ψk⟩
Pλ + Pk

, (3.2.19)

or,

Lλk = 2(∂θρθ)λk
Pλ + Pk

, (3.2.20)

and,

Lkλ = 2(∂θρθ)kλ
Pλ + Pk

, (3.2.21)

where (∂θρθ)kλ = ⟨ψλ|∂θρθ|ψk⟩, now using equations (3.2.20) and (3.2.21) in (3.2.18) for quan-

tum Fisher information we get,

FQ(θ) =
z∑

λ=1

N∑
k=1

4Pλ
(Pλ + Pk)2 |(∂θρθ)λk|2 . (3.2.22)

It is apparent from the above relations that quantum Fisher information is dependent on two

factors: the eigen vectors |ψλ⟩, and the eigenvalues ρθ. To explicitly write the two contributions

we have expanded (∂θρθ)λk as follow and used orthogonality property −⟨ψλ|∂θψk⟩ = ⟨∂θψλ|ψk⟩.

Therefore, one can write,

(∂θρθ)λk = ∂θPλδλk + (Pk − Pλ)⟨ψλ|∂θψk⟩. (3.2.23)

Now substitute equation (3.2.23) in equation (3.2.22) for quantum Fisher information, the

following equation can be found

FQ(θ) =
z∑

λ=1

1
Pλ

(∂θPλ)2 +
z∑

λ=1

N∑
k=1

4Pλ(Pλ − Pk)2

(Pλ + Pk)2 |⟨ψλ|∂θψk⟩|2 . (3.2.24)

Since we know that
∑N
k=1 =

∑z
k=1 +

∑N
k=z+1, this implies that the second part of the equation

(3.2.24) can be separated into two parts as F1 and F2

F1 =
z∑

λ,k=1

4Pλ(Pλ − Pk)2

(Pλ + Pk)2 |⟨ψλ|∂θψk⟩|2 , (3.2.25)
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and F2 is

F2 =
z∑

λ=1
+

N∑
k=z+1

4Pλ |⟨ψλ|∂θψk⟩|2 . (3.2.26)

Using normalization condition one can find the following relation,

N∑
k=z+1

|ψk⟩⟨ψk| = I −
z∑

k=1
|ψk⟩⟨ψk| . (3.2.27)

Therefore, F2 can be further modified as

F2 =
z∑

λ=1
4Pλ⟨∂θψλ|∂θψi⟩ −

z∑
λ,k=1

4Pλ |⟨ψλ|∂θψk⟩|2 . (3.2.28)

Now adding F1 and F2 and use it in equation (3.2.24) the result for quantum Fisher information

will read as,

FQ(θ) =
z∑

λ=1

1
Pλ

(∂θPλ)2 +
z∑

λ=1
4Pλ⟨∂θψλ|∂θψλ⟩ −

z∑
λ,k=1

8PλPk
Pλ + Pk

|⟨ψλ|∂θψk⟩|2 . (3.2.29)

Equation (3.2.29) has two parts: the first part shows the classical Fisher information of the

distribution Pλ and the second part is purely quantum mechanical contribution. Therefore, one

can predict that there are two contributions to quantum Fisher information, one comes from

classical Fisher information and the other is quantum mechanical contribution. These can be

written individually as,

FQ(θ) = FCl(θ) + FQt(θ), (3.2.30)

where FCl(θ) and FQt(θ) reads as

FCl(θ) =
z∑

λ=1

1
Pλ

(∂θPλ)2, (3.2.31)

and,

FQt(θ) =
z∑

λ=1
4Pλ⟨∂θψλ|∂θψλ⟩ −

z∑
λ,k=1

8PλPk
Pλ + Pk

|⟨ψλ|∂θψk⟩|2 . (3.2.32)
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The classical component of the quantum Fisher information is a special case of the classical

Fisher information, as shown by the above mentioned relations. Also, it is easy to see that

classical Fisher information is just the derivative of the eigenvalues, which confirms that this

piece of the information is contributed from classical distribution in eigen-space.

Additionally, we have identified a few essential features of quantum Fisher information that

can be useful in comprehending the quantum metrology problem.

(i): For pure states, the classical contribution vanishes, and the relation for quantum Fisher in-

formation is reduced to the given expression [10, 101, 102]. Furthermore, for unitary parametriza-

tion exp (iθH), the classical information vanishes, and one can get the following result. However,

for non-unitary parametrization, the classical part does influence the precision if one uses it for

estimation problems

FQt(θ) = 4(⟨ψλ|H2|ψλ⟩ − |⟨ψλ|H|ψλ⟩|2), (3.2.33)

and it is nothing but the variance of the Hermitian operator H and can be written as,

FQt(θ) = 4(∆H)2
|ψi⟩. (3.2.34)

(ii): For states that are not pure one can get the following inequality for quantum Fisher

information [102],

FQt(θ) < 4(∆H)2. (3.2.35)

(iii): Quantum Fisher information is convex in the state as a universal characteristics, for

instance, a general mixed state ρ =
∑
k Pkρk with

∑
k Pk = 1 and the measurement is considered

as fixed, then:

F (θ) ≤
∑
k

PkF
k(θ). (3.2.36)

In equation (3.2.36), F (θ) is the Fisher information of the state and F j(θ) is the Fisher infor-

mation of the singlet state from a mixture of Pk states [5].
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3.3 Quantum Entanglement

The word entanglement means “state of being involved in complicated circumstances”. So, in

quantum mechanics “quantum entanglement” is a complicated affair between two or more states

or particles. The word “quantum entanglement” was first introduced by Erwin Schrödinger

[103]. One of the key concepts, which distinguish quantum mechanics from the classical world is

the quantum correlation between quantum states, and this interesting property has no classical

analog. This concept was examined by Albert Einstein, Nathan Rosen, and Boris Podolsky

(APR) in their 1935 article that how correlated states would interact with each other, and they

agreed that when two particles are deeply entangled, they destroy their own quantum state and

can be regarded as one quantum state [40]. Quantum entanglement is an important and counter-

intuitive concept of quantum mechanics, which has deep connections with quantum information

science [104]. The quantum correlated states are extensively employed for the tests of quantum

mechanical concepts and have been widely researched in the areas of quantum communication

[81], quantum computing [105], quantum cryptography [80], and quantum metrology [106]. Here

the author has investigated the importance of quantum entanglement in quantum metrology.

3.3.1 Role of Quantum Entanglement in Quantum Metrology

Quantum correlation has been considered a key to improvement in metrology and this concept

has proved experimentally. However, the limitations in these experiments are due to noise that

destroys the entanglement between particles [106]. Measurement operations performed on a

single quantum system in a state ρθ may be replicated N times on N separate versions of the

quantum system available in the same state ρθ. In this situation (where quantum states are

prepared independently) the quantum Fisher information works like classical Fisher information

and is calculated as NFQ(θ) with associated mean square, error decreasing as 1/N creating

standard quantum limit. However, if one uses quantum entanglement and generates quantum

states that are not separable but entangled then the measurement of mean square error scaled

as 1/N2 [44]. This
√
N improvement in the precision is due to quantum correlation between

quantum states because there is no counterpart of quantum entanglement [11]. However, such

enhancement of quantum estimation through entanglement is very much fragile to decoherence

or quantum noise. When N is very large then a little amount of noise is enough to destroy the

quantum correlation and brings back the precision limit to 1/N [107]. Moreover, the concept of

quantum entanglement is used in this work to achieve quantum-enhanced measurements. These
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include N00N states, entangled coherent states, and other states.

If the states are separable or product states as denoted by

|ψ⟩ = |ψ⟩1 ⊗ |ψ⟩2 ⊗ ...⊗ |ψ⟩n, (3.3.1)

then the variance of any unbiased estimator is bound by standard quantum limit or shot noise

limit ∆θ2 ≥ 1
m . Where m is the probe state (classical). For example coherent state â|α⟩ = α|α⟩

or number state n̂|ψn⟩ = n|ψn⟩. This limit is actually the consequence of central limit theorem

[108, 109].

However, for entangled states the scenario is different. A generalized entangled state can be

formed as

|ψ⟩PQ =
∑
ij

Cij |i⟩P ⊗ |j⟩Q. (3.3.2)

For entangled or inseparable state Cij ̸= CPi C
Q
j at least for one pair of coordinates. For example,

if we have basis vectors corresponding to each Hilbert space HP and HQ as {|0⟩P , |1⟩P } of HP

and {|0⟩Q, |1⟩Q} of HQ then the entangled state can be written for such system as,

1√
2

(|0⟩P ⊗ |1⟩Q + |1⟩P ⊗ |0⟩Q) . (3.3.3)

For such states as above the variance is limited by Heisenberg’s limit. This fundamental limit

is obtained due to usage of quantum mechanical resources (quantum entanglement). Some

particular examples have been provided in chapter 4.
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Chapter 4

Photonic Quantum States:

Applications in Quantum Metrology

Since the primary purpose of quantum metrology is to estimate certain parameters by intro-

ducing probe states. Therefore, in this chapter, we have enlisted basic photonic quantum states

which are important for the problem of quantum metrology.

4.1 Phase Sensitivity using Number State

Let us first consider the average energy associated with a single-mode system in a number state

given by

⟨n|Ĥ|n⟩ = ℏω
[
n+ 1

2

]
. (4.1.1)

This implies that energy is related to each photon, and it can be also examined that even

at zero photon state (n = 0), there is ℏω/2 energy associated with vacuum state and is called

ground state energy. To find the photon number fluctuations we used the variance of the number

operator ∆n̂2 = ⟨n̂2⟩ − ⟨n̂⟩2 and is calculated as,

∆n̂2 = ⟨n|n̂2|n⟩ − ⟨n|n̂|n⟩2 = 0, (4.1.2)

because of the sharp estimate of photon number, the fluctuations in the Fock state vanishes

[47].
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To find the minimum uncertainty in phase upon using the Fock state or number state, we

have considered the Mach-Zehnder interferometer (MZI) as depicted in Figure 4.1. The Mach-

Zehnder interferometer we have considered has 50-50 beam splitters, two total reflecting mirrors,

phase shifters ϕ− 1 and ϕ− 2, and detectors at the output ports.

Figure 4.1: The Mach-Zehnder interferometer, with a(in) = â1, b(in) = b̂1 and a(out) = â2 and

b(out) = b̂2are the corresponding annihilation operators at input and output ports respec-

tively. Where ϕ− 1 and ϕ− 2 are phase shifters along with detectors at the output ports.

The action of MZI can be easily seen in the following transformation matrices or other words,

the input states transform in the following way,

 aout

bout

 =

 1√
2

i√
2

i√
2

1√
2


 eiϕ1 0

0 eiϕ2


 1√

2
−i√

2
−i√

2
1√
2


 ain

bin

 . (4.1.3)

Equation (4.1.3) can be further simplified just by multiplying these matrices and using the

corresponding annihilation operators,

 â1

b̂1

 = ei(ϕ1+ϕ2)/2

 cos(ϕ2 ) −sin(ϕ2 )

sin(ϕ2 ) cos(ϕ2 )


 â2

b̂2

 . (4.1.4)

To better understand the action of MZI in terms of angular momentum operators we have
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deployed the following angular momentum operators that satisfy the algebra of angular mo-

mentum as recognized by Yurke et al [110]. Let us define the angular momentum operators

are,

ĵx = 1
2
[
â†b̂+ b̂†â

]
, ĵy = i

2
[
b̂†â− â†b̂

]
, ĵz = 1

2
[
â†â+ b̂†b̂

]
. (4.1.5)

These operators obey the following commutation relations,

[ĵx, ĵy] = iℏĵz, [ĵy, ĵz] = iℏĵx, [ĵz, ĵx] = iℏĵy. (4.1.6)

The total angular momentum operator is then given by,

Ĵ2 = ĵ2
x + ĵ2

y + ĵ2
z , (4.1.7)

and the corresponding photon number operator is n̂ = â†â+ b̂†b̂. With these tools in hand now

one can manipulate the action of MZI as rotation in spin space. So, it is convenient to use the

transformations of angular momentum operators instead of annihilation operators.


ĵx

ĵy

ĵz


out

=


1 0 0

0 0 1

0 −1 0



cosϕ −sinϕ 0

sinϕ cosϕ 0

0 0 1




1 0 0

0 0 −1

0 1 0



ĵx

ĵy

ĵz


in

, (4.1.8)

or we can say that angular momentum operators transform as follow,

(ĵx)out = (ĵxcosϕ+ ĵzsinϕ)in, (ĵy)out = (ĵy)in, and, (ĵz)out = (ĵzcosϕ− ĵxsinϕ)in. (4.1.9)

Now if one considers Fock state in one arm of the MZI and vacuum at another input port, the

input state may be constructed in the given style,

|ψ⟩in = |n⟩|0⟩ = |n, 0⟩. (4.1.10)

Furthermore, expectation values can be evaluated as follow by using the above transformations

and some in-hand knowledge of finding variances we have,

⟨ĵz⟩in = n

2 , and, ⟨ĵ
2
z ⟩in = n2

4 . (4.1.11)
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This directly results in zero variance that is,

(∆ĵ2
z )in = 0. (4.1.12)

From equation (4.1.12) one can predict that the Fock state is the eigenstate of ĵz, that corre-

sponds to the variance with respect to number operator as given in photon number statistics

above. and the only contribution to ĵz is coming from (∆ĵ2
x)in. The expectation values with

respect to other operators are,

⟨ĵx⟩in = 0, and, ⟨ĵ2
x⟩in = n2

4 , (4.1.13)

this implies that,

(∆ĵ2
x)in = n2

4 . (4.1.14)

Similar calculations can be done for variance in the output states and one can easily get the

following results,

(∆ĵ2
x)out = cos2ϕ

n2

4 for...ϕ = 0, (∆ĵ2
x)out = n2

4 , (4.1.15)

and,

(∆ĵ2
z )out = sin2ϕ

n2

4 for...ϕ = π

2 , (∆ĵ
2
z )out = n2

4 . (4.1.16)

Moreover, to find the metrological power or to find the minimum uncertainty in the phase

we have used the quantum Fisher information approach as defined by equations (3.2.34) and

(3.2.12). so, the uncertainty is then related by the following form,

∆ϕ = 1√
n
. (4.1.17)

This is referred to as the short noise limit or standard quantum limit; nevertheless, the phase un-

certainty estimate is not affected by phase angle ϕ. The relationship between phase uncertainty

and the number of photons is demonstrated in Figure 4.2.
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Figure 4.2: Behavior of uncertainty in phase concerning the number of photons.

It is apparent from Figure 4.2 that the high number of photons can lead to better precision as

uncertainty will be less. However, this limit is still achievable with classical approaches without

considering quantum correlations, this can be seen in the next section.

4.2 Coherent State

In this section we considered coherent state as probe state in MZI for phase estimation problem.

Since we know coherent state is an eigenstate of an annihilation operator as given by,

â|α⟩ = (α)|α⟩, ⟨α|â† = (α∗)⟨α|, (4.2.1)

where α ∈ C and is called displacement.

Photon-number statistics can be calculated using the average value and deviation of the photon

number operator (n̂),

⟨n̂⟩ = ⟨α|â†â|α⟩, (4.2.2)

and,

∆n̂2 =
[
⟨n̂2⟩ − ⟨n̂⟩2

]
= ⟨α|â†ââ†â|α⟩ = |α|2. (4.2.3)
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If one applies coherent states for a phase estimation problem so, only a standard quantum limit

can be achieved given by, 1/
√

⟨n⟩ = 1/|α| . This implies that coherent states have more classical

statistics and can be used as a bridge between classical and quantum states. Furthermore, the

expectation values with respect with ĵz operator can be obtained as,

⟨ĵz⟩ = 1
2 |α|2, and, ⟨ĵ2

z ⟩ = 1
4 |α|2 + 1

4 |α|4, (4.2.4)

so, the variance in ĵz is calculated as

∆ĵ2
z = 1

4 |α|2. (4.2.5)

Therefore, the corresponding quantum Fisher information is FQ = |α|2, and hence the metrolog-

ical power or minimum uncertainty through using coherent state is given by equation (3.2.12),

using this relation one can get the following phase sensitivity [111]

∆ϕ = 1
|α|

= 1√
⟨n⟩

. (4.2.6)

Figure 4.3: Phase uncertainty of coherent state and its relationship with average number of photons
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4.3 N00N State

N00N states are highly entangled multipartite states and are the most significant class of quan-

tum states. The essential quantum limit known as the Heisenberg limit in quantum metrology

has been extensively researched using N00N states [112]. Due to its greater variance between

the two modes, N00N states satisfy the Heisenberg limit for single-phase estimation. It has

recently been investigated to generalize the concept of N00N states to multimode N00N states

to find a way for multiparameter estimation. Quantum enhancement through N00N states has

been demonstrated experimentally beyond the standard quantum limit [113]. However, the

generation of multimode N00N states is abstract and its experimental demonstration is very

much fragile because its entanglement is sensitive to noise [114]. Mathematically,

|ψ⟩N00N = 1√
2

[
|N, 0⟩ + eiϕ|0, N⟩

]
, (4.3.1)

that is, in the first mode, a coherent superposition of N photons with vacuum in the second

mode, or vice versa. Where, “ϕ” is the phase between the two modes. To find the achievable

sensitivity through N00N states, the variance of the number operator is estimated as ∆N2 =

N2/4 and then using equations (3.2.34) and (3.2.12), we get

∆ϕN00N ≥ 1
N
. (4.3.2)

That is reached to Heisenberg limit and that’s why N00N states provide a critical role in

quantum estimation (particularly in phase measurement) [115, 116]. The evolution of N00N

states through an ideal interferometer is given by,

1√
2

[|N, 0⟩ + |0, N⟩] −→ Uϕ −→ 1√
2

[
|N, 0⟩ + eiNϕ|0, N⟩

]
. (4.3.3)

The improved precision is due to the faster deviation in phase shift which is related to photons

number Nϕ. The phase sensitivity of quantum interferometry upon using N00N state is graphed

in figure 4.4
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Figure 4.4: The uncertainty becomes very minimum for N00N states at a large number of photons.

Moreover, the enhanced sensitivity and resolution through N00N states have been researched

for biological microscopy, tissue imaging, quantum optical coherence tomography, refractive

index sensing, and others [117]. However, with such amazing applications of N00N states,

certain limitations restrict its uses including the generation of high photon number states and

its fragile nature makes these states of less usage [5]. For these reasons, several other states

have been researched for the practical implication of quantum metrology.

4.4 The Entangled Coherent State

As discussed in the section on coherent states that these quantum states provide a signifi-

cant role in connecting the classical dynamics of a system to quantum mechanical. To further

study coherent states from quantum perspectives quantum superposition can be invoked. This

quantum superposition was studied by various researchers at different times and concluded en-

hanced results for quantum metrology [67]. These states can be generated by mixing coherent

and squeezed vacuum states on a beam splitter [118]. The application of entangled coherent

states has shown improved sensitivity for phase measurement under modest photons number

as compared to the N00N state [119]. For pure states, the entangled coherent states can be

regarded as a superposition of N00N states with a different number of photons, this leads to

better sensitivity with a large number of photons as compared to the average photon number
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[42]. Let us prepare the initial state |ψin⟩12 in modes 1 and mode 2 and apply unitary trans-

formation in mode 2, then entangled coherent state can be stated as following by using the

definition of coherent state,

|ψ⟩α00α = Zα[|α, 0⟩ + |0, α⟩], (4.4.1)

where Zα is normalization constant and is given by,

Zα = 1√
(1 + e−|α|2)

. (4.4.2)

The phase optimization is given by quantum Cramer Rao bound (3.2.12) and the quantum

Fisher information for the pure states (3.2.34) can be used, the average of number operator is

given by,

⟨n̂⟩ = Z2
α|α|2, (4.4.3)

and,

⟨n̂2⟩ = Z2
α|α|2 + Z2

α|α|4. (4.4.4)

Moreover, using equations (4.4.3) and (4.4.4) for quantum Fisher information we get,

FQ(ϕ) = 4Z2
α|α|2

[
1 + (1 − Z2

α)|α|2
]
. (4.4.5)

Therefore, the sensitivity can be written as follow,

∆ϕECS ≥ 1
2Zαα

√
1 + (1 − Z2

α)|α|2
. (4.4.6)

From the above equation, one can get the idea if N is very large then the sensitivity of the

entangled coherent state becomes equal to that of the N00N state, ∆ϕECS = ∆ϕN00N. Further-

more, it can be also seen from equation (4.4.6) that the sensitivity is improved by a factor of

2Zαα
√

1 + (1 − Z2
α). The phase sensitivity is plotted against “α” in Figure 4.5. Moreover, this

improvement in sensitivity is welcomed, however, the generation of entangled coherent states is

extremely hard due to its sensitive nature towards environmental decoherence, like N00N states

these states are also fragile and vanish their entanglement in presence of noise [67]. So other
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states have been explored including squeezed states. Therefore, we devoted next section of this

chapter to squeezed states of light.

Figure 4.5: Uncertainty in phase is plotted against “n” for the entangled coherent state.

The next section focuses on the applications of squeezed vacuum states (|χ⟩), squeezed coherent

states or displaced squeezed vacuum states (|α, χ⟩), and entangled squeezed vacuum states

(|ψ⟩χ00χ) in quantum metrology.

4.5 Squeezed Vacuum State

The deployment of a squeezing operator to a vacuum state result in a squeezed vacuum state;

in other words, the arbitrary state is now a vacuum state that is,

|χ⟩ = Ŝ(χ)|0⟩, (4.5.1)

where |χ⟩, is the squeezed vacuum state and Ŝ(χ) is a single mode squeezing operator given by

equation (2.5.1). Furthermore, if one wants to find the quadrature squeezing, the expectation

values of â2, â etc can be obtained by using equations (4.5.7) and (4.5.8). After mathematical

manipulations, one can get the following results,

〈(
∆X̂1

)2
〉

= 1
4
[
sinh2r + cosh2r − 2sinhrcoshrcosθ

]
, (4.5.2)
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and,

〈(
∆X̂2

)2
〉

= 1
4
[
sinh2r + cosh2r + 2sinhrcoshrcosθ

]
. (4.5.3)

For θ = 0, the above equations are reduced to,

〈(
∆X̂1

)2
〉

= 1
4e

−2r, (4.5.4)

and,

〈(
∆X̂2

)2
〉

= 1
4e

2r. (4.5.5)

From these equations, it is easy to see that squeezing in X̂1 observable is at the expense of other

quadrature component and for θ = π, there will be squeezing in the X̂2 quadrature.

Such states have been used for enhanced quantum estimation tasks. The application of squeezed

vacuum states for phase measurement in Mach–Zehnder interferometer (MZI) has widely been

researched. The photon number statistics of squeezed vacuum state are given by,

⟨n⟩ = sinh2r, (4.5.6)

and, similarly one can find the following result as well by using the transformation equations

given by

Ŝ†(χ)âŜ(χ) = âCoshr − â†eiθSinhr, (4.5.7)

and,

Ŝ†(χ)â†Ŝ(χ) = â†Coshr − âe−iθSinhr. (4.5.8)

Therefore,

⟨n2⟩ = 2cosh2rsinh2r + sinh2r, (4.5.9)

hence the variance is,

∆n2 = 2
[
⟨n⟩ + ⟨n⟩2

]
. (4.5.10)
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Now, using equation (3.2.34) therefore, the quantum Fisher information (QFI) for squeezed

vacuum state leads to the following relation,

FQ(ϕ) = 8
[
⟨n⟩ + ⟨n⟩2

]
. (4.5.11)

This implies the quantum Cramer Rao bound (3.2.12) in the following structure,

∆ϕ ≥ 1
2
√

2
1√

⟨n⟩ + ⟨n⟩2 . (4.5.12)

Equation (4.5.12) reduces to Heisenberg’s limited sensitivity for large ⟨n⟩. This result shows

an excellent furtherance in phase measurement in contrast to the standard quantum-limited

measurements [5, 120]. The phase sensitivity in equation (4.5.12) is shown in the below figure

depending on the average number of photons.

Figure 4.6: Phase sensitivity of interferometric setup using squeezed vacuum state with average number

of photons ⟨n⟩

4.6 Squeezed Coherent State

Furthermore, another scenario has been considered where the squeezed coherent state is dis-

placed in the phase space [121]. This type of interferometric structure has been implemented

in advanced interferometers (LIGO) for the detection of gravitational waves [122]. Squeezed
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vacuum and coherent state are used as inputs modes in the interferometric setup which makes

the input state as,

|ψ⟩in = |α, χ⟩ = D̂(α)Ŝ(χ)|0⟩. (4.6.1)

Since coherent and squeezed vacuum states can be written as,

|α⟩ = D̂(α)|0⟩, and, |χ⟩ = Ŝ(χ)|0⟩, (4.6.2)

where D̂(α) and Ŝ(χ) are displacement and squeezing operators respectively, and are defined

as follows,

D̂(α) = exp
[
αâ† − α∗â

]
, (4.6.3)

and,

Ŝ(χ) = exp
[1

2
(
χ∗â2 − χâ†2

)]
. (4.6.4)

To calculate the expectation values of various operators in this section we will need certain

types of transformation equations which can be easily obtained by using the Baker-Hausdorf

lemma given by equation (2.5.5). The transformation equations are, given by following relations

(proofs are given in A.2)

D̂(α)âD̂(α) = (â+ α), (4.6.5)

and,

D̂†(α)â†D̂(α) = (â† − α∗). (4.6.6)

The relevant quantities that are important to calculate the uncertainty or estimation precision

are given,

⟨n̂⟩ = Sinh2r + |α|2. (4.6.7)

It is easy to interpret from the above equation that a complex “α” is contributed to the ex-

pectation value of the number operator because of the involvement of the coherent state in
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one of the input ports. Moreover, similar calculations can be done to find the following result.

Remember that we have used the above transformation equations (4.6.4) and (4.6.6) in each of

the derivations

⟨n̂2⟩ = 2Cosh2rSinh2r + Sinh4r + 3|α|2Sinh2r + |α|2Cosh2r−

SinhrCoshr(α2e−iθ + α∗2eiθ) + |α|4.
(4.6.8)

Therefore, the variance can be extracted as,

∆n2 = 2Cosh2rSinh2r + |α|2Sinh2r + |α|2Cosh2r − SinhrCoshr(α2e−iθ + α∗2eiθ), (4.6.9)

so, the final result for phase estimation is obtained as,

∆ϕ = 1√
8Cosh2rSinh2r + 4|α|2Sinh2r + 4|α|2Cosh2r − S

, (4.6.10)

where, S = SinhrCoshr(α2e−iθ+α∗2eiθ). Since the maximum point is for θ = π/2 and we have

considered the real value of “α”. So, the last term in square root goes to zero. Furthermore, to

make a better comparison with other states we have supposed that ⟨n⟩ is very large (⟨n⟩ >> 1).

In this situation, the squeezed vacuum should carry
√

⟨n⟩/2 of photons, therefore the squeezing

factor can be approximated as Sinh2r =
√

⟨n⟩/2. Using these approximations one can find the

following result and then plotted concerning the mean number of photons as shown in Figure

4.7

∆ϕ = 1√
4
√

⟨n⟩ + 6⟨n⟩ + 4⟨n⟩
3
2

≈ 1
2⟨n⟩

3
4

≈ 1
⟨n⟩

3
4
. (4.6.11)

The above result shows better improvement as compared to shot noise-limited interferometry.

Moreover, from the above example, it is clear that quantum resources offer the best strategies

for overcoming the classical limit of scaling.
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Figure 4.7: Behavior of squeezed coherent state. For large ⟨n⟩ >> 1, the uncertainty goes like blue plot

while if we consider the original form of the equation that increases the denominator by

some factor and reaches Heisenberg’s limited scaling as shown in the figure by the orange

line.

4.7 Entangled Squeezed Vacuum State

Thus far in this chapter, we have looked at squeezed vacuum states and squeezed coherent states

and their applications towards phase estimation and interestingly, these states have shown

better improvement in the precision of measurement. However, in this section, the author

has introduced a new class of entangled states “the so-called entangled squeezed vacuum states

(ESVS)”. We have developed this state as an analogous state to an entangled coherent state,

moreover, it can be prepared through various schemes as discussed in [77, 123]. Therefore, one

can write the following state in contrast to an entangled coherent state

|ψ⟩χ00χ = Z(χ) [|χ⟩|0⟩ + |0⟩|χ⟩] , (4.7.1)

where, |χ⟩ is the squeezed vacuum state, which can be obtained through the application of a

single-mode squeezing operator and Z(χ) is an appropriate normalization constant

|χ⟩ = Ŝ(χ)|0⟩. (4.7.2)
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The single-mode squeezing operator is defined by equation (2.5.1). To obtain the exact relation

for normalization constant Z(χ) we need to expand squeezed vacuum state in its Fock basis by

invoking some basic formalism of lie algebra we will get the following compact form

|χ⟩ = Ŝ(χ)|0⟩ = 1√
Coshr

∞∑
n=0

einϕ(tanhr)n
√

(2n)!
2nn! |2n⟩, (4.7.3)

where we have used disentangling theorem to disentangle the squeezing operator. If we have

two operators let us say Â and B̂, then the disentangling lemma (proof is available in A.3) is

defined as,

exp
[
Â+ B̂

]
= exp

[
Â
]

exp
[
B̂
]

exp
[
−1

2
[
Â, B̂

]]
, (4.7.4)

provided that [Â, B̂] ̸= 0. Therefore, the normalization constant is obtained as,

Z(χ) = 1√
2
(
1 + 1

Coshr

) . (4.7.5)

Furthermore, we are interested to use an entangled squeezed vacuum state (ESVS) as a quan-

tum resource in the phase estimation problem. The related expressions that we need to find

the sensitivity in phase through quantum Cramer-Rao bound (QCRB) and quantum Fisher

information (QFI) are given by,

⟨n̂⟩ = Z2(χ)Sinh2r. (4.7.6)

The contribution from entanglement is visible and this will enhance the final estimation process

as we have expected. Similarly, one may write,

⟨n̂2⟩ = 2Z2(χ)Sinh2r + 3Z2(χ)Sinh4r, (4.7.7)

where we have used the transformation relations given by equations (4.5.7), (4.5.8), and ex-

panded form of squeezed vacuum state in Fock basis as constructed in equation (4.7.3). There-

fore, the variance can be extracted as follow,

∆n2 = 2⟨n⟩ + 3⟨n⟩2

Z2(χ) − ⟨n⟩2. (4.7.8)
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Since we know that the estimated phase sensitivity is related to the inverse of quantum Fisher

information FQ(θ) = 4∆n2 as defined by equations (3.2.12) and (3.2.34). Therefore, the phase

uncertainty obtained as,

∆ϕ ≥ 1√
8⟨n⟩ + 12⟨n⟩2

Z2(χ) − 4⟨n⟩2
. (4.7.9)

To develop optimal results for phase sensitivity or to reduce the phase uncertainty one needs

to use a specific value of “r” for which the normalization constant gives a maximum outcome.

Therefore, Z2(χ) = 1/4 for r = 0, However, r = 0 means no squeezing accordingly, we can

at least use value of r = 1 therefore, Z2(χ) = 1/3.3 for better comparison, then the phase

uncertainty becomes,

∆ϕ ≥ 1√
8⟨n⟩ + 36⟨n⟩2 . (4.7.10)

Moreover, if we consider a limiting case where the average number of photons is very high

then the expecting result is very much modified Heisenberg’s limit, and the phase sensitivity is

improved to a high level as compared to other states considered in this study

∆ϕ ≥ 1√
36⟨n⟩2 . (4.7.11)

The critical analysis of the above relations has been plotted in the below diagram in comparison

with squeezed vacuum state. It is obvious from the below figure that using entangled squeezed

vacuum states can improve the phase sensitivity up to an extreme level as compared to other

states discussed in this study. Moreover, if we consider greater value of squeezing parameter r,

then 1/Coshr term can be ignored and the obtained result will modify equation (4.7.8) in the

following form

∆n2 = 2⟨n⟩ + 5⟨n⟩2. (4.7.12)

Finally, for the case of greater value of r the phase sensitivity can be modified as

∆ϕ ≥ 1√
8⟨n⟩ + 20⟨n⟩2 . (4.7.13)

However, for greater value of ⟨n⟩, the phase sensitivity will reduce to Heisenberg’s limited

scaling.
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Figure 4.8: Phase sensitivity of squeezed vacuum and entangled squeezed vacuum state (ESVS), blue

and orange respectively.
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Results and Discussion

5.1 Discussion

Precision measurements through quantum resources have been thoroughly researched at differ-

ent times since the development of quantum mechanics. Quantum mechanics has offered various

excellent platforms for different technologies including quantum information, quantum comput-

ing, quantum key distribution, quantum metrology, etc. In this task, the author has presented a

comprehensive investigation of quantum resources for their applications in quantum metrology.

The precision of measurements is bounded by certain limits fundamentally, classically these

bounds on precision are well studied through classical statistical mechanics, the limit achieved

on the estimation of a certain parameter is named as shot noise limit due to the presence of

vacuum fluctuations [124]. Because of the limitations of classical physics, the bound on precision

can only reach to standard quantum limit or shot noise limit [124]. However, quantum optics

offer better strategies for overcoming the shot-noise limit and an ultimate limit (Heisenberg’s

limit) on precision can be achieved with less effort [125]. Detailed research has been done in

this area as discussed in the literature of the study. Moreover, we have investigated various

quantum states for quantum phase estimation problems, including Fock state, coherent state,

entangled coherent state (ECS), N00N state, squeezed vacuum state, squeezed coherent state,

and entangled squeezed vacuum state (ESVS). Quantum entanglement and non-classicality have

shown better improvement towards the achievement of ultimate limit on precision. All the re-

sults have been compiled in Table 5.1. For phase estimation, we have used the quantum Fisher

information approach which provides the direct and easiest way for calculations. Although

the Fock state is non-classical, its results can only reach shot noise scaling because it is the
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eigenstate of the number operator and shows zero variance, however, variance in angular mo-

mentum operator components have variances in input and output ports for different scenarios.

Similarly, a coherent state is considered to be a semi-classical state due to its characteristics

and the phase uncertainty achievable is shot noise limited. On the other hand, non-classicality

along with quantum entanglement have shown improved interest as given by the N00N state

and others. The phase uncertainty provided by these states is either Heisenberg’s limited or

modified Heisenberg’s scaling. To get better insights and comparison of these states with each

other we have considered an approximation that is n ≈ ⟨n⟩ because the nature of “n” is same.

The complied results are shown in Table 5.1 and the analytics of the results are presented in

Figure 5.1.

Moreover, we have considered all the results given in this work for better comparison in the

following figure. It is apparent that various quantum states have different analytics for the same

number of photons. The best result we generated is by using an entangled squeezed vacuum

state (ESVS) as a probe state in quantum interferometry.

Figure 5.1: Comparison of precision phase uncertainties of various photonic states

Relationship of phase uncertainty and number of photons: Whereas in 5.1 (a), we investigated

an ideal example ⟨n⟩ = n and produced improved results that circumvented the standard

quantum limit as well as Heisenberg’s limit. (Blue): it is obtained when input states are Fock

state or coherent state and is called shot noise scaling. (Orang ∗): a result of squeezed coherent

state for θ = 0 and n >> 1 and Sinh2r =
√
n

2 . (Green): this result is called Heisenberg’s

limit and is achieved after using N00N states as input probes. (Red): this shows the phase

estimation through using squeezed vacuum states as input source and limit obtained as modified
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Heisenberg’s limit. (Purple): this is modified Standard quantum limit for squeezed coherent

state for a smaller number of photons and has shown better sensitivity finally, (Brown) graph

shows the result of entangled squeezed vacuum state (ESVS) and has provided Heisenberg’s

limited sensitivity. In figure 5.1 (b), on the other hand, if we treated Heisenberg’s limit as a

reference bound that cannot be surpassed as established in the literature on quantum limitations

in optical interferometry, we obtained superior results for phase uncertainty when employing

entangled squeezed vacuum state and other.

Furthermore, other factors that may influence our precision phase estimation, such as squeezing

factor “r” must be considered. Because, as seen in equation, (4.7.6) the average number of

photons is associated with the squeezing parameter “r”. As a result, by squeezing parameter

one can vary the variance. Figure 5.2 depicts the behavior of phase sensitivity in response to

the parameter “r”.

Figure 5.2: Phase uncertainty and its relationship with squeezing parameter “r”

As a result, it is clear that as the squeezing parameter is increased, the phase uncertainty

decreases rapidly, as illustrated in the above figure. As a consequence, estimating the phase

using an entangled squeezed vacuum state (ESVS) is more accurate than using other states as

probes.
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Table 5.1: Various quantum states and their metrological power or estimated phase uncertainties.

S.no Quantum State Method used Results
Type of

Limit

1 Fock State

Algebra

of

angular

momentum

and

(QFI)

∆ϕ = 1√
n

Standard

Quantum

Limit

2 Coherent State

(QFI)

and

QCRB

∆ϕ = 1
|α| = 1√

⟨n⟩

Standard

Quantum

Limit

3
Entangled

Coherent State

(QFI)

and

QCRB

∆ϕECS ≥ 1
2Zαα

√
1+(1−Z2

α)|α|2

Modified

Standard

Quantum

Limit

4 N00N State

(QFI)

and

QCRB

∆ϕN00N ≥ 1
N

Heisenberg’s

Limit

5
Squeezed

Vacuum State

(QFI)

and

QCRB

∆ϕ ≥ 1
2
√

2
1√

⟨n⟩+⟨n⟩2

Modified

Heisenberg’s

Limit

6
Squeezed

Coherent State

(QFI)

and

QCRB

∆ϕ = 1√
4
√

⟨n⟩+6⟨n⟩+4⟨n⟩
3
2

Modified

Standard

Quantum

Limit

7

Entangled

Squeezed

Vacuum State

(ESVS)

(QFI)

and

QCRB

∆ϕ ≥ 1√
8⟨n⟩+ 12⟨n⟩2

Z2(χ)
−4⟨n⟩2

Modified

Heisenberg’s

Limit

51



Chapter 5: Results and Discussion

5.2 Conclusion

In the shadow of the above discussions and calculations, we declared that quantum resources

offer excellent possibilities for enhancing precision measurements. The resources of quantum

mechanics (quantum states and manipulation of these states, non-classicality, quantum entan-

glement, etc.) have provided the ultimate way of improving metrological tasks. Furthermore,

the achievable bounds on precision have been approached through quantum Fisher informa-

tion (QFI) and quantum Cramer-Rao bound (QCRB). Various quantum states have become an

adornment of this work including, coherent state, Fock state, N00N state, entangled coherent

state, squeezed vacuum state, squeezed coherent state, and entangled squeezed vacuum state

(ESVS), and has shown different results as compared in Table 5.1.Coherent and Fock states

have provided a result that saturates the shot-noise limit, however, the other states have either

circumvented the standard quantum limit or modified the Heisenberg’s limit. The phase sensi-

tivity of the N00N state is limited by Heisenberg’s bound, though it is challenging to generate

a high N00N state and in a noisy environment, it only maintains its optimality at a smaller

number of photons. Moreover, an entangled coherent state beats the standard quantum limit

by some factor but these states are also fragile like the N00N state. In continuation, we have

considered squeezed states in different scenarios that provide better phase sensitivity for a large

number of photons but yet their generation and manipulation is a hard task. Furthermore, the

experimental manipulation of these states is a challenging task, particular the entangled states

are sensitive to environmental noise therefore, one needs a highly sophisticated laboratory to

deal with such states.

Therefore, we predict that the discussed and proposed states for quantum metrology may equip

us with photonic quantum sensors and other quantum technologies in the future if we become

able to generate and control these states for particular circumstances.
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Supplementary Data

In this section, we have provided all the supportive materials including proofs and essential

lemmas that have been used in this work.

A.1 Proof of Classical Fisher Information

If we have a certain amount of data and we are interested to find an estimated value of a

specific parameter then Fisher information tells us about the particular parameter, or in simple

words how much information can be extracted about a certain parameter from a sample of data

or formally speaking Fisher information is the expected amount of data about an unknown

parameter “θ” encoded on “ξ”. Let us consider a random variable “ξ” and “θ” to be the

parameter of interest. Intuitively, if the occurrence of an event has less probability, then it’s

happening can bring us much information. Furthermore, we defined a log-likelihood function

because it will make our calculations less cumbersome. Also, the log-likelihood function helps

us to maximize the likelihood and this maximization only happens if the function is concave

downward due to the presence of a logarithmic function. Therefore,

l(ξ|θ) = lnf(ξ|θ), (A.1.1)

or,

l
′(ξ|θ) = ∂

∂θ
lnf(ξ|θ) = f

′(ξ|θ)
f(ξ|θ) . (A.1.2)

It is obvious that if l′(ξ|θ) ∼ 0, then there may not be much information about the unknown
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variable “θ” in “ξ”, so we need to consider the square of the derivative then the Fisher infor-

mation is related by,

F (θ) = Eθ

[(
l

′(ξ|θ)
)2
]

=
∫ (

l
′(ξ|θ)

)2
f(ξ|θ)dξ =

∫ (
∂

∂θ
lnf(ξ|θ)

)2
f(ξ|θ)dξ. (A.1.3)

To simplify equation (A.1.3) further we know that,

var(z) = E
[
(z − E(z))2

]
= E[z] − (E[z])2 , (A.1.4)

in this case z = l
′(ξ|θ), Therefore,

F (θ) = var
([
l

′(ξ|θ)
])

+
(
Eθ
([
l

′(ξ|θ)
]))2

. (A.1.5)

For now, consider the second part of equation (A.1.5) which is

Eθ
([
l

′(ξ|θ)
])

=
∫ (

l
′(ξ|θ)

)
f(ξ|θ)dξ =

∫
f

′(ξ|θ)dξ =
∫

∂

∂θ
f(ξ|θ)dξ. (A.1.6)

If we are allowed to change the order of differentiation and integration then the above equation

(A.1.6) becomes zero and Fisher information can now be written as,

F (θ) = var
[
l

′(ξ|θ)
]

=
〈(
l

′(ξ|θ)
)2
〉

−
〈(
l

′(ξ|θ)
)〉2

, (A.1.7)

or,

F (θ) =
〈(

∂

∂θ
lnf(ξ|θ)

)2〉
=
∫ (

∂

∂θ
lnf(ξ|θ)

)2
f(ξ|θ)dξ, (A.1.8)

or, for discrete cases, one can write Fisher information as,

F (θ) =
∑
ξ

1
f(ξ|θ)

(
∂

∂θ
f(ξ|θ)

)2
. (A.1.9)

As we have used the symbol P (ξ|θ) so, the final equation for Fisher information becomes,

F (θ) =
∑
ξ

1
P (ξ|θ)

(
∂

∂θ
P (ξ|θ)

)2
, (A.1.10)

where, P (ξ|θ) is the conditional or provisional probability.
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A.1.1 Proof of Cramer Rao Bound

Cramer-Rao bound (CRB) puts a lower limit on the precision of measurements of a specific

unknown parameter. The estimation process is the measurement of the true value of the required

parameter “θ” which is encoded in a physical system or data. To find the bound on the precision

we supposed that our estimator is unbiased this implies that its average value is equal to the

true value of the unknown parameter “θ”

θ = ⟨θest(ξ)⟩ , (A.1.11)

with the help of this equation, we can build a trivial identity as given by the definition of

expectation value.

∫
dξ [(P (ξ|θ) [θest(ξ) − θ])] . (A.1.12)

Taking the derivative of the part inside square brackets in equation (A.1.12) with respect to

“θ”,

∫
dξ

1
P (ξ|θ)

∂P (ξ|θ)
∂θ

[θest(ξ) − θ] =
∫
dξ
∂lnP (ξ|θ)

∂θ
[θest(ξ) − θ] = 1. (A.1.13)

Let us consider the following terms from the above equation

∂lnP (ξ|θ)
∂θ

= A, and, [θest(ξ) − θ] = B, (A.1.14)

using Cauchy–Schwarz inequality to simplify the equation further,

⟨A2⟩⟨B2⟩ ≥ |⟨AB⟩|2, (A.1.15)

therefore, one can write,

〈(
∂lnP (ξ|θ)

∂θ

)2〉〈
[θest(ξ) − θ]2

〉
≥
〈(

∂lnP (ξ|θ)
∂θ

)2〉
∆θ2

est ≥ 1. (A.1.16)

Since
〈(

∂lnP (ξ|θ)
∂θ

)2
〉

=
∫ ( ∂

∂θ lnf(ξ|θ)
)2
P (ξ|θ)dξ = F (θ), so the Cramer-Rao bound (CRB) can

be written in a simple representation
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∆θ ≥ 1√
F (θ)

. (A.1.17)

A.2 Proof of Transformation Equations

(a) :

Ŝ†(χ)âŜ(χ) = âCoshr − â†eiθSinhr,

as, the squeezing operator is given by equation (2.5.1) and the lemma that is important to get

the above result is defined by equation (2.5.5), therefore,

Â =
[1

2
(
χâ†2 − χ∗â2

)]
, and, B̂ = â, (A.2.1)

so, let us find each term in equation (2.5.5),

[Â, B̂] = 1
2
[
χâ†2 − χ∗â2, â

]
. (A.2.2)

Evaluating the above equation and using the commutation relation between â and â†

[Â, B̂] = −χâ†, (A.2.3)

similarly,

[
Â[Â, B̂]

]
= 1

2
[
χâ†2 − χ∗â2,−χâ†

]
= |χ|2â, (A.2.4)

and,

[
Â
[
Â[Â, B̂]

]]
= 1

2
[
χâ†2 − χ∗â2, |χ|2â

]
= −χ|χ|2â†, (A.2.5)

collecting these equations into equation (2.5.5) and then using a series of Sinhr and Coshr, one

can get the following result

Ŝ†(χ)âŜ(χ) = âCoshr − â†eiθSinhr. (A.2.6)

(b) :
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(b) Furthermore, by the taking the dagger of the above equation, the other transformation

equation can be obtained as,

Ŝ†(χ)â†Ŝ(χ) = â†Coshr − âe−iθSinhr, (A.2.7)

(c) :

D̂†(α)âD̂(α) = (â+ α),

as the displacement operator is provided by the given equations

D̂(α) = exp
[
αâ† − α∗â

]
, and, D̂(−α) = exp

[
α∗â− αâ†

]
= D̂†(α). (A.2.8)

Once again use equation (2.5.5) and let us find each term in this equation

Â = α∗â− αâ†, and, B̂ = â, (A.2.9)

then,

[Â, B̂] = [α∗â− αâ†, â] = α. (A.2.10)

The other terms in the sequence are zero, therefore,

D̂†(α)âD̂(α) = (â+ α), (A.2.11)

and using the unitary property of the displacement operator the other transformation equation

can be read as,

(d) :

D̂†(α)â†D̂(α) = (â† − α∗). (A.2.12)

A.3 Proof of Disentangling Theorem

In the special case where [Â, B̂] ̸= 0, the following theorem obeys,

exp
[
Â+ B̂

]
= exp

[
Â
]

exp
[
B̂
]

exp
[
−1

2
[
Â, B̂

]]
, (A.3.1)
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or one can write in another way as,

exp
[
Â+ B̂

]
= exp

[
B̂
]

exp
[
Â
]

exp
[1

2
[
Â, B̂

]]
. (A.3.2)

We are interested to show these equations, therefore, Let us consider the general function as

f(x) = eÂxeB̂x, (A.3.3)

the first-order derivative of the above equation is

f
′(x) = ÂeÂxeB̂x + eÂxB̂eB̂x =

(
Â+ eÂxB̂e−Âx

)
, (A.3.4)

as we know from the properties of commutation relation,

[
B̂, Ân

]
= nÂn

[
B̂, Â

]
. (A.3.5)

Therefore, we are free to write,

[
B̂, e−Âx

]
=
∑
n

[
B̂,

(−Âx)n

n!

]
=
∑
n

(−1)nx
n

n!
[
B̂, Ân

]
, (A.3.6)

and after a short mathematical manipulation, one can write,

e−ÂxB̂eÂx = B̂ − eÂx[B̂, Â]x, (A.3.7)

using the above equation in equation (A.3.4), the following equation may be obtained

f
′(x) =

(
Â+ B̂ − [B̂, Â]

)
f(x). (A.3.8)

The solution of the above (A.3.8) differential equation can be obtain as for x = 1,

eÂ+B̂ = eÂeB̂e− 1
2 [Â,B̂]. (A.3.9)

************************

************

******
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