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1A Clinician’s Introduction to Artificial 
Intelligence

Sahil Thakur and Ching-Yu Cheng

1.1	 �Artificial Intelligence

To understand the concept of artificial intelligence (AI) and how it is being used in 
applications today, we first need to understand the concept of intelligence. The term 
intelligence is derived from the Latin noun ‘intellēctus’ or verb ‘intelligere’, which 
means to comprehend or perceive. This concept is however abstract and is better 
understood with examples of different types of intelligence and how humans dis-
play them.

	1.	 Visual-spatial: physical environment characteristics (architects when designing a 
building according to terrain and surroundings, navigating a boat in water).

	2.	 Kinaesthetic: body movements (technical skill and precision of a ballerina, sur-
geons or athletes).

	3.	 Creative: novel thought, typically expressed in art, music and writing 
(imagination-driven authors, painters and musicians).

	4.	 Interpersonal: interaction with others (interviewers, shopkeepers, businessmen).
	5.	 Intrapersonal: self-realisation (meditation, goal planning, self-preservation).

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0634-2_1&domain=pdf
https://doi.org/10.1007/978-981-16-0634-2_1#DOI
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	6.	 Linguistic: manipulation of words for communication (day-to-day 
communication).

	7.	 Logical-mathematical: calculations, identifying patterns, analysing relationships 
(logic, puzzles, computing numbers).

From this classification, it is easy to understand what AI today is capable of and 
where we may be heading in the future. The simulation potential of logical-
mathematical intelligence is the maximum and early development in AI almost 
exclusively focused on this domain. Robotics aims to mimic the kinaesthetic intel-
ligence while sensor-driven (LiDAR scanners in self driven cars) applications lever-
age on visual-spatial intelligence. Chatbots are trying to mimic linguistic and 
interpersonal intelligence while the creative and intrapersonal intelligence are 
domains with limited to no simulation potential. Utility of algorithms has been 
explored to create music and draw art, but this is mainly driven by logical-
mathematical intelligence.

When we understand what an algorithm can and cannot do, that is when we can 
maximise the utility of the algorithm. Thus, it is imperative to stay away from over-
optimistic predictions and avoid false promises to increase the acceptability of algo-
rithms and their potential widespread use. Some algorithms that have achieved this 
level of acceptance are the ‘search engine’ algorithms that offer personalised search 
results, spam filters in email clients, recommendations in applications like Netflix or 
Amazon and computational photography algorithms on mobile devices. Algorithms 
that have been developed for use in hospitals however are yet to see such levels of 
acceptance. This has been due to the inherent nature of patient–physician relation-
ship, potential regulatory hurdles and multiple types of bias that confound these 
algorithms. However, with FDA approvals being given to 64 algorithms (SaMD: 
software as medical device) over the last 3 years, we can expect widespread avail-
ability of these options for clinicians in the future [1, 2]. Currently for ophthalmol-
ogy only the IDx-DR has been approved as an autonomous AI diagnostic system for 
diabetic retinopathy [3–5].

1.2	 �The Past and What We Can Learn from It

The earliest examples of humans trying to build intelligent devices were the abacus 
like devices namely the nepohualtzintzin (Aztecs), suanpan (Chinese) or the soro-
ban (Japan) [6]. These devices though based on simple concepts, reduced the time 
required for mathematical computations. This concept of reducing time and effort 
for repetitive computational tasks remains one of the driving concepts behind algo-
rithm development.

The Antikythera mechanism was another ancient computing device that was 
probably used to track dates of important events, predict eclipses and even planetary 
motions [7]. Ramon Llull’s Ars Magna was another device that used simple paper-
based rotating concentric circle to generate combinations of new words and ideas. It 
was a rudimentary step towards generating a logical system to produce knowledge 

S. Thakur and C.-Y. Cheng
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[8]. Examples of such systems also exist in fictional literature like the book-writing 
engine in the city of Lagado in Gulliver’s Travels. Attempts to create a similar algo-
rithm include the RACTER program which generated text for the first computer 
authored book titled ‘The Policeman’s Beard is Half Constructed’ in 1983 [9].

Perhaps one of the most significant inventions in primitive computing was the 
Difference Engine, proposed by Charles Babbage in 1822 [10]. In addition to this 
engine, Babbage also wanted to create the Analytical Engine which could be pro-
grammed using punch cards and had separate areas for number storage and compu-
tation. Ada Lovelace, the daughter of English poet, Lord Byron, gave the 
specifications for designing a program for this Engine. She is now considered by 
many as the first computer programmer [11].

Currently we know that data is stored in computers as a series of binary 1 s and 
0 s called bits. Eight bits make up one byte. The fundamentals of this concept were 
published in a book, titled, ‘An Investigation into the Laws of Thought, on Which 
Are Founded the Mathematical Theories of Logic and Probabilities’, by George 
Boole in 1854 [12]. He wanted to reduce logic to simple algebra involving only 0 
and 1, with three simple operations: and, or and not. Boolean algebra, which is 
named after him, is one of the foundations of this digital age.

Over the next few decades, there were incremental improvements in algorithms 
for applications like optical character recognition (OCR), handwriting recognition 
(HWR) and speech synthesis. The next breakthrough was the 1943 paper ‘A Logical 
Calculus of the Ideas Immanent in Nervous Activity’ by Warren McCulloch and 
Walter Pitts [13]. In this paper, they described the basic mathematical model of the 
biological neuron. This formed the basis for the development of artificial neural 
networks (ANN) and deep learning (DL).

ENIAC, short for Electronic Numerical Integrator and Computer, was unveiled 
in 1946 and represented the pinnacle of specialised electronic, reprogrammable, 
digital computers built to solve a range of computing problems [14]. This started the 
race for development of powerful computer hardware for specialised operations by 
different countries. However, by today’s standards even the Apollo Space Mission 
Guidance Computer (AGC) only had 64 KB memory and operated at 0.043 MHz, 
when compared to today’s smartphones running with GHz speed processors (A14 
chips in iPhones and iPads run at 3.0GHz and thus clock 70,000 times faster) shows 
how far we have come in terms of computing power due to the development of 
semiconductor technology [15, 16].

The term, ‘artificial intelligence’ (AI) was coined by John McCarthy at the 
Dartmouth conference for experts in this field in 1956 [17]. The expectations from 
this conference were extremely high despite limited computing power and hardware 
at that time. Inability to meet the hype generated by this conference, thus led to the 
AI winters of 1974–1980 and 1987–1993 [18].

Meanwhile during this time interesting developments were taking place in the 
backdrop, like:

•	 Rosenblatt concept of the perceptron [19] (1957).
•	 Arthur Lee Samuel’s concept of machine learning [20] (1959).

1  A Clinician’s Introduction to Artificial Intelligence
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•	 ELIZA: The program that could respond to text input simulating a conversation 
[21] (1964).

•	 Early deep learning using supervised multilayer perceptrons (1965).
•	 MYCIN: Rule-based expert system to identify sepsis and to recommend antibiot-

ics [22] (1970).
•	 Fuzzy logic and its applications in automation [23] (1965–1974).
•	 Lighthill Report (criticised the utter failure of artificial intelligence in achieving 

its ‘grandiose objectives’) that triggered the first AI winter [24] (1973).
•	 Joseph Weizenbaum’s early idea of ethics in AI, suggestion that AI should not be 

used as substitutes for humans in jobs requiring compassion, interpersonal 
respect, love, empathy and care [25] (1976).

•	 Expert system boom driven by LISP machines; however, LISP was soon 
overtaken by IBM/Apple with more powerful and cheaper consumer desk-
top computers, this led to collapse of the demand for expert systems [26] 
(1980–1987).

•	 Alex Waibel’s Time Delay Neural Network (TDNN) which was the first convo-
lutional network [27] (1987).

•	 Moravec’s paradox: Tasks simple for humans like walking, talking, face/voice 
recognition are difficult for AI while humanly complex computational tasks 
involving mathematics and logic are simple [28] (1988).

•	 Yan LeCun developed system to recognise handwritten ZIP codes [29] (1989).
•	 Chinook (checkers playing algorithm) vs Marion Tinsley [30] (1994).
•	 IBM Deep Blue (chess playing algorithm) vs Garry Kasparov [31] (1997).
•	 Logistello (othello playing algorithm) vs Takeshi Murakami [32] (1997).
•	 Oh and Jung demonstrated power of graphical processing units (GPUs) for net-

work training [33] (2004).
•	 ImageNet database [34] (2009).
•	 IBM DeepQA-based Watson winning the quiz show Jeopardy [35] (2011).
•	 Google DeepMind AlphaGo (based on ANN and Monte Carlo tree search algo-

rithm defecting Lee Sedol) and AlphaGo Zero (trained by self-play without using 
previous data) which subsequently defected AlphaGo [36] (2017).

•	 Adversarial patches and perturbations [37, 38] (2018).
•	 Stanford death predictor [39] (2019).

Perhaps the most important developments that renewed interest in the field of AI 
and allowed widespread access over the last decade are the availability of large 
amounts of data and increased computational power at cheaper costs using modali-
ties like graphical processing units (GPUs). ImageNet has especially been used to 
train popular models like the AlexNet [40], VGG16 [41], Inception modules [42] 
and the currently used ResNet [43].

Other datasets are also available for applications like music, facial recognition, 
text and speech processing [44]. As AI is a rapidly evolving field, today new inno-
vations also happen with the same pace. However, understanding the history of AI 
is vital in predicting how it may affect the future. In further sections, we discuss 

S. Thakur and C.-Y. Cheng
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why AI has become so popular today and how it may help in optimising patient 
care by evolving into an effective decision support system.

1.3	 �Why Should a Clinician Bother About AI?

A quick PubMed search shows how the number of articles published in the field of 
AI has grown to 112,594 results with 35,140 (31.2%) being published since 2018 
[45]. Another insight comes from the Gartner Hype Index that monitors and predicts 
how a technology will evolve over time [46]. Machine learning (ML) was at the 
peak of inflated expectation indicating impact of publicity and expectations in 2016, 
DL at the same peak in 2018. These peaks also translate to the increase in applica-
tions that were developed using these technologies in this time. PubMed search 
shows a total of 49, 721 results till 2020 for ML, with 3885 results in 2016, 5217 in 
2017 and 8169 in 2018. The last 2 years have seen 24,230 results which is 48.73% 
of total results [47]. Similarly, for DL, PubMed search shows 18,082 results till 
2020 with 3020 results in 2018, 5401  in 2019 and 7383  in 2020 [48]. The last 
2 years represent 70.7% of the total results. These numbers show how these tech-
nologies are being increasingly tried and tested for use in medicine.

Due to the lack of special training for understanding or evaluating these applica-
tions or their underlying concepts, a lot of effort has been recently initiated to make 
the clinicians more aware and sensitised about the use of AI in providing patient 
care [49–51]. In the next section, we describe a checklist approach to reading an AI 
paper with emphasis on evidence assessment and evaluation of future potential for 
translation to clinical use. We believe that this approach can help in better under-
standing of the scientific merit of the publication and its potential impact on care 
delivery practice patterns.

1.4	 �How to Read an Artificial Intelligence Paper?

Jaeschke et al. provided a framework to evaluate diagnostic tests in clinical medi-
cine [52]. We have expanded the same framework to include relevant information 
about AI-based algorithms. We will initially describe the framework and then pro-
vide example of using the framework [53, 54]. The framework is as follows:

•	 Step 1: Evaluate if the study results are valid.
Primary Guide
–– Was there an independent, blind comparison with a reference standard?
–– Did the patient sample include an appropriate spectrum of patients to whom 

the diagnostic test will be applied in clinical practice?
For AI-based algorithms these can be adapted as:

Are the datasets appropriate and described in sufficient detail?
Was the gold standard for algorithm training appropriate and reliable?

1  A Clinician’s Introduction to Artificial Intelligence
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Secondary Guide
–– Did the results of the test being evaluated influence the decision to perform 

the reference standard?
–– Were the methods for performing the test described in sufficient detail to per-

mit replication?
For AI-based algorithms these can be adapted as:

Is the methodology of algorithm development described in sufficient detail 
to allow replication?
Are the algorithm/datasets used available for external validation?

•	 Step 2: Evaluate the presented results.
–– Are likelihood ratios for the test results presented or data necessary for their 

calculation provided?
For AI-based algorithms these can be adapted as:

Are adequate and appropriate performance metrics reported? [50].
•	 Step 3: Evaluate the utility of results in providing care for your patients.

–– Will the reproducibility of the test result and its interpretation be satisfactory 
in my setting?

–– Are the results applicable to my patient?
–– Will the results change my management?
–– Will the patients be better off because of the test?

For AI-based algorithms these can be adapted as:
Are the findings of the algorithm explainable? Does the algorithm exhibit 
generalisability (can it be easily adapted for a different machine input or 
population)? Was the original algorithm performance too optimistic?
Has the algorithm been validated in my local population?
Is there any independent comparison of the algorithm with existing stan-
dard of care? Is there a cost-effectiveness analysis for rationale of algo-
rithm use?
Will there be a significant impact on patient well-being after algorithm 
deployment? Is there an attempt to measure this impact?

Table 1.1 shows how this framework can be used to evaluate an artificial intelli-
gence paper.

S. Thakur and C.-Y. Cheng
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Table 1.1  Framework for evaluation of artificial intelligence papers in medicine (adopted from 
Jaeschke et al.) [52]

Paper Title: Clinically applicable deep learning for diagnosis and referral in retinal disease 
[53].
Purpose: Develop an artificial intelligence-based patient triage system using 3D OCT data
Step 1: Evaluate if the study results are valid
• �Was there an 

independent, blind 
comparison with a 
reference standard?

Are the datasets 
appropriate and 
described in sufficient 
detail?

The authors describe in detail the training 
set for OCT (Topcon) segmentation (877 
scans), validation set for segmentation 
(224 scans), training set for classification 
(14,884 scans), validation set for 
classification (993 scans) and the testing 
set for comparison of algorithm (997 
random scans) with standard of care

• �Did the patient 
sample include an 
appropriate 
spectrum of patients 
to whom the 
diagnostic test will 
be applied in clinical 
practice?

Was the reference 
standard for algorithm 
training/testing 
appropriate and reliable?

The data for training the segmentation 
algorithm was manually segmented by 
trained ophthalmologists, reviewed and 
edited by senior ophthalmologists. The 
training set for classification used labels 
from automatic note search and trained 
ophthalmologists/optometrists reviewed 
the scans. The validation set for 
classification was graded by three junior 
graders, while for the test set, the referral 
gold standard was from full patient 
clinical records to determine the diagnosis 
and referral path considering subsequently 
obtained information. The algorithm 
performance was compared to four 
medical retina consultant 
ophthalmologists and four specialist 
optometrists

• �Did the results of the 
test being evaluated 
influence the 
decision to perform 
the reference 
standard?

Did the results of the 
algorithm influence the 
decision to perform the 
reference standard?

No, the referral gold standard was 
retrospective data based on full clinical 
records of patients undergoing current 
standard of care

• �Were the methods 
for performing the 
test described in 
sufficient detail to 
permit replication?

Is the methodology of 
algorithm development 
described in sufficient 
detail to allow 
replication? Are the 
algorithm/datasets used 
available for external 
validation?

The authors describe the algorithm (U-net 
architecture) in detail but mention that the 
data is not available in the public domain 
and may be available on request subject to 
local and national ethical approvals. In a 
subsequent paper, the authors mention 
about releasing the segmentation 
algorithm and dataset in the public 
domain for validation [54]

(continued)

1  A Clinician’s Introduction to Artificial Intelligence
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Table 1.1  (continued)

Step 2: Evaluate the presented results
• �Are likelihood ratios 

for the test results 
presented or data 
necessary for their 
calculation 
provided?

Are adequate and 
appropriate performance 
metrics reported? [50]

The authors report ROC curves, confusion 
matrices, total error rates and impact of 
additional information (OCT alone, 
OCT + fundus + full case summary) on 
expert referral decisions. The algorithm 
had an AUC of 99.21 and error rate of 
5.5% (55/997)

Step 3: Evaluate the utility of results in providing care for your patients
• �Will the 

reproducibility of 
the test result and its 
interpretation be 
satisfactory in my 
setting?

Are the findings of the 
algorithm explainable? 
Does the algorithm 
exhibit generalisability? 
Was the original 
algorithm performance 
too optimistic?

The authors report data for generalising 
using of the algorithm using another OCT 
device. (Spectralis), though initially the 
algorithm performs poorly and has error 
rate of 46.6% for referral decisions, 
retraining of the segmentation algorithm 
improves the AUC to 99.93 and reduces 
error rate to 3.4% (4/116). This shows that 
the algorithm is flexible and adaptable to 
a different machine. The authors also 
report results in a third OCT machine 
(Cirrus 5000) where initial error rate of 
16.4% was reduced to 9.8% after 
retraining the segmentation algorithm
The developers of the algorithm also tried 
to incorporate elements of explainable 
artificial intelligence by providing a 
segmentation maps with highlighted 
retinal structure, pathology, artefacts and 
predicted diagnostic probabilities and 
referral suggestions. However, in the 
videos provided as supplementary 
material, the automatic segmentation is 
not always accurate

• �Are the results 
applicable to my 
patient?

Has the algorithm been 
validated in my local 
population?

No, the results are from the patient 
population at Moorfields eye hospital, 
London, United Kingdom. It will need 
further validation in different ethnic 
populations and research settings before it 
can be applicable to your patients

• �Will the results 
change my 
management?

Is there any independent 
comparison of the 
algorithm with existing 
standard of care? Is there 
a cost effectiveness 
analysis for rationale of 
algorithm use?

The algorithm was compared to 4 medical 
retina consultant ophthalmologists and 4 
specialist optometrists. The algorithm 
performed as well or outperformed the 
experts. There was no attempt however to 
assess the cost effectiveness of the 
algorithm as compared to standard of care

• �Will the patients be 
better off because of 
the test?

Will there be a significant 
impact on patient 
well-being after 
algorithm deployment? Is 
there an attempt to 
measure this impact?

The algorithm has potential to be 
deployed as a clinician decision support 
tool but immediate impact on patient 
well-being cannot be assessed. No attempt 
was made by the authors to measure this 
impact in the real world

S. Thakur and C.-Y. Cheng
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1.5	 �Conclusion

We have exciting times ahead of us, due to the immense potential of AI as a clinical 
decision support tool. However potential ethical and legal issues of liability man-
agement, reduction in clinical skills due to excessive algorithm use, inappropriate 
data representation especially for minorities, lack of personal privacy, ‘biomarkup’ 
due to excessive testing and inadequate understanding of algorithm results (AI 
black box) can hamper the deployment and acceptance of these AI algorithms [55–
59]. Humans are intelligent, flexible and tenacious but are also liable to make mis-
takes. The embarrassing inability of Apple HealthKit to track menstrual cycles 
while tracking innocuous parameters for health monitoring like weight, height, 
inhaler use, alcohol content, blood sugar, sodium intake is just one example of this 
oversight [60]. Inherently the algorithms are unbiased but the bias from data used 
for training and the developers inherent bias can ultimately create complex ethical 
problems. An attitude of critical evaluation by all stakeholders before adoption of 
any new technology will thus help to separate the real from the hype. IBM Watson 
is an excellent example of how AI struggles with real-world medicine, messy hos-
pital records and the expectations of industry, hospitals, physicians and patients 
[61]. We must keep in mind that our primary goal is always providing our patients 
the ‘best’ standard of care available. The affordability, availability and widespread 
social impact of the ‘model of care’ should also be considered while making this 
critical decision.
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2.1	 �Artificial Intelligence

The popularity of artificial intelligence (AI) has increased in different fields of 
application. Initial terminology pertaining to AI was proposed in the middle of the 
last century. However, in the nineties decade, expressions like expert systems, arti-
ficial neural networks, fuzzy systems, and others were based on statistical tools 
from the 60 and 70 decades, creating the field known as Machine Learning (ML). 
Currently, these topics are associated with automation applications and an emergent 
area of data science. Different processes have applied these technological tools 
thereby improving the solutions to problems in distinct fields and at different levels. 
In spite of the increment in the use of the terms AI and ML, it is difficult for many 
to determine what exactly AI is.

The Institute of Electrical and Electronics Engineers (IEEE) subdivides the AI 
field into three subfields:

	1.	 artificial neural networks (ANN), which are based on connectionist models, try-
ing to emulate the biological brain;

	2.	 evolutionary algorithms that employ bioinspired methods of optimization as, for 
example, the mechanism of natural selection; and,

	3.	 fuzzy logic, which use the natural language in human being, modifying the clas-
sical logic.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0634-2_2&domain=pdf
https://doi.org/10.1007/978-981-16-0634-2_2#DOI
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These paradigms have been included inside the concept of computational intel-
ligence (CI). However, the similarities between AI and CI are notable, CI emerged 
from a community virtually different [1]. Since there is no unification, the terminol-
ogy is wide and, currently, employ concepts related to the explanation as to how the 
machines learn [2]. Therefore, the main aspect of CI is the numeric representation 
of the knowledge compared to the symbolic representation of the AI.

Simultaneous to the development of the CI community, on the other side, Vapnik 
and Chervonenkis proposed more models that learn from data, which were coined 
as machine learning [3]. Mainly they used different statistical tools for different 
strategies to solve problems in classification and regression. The popularization of 
these models gave birth to the new field of ML.

The ML area is composed of models such as support vector machines (SVM), 
trees for regression and classification (RT), and ANNs, just to mention a few. More 
recently, Rosenblatt’s work based on perceptron evinced improvements in the area, 
and later with the multilayer perceptron (MLP) and the backpropagation (backprop, 
BP) algorithm from McLellan [4] has exhibited its splendor.

Neural networks were reborn with the addition of layers to the ANN models. 
This field has been named deep learning (DL), and currently, it is one of the most 
popular methods to solve challenges in image processing and computer vision [5]. 
The number of parameters of the neural network has been increased with additional 
problems in the training model, where more synaptic weights have to be tuned, 
demanding more computation capacity and time processing. Figure 2.1 shows the 
association of the models in terms of AI as a big technological and study area and 
ML as a subfield of the AI and the DL as a particular scenario of the ML.

AI in health is a subspecialty, which includes different methods and techniques 
to address different challenges or problems in areas associated to health sciences. 
These new tools can be employed to strengthen task in assistance in clinical deci-
sions [6], data mining in medicine [7–9], proposing extra-help that allows to pro-
vide an additional insight to professional staff in healthcare.

Deep Learning Machine Learning Artificial Intelligence

Fig. 2.1  Representation of the AI, ML, and DL
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In medical specialties where medical staff spends lot of time analyzing images, 
AI offers alternatives that automatize these processes, for example, in radiology [10, 
11], ophthalmology [12, 13], and, in general, diagnostic support [14–16].

2.2	 �Difference Between Machine Learning Versus 
Deep Learning

As mentioned earlier, the DL is a specific case of the ML when ANN are employed. 
This depends on the number of layers and, consequently, more parameters intercon-
necting these layers (Fig. 2.2). However, this section aims to unveil details about the 
differences between ML and DL.

It is important to describe some aspects of the data for training of the network. 
Thus, a previous stage with a focus in preprocessing must be included, which aims 
to reduce the number of variables or to choose the more relevant ones. This process 
is called feature extraction, and it is important for any ML classification or regres-
sion application.

In general, there are many tools designed to contribute in the feature extraction 
step, where the experience, limitations, and necessities of the problem are addressed. 
As the performance of the ANN model depends on the treatment of data, this stage 
takes the most time for a robust project development.

In contrast, DL attempts to automatize the feature extraction processes, wherein, 
the first layers of the model work for obtaining the parameters that be employed for 
last layers in the classification or regression issue. It is essential to point out that for 
these kinds of applications more data must be available to enhance all process and 
results. However, there are sophisticated techniques that allow to treat this problem, 
as bootstrapping methods or data augmentation for image applications.

INPUT

INPUT

Manual feature extraction

Classification

a

b

Classification

Moderate DME

Non-DME

•
•
•

Automatic feature extraction

Severe DME

OUTPUT

Moderate DME

Non-DME

•
•
•

Severe DME

OUTPUT

Fig. 2.2  ML and DL comparison: (a) ML and (b) DL
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2.3	 �Machine Learning

Machine learning is defined as the area of study where the computers have the abil-
ity to extract relation and features of the data as a learning process, but without 
being programmed for this task. The automatic analysis of ocular images as a tool 
to support medical diagnosis has been a research challenge in terms of achieving the 
best model with the lowest computational cost [17–21]. In ophthalmology, the 
choice of the best method to represent, analyze, and make a diagnosis using eye 
fundus images is a complex computational problem [22–27].

2.3.1	 �Types of Learning Models for Machine Learning Methods

Machine learning algorithms are mainly organized according to the type of learning 
used by them. Supervised and unsupervised learning are widely used with ocular 
imaging and videos [17] while reinforcement learning is studied to automatically 
perform ocular surgery.

The differences between the three learning techniques are presented in the 
Fig. 2.3 and summarized as follows:

•	 Supervised learning: The algorithm is fed with inputs and outputs and has a 
function that maps the relationship between inputs and desired outputs.

•	 Unsupervised learning: The algorithm is fed with inputs and has to cluster in 
n-groups according to the similarity among the input data.

•	 Reinforcement learning: The algorithm is fed with actions and states, and it 
learns a policy of how to act, given a state.

Input Input Input

Data with
labels

Data without
labels

State and
actions

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Classification Clustering
Dimensionality
reduction

Future actions
and statesRegression

Loss function Loss function

Reinforcement signal

Output: Output: Output:
• •

••
•

Fig. 2.3  Learning approaches of machine learning methods
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In addition, ML techniques have been applied with some success to several eye 
conditions using as evidence individual sources of information [27–30]. Some 
researchers have studied how to support the diagnosis with different methodologies. 
Vandarkuhali and Ravichandran [27] detected the retinal blood vessels with extreme 
learning machine (ELM) approach and probabilistic neural network, Gurudath et al. 
[17] worked with ML identification from fundus images with a three-layered ANN 
and SVM to classify the retinal images, and Priyadarshini et al. studied clustering 
and classifications with data mining to give some useful predictions applied to dia-
betic retinopathy (DR) diagnosis [18]. Despite good results, the main problems with 
these results are that the datasets are small and the need for labels is expensive and 
cumbersome work.

2.4	 �Deep Learning

DL is a branch of ML that includes a whole family of algorithms with a common 
characteristic: an architecture organized by hierarchical levels. Its history dates 
back in the 1940s, with simple algorithms, that were variations of linear regression 
methods [31]. In the early 1960s, thanks to the inspiration produced by the nature of 
the cerebral cortex, Frank Rosenblatt introduced the fundamental pillar of the con-
struction of neural networks: the perceptron. A perceptron is a basic processing unit, 
which receives information directly from the data to be analyzed, or from the output 
of other perceptrons. Each input has an associated connection weight and, in the 
simplest case, the output is a weighted linear combination of the inputs (Fig. 2.4).

ANN consist of a set of perceptrons (neurons) organized by layers. The whole 
structure can be divided into three sections: an input layer, a set of hidden layers, 
and an output layer. All the neurons are connected from one layer to the next in a 
way that the information moves through the network from the input to the output 
layer. The input information is transformed depending on the weights of the connec-
tions and the activation function of each neuron. An activation function acts as a 

x1 w1

w0(t) = q

w2

w3

wn

x2

x3

xn

in(t)

out(t)

Σ

Fig. 2.4  Architecture of a simple perceptron
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filter for the output of the neuron. As in most of the ML methods, the goal is to learn 
the parameters that better describe the data patterns and to reach this objective, a 
cost function should be minimized. The cost function could measure the error rate, 
or the precision of the predictions reached by the network, and it can vary depend-
ing on the model and the learning task. In any case, the cost function depends on the 
parameters of the network connections. In 1970, backpropagation was introduced as 
a gradient computing technique for the cost function minimization, based on 
Stochastic Gradient Descent method. Backpropagation tracks the error measured by 
the cost function in the opposite direction of the flow of information into the net, it 
means, from the output to the input layer, which allows the -necessary adjustment 
of the parameters to be calculated iteratively, as the model analyzes the training 
samples. Nowadays, backpropagation is part of the state of the art in the training 
process of neural networks [31].

DL is based on deep neural networks, using hundreds of hidden layers. Deep 
learning methods represent the state of the art in many fields of research [32], 
and thanks to the amount of efficient and specialized open-source software as 
Tensorflow, Keras, or Pytorch, they are the focus of an immense academic and 
industrial effort. Among the multiple options of DL models, one particular type 
stands out among medical imaging applications: the convolutional neural net-
works (CNNs).

2.4.1	 �Convolutional Neural Networks

CNNs were introduced in 1979 [33]. They are a particular type of neural network 
designed to recognize visual patterns (Fig. 2.5). CNNs include several hidden layers 
based on convolutional, subsampling, and/or normalization operators. This allows 
to exploit the structural information present in an image without the need to include 
an excessive number of trainable parameters.

The input of a CNN is a tensor (a multidimensional matrix) with shape defined 
by the image resolution. Convolutional layers are the core structure behind these 
models. They are composed of several convolutional kernels, which are rectangular 
matrices, whose size is a hyperparameter to be tuned by the user, and whose ele-
ments are parameters that the model must learn.

These kernels scan the image and output a new tensor from the linear combina-
tion of the kernel elements with the scanned input tensor elements. The new tensor 
is basically an image filtered by certain specific geometrical patterns, learned during 
training. These patterns increase in complexity as the depth of the network increases. 
Therefore, the first convolutional layers learn to recognize very local patterns, such 
as edges, and the following layers can learn to recognize structures created from 
combinations of the previous local patterns.

To date, CNNs are the most effective tool available for image analysis and have 
been successfully applied to medical imaging since 1995 [34], although they have 
only recently begun to be used in the study of eye diseases [35].

O. J. Perdomo et al.
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2.4.2	 �Transfer Learning

In medial image analysis, most of the DL models make use of transfer learning, a 
technique that allows the researchers to take advantage of previously trained deep 
neural network models. Some of the most used DL models in the analysis of eye fun-
dus images are Inception V1 and V3 [36]. Those models have been originally trained 
with ImageNet [37], one of the largest available datasets of natural images. While 
these models have shown good results in these image datasets, their direct application 

CAT

Fig. 2.5  Feature extraction performed by a CNN
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in medical image analysis is not feasible, due to several reasons. Natural and medical 
images have different and particular statistical characteristics. Therefore, the param-
eters of the models trained in ImageNet are not optimal for recognizing the specific 
patterns present in medical images. On the other hand, training these models with 
medical images datasets from scratch is not feasible, as they are usually very small 
sets. For eye fundus imaging, for example, one of the largest publicly available datas-
ets is the EyePACS, which has only 35,126 images for training. Given the high num-
ber of parameters that deep models must optimize, the success of these DL models 
depends on the availability of very large volumes of data [38]. The transfer learning 
technique raises as an alternative to these problems. It consists of taking the models 
with the parameters learned with ImageNet (or with some other set of natural images 
as CIFAR) and then performing a fine-tuning process. It is, an adjustment of the 
parameters, continuing the learning process, using the specific data that we wish to 
analyze. This process has proven useful both for feature extraction, which could later 
be used in another ML model [38], and for the classification task. Although it is pos-
sible to create your own architectures, some studies have shown that under certain 
circumstances (such as poor availability of training data) the fine-tuning strategy gives 
better results than doing training from scratch [39].

Based on a classification of the most applied CNN, models to medical imaging 
can be made as follows: classification models, segmentation models, and multi-
modal architectures [40, 41].

2.4.3	 �Classification

The task of classifying healthy and sick patients, or classifying a disease among its 
different stages, is obviously important in supporting medical diagnosis. As men-
tioned earlier, the classification of ocular diseases based on eye fundus images 
focuses on fine-tuned CNNs. Inception V1 and Inception V3 are two of the most 
successful models used for this task. Inception V1 is a CNN that uses different sizes 
of convolutions for the same input. Furthermore, it includes a global average pooling 
layer at the end of its architecture. Inception V3 is an improved version that adds 
several layers of batch normalization and label smoothing strategies in order to pre-
vent overfitting. The fine-tuned Inception V3 has reported impressive performance in 
the task of DR diagnosis [42]. However, it can also be used for representation learn-
ing. Among the ML methods, DL emerges as an unbeatable competitor for the tasks 
of representation learning. This is a fundamental factor in the success of any ML 
method. Models based on DL learn a representation space explicitly through the dif-
ferent processing levels, without much preprocessing [43]. By defining a hidden 
layer as the output of the Inception V3 model, it is possible to obtain a vector repre-
sentation of the images, and use this representation as input for classical ML meth-
ods. In this way, the representational power of DL can be combined with the rigorous 
theoretical foundation of more classic and robust methods such as the SVM or proba-
bilistic methods. This can allow to obtain in total more interpretable models, which 
not only offer a prediction but also, for example, indicators of uncertainty [38].
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2.4.4	 �Segmentation

Segmentation models seek to recognize and isolate anatomical structures as organs 
or injuries within images. In many cases, segmentation is one of the first steps in the 
analysis tasks, prior to classification, since it precisely serves as a support to the 
diagnosis process. CNNs are used to make optic disc segmentation, useful for the 
diagnosis of glaucoma [44], segmentation of blood vessels and exudates for the 
monitoring of DR [45], or segmentation for the identification of druses useful in the 
diagnosis of Age-Related Macular Degeneration (AMD) [46]. Among the most 
common models used for segmentation tasks, there is the U-Net [47], a model that 
can be trained with few images, which consists of two parts, one of down sampling 
and another of upper sampling, interconnected in a symmetrical scheme, which 
allows the training to consider the full context of the image, and thus achieves a 
direct mapping between the original image and the segmented image.

Another common model is that of recurrent neural networks (RNN) [48], which 
involves recurrent connections and allows to temporarily store information from 
recent inputs. This is useful in the analysis of volumetric images, such as those 
obtained from an Optical Coherence Tomography (OCT) machine, because it allows 
finding patterns between sets of successive images related to each other.

2.4.5	 �Multimodal Learning

Multimodal learning attempts to find the best way to combine information from dif-
ferent sources, so that they complement each other and allow for better results than 
would be obtained by analyzing the sources of information separately. CNNs can be 
modified to receive not only an image but also more information in the form of extra 
channels [49].

Although the application of multimodal strategies with DL in the diagnosis of 
eye-related diseases has just begun, recent studies have shown that the combination 
of different sources of information generates models with greater predictive capac-
ity and robustness [49]. This is the case with models designed to process volumet-
ric OCTs, or those that combine eye fundus images with OCT volumes for the 
diagnosis of AMD [50]. More recently, most work has focused on the process of 
segmentation and classification of glaucoma and AMD. Golabbakhsh proposed the 
registration of the retina vessels combining information from eye fundus images 
and OCT. [51] Segmentation of retina vessels is useful in the diagnosis of AMD 
and DR. This combination of fundus images and OCT has been explored for the 
AMD diagnosis as well as for the segmentation of the optic cup and optic disc for 
glaucoma diagnosis.

However, the data from multiple modalities may result in the problem of appro-
priate representation and consequent fusion. How to learn the right representation 
for each information source? How and where to fuse the representation features into 
the model? Data from different modalities may have different statistical properties, 
so a simple concatenation of representative features is not necessarily a good 
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strategy [52]. One must look for latent spaces, and around these various strategies 
can be designed.

Regarding the fusion, there are three types: early, late, and hybrid fusion. In early 
fusion, a selection or combination of the representations of each modality is made 
before solving the problem. In late fusion, the results of independent models are 
combined in order to draw conclusions. Deciding on the optimal type of fusion is 
part of the exploratory process in the application of DL methods. An example of this 
can be found in, where the authors showed that the extraction of several features, 
obtained separately from the same source, can be combined within the same model 
to provide complementary information. The authors experimented with merging 
information at different stages of the process and found the best results by interme-
diate fusion, it means, within the classifier. A similar concept was developed in [42], 
where structural and nonstructural features are extracted from the eye fundus 
images, and then correlated in a late fusion module.

But the combination of information can go beyond visual data, for instance, 
combining images and text. The first work on this subject was developed by Schlegl 
[53], combining CNN to analyze OCT images, with semantic information extracted 
from medical reports. The fusion there consisted of a concatenation of parameters 
into a fully connected layer, and they reported an improvement in the performance 
of retinal tissue classification tasks. It is also possible to combine visual information 
with morphological data, as proposed by Perdomo in [54], combining deep neural 
networks with morphological features in the detection and classification of glau-
coma. Image analysis and extraction of morphological features can be done sepa-
rately and mixed within the network in a layer, and then go through a fully connected 
layer and the output layer for the final decision.
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3.1	 �Introduction

As population aging has become a major demographic trend around the world, a 
steep increase is expected in patients suffering from ocular diseases. Early detection 
and appropriate treatment of ocular diseases are of great significance to prevent 
vision loss and improve quality of life. Conventional methods for diagnosing eye 
diseases primarily depend on the professional experience and knowledge of the 
ophthalmologist, which may result in high misdiagnosis rate and underutilization of 
medical data. An integration of ophthalmology and artificial intelligence (AI) has 
the potential to objectively revolutionize screening, diagnosing and management 
patterns of various ocular diseases. Applications of AI can make great contributions 
to provide support to patients in remote areas by sharing expert knowledge and 
limited resources.

Traditionally, an ophthalmic examination involves description of findings using 
words, drawings and images followed by establishing a diagnosis. This method of 
diagnosing is highly subjective, qualitative and inconsistent.

Since, majority of ophthalmic diagnosis is image-based, so a lot depends on the 
use of computers for analyzing and quantifying various parameters in the images. 
Research in medical image processing typically aims to extract features that might 
be difficult to assess with the naked eye. There are two types of features. The first is 
the well-known semantic feature defined by human experts, and the other is the 
agonistic feature defined by mathematical equations.

With increased access to big data and analytics and advancements in the neural 
network approach, the computers have helped in learning the combinations and 
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permutations of important features [1]. This chapter gives an overview of AI (using 
both semantic and agonistic features) for early detection and treatment of anterior 
as well as posterior segment disorders. Figure  3.1 shows the timeline of key 
advances of AI.

3.2	 �Artificial Intelligence and Anterior Segment Disorders

3.2.1	 �Artificial Intelligence and Ectasia

With the boom in refractive surgeries, iatrogenic keratectasia has been noted in 
cases without anterior surface alterations. This highlights the need to screen for 
susceptible cases likely to have a post procedure biomechanical failure. For devel-
oping a screening technique/protocol, several methods such as risk scores, linear 
models and artificial intelligence models have been explored.

Lopes et al. collected Pentacam HR (Oculus, Wetzlar, Germany) data of three 
groups of patients viz., those with stable LASIK, post LASIK ectasia and clinical 
keratoconus from multiple centres of three countries to develop a ‘Pentacam 
Random Forest Index’ (PRFI) which had a sensitivity of 94.2% and specificity of 
98.8% to detect corneal ectasia with an AUC of 0.992 [2].

Yoo et al. predicted candidacy for corneal refractive surgery by analyzing data 
from patient demographics, corneal tomography and ophthalmic examination using 
five different machine learning algorithms. They used an ensemble classifier algo-
rithm which was validated using internal and external datasets with an AUC of 
0.983 and 0.972, respectively [3].

AI-derived models bridge the gap between lab and clinic, by providing a simple 
output parameter which serves as a risk profiling tool. Different corneal tomogra-
phers and biomechanical analyzers have added these AI-based indices in the soft-
ware as objective screening parameters.

The rise of Artificial 
Intelligence

KEY ADVANCES OVER THE YEARS

1956 1958 1967 Till Late 1982 1994 2000-2010 2013-
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Fig. 3.1  The rise of artificial intelligence
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3.2.2	 �Artificial Intelligence and Keratoconus

Artificial intelligence for keratoconus detection is an active area of research with 
many different methods implemented over the years to detect presence of the dis-
ease, differentiate normal from form fruste keratoconus and even classify severity 
grade of the disease in some studies [4].

Kamiya et al. used deep learning (DL) to classify eyes into keratoconus present 
or absent based on arithmetic calculation of output data from colour-coded corneal 
maps on swept-source anterior segment optical coherence tomography (AS-OCT). 
Six different colour-coded maps were used to generate AUC of 0.991 for detection 
of keratoconus and classification of grade of the disease in keratoconic eyes [5].

Valdés-Mas et  al. studied corneal curvature and astigmatism in keratoconus 
patients post intra-corneal ring implantation to predict visual outcome using 
machine learning [6].

Yousefi et  al. studied corneal parameters from both the anterior and posterior 
surface, grouped them into principal components by conducting linear transforma-
tion before conducting non-linear tSNE (t-Distributed Stochastic Neighbour 
Embedding) transformation, identified unique non-overlapping clusters using unsu-
pervised machine learning and conducted a post-hoc analysis for these clusters to 
predict likelihood of requiring a future keratoplasty intervention [7].

3.2.3	 �Artificial Intelligence and Lens

3.2.3.1	 �Cataract Grading
Cataracts are the leading cause of visual impairment worldwide, accounting for 
over 50% of cases of blindness in middle- and low-income countries. As mentioned 
earlier in the chapter, with the global trend of increased longevity, the prevalence of 
cataracts is also going to increase. Unfortunately, the distribution of medical 
resources in the developing countries is not satisfactory for cataract diagnosis and 
appropriate surgical management. Therefore, a universal AI platform is needed for 
the management of cataracts involving multiple clinical scenarios and improving 
medical resource coverage.

Kumar M and Gunasundari developed a computer-aided diagnosis system to 
detect corneal arcus and cataract from the photographs of eyes taken with a standard 
digital camera [8]. They developed a multiclass computer-aided diagnosis (CAD) 
system using visible wavelength (VW) eye images to diagnose anterior segment 
ocular conditions. They pre-processed the input VW eye images for specular reflec-
tion removal and then segmented the iris circle region using a Circular Hough 
Transform (CHT)-based approach.

From the segmented iris circle, first-order statistical features and wavelet-based 
features were extracted and used for classification. They achieved a predictive accu-
racy of 96.96% with 97% sensitivity and 99% specificity.

Gao and Wong proposed an automated system to ascertain features for grading 
the severity of nuclear cataracts from slit-lamp images [9]. Image patches from 
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lenses within the same grading class were clustered to develop local filters. These 
filters were fed into a convolutional neural network (CNN), followed by a set of 
recursive neural networks, in order to extract higher order features. Support vector 
regression was applied to higher order features to grade the cataract.

Currently, no universal AI tool or platform is available that can recognize differ-
ent capture modes, aetiologies and stages of treatment for cataract.

3.2.3.2	 �Intraocular Lens Power Calculation
The erstwhile simple cataract extraction has now evolved to ‘refractive cataract sur-
gery’ as now the aim is to neutralize the patient’s pre-existing refractive error at the 
time of addressing the lenticular opacity. By using the axial length and keratometry, 
only about 80% of patients can achieve within 0.5 Dioptres (D) of the intended 
refractive target using third-generation static formulae such as SRK/T, Holladay 1 
and Hoffer Q. These formulae consist of a single equation for all eyes. The more 
recent formulae, such as the Holladay 2, the Barrett Universal, the Hill-RBF and the 
Ladas Super Formula 1.0, are probably better classified as methodologies because 
they are more than just single equations and involve use of additional inputs such as 
anterior chamber depth and white-to-white diameter.

Recently, DL has been applied to an amalgamation of multiple IOL calculation 
formulae with Ladas Super Formula 1.0 as framework, to develop a new improved 
formula, Ladas 2.0. Using data sets to learn from multiple surgeons and then apply-
ing it to another surgeon, Ladas 2.0 AI gives an accuracy of 87% and if the same 
surgeon’s data is used to improve his/her own calculations, then its accuracy 
improves to 94% [10].

González et  al. deployed 11 DL models for IOL power calculation of which 
SVM with Gaussian kernel RBF and multivariate analysis regression spline (MARS) 
had the best results and an ensembled model was generated by combining the two 
models, Karmona. This was better than other models as it incorporated the ratio 
between the curvatures of the posterior and anterior corneal surfaces. Best results 
were obtained with Karmona stacked regression model, where 90.38% and 100% of 
eyes were within ±0.50 and ± 1.00 D, respectively [11].

AI-based self-calibrating biometers are going to revolutionize the future of 
‘refractive cataract surgery’.

3.3	 �Artificial Intelligence and Posterior Segment Disorders

3.3.1	 �Artificial Intelligence and Diabetic Retinopathy

About 600 million people are likely to have diabetes by 2040, and nearly one-third 
will have diabetic retinopathy (DR) [12].

Screening for DR is performed by different eyecare and technical professionals, 
including ophthalmologists, optometrists, clinical photographers and screening 
technicians. Any of the screening methods such as direct ophthalmoscopy, dilated 
slit-lamp biomicroscopy with a handheld lens, mydriatic or non-mydriatic fundus 
photography, teleretinal screening and retinal video recording may be used for 
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clinic or community. A major hurdle in robust implementation of DR screening 
programmes is related to availability of trained human assessors and long-term 
financial sustainability.

Deep learning has revolutionized the diagnostic performance for detecting DR. The 
goal is to have such a DL system that can be generalized to populations of different 
ethnicities, and works well with retinal images captured using different cameras.

El Tanboly et  al. developed a DL-based computer-aided system to detect DR 
through 52 OCT images, achieving an AUC of 0.98 [13]. Despite the good out-
comes in the cross-validation process, the system needs to be further validated in 
larger patient cohorts. A computer-aided diagnostic (CAD) system based on con-
tinuous machine learning (CML) algorithms using optical coherence tomography 
angiography (OCTA) images to automatically diagnose non-proliferative DR 
(NPDR) also achieved high accuracy and AUC [14, 15].

The results of highly biased and heterogeneous studies assessing the diagnostic 
performance of OCTA highlight the need for further analyses of methodologically 
sound and sufficiently sized clinical evaluations.

Algorithms for the diagnosis of diabetic retinopathy have been amongst the first 
to receive regulatory approval for routine clinical use [16].

3.3.2	 �Artificial Intelligence and Retinal Vein Occlusion

Automated detection of branch retinal vein occlusion (BRVO) was attempted by 
Zhang et al. with hierarchical local binary pattern (HLBP) recognition and maximal 
pooling as a feature extraction method. AUC was noted to be 0.961 [17].

Nagasato et al. used ultra-wide field fundus photographs from central retinal vein 
occlusion (CRVO) patients and normal patients to train a DL convolutional neural 
network and a support vector machine (SVM) to detect presence of CRVO. They 
found that the DL model had better performance than SVM model with AUC of 
0.989 with sensitivity and specificity of 98.4% and 97.9%, respectively. Same group 
performed another study using ultra-wide field fundus photographs from BRVO and 
normal patients to train DL and SVM models to compare performance. The AUC 
for DL model that outperformed the SVM model was 0.976 with sensitivity and 
specificity of 94.0% and 97.0%, respectively [18, 19].

A random forest model was implemented to classify images based on presence 
of vitreomacular adhesion (VMA) in BRVO patients as it is an important biomarker 
to predict response to anti-VEGF therapy. It was noted that eyes with VMA had 
more visual acuity gains with therapy as compared to eyes that did not have 
VMA [20].

3.3.3	 �Artificial Intelligence and Retinopathy of Prematurity

Retinopathy of prematurity (ROP) is one of the leading causes of preventable child-
hood blindness globally. Blindness from ROP is largely preventable with early case 
detection and timely treatment [21].
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Although improvement in neonatal care in middle-income ‘developing’ coun-
tries has resulted in improved survival of premature infants but unfortunately infra-
structure needed for ROP case detection and treatment has not improved 
proportionately. ROP screening is a time-consuming practice that requires trained 
personnel. Interclinician subjectivity and regional variation in the diagnosis of dif-
ferent stages of ROP, especially the plus disease has led to delayed treatment and 
poorer visual outcomes [22].

Attempts have been made to improve ROP screening by digital retinal imaging 
and remote diagnosis via telemedicine by trained ophthalmologists. In recent times, 
automated techniques using AI deep learning technologies have been validated for 
diagnosis of ROP using retrospective data, but are yet to be fully validated in the 
real-world setting [23, 24].

In order to improve the generalizability of the DL algorithm, technical variations 
in the fundus imaging process such as different camera models, lenses and optical 
aberrations must be accounted for.

3.3.4	 �Artificial Intelligence and Age-Related 
Macular Degeneration

Age-related macular degeneration (ARMD) is a chronic and irreversible macular 
disease characterized by drusen, retinal pigment changes, choroidal neovasculariza-
tion, haemorrhage and geographic atrophy. It is one of the leading causes of central 
vision loss in people over 50 years. With the population aging and the severity of 
ARMD, it is necessary to perform regular screening. Automatic ARMD diagnosis 
may obviously reduce the workload of clinicians and improve efficiency.

Lee et al. used a VGG16 CNN to analyze central 11 images from the OCT vol-
umes of normal and ARMD patients to automatically detect ARMD. The data was 
analyzed for individual images, averaged probabilities from comprising images 
from OCT volumes and averaged probabilities from all scans of individual patients 
showing AUC of 0.928, 0.938 and 0.975, respectively [25].

Burlina et  al. used deep learning to detect and grade ARMD.  In a follow-up 
study, they deployed deep learning to classify ARMD according to the Age Related 
Eye Disease Study (AREDS) Severity Scale and estimate five-year risk of progres-
sion to advanced disease by soft prediction, hard prediction and DL-based regres-
sion mapping. They found that mean estimation error in overall five-year risk ranged 
between 3.4% and 5.8% with higher AREDS classes having a higher mean error and 
vice versa [26, 27].

DL and convolutional neural networks were deployed by Grassmann et  al. to 
detect and classify ARMD into 13 classes using colour fundus photographs [28]. 
They deployed an ensemble random forest model of six different convolutional neu-
ral network architectures to achieve an accuracy of 0.943 and quadratic weighted k 
of 92% for classification into 13 classes. Recently, Peng et  al. used a newer 
DeepSeeNet model to classify colour fundus photographs into ARMD severity 
classes [29].
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DeepSeeNet closely resembles human grading process by initially taking into 
account the risk factors for ARMD and then classifying according to the AREDS 
Simplified Severity Scale. This model was shown to have better accuracy compared 
to retina specialists for patient-based ARMD classification (0.671 vs 0.599) with 
AUC of 0.94, 0.93 and 0.97 for large drusen, pigmentary abnormalities and detec-
tion of late ARMD, respectively.

3.3.5	 �Artificial Intelligence and Glaucoma

AI can help revolutionize the screening, diagnosis and classification of glaucoma. 
AI allows automated processing of large data sets, and detection of new disease pat-
terns. Initially, fundus photographs were processed via machine learning to identify 
glaucomatous optic nerve damage [30, 31]. Later, larger databases were processed 
with DL technology [32]. Ting et al. analyzed a database of 125,189 fundus photo-
graphs and reported a sensitivity of 96.4% and specificity of 87.2% [33].

Additionally, AI applications are being developed using computerized visual 
field and OCT data, studies have also been published describing programs that are 
able to evaluate patients based on data from both of these examination devices.

3.3.6	 �Artificial Intelligence and Retinal Detachment

Researchers in Japan used a DL algorithm to detect rhegmatogenous retinal detach-
ment from Optos ultra-widefield fundus images. It demonstrated a sensitivity of 
97.6% and specificity of 96.5% [34].

3.3.7	 �Artificial Intelligence and Geographic Atrophy

Advanced AI methods in high-resolution retinal imaging allow to identify, localize 
and quantify biomarkers such as hyper reflective foci (HRF). Increased HRF con-
centrations in the junctional zone and future macular atrophy may represent pro-
gressive migration and loss of retinal pigment epithelium [35]. AI-based biomarker 
monitoring may pave the way into the era of individualized risk assessment and 
objective decision-making processes.

3.4	 �Artificial Intelligence and Miscellaneous 
Ocular Disorders

3.4.1	 �Refractive Error Calculation

Varadarajan et al. deployed a combination of ResNet and Soft attention DL archi-
tecture to predict refractive error from features extracted retinal fundus images with 
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a mean absolute error (MAE) of 0.56D (95% confidence interval) and 0.91D (95% 
confidence interval) on the two tested data sets [36].

Chun et  al. conducted deep learning-based refractive error estimation using 
smartphone captured eccentric photorefractive images in paediatric age group with 
an overall estimation accuracy of 81.6% [37].

Subjective refraction data was split into power vectors (M, J0 and J45) which 
were then predicted using three boosted gradient trees (XGBoost) algorithms by 
training using patient data. It was noted that this model yielded more accurate 
results compared to paraxial matching method for spectacle correction. The mean 
absolute error with this model was noted to be 0.301 ± 0.252 D for the M vector, 
0.120 ± 0.094 D for the J0 vector and 0.094 ± 0.084 D for the J45 vector [38].

3.4.2	 �Ocular Oncology

Damato et al. deployed conditional hazard estimating neural network (CHENN) to 
estimate survival in patients with choroidal melanoma and compared results with 
standard Kaplan-Meier analysis [39]. They found that the all-cause survival curves 
matched between the two methods (p  <  0.05), except in older patients where 
CHENN estimated lower mortality than Kaplan-Meier analysis.

Nguyen et al. described a two-stepped approach to achieve automated uveal mel-
anoma segmentation. The first step comprising of a class activation map, condi-
tional random field and active shape model was deployed to localize the tumour in 
the MRI scan. The second step deployed a 2D-Unet CNN for tumour segmenta-
tion [40].

Sun et al. classified uveal melanomas for BAP1 expression with AUC of 0.99 by 
using histopathological slides, creating 8176 patches of 256 × 256 pixels each and 
feeding them through a dense CNN. BAP1 expression is associated with poor prog-
nosis in these tumours as it confers metastatic potential [41].

3.4.3	 �Paediatric Ophthalmology

As described above, automated refraction using eccentric photorefractive images 
has a huge potential in the paediatric age group. In a recent review, retinopathy of 
prematurity (also described above) was noted to have high yield from AI-based 
detection and grading with accuracy approaching that of experts [42]. Other areas in 
paediatric ophthalmology that have had recent expansion in AI-based applications 
include paediatric cataract detection, cataract classification, prediction of complica-
tions post-cataract surgery, strabismus detection, prediction of potential high myo-
pia development, fundus vessel segmentation and visual development analysis to 
name a few.

To conclude, by building systematic and interpretable AI platforms using 
advanced techniques with sufficient multimodal and high-quality data, the applica-
bility of AI in clinical scenarios can be enhanced.
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4.1	 �Introduction

In the field of ophthalmology, the subspecialty of cornea has seen pioneering work 
in the evolution of technological advances aimed at aiding diagnosis and treatment. 
This dates back to the beginning of the fifteenth century, with Christoph Scheiner’s 
experiments using reflections of images from the cornea [1]. Over time, advance-
ments in technology have enabled the development of instruments such as the kera-
tometer, keratoscope, pachymeters, tomographer, confocal microscopes, corneal 
hysteresis, meibography and wavefront analyzers [2–4]. The components of a com-
prehensive ocular surface evaluation today include a tomographic assessment of 
cornea, biomechanical measurements for ocular hysteresis, optical wavefront analy-
sis and tear film evaluation including meibomian gland function.

Busy clinics with an increasing demand for refractive surgery have led to a para-
digm shift in practice patterns. The clinician has to his disposal a wide range of tools 
to perform a comprehensive qualitative and quantitative evaluation of the ocular 
surface. However, the interpretation of the scans requires a thorough assessment and 
due to the vast amount of data generated by modern instruments, this may be time 
consuming. The approach has to be individualized given the huge amount of natu-
rally occurring variations. In addition, detection of pathology at a subclinical stage 
can help in timely and more effective management while avoiding complications. 
The tools for evaluation remain the same but the diagnostic and therapeutic thresh-
old criteria for different disorders vary—from selecting candidates for refractive 
surgery to diagnosing meibomian gland dysfunction or detecting early corneal 
ectasias.
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The overwhelming amount of information provided by these modern instru-
ments can at times be difficult to interpret, and prevent us from arriving at definitive 
conclusions and decisions. An algorithmic approach has shown to reduce chances of 
oversight and human errors by defining step-by-step protocols to interpret all the 
available data and detect red flags. With an ever-increasing workload, these human 
errors are unfortunately not completely avoidable.

We need improved strategies to extract, process and correlate meaningful infor-
mation from the various complementary instruments, and artificial intelligence (AI) 
is the most efficient means to accomplish this. Convolutional neural networks 
(CNNs), deep learning (DL) and other machine learning (ML) techniques are 
becoming vital tools to help clinicians deliver the best quality of care to patients 
while streamlining data analytics. Once a comprehensive work up has been done, if 
we are able to feed the data and images from the scans onto an AI system, which 
allows us to check for subtle variations in measurements, recognize patterns prior to 
them being clinically visible as well as detect and screen out those patients having 
“red flag” measurements which require additional attention.

The long-term aim is to ease the interpretation of investigations in a time-efficient 
manner and minimize risk of errors and subsequent complications. Second aim is to 
provide a systematic approach to objectively monitor a disease process and its 
response to treatment. Within the corneal subspecialty, refractive surgery and pro-
gressive ectatic disorders have seen the most significant development in algorithms 
and implementation of ML for improving patient care. This chapter aims to discuss 
the existing role of AI in cornea and refractive surgery and scope for further 
development.

4.2	 �Artificial Intelligence for Ectasia Diagnosis

Keratoconus (KCN) is a progressive, usually bilateral corneal ectasia which varies 
in prevalence from 1 in 50 people in Central India, to 1 in 2000 people in the United 
States [5, 6]. The biggest challenge in KCN is to achieve an early diagnosis, when 
the patient is still asymptomatic. Very early diagnosis is essential due to two main 
reasons, firstly, the progressive nature of KCN and the fact that treatments such as 
crosslinking only allow us to halt progression, and secondly, to accurately screen 
the large number of patients undergoing refractive surgery who are at risk of iatro-
genic ectasia. The first report of progressive ectasia after LASIK occurred in a case 
with subclinical forme fruste KCN [7]. Such patients are susceptible to biomechani-
cal failure of the cornea following the removal of corneal tissue by laser vision cor-
rection (LVC). The challenge is to identify patients with KCN even before any 
anterior corneal surface alterations are evident.

To accomplish the goal of early identification of such cases, various methods 
including risk scorers, linear models and more recently artificial intelligence and 
machine learning models evaluating data from different tomographers have been 
proposed. One of the first published use of AI in the analysis of corneal abnormali-
ties was done by Maeda et al. in 1995 [8]. They selected topographic maps obtained 
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from videokeratography and subsequently corneal experts classified these into 
seven categories: normal, with-the-rule astigmatism, KCN (mild, moderate, 
advanced), post photorefractive keratectomy and post keratoplasty. The maps were 
divided into a training set (108 maps) and a test set (75 maps). For each map, 11 
topography-characterizing indices that were calculated from the data provided by 
the videokeratoscope, along with the corresponding diagnosis category, were used 
to train a neural network. Correct classification was achieved by the trained neural 
network for all 108 maps in the training set. In the test set, the neural network cor-
rectly classified 60 of 75 maps (80%). For every category, accuracy and specificity 
were greater than 90%, whereas sensitivity ranged from 44% to 100%. They used 
the backpropagation method as a neural network model which consists of three or 
more layers of “neurons”, that form the basic processing unit. The layers include an 
input layer, at least one hidden layer and an output layer. Each neuron in one layer 
is connected with each neuron in the following layer. The input layer consists of 
investigator defined neurons, as in the data that is provided, and the output layer 
consists of neurons corresponding to the different classification categories. In the 
training process, the neural network compares its output response with the correct 
response and produces an error value, which is then further used to adjust the 
weighting scheme and minimize output error. The aim of training a neural network 
with training data is to allow the system to memorize the relationship between input 
and output data as a matrix of adjusted weights. One limitation in such neural net-
works is that the accuracy of results depends on the size and accuracy of the data set.

In 1997, Smolek et al. further developed two networks to answer two questions 
by analyzing videokeratoscope examinations: “Is keratoconus present?” and “How 
severe is it?” [9] They trained it to classify the examinations into nine different cat-
egories: Normal, astigmatism, KC, KCS, contact lens induced warpage, pellucid 
marginal degeneration, photorefractive keratectomy, radial keratotomy and pene-
trating keratoplasty. One separate network was then trained to grade KC maps as 
mild (KC1), moderate (KC2) or advanced (KC3). The study used a single hidden 
layer and both networks were trained to an error tolerance of 0.1. Three hundred 
examinations were randomly divided into 150 examinations each for training and 
test set. On the test set, the classification network was 100% accurate, sensitive and 
specific. The network outperformed the diagnostic methods available on the TMS-2 
machine (Tomey USA, Cambridge, MA) at the time. The network was as accurate 
as the Klyce/Maeda keratoconus Index (KCI) and the Rabinowitz test.

Smolek et al., in 2001, then trained a neural network to screen wavelet data from 
videokeratography examinations and determine whether the cases had undergone 
previous refractive surgery. The trained network correctly identified post-refractive 
surgery corneas with a 99.3% accuracy, 99.1% sensitivity and 100% specificity [10].

Carvalho et al. in 2007 compared the accuracy of neural networks and discrimi-
nant analysis (DA) techniques for the classification of corneal shapes, using Zernike 
coefficients (ZC) as inputs. The study used ZC data from 80 patient examinations 
with an input set composed of only the first 15 of 5760 available ZC data points 
from the videokeratograph due to limitations of computational power. The neural 
networks achieved better overall mean results with an accuracy of 94%, while the 
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DA techniques achieved a mean accuracy of 84.8%. The study showed that Zernike 
polynomials could be used for diagnosis automation, by both neural network and 
DA techniques and they also predicted better results as computational abilities and 
implementation costs reduced over time [11].

With newer tomography platforms using technologies such as Scheimpflug 
imaging and slit scanning, it became possible to measure and analyze more than just 
the anterior surface of the cornea [12, 13]. According to prediction theory, when 
more variables describing an event can be measured, the model can predict the out-
come more precisely. Souza et al. used this theorem to hypothesize and eventually 
prove that they could use supervised learning methods to combine all the attributes 
from the Orbscan II (Bausch and Lomb) and improve its accuracy in detecting KCN 
[14]. While all the previous studies used only multilayer perceptron (MLP) neural 
networks, Souza et al. also incorporated support vector machine (SVM) and radial 
basis function neural networks (RBFNN) methods and a receiver operating charac-
teristic (ROC) analysis. The RBFNN is characterized by a layer of input nodes, a 
layer of output nodes and one intermediate or hidden layer and is the main practical 
alternative to the MLP for non-linear modelling [15]. Each processing unit in the 
hidden layer implements a radial basis function, and for their study, Souza et al. 
chose the Gaussian function, as it is preferred in pattern classification applications. 
The SVM is a supervised learning method useful for classifying data that is not 
linearly separable. In SVM, when a two-dimensional separation is not possible, the 
algorithm searches for a plane in a higher dimension that is able to separate the 
group with the highest margin. In both, RBFNN and SVM, the hidden layer per-
forms a non-linear transformation from the input space into a high dimensional 
space. Maximal separation of the data within the high dimensional space is applied 
in both methods, using a kernel function to find a hyperplane in SVM, and perform-
ing a subsequent linear transformation in RBFNN. The study used a standard MLP 
with a single hidden layer, and weights and biases were measured and averaged 
prior to the training data run in order to prevent any biases, and a scaled conjugate 
gradient was used along with a “cross-entropy error function” in the training 
algorithm.

To understand cross-entropy error function, we must first understand the 
Information Theory given by Claude Shannon which says that the occurrence of an 
unlikely event gives you more information than the occurrence of a likely event, so 
in ML, information (measured in bits) quantifies the uncertainty in one single event, 
but what if you are interested in a sequence of events, and not just one event? That 
is where entropy enters, as it gives us the amount of information required to transmit 
a randomly selected event from a probability distribution. A skewed distribution has 
a low entropy, whereas a distribution where events have equal probability has a 
larger entropy. Cross entropy is a measure of the difference between two probability 
distributions over the same set of events. This method prevents the problem of over 
fitting, where the classifier accurately models the training data, but performs poorly 
on test data. RBFNN offers advantages over MLP as it is more resilient to a poor 
training set, and the simple linear transformation in the output layer can be better 
optimized than methods seen in MLP techniques. SVM also offers advantages over 
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MLP, such as improved accuracy with a smaller training data set, and fewer errors 
such as local minima as the solution to SVM is unique. Compared with MLP, a 
disadvantage with RBFNN and SVM is that they give equal weight to every attri-
bute, and consequently, they cannot deal effectively with irrelevant attributes. 
Despite all the unique advantages of RBFNN and SVM over MLP, the study results 
showed no statistical difference between the three different methods, although each 
of the three methods was significantly more accurate than any one single attribute 
provided by the Orbscan.

After establishing the validity of neural networks as a tool for automated diagno-
sis of KCN, researchers looked into methods to widen and refine its application. 
Accardo et al. published their work on neural network in KCN diagnosis wherein 
they compared six different neural networks with several combinations of the num-
ber of inputs, hidden layers, output nodes and learning rates [16]. They also com-
pared whether KCN screening should be performed on both eyes of the same 
subject, or evaluate each eye separately. They found that screening on both eyes 
provided more accurate results, and utilizing nine input parameters and three out-
puts, with fewer hidden neurons improved the discriminant ability of the neural 
network, and produced a network that was easy to implement and quick in both 
training and test phases. Kovacs et al. used ML to enable even earlier diagnosis of 
KCN, by developing an algorithm to identify and compare characteristics of the 
subtle morphologic changes in the clinically normal fellow eyes of patients with 
keratoconus [17]. The study analyzed tomographic, topographic and keratoconus 
indices from the Pentacam HR (Oculus, Wetzlar, Germany) in patients with bilateral 
KCN, and normal eyes of patients with unilateral KCN, and a group of normal con-
trol eyes. An MLP classifier trained on bilateral index of height decentration values 
had the highest accuracy in discriminating fellow eyes of unilateral KCN patients, 
from control eyes (area under the ROC 0.96). The ability to accurately detect KCN 
during the preclinical stages is the goal in KCN and refractive surgery screening.

To further improve the understanding of AI applications in ectasia diagnosis, 
Lopes et al. compared five different machine learning techniques to analyze tomo-
graphic data and detect ectasia [18]. The models they compared were regularized 
discriminant analysis (RDA), SVM, naïve Bayes (NB), neural networks and random 
forest (RF). At the time of its publication, it was one of the largest most diverse stud-
ies on AI in KCN diagnosis, incorporating data from 3693 eyes and five centres 
across three different continents. The training data set was divided into three groups, 
stable or controls, ectasia cases and preoperative data of patients that developed post 
LASIK ectasia. To overcome a limitation in the study by Kovacs et al., they com-
posed their test set with cases not included in the training model (external valida-
tion) [17]. To avoid over-fitting and assess the external validity, a hold-out validation 
method was performed along with independent tests. Once the five different AI 
models were trained, their accuracies were measured and the AUC was compared. 
The RF had the highest accuracy, 0.992. Compared with the RF model, the AUC 
was significantly lower in the other four models. The RF model was named as the 
Pentacam Random Forest Index (PRFI), and it had better diagnostic accuracy than 
the pre-existing tomographic indices, including the Belin/Ambrósio Display 
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(BAD-D), which correctly classified only 55.3% of the post LASIK ectasia while 
the PRFI correctly classified 80%. PRFI was the first model trained with the preop-
erative exam of patients that later developed ectasia. The PRFI had a sensitivity of 
85.2%, and specificity of 96.6%, which is lower than some of the previous studies 
that trained models to identify very asymmetric ectasia with normal topography. 
This difference can be explained by the fact that their training and testing sets were 
exclusive, their sample population was more heterogenous and they had a much 
larger number of cases. These factors dramatically reduce the risk of over-fitting and 
provide a more accurate representation of the algorithm’s performance in real-world 
scenarios.

Newer diagnostic platforms have allowed us to move beyond analyzing only the 
shape of the cornea, and also bring into focus the corneal biomechanical properties. 
The Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) is a non-contact 
tonometer with a collimated air pulse of fixed pressure that uses an ultra-high-speed 
Scheimpflug camera to monitor corneal deformation. It measures parameters such 
as the inverse concave radius of curvature during the concave phase of the deforma-
tion response, the ratio between deformation amplitude at the apex and at 2 mm 
from the apex, the stiffness parameter at first applanation and the horizontal thick-
ness profile [14, 18, 19].

Corneal Biomechanical Index  Vinciguerra et al. combined these parameters by 
logistic regression analysis for the development of the Corneal Biomechanical 
Index, which provides high accuracy to detect KCN. To reduce over-fitting, they 
included only one eye per case from over 600 cases and used two databases, one for 
training and one for validation. In the validation dataset, the AUC was 0.999 with 
98.4% specificity and 100% sensitivity and correctly classified 98.8% of the cases. 
The study introduced the Corneal Biomechanical Index for KCN diagnosis and 
demonstrated it to be highly sensitive and specific to separate healthy from ectatic 
eyes [20].

Ambrosia et  al. developed an index combining Scheimpflug-based corneal 
tomography from the Pentacam and biomechanical assessments from the Corvis for 
improving ectasia detection [19]. They enrolled 850 eyes from 778 patients from 
two clinics in Brazil and Italy and divided the eyes into three groups, KCN, very 
asymmetric ectasia with clinical ectasia (VAE-E), and very asymmetric ectasia with 
normal topography (VAE-NT). The data from corneal deformation response and 
corneal tomography, including the Corneal Biomechanical Index and Belin/
Ambrósio Deviation (BAD-D) was analyzed and combined into indices using three 
different artificial intelligence methods, including logistic regression analysis with 
forward stepwise inclusion, support vector machine and random forest. The leave-
one-out cross validation (LOOCV) technique was adopted for validation. The 
LOOCV method increases computational time and complexity, but also signifi-
cantly increases the reliability or robustness of the model in classifying new data 
and provides a more conservative and truthful representation of the generalized per-
formance for the indices in a novel population. The most accurate method was the 
random forest, which is referred to as the Tomographic and Biomechanical Index 
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(TBI), and it provided 100% sensitivity for detecting clinical ectasia (KCN and 
VAE-E groups) with 100% specificity. The TBI has now been commercially 
deployed by Oculus.

Keratodetect  Lavric et  al. developed Keratodetect, an algorithm to determine 
whether an eye is affected by keratoconus or not [21]. Keratodetect used only 
images of corneal topography as the input parameter, rather than numerical data 
from topographers. Interestingly, input images were not captured from a topography 
device, but rather generated using the SyntEyes KTC model. The algorithm was 
developed using topographies from 1500 healthy eyes and 1500 eyes with 
KCN. 1350 topographies were used for training, 150 for validation and 200 for test-
ing. The input images were pre-processed to have the same resolution before being 
applied to the CNN. The algorithm decomposes the image into pixels, and then each 
image passes through a series of kernel convolutional filters, pooling layers and 
fully connected layers. The convolutional layer generates an image matrix, by first 
performing feature extraction from the image, and then using filters to learn the 
characteristics of the image. The convolutional layer is followed by a pooling layer 
which has the purpose of removing redundant information from the layers, by 
increasing the number of filters. The last layer is a fully connected neural layer 
which combines all the features extracted and learned by the previous layers so as 
to identify patterns in the input data. This study classified data into only two classes, 
normal and KCN, and it was able to do so with 99.33% accuracy. The use of topog-
raphy images as the sole input parameter is unique in this study.

Pentacam InceptionResNet V2 Screening System (PIRSS)  Xie et al. also devel-
oped a classification system, the PIRSS based on an image learning technique [22]. 
Their study utilized tomographic images from the Pentacam to obtain the overall 
profile of the cornea, comprising the axial curvature, front elevation, back elevation 
and corneal thickness. They employed the InceptionResNetV2 architecture in a con-
volutional neural network on the TensorFlow platform with transfer learning tech-
nique using 6465 tomographic images from 1385 patients. The images were divided 
into two independent training data sets with 5130 images, and 1335 images were 
used for validation of the model, and 100 new images collected from different 
patients were used in the test data set to compare accuracy with human specialists. 
Images were divided in to five categories: normal corneas, suspected irregular cor-
neas, early-stage KC, KC, and post myopic refractive surgery. The model was com-
pared against human specialists divided according to the level of experience into the 
following groups: senior ophthalmologists who perform refractive surgery, fellows 
of refractive surgery, senior ophthalmologists who are not refractive surgeons and 
medical students who are not studying refractive surgery. PIRSS achieved an overall 
accuracy of 95.0%, comparable with 92.8% achieved by the senior ophthalmolo-
gists performing refractive surgery. InceptionResNetV2 algorithm and TensorFlow 
were more advanced than the models used in previous studies. The use of 
tomographic heat maps rather than limited parameters derived from the maps can 
pose an advantage as it is analyzing a relatively larger amount of data from each 
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cornea. The team is also working on deploying PIRSS as a web service where other 
ophthalmologists and possibly even patients can upload their scans and receive 
advice on suitability for refractive surgery.

4.3	 �Artificial Intelligence in Refractive Surgery

Over a few decades, refractive surgery has evolved from a procedure with limited 
predictability in the form of radial keratotomy to minimally invasive laser-based 
procedures that can deliver excellent visual outcomes. Overall refractive surgery 
has become one of the most successful and commonly performed elective proce-
dures in the world, and today there are multiple different procedures and technolo-
gies available to perform refractive surgery. With more and more people undergoing 
these procedures, it is becoming crucial to ensure proper candidate selection to 
minimize complications after surgery. Algorithms developed using data sourced 
from corneal tomography and biomechanics can be very accurate and sufficient for 
diagnosing ectasia; however, screening candidates for refractive surgery requires a 
more wholesome approach and consideration of various other factors. We are all 
well aware of the complicated relationships that exist between a patient’s optical 
parameters and the final results achieved. Preoperative parameters that have been 
shown to influence refractive outcomes include the patient’s age, gender, spherical 
equivalent, pupil size, corneal tomography, intraocular pressure and tear film 
characteristics.

Yoo et al. aimed to develop an algorithm that could better mimic a refractive 
surgeon’s decision matrix to provide clinical decision support based on multiple 
different parameters such as age, gender, spherical equivalent, corrected distance 
visual acuity, intraocular pressure, central corneal thickness, non-invasive tear break 
up time and corneal tomography from the Pentacam [23]. The patients selected 
were classified into two groups: those who had already undergone a refractive sur-
gery, labelled as “candidates for refractive surgery”, and those who had been refused 
surgery based on the presence of a contraindication, labelled as “contraindication 
for corneal refractive surgery”. They recruited >15,000 patients in the study, and 
10,561 subjects were used in the training set, 2640 in the internal validation set and 
5279 in the external validation set. For algorithm development, they did not rely on 
just one ML technique, rather they used five different techniques to develop five 
different algorithms. They used some techniques such as SVM, RF, ANN, which 
had already been used in ectasia classification studies, and also used AdaBoost and 
LASSO (least absolute shrinkage and selection operator) which at the time were 
unique to this application. AdaBoost, short for adaptive boosting, is an ensemble 
learning method that uses an iterative approach to learn from the mistakes of weak 
learners to build a strong classifier. Ensemble learning combines several base algo-
rithms to form one optimized algorithm. Boosting algorithms, like humans, learn 
from their mistakes and try not to repeat them again. It starts with creating a model 
from the training data, then creating a second model from the previous data set by 
trying to reduce the errors from the previous model. Sequentially more models are 
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added till the training data is accurately predicted. A weak classifier is one that per-
forms better than simply guessing, but is poor at classifying accurately. AdaBoost is 
applied on top of any other model to learn from its shortcomings and improve its 
accuracy. LASSO is a form of penalized regression and can assist investigators 
interested in predicting an outcome by selecting the subset of the variables that 
minimizes prediction error. Finally, data from all five ML techniques was combined 
using a weighted majority vote ensemble classifier to further improve accuracy. On 
the training data set, the RF decision tree out performed SVM, ANN, AdaBoost and 
LASSO, and while the ensemble classifier further improved accuracy, the difference 
was not statistically significant. On the internal and external validation data set, the 
RF model was the single best performing algorithm, but the difference was not sta-
tistically significant. The weighted majority vote ensemble classifier predicted 
refractive surgery suitability with an accuracy of 93.4% and an AUC of 0.972 in 
external validation, matching the accuracy of experts with consistent performance 
in the high-risk subgroups. Yoo et al.’s work showed that ML can help automate and 
potentially standardize the comprehensive refractive surgery screening process.

In order to investigate the role of AI in helping automate the process of making 
decisions in refractive surgery candidates, Yoo et  al. developed a multiclass ML 
model that determined which type of laser vision correction procedure would be 
most [24]. The study used XGBoost, a more recently developed decision tree-based 
ensemble ML algorithm, that uses a gradient boosting framework. While ANN 
work best for unstructured data such as images or text, decision tree-based algo-
rithms are considered best for structured data. XGBoost includes many enhance-
ments such as regularization to prevent overfitting, sparsity awareness and built-in 
cross validation. The model was trained to predict surgery class options between 
LASEK, LASIK, SMILE and contraindication to LVC.  The study also used the 
Shapley Additive exPlanations (SHAP) explainable model that allows users to ver-
ify if the model operates properly by observing the rationale behind decisions. Most 
ML models are like black boxes that are unable to provide reasoning and explana-
tions behind decisions. While earlier algorithms provide predictors with global fea-
ture importance, the SHAP technique determines the contribution of each input 
variable in each decision of a model. The study also adopted the one-versus-rest 
(OVR) and one-versus-one (OVO) strategies for explainable classification as they 
better facilitate representation through an intuitive diagram. During data pre-
processing, synthetic minority oversampling technique (SMOTE) was used to over-
come any imbalances in the data. Out of the total 18,480 subjects included in the 
study, 10,561 and 2640 subjects were assigned to the testing and internal validation 
datasets, respectively. The external validation set consisted of 5279 subjects who 
were considered as independent prospective cohorts to validate the ML model pro-
spectively. The final model achieved an accuracy of 78.9% in predicting the correct 
surgery option in external validation. The highlight of this study was the implemen-
tation of explainable ML, allowing us to understand that although the XGBoost 
model managed to match the clinician’s decision in 92.7% of instances, it relied on 
the anticipated choice of the patient, rather than other clinical data as the most influ-
ential factor in classification. Including more investigative modalities in these 
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algorithms can further help improve their efficiency. However, implementation of 
such algorithms has many challenges due to the availability of numerous different 
laser platforms and customized treatments, variation in diagnostic platforms, 
surgeon-related factors and patient demographics.

Table 4.1 summarizes the landmark studies on the use of AI in cornea and refrac-
tive surgery.

4.4	 �Artificial Intelligence in Dry Eye Disease

Dry eye syndrome is one of the most common complaints in general ophthalmology 
clinics. Meibography to help diagnose and asses severity of evaporative dry eye is 
also gaining popularity, particularly with the advent of treatments such as the vec-
toring LipiFlow thermal pulsation system (Johnson & Johnson Vision, Jacksonville, 
FL, USA) and intense pulsed light therapy. Work has been done to help automate 
and standardize the grading of meibography images with the help of ML algorithms. 
In 2012, Koh et al. employed a SVM to classify meibography images as healthy and 
unhealthy [25]. They used a small data set of 55 images with experts classifying 26 
images as healthy and 29 and unhealthy, from these 13 healthy and 15 unhealthy 
were used in the training set, and the remaining in the testing set. The images were 
first processed to obtain the average arc length, the average width of the glands and 
the uniformity of the glands, captured as entropy. These three features were used to 
train the SVM, and it achieved a specificity of 96% and sensitivity of 98% on the 
test data. The study had some limitations, such as only using images of the upper 
eyelids and analyzing only three features. At the time of their work, good investiga-
tive platforms for meibography were not available and standardizing the process of 
capturing images was a challenge. The entire process of measuring the three gland 
parameters from the images was done using algorithms, but it was still a ten-step 
process, making it very laborious and time consuming. Remeseiro et al. developed 
an SVM to classify the tear film lipid layer using the features extracted by different 
texture analysis methods [26]. There is a lot of potential in the development of algo-
rithms to differentiate healthy and unhealthy glands, and grade severity of damage 
to glands and finally develop a decision matrix for treatment on the basis of severity.

4.5	 �The Road Ahead

Over the past 25 years, there has been significant progress made in the research and 
clinical applications of machine learning for diagnosis and treatment of corneal 
diseases. These advances have been made possible due to synchronous develop-
ments in the fields of medicine, computers and data science. Algorithms are built 
and improved with data, and faster computers and better machine learning tech-
niques have enabled the consumption of more and more data to help train more 
accurate AI models. To adequately train models and produce results that can be 
generalized, training data sets need to be in the order of tens of thousands of cases. 
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Large data sets are also required to effectively deal with the high noise levels derived 
in biological data. Neural networks developed to classify retinal fundoscopic images 
have been trained on datasets of more than 100,000 images [27]. In comparison, ML 
models developed for corneal studies have seen the size of training data sets increas-
ing from only around 100 eyes in the first few studies to over 10,500 cases in the 
more recent studies. These numbers are still very small compared to those seen in 
retinal applications of AI because it is far more challenging to build very large data-
sets using corneal imaging. The high cost of tomographers means they are not as 
commonplace in ophthalmic practices as retinal fundus imaging devices. The chal-
lenge faced in gaining access to a tomographer is highlighted by the fact that one of 
the studies discussed earlier in the chapter had to resort to using data synthesized by 
another AI-based model [21]. Another limitation is the variation across different 
devices, even those that use the same technology. For example, with Scheimpflug 
imaging, the scans obtained from the same patient with different devices and even 
different software versions are not easily interchangeable, while retinal images 
acquired from different devices can be processed to be used together with relative 
ease. This restricts data sets to a single device type, and with various clinicians pre-
ferring different devices, collecting large datasets becomes even more difficult. In 
the absence of a standardized dataset, it is not possible to directly compare the vari-
ous models developed by different researchers. In other fields, advances in machine 
learning have been accelerated by the creation of large public datasets, and the 
release of similar corneal imaging datasets under strict patient privacy rules can help 
ophthalmic and data science researchers collaborate and further advance ML appli-
cations for corneal disorders. Finally, these models need to be available commer-
cially to clinicians to be able to actually derive any benefit from them. They can be 
made available by either implementing them directly in the user interface of the 
various diagnostic machines on which they are validated or as a web-based tool that 
can be accessed easily anywhere. Even though seamless integration into the diag-
nostic machines themselves, as with the CBI and TBI, is the most convenient for 
clinicians, the responsibility for creating ML models must not be left solely to com-
panies producing various diagnostic machines, as they will limit the benefits of the 
models to their own platforms, limiting its applications. It is important for research-
ers to build models that are validated across various platforms so that they benefit a 
larger cohort of patients and clinicians.

In ophthalmology, another problem faced in the development of predictive mod-
els is in the selection of training data. Some of the initial studies trained models 
using individual eyes from patients rather than considering them as cases and using 
both eyes together. Subsequently as studies began to use data from both eyes 
together to screen for KCN, the accuracy of models also began to improve. Studies 
by Accardo et  al. and Kovacs et  al. demonstrated the advantages of analyzing 
patients bilaterally [16, 17]. Early models were plagued with biases such as over-
fitting and thus overestimated their accuracy. As studies adopted better data prepro-
cessing and validation techniques, the accuracy reported by newer models was 
lower than those of earlier studies. The employment of external validation by more 
recent studies has helped ensure that the algorithm works not only on the training 
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data set but also on data the model has not previously seen, providing a better esti-
mate of real-world performance of the model. Data preprocessing is a crucial step 
in achieving accurate predictions from a model and has improved, becoming far 
more sophisticated over time in the newer studies with a better understanding of 
biases such as over-fitting and techniques to improve them.

Artificial neural networks, DL and other ML techniques have demonstrated their 
potential to become useful tools in helping clinicians deliver the best quality of care 
to patients in a more efficient manner. It has the amazing ability to reveal character-
istics and relationships between parameters that are initially imperceptible to the 
human brain. However, it is not easy to accept and act on the advice of a computer 
system without knowing the system’s reasoning for the decision. Explainable ML 
can help overcome this hurdle as it can expose the shortcomings of a particular 
model. Explainable ML can help us avoid such pitfalls in the application of AI and 
make sure the algorithms are giving preferential weightage to the appropriate clini-
cal factors. This could help improve acceptance and adoption of more AI models 
and increase our confidence in them. AI has tremendous potential to help improve 
diagnosis and refine outcomes from current corneal procedures and develop ML 
models that can match the diagnostic accuracy of experienced clinicians which in 
turn can greatly benefit younger doctors by reducing mistakes made due to relative 
inexperience. This democratization of clinical skills eventually helps improve the 
standard of healthcare for patients.
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5Artificial Intelligence and Cataract

Sahil Thakur, Jocelyn Hui Lin Goh, and Yih-Chung Tham

5.1	 �The Magnitude of the Problem

Accounting for 65.2 million cases of vision impairment and blindness globally, 
cataract is the leading cause of avoidable blindness in the world [1]. These cases 
are projected to increase to 70.5 million by 2020 [1]. Despite considerable 
advancement in safe management of cataract, diagnosis and case finding remains 
a substantial problem, especially in countries with weak public health infra-
structure [2–4]. It has been estimated that eliminating cataract-related vision 
impairment in a country like India would cost $2.6 billion and would yield a net 
societal benefit of $13.5 billion [5]. This indicates that there is a significant 
potential for investment and innovation in developing tools that can address this 
public health problem.

5.2	 �Limitations of Current Clinical Practice

We can classify these into broadly four categories.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0634-2_5&domain=pdf
https://doi.org/10.1007/978-981-16-0634-2_5#DOI
mailto:jocelyn.goh.h.l@seri.com.sg
mailto:tham.yih.chung@seri.com.sg
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5.2.1	 �Case Detection/Screening Programs

Currently cataracts are clinically graded by ophthalmologists on slit-lamp examina-
tion. The Lens Opacities Classification System (LOCS) III criteria is one such stan-
dard image-based criteria that is widely used [6]. In addition to clinical classification, 
this system has also been used to plan the type of intervention needed. This grading 
process requires clinical expertise, training and expensive ancillary equipment for 
making clinical decisions about patient management. This poses a significant chal-
lenge for developing countries or rural communities, where there is shortage of 
these resources [7]. Additionally, image-based grading scales are subjective and 
may be affected significantly by inter and intra grader variability [8]. These chal-
lenges thus make screening for cataract a time-dependent and financially expensive 
endeavour. Thus, there is an unmet need to develop new methods that can address 
these limitations and potentially aid in efficient and effective cataract screening.

5.2.2	 �Intraocular Lens (IOL) Power Calculation

The standard of care for cataract management is surgical removal of the human lens 
followed by IOL implantation for restoration of vision [9]. Over the past 70 years, 
numerous advancements have studded the history of cataract management, but the 
single most important component of cataract surgery planning is the calculation of 
IOL power [9]. This significantly affects the visual outcome and prognosis of the 
surgery. IOL power calculation depends on several factors like axial length, corneal 
curvature, effective lens position and type of IOL selected [10–14]. These days 
these calculations can be made quickly using biometry machines that are vital parts 
of a cataract surgeon’s workflow. Nevertheless, due to the wide variation of ocular 
biometry profiles across individuals, there is currently no single formula that can be 
used in all patients [15]. Existing formulae were created for eyes with a typical 
range of normative biometric measurements and often cannot be used for extremes 
of axial length [16]. They also cannot be applied in eyes with atypical corneal pro-
files like eyes with history of refractive surgery, keratoplasty, keratoconus, micro-
cornea and significant astigmatism [17–19]. By using AI, ML and large-scale 
registries, novel IOL formulae have been developed that can effectively be used for 
a larger subset of patients [20]. Though we are still away from the one formula fits 
all scenarios, in the coming years we can expect to see major developments in 
this regard.

5.2.3	 �Manpower Training and Surgical Review

In order to meet the expected need of the ageing population, the current graduation 
rate of ophthalmologists would have to increase by 75%–100% and even this 
increase may not be able to meet all outpatient requirements over the next 20 years 
[21]. It has also been noted in an Australian study that the supply of 
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ophthalmologists to remote regions is usually 19 times lower than national average. 
This also translates to reduced cataract surgery rates, up to ten times lower than 
national average [22]. One of the most important limitations in current training 
programs for ophthalmic surgeons is the need for extensive patient exposure. Often 
this exposure may not be available, and the graduated surgeon may have to invest in 
a fellowship program to further develop their skills. This translates to significant 
investment in terms of training costs, time and skill development [23]. It is also 
important to know that for most training centres techniques such as virtual reality 
(VR) simulators, wet labs, didactic training and watching videos are the primary 
tools to teach advanced surgical techniques [24]. This is where applications of AI, 
like force sensing in VR surgical simulators and automatic annotation of surgical 
videos, can help in streamlining the training and accreditation process [25–27]. The 
ICO-OSCAR guidelines are currently used to assess the competency of the sur-
geons but need close mentor supervision in the patient setting. In the future, 
software-assisted assessment may become the standard in wet-lab setting allowing 
the trainees to gain more confidence and proficiency before actual patient exposure 
[28, 29]. DL-assisted speaker systems that confirm surgical sites in high-volume 
settings are another novel use case scenario for optimized patient outcomes [30]. 
Such applications can prevent wrong-site surgery and potential high litigation 
costs [31].

5.2.4	 �Post-Operative Care and Quality of Life (QoL)

Good post-operative care is one of the most important determinants of any surgical 
procedure. With increased use of digital technology in patient identification, consul-
tation and medication management, role of artificial intelligence will increase over 
the coming years. Live teleconsultations, chatbots and simulated tele attendants are 
being explored for teleconsultation and feedback collection indicating trends that 
digital health monitoring will take over the next few years [32, 33]. These technolo-
gies can be subsequently adopted into mobile applications that can guide patients 
during their post-operative period. It is also possible to predict the risk of complica-
tions like posterior capsular opacification post-cataract surgery using artificial neu-
ral networks [34]. These applications indicate the potential of artificial intelligence 
in significantly improving the quality of life and surgical outcomes in patients with 
cataract.

5.3	 �Artificial Intelligence and Cataract Detection

There are several publications that report algorithms for automated detection and 
grading of cataract. These algorithms differ in terms of approach, input type and 
potential use case scenario. We have briefly described below some of the most pop-
ular techniques used for detection and classification of cataracts.
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5.3.1	 �Based on Slit-Lamp Photographs

These studies solely focus on using slit-lamp photographs as training data for algo-
rithm development for automated detection and grading of nuclear cataract. Li and 
colleagues applied a modified Active Shape Model (ASM) to first identify the lens 
and its nucleus on 5820 slit-lamp photographs from the Singapore Malay Eye Study 
(SiMES) [35]. The algorithm had 95% success rate in correctly identifying the loca-
tion of lens. Subsequently, 100 slit-lamp photographs were used to develop a sever-
ity grading algorithm using the support vector machine (SVM) regression model. 
When compared to the reference standard (Wisconsin cataract grading system), the 
algorithm showed a mean difference of 0.36 for nuclear cataract grading in a set of 
5490 photographs.

Xu et al. [36] reported a mean absolute error (MAE) of 0.336 in their study. 
They used a modified ASM for identification of lens location, but then applied 
bag-of-features (BOF) model for feature extraction, and group sparsity regres-
sion (GSR) for feature selection and nuclear cataract severity grading. Using the 
same data set as Xu et al., Gao et al. [37] demonstrated an MAE of 0.304 by 
using a convolutional-recursive neural network (CRNN) for lens detection and 
feature learning. The incremental improvement in performance that we note in 
these studies is due to use of more sophisticated machine learning (GSR) and 
deep learning (CRNN) techniques which have greater ability in terms of feature 
extraction and learning [38].

Wu et al. have demonstrated use of residual neural network (ResNet) algorithm 
to comprehensively diagnose and refer cataract patients. Their algorithm can dif-
ferentiate between different input images like dilated/undilated/optical section/dif-
fuse slit-lamp images. Then the algorithm classifies the images as normal, 
cataractous or post-cataract surgery. If the algorithm identifies an image with cata-
ract, the type and severity of the cataract is identified based on the LOCS II scale. 
Finally, the algorithm arrives at a decision whether to follow-up or refer the patient 
for tertiary care. The results from their study are extremely encouraging and consis-
tently show area under the receiver operating characteristic curve (AUC) of more 
than 0.90 for the different stages of evaluation. (Table 5.1) It is interesting to note 
that the dilated eye images with optical sections were the best for evaluating cataract 
status (AUC 0.9915) while undilated images with diffuse illumination (AUC 
0.9328) were least optimal [39]. This AI algorithm was further pilot tested as a web-
based platform while incorporating a smartphone app for subject engagement. The 
subjects can ‘self-report’ symptoms of decreased vision or blurred vision using the 
app. These cases then went to community-based healthcare facilities, where undi-
lated slit-lamp images were taken by nurses or technicians. The images were then 
evaluated by the AI algorithm. The sensitivity and specificity of the algorithm for 
cataract detection were 92% and 83.85% when compared to ophthalmologist opin-
ion. These findings are a proof of concept that patients with cataract can be 
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Table 5.1  Previous studies on automated detection and grading of cataract based on slit-lamp 
photographs

Year Author Data source Method

Definition of 
gold 
standard/
ground truth Performance

2009 Li et al. 
[40]

Singapore Malay eye 
study (SiMES) 100 
training, 5490 testing

Modified 
ASM: Lens 
structure 
detection
HSV 
model: 
Feature 
extraction
SVM: 
Automatic 
grading

Wisconsin 
cataract 
grading 
system

Accuracy: 95%
MAE (grading): 
0.36

2013 Xu 
et al. 
[36]

ACHIKO-NC (subset 
of SiMES) 100 
training, 5278 testing

Modified 
ASM: Lens 
structure 
detection
BOF 
model: 
Feature 
extraction
GSR: 
Automatic 
grading

Wisconsin 
cataract 
grading 
system

MAE: 0.336

2015 Gao. 
et al. 
[37]

ACHIKO-NC (subset 
of SiMES) 100 
training, 5278 testing

CRNN: 
Feature 
learning
SVM 
regression: 
Automatic 
grading

Wisconsin 
cataract 
grading 
system

MAE: 0.304

(continued)

identified at community-based healthcare facilities and primary care centres where 
AI algorithms can be deployed. These innovative digital care models can potentially 
allow the ophthalmologists to serve more patients than current healthcare models.

5.3.2	 �Based on Colour Fundus Photographs

Over the last few years, the use of fundus photographs for diabetic retinopathy 
screening has become a part of several primary healthcare systems [41, 42]. This 
offers an opportunity to potentially use the fundus images to screen for other causes 
of vision impairment like cataract as well (Table 5.2).
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Table 5.1  (continued)

Year Author Data source Method

Definition of 
gold 
standard/
ground truth Performance

2019 Wu X. 
et al. 
[39].

Chinese medical 
Alliance for artificial 
intelligence (CMAAI) 
30,132 training, 7506 
testing

ResNet LOCS II 1. Capture mode 
recognition
AUC = 99.36%a

AUC = 99.28%b

AUC = 99.68%c

AUC = 99.71%d

2. Cataract 
diagnosis
Cataract
AUC = 99.93%a

AUC = 99.96%b

AUC = 99.19%c

AUC = 99.38%d

Post-operative eye
AUC = 99.93% a

AUC = 99.93% b

AUC = 98.99%c

AUC = 99.74%d

3. Detection of 
referable cataracts
 � a. Adult 

cataract:
AUC = 94.88%
 � b. Paediatric 

cataract with 
VA 
involvement:

AUC = 100%
 � c. PCO with VA 

involvement:
AUC = 91.90%

ASM active shape model, HSV hue, saturation, value, SVM support vector machine, BOF bags-of-
features, GSR group sparsity regression, CRNN convolutional residual neural network, ResNet 
residual neural network, MAE mean absolute error, PCO posterior capsular opacification, VA 
visual axis
aDilated-diffuse
bDilated-Slit-lamp
cUndilated diffuse
dUndilated-Slit-lamp

Dong et al. used 5495 fundus images and a deep learning network (Caffe soft-
ware based) for feature extraction followed by training for cataract detection and 
grading using machine learning (SoftMax function). The gold standard was appear-
ance of fundus images as graded by ophthalmologists into normal, mild, moderate 
and severely affected by the cataract. The algorithm was validated in a set of 2355 
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images, with 94.07% images correctly identifying cataract and 90.82% images cor-
rectly classifying different severity levels [43].

Ran et al. alternatively used a deep convoluted neural network (DCNN) for fea-
ture extraction, and a random forest (RF) machine learning model for identification 
of cataract. They used a gold standard based on ‘haziness’ of fundus image as 

Table 5.2  Previous studies on automated detection and grading of cataract based on fundus 
photographs

Year Author Data source Method

Definition of gold 
standard/ground 
truth Performance

2017 Dong 
et al. 
[43]

5495 training, 
2355 testing

Caffe: 
Feature 
extraction
SoftMax: 
Detection 
and grading

Labelled fundus 
images by 
ophthalmologists

Accuracya = 94.07%b

Accuracya = 90.82%c

2017 Zhang 
et al. 
[47]

Beijing 
Tongren eye 
Centre’s 
clinical 
database. 
4004 training, 
1606 testing

DCNN: 
Detection 
and grading

Labelled fundus 
images by graders

AUC = 0.935b

AUC = 0.867c

2018 Ran 
et al. 
[44]

Not described DCNN: 
Feature 
extraction
Random 
forest: 
Detection 
and grading

Labelled fundus 
images by 
ophthalmologists 
crosschecked by 
graders

AUC = 0.970b

Sensitivity = 97.26%b

Specificity = 96.92%b

2018 Li et al. 
[48]

Beijing 
Tongren eye 
Centre’s 
clinical 
database. 
7030 training, 
1000 testing

ResNet 18: 
Detection
ResNet 50: 
Grading

Labelled fundus 
images by graders

AUC = 0.972b

AUC = 0.877c

2019 Pratap 
and 
Kokil 
[45]

Multiple 
online 
databases 400 
training, 400 
testing

Pre-trained 
CNN: 
Feature 
extraction
SVM: 
Detection 
and grading

Labelled fundus 
images by 
ophthalmologists

Accuracya = 100%b

Accuracya = 92.91%c

DCNN deep convolutional neural network, CNN convolutional neural network, SVM support vec-
tor machine, ResNet residual neural network
aDenotes proportion of images being correctly classified among total of images tested
b2 class (non-cataract versus cataract)
c4 class (non-cataract, mild, moderate and severe)
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determined by ophthalmologists. They reported excellent performance as well with 
an AUC of 0.970 and a sensitivity/specificity of 97.26%/96.92%, respectively [44].

Pratap and Kokil demonstrated the use of transfer learning by using a combina-
tion of pre-trained CNN and SVM in their AI system. They fine-tuned the pre-
trained CNN (trained used millions of non-medical images), using 400 fundus 
images for relevant feature extraction [38]. Using a similar haziness-based ground 
truth like the previous studies, they managed to improve the detection performance 
to 100% and severity classification to 92.91% when tested in another 400 images 
[45]. Though the algorithm performance is excellent, it is always important to keep 
in mind the small sample of images and lack of external validation which is vital for 
real-world deployment of any such algorithm.

Another approach described by Zhang et al. uses a DCNN-based deep learning 
system trained with 4004 fundus images. A green channel (G-channel) filter was 
used to enhance the contrast of image and visibility of retinal vessels [46]. Using a 
similar haziness-based ground truth like the previous studies, the algorithm demon-
strated an AUC of 93.52% for cataract detection, and 86.69% for severity grading in 
a test set of 1606 images [47].

Li et  al. subsequently used both ResNet-18 and ResNet-50 for detection and 
classification of cataract grading [48]. The gold standard in their study was four 
classes of cataract severity (non-cataract, mild, moderate and severe cataract) based 
on grading by professional graders. They improved the performance of the algo-
rithm (1000 images test set) to an AUC of 97.2% for cataract detection and 87.7% 
for severity grading. The interesting feature in their study was the generation of 
saliency maps (i.e., heatmaps) in order to highlight regions used by the algorithm 
for decision-making. This is an important step in unlocking the black box of artifi-
cial intelligence and increasing end-user understanding of algorithm referral deci-
sions. However, heatmaps shown in the publication are not entirely correlating with 
degree of cataract severity indicating the potential of improvement in cataract fea-
ture detection and classification.

When we look at these studies, we can easily highlight the need for a more objective 
method of cataract detection and severity classification. The studies employed graders to 
classify the fundus images on basis of ‘clarity’ or haziness and assumed it was due to 
cataract. However, it is imperative to note that factors like ocular surface status, refrac-
tive power, anterior chamber status and vitreous humour status can significantly affect 
the fundus images. It is also well known that reflections due to lashes, posterior vitreous 
detachment, misalignment during acquisition and inadequate dilation are other real-
world issues that affect image quality in the clinical setting. These miscellaneous factors 
need to be carefully considered by the developers when planning generalizability stud-
ies for algorithms that will be potentially deployed in the population.

5.4	 �Artificial Intelligence and IOL Power Calculation

IOL power calculation has seen significant improvement over the years. From the 
highly simplified SRK formula to the complex Barrett Universal II/Barrett Toric 
formula, targeting 20/20 vision has become possible in a majority of patients 
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undergoing cataract surgery. However, the formulae are still largely based on con-
ventional linear assumptions between the biometric measures and inclusion of 
parameters like surgeon induced astigmatism (SIA) which is often subjective and 
difficult to assess on individual basis. With the use of artificial intelligence, it is pos-
sible to explore complex non-linear relationships among ocular parameters and gen-
erate IOL powers that account for every individual’s eye profile. It is also possible 
to integrate in real time the impact of post-operative outcomes like refractive status 
post-surgery to calibrate surgeon’s performance parameters like SIA.

The Ladas Super Formula (LSF) is an example of an artificial intelligence-
derived formula that uses the ‘ideal portions’ of Hoffer Q, Holladay-1, Holladay-1 
with Koch adjustment, Haigis and SRK/T formulae to aid in formula selection [20]. 
Though exact details of the formula are proprietary and not disclosed in literature, 
it derives the ‘ideal biometric components’ of each existing formula and potentially 
automate the selection process for inexperienced surgeons. It has however been 
highlighted that LSF has its own limitations. Like traditional formulas, it relies on 
keratometry to estimate corneal refractive power, which assumes the ratio between 
a ‘uniformly spherical’ anterior corneal and the posterior corneal curvature remains 
unchanged. However, this assumption does not hold true, especially in patients with 
previous refractive surgery, keratoplasty or even patients with prolonged history of 
contact lens use [49].

Two additional formulae that use artificial intelligence are the Hill-Radial Basis 
Function (RBF) and the Kane formula. The Hill-RBF method has been derived 
using 12,000 eyes with measurements obtained from the Haag-Streit Lenstar optical 
biometer [50]. The Kane formula has been derived using high-performance cloud-
based computing, where regression models and machine learning were used for 
refinement of IOL power predictions [51]. The accuracy of Hill-RBF method and 
the Kane formula has been assessed in a wide variety of eyes [52]. The results when 
comparing formula-estimated and actual post-operative refractive errors are pre-
sented in Table 5.3. Though the performance of these formulae is quite good, there 
is room for improvement in eyes with short axial length. However large-scale stud-
ies in eyes with a variety of difficult refractive situations are needed to validate these 
formulas for clinical use.

The Hill-RBF method has also been compared to Barrett Universal II and the 
SRK/T formula. In this study, the artificial intelligence-based formula outperformed 
both the Barrett and SRK/T formula [53]. For the performance estimates, the per-
centage of post-operative target of eyes within ±0.5 D was 83.62% using Hill-RBF 
method, 79.66% using Barrett Universal II and 74.01% with the SRK/T formula, 
indicating the utility of Hill-RBF method in cataract surgery planning. It is also 

Table 5.3  The performance metrics (MAE: mean absolute error) of Kane formula and Hill-RBF 
method of IOL power prediction [52]

Kane formula Hill-RBF

Short axial length (≤22.0 mm) 0.441 0.440

Intermediate axial length (>22.0 to 
<26.0 mm)

0.322 0.340

Long axial length (≥26.0 mm) 0.326 0.358
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important to understand that with the increased safety of cataract surgery, the focus 
has now shifted to implanting premium IOLs. These offer less margin of error espe-
cially in demanding patients who expect perfect vision. This industry need has to be 
addressed by having more reliable and highly flexible formulae that perform well in 
a multitude of settings.

Another issue is to address the increasing ageing population that has undergone 
refractive surgery. This is especially relevant in Asian countries with large burden of 
myopia. Existing formulae were not designed to cater for eyes with past refractive 
surgery, and it is difficult to account for such patients especially if previous records 
are not available [54, 55].

Lastly, large, robust and well-defined clinical datasets are essential for develop-
ment of any new algorithm or refinement of existing algorithm. Often in resource-
limited settings where the need of the algorithm is the highest, the medical records, 
imaging modalities and technical expertise to adapt or develop the algorithm are 
absent. Thus, it is exceedingly difficult to develop algorithms that have pan regional 
generalizability. It is also essential to ensure that issues like patient privacy, data 
ownership and intellectual property rights are adequately addressed and regulated 
while allowing the steady flow of data, which is the real ‘fuel’ in the algorithm-
driven world.

5.5	 �Artificial Intelligence and Manpower Training

Recent work (Table 5.4) has shown that artificial intelligence can be used for recog-
nizing different phases and steps of cataract surgery [25, 56, 57]. This can lead to 
optimized surgical workflow with real-time monitoring and assistance [56, 58]. 
Systems like these would be potentially useful for training surgeons especially dur-
ing early career. However, there is much work that needs to be done in this field as 
traditional machine learning has typically struggled with phase and step detection in 
cataract surgery. This has been attributed to similar instruments being used during 
the course of surgery making identification of the exact step difficult for the algo-
rithm. There has been incremental improvement with the use of CNNs but still there 
is a lot of potential for development of better algorithms [59, 60]. In the current 
form, these algorithms can be used for assisted annotation that can significantly 
reduce labelling time and costs [59]. Even with the current performance limitations, 
innovative algorithms like the VEBIRD (Video-Based Intelligent Recognition and 
Decision system) have potential to be implemented as a part of robotic surgery for 
calibration of ultrasound power during phacoemulsification [61]. The current bot-
tleneck to algorithm development is the lack of availability of high-quality anno-
tated surgical data. However, with the increased availability of recording 
high-definition video on surgical microscopes, this data is expected to multiply over 
the next few years. The CATARACTS dataset is one such currently available dataset 
that can be used by the developers to test their algorithms [56]. In addition to surgi-
cal training, these algorithms can be used for surgical review and potentially for 
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accreditation of surgical training using standard guidelines like the ICO-OSCAR 
guidelines [28, 29].

5.6	 �Artificial Intelligence and Post-Operative Care/Quality 
of Life (QoL)

Unified healthcare systems that integrate smartphones and AI-based algorithms are 
currently pilot tested across the world [39, 63]. These systems like the CC-Guardian 
offer individualized patient predictions and can become a single point of care for 
management of chronic conditions [63]. CC-Guardian focuses on management of 
patients with congenital cataract. These patients are at risk of two most common 
types of complications, i.e., high intraocular pressure (IOP) and visual axis opaci-
fication (VAO). The platform consists of three components: 1. prediction module 
to identify risk, 2. scheduling/dispatch module to schedule follow-up visit when 
risk identified, 3. telehealth module for intervention decisions based on follow-up 
visit. The training dataset included clinical records of 594 congenital cataract 
patients and 4881 follow-up images (2615 follow-ups, 2266 interventions). 
Validation was performed in 142 patients with clinical records (61 VAO, 81 non 
VAO; 79 high IOP, 63 normal) and 1220 follow-up images (671 follow-up, 549 
interventions). Ground truth was based on expert panel grading. For performance 
metrics, the authors reported an AUC of 0.991 for VAO and 0.979 for high IOP. For 
the telehealth module, the AUC was 0.996. The authors also used another dataset 
of 79 patients (33 VAO, 46 non VAO; 28 high IOP, 51 normal) for external valida-
tion and report an AUC of 0.944 for VAO and 0.961 for high IOP. The authors also 
performed a cost-effectiveness analysis in another retrospective self-controlled test 
in 141 patients (93 VOA, 105 high IOP). Accuracy in this subset was 96.8% for 
VAO and 96.2% for high IOP. Further analysis demonstrated that the patients had 
1579 tele health visits (instead of 987 distant visits), reduced travel of 928.6 miles/
year and reduced expenditure of $1324/year. These results are a startling example 
of the profound impact of novel models of healthcare on our current standards of 
care. While the algorithm may not perform that well in different populations, the 
design of the study is definitely adaptable for local use. The study is also signifi-
cant as it not only demonstrates the proof-of-concept but also examines the social 
and financial impact of real-world implementation. More such studies will be vital 
in establishing the long-term safety and reliability of AI-based algorithms for pub-
lic health use. The same group has also performed a randomized control trial com-
paring CC Cruiser (cataract detection, risk stratification and treatment 
recommendation platform very similar to CC Guardian) with ophthalmologists in 
real-world setting [64]. The study consisted of 350 participants randomized to CC 
Cruiser or senior consultants. The model accuracy for cataract detection and treat-
ment determination was 87.4% and 70.8% as compared to 99.1% and 96.7% for 
the senior consultant. However, the mean time for diagnosis was 2.79 min for CC 
Cruiser as compared 8.53  min for senior consultants. The authors additionally 
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conducted a satisfaction survey where mean rating of CC cruiser was 3.47 as com-
pared to 3.38 for the doctors indicating patient acceptance of the AI-based plat-
form. These results show that when algorithms are tested in real world their 
performance usually drops; however, the benefits of objective reliability, optimum 
resource utilization, cost effectiveness and improved workflow are upsides that 
need careful consideration before large-scale deployment.

5.7	 �Conclusion

With significant improvements in computing power and increased availability of big 
data via biobanks and disease registries, we are poised to see a seismic shift in how 
we detect and manage cataracts in the coming years (Fig. 5.1). The next goal in 
mind would be to translate and integrate these innovations into clinical practice.
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6Artificial Intelligence and Glaucoma

Sidong Liu, Yuyi You, and Stuart L. Graham

6.1	 �Introduction

Glaucoma is a group of optic neuropathies characterized by progressive optic nerve 
degeneration and loss of retinal ganglion cells (RGC) [1]. Glaucoma progresses 
without causing symptoms until the disease is advanced with substantial neural 
damage; when symptoms do occur, as many as 30–50% of retinal ganglion cells 
may be lost [2], resulting in irreversible visual field (VF) loss with concomitant 
reduction in quality of life. Glaucoma is the second leading cause of irreversible 
blindness worldwide, currently affecting more than 80 million people globally and 
being predicted to affect 110 million in 2040 [3]. Risk factors for glaucoma include 
increased intraocular pressure (IOP), a family history of the disease, older age 
(>50), African or Asian descent, myopia and use of systemic or topical corticoste-
roids [4]. Primary open-angle glaucoma (POAG) is the most common type with the 
highest prevalence (3.05%), followed by primary angle-closure glaucoma (PACG, 
0.5%) worldwide [3]. Currently there is no cure for glaucoma, and it is important to 
detect the disease as early as possible, so that IOP-lowering treatment can be initi-
ated to avoid irreversible visual functional loss.

Recent advances in artificial intelligence (AI), especially the advent of deep 
learning (DL), have shown transformative impact on the healthcare industry, 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0634-2_6&domain=pdf
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demonstrating outstanding performance in skin cancer classification [5], early diag-
nosis of Alzheimer’s disease [6], glioma prognosis [7], diabetic retinopathy detec-
tion [8], and most recently COVID-19 severity assessment [9], as well as many 
other applications. Several AI systems have been proposed for detecting signs of 
glaucoma-related structural and functional damage and for the diagnosis and clini-
cal evaluation of glaucoma. This chapter aims to provide an overview of the applica-
tions of AI in glaucoma with a focus on the DL models, then discuss their clinical 
and technical challenges, and finally project potential development of AI in glau-
coma in future work.

6.2	 �Overview of AI Systems in Glaucoma

AI systems in glaucoma are predominately based on imaging data derived from 
VF tests (perimetry), fundus photography, and optical coherence tomography 
(OCT), as these modalities provide highly structured data that are suited for 
training the AI models. The glaucoma AI systems can be broadly grouped into 
two categories based on how the models process the data to obtain classification/
prediction results.

6.2.1	 �Classic Machine Learning Models

The first category systems are using classic machine learning methodology, which 
usually consists of three steps in the workflow, as shown in Fig. 6.1, to transform the 
input data into feature vectors and then make a prediction based on those feature 
vectors. The first step is to preprocess the input images, including removal of arti-
fact presented in the image and enhance segmentation of the region of interest, such 
as the optic cup (OC) and the optic disc (OD). The next step is to extract distinctive 
features, including both clinical indicators (e.g., cup-to-disc ratio, CDR) and visual 
features (e.g., spectral, morphological, and texture features), from the preprocessed 
images. Then a machine learning model, such as support vector machine [10] and 
naïve Bayes [11], can be trained using the extracted feature vectors for the classifi-
cation/prediction tasks. The preprocessing techniques, features, and classification 
algorithms used in the first category of systems for glaucoma have been comprehen-
sively reviewed in previous studies [12–14].

Input Image Pre-processing Feature Extraction Classification Prediction

artifact correction clinical indicators linear models
risk index
diagnosis
grade / type
progression

non-linear models
generative models
discriminative models

spectra features
morphological features
texture features

contrast normalization
OD / OC detection
vessel removal
...

–
–
–
–
– ... ...

–
–
–
–
–

–
–
–
–
–

Fig. 6.1  Diagram of a classic machine learning methodology for glaucoma classification
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6.2.2	 �Deep Learning Models

The second category of AI systems is based on deep learning (DL), which is a sub-
set of machine learning and more sophisticated than classic machine learning algo-
rithms. DL methods show that good representations of data can be learned 
automatically using a multilayer neural network with multiple levels of abstraction. 
A typical deep convolutional neural network (CNN) model uses only pixel values as 
inputs and can be trained end to end from images to categorical labels or continuous 
variables directly. For example, Fig. 6.2 presents a multilayer CNN model, which 
takes the cropped OD photographs as input and then predicts the risk of glaucoma 
[15]. DL models can discover intricate pattern in the data by automatically adjusting 
the internal parameters of the models that are used to compute the representations 
of the data, with no need for feature engineering or conducting feature extraction 
and classification in a two-stage process.

6.3	 �Applications of AI in Glaucoma

AI has shown a great potential for the clinical management of glaucoma, with an 
increasing number of AI models proposed for detecting glaucoma-related structural 
and functional changes, as well as for the clinical diagnosis of glaucoma and prog-
nosis prediction. In this section, we will summarize the roles of AI in three typical 
applications, including (1) detection, (2) diagnosis, and (3) prognosis.

6.3.1	 �Detection of Glaucomatous Signs

AI-based glaucoma detection intends to identify, mark, highlight, or direct atten-
tion to portions of the input data that may have glaucoma-related structural and 
functional abnormalities, and/or to extract measurements and features that can 
quantify such abnormalities, so that healthcare providers can use the visual and 
quantitative information to detect glaucoma or monitor changes during patient 
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Fig. 6.2  Architecture of the DL model that was derived from an glaucoma screening system 
described by Liu et al. [15]
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follow-up. AI-based detection methods are usually designed for mono-modal 
data, e.g., OD/OC segmentation methods are predominantly used in fundus pho-
tograph analysis.

OD/OC Segmentation  Examination of the optic nerve head in retinal images is 
very important in detecting the glaucoma-related damage. Various AI-based 
techniques have been developed to segment the OD and OC in retinal images and 
to calculate CDR. Prior to the DL methods, contour-based methods [16, 17] and 
superpixel classification [18] were among the most common techniques for OD 
and OC segmentation. These prior art OD/OC segmentation methodologies for 
glaucoma image detection have been comprehensively reviewed [12, 13]. With 
the advances in DL algorithms, the concurrent high-performance computing 
facilities, and the emerging large-scale public imaging datasets, DL-based mod-
els have been increasingly used in OD/OC segmentation, with the U-Net repre-
senting the state-of-the-art [19, 20]. In addition to local datasets used in different 
studies, a few public datasets, such as RIM-ONE [21], Drishti-GS [22], ORIGA 
[23], and HRF [24], are often used for development and validation of OC/OD 
segmentation algorithms. A recent effort along this line was the international 
Retinal Fundus Glaucoma Challenge (REFUGE) [25], which proposed a stan-
dardized evaluation framework to compare different algorithms in OD/OC seg-
mentation and glaucoma classification.

VF Loss Detection  Computerized automated VF testing is a cornerstone in detect-
ing the functional changes induced by glaucoma. Compared to fundus photographs 
and OCT scans, VFs are low-dimensional psychophysical data which usually 
include reliability parameters, age-matched sensitivity arrays across visual space, 
and global indices that summarize visual function. In a pioneering work by 
Goldbaum et al. [26], the first neural network for VF analysis was proposed, which 
used the VF position values as input and derived a topological VF defect pattern for 
glaucoma patients. More recently, Elze et  al. [27] developed an unsupervised 
machine learning method, known as archetypal analysis, to further leverage regional 
sensitivity data contained in VFs. Archetypal analysis provides a regional stratifica-
tion of VF and assigns a weighting coefficient to each of these regional patterns. As 
demonstrated in a subsequent study [28], some archetypes were found to have 
higher correlation with glaucoma than others; patients with high weighting coeffi-
cients for a glaucoma-correlated archetype were more likely to have high CDRs. 
Mayro et al. also summarized the roles of AI in glaucoma with an emphasis on VF 
loss detection [29].

Other applications of AI for glaucoma detection may include tissue segmentation 
[30], retinal vessel segmentation [31], visualization [32], abnormality detection 
[33], and risk estimation [34]. A typical use case of these models is population-
based screening by general healthcare providers to achieve early glaucoma detec-
tion and specialist referral.
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6.3.2	 �Diagnosis of Glaucoma

AI-based diagnostic models for glaucoma intend to aid in the classification of the 
parameters and features extracted from the input data and to provide diagnostic or 
phenotype recommendations. These diagnostic models, either mono-modal or mul-
timodal, are typically used to provide a second opinion to clinicians in most sce-
narios, although there are autonomous AI-based diagnostic systems that can work 
without clinical users’ involvement, such as the IDx-DR system for diabetic reti-
nopathy detection [35].

Mono-Modal Data-Based Diagnosis  The majority of AI-based diagnostic models 
for glaucoma use retinal imaging data, as they provide rich information, such as 
color, texture, and morphology, of the optic nerve. Previous methodologies that 
were used to extract these features through feature engineering and to train the diag-
nostic models have been extensively reviewed [12–14]. DL models further leverage 
the structural details in imaging data without feature engineering and represent the 
state-of-the-art in glaucoma diagnosis. In one of the initial studies, Chen et al. [36] 
proposed a glaucoma classification model based on a simple neural network for 
fundus photographs, and achieved an area under the curve (AUC) of 0.898. More 
sophisticated models were then built as the neural network architecture became 
deeper. VGG [37–39] and ResNet [15, 40–42] architectures are among the most 
popular neural network models for structural imaging data analysis. A number of 
selected diagnostic models are presented in Table  6.1. Although various dataset 
were used to train and test these models, the models’ performance were consistently 
high. For example, for the task of differentiating glaucoma and non-glaucoma cases 
using fundus photos, most models achieved an AUC of 0.9 and above, and the best 
reported performance so far is an AUC of 0.996, with sensitivity of 0.962 and speci-
ficity of 0.977, respectively, achieved by a ResNet variant which was trained and 
tested using a total of 241,032 fundus photos [42].

Goldbaum et al. [26] proposed the first neural network model for VF-based glau-
coma diagnosis, which achieved comparable performance to two glaucoma special-
ists. DL has further exploited the regional sensitivity data in VF to assist glaucoma 
diagnosis. For example, Asaoka et al. [43] developed a four-layer fully connected 
neural network (FNN) for detecting pre-perimetric glaucoma and achieved an AUC 
of 0.926, which is higher than the compared machine learning methods. In another 
study, Li et al. [44] proposed a DL model based on VGG-16 architecture for differ-
entiating glaucomatous from non-glaucomatous cases using their VF data. This 
model demonstrated a high potential for clinical application with an AUC of 0.966, 
sensitivity of 0.932, and specificity of 0.826, tested on 300 subjects. Table 6.1 listed 
the datasets, models, and the reported performance in the abovementioned studies. 
Devalla et al. [14] provided a summary of the AI studies using functional data for 
glaucoma diagnosis, including both classic machine learning models and DL models.

Multimodal Data-Based Diagnosis  Different modalities may provide complemen-
tary information to each other. As demonstrated in an early study by Brigatti et al. 
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[45], when the same back propagation neural network (BPNN) model was applied 
to mono-modal data (functional: VF; structural: OD/RNFL measurements) and 
multimodal data, the model achieved better performance on multi-modal data than 
either functional or structural data alone. Another benefit of multimodal approach is 
that a model can be trained to predict one modality using another, so that the model 
can overcome certain defects. For example, Mederiros et al. [46] proposed a new 
approach to train a DL model for quantification of structural damage on OD photo-
graphs. This model, using spectral-domain OCT measurements as the reference 
standard rather than highly variable assessment by human raters, therefore, can 
objectively evaluate the degree of neural damage and predict glaucoma with higher 
reliability. A few more examples of the models using multimodal approaches can be 
found in a recent review [14].

6.3.3	 �Progression and Prognosis of Glaucoma

Once diagnosed, it is important to predict the likely progression of glaucoma to 
avoid overtreatment or undertreatment. However, glaucoma progresses non-linearly 
and can be affected by multiple factors, which poses a great challenge on prognosis 
evaluation of glaucoma. There is no widely accepted clinical tests that could predict 
glaucoma progression, and the assessment depends heavily on clinicians’ expertise 
and experience and usually requires multiple clinic visits.

Trajectory-Based Prediction  A few prediction models have been proposed for 
glaucoma prognosis, which require serial data of glaucoma patients to build pro-
gression trajectories. For example, Kalman filtering, a widely used forecasting 
method, has helped increase efficiency (29% less tests) and reduce delay (57% 
sooner than fixed interval monitoring system) in identifying glaucoma progression 
[47], and predict mean VF and IOP measurements for normal tension glaucoma 
[48]. Using archetypal analysis, Wang et al. [28] developed a method to calculate 
the change rate in the weighting coefficients associated with different archetypes 
and built a prediction model based on a large cohort with serial tests. This model 
achieved an accuracy of 0.77 in glaucoma progression prediction. Mayro et al. [29] 
provided a comparison of these trajectory-based prediction models.

Single Time-Point Prediction  More recently, a few DL models have been devel-
oped to predict glaucoma progression using the data at a single time-point, which, 
if achievable, are more cost-effective than the models that require serial data. 
However, it is very challenging to develop such models, as predictions need to be 
made prior to the presence of clinical manifestation of glaucoma. Two examples are 
listed in Table 6.1. Thakur et al. [49] attempted to develop a DL model for predic-
tion of OD or VF abnormalities from fundus photographs. This model achieved an 
AUC of 0.77 when predicting glaucoma progression 4–7  years prior to disease 
onset, and the AUC was higher (0.88) when predicting progression 1–3 years prior 
to disease onset. In another study, Normando et  al. [33] proposed a CNN-aided 
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method to predict glaucoma progression using a Detection of Apoptosing Retinal 
Cells (DARC) test, which can visualize apoptotic retinal cells in the retina in 
humans. The CNN model in this study was used not to predict progression but to 
detect DARC positively stained cells in the retinal fluorescent image. Using OCT 
RNFL measurements at 18 months as reference standard, the CNN-aided DARC 
test demonstrated 0.857 sensitivity and 0.917 specificity with an AUC of 0.89  in 
differentiating the rapid-progressing eyes from stable eyes.

6.4	 �Challenges of AI in Glaucoma

6.4.1	 �Dataset Dependence

Training datasets have an enormous impact on AI models, especially DL models 
which require a large number of labeled training samples. It is usually a complex 
endeavor to collect, select, and annotate/label many samples, which may take years. 
It is not surprising to see that an AI model could not maintain good performance on 
samples taken from different ethnic groups, using different machines and protocols 
and with different qualities. The dependence on dataset may lead to compromised 
performance on heterogeneous samples hence the potential clinical application of 
the AI models for glaucoma.

6.4.2	 �Disagreement Between Clinicians

Glaucoma is not like diseases such as diabetic retinopathy with well-understood 
reference standards. There can be disagreement between clinicians—ophthalmolo-
gists or even glaucoma subspecialists—in the assessment of glaucoma patients. 
Diagnosis and prognosis of glaucoma depend heavily on clinicians’ expertise and 
the clinical tests available. Even if the samples are highly homogeneous, disagree-
ment between different clinicians may induce variation to the ground truth labeling, 
which will then propagate during training and lead to bias in the model’s output.

6.4.3	 �Early Glaucoma

From the pathologic perspective, about 50% glaucoma cases are undiagnosed until 
a relatively late state as glaucoma progresses without causing symptoms in its early 
stage [53]. Early diagnosis is important, so that the treatment can be escalated. 
However, it can be more difficult for AI systems to detect cases with less-severe 
disease manifestations, such as glaucoma suspect and pre-perimetric glaucoma, 
compared to severe and advanced glaucoma. There is no widely accepted method 
for confirmed diagnosis of early glaucoma although the World Glaucoma Association 
has published a consensus document that defines the main features [54]. The model 
proposed by Thakur et  al. [49] shows promising results in predicting glaucoma 

6  Artificial Intelligence and Glaucoma



84

conversion a couple of years prior to disease onset, but it is still not clear how their 
model recognizes the early signs of glaucoma.

6.4.4	 �Comorbid Eye Conditions

AI systems also face the challenge of analyzing images with multiple comorbid eye 
conditions. As pointed out by Li et al. [50], coexistence of high or pathologic myo-
pia is the most common cause of false-negative results produced by their model, 
which was trained using fundus photographs of a large Chinese cohort. Another 
example is that VF represents a functional assay of the entire visual pathway, so VF 
loss associated with other pathologies, such as lesions in the posterior visual path-
way [55], may pose a challenge in differentiating glaucomatous from non-
glaucomatous damage. It is undoubtly important but also very challenging to take 
these confounding factors into consideration when designing AI systems for 
glaucoma.

6.5	 �Potential Future Development

6.5.1	 �Portable Equipment and Cloud Platform

As people are living longer, there will be increased demand of ophthalmic services 
in the community due to higher prevalence of glaucoma and other age-related ocu-
lar disorders. Efficient glaucoma services, such as screening, therefore, are an 
essential part of that future landscape. Currently glaucoma screening is still expen-
sive to implement at both community and hospital levels. Portable equipment and 
cloud platform might be a feasible solution, as demonstrated by a few regional and 
national diabetic retinopathy screening projects detailed in [56]. The same idea 
could be applied to glaucoma screening. We developed a platform that can detect 
glaucomatous signs using portable fundus cameras and an AI model on the cloud 
[57], as illustrated in Fig. 6.3. After the examinee’s fundus photographs are taken by 

Portable Fundus Camera Cloud Platform

Specialists

further examination

referable glaucoma suspect

re-test in 12 months

high glaucoma risk

low glaucoma risk

Examination Results

take photographs of the eyes
analyze the images
detect signs of glaucoma
generate an examination report

-
-

-

-
-- send to the cloud platform

Fig. 6.3  Schematic diagram of the AI platform for glaucoma screening [57]
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an intended user, e.g., optometrists, general practitioners, or other healthcare pro-
viders, the photographs will be sent to a cloud platform for analysis. The cloud 
platform will then generate an examination report. People with a result of high 
glaucoma likelihood can be referred to specialists for further examination, other-
wise retest will be suggested in 12 months.

6.5.2	 �Augmented Intelligence

AI can help clinicians with decision-making to reduce errors in diagnosis and to 
improve patient outcome. As pointed out by A. Di Ieva [58], there is “underlying 
fear of a dystopic challenge wherein AI is in competition with human experts” and 
such fear can be overcome by viewing AI as a means to enhance the expertise of 
human. This alternative view would shift the paradigm from human versus AI to 
human with AI, i.e., augmented intelligence.

From the clinicians’ perspective, given more and more clinicians are expected to 
use AI in the future, the way to prepare the new-generation clinicians for the coming 
AI times is to adapt medical education to the digital world and to build the capacity 
for enhanced decision-making and prognostication by means of AI [59]. It is equally 
important that clinicians need to stay vigilant about the incompetence of AI to avoid 
blindly following the decision made by the machine. From the AI engineers’ per-
spective, we should use “human-in-the-loop” approach to actively engage clinicians 
in the full course of development, testing, and implementation of AI systems. With 
the clinicians’ input, AI models are likely to learn much more rapidly. It is also 
necessary for clinicians to continuously provide feedback to AI engineers to prevent 
system-wide failure.

6.5.3	 �Explainable AI

Many AI models, particularly DL models, are having the interpretability problem, 
i.e., the models’ predictive mechanism is unknown and we cannot explain how AI 
arrives at a specific decision. The benefits of explainable AI are multifold; for exam-
ple, it can increase our trust in the models; the way AI perceives data may enlighten 
clinicians about new diagnostic and prognostic biomarkers which may lead to new 
findings about pathological mechanisms for the disease.

There is an ongoing progress in explainable AI in glaucoma. In a pioneering 
work, Goldbaum et al. [26] attempted to interpret the perimetry results of glau-
coma by mapping feature weights to VF regions. A more recent example is arche-
type analysis, which outputs the coefficient for each characteristic archetypes. 
Notably, many advanced AI models for fundus photographs and OCT scans are 
able to visualize the suspect pathologies or saliency areas in the images [32, 33]. 
Further research will be needed to continuously improve the explainable 
AI models.
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6.5.4	 �Converged Technologies

Another potential future development lies in the combination of different technolo-
gies with the help of AI. Imaging genetics, for example, is a very promising area for 
the future, where the aim is to identify the genetic basis of anatomical and func-
tional abnormalities and to show how this relates to glaucoma. Khawaja et al. [60] 
identified 112 genomic loci associated with IOP and the development of glaucoma, 
and a regression model based on these loci achieved an AUC of 0.76 in glaucoma 
classification. In a recent work, Margeta et al. [61] found that the APOE ε4 allele is 
associated with a reduced risk of POAG, suggesting a protective effect for APOE 
ε4 in glaucoma. With the converted technologies, AI will help identify more effi-
ciently and effectively the diagnostic, prognostic, and therapeutic biomarkers for 
glaucoma.

6.6	 �Conclusion

AI is playing several roles in the management of glaucoma, such as detecting signs 
of structural and functional damage, and assisting in disease diagnosis, but it is still 
far from reaching its potential. It remains dependant on the accuracy of the training 
data sets. While there are clinical and technical challenges in using AI in real-life 
settings, future research will likely accelerate emergence of effective AI systems in 
glaucoma practice.
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7.1	 �Introduction

Artificial intelligence (AI) enables computers to function independently and intel-
ligently to perform tasks usually done by humans. It involves machine learning 
incorporating various algorithms which are known as neural networks that allow 
these computers to learn and edit from the provided data sets and subsequently 
make accurate future predictions. AI in ophthalmology has focused most in the field 
of retina since it involves large amounts of images which are capable of diagnosing 
a condition [1, 2].

Retinal diseases are often investigated using multimodal imaging including fun-
dus photography, retinal angiography and optical coherence tomography (OCT). In 
addition, retinal diseases often have similar, overlapping phenotypes making pattern 
recognition an important aspect of diagnosis and management. Retinal vascular dis-
eases such as diabetic retinopathy (DR) and retinal vein occlusions may have fea-
tures such as microaneurysms, and complications such as macular oedema, detection 
of which has an important role in the screening and early treatment of these patients.

An enormous interest has been generated among the medical fraternity due to the 
introduction and application of deep learning (DL) and AI in medical services. DL 
is a new addition to the AI learning technique [3, 4]. DL, as has been previously told 
in the book, is based on learning from large volumes of data, its analyses, process-
ing of the data and extracting meaningful patterns from the analyses [5, 6]. The 
algorithm most commonly used in DL is convoluted neural networks (CNNs) [6]. 
Repetition of tasks and self-learning forms the core of DL, using the CNN. DL uti-
lizing CNN is most suitable for analysis of image-based data [7].
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AI is especially useful in the medical sub-specialities in which imaging plays an 
important role, as in ophthalmology. The basic elements for use of AI in various 
algorithms analyzing images include enhancement of the images, identification of 
interest region in the images, descriptor computation and screening classification 
[8]. Recently, there have been a number of path-breaking advances in the field of AI 
specifically related to retinal diseases. One such example is the approval of the first 
AI-enabled screening device for diagnosing an ophthalmic disease, the IDx-DR by 
the United States Food and Drug Administration (US-FDA) in April 2018 [9]. In 
this chapter, we have summarized various applications of AI in the field of retinal 
diseases. The potential limitations of this technology and the future applications of 
AI have been provided.

7.2	 �Applications of AI in Retinal Diseases

7.2.1	 �AI in Diabetic Retinopathy

The basic aim of application of AI in diabetic retinopathy (DR) is to screen for pro-
liferative diabetic retinopathy (PDR) and diabetic macular oedema (DME), the two 
major causes of severe visual loss in patients with DR. The most important predictor 
for majority of algorithms is identification of referable diabetic retinopathy (RDR). 
RDR includes moderate non-proliferative DR (NPDR) or higher and clinically sig-
nificant macular oedema (CSME). The presence of severe NPDR, proliferative PDR 
and/or DME constitute sight threatening DR (STDR) [10].

Screening of diabetic patients for DR changes has evolved as an effective method 
for prevention of blindness. AI-based screening protocols have been validated for 
screening and found to be quite reliable in differentiating between referable DR and 
non-referable DR. Gulshan and colleagues from Google AI Healthcare reported a 
DL system with excellent diagnostic performance. Their system used 128,175 reti-
nal images and was graded for DR and DME by a panel of 54 US-licensed ophthal-
mologists and ophthalmology residents. A test data set of approximately 10,000 
images retrieved from publicly available databases were analyzed by seven certified 
ophthalmologists. The area under the receiver operating characteristic curve (AUC) 
was close to 0.991 for both the databases [11].

A study using another DL system achieved an AUC of 0.980, with sensitivity and 
specificity of 96.8% and 87.0%, respectively, in the detection of referable DR. [12] 
These studies highlight the potential use of DL in early detection of referable DR. A 
major study on the validation of DL was performed by Ting et al. [13] in Singapore 
with multiple retinal images taken with conventional fundus cameras. This study 
showed a high sensitivity and specificity for identifying DR. The potential chal-
lenges and uncertainties include the testing of these DL systems in real-world DR 
screening programmes and accessing the generalizability of applying these systems 
to populations of different ethnicities, and using retinal images captured by different 
fundus cameras.
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IDx is the first US-FDA–approved AI device used for screening in DR in 2018. 
Topcon NW400 fundus camera is coupled to this device, and the camera is used to 
upload images on the software. The software was programmed in such a way, if the 
DR is more than mild, then the case is referred to an ophthalmologist. If it was not 
‘more than mild DR’ then the software calls the patient for rescreening after 
12 months. Sensitivity and specificity of 87.3% and 89.5% was detected in a multi-
centre trial in which 900 adults with diabetes were registered. As the device can take 
a screening decision, it can be used by non-ophthalmologists.

EyeArt™ by Eyenuk was used EyePACS tele-screening system to train the AI 
algorithms for screening DR and showed a sensitivity and specificity of 90% and 
63.2%, respectively. It also detected microaneurysms with a sensitivity of 100%. 
The system used 40,542 images which were taken from 5084 patients. Another 
study by Tufail et  al. showed the sensitivity of EyeArt was 94.7% for any DR, 
93.8% for referable retinopathy and 99.6% for PDR. It also evaluated the results of 
Retmarker showing sensitivities of 73.0% for any retinopathy, 85.0% for RDR and 
97.9% for PDR.  Google Health has also reported creating a dataset of 128,000 
images which were incorporated by scientists in order to train a DL network for 
diabetic retinopathy.

OCT angiography is a new technology that has immense applications in the field 
of DR and DME. A number of research manuscripts have focused on the use of 
OCT angiography in determining quantitative parameters such as foveal avascular 
zone (FAZ) areas, retinal microangiopathy changes (such as capillary tortuosity and 
dropouts) and retinal vascular density indices. The use of AI to OCT angiography 
images is in its infancy. There are only few published reports that describe the appli-
cation of DL algorithms in determining the vascular changes on OCT angiography. 
Guo et al. have proposed a DL algorithm that can automatically segment and quan-
tify the capillary density of the superficial FAZ. The correlation coefficient between 
the area calculated by the DL algorithm and that calculated by manual segmentation 
was 0.997 [14].

Heisler et al. used ensemble learning techniques along with DL in classifying 
DR on OCT angiography. The authors analyzed 380 eyes and concluded that 
ensemble learning increases the predictive accuracy of CNNs for classifying RDR 
on OCT angiography [15]. Lo et al. have also employed OCT angiography images 
in assessing the superficial and deep retinal capillary plexus using CNNs. The algo-
rithm provided an accurate retinal microvasculature assessment using CNNs [16]. 
Thus, OCT angiography is a useful tool and its segmentation using CNNs is a prom-
ising area of research.

7.2.2	 �AI in Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is among the most common cause of 
vision impairment specially in elderly patients. The American Academy of 
Ophthalmology (AAO) recommends subjects with intermediate and late AMD to 
undergo at least two yearly follow up. With increasing ageing population, it is 
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needed that we have a system to efficiently screen and follow-up these patients [18]. 
Ting et  al. published an accepted DL system to detect and refer patients with 
AMD.  In their study, fovea-centred images without macular segmentation were 
used [13].

DL systems have been developed using the AREDS data set with a high number 
of referable AMD (intermediate AMD or worse). Using a fivefold cross-validation, 
Burlina et  al. [19] reported a diagnostic accuracy of between 88.4% and 91.6%, 
with an AUC of between 0.94 and 0.96. Unlike Ting et al. [13], the authors pre-
segmented the macula region prior to training and testing, with an 80/20 split 
between the training and testing in each fold [19]. In terms of the DL architecture, 
both AlexNet® and OverFeat® have been used (both of these are CNNs), with 
AlexNet yielding a better performance. Grassmann et al. [20] reposted a sensitivity 
of 84.2% in detecting any stage of AMD. Here, six CNNs were used to train differ-
ent models. The authors concluded that their algorithm was suitable to classify 
AMD fundus images in other datasets using individuals >55 years of age.

Since the ultimate goal in the application of AI in AMD is detection of neovas-
cular AMD, and determination of cases that need treatment with intravitreal anti-
vascular endothelial growth factor (anti-VEGF) agents, there have been attempts 
made to develop models that predict requirement of anti-VEGF in AMD by DL 
techniques. Bogunovic et al. [21] have evaluated a machine learning algorithm to 
predict anti-VEGF treatment needs from OCT scans taken during treatment initia-
tion. However, this is a pilot study and needs further research.

7.2.3	 �AI in Choroidal Neovascularization and Macular Diseases

Optical coherence tomography has transformed the diagnosis and management of 
retinal/macular diseases. OCT provides a microscopic view of retina comparable to 
its histological structure. As far as DL is considered, OCTs, especially macular 
ones, are suitable for the development of a learning algorithm. The special attributes 
of this tool are an increased number of OCTs performed around the world, wide-
spread availability, non-invasive nature and a three-dimensional structural informa-
tion captured with the macular OCTs [1]. The large quantity of macular OCTs can 
provide a very large database set which can be used to train the DL systems. 
Compared to colour fundus photographs, the fixation is consistent among the 
acquired serial automated OCT scans. The accuracy in the acquisition of the OCT 
scans, however, can lower the complexity of the data and allows deep learning sys-
tems to extract meaningful data from a smaller data set [1]. As the macular OCTs 
provide ultrastructural details of retinal layers, DL can be also used to identify novel 
biomarkers for the macular diseases.

The first application of DL in interpreting macular OCTs was to automatically 
classify AMD. Lee et al. used more than 100,000 OCT images to train a DL system 
to classify AMD, with AUC of 0.97 [22]. Most of the initial studies highlighting the 
use of macular OCTs in DL have utilized the single OCT B-scans rather than three-
dimensional volume-based scans which is a potential barrier to the applicability of 
DL in OCT-based algorithms [1]. DL using CNNs has been used to successfully 
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segment the retinal anatomical boundaries, intra-retinal fluid cysts and subretinal 
fluid on OCT B-scans as compared to traditional methods of segmentation [23, 24].

A novel AI framework was used by De Fauw et al. [25] to segment as well as 
classify OCT images. First, a segmentation network delineated almost 15 retinal 
morphological features and OCT acquisition artefacts. A classification network then 
classified the output of the segmentation network into ten different OCT pathologies 
(including choroidal neovascular membrane; CNV, macular oedema, drusen, geo-
graphic atrophy, full-thickness macular hole, partial thickness macular hole, epireti-
nal membrane, vitreomacular traction, central serous retinopathy and ‘normal’). 
These ten different OCT pathologies were categorized into urgent, semi-urgent, 
routine and observation. They concluded that the system classified the OCTs at par 
with the experts [25]. The DL system can be implemented for setting up rapid access 
‘virtual clinics’ and help in triaging patients with macular diseases strengthening 
the referral system and thus decreasing the undue load on the tertiary-level health 
institutes [26]. These triaging systems can be used in optometrists in rural settings 
and help in referrals [27, 28].

7.2.4	 �Retinopathy of Prematurity

Retinopathy of prematurity (ROP) is an important cause of childhood blindness 
with increasing annual incidence to 32,000 worldwide [29]. The risk factors being 
increasing preterm births due to better neonatal intensive care unit (NICU) manage-
ments, low birth weights, oxygen supplementation to neonates, among others. A 
simple but timely indirect ophthalmoscopic examination or digital fundus photo can 
detect the stage and progression of the disease and prevent blindness. The major 
barriers are that the diagnosis of ROP is subjective being examiner dependent, and 
there are very few trained to screen worldwide [30]. Recently, Brown et al. [17] 
reported the results of a fully automated DL system that could diagnose plus dis-
ease, the most important feature of severe ROP, with an AUC of 0.98 compared with 
a consensus reference standard diagnosis combining image-based diagnosis and 
ophthalmoscopy. This was compared with ROP experts worldwide, and it was found 
that six out of eight experts agreed with the i-ROP DL system diagnosis. It showed 
promising results in disease progression, regression and the response to treatment.

Currently, the DL algorithms focusing on ROP are being designed to distinguish 
plus disease from non-plus disease. However, more intuitive systems that will 
enable detection of different grades of ROP, and other conditions such as aggressive 
posterior ROP, are yet to be developed.

7.2.5	 �Retinal Vein Occlusions

After DR, retinal vein occlusion is the commonest cause of vision impairment 
among retinal vascular causes [31]. It leads to retinal haemorrhages, macular 
oedema and exudation. This condition is more common in the older age group 
with hypertension, atherosclerosis and cardiac disease being major risk factors 

7  Artificial Intelligence in Retinal Diseases



96

[32]. At present, the use of AI has not been widely explored for retinal vein 
occlusions. One group has reported that the use of CNN combined with patch-
based and image-based vote methods to recognize the fundus image of branch 
retinal vein occlusion automatically. The authors have reported a high accuracy 
of over 97% [1].

Nagasato et  al. [33] have applied DL algorithms in detecting retinal non-
perfusion areas in retinal vein occlusions by using a novel imaging modality, 
OCT angiography. OCT angiography has revolutionized the field of non-invasive 
retinal angiography, and application of DL algorithms to this imaging modality 
certainly opens up newer avenues of research and clinical applicability. In their 
study, the authors generated heat maps to detect areas of retinal non-perfusion, 
and the AUC in distinguishing retinal vein occlusion OCT angiography images 
from normal control subjects was encouraging (0.986). The sensitivity, specific-
ity and average required time for distinguishing the images were 93.7%, 97.3% 
and 176.9 s, respectively, and the DL algorithm outperformed ophthalmologists 
in all parameters [33].

Table 7.1 reviews the performance of artificial intelligence algorithms to detect 
retinal diseases using fundus images.

Table 7.1  Review of performance of artificial intelligence algorithms to detect retinal diseases 
using fundus images

Author Study type
AI algorithm/fundus 
camera Dataset

Sensitivity
(%)

Specificity
(%)

Abràmoff 
et al. [12]
(2016)

Retrospective 
(DR)

Topcon TRC NW6 
nonmydriatic 
fundus camera/
IDx-DR X2

MESSIDOR-2 96.8 87

Gulshan 
et al. [11]
(2016)

Retrospective 
(DR)

Topcon TRC NW6 
nonmydriatic 
camera/
inception-V3

MESSIDOR-2 87 98.50

Ting et al. 
(2017) [13]

Retrospective 
(DR)

FundusVue, canon, 
Topcon and Carl 
Zeiss/VCG-19

SiDRP 14–15 90.5 91.6
Guangdong 98.7 81.6
SIMES 97.1 82.0
SINDI 99.3 73.3
SCES 100 76.3
BES 94.4 88.5
AFEDS 98.8 86.5
RVEEH 98.9 92.2
Mexican 91.8 84.8
CUHK 99.3 83.1

Brown 
et al. [17]
(2018)

Retrospective 
(ROP)

Inception-V1 and 
U-net

AREDS 100 94
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7.3	 �Pearls and Pitfalls in the Applications of AI

AI is a potential game-changer in the medical field, including ophthalmology. AI is 
considered one of the most significant of information technology revolutions of 
recent past [34]. It is a complex field of research, application in medical field is a 
challenge as it involves two inherently different branches, medical and computer 
sciences. Challenges exist for AI in ophthalmology practices as the exact number of 
training images in the dataset and validation set is not standardized [35]. Most data-
sets use a huge number of images, as more numbers are considered better. Excessive 
datasets, datasets with homogenous populations and machines of different brands 
may alter the accuracy assessments. However, including wide demographic profiles, 
reducing dataset size and algorithm complexity and restricting the number of clas-
sifications within a program can improve accuracy and have significant prognostic 
relevance [35].

As ophthalmological practices are mostly outpatient-based services and most of 
the sub-specialities in ophthalmology use imaging modalities, AI can be implied to 
improve patient care. AI is a major boon to the health sector. However, the cost of 
the machines may be high and the medical companies manufacturing these machines 
may have conflicts of interest. It is of utmost importance to look into this potential 
issue and make sure that the technology is available to all including the populations 
with poor affordability.

AI is not a fail-proof technology, and there could be patients with severe disease 
whose detection could be missed out. A false-negative report may have a serious 
bearing on the visual function in these patients. The algorithms having great accura-
cies do have relatively high false-negative rates in disease detection which could 
lead to decreased diagnosis. Certain disease manifestations of diabetes, such as fea-
tureless retina, associated glaucoma or macular degeneration, may be missed. This 
is because a current limitation of AI is that separate individual programs need to be 
created for each individual task, referred to as weak or narrow AI. Thus, until these 
issues are sorted, the gold standard still remains clinical examination. Although AI 
has a great promise, it comes with its sets of limitations and risks. There is a risk of 
reducing the skill of the human workforce to the point that clinicians lose their diag-
nostic abilities.

In future, AI will be incorporated in the computer-based diagnostic and manage-
ment tools. This will be particularly useful in rural, underprivileged populations, 
who have limited access to the health care. Moreover, AI-associated systems have 
been looked upon as an important way to reduce the social inequalities in the 
health sector.

7.4	 �Conclusions

AI and machine learning are enabling enhanced screening and prognostication in 
retinal diseases specially DR and ROP.  This advancement has the potential to 
increase the patient access to clinical care and reduce health care costs. In a 
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developing country such as India, this is a promising tool which can benefit millions 
of patients who may not have direct access to ophthalmologists and retina special-
ists. Future research is surely required for the clinical implementation and cost 
effectiveness, but DL is likely to impact the practice of medicine and in particular 
ophthalmology in the coming times.
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8Artificial Intelligence 
in Neuro-Ophthalmology

Raymond P. Najjar, Caroline Vasseneix, and Dan Milea

8.1	 �Introduction

Artificial intelligence (AI) is an entity capable of receiving, interpreting and learn-
ing from single or various inputs before displaying a flexible task to achieve a par-
ticular task. Within the past decade, AI has provided ophthalmologists with new, 
fast, accurate and automated means for diagnosing and sometimes treating ocu-
lar diseases, opening new avenues for modern eye care [1]. Among AI techniques, 
machine learning (ML) and deep learning (DL) have been successful in diagnosing 
several ocular conditions ranging from the anterior to the most posterior segment of 
the eye. Several subspecialties of ophthalmology have, however, benefitted from AI 
to a larger extent than others. Among the most common ocular diseases automati-
cally detected by DL algorithms is diabetic retinopathy, glaucoma and age-related 
macular degeneration [2–6]. Conversely, subspecialties like neuro-ophthalmology 
have, until recently, been deprived from major advances in the AI-driven detection, 
let alone treatment, of neuro-ophthalmological conditions.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0634-2_8&domain=pdf
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8.2	 �Neuro-Ophthalmology

The structural arrangement of the visual system extends beyond the eyes to the most 
posterior segments of the brain (i.e., the occipital cortex). Consequently, patients 
with intracranial pathologies often complain of visual disruptions and end up con-
sulting an ophthalmologist [7]. Neuro-ophthalmology is a medical sub-specialty, at 
the intersection of ophthalmology and neurology, dealing with conditions that affect 
specifically afferent (i.e., vision) and/or efferent (i.e., eye movements, pupillary 
responses) pathways connecting the eyes with the rest of the nervous system. As 
such, modern neuro-ophthalmology has become an integrative medical discipline, 
connecting not only ophthalmologists and neurologists but also neuro-radiologists, 
neurosurgeons, neuro-otologists, neuro-immunologists, geneticists, and neuropa-
thologists. Such multidisciplinary approaches are becoming the norm for the often-
difficult diagnosis and management of neuro-ophthalmic conditions which remain 
relatively rare and complex, compared other, more common ophthalmic and neuro-
logic diseases. Practicing neuro-ophthalmology requires expertise not only in diag-
nosing/treating ocular diseases but also in managing conditions affecting the brain, 
nerve, and muscle.

Very briefly, the most common neuro-ophthalmic conditions can be organized in,

	1.	 conditions affecting the afferent visual system (from the retina to the optic 
nerves, chiasm, retro-chiasmal pathways, and occipital lobes) and causing higher 
order visual dysfunctions,

	2.	 conditions affecting the efferent pathways, causing central ocular motor disor-
ders (at cortical, brainstem level), gaze instability, ocular motor cranial neuropa-
thies, and pupillary disorders in addition to more peripheral dysfunctions 
affecting the neuromuscular junction or the muscles themselves.

The range of conditions that can specifically affect one or more of these 
anatomical structures is very large, including autoimmune, inflammatory, 
ischemic, infectious, compressive, traumatic, congenital, and degenerative 
diseases. It is not uncommon that an isolated, relatively benign neuro-oph-
thalmic dysfunction (i.e., inflammatory optic neuropathy) heralds other, 
more serious neurological diseases (multiple sclerosis, for example). 
Similarly, acute squint due to acquired ocular misalignment (or swelling of 
optic nerve heads) can be the first and only manifestation of life-threatening 
conditions (due to aneurysms, tumors, systemic metabolic diseases, etc), 
requiring urgent detection and care.

During the recent decades, clinical neuro-ophthalmology has largely benefit-
ted from fundamental scientific discoveries and their applications, performed by 
neuroscientists, data scientists, biomedical engineers, etc. Interestingly, compared 
to other ophthalmic disciplines, neuro-ophthalmology has not benefitted, until 
recently, from significant advances in the area of AI and telemedicine. Some of 
the main reasons for such a delay are (1) the low prevalence and heterogeneity of 
neuro-ophthalmological conditions and consequently the scarcity of data necessary 

R. P. Najjar et al.



103

to efficiently train an AI algorithm; (2) the neuro-ophthalmologist community is rel-
atively small compared to other ophthalmic specialties; (3) in some neuro-ophthal-
mological conditions, neurologists provide the final diagnosis which may lead to a 
loss of follow-up data and reliable ground truth necessary to train AI algorithms; 
and (4) ground truth can be heterogeneous from center to center, while multiple 
centers and large sample sizes are often required to efficiently train AI algorithms 
to detect rare neuro-ophthalmic conditions. Nevertheless, the field is not barren of 
advancements in the field of AI.  In the following paragraphs, we summarize the 
most prominent investigations utilizing AI to detect prominent neuro-ophthalmic 
conditions affecting the optic nerve head and eye movements.

8.3	 �Artificial Intelligence in Optic Nerve Head 
(Disc) Abnormalities

The optic disc or optic nerve head is the proximal end of the optic nerve. In a 
clinical setting, the optic nerve head (optic disc) integrity can be evaluated in real 
time using direct ophthalmoscopy or fundus photography. While some optic nerve 
lesions cause visible disc changes including swelling, pallor, cupping (e.g., in glau-
coma) or infiltration, other lesions that are distal from the disc, such as retrobulbar 
optic neuritis, are not associated, at the acute stage, with disc abnormalities (only 
one-third of optic neuritis patients have optic disc edema) [7].

Optic disc abnormalities associated with neuro-ophthalmic conditions are rel-
atively rare compared to optic disc changes seen in glaucoma and affecting 3.5% 
of individuals aged between 40 and 80, worldwide [8]. Given the high availabil-
ity of optic disc images in glaucomatous eyes, in addition to the clinical need 
for a cost-effective screening method for the disease, artificial multiple intelli-
gence methods including DL neural network algorithms, notoriously dependent 
on large datasets, have attempted to automatically detect glaucoma on digital 
fundus images [9], based on the optic disc appearance alone, or in combination 
with optical coherence tomography (OCT) findings [1, 10]. Conversely, a limited 
number of studies have aimed to automatically determine the optic disc lateral-
ity using DL and transfer learning [11], and detect neuro-ophthalmic optic nerve 
head abnormalities [12].

Compared to sight-threatening ocular conditions such as glaucoma and diabetic 
retinopathy, some neuro-ophthalmic manifestations, alike papilledema defined as 
bilateral optic disc edema (swelling) from intracranial hypertension (ICH), can be 
life-threatening. Whether idiopathic or due to a brain tumor, venous sinus throm-
bosis or medication, papilledema detection is a medical emergency that requires 
prompt diagnosis and clinical intervention. Failure to detect optic nerve edema 
can cause devastating diagnostic errors leading to permanent visual loss, neuro-
logic dysfunction, or even death [13, 14]. Conversely, false diagnosis of optic disc 
swelling can lead to unnecessary, invasive, and expensive diagnostic investigations 
including neuroimaging (e.g., CT scans and MRIs) as well as invasive examina-
tion of the cerebrospinal fluid [15]. While trained ophthalmologists are capable of 
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identifying most acquired optic disc abnormalities using ophthalmoscopy, non-
ophthalmic healthcare providers are less confident in their aptitudes to visualize 
the appearance of the optic disc using this technique [16]. This is particularly true 
in emergency departments (ED) where patients with symptoms of ICH are most 
likely to turn up. Ocular fundus digital cameras providing high-quality photographs 
of the optic nerve and retina offer a reliable alternative to direct ophthalmoscopy 
[17]. In a study conducted at an ED, 8.5% of patients presenting with headache, 
neurologic deficit, visual loss, or elevated diastolic blood pressure had abnormal 
findings on digital fundus photographs and 2.6% (1 out of 38) had optic nerve head 
edema [18]. However, fundus photographs required interpretation either by physi-
cians on-site or by ophthalmologists or by other experts through tele-ophthalmol-
ogy platforms [19, 20].

Studies using fundus images showed that using feature extraction along with ML 
(e.g., support vector machine, tree-based models) and advanced statistical proce-
dures (e.g., gray-level co-occurrence matrix) can not only discriminate discs with 
papilledema from normal discs with high accuracy (93%) [21] but can also grade 
the severity of the condition with substantial agreement with neuro-ophthalmolo-
gist (Kappa score = 0.71) [22] and spectral domain optical coherence tomography 
features such as optic nerve head volume [23]. In a real-life setting, however, the 
identification of the optic disc appearance yields several diagnostic possibilities 
(multiclass classification). In a recent study, Ahn et al. used machine learning to 
discriminate between normal discs, swollen discs due to various optic neuropathies, 
and pseudopapilledema [24]. Using data augmentation to overcome the risk of over-
fitting and a classical CNN with TensorFlow and transfer learning, the authors were 
able to differentiate true optic disc swelling from pseudo-swelling with an accu-
racy of ~95%. Unfortunately, this study had numerous methodological limitations, 
including the lack of rigorous clinical inclusion criteria. Nevertheless, these studies 
paved the way for the utilization of AI for papilledema detection yet had limited 
sample sizes that were inadequate for DL approaches.

In a recent large collaborative effort, Milea and colleagues managed to train a 
deep learning system (DLS) on 14,341 photographs collected from 6779 patients 
from 19 neuro-ophthalmology centers worldwide (BONSAI consortium), including 
9156 images of normal optic discs, 2148 of discs with confirmed papilledema, and 
3037 of discs with other abnormalities [25]. When evaluated on a separate set of 
1505 fundus photographs retrospectively collected from five other centers includ-
ing a wide range of ethnic groups and fundus cameras, the BONSAI-DLS yielded 
a high accuracy for the classification of normal discs, discs with papilledema, and 
discs with other abnormalities (e.g., non-arteritic ischemic optic neuropathy, optic 
disc atrophy, optic disc drusen) with AUCs of 0.98, 0.96, and 0.90, respectively 
[25]. Interestingly, the BONSAI-DLS was capable of correcting labeling errors 
within the reference standard and, in a subsequent study, showed a performance 
that was at least as good as two expert neuro-ophthalmologists (Classification accu-
racy of the DLS = 85%; accuracies of the two experts: 80% and 84%) [26]. It is 
important to mention that the classification by the DLS and experts was, however, 
purely performed based on fundoscopic images, without consideration of other 
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important clinical features of intracranial hypertension and consequently papill-
edema such as visual loss, headache, tinnitus. The high classification performance 
of the BONSAI-DLS is promising for the automated and fast interpretation of optic 
disc abnormalities in clinical settings where expert opinion is not readily avail-
able [27], especially with the emergence of user-friendly handheld fundus cam-
eras. Furthermore, DL in general and these findings in particular provide a unique 
opportunity for non-ophthalmologic healthcare personnel who are not skilled in 
performing ophthalmoscopy, to automatically and successfully identify sight- and 
life-threatening conditions on fundus images. Neurologists and emergency depart-
ment doctors are most likely to benefit from the integration of automated optic disc 
appearance classification into their routine evaluations of certain patients, especially 
with the limited access to neuro-ophthalmologists [27]. A prospective validation of 
the BONSAI-DLS in real-life settings is, however, essential before recommenda-
tions can be made regarding its use in various clinical scenarios.

In addition to optic disc swelling, optic disc atrophy resulting in optic disc pallor 
on fundoscopy is an important clinical manifestation of retinal nerve fiber degenera-
tion and glial reorganization. Optic disc pallor is often associated with various types 
and advanced stages of optic neuropathies including, but not limited to compres-
sive, ischemic, inflammatory, or hereditary optic neuropathies. As such, the diag-
nosis of optic disc pallor and more importantly its underlying medical condition 
remains challenging. This is in part due to the subjective nature of the optic disc 
evaluation leading to high interindividual variability, in addition to various mask-
ing anatomic differences between patients’ optic nerve heads including physiologic 
temporal pallor [28], pseudophakia, peripapillary atrophy, and tilted discs. Even 
though intraocular axonal loss can nowadays be quantified by advanced and costly 
imaging modalities such as OCT, the detection of pallor and underlying conditions 
using ophthalmoscopy or fundus images remains more cost-effective, especially for 
primary eye care services. In 2018, Yang and colleagues designed a computer-aided 
detection system (CAD) to automatically segment the optic disc, enhance fundus 
images, and extract features and parameters of disc pallor [29]. The parameters 
used by the authors were (1) brightness correction defined as “the ratio of the mean 
brightness intensity of the ‘cup depth’ compared to the ‘background region’” and 
(2) the temporal-to-nasal ratio defined as “the mean brightness intensity of pixels 
in the temporal region divided by the mean intensity of pixels in the nasal region 
of the clinically significant neuroretinal rim.” A logistic regression model for pal-
lor risk classification integrating the latter parameters yielded high accuracy (i.e., 
overall accuracy of 96% and sensitivity and specificity >95%) for the automatic 
detection of optic disc pallor from normal discs on fundus images. A performance 
that surpassed that of two ophthalmologists who manually graded the images [29].

Optic disc cupping is a feature of glaucomatous optic neuropathy [30], but can 
be found in other optic neuropathies. Optic nerve head notching is also indicative, 
yet not specific to glaucoma, being often sectorial and congruent with the corre-
sponding visual field loss. In clinical practice, it may be difficult to differentiate 
glaucomatous from non-glaucomatous optic disc features, especially when compar-
ing hereditary optic neuropathies and normal tension glaucoma, which share a few 
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of these features. In addition, glaucomatous eyes may also display secondary optic 
disc pallor in advanced stages [30, 31]. Distinguishing glaucomatous from non-
glaucomatous causes of optic neuropathies is important yet elusive if solely based 
on the morphologic assessment of the disc [32]. Using color fundus photographs, 
Yang and colleagues recently evaluated the performance of a DL algorithm based 
upon the convolutional neural network (CNN) of the ResNet-50 architecture for 
differentiating glaucomatous and other, non-glaucomatous optic neuropathies with 
disc pallor (including compression of the anterior visual pathway, demyelination, 
inflammation, ischemic, toxic, and traumatic optic neuropathy). The model was 
trained on 18,000 images (after a 20-fold data augmentation) including 6000 images 
of normal discs, and tested on 2675 images including 2503 normal discs. The DL 
algorithm showed a high overall accuracy (99%) for the classification of glaucoma-
tous optic neuropathies, non-glaucomatous optic neuropathies, and normal discs 
on fundus images. The model also yielded an area under the precision-recall curve 
of 0.87, a sensitivity of 93.4%, and a specificity of 81.8% for the differentiation of 
glaucomatous and non-glaucomatous optic neuropathies [33].

8.4	 �Artificial Intelligence in Eye Movement Disorders

Eye movement disorders include ocular motor nerve palsies (third, fourth, and sixth 
cranial nerves) and other causes of diplopia and ocular misalignment, conjugate gaze 
abnormalities, and nystagmus or other abnormal eye movements. There is a paucity 
of literature about AI applications in this domain. Some authors used machine learn-
ing techniques to evaluate conjugate gaze limitations as ocular biomarkers for neu-
rodegenerative diseases (Parkinson [34, 35], Alzheimer [36], Huntington disease 
[37]) or even neuropsychiatric diseases [38]. In addition, AI has also been used with 
neuroimaging modalities for multiple tasks including segmentation, classification, 
diagnosis, prognosis, prediction of outcome, and risk assessment [39]. We will not 
discuss the implications of AI in neuroimaging or neurological conditions as these 
topics are beyond the scope of this chapter and pertain more to neurology than 
neuro-ophthalmology.

AI techniques were described to model ocular motor data [40], or predict fea-
tures related to congenital nystagmus [41]. More recent and advanced techniques, 
using DL, are described for strabismus detection or recognition in pediatric ophthal-
mology [42–48], which could potentially be used for cranial palsies and telemedi-
cine applications.

8.4.1	 �Artificial Intelligence and Ocular Motor Features

Few studies describe the use of machine learning techniques to study conjugate 
gaze abnormalities and nystagmus. Conjugate gaze abnormalities include vertical 
or horizontal conjugate gaze limitations, pursuit or saccadic deficits, or involun-
tary conjugate gaze deviations. In one study [40], published in 2001, the authors 
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used a decision tree induction to model the relationships between ocular motor test 
parameters and lesion sites in a dataset of operated cerebellopontine angle tumor, 
operated hemangioblastoma, infarction of cerebello-brainstem, Menière’s disease 
(total of 137 patients) and 78 controls. Ocular motor evaluation included pursuit 
eye movements and saccadic eye movements, and best results were obtained with 
a combination of the two types of movements. The classification system with three 
classes (control subject, central lesion, and peripheral lesion) yielded a mean accu-
racy of 91% and the system with five classes (control subject, brainstem lesion, 
cerebellar lesion, cerebello-brainstem lesion, and peripheral lesion) yielded a mean 
accuracy of 88%.

Nystagmus is an involuntary, rhythmical oscillation of the eyes, and can be pendu-
lar or have jerk characteristics (slow and fast phases). Nystagmus can be physiologic 
or pathologic, congenital, or acquired, due to central nervous system dysfunction, 
peripheral vestibular disease, or visual loss. In order to investigate relationships 
between different parameters of congenital nystagmus, D’Addio et al. [41], used elec-
trooculography to record eye movements in 20 patients and extracted some param-
eters from the signals through a custom-made software. Predictive models were built 
using two algorithms, random forests, and logistic regression tree. The models was 
capable of predicting visual acuity and variability of eye positioning according to nys-
tagmus features (such as baseline oscillations and nystagmus foveation periods) with 
a coefficient of determination over 0.72 and over 0.70, respectively [41].

The use of AI for the detection of strabismus is subject to a growing interest. 
Several clinical applications are described in Reid and Eaton’s review [48]. Among 
these, the detection of strabismus by various AI systems, which could be extrapolated 
to the detection of cranial nerve palsies and other ocular misalignment. Lu et al.46 
developed a tele-strabismus dataset composed of 5685 facial photographs taken by 
the patients themselves and used the dataset to train and test a new algorithm in 
two stages; first a region-based fully convolutional network (R-FCN) performed 
eye region segmentation, then a deep CNN classified the segmented eye regions as 
strabismus or normal. The classification performance of Lu and colleagues’ model 
were encouraging with a sensitivity of 93.3%, specificity of 96.2%, and accuracy 
of 93.9%. Chen et al. [45] used in-office application of detection of strabismus by a 
CNN previously trained on ImageNet, which was able to detect fixation deviations 
from eye tracking data in nine directions of gaze. Experiments were performed on 
17 strabismus patients and 25 controls. The best performance achieved was 95% 
accuracy, 94% sensitivity, and 96% specificity. Gramatikov et al. [47] used artificial 
neural networks (ANN) to detect central fixation determined by retinal birefrin-
gence scanning (RBS), a technique that uses changes in polarization of light return-
ing from the eye. When applied to both eyes simultaneously, this technique allows 
to measure the alignment of the eyes. The classification performance of the ANN 
in 39 subjects (19 strabismus and 20 controls) yielded 98.5% sensitivity and 100% 
specificity. Van Eenwyk et al. [42] used a photorefractive video-based system com-
bining Bruckner pupil red reflex imaging (i.e., a deviated eye has a brighter reflex) 
and eccentric photorefraction to screen 610 children aged 6 months to 6 years old for 
amblyogenic factors (including strabismus) and need for ophthalmic referral “refer/
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do not refer.” Four AI techniques were used, case-based reasoning (template match-
ing, with comparison of videos of known conditions with new cases), case-based 
fuzzy logic, ANNs (connected layers of neurons, with input, hidden and output lay-
ers), and decision tree (program that classify attributes of a case in a specific order). 
The best classification performance (“refer/do not refer”) was obtained using the 
decision tree algorithm with an accuracy of 77%, compared to the “gold standard” 
specialist examination. Finally, Fisher and Chandna [43, 44] studied the diagnosis 
and patterns of deviation in vertical strabismus using an expert system (StrabNet) 
approach employing ANNs. Data included measurements of vertical deviations by 
prism cover test by ophthalmologists and orthoptists. Four hypertrophic and four 
hypotrophic patterns of deviations associated with a diagnosis were chosen based 
on clinical experience, and the authors used 50 sets of measurement for each of the 
eight diagnoses for training and evaluation of ANN. The performance of StrabNet 
was good, with an accuracy of 94% and specificity of 100%, and 84% match with 
an expert orthoptist. Finally, in pediatric ophthalmology, as in other medical fields, 
Reid and Eaton [48] emphasize some limitations or hurdles facing AI systems, 
which are (1) the disagreement on reference standard among experts, (2) the poor 
reproducibility and comparability if authors do not use publicly available datasets, 
(3) the lack of temporal evaluation, and (4) uninterpretable black box models in DL 
systems which render them as difficult to trust for some healthcare providers.

8.5	 �Conclusion

AI systems have proven to be useful for the screening and characterization of 
optic disc health and to a lesser extent eye movement disorders, as well as early 
detection and prediction of stage disease in patients with certain neurological and 
neuro-ophthalmologic conditions. Such systems provide a unique opportunity to 
make complex diagnostic procedures affordable, accessible, objective, and accu-
rate. Furthermore, in urgent settings, AI has the potential to improve the care for 
patients who need neuro-ophthalmic assessment when experts are not readily avail-
able. However, more studies are needed to evaluate the real-life clinical application 
of AI systems in neuro-ophthalmic conditions, as already done for other fields of 
medicine and ophthalmology.

The acceptance of telemedicine and AI-based medical interventions by provid-
ers, patients, and regulators was accelerated by the COVID-19 pandemic [49, 50]. 
Nevertheless, the surge in AI applications requires complementation with digital 
innovations allowing for long-distance clinical investigations/self-investigations 
(e.g., digital fundus photography, vision testing applications) [51] to promote the 
recognition of tele-neuro-ophthalmology as a viable healthcare delivery system.
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9Artificial Intelligence and Other 
Applications in Ophthalmology 
and Beyond

Stephanie Wangyu (Chiang) and Lama A. Al-Aswad

9.1	 �Introduction

Ophthalmology lends itself perfectly to artificial intelligence applications due to 
its high dependency on imaging. Virtually no ophthalmic field is left untouched by 
artificial intelligence (AI), as already discussed in the prior chapters on the anterior 
segment, glaucoma, and retinal diseases.

Machine learning (ML), a subset of AI, has been frequently explored for clinical 
predictive applications in ophthalmology. ML has the ability to learn from “inputs,” 
often images, without being specifically coded. However, many of these approaches 
require significant preprocessing to manually label features or classify inputs. More 
recently, deep learning (DL) methods, such as convolutional neural networks (CNNs), 
have been developed to yield impressive outcomes. In this approach, DL algorithms 
are able to bypass manual preprocessing and learn in an unsupervised approach, 
enabling faster, more efficient, and, oftentimes, more accurate analyses. Thus, many 
of the emerging AI techniques developed for ophthalmic use are DL-based.

Here, we discuss the role of AI in revolutionizing ocular pathology, oncology, 
genetics, and pediatric ophthalmology. Furthermore, AI platforms have expanded 
and elucidated prior hypotheses that the eye is truly the window to the rest of the 
body. The retina holds predictive power in evaluating cardiovascular health, ane-
mia, multiple sclerosis, and other neurodegenerative disorders such as Alzheimer’s 
and Parkinson’s disease. Finally, we will explore AI in tele-ophthalmology, the 
next frontier of eye care delivery. While AI development in these areas is still in its 
nascence, its transformative power cannot be understated.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0634-2_9&domain=pdf
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9.2	 �AI in Pathology

9.2.1	 �Precedents

Digitized pathology slides provide a robust data source for DL algorithmic training and 
use. Already, CNNs have demonstrated capability of diagnosing breast cancer nodal 
metastasis better than a panel of pathologists when compared to an independent refer-
ence standard [1, 2]. A deep learning algorithm classified whole-slide images with an 
AUC of 0.996, significantly better than pathologist performance with time constraints 
(AUC 0.810). Notably, the algorithms were able to better detect cases with only micro-
metastases with an AUC of 0.885, whereas pathologists achieved an AUC of 0.808, 
with even the best-performing pathologist on the panel missing 37% of those cases 
[2]. Additionally, automated prostate adenocarcinoma grading based on H&E-stained 
slides demonstrate a 75% match rate between DL and pathologists [1].

AI is being explored as a potential method to derive genotype and phenotype 
details based on pathology slides. As ocular pathology slides are increasingly digi-
tized, DL algorithms can help automate diagnostics in a time efficient and effective 
manner, as well provide additional information on disease characteristics. Coudray 
and his team trained a deep CNN to accurately classify frozen lung tissue samples 
into normal, adenocarcinoma, and squamous cell carcinoma in a fraction of the time it 
took pathologists [3]. Their model achieved comparable sensitivity and specificity to 
those of pathologists, 89% and 93%, respectively. Around 50% of the images misclas-
sified by the algorithm were also misclassified by pathologists, but conversely, over 
80% of the images misclassified by at least one pathologist were correctly classified 
by the algorithm, suggesting a supplementary role for the network [3]. Additionally, 
their model was able to predict six commonly mutated genes in lung adenocarcinoma 
from pathology images. They also tested their neural network model on independent 
cohorts, reflecting the generalizability of their algorithm to any cancer type. The model 
is now openly available to the public but needs FDA approval prior to clinical use.

9.2.2	 �Future Direction

Specific, validated applications of AI in ocular pathology have not yet been widely 
described. However, as described above, pathology images naturally lend itself to 
deep learning techniques and uses. As the dataset for ophthalmic histopathology 
slides expands, it is only a matter of time before AI plays an integral role in ocular 
pathology as well.

9.3	 �AI in Ocular Oncology

AI has already shown significant promise in detecting, diagnosing, and predicting 
oncological conditions with precision, and in some cases even going beyond the 
reach of clinicians [1, 4]. Given its reliance on radiographic imaging techniques, 
oncology naturally lends itself to effective AI applications.
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9.3.1	 �Precedents

Use of DL for lung, colorectal, breast, and bladder cancers are all areas of active 
investigation, with outcome data demonstrating high sensitivities thus far. Notably, 
not only CNNs have been used to detect and classify various cancers but they have 
also been used to identify malignant features, such as nodal metastasis, that are 
typically unreachable and undiagnosable by clinicians. In head and neck squa-
mous cell carcinoma, nodal metastasis and lymph node extranodal extension are 
notoriously difficult for clinicians to detect [4]. Yet a developed CNN was able to 
detect them with greater than 85% accuracy, a promising application for prognosis 
and treatment determination. Additionally, AI methods are being explored in both 
radiogenomics, where underlying genotypic traits can be predicted from imaging 
data, and treatment response and toxicity prediction [1, 4]. Specifically, AI pro-
grams have been described that predict genitourinary toxicity from prostate radia-
tion, hepatobiliary toxicity after liver short beam radiotherapy, and rectal toxicity 
from cervical external beam radiotherapy and brachytherapy to varying degrees of 
accuracy [5–9]. Nevertheless, these networks demonstrate the feasibility of AI to 
further explore and predict specific treatment response. Furthermore, DL-based nat-
ural language processing techniques have potential to predict disease development 
based on electronic health records (EHRs) [1]. Based on unsupervised processing 
of patient features from aggregated EHRs of over 700,000 patients, Mt. Sinai was 
able to predict prostate, rectum, and liver cancers with 93% overall accuracy, with 
severe diabetes, schizophrenia, and other cancers among the top performing predic-
tive outputs [1, 10].

9.3.2	 �Choroidal Melanoma

These AI-based techniques will inevitably be useful diagnostic and clinical manage-
ment tools in ocular oncology as well. Choroidal melanoma outcomes have been a focus 
for AI applications. Kaiserman et al. were able to forecast five-year mortality from cho-
roidal melanoma based on input variables of patient demographic data and ultrasound 
tumor details using an artificial neural network (ANN) that performed with greater 
accuracy (86%) compared to that of an ocular oncologist (70%) [11]. Additionally, 
another ANN-based method was able to model survival prognosis in patients with cho-
roidal melanoma and determined relevant risk factors to be age, sex, clinical tumor 
stage, cytogenetic melanoma type, and histologic malignancy grade [12].

9.3.3	 �Carcinoma Reconstructive Surgery

Habibalahi et  al. demonstrated the feasibility of using ML techniques to detect 
and demarcate boundaries of ocular surface squamous neoplasia based on multi-
spectral imaging [13]. Correlation between spectral image analysis and histology 
assessment, based on H&E sections, was 94%. Additionally, this technique was 
able to reliably differentiate neoplastic tissue from normal tissue both intrapatient 
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(p < 0.0005) and interpatients (p < 0.001). Impressively, the imaging system used 
does not require contact with the ocular surface and can capture multiple images 
and predict in less than 3 min, providing a real-time clinical tool. Furthermore, the 
technique described can be built into slit lamps in clinic or surgical equipment in 
ORs, easily integrating into existing workflow processes [13]. Tan et al. designed 
a risk stratification system that predicts complexity of reconstructive surgery after 
periocular basal cell carcinoma excision [14]. The group discovered three signifi-
cant predictive variables: preoperative assessment of complexity, surgical delays, 
and tumor size. Based on their findings, they proposed a new algorithmic approach 
to timing basal cell carcinoma excisions.

9.3.4	 �Retinoblastoma and Leukocoria

Retinoblastoma is the most common cause of primary intraocular malignancy of 
childhood and accounts for 10–15% of cancers that occur in the first year of life 
[15]. This malignancy can grow and metastasize rapidly. Therefore, early diagnosis 
and treatment is critical to improve chance of survival, vision preservation, and 
minimize the need for toxic treatment. A red pupillary reflex test is typically per-
formed using a handheld direct ophthalmoscope to screen children for leukocoria, 
the most common presenting symptom of retinoblastoma. In addition to retinoblas-
toma, leukocoria can be a symptom for multiple pediatric eye disorders including 
pediatric cataract, retinopathy of prematurity (ROP), Coats’ disease, persistent fetal 
vasculature, and strabismus. In patients with leukocoria, rather than eliciting a red-
colored reflection, the test reveals a white or yellow reflection. Though this screen-
ing test is required in regular pediatric checkups, studies have reported that signs of 
retinoblastoma are first detected by pediatricians in only 8% of cases compared to 
80% by family and friends [16]. Of importance, the reflex can also be detected when 
patients’ eyes are photographed with a camera flash.

AI can be used to improve screening and detection of retinoblastoma. Munson 
and colleagues developed CRADLE (Computer-Assisted Detector of Leukocoria), 
a smartphone application designed to screen children for leukocoria [17]. Affected 
patients had retinoblastoma, Coats’ disease, amblyopia, hyperopia, and cata-
racts. CRADLE remodeled and now uses an embedded CNN that was previously 
designed to detect leukocoria in nonclinical settings [18]. Importantly, the 52,982 
longitudinal photographs used to train and test the algorithm are all collected by 
the patients’ parents in casual settings. A retrospective study on CRADLE’s perfor-
mance demonstrated that not only was the application able to detect leukocoria in 
80% of patients with eye disorders, but it also detected leukocoria in photographs 
that were taken on average 1.3 years before diagnosis [17]. For a deadly disease 
like retinoblastoma, even shaving mere months off time to diagnosis is crucial to a 
patient’s clinical course. Vision loss and need for interventions like chemotherapy 
and radiation therapy that have long-term toxicities can be reduced. The added ben-
efit (and technical complexity) of the CRADLE app is its use of photographs taken 
by parents in various settings, significantly augmenting detection of potentially 
referral-warranted eye conditions.
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9.3.5	 �Future Direction

Despite the examples described above, ocular tumors are not often seen. Therefore, 
the datasets on which algorithms must be trained are not robust enough for accu-
racy, reliability, and reproducibility [19]. Nonetheless, there is tremendous prom-
ise that AI will transform the way oncology as a field operates—malignancies can 
be screened and detected earlier, neoplasia characteristics described more in more 
granular phenotypic and genotypic details, treatment response and potential toxicity 
predicted, and prognosis estimated.

9.4	 �AI in Ocular Genetics

AI applications in ocular genetics remain relatively untouched, although ophthal-
mology’s heavy use of imaging technology provides a wealth of source material for 
genetic prediction. Genetics play various roles in AI—they can be both inputs (e.g., 
genetic risk factors) and outputs.

9.4.1	 �Precedents

As discussed above, preceding work within general oncology predicting genetic 
information from radiographic and histopathological images highlights the potential 
of ocular image-based genetic prediction. To elaborate further, one study developed 
and trained a CNN to evaluate brain MRIs of patients with both low- and high-grade 
glioma in order to predict underlying genotypic traits [20]. Specifically, the system 
was able to independently predict both IDH mutation and MGMT methylation sta-
tus with 94% and 83% clinical accuracy, respectively. For a disease such as glioma, 
determination of genotype is critical for appropriate therapy. Similarly, six different 
gene mutations in lung adenocarcinoma—STK11, EGFR, FAT1, SETBP1, KRAS, 
and TP53—were able to be predicted with AUCs from 0.733 to 0.856 based on 
pathology image inputs [3]. This model can be applied to any cancer type, including 
ocular cancers. Both studies demonstrate the value of creating algorithms that can 
expedite oncological workup and inform clinical decision-making.

9.4.2	 �Inherited Retinal Disorders (IRDs)

IRD is a burgeoning area of research and development of deep learning applica-
tions. Through next-generation sequencing, over 250 genes and 300 genes and loci 
involved in retinal dystrophies have already been identified, opening the door for 
emerging gene therapies and pharmacological agents, among others [21]. Additional 
large cohort studies have also greatly expanded knowledge about IRD clinical 
manifestations, including fundus and morphological appearances. Combined, both 
genetic and clinical studies have been able to associate characteristic morphologic 
features to specific genes in various retinal dystrophies, such as ABCA4, RP1L1, and 
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EYS. Fujinami-Yokokawa and colleagues trained and developed deep neural net-
works to accurately predict the causative genes in macular dystrophy (ABCA4 and 
RP1L1) in comparison to those in retinitis pigmentosa (EYS) based off of spectral-
domain optical coherence tomographic (SD-OCT) images. The model yielded a 
mean overall test accuracy of 90.9%, with individual category accuracies of 100% 
for ABCA4, 78% for RP1L1, and 89.8% for EYS, and 93.4% for normal subjects.

9.4.3	 �Future Direction

Ultimately, the purpose of genetic studies is to inform clinical diagnosis and man-
agement. AI applications in IRDs and other specialties demonstrate the value in 
linking genetic prediction with clinical management. These applications become 
especially valuable for conditions in which specific expertise is scarce, such as 
in IRD, and incidence low leading to limited information. There is no doubt that 
genetics will also be incorporated into general screening to better augment clinical 
diagnoses.

9.5	 �AI in Pediatric Ophthalmology

9.5.1	 �Retinopathy of Prematurity

Retinopathy of prematurity (ROP) is one of the leading causes of childhood blind-
ness worldwide, particularly in middle-income countries [22]. ROP incidence was 
19.9% in the United States and accounts for 6–18% of childhood blindness [19]. 
ROP occurs when there is abnormal retinal neovascularization, which can lead to 
retinal edema, hemorrhage, scarring, and retinal detachment [22]. If the condition 
is severe enough and progresses to plus disease and subsequent retinal detachment, 
permanent visual impairment and blindness can result. However, ROP is treatable 
if intervention, such as laser photocoagulation and anti-vascular endothelial growth 
factors (anti-VEGF), is staged in timely manner. Early treatment has been shown 
to improve chance of better retinal structure outcome and visual acuity in patients 
with high-risk prethreshold ROP, though 9% still resulted in blindness [19, 23]. 
Significant risk factors include prematurity and low birth weight. Thus, as survival 
rates of premature infants increase, the necessity of early ROP screening and inter-
vention becomes critical.

Currently, ROP screening and diagnostic exams are difficult to perform on 
infants, subjective, and time consuming for the following reasons [22]. Primarily, 
diagnostic classification differs significantly among experts [19]. The International 
Classification for Retinopathy of Prematurity (ICROP) provides a standard system 
to assess disease extent and severity—it looks at four main features: zone, stage, 
extent, and presence of plus disease [24]. Plus disease is the most important indica-
tor of disease severity and is defined as abnormal blood vessel dilation and tortuos-
ity [25]. It is the most severe form of ROP and is usually quickly followed by retinal 
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detachment. Previously, patients were treated when they had reached “threshold 
ROP,” but now patients are treated when they develop high-risk prethreshold ROP 
or type 1 ROP. Variable diagnostic classification becomes problematic especially 
when evaluating for plus disease. Plus disease diagnosis has traditionally been a 
binary choice—plus vs pre-plus [25]. However, research has indicated that retinal 
vasculature changes occur on a continuous spectrum, making it difficult to standard-
ize a specific “cutoff” in order to be plus disease [26]. Thus, experts have differed 
on multiple components of diagnostic classification including even which retinal 
vascular features to consider or whether additional factors should be included, all 
leading to inconsistent and unreliable end classification. Furthermore, there has also 
been inconsistent expert diagnoses on pre-plus disease [27].

AI has the potential to overcome these challenges and remove barriers to scalable 
ROP screening. AI-powered systems use retinal fundus photos to detect and grade 
ROP or plus disease. Traditional algorithms utilize “feature engineering” in which 
images are preprocessed and manually classified with explicit rules [22]. For ROP 
images, these include vessel dilation, tortuosity, and venular features—however, 
ROP is challenging in that understanding of symptoms and presentation is still lack-
ing. Plus disease is more easily discernable. Thus, recently, CNNs, a branch of deep 
learning, have been used to yield improved results. CNNs are fed large-scale ROP 
datasets and automatically learn latent features, thus bypassing the preprocessing 
required in other image classification algorithms. DeepROP and i-ROP-DL are two 
recent systems that have yielded consensus results with expert opinion and even 
improved disease detection over some experts.

DeepROP is trained on a large database constructed with images labeled “nor-
mal,” “minor ROP,” and “severe ROP”—two CNNs for identification and subsequent 
grading are used on a cloud-based platform [28]. When clinically implemented, 
DeepROP identification performed with high sensitivity and accuracy, though grad-
ing remained a challenge. When tested against a panel of clinicians, DeepROP out-
performed only one of the three experts. The differences between “minor ROP” 
and “severe ROP” are less easily discernable compared to those between “normal” 
and any ROP cases. However, DeepROP results do demonstrate that if CNNs are 
trained on large-scale datasets without manual classification, ROP can be detected 
with high fidelity.

i-ROP-DL uses deep learning to detect plus disease and quantify severity of reti-
nal vascular abnormality on a 1–9 scale [29]. It was trained on a set of posterior 
pole fundus images labeled with (1) “no ROP,” (2) “mild ROP” defined as ROP less 
than type 2, (3) “type 2 ROP” defined as zone I, stage 1 or 2, without plus disease or 
zone II, stage 3, without plus disease, and (4) “type 1 or treatment-requiring ROP,” 
defined as zone I, any stage, with plus disease; zone I, stage 3, without plus disease; 
or zone II, stage 2 or 3, with plus disease. Additionally, an additional category “clin-
ically significant ROP” sought to capture referral-warranted cases—these include 
type 1, type 2, and pre-plus disease categories as described above. i-ROP-DL also 
involves two CNNs trained for retinal vessel segmentation and plus disease detec-
tion. i-ROP-DL was able to accurately detect clinically significant ROP with 94% 
sensitivity for type 1, and furthermore, demonstrate that its retinal vascular severity 
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scale is strongly correlated with expert assessment of disease severity. When tested 
against eight ROP experts, i-ROP outperformed six of the eight experts: i-ROP 
diagnosed 91% of the images accurately whereas experts had a mean accuracy of 
82% [30].

DeepROP and i-ROP-DL are only two systems utilizing CNNs to improve ROP 
screening and diagnosis. While study results of high sensitivity and accuracy have 
been encouraging, in order for these to be implemented as screening tools, sensitiv-
ity and negative predictive value need to further increase. Furthermore, additional 
outputs needed include zones and stages, both of which have been challenging to 
differentiate. Importantly, aside from being a helpful clinical tool, DL systems 
can shed light on objective measures to evaluate ROP classification and progres-
sion [19].

However, as is the case for many DL applications, in order to improve model 
robustness, training datasets need to significantly expand to include a greater num-
ber of high-quality images that encompasses a broad set of clinical features. There 
is software in development that automatically recognizes whether individual images 
are of sufficient quality [31].

9.5.2	 �Pediatric Cataracts

Pediatric cataracts are a common and preventable cause of visual impairment and 
possible permanent visual loss worldwide [32]. Cataracts interfere with normal 
visual development, and if left untreated, especially during the critical period of 
birth to 5 years of age, may lead to irreversible amblyopia. Thus, early detection and 
surgical intervention are critical. However, cataract removal is also complicated by 
posterior capsule opacification (PCO) and secondary glaucoma. Cataracts are cur-
rently visualized and diagnosed using a slit-lamp exam, which can often be difficult 
to perform on pediatric patients, subjective and of poor quality.

CC-Cruiser is a cloud-based AI platform that screens, stratifies, and recommends 
treatment based on slit-lamp images from patients who may have congenital cata-
racts (Long, Lin—Nature). It consists of three CNNs that: (1) screens and identifies 
potential patients with cataracts, (2) evaluates disease severity (lens opacity) based 
on opacity area, density, and location and risk stratify, and (3) provides treatment 
recommendation—surgery or follow up—based on risk stratification. A multicenter 
randomized trial using CC-Cruiser demonstrated that the platform’s accuracies in 
diagnosing cataract presence and recommending appropriate treatment were 87.4% 
and 70.8%, respectively, significantly underperforming experts that obtained accu-
racies of 99.1% and 96.7% [33]. However, CC-Cruiser was able to deliver a diag-
nosis within 3 min on average compared to the nearly 9 min for experts, resulting 
in high patient satisfaction.

Postoperative complication predictive systems are also in development. Random 
forest and Naïve Bayesian classifier have been used to predict severe lens prolifera-
tion into the visual axis (SLPVA) and abnormal high intraocular pressure (AHIP) 
with accuracies above 76% and 75%, respectively, for the two programs [34]. Zhang 
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and colleagues were also able to study which specific factors affected accuracy 
levels—specifically, prediction improved for composite complications (SLPVA and 
AHIP) when gender and age were excluded, for SLPVA only when secondary IOL 
placement, operation mode, age, and area of cataracts were excluded, and finally for 
AHIP only when gender, operation mode, and laterality were removed. Similarly, 
another CNN system has been able to detect PCO severe enough to warrant surgery 
with an accuracy of 92% [22, 35].

Though cataracts are seen commonly, cataract imaging is lacking. Therefore, 
similar to ocular tumors, algorithms cannot be reliably trained on such a small sam-
ple. Additionally, pediatric cataracts have different characteristic and risk profiles, 
and so, existing models and datasets for adult cataracts cannot be used.

9.5.3	 �Strabismus

Strabismus is a condition of ocular misalignment and is screened with simple clini-
cal exams such as the Hirschberg test and cover test [36]. In clinical settings with 
specialized equipment, CNNs can detect strabismus from fixation deviations in 
eye-tracking data (accuracy of 95%) as well as from retinal birefringence scanning 
(accuracy of 100%) with high sensitivity and specificity [37, 38]. Van Eenwyk et al. 
have also described applying AI techniques to analyze Bruckner pupil red reflex 
imaging and photorefraction videos for amblyogenic factors [39]. The designated 
output for the algorithm was whether to refer or not refer to an ophthalmologist. 
The decision tree made the same refer/do not refer decision in 77% of cases as clini-
cians, who were considered the “gold standard.”

However, in settings where there is poor access to ophthalmic clinics and equip-
ment, a model has been proposed to develop a telemedicine-purposed CNN from 
images gathered in telemedicine settings. Aiding both tele-ophthalmology and 
clinic strabismus diagnosis, an AI-powered mobile platform has been described that 
locates and classifies eye versions in nine gaze positions [40].

9.6	 �Additional AI Applications in Ophthalmology

The retina not only houses information about pathological eye disorders, but it is 
also the window into the rest of the body. Currently, however, clinicians do not pos-
sess any tools that link together the eye and other systemic conditions and enable 
accurate interpretation of retinal imaging. Retinal images provide a wealth of data 
to evaluate cardiovascular health, anemia, central nervous system (CNS) disorders 
including multiple sclerosis, Alzheimer disease, Parkinson’s disease, among many 
other ailments.

Ophthalmic applications of AI in predicting the above conditions go beyond the 
existing abilities of providers and any clinical tool. These methods can and will 
form the basis of noninvasive, inexpensive methods of screening, diagnosing, and 
monitoring various systemic conditions.
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9.6.1	 �Cardiovascular Risk Factors

Cardiovascular disease (CVD) remains the leading cause of death globally [41].The 
healthcare community faces a shortage of manpower and deficient infrastructure 
to effectively address this growing global demand. Accurate, time efficient, and 
scalable approaches to assess CVD risk in patients continue to be a critical and 
urgent need in order to predict CV outcomes including heart disease, stroke, chronic 
kidney disease (CKD), and mortality, as well as prevent adverse CV events such as 
heart attacks and strokes [42]. Frequently used risk calculators such as Framingham, 
SCORE (systematic coronary risk evaluation model), and Pooled Cohort all require 
invasive blood tests and pre-draw fasts.

The retina, which enables the only noninvasive approach to microvasculature 
visualization, is a promising source of information on a patient’s CV risk [42]. Ocular 
manifestations of CVDs include hypertensive retinopathy, cholesterol emboli and 
occlusions, flame hemorrhages, cotton-wool spots, and ischemic events. Prior work 
uncovered that retinal vasculature measurements (artery and vein diameters) in fun-
dus photos are associated with CVD outcomes. For example, CVD risk is higher in 
patients with narrower retinal arterioles and wider venules. For patients with diabe-
tes, predictive power increases when retinal imaging details are supplemented with 
additional measurements including established risk factors (blood pressure) and 
CRP level [42]. Furthermore, investigation has shown that retinal imaging improves 
stroke risk prediction beyond that of typical risk factors (age, sex, blood pressure, 
total cholesterol, LDL cholesterol, glycosylated hemoglobin (HbA1c), and antihy-
pertensive medication use) [43].

However, interpreting and evaluating retinal images is a tedious and time-
consuming task for clinicians, even with semiautomated software [19].

In a study by Verily, Google’s research organization, Poplin and colleagues have 
developed and validated a DL-based method that is able to predict multiple CV 
risk factors better than baseline solely based on retinal fundus images—these risk 
factors include age, gender, smoking status, systolic blood pressure, and body mass 
index [41, 44]. The model was trained using retinal fundus images from 48,101 
patients from the UK biobank study and 236,234 patients from the eyePACS (pic-
ture archive and communication system) population. The study also created an 
additional algorithm that predicted the onset of major adverse cardiovascular events 
(MACE) within 5 years using fundus photographs alone. MACE included unstable 
angina, myocardial infarction, or stroke or death from CV causes. The model per-
formed fairly accurately with an AUC of 0.70 (95% CI: 0.65, 0.74), especially when 
compared to the SCORE risk calculator’s AUC of 0.72 (0.67, 0.76).

The study also generated soft attention maps to understand the anatomical 
regions upon which the model was basing its predictions, and compared them to cli-
nician blinded assessment. In predicting age, smoking, and systolic blood pressure, 
the algorithm drew from blood vessel patterns. HbA1c predictions were primarily 
based on perivascular surroundings, and gender was predicted using optic disc, ves-
sels, and macula, with signal across the retina as well [41]. This technique already 
surpasses current physician abilities to distinguish gender, smoking status, blood 
pressure measurements from fundus photos.
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Despite significant progress and encouraging results, these DL methods must 
be clinically validated and trained on larger, more diverse datasets. Though retinal 
fundus imaging may be additive to current CV risk assessments, further exploration 
on whether it can also replace certain risk markers is needed.

9.6.2	 �Anemia

DL-powered systems can also be noninvasive screening tools for anemia based on 
retinal fundus imaging. Anemia is a widespread public health issue affecting mil-
lions and can be a symptom of a dangerous underlying condition. A DL model 
developed by Google uses a combination of images and patient demographic meta-
data (e.g., sex, age) to predict hemoglobin (Hb) concentration and anemia [45]. 
Notably, the system demonstrated that the fundus-only model was more accurate 
than metadata-only model for both hb and anemia predictions, though the combina-
tion model of both fundus photos and metadata yielded the most accurate results of 
the three. Specifically, compared to the metadata-only model, DL improved anemia 
detection by 14%.

Another research group validated Google’s model on an independent dataset 
from Asia (Google’s dataset was primarily Caucasian), suggesting the system’s 
generalizability [46].

However, anemia has a number of subtypes and diverse etiologies, making 
diagnosis and management challenging for AI-powered systems. While the model 
described above has not yet been able to predict subtype and/or etiology patho-
physiology from fundus images, that information could be vital if AI were to be a 
possible tool [45]. Furthermore, there is potential that these systems can develop to 
not only estimate Hb concentration, but also the levels of other elements in a tradi-
tional complete blood count (CBC) panel. Such a tool could potentially augment or 
replace standard blood tests, and would be invaluable.

9.6.3	 �Multiple Sclerosis

Multiple sclerosis (MS) is a neurodegenerative disorder marked by demyelination 
of the CNS, leading to progressive clinical disability. MS is characterized by areas 
of demyelination, loss of oligodendrocytes, astroglial scarring, and axonal injury. 
Diagnosis is based on the McDonald criteria which encompasses clinical attacks 
and objective evidence including brain and spinal cord MRIs and cerebrospinal 
fluid exams. While MS course and progression greatly vary, patients commonly first 
present with episodes of optic neuritis or vision loss and diplopia due to internuclear 
ophthalmoplegia.

Diagnosis  Recently, studies have found a correlation between MS and both axonal 
loss in the optic nerve and macular thickness loss and have thus begun investigating 
the use of retinal OCTs to supplement existing MS diagnostic processes [47, 48]. 
The retina is composed of retinal ganglion cells and their axons, which form the 
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retinal nerve fiber layer (RNFL). Based on OCT image captures, many studies have 
found and confirmed that patients with MS have thinner RNFLs compared to healthy 
controls, both with and without optic neuritis [49]. Furthermore, another study dem-
onstrated that in MS patients without optic neuritis, OCT-measured RNFL thickness 
was a marker for subsequent neurological disability in MS. [50] Specifically, 
patients with RNFL thicknesses <88 micrometers had twice the risk of worsened 
disability compared to those with thicker RNFLs.

Work on creating machine learning applications to improve MS diagnosis using 
retinal OCT images is well underway. Del Palomar and colleagues compared three 
different machine learning algorithms—decision trees, multilayer perceptron, and 
support vector machine—to evaluate the diagnostic value of RNFL and ganglion cell 
layer (GCL) thickness loss, as measured by SS-OCT. [47] The study found that the 
decision trees yielded the best prediction (97.4%) using RNFL data. Additionally, 
across the three machine learning techniques, RNFL thickness loss data was better 
in classifying MS or healthy compared to GCL thickness loss data.

Supporting this study, Cavaliere and colleagues demonstrated the efficacy of 
using support vector machine to detect MS in patients without a history of optic 
neuritis [49]. In the first stage of the study, the authors manually identified OCT fea-
tures with the greatest discriminant capacity to be used in the SVM. These features 
were global GCL thickness at the peripapillary area (which includes both RNFL 
and GCL), macular retina thickness in the nasal quadrant of the inner ring, and 
macular retinal thickness in the nasal quadrant of the outer ring. Subsequently, these 
selected features were used as inputs in the automatic classifier in the SVM. The 
diagnostic results from the SVM yielded a sensitivity of 0.89, specificity of 0.92, 
accuracy of 0.91, and AUC of 0.97.

While the McDonald’s criteria for MS diagnosis primarily relies on neuroimag-
ing and CSF exams, retinal degeneration and its easy visualization can be a future 
diagnostic tool as demonstrated by the studies described above. Additional studies 
further honing not only algorithmic accuracy and specificity but also specific mark-
ers within the retina are needed first.

Progression Monitoring  Monitoring and predicting MS course as well as evaluat-
ing response to therapy are crucial to providing appropriate interventions and 
disease-modifying therapies. However, validated specific biomarkers and objective 
tools are lacking. There is promise that machine learning, in addition to having 
diagnostic capabilities, also is able to predict course of disease, response to therapy, 
and improve understanding of MS progression.

A recent study based its focus on findings that a greater number of fixational 
microsaccades, small eye motions, are correlated with higher MS disability met-
rics [51]. Additionally, patients with MS had significantly larger vertical amplitude 
components and lower peak accelerations. Models predicting disability based on 
these features obtained greater than 80% accuracy. C. Light Technologies created 
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a retinal imaging instrument that tracks micro eye motions and when paired with 
its machine learning algorithm is able to provide insight into MS progression [52].

Another area of active AI development builds upon prior research suggesting that 
the retinal inner nuclear layer volume reflects severity of disease [53] and that moni-
toring this layer via OCT can be an effective form of evaluating immunotherapy 
response [54]. Knier et al. studied MS patients not on therapy, on first-line therapy, 
or on second-line therapy, and found that thinning of the inner nuclear layer and 
thickening of the macula were associated with reduced disease activity and better 
control of the disease [54].

Therefore, accurately quantifying the volume and thickness of the different reti-
nal layers is an important step to assess level of disease activity. Existing machine 
learning methods that automatically segment and measure retinal layers involve 
significant manual preprocessing for feature and parameter selection, a tedious and 
time-consuming process [55]. He and colleagues have developed a deep neural net-
work that bypasses manual feature and parameter selection and can fully segment 
3D retinal layers in only 10 s with accuracy levels comparable to existing segmenta-
tion methods [55].

Future Direction  AI has a twofold role in MS research—not only can it be used 
for its diagnostic and monitoring capabilities, but more importantly, it can shed 
insight into MS pathophysiology and course progression, areas that remain poorly 
understood.

9.6.4	 �Other Neurodegenerative Diseases

As seen in its role in multiple sclerosis, the retina is being explored as a barometer 
for other neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. 
Studies have explored various retinal biomarkers as tools to detect Alzheimer’s and 
Parkinson’s. RNFL thinning, macular volume and thickness, retinal vasculature 
parameters have all been linked to Alzheimer’s, though results have been inconsis-
tent [56].

Rather than focusing on retinal layers, one study built a machine learning-
enabled classification model that differentiated between patients with Alzheimer’s, 
Parkinson’s, and who are healthy based on retinal “texture” biomarkers [57]. Texture 
analysis is an emerging technique that enables quantification of signal changes that 
are not visible among existing image pixels [58]. This method has been increasingly 
used in neurodegenerative research due to its potential to detect changes earlier. 
Their study yielded a median sensitivity of 88.7%, 79.5%, and 77.8% for healthy 
controls, Alzheimer’s, and Parkinson’s, respectively.

Specifically focusing on Alzheimer’s disease, Optina Diagnostics explores the 
link between retinal vasculature and β-amyloid plaques. Using an AI-enabled hyper-
spectral retinal imaging platform, researchers discovered that retinal venules in 
patients with β-amyloid plaques in the brain have higher tortuosity than in patients 
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who are β-amyloid negative [59]. Furthermore, retinal texture analysis also revealed 
significant differences between these two cohorts. Optina Diagnostics seeks to pre-
dict cerebral β-amyloid status in patients with Alzheimer’s and further elucidate 
the relationship between the disease pathophysiology and clinical course [60]. 
Additionally, their platform recently received Breakthrough Device Designation 
from FDA, enabling an expedited pathway for device development, assessment, 
and review [61].

AlzEye is another initiative that has amassed over 2 million retinal photos and 
scans of 250,000 patients who developed Alzheimer’s disease and other forms of 
dementia in its efforts to explore retinal changes in these neurodegenerative diseases 
[62]. As incoming data continues to accumulate, this provides researchers with a 
tremendous source of information from which to investigate and validate specific 
markers of clinical significance.

The link between neurodegenerative disease and retina is an active line of 
research. Existing studies are based on small cohorts and limited data. These dis-
criminatory markers, while promising, remain vague and not specific—further 
exploration with larger datasets and clinical validation is needed.

9.7	 �AI in Telemedicine

Artificial intelligence applications in tele-ophthalmology have the power to trans-
form eye care delivery. Increasing access to care, cost savings for patients, provid-
ers, and payers, and reducing provider burden are just a few of many benefits that 
tele-ophthalmology brings. Three delivery methods have been described for tele-
ophthalmology services:

•	 Asynchronous: This “store and forward” technique captures clinical information 
(i.e., imaging scans) at one site and sends to another (i.e., ophthalmologist) for 
clinical assessment. This method is already commonly used for diabetic reti-
nopathy [63].

•	 Synchronous: This method features a real-time telemedicine interaction between 
patients and ophthalmologists via various communication channels (i.e., video 
chat, telephone call, smartphone application). Synchronous tele-ophthalmology 
services have been successfully implemented in many urgent care centers and 
emergency rooms, where immediate remote ophthalmic triage services are pro-
vided to centers that lack robust eye care services.

•	 Remote monitoring: This form of delivery enables providers to monitor 
patients at home or at a distance. Intraocular pressure (IOP) contact lenses, 
IOP home monitoring devices, IOP sensors, visual field devices, and age-
related macular degeneration (AMD) devices are examples of such devices 
that automatically transmit captured data to providers to augment clinical 
management [64].
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While the applications of AI described in the above sections largely focus on 
diagnostic and monitoring capabilities, AI uses actually permeate the entire health-
care continuum.

•	 Administrative workload: AI programs reduce administrative burden through 
smart scheduling, automatic invoice generators, patient follow-up, and insurance 
claim management [65]. A few German health insurers have implemented AI in 
claims management, and early estimates indicate that health insurers could save 
up EUR 500 million annually with this technology. Specifically, AI is able to 
systematically classify claims that are likely to be successful, and route those 
that may need to be manually reviewed, thereby optimizing staff capacity on 
only claims that require attention.

•	 Robotics and procedures: AI is implemented in many ophthalmic devices as 
guides for auto-alignment, focus, and data capture. Additionally, AI has enabled 
minimally invasive surgery and remote surgery and slit-lamp exams, options that 
will become increasingly commonplace as technology advances [63, 66]. 
Robotic tools such as co-manipulation devices, tele-manipulators, and steady 
hands are currently being developed [67]. For example, Preceyes surgical system 
achieved the first successful robot-assisted intraocular surgery [68]. Da Vinci 
surgical systems have also been used to perform pterygium repairs and corneal 
surgeries [67]. AI-guided robotics are particularly important in increasing access 
to care in underserved and remote communities.

•	 Diagnostics and screening: The interpretative and predictive capabilities of AI 
are well described. Integrating these skills for tele-diagnosis and detection 
greatly increases access to care, reduces unnecessary visits to ophthalmologists, 
and saves both money and time for patients, providers, and payors. Tele-
ophthalmology and AI already have demonstrated its benefit for diabetic reti-
nopathy and are being explored for glaucoma screening, AMD monitoring, 
abnormal cornea topography detection, and pediatric cataract screening, among 
others [63]. FDA-approved IDx-Dr the first provider-independent AI platform 
that reads and interprets fundus photos to assess for referable diabetic retinopa-
thy [69]. IDx-Dr surpassed predefined sensitivity and specificity levels during 
trial by achieving 87.2% sensitivity and 90.7% specificity [70]. This system is 
the first FDA-approved AI diagnostic system in all of medicine.

•	 Remote monitoring: As previously mentioned, remote monitoring is the next fron-
tier of tele-ophthalmology. AI programs can sort through large swathes of indi-
vidual patient information and assist providers with clinical decision-making.

The potential for AI in tele-ophthalmology is clear. The next step for the field is 
constructing a robust enough tele-image dataset, on which ML algorithms can be 
trained. Simultaneously, consumer technology and tele-ophthalmology technology 
must continue to advance to enable mass adoption. Once accomplished, AI will 
have an important role in managing patients in and out of the clinic.
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9.8	 �Limitations

Despite the tremendous potential that AI possesses in serving as powerful clinical 
tools, clinical implementation and widespread adoption still face tall barriers.

AI clinical applications are still in their nascence, with unstandardized pro-
cesses and limited peer-reviewed publications. Many of the studies described in 
this section trained and tested algorithms on datasets that were not systemati-
cally evaluated for quality and bias or clinically validated. Thus, standardizing 
processes for clinical AI applications is the next critical step [71]. A systematic 
approach to building and assessing robust training, testing, and external valida-
tion datasets must be established—data quality, sources, and aggregation meth-
ods have to be evaluated according to an accepted standard to ensure unbiased, 
generalizable, and accurate outputs. Additionally, as of yet, there are no existing 
means of determining clinical readiness of AI applications. Acceptable levels of 
accuracy, precision, and/or AUC that algorithms must achieve as well as potential 
risks and liabilities must be agreed upon. Furthermore, the clinical validation pro-
cess must be further elucidated.

Only with standardized processes, and perhaps regulatory oversight, that pro-
mote development of safe, inclusive, and accurate platforms, can AI gain a foothold 
in clinical management.

9.9	 �Conclusion

The utility and many capabilities of AI in ophthalmology are clear. The power to 
simplify and automate screening, diagnosis, and monitoring with comparable, if 
not improved, accuracy cannot be understated. AI is already reweaving the fabric of 
clinical practice in ocular oncology, pathology, pediatric ophthalmology, and tele-
ophthalmology. Researchers are discovering and confirming new links between the 
eye and the rest of the body, introducing a whole host of noninvasive techniques to 
assess a patient’s overall health.

Not only does AI revolutionize clinical practice, but it has also pushed research 
forward in areas that we otherwise would not have been able to reach with existing 
technology. Our understanding of disease processes, clinical manifestations, and 
treatment responses has accelerated due to AI-enabled processes.

Still, widespread AI implementation faces significant challenges in the future. 
To create programs that yield unbiased, reproducible, and accurate results, train-
ing and testing sets must be large, diverse, and clinically verified. Building these 
databases require time, collaboration, and patience. Additionally, provider hesita-
tion due to the “black box” nature of AI algorithms remains a real threat to wide-
spread adoption and implementation. Additional research and provider education 
are needed.
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10The Economics of Big Data

John Davis Akkara and Anju Kuriakose

10.1	 �Definitions

Most definitions related to artificial intelligence (AI) and machine learning (ML) 
are covered in the first chapter “The Terminology of AI.” Here we cover a few more 
definitions related to the economics of big data [1].

Big Data  Big data is a term, popularized by John Mashey, used to describe large 
datasets that are difficult to process using traditional database and software tech-
niques [2].

Data Analytics  Data analytics is defined as the science of analyzing raw data to 
make conclusions about that information. These techniques can reveal trends and 
metrics that would otherwise be lost in a sea of information [3].

Data Mining  Data mining is defined as the process of finding patterns in large data-
sets involving methods at the intersection of ML, statistics, and database systems [4].

Blockchain  Blockchain refers to a growing list of records linked using cryptogra-
phy via a peer-to-peer network. It works as an open, distributed ledger that can 
record transactions between two parties efficiently in a verifiable and permanent 
manner [5].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0634-2_10&domain=pdf
https://doi.org/10.1007/978-981-16-0634-2_10#DOI
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Structured and Unstructured Data  Structured data consists of clearly defined 
data types, usually in a relational database, which is easily searchable. For example, 
a patient detail’s database or sales transactions (Fig. 10.1). All other data is essen-
tially unstructured data. This may include text files, email, audio, images, video, 
social media, or websites. Analysis of structured data is much easier than unstruc-
tured data [6].

10.2	 �Introduction to Big Data

We are now in the age of information, the 4th Industrial Revolution (4IR). As the 
years progressed, we moved from a bottleneck at availability of information to a 
bottleneck at analyzing information. With globalization and digitization, the amount 
of easily available information increased, that it greatly outstripped our capacity to 
analyze by conventional methods. While big data usually refers to huge volumes of 
data, that is not the complete picture, often it refers to the advanced technologies 
used to analyze these massive datasets. Although big data and ML seem compli-
cated, they are closely related to the traditional statistical models used for all data 
analysis [7].

10.2.1	 �Seven Dimensions of Big Data

Data scientists describe big data in three, four, or sometimes seven dimensions: 
Volume, Velocity, Variety, Veracity, Variability, Visualization, and Value (Fig. 10.2) 
[8]. Volume, Variety, and Velocity were the original three dimensions suggested by 
Laney, while the others were added by IBM, SAS, and Oracle [9]. Volume refers to 
the amount of data, measured in Petabytes, Zettabytes, or even Yottabytes. Velocity 
is the speed at which data is accessible. Variety refers to the unstructured nature of 
the various types of data. Variability refers to the changing nature of the data. 
Veracity is about the accuracy of the data. Visualization refers to charts and graphs 
to help visualize the complex data. Value is the benefit derived from the analysis of 
the data.
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10.2.2	 �How Big Is Big Data?

There is no universal definition on a minimum size for big data in terms of numbers 
or storage space. Keep in mind that today’s big data may be tomorrow’s small data. 
One way to define big data is that it consists of large amount of data distributed over 
multiple systems. Another way to look at it is, data that requires advanced analytical 
tools for processing in a reasonable amount of time. The seven dimensions of big 
data provide a good guide to recognizing it.

10.2.3	 �Big Data, Small Metadata

Metadata is data that describes other data. It can be keywords that helps to organize 
big data. There can be descriptive, structural, and administrative metadata. 
Descriptive metadata gives information about who created a resource, what it is 
about, and what it includes. Structural metadata gives information about how the 
data is organized and the structure they are in. Administrative metadata gives infor-
mation about the origin of resources, their type and access rights.

10.2.4	 �Information Economics and Economics of Big Data

Information economics is the study of how information and information systems 
affect an economy and economic decisions [10]. Big data extends our understand-
ing of the value of information. Thus, the economics of big data is a natural exten-
sion of information economics. As the economics of information suggests, the 
monetary value of information must be presented in such a way as to create an 
opportunity. As such, big data is not free since much investment is needed to search 
and analyze it for risk assessment. Thus, it is important to consider the different 
qualities and costs in collecting, analyzing, and applying the data [11, 12].

Volume

Velocity

Variety

VariabilityVeracity

Visualization

Value

Fig. 10.2  Seven 
dimensions of big data
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10.3	 �Getting Started with Big Data

Big data is not the same for everyone. Especially in healthcare, the data, the required 
analytics, and the entire strategy would be different. To understand the need for big 
data in a particular business, there are a few questions to help guide the strategy.

10.3.1	 �What Data Is Needed?

Medical records are valuable treasure troves of information. Numerical data of 
parameters like visual acuity, refraction, intraocular pressure, corneal thickness, 
and ocular biometry are much easier to analyze. This consists of mostly structured 
data. Big data techniques and machine learning will be useful to analyze unstruc-
tured data from medical records and from investigations such as fundus photo-
graphs, optical coherence tomography, and fluorescein angiography. Techniques 
such as natural language processing can derive meaning from unstructured 
data [13].

10.3.2	 �Where Do You Get the Data?

Most major hospitals and research institutions now use streamlined Electronic 
Medical Record (EMR) systems. In most EMRs, the relevant information can be 
exported from the system in a usable format. With the proper permissions, this data, 
along with the investigations, can be used for big data analysis or ML [14].

10.3.3	 �What Can You Do with the Data?

Using big data analytics and ML, one can get insights into various diseases, their 
diagnostic criteria, and the efficacy of their treatment. One may also gain insights 
into the relation between several parameters which may otherwise not seem related. 
Studies that require large number of subjects can easily be conducted using the 
power of big data.

10.3.4	 �Who Maintains Ownership of the Data?

Depending on the laws, in most places the institute maintains ownership of the data 
while respecting the privacy of the patients. Only with a clear consent can the data 
be used by another agency for data analysis and anonymity of data has to be 
maintained.
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10.3.5	 �Can you Trust the Data and its Source?

The veracity of the data depends on the source. In many cases, it is noted that data 
is often incomplete or entered incorrectly, sometimes duplicated or even conflicting. 
Errors can also be due to incorrect technique, outliers, or mistakes in the investiga-
tions. Care has to be taken from the point of data entry to make sure the data is 
trustworthy and that incorrect information is removed during data cleaning.

10.4	 �Best Use Practices

Big data generates very powerful information and has to be handled with care. It is 
essential to follow appropriate best practices for the collection, storage, and use of 
this data. In addition to the validity and veracity of the information, the unauthor-
ized use of big data can lead to false conclusions and breach of privacy. Medical 
data is very private and improper handling can lead to disastrous consequences [15].

10.4.1	 �Electronic Health Records (EHR)

Patient medical records were on paper charts in the past and that is still the case in 
many places. The rapid progression of technology has enabled the use of electronic 
medical records which have been widely adopted in most of the developed countries 
and adopted by some in the developing countries.

Paper records were very limited in accessibility, available to only one person at a 
time for updating or viewing. Manual updating of these records took time, in addi-
tion to the delays in searching for and finding the appropriate record. Storing the 
paper medical records was often done in large dusty basements of the hospitals due 
to the large volume of space required and the combined weight of the records. It was 
very difficult to search for a particular record, and losing old records was common. 
Security was also limited to locks, doors, and personnel in charge. There was no 
automatic alert for unauthorized viewing or editing of information, or even docu-
mentation of what information was viewed or altered by whom.

A good EHR or EMR system obviates most of these shortcoming of paper medi-
cal records. In addition, it allows the creation of structured data by design. This 
helps in easier analytics of the data to obtain useful information. The four major 
ethical priorities for EMRs are: privacy/confidentiality, security, data integrity, and 
availability [16, 17].

10.4.2	 �Telemedicine

Telemedicine has been playing a minor role in medicine for over 40 years, but with 
the rapid progress and availability of technology, it has come into the mainstream. 
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It refers to remote delivery of diagnostics and clinical advice using technology. With 
excellent cameras and fast internet connections, the doctor–patient interaction has 
become much smoother. The integration of a good EMR allows quick and accurate 
documentation. A lot of data will be generated with telemedicine interactions which 
can be analyzed for useful results [18]. In addition to a videoconferencing camera, 
various devices in the medical Internet of Things (mIoT) can be used to measure 
patient vitals or image things like the cornea or retina [19].

10.4.3	 �Data Collection

Data collection plays a very important role in the big data cycle. Traditionally, struc-
tured data is considered more valuable than unstructured data. During the process of 
data collection, it is prudent to ensure that useful information is correctly tagged and 
collected in a relational database with data validation measures in place. This would 
reduce errors and improve data quality, making it much easier for data cleaning 
processes.

10.4.4	 �Big Data Storage

The amount of data being gathered is rapidly increasing, and it is coming from het-
erogeneous devices in various formats. Complex data such as those generated by 
web resources are unstructured by nature. The increase in the volume of unstruc-
tured data makes traditional relational databases unsuitable for storage. Big data 
requires a scalable, reliable, and efficient storage system [20]. To meet the needs of 
big data, NoSQL (not only Structured Query Language) databases have been 
adopted as the technology solution. Unlike traditional relational databases, NoSQL 
databases support large number of users, consistency, fault tolerance, scalability, 
availability, and secondary indexing [21].

10.4.5	 �Cloud Computing

Cloud computing is a powerful technology to perform massive-scale and complex 
computing. Big data analysis requires a lot of computing power, which can be pro-
vided by cloud computing at the best cost. There is no need to maintain expensive 
computing hardware, software, and space in cloud computing [22]. Some of the 
cloud computing programming frameworks are Apache Hadoop, Spark, Storm, 
Ceph, Hydra, and Google BigQuery. One of the most popular is Apache Hadoop, 
which provides a framework of open-source software for distributed storage and 
processing of big data using the MapReduce programming model. They were 
designed for computer clusters built from commodity hardware and with an 
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assumption that hardware failures are common and should be automatically handled 
by the network [23]. Cloud computing allows practically unlimited and on-demand 
processing power [24].

10.5	 �Big Data in Today’s World

With the amount of technology all around us, we are constantly generating a lot of 
data which can be analyzed. Traditionally, smaller amounts of data could be easily 
analyzed using statistical methods to derive useful information. Monetization or 
extracting the value from data can be done with the right technique so that the ben-
efit is clearly more than the cost of analyzing the data. In the past, there was always 
a shortage of data, so most data analysis techniques would work well for most appli-
cations. But with the information overload of the present times, several newer data 
analysis techniques were developed. Large and complex datasets would require 
modern analytical methods including machine learning. Slowly, but surely, medical 
record data is going online. Multiple e-health initiatives including Google Health 
store data in the cloud, which makes application of big data much easier [25].

10.5.1	 �Big Data in Machine Learning

Machine learning is a field of AI in which computers learn without being explicitly 
programmed. Big data and ML are independent concepts with a weak link between 
them. We can apply ML on big data, as ML requires large datasets to learn better 
(Fig. 10.3). Many big data analytics techniques can be used in machine learning.

Artificial Intelligence

Machine Learning

Deep Learning Data ScienceBig Data

Fig. 10.3  Relation between artificial intelligence, machine learning, data science, and big data
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Their common goal is learning from data, where big data focuses on handling the 
large volumes of data, and machine learning focuses on developing algorithms from 
the data. The availability of big data tools has helped rapid growth of ML and AI.

10.5.2	 �Big Data and Machine Learning in Healthcare

Healthcare has always been generating a lot of useful data and this has been the 
basis for symptoms, signs, diagnostics, and treatment. With advancement in tech-
nology, it has become easier to collect, store, and analyze this information leading 
to a much faster pace of medical development. This is in addition to the data about 
patient flow and appointments which are useful in their own way [26].

Several branches of the medical field have started using ML in a big way. 
Ophthalmology, radiology, dermatology, pathology, pediatrics, gynecology, oncol-
ogy, endocrinology, and cardiology are some of the major ones [27].

10.5.3	 �Big Data in Ophthalmology

Ophthalmology uses a lot of technology and this generates a lot of data. A lot of 
information gathered from the EMRs starting from the patient information and his-
tory can be useful for analysis. Visual acuity, refraction, intraocular pressure, cor-
neal thickness, and similar numerical data can be easily analyzed. There is a lot of 
imaging including slit-lamp imaging, fundus imaging, fluorescein angiography, 
optical coherence tomography which are well suited for image analysis and machine 
learning algorithms [28].

ML has been successfully used in detection of diabetic retinopathy, glaucoma, 
age-related macular degeneration, retinopathy of prematurity, retinal vascular 
occlusions, keratoconus, cataract, refractive errors, retinal detachment, squint, and 
ocular cancers. It is also useful for intraocular lens power calculation, planning 
squint surgeries, and planning intravitreal anti-vascular endothelial growth factor 
(anti-VEGF) injections. Surprisingly, analysis of fundus photographs and optical 
coherence tomography of the eye can even detect cognitive impairment, dementia, 
Alzheimer’s disease, and stroke risk [27]. The use of big data and ML in ophthal-
mology is extensively covered in the other chapters of this book.

With major health institutions adopting EHRs, hundreds of thousands of medical 
records can easily be analyzed to study the relationship between risk factors and 
disease, refractive error and glaucoma, for example [14]. This type of analysis 
allows study of obscure associations which would have been missed in smaller stud-
ies. The scale of these studies is unimaginable to someone without access to big data 
analytics. Another study used the American Academy of Ophthalmology Intelligent 
Research in Sight (IRIS) Registry and the Medicare claims files to study the risk of 
rare events such as endophthalmitis after cataract surgery [29]. Similarly, the rarity 
of neuro-ophthalmic diseases makes it especially amenable to big data analysis 
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[30]. In addition to the rarity, the complex interconnected associations of various 
systemic factors make uveitis another area of ophthalmology that greatly benefits 
from big data analytics [31].

10.6	 �Big Data Security

With the large amount of data spread across many servers and the power of informa-
tion, security of the data is a very important issue. Unlike tangible assets, big data 
cannot be physically locked up in one place. Modern data security measures have to 
be used to encrypt and secure the data to prevent misuse of data from data leaks or 
hacking, while still being accessible to analytics. Health records are even more 
important with regard to privacy issues. There are strict rules regarding the handling 
of medical records and other patient information.

10.6.1	 �Misuse of Data

There are rules regarding the proper protocols and permissions in handling the data, 
and this has to be followed. It is necessary to ensure that the proper consent for big 
data analysis is included in the informed consent from the patients and anonymiza-
tion of data may be required before analysis.

10.6.2	 �Data Leaks

If the data is not secured properly, there is the possibility of it reaching the hands of 
unauthorized users. This would violate the rules of data security. Carelessness in 
handling of data and passwords leads to unwanted data leaks.

10.6.3	 �Hacking of Data

In spite of adequate data security, hackers may exploit some weakness in the secu-
rity, or often use social engineering, to gain illegal access to data. If the data is valu-
able, there is a higher risk of unwanted attempts to infiltrate the data. This has to be 
constantly monitored and guarded against.

10.6.4	 �Encryption

Data has to be encrypted with the optimal level of security. It should not be unen-
crypted except during analysis. Passwords and encryption keys should be handled 
safely and used only by trusted personnel.
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10.6.5	 �Blockchain

Blockchain is a cryptographically secure distributed database technology for storing 
and transmitting information. It focuses on data integrity and validation. Blockchain 
and big data complement each other, especially to improve the security and quality 
of the data. Blockchain-generated big data is secure, as it cannot be forged due to 
the network architecture. Blockchain-based big data is valuable, meaning it is struc-
tured, abundant, and complete, making it a perfect source for further analysis. For 
example, if hospital records are stored on a blockchain over a network, it eliminates 
the risk of data being corrupt or lost.

10.6.6	 �Privacy

Medical records consist of private information from patients and it is very essential 
to maintain that privacy. There are several laws that govern the privacy of this data 
and that have to be heeded. There are costs and benefits to personal information—
for the subject, for the data holder, and for society as a whole [32].

10.6.7	 �False Conclusions

Data analytics may not always provide the right answer. When the information 
derived is used in healthcare, there are more repercussions in case of false conclu-
sions. We should use big data and ML with caution to augment our judgment but not 
to replace it [33].

10.7	 �Big Data in India Versus the West

In a vast country like India, there is a wide disparity in the access and importance 
given to technology. The wide adoption of EMRs in the west allows medical record 
data to be more easily collected for analysis in spite of interoperability issue between 
the various EMR systems. The easy access to technology allows easier collection, 
storage, analysis, and dissemination of data. In India, much of the medical record 
data is in paper records while only a small percentage is electronic and an even 
smaller percentage is on the cloud. There is definitely the scope for a national-level 
EMR system at an affordable cost and assured security that can allow the implemen-
tation of big data and ML algorithms.

10.8	 �Future Trends

Data science is definitely an essential part of the future. Large amounts of data that 
are currently not utilized will be analyzed to yield useful information. As technol-
ogy advances, the hardware required to process big data will become less expensive 

J. D. Akkara and A. Kuriakose



143

and accessible to all levels of business including small private healthcare. The sci-
ence of big data would also be understood better, and newer algorithms and methods 
would be easily available in an open-source format. With a large number of smart 
young engineers working on these technologies, it is inevitable that big data and ML 
become a routine part of all business strategies.

10.9	 �Conclusion

There is no doubt that information is power in the new world. The volume of data 
generated will keep increasing every day with modern technology. By leveraging 
this data using modern information tools, we can derive useful insights and utilize 
this for progress.
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11Ethics and Artificial Intelligence: 
The Pandora’s Box

Parul Ichhpujani and Sahil Thakur

11.1	 �Introduction

Artificial intelligence (AI) has made tremendous contributions to delivery of health-
care, biomedical research and even medical education. AI applications extend to 
physical task support systems, robotic prostheses and mobile manipulators assisting 
in telemedicine. AI can learn and integrate information from large clinical datasets, 
and therefore can help in diagnosis and decision-making.

Although AI has proven to be very useful, it has several associated ethical chal-
lenges that must be identified and addressed. AI technology runs the risk of compro-
mising patient preference, safety and privacy. Current policy and ethical guidelines 
for AI technology are still a grey zone [1]. There are no clear-cut guidelines about 
what constitutes ‘ethical AI’ and which ethical requirements and technical stan-
dards are needed.

AI applications and algorithms are programmed/coded by the computer engi-
neers building the systems and this human element can introduce errors that may 
result in unforeseen outcomes.

AI and big data threaten the basic human right of privacy, as machine learning 
gathers and stores data from several sources. In order to establish trust between 
systems and the end-users, private data must be protected and any potential for 
biases eliminated. To ensure safe implementation of these systems, algorithmic pro-
cedures would be needed.
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When we talk of ethics in relation to AI, we are actually looking at two concerns: 
first is the concern with the moral behaviour of humans when they design, manufac-
ture and use an artificially intelligent systems, and second one is the behaviour of 
machines [2].

11.2	 �Key Ethical Principles

Ethical principles that concern the patient care and treatment comprise non-
maleficence, beneficence, respect for patient autonomy and justice [3].

11.2.1	 �Beneficence and Non-maleficence

Primum non nocere (First, do no harm) is the primary moral obligation of a doctor. 
However, this not only includes the medical aspect but also the overall quality of life 
of the patients. Doctors have to maintain the well-being of their patients while 
respecting the desires and values of every patient.

11.2.2	 �Respect for Autonomy

Merriam Webster dictionary defines Autonomy as “quality or state of being 
self-governing”.

In relation to AI, the concept of autonomy applies majorly to ‘brain–computer 
interfaces’ (BCI) or a ‘neural control interface’ (NCI), which involve direct com-
munication between enhanced or wired brain and external devices, wherein brain 
signals are converted into commands for output devices. BCIs are commonly used 
as assistive devices by patients disabled due to neuromuscular disorders such as 
stroke, cerebral palsy or a spinal injury.

The ultimate goal is to have practical and effective BCI models. Long-term stud-
ies are needed for validating real-world use of BCIs by people with severe disabili-
ties. Day-to-day reliability of BCI performance must be monitored and fallacies 
corrected so as to approach similar reliability to natural muscle-based function.

11.2.3	 �Justice

Both the development and distribution processes of AI are associated with justice-
related issues. According to the justice principle, doctors can suggest therapeutic 
options that benefit their patients’ interests without subjecting them to unwarranted 
risk. As more and more BCIs are now available for end-users, it is imperative for the 
intended individual/patient to give an informed consent as regards knowledge of the 
design process of the device and the conflicting requirements. The ethical concern 
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here stems from the fact that the available literature on BCI treats ‘disability’ as a 
medical issue rather than a social one, and therefore the perspective of individuals 
with disability is likely to be ignored.

AI systems are likely to replace human beings in some sectors and positions, 
which can adversely affect the human dignity especially jobs where ethical practice 
is pivotal such as doctors, nurses, judges and police officers. Therefore, extreme 
caution needs to be exercised when formulating an AI-based system for such 
streams. Self-improving AI systems can become so assertive than humans may 
encounter barriers in realising their intentions, which may lead to undesirable 
consequences.

11.3	 �The ‘Black-Box’ Problem: AI’s Conundrum

The unknowable reasoning of ‘black-box’ AI, also known as opacity, stems from 
deep neural networks. When provided with input data, for example, such as a fun-
dus image, a neural network trained on a large dataset can find a complex underly-
ing pattern in the data and produce an output, such as a retinopathy classification, 
but is incapable of explaining how it led to the conclusive output. Additionally, 
since the neural network learns in ways similar to the human brain through self-
teaching, when given additional data, the neural network modifies its decision-
making process for a more accurate output, again without any explanation of how it 
accomplished the end. As the deep neural networks become increasingly autono-
mous with each update, the algorithms by which the technology operates become 
less intelligible to both the primary developers and end-users.

In case of any possible medical malpractice resulting from such technology, this 
opacity can lead to possible legal issues.

Legal doctrines of tort liability are not sufficient to handle medical malpractice 
resulting from the use of black-box AI. Modifications are needed to traditional tort 
law to address AI systems involved in medical malpractice.

11.3.1	 �Possible Legal Solution: AI Personhood

If an artificially intelligent machine is conferred ‘personhood’ and the machine is 
considered as an independent ‘person’ under the law then that resolves the questions 
that are important for analysis of vicarious liability, as the machine will be viewed 
as the ‘principal’ [4]. The AI machine will have duties and responsibilities of its 
own and will then be liable to be sued directly for any negligence claims.

For this, the AI system needs to be insured akin to a doctor’s medical malpractice 
insurance so the claims will be paid out from the insurance. In that scenario, the AI 
system will be considered a quasi-juridical person and treated like any other physi-
cian. The users of the AI technology will be encouraged to bear some cost of the AI 
technology being used and fund such insurance; leading to a different form of cost-
spreading that promotes fairness, as it extends beyond the technology’s creators.
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11.3.2	 �Common Enterprise Liability

The common enterprise theory of liability suggests that instead of assigning fault to 
an individual or entity such as an AI system, all individuals/groups involved in the 
use and implementation of the AI system should jointly bear some responsibility 
[4]. Since black-box nature of AI will make it impossible to find fault in an AI sys-
tem, inference of liability shared among all relevant parties is a good way to resolve 
legal issues.

11.3.3	 �Modify the Standard of Care

Modification of the standard of care and duties of healthcare professionals using 
black-box AI is another solution. Healthcare professionals will need to exercise due 
care in procedural evaluation, implementation of black-box algorithms and valida-
tion of the algorithmic results [5]. Under this model, the onus will be on healthcare 
professionals for harm if they fail in adequate measures in properly evaluating the 
black-box AI technologies used for patient care.

Medical staff should be trained to supervise and critically evaluate AI systems 
and discuss the characteristics of AI such as potential errors with patients. An AI 
system needs to be built on public trust to achieve a desirable societal goal that AI 
benefits everyone.

Therefore, all individuals must also be educated regarding the basic expectations 
from AI to better understand the merits and demerits of AI-based health guidance.

11.4	 �Automation Bias

AI-based clinical decision support systems (CDSS) benefit the clinical decision-
making process but possibly suffer from automation bias (AB). AB refers to com-
placency that sets in when a job once done by a healthcare professional is transferred 
to an AI program [6]. An automated AI program with virtually 100% success rate is 
ethically as well as clinically acceptable. But if the success rate of an AI program is 
lower than 100%, then it is important that the program has quality input.

For example, if we compare spotting of breast cancer cells by a pathologist ver-
sus an AI program, and if a female patient with cancer is missed by the AI program, 
then the point would be whether the AI program ‘learned’ from a cross section of 
female patients of diverse ages and races. Therefore, most ethically and clinically 
accurate diagnosis can be achieved when human diagnostician’s knowledge and 
skill is augmented by AI program with diversity of input. One must consider the fact 
that the AI program is likely to make different mistakes than humans; thus, combin-
ing both methods would yield the most precise diagnosis.

Automation bias can be reduced by the design of an automated system, such as 
reducing the prominence of the display, simplifying displayed information or 
couching automated assistance as supportive information rather than as directives.
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11.5	 �Data Privacy

The age-old adage, ‘Garbage in, Garbage Out’, befits the data for AI too. But the 
question arises who is the rightful owner of the data; the patient (the source), the 
system (the aggregator) or the developer (the analyst of the raw data)?

Patients are not aware of how their demographic and disease-related information 
has been diced and spliced. When patients are informed about the option that their 
data would be used for research, very few opt out. Therefore, for maintaining the 
doctor–patient confidentiality when an AI system is going to use such data, it is the 
moral duty of the doctor to tell the patient about all possible ramifications of the data.

Fully informed consent and anonymity may be challenging to achieve. The vast 
size of the training datasets for AI algorithms for medical use makes consent an 
impractical concept to apply—it may be impossible to get specific informed consent 
from each and every patient whose data is in a particular training dataset. Although 
retrospective, historical data can be used in an anonymised manner for research 
without seeking specific consent from the individuals concerned, but there are no 
ethical guidelines for data that is collected prospectively for AI development. In the 
world of big data and AI, it is important that there are data protection laws in place 
that adequately protects the privacy of individuals. Data protection regulations in 
many countries suggest that companies should be able to alter or delete personal 
data on request, but no guidelines suggest what to do if the request is made after the 
data has been incorporated into an AI algorithm.

Another issue arises when an AI algorithm is only analysing data of small 
cohorts, for example when rare or orphan diseases are being considered, then the 
risk of identifying individual patients increases. No clear consensus exists about the 
fact whether the value of data about an individual’s health is more important than an 
individual’s right to withhold consent for its use for the good of all.

Non-medical researchers need to be apprised of the key principles of ethical 
medical research, including transparency, maintenance of confidentiality and mini-
mising adverse effects.

11.6	 �Bypassing the Physician

A balance is needed between innovation and effective regulation. There is a plethora 
of AI health apps and chatbots, ranging from diet and exercise guides, health assess-
ment tools and those that help to improve medication compliance and analysis of an 
individual’s bodily parameters collected via wearable sensors. Such products that 
provide autonomous diagnosis and possible management options do not have a 
‘licence to practice’ or are approved by any regulatory body [7]. Since a ‘user agree-
ment’ is not the same as ‘informed consent’, there is a valid concern as regards 
indemnity. Some patients are likely to be at particular risk from ‘bad advice’ from 
digitised systems such as the psychiatric patients, and younger and elderly individu-
als. Eventually, it would be the clinicians who will have to deal with the aftermath 
of bad advice from an AI system.
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Who decides which AI systems to watch closely? AI programs are dynamic but 
the current regulatory environment approves or disapproves people, medicines, 
devices, procedures or institutions in a static context [8]. Moreover, frequent updates 
of the software make it even more difficult for individuals to follow what terms of 
service they have agreed to.

11.7	 �Cybersecurity

Cybersecurity must also be considered when addressing legal challenges to the use 
of AI in healthcare. Most of the future healthcare-related services and products will 
operate using the Internet of Things (IoT), but the underlying infrastructure of IoT 
is vulnerable to cyberthreats. Health sector has several possible targets such as 
wearables, wireless smart pills, hospital servers, diagnostic tools and medical 
devices. These can be infected with software viruses, Trojan horses or worms that 
can compromise patients’ privacy. Such infected algorithms or corrupted data can 
result in incorrect treatment recommendations. Therefore, an internationally 
enforceable, large-scale regulatory body for cybersecurity that ensures a high level 
of cybersecurity and resilience across nations is needed.

Currently, many new guidelines on appropriate use of AI are being issued by 
both governmental and professional institutions, but these need to be unified under 
universally accepted rules and limitations.
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