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Abstract

With the rise of computational methods in medicine, there has been several important

breakthroughs. Virtual screening, molecular docking and molecular dynamics simu-

lations have revolutionized the field of drug design over the decades. More recently,

artificial intelligence has also had major contributions to drug design. However, the

problem of computational chemistry is a combinatorial one: molecular function is non-

linear and combinatorial in nature. Finding a relationship between chemical space and

functional space has been quite challenging. Fortunately, deep reinforcement learning

provides some hope in approaching this problem. Earlier work named MOLDQN has

used a discrete deterministic approach to modeling molecules from scratch, this thesis

aims to use a more generalized probabilistic approach. This thesis uses the Actor-Critic

formulation in reinforcement learning to explore the chemical space in terms of the

quantitative estimate of drug-likeness (QED), Tanimoto index, and a newly designed

diversity score which penalizes highly similar molecules. Results from the algorithm

show that the system can learn to model chemical bonds better than earlier work, how-

ever the system cannot model aromatic rings accurately. This may perhaps be because

of the three-dimensional nature of resonance structures not captured with the Morgan

fingerprint which the algorithm uses.

Keywords: Reinforcement learning, Actor Critic, Q-function approximation, molecular

optimization, Gleevec, Imatinib, tyrosine kinases

iv



Acknowledgments

I want to thank Dr. Muhammad Tariq Saeed for his supervision. He has been founda-

tional not only in academia but also in industry. I would also like to thank Dr. Ishrat

Jabeen for being a guide at every step.

v



Contents

1 Introduction 1

1.1 Advent of Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Artificial Intelligence and sub-branches . . . . . . . . . . . . . . . 1

1.2 Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Computational methods in drug design . . . . . . . . . . . . . . 8

1.3 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Review 12

2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 A brief touch to computational drug design . . . . . . . . . . . . . . . . 15

2.3 What can RL do for us? . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 RL in drug design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Materials & Methods 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Formulae in RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 MOLDQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 MOLPPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Things to note in PPO . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



Contents

3.4.2 Neural Architectures in MOLPPO . . . . . . . . . . . . . . . . . 24

4 Results 28

4.1 Optimizing a molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Understanding functional gorups within a molecule . . . . . . . . . . . . 30

4.3 Evaluating the q-value versus returns . . . . . . . . . . . . . . . . . . . . 31

5 Discussion 35

6 Conclusion 37

References 39

vii



List of Figures

1.1 Sunlight versus surface temperature of the earth plotted as a linear rela-

tionship. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Family tree of RL algorithms. Model-based algorithms require specifica-

tions on the rules of the environment. Each action has rules associated

with it, whereas model-free algorithms do not require rule specifications.

Model-based algorithm endeavor to learn the model or produce the model.

On the other hand, the counterpart tries to learn the value functions of

optimal actions (Q-learning) or optimal actions (policy optimization).

This thesis takes the DQN approach and translates it to PPO, a policy

gradient method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 An RL setting has an agent that acts, an environment the agent resides

in, actions taken produce rewards and move the agent to a new state. The

agent learns by storing these states and converging to a set of actions that

produce optimal reward. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Workflow of the Q-learning network in the AlphaGo paper. Steps include,

generate action, feed into policy and value networks and evaluate the

goodness of the actions until convergence. . . . . . . . . . . . . . . . . . 7

1.5 Three-dimensional visualization of binding of the Gleevec molecule to

BCR-ABL complex in the UCSF Chimera software package [1]. A shows

the binding of the protein the hinge region and P-loop of the complex,

selectively inhibiting it from binding to ATP molecules driving down ab-

normal cellular growth in tumours. B and C show different angles of the

protein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

viii



List of Figures

1.6 Schematic diagram shows the role of BCR-ABL complex in regulating

downstream proteins. It is a prime activator of SHP-1, a tyrosine phos-

phatase protein involved in cell signalling cascade processing. Over-

expression of the BCR-ABL complex leads to further activaiotn of SHP-1

which subsequently over-stimulates other proteins in the cell signalling

cycle to drive tumourogenesis. . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Fifth game between Lee Sedol and AlphaGo. White is AlphaGo, black is

Lee. White won by resignation [2]. . . . . . . . . . . . . . . . . . . . . . 14

2.2 Workflow for the AlphaZero system. [3] . . . . . . . . . . . . . . . . . . 15

2.3 Ligand interaction map of Gleevec with Abl tyrosine kinase. Interaction

map shows the hydrophobic structure of the Gleevec molecule residing in

an iverse V-shaped conformation with the hydrophilic groups interacting

with the histidine component of the Abl protein, while the hydrophobic

chains interacting with isoleucine and pehnylalanine. [4] . . . . . . . . . 16

2.4 Neural architecture for optimization of molecules using deep reinforce-

ment learning targeted for crossing the blood brain barrier. Importantly,

the architecture is deep with many layers unusual for deep reinforcement

learning tasks [5]. Deep reinforcement learning nueornal layers tend to be

shallow for reasons for backpropagation. The gardients may not be able

to reach the initial layers costing learning problems [6]. . . . . . . . . . . 18

3.1 Generalized workflow of MOLPPO. A molecule was featurized in the form

of a tensor in an Open AI baselines [7] platform and passed through a

neural network called the policy network. The molecule in question was

then modified by either bond addition or removal and was passed through

a second neural network called Critic. The Critic evaluates actions made

by the policy network. And a reward was calculated as a result of the

modification in the molecular structure. This generation of new bonds

and evaluation continued until convergence. . . . . . . . . . . . . . . . . 20

3.2 Workflow for MOLPPO . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Neural architecture e for MOLPPO. . . . . . . . . . . . . . . . . . . . . 25

ix



List of Figures

4.1 Loss and reward function logged across 6 million iterations. The

highly jagged nature of graphs is normal when it comes to algorithms

like Actor-Critic and DQN systems. This is because here, the algorithm

also explores the molecular space as time goes on despite the total reward

increasing over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 One of the initial molecules produced by the optimizer. The

strange bonding can be noticed in the upper right. Through each cycle

the RL agent learns to build molecules that law the laws of chemistry.

The nitrogenin the center of the ring is making bonds with resonance

carbon ring while a "shadow" aliphatic ring sticks out of the carbon and

nitrogen on the upper right. . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Best molecular as predicted by the RL optimizer algorithm

based on Gleevec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Functional groups indicated by the RL system to be important.

While building scaffolds of the Gleevec molecule, enlisted are some of the

functional groups deemed highest by the reward function.The two on the

top had the highest values. But as can be noted both are structurally

unstable entities. Oxygen having an alcohol group is not prevalent in

nature. Sulfur in a ring is a ring with ntirogens is also rare. More im-

portantly, the adenine ring was also foud to be important. Of note is the

fact that functional groups are a function of the 3-dimensional structure

of the proteins these molecules bind and not necessarily an innate prop-

erty of the molecules themselves. Nevertheless, a pattern can be drawn

for scaffolds on the kinds of functional groups that increase their QED

scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

x



List of Figures

4.5 Reward and loss graphs for constructing the Gleevec molecule.

Taking Gleevec as target, the RL system generates molecules that have

similarity to the Gleevec molecule to understand the different moieties im-

porant to the structure. What can be seen is that despite the haphazard

shape of the rewawrd graph, it is still going up with intense exploration.

On the other hand, loss is also increasing meaning that the algorithm is

far from modeling the environment accurately. Run over 400,000 cycles,

the algorithm needs to run more to reduce its loss/TD error. . . . . . . 33

4.6 Q-value versus reward for molecules. A. No starting molecule is

given as input. The q-function (y-axis) is fairly correlated with the returns

(x-axis). B. Q-function versus returns for the Penicillin G molecule. Even

for higher q-values, the returns remain low. This indicates that the system

still has to model the chemical space. C. Q-values versus returns for

the Gleevec molecule, the exploration space becomes sparser with only

a handful with higher value and return relationship. This graph can be

thought of as the mode’s understanding of the chemical space and the

return it gets from trying new actions. With more complex molecules,

the value-return relationship should also cluster around some mean value. 34

xi



List of Tables

1.1 Reinforcement learning basic components . . . . . . . . . . . . . . . . . 5

3.1 Libraries used in MOLPPO . . . . . . . . . . . . . . . . . . . . . . . . . 19

xii



List of Abbreviations and

Symbols

Abbreviations

Π Policy

ϵ A constant used in exploration of actions

DQN Deep Q-Network

PPO Proximal Policy Optimization

RL Reinforcement Learning

Q Q function

V Value function

xiii



Chapter 1

Introduction

1.1 Advent of Artificial Intelligence

After the revolution in image processing with ImageNet [8], deep learning has revolu-

tionized many industries including advertisement [9, 10], speech recognition [11], search

engine [12], and self-driving cars [13]. Deep learning has become relevant in every major

field of study. This does not preclude drug discovery [14, 15].

Computers have historically played a very important role in drug discovery [16] [17].

Storing and maintaining drug banks and virtual libraries have been part of industry

since the 1980s [18]. Even more, with the advent of virtual screening, computers played

an important role in the making of drugs. The first major breakthrough was Gleevec

[18]. Gleevec was designed to target tyrosine kinases against chronic myeloid leukemia.

It was one of the first drugs to have come from a purely computational pipeline: a

library of molecules designed and stored are docked against a given target protein. The

best candidates are then taken to experimentation. The drug was introduced into the

market in 2001 [18].

1.1.1 Artificial Intelligence and sub-branches

There are three main branches of artificial intelligence which are as follows:

1



Chapter 1: Introduction

Supervised learning

Supervised learning considers the problem of handling labelled data. Both classification

and regression problems belong to this class of machine learning [19]. Classification tries

to approximate whether a given set of features belong to a class, while regression tries

to approximate the range of values where a given set of feature can belong to.

The goal of a supervised learning problem is to find a relationship between an outcome

and the attributes selected. The simplest case is that of a linear relationship between the

predictors and the outcome. That linear relationship can be mapped with a mathemat-

ical equation like logistic or linear regression for classification and regression problem,

respectively. Linear regression tries to approximate the best weights for each attribute

to outcome while logistic regression fits on the log likelihood of a given class. The

equations are as follows:

For the linear regression case [20] where one outcome is dependent on one attribute:

y = mx+ b (1.1.1)

This is the case where y, a dependent variable depends on an independent attribute

called x with a factor of m called the slope, with an intercept of b. Both b and m are

constants that can be thought of baises, and can be mapped by fitting the slope to a given

training data set. An intuitive example of this relationship can be that of the amount

of sunlight directly hitting the earth and the temperature of the earth. More sunlight

hits the surface of the earth in a concentrated manner, the higher the temperature.

The factor b in this case would be a combination of the atmospheric pressure, carbon

concentration and the rotation of the earth. Hence, the temperature of the earth can

be fitted to a line given this equation. Indeed this has been shown to a good precision

as can be seen in the graph below.

Coming to logistic regression case [21], the formula now turns into a measure of proba-

bilities:

P = emx+b

1 + emx+b (1.1.2)

A simple explanation of this equation is the exponent of the constant e to be the linear

regression equation both in the numerator and denominator. This equation calculates

2



Chapter 1: Introduction

Figure 1.1: Sunlight versus surface temperature of the earth plotted as a linear relationship.

whether a given independent variable is more likely to belong to one class over the other,

the numerator divided by the denominator. More often, this equaiton can have more

than one attributes to dictate a relationship. And thus each attribute would come with

a slope and an intercept as constants also called their bias terms.

To map more complex relationships, there has been tremendous success. Initially, algo-

rithms were made specifically to map gep,etroc functions, but with the help of tree-based

and subsequently artificial neural networks, these methods promised mapping any sort

of non-linearity to find relationships between the attributes and their outcomes.

Artificial intelligence has had tremendous success in almost every branch of industry.

How people have been able to achieve this is beyond the scope of this thesis.

Unsupervised learning

Unsupervised learning or clustering are a set of methods that cluster unlabelled data into

maximal hierarchy. The aim of unsupervised learning algorithms is to - without human

intervention - find structure in a data set by modeling relationships within the data.

Unlike supervised learning approaches, there is no dependent or independent variables.

In fact, each variable is somehow interconnected to each other to produce a structure

overall [22]. These include K-Means clustering, PCA [23] and more recently, autoen-

coders [24]. Many of the natural language processing algorithms belong to unsupervised

learning [25].

More advanced clustering methods have also been re-purposed to extract important

features from noisy data. These methods can be combined with supervised methods for

for enhanced data efficiency and better convergence. The advent of these methods are

3



Chapter 1: Introduction

also beyond the scope of this thesis.

Reinforcement learning

Reinforcement learning is the domain of trial and error. Also called semi-supervised

learning, this mode of learning is at the heart of this thesis. Inspired from learning in

the real world, reinforcement learning is framed in terms of an agent and its environment.

An agent acts in an environment to get a reward and as a result its state changes. This

change of state can be evaluated against the end goal. As can be seen, no data is fed

to the agent, in fact the agent has to produce data at each time step. Actions taken

are stored as data. The agent learns from its actions by maximizing the reward gained

from its actions. Hence, the aim of reinforcement learning is to achieve a goal in a

complex dynamic environment; complex in that any number of actions can be taken,

and dynamic in that the environment changes as a result of the actions taken.

The goal of reinforcement learning is to learn to reach a goal through reward [26]. 1.2

shows a taxonomy of RL algorithms with specific end goals for each branch. RL methods

are mainly divided into two classes: ones that require a model of the world, and those

that do not. Those that do require either learn the model or produce the model. These

methods include the likes of AlphaZero [27] that has successfully produced a generalized

model for a wide range of board games like chess and Go [27]. On the other hand,

model-free systems focus on learning optimal actions or how good those actions were,

policy-optimization and Q-learning respectively. Deep Q-Networks were one of the first

to be implemented with success [28] in board games. Following sections go into the

details of these two approaches. But before we go into the details of these two branches,

the main ideas in reinforcement learning need to be visited to gain an understanding of

the thesis.

Main components of RL

Regardless of which algorithm used, reinforcement learning has a few key parts that are

common to all. This means that all these algorithms need to be framed in these same

terms.

These parts summarized in 1.1 come together into a training loop for an agent to learn

the optimal policy or the value functions thereof. The policy is the set of actions taken to

4
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Figure 1.2: Family tree of RL algorithms. Model-based algorithms require specifications on the

rules of the environment. Each action has rules associated with it, whereas model-

free algorithms do not require rule specifications. Model-based algorithm endeavor

to learn the model or produce the model. On the other hand, the counterpart tries

to learn the value functions of optimal actions (Q-learning) or optimal actions

(policy optimization). This thesis takes the DQN approach and translates it to

PPO, a policy gradient method.

Agent An agent that generates actions by acting in the environment

Environment The playground for the agent to reside in and generate actions

Reward A scalar value that is observed after an agent acts

Action What the agent does in the environment

State The state of the agent before and after acting

Table 1.1: Reinforcement learning basic components

reach an end goal; the value function is the evaluation of too good or bad the policy was

at each iteration. The policy and the value function are generated both in the policy-

gradient and Q-learning methods. In the former case, policy is calculated directly,

whereas in the latter, the policy is inferred from the value function. In general, policy

optimization methods are faster in terms of computation than Q-learning approaches

[29][30].

5
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Figure 1.3: An RL setting has an agent that acts, an environment the agent resides in, actions

taken produce rewards and move the agent to a new state. The agent learns by

storing these states and converging to a set of actions that produce optimal reward.

Q-learning

Q-learning or quality learning was the method of learning on the value function. Q-

learning included the likes of DQN [28] which was part of the one first breakthroughs

in board games used in AlphaGo [31]. A schematic diagram for AlphaGo is in ??. An

important theme in DQN was that the actions taken are discrete. Monte Carlo Tree

Search (MCTS) and DQN had been the underlying algorithms underlying the success

of AlphaGo and subsequent system [31]. In the case of Go, each piece in the board

can move in four directions corresponding to the grid points in the board. Contrast

to the DQN approach, other Q-learning approximate map to continuous action spaces.

Application to Q-learning in such algorithms include bi-pedal walking and self-driving

cars etc.

DQN was central to this thesis because the work this thesis was based on uses the

DQN approach [32] for molecular optimization. Discrete actions taken at each time

step were fed into a action-value network to evaluate the value function and handed

out a reward. The environment of the molecule was the molecule itself with the reward

function corresponding to the quantitative estimate of drug-likeness [33] and Tanimoto

index [34] of the molecule to a target, if a target molecule was provided. Actions included

addition of bonds, removal of bonds, no modification, inclusion of aromatic rings, and

the minimum number of atoms in the ring. These discrete actions were rolled out at

each iteration to be passed through QED reward signal. The outputs from each iteration

was stored in a replay buffer, or essentially the memory of the system. The instances in

the replay buffer were sampled and a gradient ascent was used to maximize the value

function. This approach will be discussed in more detail in the Methods section.

6
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Figure 1.4: Workflow of the Q-learning network in the AlphaGo paper. Steps include, generate

action, feed into policy and value networks and evaluate the goodness of the actions

until convergence.

Policy optimization

Policy-gradient methods emphasize the actions taken. Even though value functions

for each episode are taken into account, it is the actions at each time step that is

optimized on. RL provides a wide range of algorithms for this approach. Proximal

policy optimization [35], Soft Actor Critic [36] and TD3 [37] are all examples of policy

optimization methods. These algorithms have had important contributions, each having

its respective strengths and weaknesses.

What is important to note is that there is no clear dichotomy for these algorithms.

They can both be policy gradient and Q-based simultaneously as well. In fact, SAC and

DDPG [38] are good examples of hybrid methods. What makes them special is that

they have been made to tackle the problem of overestimating value functions [30] and

smoother learning over the course of simulation [30].

1.2 Molecules

The second pillar of this thesis is biology. Reinforcement learning is a tool used on

biological molecules. What is important to realize is that biology has become a compu-

tational problem over the years [39]. Finding new therapeutic molecules is at the core

of applied biological sciences. It takes years if not decades to find new molecules for

therapy. The average lifetime of a molecule to reach the market is 15 years [40]. Just

like vaccines, molecules go through four phases of clinical trials. The first phase is about

the dose-ranging in lower animals, second phase entails drug efficacy studies on higher

7
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mammals, while the last two phases are effectiveness studies on a few human cases,

fourth phase uses a larger group of human trials. These phases exclude grant approvals,

scoping and other manufacturing stages. Thus, finding drugs for rare diseases are often

challenging because of this overhead [41]. What exacerbates this problem is the mo-

nopolistic nature of the pharmaceutical industry today [42]. The top three US-based

pharmaceutical companies are worth more than 100 billion USD [42]. The aim of this

thesis is to help mitigate with both of these phenomena: firstly, machine learning can

contribute to drug design and secondly, reinforcement learning can help produce data.

1.2.1 Computational methods in drug design

The first breakthrough in drug discovery using computational methods was the 2001 in-

troduction of Gleevec into the market [18]. This molecule was computationally predicted

using a technique called virtual screening against a library of potential compounds. The

methodology will be discussed in the next section. Since then the molecule has been

dubbed the "magical bullet" against chronic myeloid leukemia, a type of white blood

cell cancer. Patients have been shown to show little signs of tumour progression six

years after having had the therapy [18]. Ever since, virtual screening against bigger

and bigger libraries has been part of the intiial screening of potential molecules [43].

This thesis uses Gleevec as a case study to see which bonds and atoms are important

in the molecule so that similar set of features can be built upon the Gleevec scaffold

or to optimize on the molecule further. The latter has already been done with various

alternatives to Gleevec already present in the market. These include hydroures [44] and

bosutinib [45] both of which are tyrosine kinase inhibitors just like Gleevec itself.

Gleevec: mechanism of action

The mechanism of action for Gleevec is that it competitively binds to the ATP binding

site of tyorisne kinases halting function. Tyrosine kinases are a large family of proteins

[? ] out of which Gleevec targets only BCR-ABL [18] and also c-kit and PDGF-R [46].

These proteins are important in cellular signalling driving cellular processes. As these

proteins accumulate mutation, they can over-express and lead to tumour progression.

Binding of the Gleevec also known as imatinib molecule is given in 1.5. A schematic

diagram of the role of BCR-ABL in overall cell processes in provided in 1.5.

8
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Figure 1.5: Three-dimensional visualization of binding of the Gleevec molecule to BCR-ABL

complex in the UCSF Chimera software package [1]. A shows the binding of the

protein the hinge region and P-loop of the complex, selectively inhibiting it from

binding to ATP molecules driving down abnormal cellular growth in tumours. B

and C show different angles of the protein.

Understanding Gleevec’s role in inhibiting BCR-ABL complex is key here. Any subse-

quent molecule proposed must have features that optimize on what the Gleevec scaffold

already provides: the molecule must have more or less rigid bonds to be able to dock to

the hinge region forming bonds at the P-loop for stability and it must only be selective

against the BCR-ABL system and not bind to other proteins in the human body apart

from the ADMET properties that are crucial to any potential therapeutic compound .

ADMET stands for absorption, distribution, metabolism, excretion and toxicity.

Going forward, the next chapter gives an overview of this history of reinforcement learn-

ing and also drug design before coming to applications of machine learning in drug

design. The 2 chapter will also highlight the need for quality data for any major break-

throughs to happen in the area. The 3 section will highlight steps taken in this thesis

to arrive at one formulation of molecular optimization. The 4 section will demonstrate

results from the approach with concluding remarks in 5.
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Figure 1.6: Schematic diagram shows the role of BCR-ABL complex in regulating downstream

proteins. It is a prime activator of SHP-1, a tyrosine phosphatase protein involved

in cell signalling cascade processing. Over-expression of the BCR-ABL complex

leads to further activaiotn of SHP-1 which subsequently over-stimulates other pro-

teins in the cell signalling cycle to drive tumourogenesis.

1.3 Research Gap

Perusing literature, what could be surmised was that there is still work needed to be

done in the area of drug design with deep reinforcement learning. While both GCPN [47]

and blood brain barrier optimization [5] used policy gradient approaches in combination

with other deep learning methods to drive molecular optimization, there still remained a

gap in basic science research in algorithms. On the other hand, MOLDQN [32] utilized

a double Q-learning approach. Finding optimal policy from Q-learning is not a direct

step but takes a few additional steps to know which actions are the most important.

Additionally, MOLDQN [32] was deterministic in its exploration of the chemical space.

This left the question of local minima unanswered.: some chemical combinations may

be functionally relevant but could be sub=optimal. Assigning a constant decay term in

the chemical space was problematic as the authors have mentioned in their work. The

combination of complexity in the applied domain and a rather simplistic algorithmic

contribution in the basic science domains, left the gap for proximal policy gradient

methods in optimization.

10



Chapter 1: Introduction

1.4 Problem Statement

Summarizing the problem at hand here, drug discovery is a very cost-intensive process

both in terms of time and money. An average molecule takes 15 years to come to

the market. And yet, the pharmaceutical industry is worth billions of dollars [48].

Additionally, the industry is monopolistic which means quality data is not freely available

[48]. Hence, there is a need for automation and spread of open-source methods in

producing molecules [49]. This thesis aims to optimize molecules based on their chemical

properties.

1.5 Research objectives

The aim of this thesis is to establish two key points:

• Establish an ablation study to compare which molecular properties are most im-

portant in defining a molecule. These include the quantitative estimate of drug-

likeness, the hydrophobicity and finally Tanimoto similarity.

• Implement the proximal policy optimization algorithm to compare with the DQN

approach

11
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Literature Review

This section surveys literature on the progress made in applications of reinforcement

learning in drug design. But first, we need to establish the importance of reinforcement

learning and how it can theoretically be applicable to drug discovery itself. For that

advances in reinforcement learning is to explored first and the ideas that inspire the

endeavor to apply the technique in drug discovery. The first section discusses reinforce-

ment learning in chess games. The second section discusses the lessons learned from the

breakthroughs and lastly, reinforcement learning in drug discovery is discussed.

2.1 Reinforcement Learning

Reinforcement learning is learning through the help of rewards and penalties. A rein-

forcement learning problem in essence, is an agent that interacts with its environment to

generate observations and get rewards. These rewards drive actions of the agent towards

a particular goal. The agent can get step-by-step rewards called a rich environment or

it can be sparse. An example of the former case is a self-driving vehicle while chess is an

example of the latter case. Additionally, the actions taken can be discrete or continuous.

A bipedal agent would be taking discrete steps in walking while a self-driving vehicle

would be taking continuous values as actions.

AlphaGo

One of the first breakthroughs in reinforcement learning came in 2016 with the AlphaGo

agent beating world-class Go player Lee Sedol. AlphaGo won all the five games but the
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fourth one [31]. all games were won by resignation by Lee Sedol. AlphaGo had learned

from playing with expert Go players. What is important to note is that the system was

dynamic in the way it competed against the human player. 1.4 illustrates the workflow

for training in the AlphaGo agent.

AlphaGo was a DQN agent. This entailed a few things:

• Each step was evaluated via a value function. Compared to policy-gradient

methods which arrive at the actions taken. Value functions dictate the goodness

of each action, while policy encompass the paths taken.

• The action space was discrete. DQN is a discrete action space algorithm, each

step is taken in a step-wise manner.

• No replay buffer was used making the algorithm less sample efficient.

Sample efficiency is a theme used in the AlphaZero system to narrow down the

search space better [27].

• AlphaGo was trained on playing with human players. The more advanced

AlphaZero system was built entirely on self-play i.e., the agent played against itself

to generate actions and learn from those actions [27].

AlphaZero

The next iteration of the AlphaGo system came two years later in 2018 [27]. This

stem was a natural abstraction over many board games including Go and chess. What

was different was that the agent had learn to play with super-human performance with

no prior experience. The system learned to play by itself called self-play. Schematic

diagram in 1.3 shows the algorithm at work. Importantly the algorithm used tree-based

searching while playing. This is important in board game scenarios and boosted the

performance of the system [3].

There are a few changes to the overall algorithm:

• Policy is decided using a probability distribution. Adopting such a method

means that the agent can explore the action space better.
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Figure 2.1: Fifth game between Lee Sedol and AlphaGo. White is AlphaGo, black is Lee.

White won by resignation [2].

• The policy and value network are combined. Unlike the DQN approach

which only had separate outputs from the policy and value networks, the Alp-

haZero system used an output that combined both the policy and value networks

[3].

• As a result of the probabilistic nature of the policy network, the action

space becomes continuous. This approach helps with exploration as it would

not be set to some constant value throughout self-play but would assume every-

changing probabilities based on the state space in the game board [50].

These two are only just a few instances of applications of reinforcement learning in the

real world. There is a large corpus of work being done in the self-driving car domain

[13][51][52] and robotic [53] [54]
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Figure 2.2: Workflow for the AlphaZero system. [3]

2.2 A brief touch to computational drug design

On the other hand, the field of computational chemistry and drug design has had major

success over the last few decades in bringing novel drugs, both natural and synthetic,

to the market. As of December 2019, there has been more tha 1,500 drugs approved by

the Food and Drug Administration [55] which amounts to more than 1.2 trillion USD

market share as of 2020 [56]. This speaks to the success of the pharmaceutical industry

in reducing human disease.

Relevant to this thesis is one of the first computationally predicted drugs, Gleevec [18].

It was introduced in the market in 2001 used against chronic myeloid leukemia. The drug

was discovered to a method that has since become a tried and tested method protocol

[43]. This method is called virtual screening. The method includes building a library

of different molecules and docking them with the target protein of interest. In the case

of Gleevec, it was discovered that the molecule was highly selective to a sub-class of

tyrosine kinases that include BCR-Abl, PBGA and others [18]. The ligand interaction

map of Gleevec and Abl is shown in the figure below.

This molecule has already been discussed in the previous section. This section was meant

to connect the molecule with the continuing line of work in reinforcement learning.

2.3 What can RL do for us?

In an infinite action space, like chess where the number of moves is larger than the

number of atoms in the universe, reinforcement learning can provide a path for efficiently

exploring the space [57]. Additionally, emergent properties that have been been explored

is also a phenomenon desired oftentimes. So the combination of these two factors are
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Figure 2.3: Ligand interaction map of Gleevec with Abl tyrosine kinase. Interaction map shows

the hydrophobic structure of the Gleevec molecule residing in an iverse V-shaped

conformation with the hydrophilic groups interacting with the histidine component

of the Abl protein, while the hydrophobic chains interacting with isoleucine and

pehnylalanine. [4]

the central themes of this thesis: to explore the molecular space more efficiently, and to

find emergent properties within molecules that can be generalized to other compounds.

What is important to note is that in the chemical space, the chemical properties are

based on the combinatorial nature of the system: a functional group can contribute to

the compound’s toxicity in a very dramatic manner, for instance. More importantly, a

compound’s efficacy is essentially a property of the target protein it is designed to bind.

Furthermore, the protein structure where the proposed compound needs to bind has

to have the right three-dimensional structure and also the right chemical properties to

form bonds. The former is a three-dimensional property while the latter is a chemical

one. Both of these features are important for any new proposed compound. Thus every

compound is therefore, very dependent on the protein itself. However, in this project,

the QED and Tanimoto similarity of the Gleevec molecule was considered.
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2.4 RL in drug design

Reinforcement learning has already been applied in one form or another in drug design.

Graph convolution coupled with policy gradient [47], de-novo policy gradient [58], multi-

objective optimization [59] are all instances of RL in drug discovery. To the scope of

this thesis, the most important paper was by Google [32].

The graph convolution policy network work used a combination of graph convolutions to

characterize a molecule as a network of graphs [47]. Each node represented an atom with

specific weights. Each node had an edge which was the molecular property of the atom in

relaiton to another atom. For instance, a carbon node oculd be attached to an oxygen

atom. Hydrogens were ignored in this study. The edge between carbon and xoygen

represented the atomic interactions between carbon and oxygen, for instance their dipole,

inter-atomic bond length, and other chemical properties. Trhough algorithms developed

for graph convolution for instance neighbor-walking and color mapping [47] coupled with

policy gradient optimization, molecules were generated that had similar or even better

properties than the starting molecule. Although promising graph convolutions came

with computaitonal overhead. Graphs convolutoin have also been known to be very

specific for a given class of molecules and cannot be generalized to other molecular

classes which need their own training and optimization [60].

On the other hand, molecules that can traverse the blood brain barrier has been a major

challenge in drug design [61]. The brain is not directly linked iwth blood, instead the

brain interfaces with the bloodstream through cerebrospinal fluid [62]. Targeted ther-

apy for Alzheimer’s disease and other mental disorderes need molecules that can pass

through the blood brain barrier has been a challenge [63]. Because of the more complex

nature of the problem, attempts have been made to optimize available molecules using

reinforcement learning which include [5]. The work used a combination of pre-training

with generative-adversorial networks [64] and optimized through policy gradient opti-

mization. It seems that policy optimizaiton has been popular in optimizing molecules in

academia. A schematic of the neural architecture is given below. Just like the previous

work, using GANs coupled with a relatively deep neural arthictecture for policy gradi-

ent came with computational overhead [5]. Reinforcement learning has been known to

suffer from loss of learning with deeper neural networks [6]. Additionally, GANs itself

generated many samples that did not have biological meaning. However, the work was
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geared toward molecules that could traverse the blood brain barrier so the problem was

specific enough for the algorithm to be implemented in this manner.

Figure 2.4: Neural architecture for optimization of molecules using deep reinforcement learn-

ing targeted for crossing the blood brain barrier. Importantly, the architecture

is deep with many layers unusual for deep reinforcement learning tasks [5]. Deep

reinforcement learning nueornal layers tend to be shallow for reasons for backprop-

agation. The gardients may not be able to reach the initial layers costing learning

problems [6].
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Materials & Methods

3.1 Introduction

Python 3.8 was used in the project with PyTorch 1.9 as the main framework for the RL

environment. The RL environment was built using the Rdkit 2021.03.1b1 library.

PyTorch was utilized for the reinforcement learning framework while RDkit featurized

the input molecules. The terminal state of the algorithm was defined as molecule reach-

ing a QED value that cannot be further improved upon further iteration. The other

terminal state of the algorithm was when a chemically wrong molecule was produced as

a result of wrong actions taken by the policy network. The QED, Tanimoto similarity,

and a diversity score were incorporated into the reward signal. The diversity score was

unique in this thesis and had not been used in the original work in MOLDQN [32]. The

reward signal was termed to be the reward the molecule received as a result generat-

ing actions such as bond creation, bond breakage or no modificaiton. The return was

defined as the value received at each step from the agent.

An overview of the workflow can be found in the following figure.

Python 3.8

PyTorch 1.9

Rdkit 2021.03.1b1

Table 3.1: Libraries used in MOLPPO
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Figure 3.1: Generalized workflow of MOLPPO. A molecule was featurized in the form of a

tensor in an Open AI baselines [7] platform and passed through a neural network

called the policy network. The molecule in question was then modified by either

bond addition or removal and was passed through a second neural network called

Critic. The Critic evaluates actions made by the policy network. And a reward

was calculated as a result of the modification in the molecular structure. This

generation of new bonds and evaluation continued until convergence.

3.2 Formulae in RL

RL provides a set of formulae to deal with a dynamic environment. This section explains

what the core formulae of RL can offer:

• Belmman Equations ties the reward received from the environment to the value

functions by the agent combined iwth a discount factor. This discount factor

emphasizes that the reward received at a given time step decays with the future

rewards the agent may take in the future. The discount factor proposition makes

sense in an environment where the agent has to explore a maze or learn to walk

for instance but not in this thesis. This is because the molecule can optimize at

any point in time. Although the factor can be ignored, it has not been done in

this thesis. This equation is given as follow:
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Vπ∗ = max
(
R(s, a) + γ

∑
P (s′, a)V π∗(s′)

)
(3.2.1)

In other words, the value function for the optimal policy is the maximum over

the rewards at a given state and action plus the sum over the policy and value

functions given in the next step’s optimal value function. The discount factor

decays as a result of exploration.

• Temporal Difference (TD) is one of the fundamental equations in RL. It provides a

way of learning to predict the future before attempting, act on the action, receive

a reward, and correct its previous prediction.TD provides a mathematical basis

on the way to predict what the agent will achieve. Every step has a TD error

associated with it which gauges what the agent predicted and how it performed.

The formula for the one-step TD is given below.

V (St) = V (St) + αR(t+ 1) + γV (S(t+ 1)− V (St) (3.2.2)

• Exploration vs. Exploitation. Exploration refers to exploring the environment

while exploitation refers to using prior information from the environment. Any RL

setting must be able to balance these two succinctly in order to behave optimally.

The later two sections provide different formulae on how these algorithms deal

with exploration and exploitation.

3.3 MOLDQN

MOLDQN from Google [32] used a discrete value learning reinforcement learning algo-

rithm. Molecular optimization could be done in a host of modes, including bootstrap-

ping, multi-objective, or just over one molecular property. The state and action were

the same, i.e., every turn in the iteration, a new molecule would be built from scratch.

In other words, it was not a step-by-step building of a molecule but rather generation

of a new molecule in each episode. The actions included, removal, addition or no mod-

ification bonds, the number of aromatic rings that could be added. The reward signal

was a function of the molecular property optimized on at hand which included the hy-

drophobicity [33], QED [33], surface accessibility [65] of the molecule. Each cycle, the

molecule would be factorized into a Morgan fingerprint tensor [66]
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3.4 MOLPPO

This thesis uses the proximal gradient method to optimize molecules. Although the

action space is defined the same was as in the DQN method, what is different is that

each cycle the overall scaffold of the molecule remained the same with modifications each

turn. The policy was rolled out and evaluated through the on-policy actor and critic

networks. The actor network is defined as the component that generated actions while

the critic evaluated those actions through a value function. Similar to the DQN case,

the molecule was turned into a tensor by calculating its tensor using Morgan fingerprint

[66].

The exploration vs. exploitation trade-off in MOLDQN was done through the classic ϵ

method. If the constant was lower than than the threshold, it would explore otherwise

it would explore as the agent interacted in the environment. This exploraiton can be

observed to be deterministic and not a funciton of the dynamic environment of the

system. At the start of training, more and more exploration was done and as time

passed, 4ϵ shrunk and the system slowly transitioned to exploitation, or trying out

bonds that it had previously learned before.

Figure 3.2 gives an overall overview of th the process in MOLPPO.

The program got a molecule as input in the form of SMILES format. The molecule was

featurized via Morgan fingerprint and fed into a tensor. A few molecules were generated

based on the fingerprint as a result of interacting in the environment. These molecules

were stored in a replay buffer until the maximum number of iterations. After this, the

replay buffer was sampled, the the actions taken were evaluated through a gradient

ascent. In PyTorch the replay buffer was fed to a stochastic gradient ascent algorithm

and back-propagated subsequently. Best actions from the replay buffer were then used

in the nest cycle of iterations and optimization with the updated weights in the neural

networks.

The algorithm for MOLPPO is given below. What was notable in the process is that

the exploration and exploitation was done through a probability distribution in contrast

to a constant value seen in DQN methods. What is also important to note is that this

algorithm also utilized a replay buffer just like the previous approach. Replay buffers

have been shown to be better with sample efficiency. This was aimed to reduce the
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Figure 3.2: Workflow for MOLPPO

complexity of sample efficiency [67]. In other words, by having a memory of sorts to

optimize upon, the algorithm was hoped to arrive at better molecules quicker because

it could sample and optimize online instead of having one single molecule to optimize

upon.

3.4.1 Things to note in PPO

Looking at the algorithm above, a few things are worth noting.

• The advantage function had not appeared till now. It was defined as the ratio over
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the policy gained in the policy given the best one. The function was parameterized

by a reward clipping function that limited the exploration of the algorithm. The

reward function was calculated by the equation below. Though the effect of this

equation remained to be seen in the molecular optimization case.

L(s, θk, θ = min

(
πθ(at, st)
πθk

(at, st)
Aθk(s, a), clip

(
πθ(at, st)
πθk

(at, st)
Aθk(s, a), e− ϵ, 1 + ϵ

)
Aθk(s, a)

)
(3.4.3)

• The algorithm is on-policy meaning that the value function is estimated online as

the molecule is built in the environment. This reduces the computational com-

plexity of the system in exchange for molecular unreliability. No replay buffer in

the PPO case. This means that the algorithm can potentially re-visit molecules it

has constructed. This was a choice made in this thesis but could be implemented

in a future exercise.

• The reward signal in the PPO case has a few additional components. Firstly

a diversity function was introduced which penalized the algorithm above 95%

similarity. Secondly, the surface accessibility score was also incorporated into the

reward signal. These were attempts to find a molecule with overall better binding

properties not just optimizing on a given set of properties.

3.4.2 Neural Architectures in MOLPPO

Given that MOLPPO used an on-policy Actor-Critic approach, there were two main

shallow neural architectures. One that dealt with the policy called the Actor and the

other that dealt with the value function, the Critic. Unlike off-policy approaches where

there were two policy methods: the target and the behavior, there was only one policy

method here, however. Off-policy algorithms uses two networks while on-policy uses

one.

• Actor. The actor method took an observation state’s dimensions and gave out

another observation state-like tensor. The Actor in MOLPPO expanded to a 256-

dimensional tensor sand witched between TanhH [68] activation function and then

moved back to the Morgan fingerprint one dimensional tensor using a softmax

function [68].
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• Critic. The Critic method evaulated the policy of the Actor by assigning it a

q-value. Simply put, the Critic modeleled the actions of the policy network on to

the environment and scored it. The architecture in MOLPPO had a Critic that

took the Morgan fingerprint expanded to a tensor with 256 dimensions then came

back to a scalar value. In between the layers, Critic also used TanhH activation

function [68]. However the output was a scalar quantity, not another molecule like

the Actor.

Figure 3.3: Neural architecture e for MOLPPO.

There are two architectures at play in MOLPPO. Unlike DQN methods, the policy

and value functions are calculated by separate networks called the Actor and the

Critic. The Actor method evaluates the policy while the Critic method outputs the

q-value or the policy at each step. Both neurons take the Morgan fingerprints of a

molecule as input, which is also the observed state and action, expands the number of

neurons to 256 in the hidden layer with a TanH activation function. While the Actor

squeezes the dimensions back to the same Morgan fingerprint-like tensor, the Critic

network outputs a scalar quantity.

Next chapter documents the results for running this algorithm for about 10,0000 iter-
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ations, the optimized molecule it produced and the time it took to arrive at an end

result.
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Algorithm 1 Molecular Actor Critic
Require: initial policy and value function parameters θ

1: for k ← 1 to N do

2: Roll out policy k for given molecule

3: Compute reward R on the go

4: Compute the advantage function At based on current value function Vt

5: Update policy by maximizing the clip function

θk+1 = 1
Dk

∑
t=Dk

T∑
t=0

min

(
πθ(at, st)
πθk

(at, st)
Aθk(s, a), g(ϵ, Aθk(s, a))

)
(3.4.1)

6: through stochastic gradient descent with Adam

7: Fit function with mean-squared error

ψk+1 = 1
Dk

∑
t=Dk

∑
t=0

(Vψ(st)−Rt) (3.4.2)

8: with gradient descent

9: end for
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Results

This section documents the results from running MOLPPO on Gleevec. The importance

of the Gleevec molecule has already been mentioned in 2. This section is divided into

two main parts. Firstly, the tool can take a molecule as a starting point and optimize

on its QED [33], Tanimoto similarity [34] and a new diversity function that penalizes

the Tanimoto similarity to be more than 95%. The latter is relevant so that the tool

does not converge to the same molecule. Secondly, the tool can also use a molecule as a

target and construct moieties and functional groups to build the target molecule. This

allows us to get a better understanding of the entities important to a molecule.

MOLPPO has been run using NVIDIA 1020 graphics on an Intel Cor i5 processor. Many

experiments have been run ranging from 6000 iterations to 6 million. The q-function

versus returns graphs (4.6) have been generated on ten thousand iterations while graphs

showing reward and loss 4.1 amount to 4 million cycles.

4.1 Optimizing a molecule

Starting from a molecule given as input, the tool can optimize based on multiple ob-

jectives. Multi-objective optimization is based on multiple criteria, in this case the

quantitative estimate of drug-likeness [33], Tanimoto similarity [34] and a newly intro-

duced function called the diversity score. This score penalizes the system if the molecule

becomes more than 98% similar to the starting molecule. This is because we do not

want the algorithm to converge to the starting molecule and allow the esystem to ex-

plore other functional groups. Metrics for any RL system includes the loss and the
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reward functions logged across iterations. The reward signal has just been described to

be multi-objective while the loss is the TD error used in RL.

Of note is the fact that each cycle, different molecules are generated and are independent

of the iteration before and the state and action spaces are the same. Given a roll-out

instance, a molecule already in the state space is taken and a new molecule is generated

and stored in the action tensor and evaluated whether they are chemically sound -

meaning that the molecular bonds follow the laws of chemistry - and then subsequently

passed through the reward signal. The snapshots show not only that the algorithm

optimizes the molecule but also learns to make chemically correct structures.

Figure 3.2 gives an overall overview of th the process in MOLPPO.

Figure 4.1: Loss and reward function logged across 6 million iterations. The highly

jagged nature of graphs is normal when it comes to algorithms like Actor-Critic

and DQN systems. This is because here, the algorithm also explores the molecular

space as time goes on despite the total reward increasing over time.

The roll-out feature is itself one of the strategies in RL systems [69] to sample the

environment where an action is taken based on an exploration/exploitation channel and

stored in a tensor. There are other methods used for instance the Monte Carlo tree

search method used in [2].

For a total of 6 million runs, the molecule with the highest reward is also showcased

in figure. Interestingly, the highest reward is only in decimals. This may considered a

limitation of how the state is represented.
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Figure 4.2: One of the initial molecules produced by the optimizer. The strange

bonding can be noticed in the upper right. Through each cycle the RL agent

learns to build molecules that law the laws of chemistry. The nitrogenin the center

of the ring is making bonds with resonance carbon ring while a "shadow" aliphatic

ring sticks out of the carbon and nitrogen on the upper right.

Figure 4.3: Best molecular as predicted by the RL optimizer algorithm based on

Gleevec.

4.2 Understanding functional gorups within a molecule

Perhaps the more blackbox-like part of the tool is building the molecules by fragments

and understanding the important moieties. While we understand that molecular func-

tional groups are a function of the scaffold [70]. But the tool here reaches the target

molecular structure as the tool converges. Convergence is logged in terms of the loss

and reward. The reward function has already been elaborated at the start of this sec-

tion while the loss is the TD error explained in 3. These two metrics are the same as

optimizing molecules because their underlying evaluation is the same.
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4.3 Evaluating the q-value versus returns

What can be noted from the figure below is that with no molecule given for optimization,

the MOLPPO system can randomly generate molecules that have a direct relationship

between its q-values and returns. This is not the case when the system gets molecules

to optimize on. We have seen so far that modeling aromatic rings is a challenge for both

DQN and MOLPPO. What can be concluded from this set of experiments is that how

directly related are the q-values with returns. If the q-values align with the returns, it

means that the RL system "gets" the environment and can accurately generate actions

to get higher reward. This cannot be seen in the case for complex molecular structures

like pencillin G [71] and gleevec [18] which both have aromatic sets of rings.
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Figure 4.4: Functional groups indicated by the RL system to be important. While

building scaffolds of the Gleevec molecule, enlisted are some of the functional

groups deemed highest by the reward function.The two on the top had the highest

values. But as can be noted both are structurally unstable entities. Oxygen having

an alcohol group is not prevalent in nature. Sulfur in a ring is a ring with ntirogens

is also rare. More importantly, the adenine ring was also foud to be important. Of

note is the fact that functional groups are a function of the 3-dimensional structure

of the proteins these molecules bind and not necessarily an innate property of the

molecules themselves. Nevertheless, a pattern can be drawn for scaffolds on the

kinds of functional groups that increase their QED scores.
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Figure 4.5: Reward and loss graphs for constructing the Gleevec molecule. Taking

Gleevec as target, the RL system generates molecules that have similarity to the

Gleevec molecule to understand the different moieties imporant to the structure.

What can be seen is that despite the haphazard shape of the rewawrd graph, it is

still going up with intense exploration. On the other hand, loss is also increasing

meaning that the algorithm is far from modeling the environment accurately. Run

over 400,000 cycles, the algorithm needs to run more to reduce its loss/TD error.
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Figure 4.6: Q-value versus reward for molecules. A. No starting molecule is given as

input. The q-function (y-axis) is fairly correlated with the returns (x-axis). B. Q-

function versus returns for the Penicillin G molecule. Even for higher q-values, the

returns remain low. This indicates that the system still has to model the chemical

space. C. Q-values versus returns for the Gleevec molecule, the exploration space

becomes sparser with only a handful with higher value and return relationship.

This graph can be thought of as the mode’s understanding of the chemical space

and the return it gets from trying new actions. With more complex molecules, the

value-return relationship should also cluster around some mean value.
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Discussion

This work can be considered a novel experimental approach rather than improving a

tradition of drug design. Reinforcement learning has had major successes in the last

decade [2, 3, 13]. This gives us hope that RL can also be used in other optimization

tasks, in this case, bridging the gap between functional and chemical space. Other efforts

will follow.

Looking at the results from the previous section, a few things can be noted.

• Aliphatic chains can easily be modeled with the help of Morgan fingerprint. These

aliphatic chains can also contain functional groups including carboxyl, amide, and

alcohol groups.

• Policy gradient was able to optimize on structurally different scaffold than the

starting molecule as compared with the DQN approach. This was because of the

probabilistic nature of proximal policy as its action space was wider and could

explore a wider functional space.

• Contrary to aliphatic chains, modeling aromatic rings is challenging with Morgan

fingerprint. There can be multiple reasons including absence of pi-bond featur-

ization. This pi-bond phenomenon can impart more stability to aromatic rings

and make them less likely to form bonds with functional gorups outside the ring.

What was interesting to notice was that with Morgan fingerprints, the aromatic

rings always generated bonds with reactive atoms like nitrogen and oxygen.

• Hence, aromatic rings need to have a richer representation. Molecular properties

are not linear in combination but combinatorial in nature. Aromatic rings attain
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a highly stable system due to the linear nature of the ring with pi-bonds sharing

their electrons over the whole molecule. It can be deemed of as a micro-level

emergent property. Morgan fingerprint was not about to represent this accurately

to the reinforcement learning system.

• Finally, three-dimensional featurization of molecules is key here in order for moel-

cular optimization to successfully be modeled to the functional space.

Functional space is dependent upon the proteins molecules bind to. Designing molecules

that bind to its target must keep the target in mind. Knowing the local distribution of

the functional space is important, featurizing these properties is tricky. Reinforcement

learning itself is computationally expensive. So featurizing the 3-dimensional structure

of a molecule, not just the Morgan fingerprint [66], with an RL system would require

considerable hardware capabilities. Keeping these two points in mind, RL systems

heavily depend on state representation. This work only used Morgan fingerprint [66]

which is simply a binary array of features.

However, even though the state representation is simplistic, the RL system could still

come to some conclusion about the molecular space. Importantly, the architecture itself

has performed well, but what seems to be the challenge is describing molecules in a

neuron-friendly manner. Previous work has used graph convolutions [47] but those tend

to be very specific to a small molecular space. A possible future direction would be to

use a richer 3-dimensional action space with more emphasis on keeping the aromatic

rings intact while generating actions.
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Chapter 6

Conclusion

This thesis was an attempt to bring reinforcement learning and drug design together.

Although there is sizable literature in the field, this work was still a novel attempt at

optimizing molecules through an algorithm that has not yet been attempted before.

In summary, there has been many attempts at molecular optimization through direct

and mixed reinforcement learning approaches. Direct methods include MOLDQN [32],

drug discovery through transcriptomic data [50] while hybrid methods include graph

convolution based policy gradient method GCPN [47] and blood brain barrier drug

optimization [45]. However, this thesis was motivated by MOLDQN [32] which used a

direct RL mode. MOLDQN features included an off-policy discrete action space with

two Q value networks, the behavior and the target. Whereas MOLPPO, the current

work, uses a probabilistic on-policy approach with two separate networks for the policy

and q function. The idea behind separating these two is that learning tends to be faster

and more generalizable [54]. The policy network is responsible for producing molecules

while the critic network works on evaluating those newly generated molecules. Results

show that the Actor-Critic method just like MOLDQN successfully learns to generate

aliphatic chains, learning to model the aromatic rings as a chemical entity is a challenge.

A possible reason is that the two methods use a binary array for each feature while

resonance is a multi-atom property that cannot be mapped on to a binary array of

properties like Morgan fingerprint [66]. This can be part of a future work where richer

representation of the molecular space could be postulated and pushed to the Actor-

Critic networks. Comparatively, the MOLPPO method provided an easier method of

optimizing on a given molecule with a better representation of the chemical space.
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Chapter 6: Conclusion

PPO was designed for discrete action spaces and can be generalized for different op-

timization tasks. One direction PPO can be implemented is antibody optimization.

Antibodies are bio-markers in the immune system that target cells bodily and foreign

cells for identification [72]. Currently there is a need for antibody design [72] and has

been deemed the "basis for engineering therapeutics". PPO can be used to modularize

antibody building and optimization: addition of antibody components can be postulated

as actions in the antibody space with affinity score as a reward signal. Although this

formulation will be more computationally intensive, but a pipeline can stimulate some

interest in the field.

To conclude, this thesis formulated molecular optimization in the form of a proximal

policy optimization method. Morgan fingerprint could capture straight chain properties

but it could not model conjugated systems well. Hence, a richer representation of

molecules is needed, either through graph convolutions or tree-based methods. This

thesis established a baseline for future improvements. Additionally, one domain that

PPO can be extended is antibody design. The reward signal could be formulated as the

binding affinity score while actions could be the additoin of molecular components.
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