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Abstract 

To ensure the steady navigation for robot stable controls are the basic unit and control values 

selection is highly environment dependent. Adding Generalization to system is the key to 

reusability of control parameters to ensure adaptability in robots to perform with sophistication, in 

the environments about which they have no prior knowledge, for this Reinforcement Leaning (RL) 

based control systems are promising. However, tuning appropriate parameters to train RL 

algorithm is a challenge. Therefore, we designed a continuous reward function to minimizing the 

sparsity and stabilizes the policy convergence, to attain control generalization for differential drive 

robot. We Implemented Twin Delayed Deep Deterministic Policy Gradient-TD3 on Open-AI Gym 

Race Car. System was trained to achieve smart primitive control policy, moving forward in the 

direction of goal by maintaining an appropriate distance from walls to avoid collisions. Resulting 

policy was tested on unseen environments and observed precisely performing results. Upon 

comparative analysis of TD3 with DDPG, TD3 policy outperformed the DDPG policy in both 

training and testing phase, proving TD3 to be resource efficient and stable.  
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CHAPTER 1: INTRODUCTION 

Artificial intelligence and robotics collectively aim to achieve human like artificial 

entities to assist humans in the society. Learning and perceiving the environment in way as human 

do along with planning and acting to attain the required goal are the fundamental requirements. 

Numerous techniques and learning frameworks have been introduced in literature to strive in the 

direction of designated aim. However, domain of reinforcement learning (RL) is proving its 

worth by adding learning instincts over path planning techniques, and specifically over control 

layer, to ensure promising level of autonomy in the social assistive robot system. 

 

Although RL is one competent learning technique but there exist complications that limits 

its incorporation in the real word. This opens-up a research gap in the domain of RL. The foremost 

concern of RL is its requirement of tremendous amount of training time and resource 

consumption. Resolving this would make it a step closer to become the part of the physical world. 

The aim of this research is to provide with an RL based training strategy which is less time 

consuming and provides a reusable skill.  

1.1 Background, Scope, and Motivation 

1.1.1  Controls 

Typically, robot systems are designed and developed in such a way that they 

are empowered to successfully carry out the specified task. Control systems make it possible for 

constituents of the robot to move and operate. As well as it enables the robot to carry out a 

predetermined series of motions and forces, even in the event of an unexpected error occurrence 

[1].  

As suggested by a typical task operation architecture figure 1, for any robotic system to 

accomplish the assigned task, planning is essential. However, to execute the planed task controls 

of robots comes into action and directly interacts with the environment. Therefore, a steady task 

performance for robot cannot be accomplished without stability in controls of robot. However, 

control commands are typically environment dependent [2]. As, actuator dynamics, joint flexibility 
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and other numerous system uncertainties needs to be considered while dealing with the control 

problem of robot manipulators [1]. 

 

Typically, robots are required to performing in dynamic environments specifically socially 

assistive robots and autonomous cars. They need to generalize their controls over the changing 

environment problem to perform autonomous operations. To attain generalization in controls, 

various learning-based controls architectures came into existence e.g. intelligent computational 

techniques such as Fuzzy Logic theory (FL), Artificial Neural Networks (ANN) and other 

evolutionary computational methods such as Genetic Algorithm (GA) have provided us with a 

new array of solutions to problems in various control systems [1]. 

 

However, reinforcement learning based controls supersedes the other learning techniques. 

As, it excludes the need to explicitly model the system, or compute the kinematic equations, unlike 

other learning techniques.  Moreover, the dynamics of the robot are highly non-linear and difficult 

to be modeled [1] RL can effectively abstract out these hardware level dependencies. 

 

 

 

1.1.2 Reinforcement Learning 

Reinforcement learning is a hit and trial reward signal-based learning paradigm [3]. In 

which an agent explores the environment and its own behavior, analyze it on the bases of received 

reward signal, by the goal defining reward function, in the quest of achieve maximum cumulative 

reward. Figure 2 shows the typical framework of reinforcement learning. 

 

PLANNIG 

CONTROL 

ENVIRONMENT 

execution 

execution 

ASSIGNED TASK 

Figure 1: Task operation architecture 
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Unlike other machine learning approaches, RL can be a promising framework for new skill 

set development in robots. It can make agent learning newfangled tasks which cannot be 

demonstrated physically by humans, and tasks which are complex to be modeled. It can even 

effectively incorporate non-linear complexities e.g., handling objects with delicacy or following a 

specified walk. Moreover, it ensures problem generalization instincts in robots i.e., learned skill is 

robust enough to be deployed in a previously unobserved environment.  

 

Furthermore, by simply utilizing a known cost function, RL can achieve the optimization 

goals of complex problems with no analytic formulation, and issues with unknown closed form 

solutions. It can efficiently handle the issues even when the human instructors are not sure about 

the optimal solution. In Addition to that, RL can guarantee the capacity to dynamically adapt to 

changes in the agent itself, such as a robot adjusting to hardware modifications [4]. These 

properties prove RL framework to be a strong problem-solving mechanism. 

 

However, RL is based on reward maximization in the given environment over timesteps 

therefore, it requires extensive trial and error in environment to achieve the desired goal i.e., policy. 

Policy is the selection of action given state in a way to maximize the reward. This originates the 

sample inefficiency problem. Moreover, numerous hyperparameter needs to be tuning to converge 

the RL algorithm [10]. 

 

 

 

 

 

 

 

 

 

 

 

AGENT 
ENVIRON

MENT 
Reward = Rt 

Action= At 

State= St 

Figure 2: Reinforcement learning framework 
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1.1.3 Markov Decision Process (MDP) 

RL problems setting can be effectively modeled using Markov decision process (MDP), 

figure 3. MDP models decision making on discrete, stochastic, and sequential environments. Each 

state of MDP observes Markov property i.e., probability of occurrence of state st+1 is equal to the 

sum of probabilities of states from s0 to st. this excludes the need to preserve the entire sequence 

of states, as single state holds the transition information from past to future.  

 

 

Tuple of MDP consists of states space S representing the states of environment and action 

space A feasible action from the given state. P is the transition probability to state st+1 given 

state st and action at.  

𝑃𝑠𝑠′
𝑎 = 𝑃[𝑆𝑡+1 = 𝑠′| 𝑆 = 𝑠, 𝐴𝑡 = 𝑎] 

 

Reward signal R is estimated reward of transition rt+1 given state st and action at. 

  

𝑅𝑠
𝑎 = 𝐸[𝑅𝑡+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

 

Figure 3: Typical Markov decision process (MDP) 



5 
 

Discount factor γ, to compute return Gt estimated discounted reward from future states. 

Return Gt adds perspective of possible impact of future states based on reward, to the current state. 

Where, γ is bounded between [0, 1] ranging myopic to farsighted evaluation. 

𝐺𝑡 =  𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ =  ∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

 

 

Adding perspective of MDP to RL agent is required, on bases of which it evaluates the 

states and select action to solve MDP. Therefore, policy π distribution of action A given state S 

is used by agent to draw action given state. Selection of maximum reward generating action will 

solve the MDP. 

𝜋(𝑎|𝑠) = 𝑃[𝐴𝑡 = 𝑎 | 𝑆𝑡 = 𝑠] 

 

However, Value function is used to evaluate the goodness of state, or state-action pair. Q-

value function is the expected return given state s and action a. Therefore, maximization of Q 

value over all policies leads to optimal solution.  

𝑄𝜋(𝑠, 𝑎) = 𝐸[𝑅𝑡+1 +  𝛾𝑄𝜋(𝑆𝑡+1,  𝐴𝑡+1) | 𝑆𝑡 = 𝑠,  𝐴𝑡 = 𝑎] 

 

Bellman equation for Q: 

𝑄(𝑠, 𝑎) =  𝑅𝑠
𝑎 +  𝛾 ∑ 𝑃𝑠𝑠′

𝑎

𝑠′𝜖 𝑆

𝑄(𝑠′, 𝑎) 

 

Bellman equation for optimal Q-value function: 

𝑄∗(𝑠, 𝑎) =  𝑅𝑠
𝑎 +  𝛾 ∑ 𝑃𝑠′𝑠

𝑎  𝑚𝑎𝑥𝑎′  𝑄∗(𝑠′, 𝑎′)

𝑠′∈ 𝑆
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1.2 Gap Analysis 

Robots interacting with human-inhabited, unstructured, and highly uncertain environment, 

traditional control system in such environment is most likely to be doomed to failure as they are 

based on manually preprogramming and traditional physics-based modelling tools and hand-

crafted models. To overcome this limitation model learning effective incorporate environment’s 

nonlinearities and can generalize over system, as model can be estimated directly from the real 

data of the system [2]. However, to deploy model-predictive controls, state-of-the-art approaches 

often adopt a sequential approach with components as, starting with state estimation, managing 

contact with environment followed by trajectory prediction and optimization, model-based control 

prediction and finally operational space command [5][6]. Designing and development of such 

approach is dependent on availability of accurate dynamic models of robot which is not a trivial 

task and requires technical expertise of the system. In contrast, end-to-end deep reinforcement 

learning can effectively abstract the low-level system dependent specifications with relatively 

similar reward function equation. Therefore, excluding the need for any prior knowledge about the 

robot’s and environment’s dynamics. This can ensure the performance of robot without explicit 

system identification or manual engineering. Therefore, if deep reinforcement learning is 

effectively implemented, it may automate controller design, eliminating the requirement for 

system identification and producing controls that are directly tuned for a specific robot and 

environment [6]. 

 

As RL is based on reward maximization in the given environment over timesteps therefore, 

it requires extensive trial and error in environment to achieve the desired goal i.e., policy selecting 

of action given state in a way to maximize the reward, this originates the sample inefficiency 

problem, along with that numerous hyperparameter needs to be tuning. So, to design and train RL 

policy for continuous action spaces, Twin delayed deep deterministic policy gradient (TD3)[7]  a 

successor of DDPG [8], ensure a stable and robust actor update along with the minimization of 

overestimation bias in critic network and eventually stabilizes the learning for continuous action 

spaces. However, TD-3 is not implemented for differential drive car. 
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1.3 Problem Statement 

 Training TD-3 to convergence is a complicate and time-consuming process. However, it 

is considered as stable algorithm for continuous action spaces. No implementation of TD-3 for 

differential drive is available in literature. Therefore, implementing TD-3 to analyze the 

convergence in comparison with DDPG and to ensure the trained policy reusability, design a 

primitive policy for transferable learning. 
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CHAPTER 2: LITERATURE REVIEW 

As the identified problem hovers over two different and prevalent domains of knowledge, 

both have attained sophisticated level of maturity in terms of development and implementation, 

control system and reinforming learning. Therefore, a reasonable amount of literature assessment 

is required to find an apt and efficient solution, in terms of stability, scalability and robustness to 

ensure a reliable merger to best address the specified problem.  

 

Therefore, this chapter is consisting of comparison between traditional controls 

architecture and learning based control techniques in robotic. It covers the different learning 

techniques along with multiple RL algorithms in search of an effective solution to the specified 

problem. 

2.1 Traditional v/s Learning Based Control Approaches  

Traditional control system functions on the bases of accurate analytical model. However, 

due to the complexity of contemporary robot systems, obtaining precise analytical models, is a 

challenging task [2]. 

 

Moreover, the interaction of robots with human-inhabited environment which are 

typically unstructured and highly uncertain, traditional control system in such environment is 

most likely to diminution in terms of performance or even lead to a total failure [2].   

 

Contrary to traditional controls, learning a model instead of manually preprogramming, 

it proves to be an effective option since the model can be estimated directly from the real data 

of the environment which ensures robustness and environment generalization to the system. 

Furthermore, even unknown nonlinearities can be immediately taken into consideration by 

learning models which will boost the efficiency of system, whereas traditional physics-based 

modelling tools and hand-crafted models both ignore them entirely [2].  

 



9 
 

However, online learning of such models learning approaches is required in order to 

generalize the learnt models over a broader state space and adjust the models to time-

dependent changes. RL fill this gap effectively [2].  

 

Moreover, RL can effectively replace the requirement of supervised learning dataset along 

with the requirement of kinematic equation’s parameters by reward function [6].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

T
ra

in
in

g
 

R
es

o
u

rc

e 

E
ff

ic
ie

n
c

y
 

✓
 

X
 

X
 

T
ra

in
in

g
 T

im
e 

E
ff

ic
ie

n

cy
 

✓
 

X
 

X
 

R
o

b
u

st
 

T
o

 

U
n

ce
r
t

a
in

ty
 

X
 

✓
 

✓
 

R
o

b
u

st

, 

U
n

k
n

o

w
n

 

N
o

n
li

n

ea
ri

ti
e

s X
 

✓
 

✓
 

E
n

v
ir

o

n
m

en
t 

G
en

er

a
li

za
ti

o
n

 

X
 

✓
 

✓
 

A
d

a
p

ti
v

e 

T
o

 T
im

e 

D
ep

en
d

e

n
t 

C
h

a
n

g
es

 

X
 

X
 

✓
 

R
eu

sa
b

le
, 

O
n

 U
n

se
e
n

 

E
n

v
ir

o
n

m
e

n
t X
 

X
 

✓
 

S
u

p
er

v
is

e

d
 D

a
ta

se
t 

D
ep

en
d

e

n
t X
 

✓
 

X
 

M
a

n
u

a

l 
P

re
-

p
ro

g
ra

m
m

in
g

 

✓
 

X
 

X
 

K
in

em
a

t

ic
 

E
q

u
a

ti
o

n
 

D
ep

en
d

e

n
t 

✓
 

✓
 

X
 

R
eq

u
ir

es
 

a
cc

u
ra

te
 

a
n

a
ly

ti
ca

l 
m

o
d

el
s 

✓
 

X
 

X
 

 

C
la

ss
ic

a
l 

C
o

n
tr

o
l 

M
et

h
o

d
s 

M
o

d
el

 

L
ea

rn
in

g
 

C
o

n
tr

o
l 

R
L

 

C
o

n
tr

o
l 

Table 1: Comparison between Classical controls, Model learning controls and Reinforcement learning 

controls 



11 
 

2.2 RL Policy Gradient Algorithms  

To develop a sophisticated policy, policy learning based RL algorithms were extensively 

reviewed, in search of appropriate a stable algorithm.  

 

Starting off with Deep-Q Networks (DQN) which led the bases for further development. 

DQNs are Q value function-based learning, aims to converge Bellman optimality equation, to 

attain maximum discounted Q value-based reward [9].  

 

Although DQN is a promising technique but due to maximization over state and action 

pare value, its scope is limited to discrete action space. This limitation is effectively resolved by 

Deep Deterministic Policy Gradient (DDPG) models, by introducing a separate policy 

approximator and instead of directly maximizing over Q-value function it considers the output 

from policy approximator and effectively handles the continuous action space [8]. 

 

Despite of resolving the continuous action space limitation, the algorithm lacked in stable 

convergence of policy approximator(actor). Twin Delayed Deep Deterministic Policy Gradient 

(TD-3) [7] came up with improvement solution, ensuring the stable actor convergence and reduce 

overestimation bias propagation by critic along robustness to noisy states. Figure 4 briefly 

describes the significance of TD-3. 

 

• use min value for critic update 

• reduce overestimation of bias
Twin = Twin critic 

networks 

• stabilizes actor’s learning
Delayed = delayed actor 

network updates 

• smooths actor learning

• avoid overfitting on spike
Noise Regulation = 

clipping noise to actions

Figure 4: Properties of TD-3 
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Algorithm 

Continuous 

Action 

Space 

Stable 

Actor 

Update 

Bias 

Propagation 

Noise 

Regulation 

No. of 

Approx. 

Networks 

DQN X X ✓ X 2 

DDPG ✓ X ✓ X 4 

TD-3 ✓ ✓ X ✓ 6 

 

Table 2: Comparison between DQN, DDPG & TD-3 algorithm 

 

 

Table 2 specifies the comparison between state of the are RL policy gradient algorithm, 

in terms of stability and performance.  

 

2.3 TD-3 Implementation in Literature 

TD-3 is implemented on numerous environments in literature including, Half-cheetah 

environment, Inverted pendulum environment, Reacher environment, Hopper environment and 

Walker-2D environment [7] primarily on 2-D environments. However, literature do not provide 

any implementation of TD-3 for differential drive race car environment.     

 

 

 

 

 

 

 



13 
 

CHAPTER 3: PROPOSED METHODOLOGY 

3.1 Suggested Policy Design Flow 

The suggested flow of policy design and training comprises of following features: 

• Environment: where robot/agent explores the problem in hand by experiencing states 

space of environment along with implementing action from action space of robot, gain 

reward to evaluate its performance. 

• Reward function: Criteria on which agent compares its performance, it precisely binds 

environment state space with the problem in hand, reward function is entirely problem 

dependent. Reward function proves to be the key to the solution. 

• Training RL Algorithm: Technique under which robot/agent process the environment by 

making use of reward function in order to approximate the policy function which maps 

state to action in way to resolve the problem. 

• RL Agent-Model: sophisticated learned policy approximator, that can be tested in unseen 

environments. 

 

All these components are inter-connected and dependent on each other, in terms of 

performance to accomplish the anticipated goal i.e., a well-trained policy. Figure 5 blow 

effectively explains the flow of policy design.   

 

Figure 5: Policy design flow chart 

 

Environment
Reward 

Function
Training RL 
Algorithm

RL Agent-Model
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3.2 Architectural Design  

 Proposed system architecture is shown in figure 6. RL agent aims to interact with the 

environment and perceive the state. Perceived state is analyzed on the bases of reward function to 

estimate a Value function, which in return contributes to policy estimation. Estimated policy is 

required to compute actions. Estimated action is executed in environment and next state is 

perceived on bases of which value function is updated. That way policy and value function 

estimator will contribute to improving one another.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL Policy Gradient Algorithm 

 

 

 

 

 

 

Reward Function 

Environment 

Policy Function 

Value Function 

Environment State Environment Action 

Update 

Figure 6: Designed architecture of system 
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CHAPTER 4: DESIGN & IMPLIMENTATION 

4.1 System Architecture 

A typical robotics system consists of physical layer dealing with hardware of robot and its 

surroundings i.e., world, however to analysis the perceived data and draw an appropriate 

conclusion in order to perform any action an analytical layer is required. Therefore, the proposed 

system figure 7, consists of multiple components synchronizing with each other to accomplish a 

unanimous goal. 

Physical Layer:  

• Environment: consisting of robot model and the model of world.  

• State Space: describes the robot’s perception of the world  

• Action Space: describes the robot’s actuators state to manipulate the world   

Analytical Layer: 

• Reward function: criteria on which perceived state is analyzed on the bases of defined 

goal. 

• Twin delayed deep deterministic policy gradient-TD3: develop a generic policy on 

the bases of reward and state space to accomplish the defined goal    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reward Function 

Twin Delayed Deep Deterministic Policy Gradient 

Environment 

Environment State Environment Action 

Figure 7: Implemented architecture of system 
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As described in the figure above tools used to develop the systems are, environment: 

Properties of physics are implemented by, PyBullet- opensource physics engine-based library. 

Model of world is implemented by OpenAI Gym environmnet, specifically designed and 

extensively used to simulate RL problems. However, Reward function and TD-3 is implement 

using Pytorch, a well-recognized tool for Machine learning problem domain. Whereas the whole 

system collaborated under Google Collaboratory.  

 

4.2 Environment Specifications 

To train and evaluate the performance of system on differential drive, race car model in 

Open AI Gym environment is utilized. Race car is equipped with LIDAR sensor, to incorporate 

obstacle detection. LIDAR of 100 rays is fixed to Hokuyo joint covering the front portion of the 

car, visualized in figure 8. A forward moving path environment was designed, bounded by wall 

from all four sides, following all the constrains of typical world model of Gazebo to train the RL 

agent, as shown in figure 9. 

 

 

Figure 9: Designed training environment 

 

 

 

 

Figure 8: Differential drive car model 
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4.3 State Space Design 

State space is the only visible interpretation of environment for the agent. Therefore, it 

must be comprised of factor, effective enough for agent makes sense of its environment, consisting 

of enough information to achieve the desired policy. Thus, a continuous state space is designed to 

ensure localization and mobility towards the goal along with obstacle detection, state space 

consist of following component: robot’s base position and orientation along with distance to 

goal this adds localization. To ensure mobility in the direction of goal robot’s linear velocity and 

robot’s angular velocity is added. However, active lidar ray along with the lidar hit point are 

for obstacle detection. Figure 10 visually describes the state space, dimension of entire state space 

is (1 × 414). 

 

 

 

 

 

 

 

 

 

4.4 Action Space 

Action space of robot consist of 2 components, shown in figure 11. Both the components are 

in continuous in nature bounded by [-1, 1], dimension of action space is (1 × 2).  

 

 

 

 

 

  
  
 

  
  
 

  

Linear Velocity 
 

  
Angular Velocity 

 

  
Lidar Hit Points 

 

…………………… x100 …………………… 
 

…………………… x100 …………………… 
 Active Lidar Rays 

 

Base Position 
 

  

Base Orientation 
 

Goal Distance 
 

 

 

 

 

 

Velocity Steering Angle 

Figure 10: Designed state space 

Figure 11: Action space 
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4.5 Reward Equation Design 

Reward function is the criteria on which agent compares its performance, it precisely binds 

environment state space with the problem, to attain the desired goal.  

 

Correlation between designed state space and reward function guarantees the solution. 

Therefore, for continuous state space a continuous reward function is required to be mapped over 

the continuous action space. Reward function is entirely problem dependent and proves to be the 

key to the solution. 

 

To attain a compatibility between state space and reward function, reward function 

comprises of 4 components, each component adds a distinct feature to achieve a step toward the 

goal. All the components are normalized to get a continuous composite reward equation (5) 

bounded between -1 and 1, with -1 being the worst 1 being the best as it approaches goal. Reward 

function consists of following components:  

 

To avoid collision, collision reward is one of the components. It generates a sharp -1 signal 

for colliding with the wall and 1 otherwise.  

 

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑤𝑎𝑟𝑑 = {
−1, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑤𝑎𝑙𝑙 < 0

1,                               𝐸𝑙𝑠𝑒
                                     (1) 

 

        To add perception about the goal, and encourage the displacement in the direction of goal, 

closeness to goal is incorporated (2). Where current distance is the Perpendicular distance from 

the car base and goal and total distance is perpendicular distance between car base and goal at 

initial position i.e., start of episode. Closeness to goal is bounded between -1 and 1, approaches -

1 if car’s displacement is away from goal and 1 if it approaches goal. 

 

𝐶𝑙𝑜𝑠𝑠𝑛𝑒𝑠𝑠 𝑔𝑜𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑 = 1 −
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
, [−1, 1]                           (2) 
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To boost the mobility straight in the direction of goal i.e., forward in y-direction, linear 

velocity reward (3) suppresses the velocity in x-direction and encourages high velocity in y-

direction. Resultant velocity of system is bounded between 1 and -1 therefore, max attainable 

velocity in either direction (x or y) is 1 and minimum is -1 in case the other component is 

suppressed to 0. So, the difference between y component and x component of linear velocity will 

be bounded between 1 and -1 representing movement in positive and negative direction of axis 

respectively. However, to double the weightage of linear velocity, factor of 2 is multiplied, to avoid 

local maxima.          

 

𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑟𝑒𝑤𝑎𝑟𝑑 = 2 ∗ (𝑌𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 −  |𝑋𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦|),      [−2, 2]            (3) 

 

To avoid deflection from the straight path by suppressing angular velocities of car, angular 

velocity reward component (4) is added, it ensures sharp -1 reward if angular velocity exceeds 

from the empirically set threshold value however, reward approaches to 1 if angular velocities in 

all the directions are suppressed to zero.   

 

𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑟𝑒𝑤𝑎𝑟𝑑 =  {
−1, |𝑌𝑎𝑛𝑔𝑢𝑙𝑎𝑟| + |𝑋𝑎𝑛𝑔𝑢𝑙𝑎𝑟| + |𝑍𝑎𝑛𝑔𝑢𝑙𝑎𝑟| > 0.09

1 − |𝑌𝑎𝑛𝑔𝑢𝑙𝑎𝑟| + |𝑋𝑎𝑛𝑔𝑢𝑙𝑎𝑟| + |𝑍𝑎𝑛𝑔𝑢𝑙𝑎𝑟|,     𝐸𝑙𝑠𝑒
             (4) 

 

 

The composite, normalized, continuous reward equation, combining the components of reward 

function is as follows: 

 

 

𝑅𝑒𝑤𝑎𝑟𝑑 =

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑤𝑎𝑟𝑑 +
𝑐𝑙𝑜𝑠𝑠𝑒𝑛𝑒𝑠𝑠 𝑡𝑜 𝑔𝑜𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑 +

𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑟𝑒𝑤𝑎𝑟𝑑 + 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑟𝑒𝑤𝑎𝑟𝑑

5
, [−1,1]         (5) 
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4.6 Implementation of TD3 

 TD3 is implemented to enable RL-agent to develop an action approximator know as policy 

which maps give state of environment to action space of the robot, maximizing cumulative reward, 

to act in the quest of solving the given task as shown in figure 12. 

 

To train an RL-agent to solve a 

problem, it requires an environment 

representation for agent to work on. Tuple of 

Markov decision process representing 

environment is used. Environment tuples 

<S, A, R, S’> consist of:  

• current state S  

• current action A 

• current reward R, received by following action A from state S  

• next state S’ which is led by action A from state S  

 

However, to add perspective of environment tuple to agent, in order to analyze the state and 

action set and take an appropriate action in the direction of solution i.e., attain maximum 

cumulative reward, value function and policy approximators are required.  

 

Therefore, TD-3 consists of 6 neural networks in total, which converge simultaneously to 

attain a stable system. 4 neural networks are Q-value approximators known as critic networks and 

2 are policy approximators known as actor networks. Both Q-value network and policy networks 

works hand in hand to learn an appropriate policy out of given environment tuple. 

 

Critic networks or Q-value networks, 2 out of 4 are considered as target Q-networks 

represented as gray block of neural networks in figures below, with frozen weights and are not 

updated on regular bases i.e., on each iteration to avoid update of critic in an inappropriate 

direction and getting overfit on current limited experience. However, the other pair is current Q-

network represented as red block of neural networks, is used to assign Q-value to the current state 
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Figure 12: Policy based RL-agent 
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and action set and are step ahead of target Q-networks. This pair of networks is updated on regular 

bases on each iteration and on every environment experience.  

 

Actor network or policy network, 1 of the two networks is target policy network, 

represented as gray block in figures below, with frozen weights and are not updated on regular 

bases i.e., on each iteration to avoid actor getting overfit on an unstable critic update. However, 

other policy network is known as current policy network represented as blue block in figures 

below, likewise they do not experience regular weights update to avoid unstable actor update on 

unstable critic update.            

4.6.1. Critic Network Update 

Critic network as evident from the name adds criticism to the performance of the agent in 

the environment. Its takes state and action pair and assign it the value in terms of received reward 

over time steps. Formally, critic network estimates the expected return i.e., cumulative reward 

over the discounted steps given the state and action pair. 
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Figure 13: Critic network update 
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Therefore, to train an estimator it requires a target to be approached and minimize the 

difference between estimated return and estimated target return by backpropagating the error. 

This process in referred as critic network update, the architectural flow of critic network update is 

briefed in figure 13. 

 

Starting with the target Q-value QT generation, received environment tuple is utilized, next 

state S’ is feed to frozen actor network (gray actor network) to estimate the next action A’. S’ and 

A’ are feed to frozen critic networks (gray critic network) to get QT value (estimated discounted 

reward from given S’ and estimated A’), min of QT is summed with R actual reward received from 

the transition from S to S’ following A. Minimum of QT is used to suppress the propagation of 

overestimation bias in Q network and stabilize the training.  

 

To estimate the current Q value Q, current critic networks (red critic networks) are exposed 

to S and A from environment tuple. Sum of mean square error loss is computed for each Q value 

with the estimated Q target (QT + R) and propagated backward to update the current critic network 

in the direction of loss minimization.  

 

𝐿𝑜𝑠𝑠(𝑄) =  𝐸 [(𝑄1(𝑠, 𝑎) − (𝑟 + 𝛾 𝑚𝑖𝑛 (𝑄𝑇 (𝑠′, 𝜋𝑡𝑎𝑟𝑔𝑒𝑡(𝑠′)))))

2

  ]

+ 𝐸 [ (𝑄2(𝑠, 𝑎) − (𝑟 + 𝛾 𝑚𝑖𝑛 (𝑄𝑇 (𝑠′, 𝜋𝑡𝑎𝑟𝑔𝑒𝑡(𝑠′)))))

2

] 

 

This update of critic network is conducted once on every time step. However, Target critic 

networks are updated with soft copy of current critic networks once after every 2-time steps, to 

keep appropriate difference between target and current critic network, to avoid convergence in an 

inappropriate direction.   
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4.6.2 Actor Network Update          

Actor network or policy network are the estimated distribution of action given state to 

maximize the expected reward. Therefore, actor network needs to ensure an appropriate action 

selection to enhance the performance of agent in the given problem setting. Action is analyzed by 

the given critic network and updated in the direction to maximize the return.  

 

A stable actor is ensured by a stable critic therefore, actor is update once in every two 

timesteps giving critic the time to get mature over the experiences of environment as critic is 

updated on every timestep. Figure 14 defines the actor update steps. 

 

 

Current state S from the tuple is utilized it is feed to the current actor network π to get 

estimated current action A. To draw the analysis on the estimated action it is exposed to current 

critic network along with the current state, as a result π is updated on the bases of generated Q-

value in a way that selected action A maximizes the Q-value.  
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Figure 14: Actor network update 
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Therefore, loss to be backpropagated to actor network is -Q, negative sign is appended to 

solve maximization problem using gradient decent. 

 

𝐿𝑜𝑠𝑠(𝜋) =  −𝑄(𝑠, 𝜋(𝑠)) 

 

However, soft copy updates i.e., probabilistically updating weights of frozen actor 

networks πtarget by current actor network are performed once in every 2 timesteps, to ensure 

appropriate difference between the two networks and stabilize the training by restraining the target 

network from divergence.             

 

4.6.3 Critic Network Architecture 

All critic networks are identical in terms of architecture, consisting of one input layer and 

2 hidden layers following the output layer. Input layer consisting of 416 neurons ensuring 

compatibility with 414 components for state space and 2 components of action space, nonlinearity 

is ensured by incorporating Relu activation function. First hidden layer comprises of 400 neurons 

along with Relu nonlinearity following 300 component based linear hidden layer 2 converging the 

flow to signal neuron comprising output layer. The finalized architecture of critic neural networks 

figure 15 is designed to attain the best performance of system.  
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Figure 15: Critic network architecture 
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4.6.4 Actor Network Architecture 

Actor networks consisting of an input layer consisting of 414 components to accommodate 

the state space, along with 2 hidden layers, comprising of 400 neurons and Relu nonlinearity and 

300 neurons with tanh nonlinearity respectively. Finally converging to 2 neurons based linear 

output layer, to accommodate 2-dimensional action space. The architectural design of actor neural 

network figure 16 is based on overall system performance enhancement. 

 

 

 

 

 

 

 

 

 

 

 

4.6.5 Hyperparameters of System 

 All hyperparameters 

are tuned to attain the best 

possible performance of the 

system. Hyperparameters are 

listed in the table. 
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Figure 16: Actor network architecture 

Table 3: List of TD-3 hyper-parameters 
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CHAPTER 5: TRAINING & EVALUATION 

5.1 Training Results 

 The training of implemented system has acquired precisely converging graphical results. 

Losses of both actor and critic network are converging effectively justifying the theoretical 

explanation and maximizing the received reward. Best trained policy was attained at 26k steps of 

training, generated average reward value of 235 when evaluated over 10 episodes.   

 

Actor network’s loss plot figure 17 shows loss decreasing against training time step. Stared 

from zero and settled at around -30 after 150k training step. As actor’s loss is negative Q-value of 

estimated action against the given state, therefore, loss minimization is proportional to Q-value 

maximization. Lower the actor’s loss higher the Q-value for the estimated action.   

 

Critic network’s loss defines the closeness between estimated target Q-value and estimated 

current Q-value, minimum difference i.e., closer to zero ensures convergence. Critic’s loss plot 

figure 18 shows, starting from zero due to identical target and critic network, progressed to 4 after 

being exposed to 150k steps of training. Proving to be acceptable results as gained reward is 

increasing with time steps.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Actor's convergence per training step Figure 18: Critic's convergence per training step 
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 To estimate the performance of training models, models are saved on regular intervals to 

be evaluated in terms of gained reward, as shown in figure 19. High reward generating peaks and 

stable plateau of the saved models plot are evaluated. Best performing and highest reward 

producing model, peak at 26k steps generating reward value of 235 was selected for the testing on 

unseen environment. 

    

However, overall performance of training can be evaluated by average reward plot against 

training steps figure 20. It started increasing after a sharp decline on the initial training steps, this 

ensures agent exploring environment and eventually converging in the anticipated direction.           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Saved models reward on regular training 

intervals plot 
Figure 19: Average reward of training per training steps 
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Reward per episode and reward  per step againts traning steps are ploted in figure 21 and 

figure 22 respectively, to analyze per step traninig performance and overall episode performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Episode reward per training step plot Figure 22: Step reward per training step plot 
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5.2 Testing Results of TD3 

 Best reward gaining policy on the training environment was selected to be tested on the 

unseen environment. During testing the policy performed precisely in new environment, gaining 

reward. Policy was tested of 3 different environment, which agent have not experienced before: 

• Dynamic goal environment 

• Boundary free environment 

• Continuous path environment 

 

5.2.1 Dynamic Goal Environment 

Agent’s performance was evaluated on a continuous path environment in which goal is 

shifted forward, as the robot approaches the defined vicinity of goal figure 23. The performance 

of agent can be evaluated by reward per step graph figure 24. Starting from less than 0.5, increasing 

on every step approaching 1. However, it is experiencing a sharp decline when the goal is shifted 

but avidly recovers the gaining reward.    

 

 

 

 

 

Figure 24: Reward gain plot for dynamic goal environment Figure 23: Dynamic goal 

environment 
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5.2.2 Boundary Free Environment 

 Boundary free environment neglects the notion of obstacles by removing the boundary wall 

of the environment, visualized in figure 25. This can effectively change the knowledgeable state 

space values, as agent will experience no active lidar values unlike training environment. 

Evaluation results clearly states that change in environment is not affecting the agent’s 

performance, evident in gained reward plot figure 26.  

 

Reward graph states the increasing reward gaining policy performance, starting from lesser 

than 0.44 reward and progressing to 0.54 reward in just 400 steps episode, as agent approaches in 

the direction of goal, without deviating from the straight path.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Reward gain plot for boundary free environment Figure 25: Boundary free 

environment 
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5.2.3 Continuous Path Environment 

To evaluate the agent on continuous path visualized in figure 27, front wall of the training 

environment is removed which was the closest obstacle to goal in the training environment. 

Subsequently this changes the experienced states of environment for agent.   

 

Performs of agent can be evaluated by gained reward plot figure 28. Reward graph states 

the increasing reward gaining policy performance, starting from lesser than 0.44 reward and 

progressing to 0.56 reward in just 500 steps episode, as agent approaches in the direction of goal.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Reward gain plot for continuous path 

environment 

Figure 27: Continuous path 

environment 
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5.3 TD3 & DDPG Comparison 

To conduct an appropriate comparison between TD3 and DDPG both the agents are 

trained and tested under similar conditions. 

5.3.1 DDPG Training 

To validate the selection of RL algorithm comparison on the bases of training performance 

is conducted, between the designed TD3 agent with DDPG agent. For that reason, a DDPG agent 

was trained under similar conditions. Performance of training was evaluated on the bases of 

training stability and convergence time required for agent. After evaluation of several peaks of 

saved models during training of DDPG, best policy selected is the peak after 100k steps of training 

generating reward value of 210. 

 

Convergence of actor is evident from figure 29 actor’s loss over training steps. It started 

from zero decreasing over training step approached -20 over 250k training steps. However, is not 

fully converged even after 250k of training. Critic’s loss is converging well figure 30, after 250k 

training steps loss value is around 1.5 which is close to zero.     

 

 

 

Figure 29: DDPG actor convergence against time step plot Figure 30: DDPG critic convergence against time step plot 
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Although average reward against training is increasing figure 31 but Rewards against 

training steps plots figure 32, figure 33, figure 34 shows instability in training. As its reward plots 

are extremely noisy, comprising of numerous peaks with barely any smooth plateaus. These plots 

are highlighting the instability in the training system of DDPG. 

 

 

 

Figure 31: Average reward of training per training steps plot Figure 32: Saved models reward on regular training intervals 

plot 

Figure 34: Episode reward per training step plot Figure 33: Step reward per training step plot 
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5.3.2 TD3 v/s DDPG Training 

  To conduct justifiable training performance comparison between TD-3 and DDPG, both the 

algorithms were trained under similar conditions. Values of corresponding hyper parameters were 

kept equal while training both TD-3 and DDPG. However, performance on the bases of 

convergence and reward maximization over training steps were observed, results are summarized 

in table 4. 

 

 

  Training updates of TD-3 and DDPG were based on batch size of 100 steps, discount factor 

γ was set to 0.99 to maximize the reward foresight. However, algorithm dependent hyper parameters 

were tuned accordingly, e.g., actor update frequency was set 2 for TD3 and 1 for DDPG. Although, 

architecture of both actor and critic networks were kept similar for both the algorithms but learning 

rate differed to aid the convergence of different setups. For TD3 both actor and critic observed same 

learning rates of 10-6. Whereas actor and critic learning rate for DDPG were 10-4 and 10-2 

respectively. 

  Despite of keeping the similar training architecture convergence performance of the two 

algorithms visibly differ from each other, as summarized in Table 1. Actor network loss of DDPG 

has converged to -20 and critic network loss has converged to 1 with maximum average reward of 

165.26 even after 250k steps of training. In contrary to that, actor network loss of TD3 has 

converged to -30 and critic network loss has converged to 5 with maximum average reward rising 

to 201.86 in just 200k steps of training. However, maximum reward generating policy for DDPG 

Algorithm 

 

Batch 
Size 

Actor’s 
Update 

Frequency 

Discount 
Factor 

Actor 
Learning 

Rate 

Critic 
Learning 

Rate 

Training 
Steps 

Actor Loss 
Convergence 

Critic Loss 
Convergence 

Max 
Avg 

Reward 

Max 
Episode 
Reward 

TD-3 100 2 0.99 10-6 10-6 200k -30 5 201.86 235.27 

DDPG 100 1 0.99 10-4 10-2 250k -20 1 165.26 210.69 

Table 4: Training Performance Comparison between TD3 and DDPG 
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is with episode reward value of 210.69 on 105k training steps and for TD3, best policy is generating 

235.27-episode reward value on 26k training policy.  

  Moreover, instability in training of DDPG is evident by noisy reward graphs. Overall 

training performance of two algorithms suggest that TD3 outperformed DDPG in the designed 

setting. Training TD3 is resource efficient and stable as compared to DDPG. 

5.3.2 TD3 v/s DDPG Testing 

To compare the performance of TD3 and DDPG agents in unobserved environment, both 

the agents were tested in all three designed testing environments, namely: 

1. Dynamic goal environment 

2. Boundary-free environment 

3. Continuous path environment 

 

In Dynamic goal environment, performance of trained agent was evaluated on a continuous 

path in which goal is shifted forward, as the robot approaches the defined vicinity of goal, 

environment shown in figure 35a. Figure 35b states the performance of TD3 agent. Starting from 

less than 0.5, increasing on every step approaching 1 experiencing max reward of 0.63. It is 

experiencing a sharp decline when the goal is shifted but avidly recovers by gaining reward. 

Episode ended with total reward 241.38 over 400 steps. However, performance of DDPG policy 

is relatively noisy, shown in figure 35c. Starting from 0.25 and approaching 1 with max reward 

experienced is 0.58. Episode ended with total reward of 217.58 over 400 steps.  

 

 

Figure 35: Testing results of TD3 and DDPG on dynamic goal environment 
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Boundary free environment neglects the notion of obstacles by removing the boundary wall 

of the environment, visualized in Figure 36a. This can effectively change the knowledgeable state 

space values, as agent will experience no active lidar values unlike training environment. 

Evaluation results of TD3 figure 36b, clearly states that change in environment is not affecting the 

agent’s performance, evident by gained reward plot. Trend of reward graph shows the increasing 

reward gaining policy performance, starting from lesser than 0.44 reward and progressing to 0.54 

reward, as agent approaches in the direction of goal, without deviating from the straight path. Total 

reward of 400 steps episode is 238.73. However according to reward plot of DDPG agent figure 

36c, starting reward is 0.52 and it is increasing maximum up to 0.625. sharp spike on initial steps 

shows the noisy performance of policy. Total reward gained is 213.78 over the episode. 

 

To evaluate the agent on continuous path visualized in figure 37a, front wall of the training 

environment is removed which was the closest obstacle to goal in the training environment. 

Subsequently this changes the experienced states of environment for agent. Performs of TD3 agent 

on this environment can be evaluated by gained reward plot figure 37b.  

Figure 36: Testing results of TD3 and DDPG on boundary free environment 

Figure 37: Testing results of TD3 and DDPG on continuous path environment 
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Graph states the increasing reward gaining policy performance, starting from lesser than 0.53 

reward and progressing to 0.625 reward in just 400 steps episode, as agent approaches in the 

direction of goal. Total reward of episode is 238.60. Performance of DDPG agent on continuous 

path environment is shown in figure 37c, starting from 0.20 and reaching 0.60. However, 

experienced reward plot is considerably noisy. Total reward of episode is 213.79. 

 

Testing Results of DDPG and TD3 on unseen environment clarified the performance and 

stability of TD3 agent over DDPG agent. Testing results stated in table 5, shows the performance 

of both the agents in previously unobserved environment, tested over 50 episodes, where each 

episode is of 400 steps.  In which TD3 out-performed DDPG in all the environments, generating 

average rewards of 241.38, 238.72 and 238.60 in dynamic goal environment, boundary free 

environment and continuous path environment respectively. In contrary to that, DDPG generated 

217.58, 213.79 and 210.69 in dynamic goal environment, boundary free environment and 

continuous path environment respectively. 

 

Environments RL Agent Episode Steps 
Total Evaluated 

Episodes 
Average Reward 

Dynamic Goal 

Environment 

TD3 400 50 241.38 

DDPG 400 50 217.58 

Boundary Free 

Environment 

TD3 400 50 238.72 

DDPG 400 50 213.79 

Continuous Path 

Environment 

TD3 400 50 238.72 

DDPG 400 50 213.78 

 
Table 5: Testing Results on DDPG and TD3 on unseen environments 

 

 



38 
 

CHAPTER 6: CONCLUSION AND FUTURE WORK 

This thesis concludes by effectively training TD-3 for Differential Drive Race Car with 

continuous action space, to move forward in the direction of goal. This will exclude the need for 

differential drive dependent analytical module, by designing the reward function. The reward 

function correlates with the state pace of the environment to train a policy. Such policy effectively 

maps state space over the action space by maximizing the cumulative reward. The trained policy 

was effectively tested on unseen environments including the curved path providing sophisticated 

results. 

 

Moreover, an effective comparative result between DDPG and TD3 are included in the 

study. The comparison reflets that TD3 ensures a stable and rapidly converging training system, 

which is resource efficient. This comparison validates the selection of algorithm for policy free, 

model free, differential drive system with continuous action space. 

 

Future of this work can be directed to the designing and training more primitive policies 

and combine them is an effective manner to construct a compound policy, performing in a complex 

task environment. Furthermore, this policy can be implemented on real robot to be tested in the 

real world. 
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