

RL based Differential Drive Primitive Policy for Transfer

Learning

Author

Mahrukh Shahid

Registration Number

00000277078

Supervisor

Prof. Dr. Yasar Ayaz (Pride of Performance)

DEPARTMENT OF ROBOTICS AND INTELLIGENT MACHINE ENGINEERING

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

AUGUST 2022

RL based Differential Drive Primitive Polices for Transfer

Learning

Author

MAHRUKH SHAHID

Registration Number

00000277078

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Robotics and Intelligent Machine Engineering

Thesis Supervisor:

Prof. Dr. Yasar Ayaz (Pride of Performance)

Thesis Supervisor’s Signature: ____________________________________

DEPARTMENT OF ROBOTICS AND INTELLIGENT MACHINE ENGINEERING

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

AUGUST 2022

i

Declaration

I certify that this research work titled “RL based Differential Drive Primitive Policies for

Transfer Learning” is my own work. The work has not been presented elsewhere for assessment.

The material that has been used from other sources it has been properly acknowledged / referred.

(Signature of Student)

Mahrukh Shahid

00000277078

ii

Plagiarism Certificate (Turnitin Report)

This thesis has been checked for Plagiarism. Turnitin report endorsed by Supervisor is

attached.

(Signature of Student)

Mahrukh Shahid

00000277078

(Signature of Supervisor)

iii

Copyright Statement

• Copyright in text of this thesis rests with the student author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the author

and lodged in the Library of NUST School of Mechanical & Manufacturing Engineering

(SMME). Details may be obtained by the Librarian. This page must form part of any such

copies made. Further copies (by any process) may not be made without the permission (in

writing) of the author.

• The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST School of Mechanical & Manufacturing Engineering, subject to any prior

agreement to the contrary, and may not be made available for use by third parties without

the written permission of the SMME, which will prescribe the terms and conditions of any

such agreement.

• Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST School of Mechanical & Manufacturing

Engineering, Islamabad.

iv

Acknowledgements

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this work

at every step and for every new thought which You setup in my mind to improve it. Indeed, I could

have done nothing without Your priceless help and guidance. Whosoever helped me throughout

the course of my thesis, whether my parents or any other individual was Your will, so indeed none

be worthy of praise but You.

I am profusely thankful to my beloved parents who raised me when I was not capable of

walking and continued to support me throughout in every phase of my life.

I would also like to express special thanks to my supervisor Prof. Dr. Yasar Ayaz for his

help throughout my thesis.

I would also like to pay special thanks to Ahmed Hasnain Johar a dear friend for his

tremendous support and cooperation. Each time I got stuck in something; he came up with the

solution. Without his help I wouldn’t have been able to complete my thesis. I truly appreciate his

patience and guidance throughout the whole thesis.

I would also like to thank Dr Sara Ali and Dr Khawaja Fahad Iqbal for being on my thesis

guidance and evaluation committee and express my special thanks to Seemab Buzdar for his

unconditional help.

Finally, I would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study.

v

Dedicated to the never-ending courage, hope & unconditional support

vi

Abstract

To ensure the steady navigation for robot stable controls are the basic unit and control values

selection is highly environment dependent. Adding Generalization to system is the key to

reusability of control parameters to ensure adaptability in robots to perform with sophistication, in

the environments about which they have no prior knowledge, for this Reinforcement Leaning (RL)

based control systems are promising. However, tuning appropriate parameters to train RL

algorithm is a challenge. Therefore, we designed a continuous reward function to minimizing the

sparsity and stabilizes the policy convergence, to attain control generalization for differential drive

robot. We Implemented Twin Delayed Deep Deterministic Policy Gradient-TD3 on Open-AI Gym

Race Car. System was trained to achieve smart primitive control policy, moving forward in the

direction of goal by maintaining an appropriate distance from walls to avoid collisions. Resulting

policy was tested on unseen environments and observed precisely performing results. Upon

comparative analysis of TD3 with DDPG, TD3 policy outperformed the DDPG policy in both

training and testing phase, proving TD3 to be resource efficient and stable.

vii

Table of Contents

Declaration ..i

Plagiarism Certificate (Turnitin Report).. ii

Copyright Statement ... iii

Acknowledgements ...iv

Abstract ...vi

Table of Contents .. vii

List of Figures ...ix

List of Tables ...xi

CHAPTER 1: INTRODUCTION... 1

1.1 Background, Scope, and Motivation .. 1

1.1.1 Controls ... 1

1.1.2 Reinforcement Learning .. 2

1.1.3 Markov Decision Process (MDP) .. 4

1.2 Gap Analysis .. 6

1.3 Problem Statement ... 7

CHAPTER 2: LITERATURE REVIEW .. 8

2.1 Traditional v/s Learning Based Control Approaches ... 8

2.2 RL Policy Gradient Algorithms ... 11

2.3 TD-3 Implementation in Literature .. 12

CHAPTER 3: PROPOSED METHODOLOGY ... 13

3.1 Suggested Policy Design Flow ... 13

3.2 Architectural Design .. 14

CHAPTER 4: DESIGN & IMPLIMENTATION ... 15

4.1 System Architecture ... 15

4.2 Environment Specifications ... 16

4.3 State Space Design ... 17

4.4 Action Space .. 17

4.5 Reward Equation Design .. 18

4.6 Implementation of TD3 .. 20

4.6.1. Critic Network Update ... 21

4.6.2 Actor Network Update ... 23

4.6.3 Critic Network Architecture .. 24

4.6.4 Actor Network Architecture .. 25

viii

4.6.5 Hyperparameters of System ... 25

CHAPTER 5: TRAINING & EVALUATION .. 26

5.1 Training Results ... 26

5.2 Testing Results of TD3 .. 29

5.2.1 Dynamic Goal Environment .. 29

5.2.2 Boundary Free Environment .. 30

5.2.3 Continuous Path Environment ... 31

5.3 TD3 & DDPG Comparison .. 32

5.3.1 DDPG Training .. 32

5.3.2 TD3 v/s DDPG Training .. 34

5.3.2 TD3 v/s DDPG Testing .. 35

CHAPTER 6: CONCLUSION AND FUTURE WORK .. 38

REFERENCES .. 39

ix

List of Figures

Figure 1: Task operation architecture………………………………………………………………………………… 2

Figure 2: Reinforcement learning framework…………………………………………………………………………3

Figure 3: Typical Markov decision process (MDP)………………………………………………………………….. 4

Figure 4: Properties of TD-3………………………………………………………………………………………… 11

Figure 5: Policy design flow chart…………………………………………………………………………………... 13

Figure 6: Designed architecture of system…………………………………………………………………………...14

Figure 7: Implemented architecture of system……………………………………………………………………….15

Figure 8: Differential drive car model………………………………………………………………………………. 16

Figure 9: Designed training environment…………………………………………………………………………… 16

Figure 10: Designed state space……………………………………………………………………………………...17

Figure 11: Action space……………………………………………………………………………………………... 17

Figure 12: Policy based RL-agent……………………………………………………………………………………20

Figure 13: Critic network update……………………………………………………………………………………. 21

Figure 14: Actor network update……………………………………………………………………………………. 23

Figure 15: Critic network architecture………………………………………………………………………………. 24

Figure 16: Actor network architecture………………………………………………………………………………. 25

Figure 17: Actor's convergence per training step…………………………………………………………………… 26

Figure 18: Critic's convergence per training step…………………………………………………………………… 26

Figure 19: Average reward of training per training steps…………………………………………………………… 27

Figure 20: Saved models reward on regular training intervals plot…………………………………………………. 27

Figure 21: Episode reward per training step plot……………………………………………………………………. 28

Figure 22: Step reward per training step plot………………………………………………………………………...28

Figure 23: Dynamic goal environment……………………………………………………………………………… 29

Figure 24: Reward gain plot for dynamic goal environment………………………………………………………... 29

Figure 25: Boundary free environment……………………………………………………………………………… 30

Figure 26: Reward gain plot for boundary free environment……………………………………………………….. 30

Figure 27: Continuous path environment…………………………………………………………………………… 31

Figure 28: Reward gain plot for continuous path environment……………………………………………………... 31

Figure 29: DDPG actor convergence against time step plot………………………………………………………… 32

Figure 30: DDPG critic convergence against time step plot…………………………………………………………32

Figure 31: Average reward of training per training steps plot………………………………………………………. 33

Figure 32: Saved models reward on regular training intervals plot………………………………………………… 33

Figure 33: Step reward per training step plot………………………………………………………………………...33

file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854059
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854060
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854061
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854062
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854064
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854065
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854066
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854068
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854069
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854070
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854071
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854072
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854073
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854074
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854075
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854076
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854077
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854078
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854079
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854080
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854081
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854082
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854083
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854084
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854085
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854086
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854087
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854088
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854089
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854090
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854091

x

Figure 34: Episode reward per training step plot……………………………………………………………………. 33

Figure 35: Testing results of TD3 and DDPG on dynamic goal environment……………………………………… 35

Figure 36: Testing results of TD3 and DDPG on boundary free environment……………………………………… 36

Figure 37: Testing results of TD3 and DDPG on continuous path environment…………………………………….36

file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854092
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854093
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854094
file:///C:/Users/HP%20EliteBook%20820%20G3/Desktop/Thesis%20Write-up%20Final.docx%23_Toc112854095

xi

List of Tables

Table 1: Comparison between Classical controls, Model learning controls and Reinforcement learning controls 10

Table 2: Comparison between DQN, DDPG & TD-3 algorithm .. 12

Table 3: List of TD-3 hyper-parameters .. 25

Table 4: Training Performance Comparison between TD3 and DDPG .. 34

Table 5: Testing Results on DDPG and TD3 on unseen environments ... 37

1

CHAPTER 1: INTRODUCTION

Artificial intelligence and robotics collectively aim to achieve human like artificial

entities to assist humans in the society. Learning and perceiving the environment in way as human

do along with planning and acting to attain the required goal are the fundamental requirements.

Numerous techniques and learning frameworks have been introduced in literature to strive in the

direction of designated aim. However, domain of reinforcement learning (RL) is proving its

worth by adding learning instincts over path planning techniques, and specifically over control

layer, to ensure promising level of autonomy in the social assistive robot system.

Although RL is one competent learning technique but there exist complications that limits

its incorporation in the real word. This opens-up a research gap in the domain of RL. The foremost

concern of RL is its requirement of tremendous amount of training time and resource

consumption. Resolving this would make it a step closer to become the part of the physical world.

The aim of this research is to provide with an RL based training strategy which is less time

consuming and provides a reusable skill.

1.1 Background, Scope, and Motivation

1.1.1 Controls

Typically, robot systems are designed and developed in such a way that they

are empowered to successfully carry out the specified task. Control systems make it possible for

constituents of the robot to move and operate. As well as it enables the robot to carry out a

predetermined series of motions and forces, even in the event of an unexpected error occurrence

[1].

As suggested by a typical task operation architecture figure 1, for any robotic system to

accomplish the assigned task, planning is essential. However, to execute the planed task controls

of robots comes into action and directly interacts with the environment. Therefore, a steady task

performance for robot cannot be accomplished without stability in controls of robot. However,

control commands are typically environment dependent [2]. As, actuator dynamics, joint flexibility

2

and other numerous system uncertainties needs to be considered while dealing with the control

problem of robot manipulators [1].

Typically, robots are required to performing in dynamic environments specifically socially

assistive robots and autonomous cars. They need to generalize their controls over the changing

environment problem to perform autonomous operations. To attain generalization in controls,

various learning-based controls architectures came into existence e.g. intelligent computational

techniques such as Fuzzy Logic theory (FL), Artificial Neural Networks (ANN) and other

evolutionary computational methods such as Genetic Algorithm (GA) have provided us with a

new array of solutions to problems in various control systems [1].

However, reinforcement learning based controls supersedes the other learning techniques.

As, it excludes the need to explicitly model the system, or compute the kinematic equations, unlike

other learning techniques. Moreover, the dynamics of the robot are highly non-linear and difficult

to be modeled [1] RL can effectively abstract out these hardware level dependencies.

1.1.2 Reinforcement Learning

Reinforcement learning is a hit and trial reward signal-based learning paradigm [3]. In

which an agent explores the environment and its own behavior, analyze it on the bases of received

reward signal, by the goal defining reward function, in the quest of achieve maximum cumulative

reward. Figure 2 shows the typical framework of reinforcement learning.

PLANNIG

CONTROL

ENVIRONMENT

execution

execution

ASSIGNED TASK

Figure 1: Task operation architecture

3

Unlike other machine learning approaches, RL can be a promising framework for new skill

set development in robots. It can make agent learning newfangled tasks which cannot be

demonstrated physically by humans, and tasks which are complex to be modeled. It can even

effectively incorporate non-linear complexities e.g., handling objects with delicacy or following a

specified walk. Moreover, it ensures problem generalization instincts in robots i.e., learned skill is

robust enough to be deployed in a previously unobserved environment.

Furthermore, by simply utilizing a known cost function, RL can achieve the optimization

goals of complex problems with no analytic formulation, and issues with unknown closed form

solutions. It can efficiently handle the issues even when the human instructors are not sure about

the optimal solution. In Addition to that, RL can guarantee the capacity to dynamically adapt to

changes in the agent itself, such as a robot adjusting to hardware modifications [4]. These

properties prove RL framework to be a strong problem-solving mechanism.

However, RL is based on reward maximization in the given environment over timesteps

therefore, it requires extensive trial and error in environment to achieve the desired goal i.e., policy.

Policy is the selection of action given state in a way to maximize the reward. This originates the

sample inefficiency problem. Moreover, numerous hyperparameter needs to be tuning to converge

the RL algorithm [10].

AGENT
ENVIRON

MENT
Reward = Rt

Action= At

State= St

Figure 2: Reinforcement learning framework

4

1.1.3 Markov Decision Process (MDP)

RL problems setting can be effectively modeled using Markov decision process (MDP),

figure 3. MDP models decision making on discrete, stochastic, and sequential environments. Each

state of MDP observes Markov property i.e., probability of occurrence of state st+1 is equal to the

sum of probabilities of states from s0 to st. this excludes the need to preserve the entire sequence

of states, as single state holds the transition information from past to future.

Tuple of MDP consists of states space S representing the states of environment and action

space A feasible action from the given state. P is the transition probability to state st+1 given

state st and action at.

𝑃𝑠𝑠′
𝑎 = 𝑃[𝑆𝑡+1 = 𝑠′| 𝑆 = 𝑠, 𝐴𝑡 = 𝑎]

Reward signal R is estimated reward of transition rt+1 given state st and action at.

𝑅𝑠
𝑎 = 𝐸[𝑅𝑡+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

Figure 3: Typical Markov decision process (MDP)

5

Discount factor γ, to compute return Gt estimated discounted reward from future states.

Return Gt adds perspective of possible impact of future states based on reward, to the current state.

Where, γ is bounded between [0, 1] ranging myopic to farsighted evaluation.

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ = ∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

Adding perspective of MDP to RL agent is required, on bases of which it evaluates the

states and select action to solve MDP. Therefore, policy π distribution of action A given state S

is used by agent to draw action given state. Selection of maximum reward generating action will

solve the MDP.

𝜋(𝑎|𝑠) = 𝑃[𝐴𝑡 = 𝑎 | 𝑆𝑡 = 𝑠]

However, Value function is used to evaluate the goodness of state, or state-action pair. Q-

value function is the expected return given state s and action a. Therefore, maximization of Q

value over all policies leads to optimal solution.

𝑄𝜋(𝑠, 𝑎) = 𝐸[𝑅𝑡+1 + 𝛾𝑄𝜋(𝑆𝑡+1, 𝐴𝑡+1) | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

Bellman equation for Q:

𝑄(𝑠, 𝑎) = 𝑅𝑠
𝑎 + 𝛾 ∑ 𝑃𝑠𝑠′

𝑎

𝑠′𝜖 𝑆

𝑄(𝑠′, 𝑎)

Bellman equation for optimal Q-value function:

𝑄∗(𝑠, 𝑎) = 𝑅𝑠
𝑎 + 𝛾 ∑ 𝑃𝑠′𝑠

𝑎 𝑚𝑎𝑥𝑎′ 𝑄∗(𝑠′, 𝑎′)

𝑠′∈ 𝑆

6

1.2 Gap Analysis

Robots interacting with human-inhabited, unstructured, and highly uncertain environment,

traditional control system in such environment is most likely to be doomed to failure as they are

based on manually preprogramming and traditional physics-based modelling tools and hand-

crafted models. To overcome this limitation model learning effective incorporate environment’s

nonlinearities and can generalize over system, as model can be estimated directly from the real

data of the system [2]. However, to deploy model-predictive controls, state-of-the-art approaches

often adopt a sequential approach with components as, starting with state estimation, managing

contact with environment followed by trajectory prediction and optimization, model-based control

prediction and finally operational space command [5][6]. Designing and development of such

approach is dependent on availability of accurate dynamic models of robot which is not a trivial

task and requires technical expertise of the system. In contrast, end-to-end deep reinforcement

learning can effectively abstract the low-level system dependent specifications with relatively

similar reward function equation. Therefore, excluding the need for any prior knowledge about the

robot’s and environment’s dynamics. This can ensure the performance of robot without explicit

system identification or manual engineering. Therefore, if deep reinforcement learning is

effectively implemented, it may automate controller design, eliminating the requirement for

system identification and producing controls that are directly tuned for a specific robot and

environment [6].

As RL is based on reward maximization in the given environment over timesteps therefore,

it requires extensive trial and error in environment to achieve the desired goal i.e., policy selecting

of action given state in a way to maximize the reward, this originates the sample inefficiency

problem, along with that numerous hyperparameter needs to be tuning. So, to design and train RL

policy for continuous action spaces, Twin delayed deep deterministic policy gradient (TD3)[7] a

successor of DDPG [8], ensure a stable and robust actor update along with the minimization of

overestimation bias in critic network and eventually stabilizes the learning for continuous action

spaces. However, TD-3 is not implemented for differential drive car.

7

1.3 Problem Statement

 Training TD-3 to convergence is a complicate and time-consuming process. However, it

is considered as stable algorithm for continuous action spaces. No implementation of TD-3 for

differential drive is available in literature. Therefore, implementing TD-3 to analyze the

convergence in comparison with DDPG and to ensure the trained policy reusability, design a

primitive policy for transferable learning.

8

CHAPTER 2: LITERATURE REVIEW

As the identified problem hovers over two different and prevalent domains of knowledge,

both have attained sophisticated level of maturity in terms of development and implementation,

control system and reinforming learning. Therefore, a reasonable amount of literature assessment

is required to find an apt and efficient solution, in terms of stability, scalability and robustness to

ensure a reliable merger to best address the specified problem.

Therefore, this chapter is consisting of comparison between traditional controls

architecture and learning based control techniques in robotic. It covers the different learning

techniques along with multiple RL algorithms in search of an effective solution to the specified

problem.

2.1 Traditional v/s Learning Based Control Approaches

Traditional control system functions on the bases of accurate analytical model. However,

due to the complexity of contemporary robot systems, obtaining precise analytical models, is a

challenging task [2].

Moreover, the interaction of robots with human-inhabited environment which are

typically unstructured and highly uncertain, traditional control system in such environment is

most likely to diminution in terms of performance or even lead to a total failure [2].

Contrary to traditional controls, learning a model instead of manually preprogramming,

it proves to be an effective option since the model can be estimated directly from the real data

of the environment which ensures robustness and environment generalization to the system.

Furthermore, even unknown nonlinearities can be immediately taken into consideration by

learning models which will boost the efficiency of system, whereas traditional physics-based

modelling tools and hand-crafted models both ignore them entirely [2].

9

However, online learning of such models learning approaches is required in order to

generalize the learnt models over a broader state space and adjust the models to time-

dependent changes. RL fill this gap effectively [2].

Moreover, RL can effectively replace the requirement of supervised learning dataset along

with the requirement of kinematic equation’s parameters by reward function [6].

10

T
ra

in
in

g

R
es

o
u

rc

e

E
ff

ic
ie

n
c

y

✓

X

X

T
ra

in
in

g
 T

im
e

E
ff

ic
ie

n

cy

✓

X

X

R
o

b
u

st

T
o

U
n

ce
r
t

a
in

ty

X

✓

✓

R
o

b
u

st

,

U
n

k
n

o

w
n

N
o

n
li

n

ea
ri

ti
e

s X

✓

✓

E
n

v
ir

o

n
m

en
t

G
en

er

a
li

za
ti

o
n

X

✓

✓

A
d

a
p

ti
v

e

T
o

 T
im

e

D
ep

en
d

e

n
t

C
h

a
n

g
es

X

X

✓

R
eu

sa
b

le
,

O
n

 U
n

se
e
n

E
n

v
ir

o
n

m
e

n
t X

X

✓

S
u

p
er

v
is

e

d
 D

a
ta

se
t

D
ep

en
d

e

n
t X

✓

X

M
a

n
u

a

l
P

re
-

p
ro

g
ra

m
m

in
g

✓

X

X

K
in

em
a

t

ic

E
q

u
a

ti
o

n

D
ep

en
d

e

n
t

✓

✓

X

R
eq

u
ir

es

a
cc

u
ra

te

a
n

a
ly

ti
ca

l
m

o
d

el
s

✓

X

X

C
la

ss
ic

a
l

C
o

n
tr

o
l

M
et

h
o

d
s

M
o

d
el

L
ea

rn
in

g

C
o

n
tr

o
l

R
L

C
o

n
tr

o
l

Table 1: Comparison between Classical controls, Model learning controls and Reinforcement learning

controls

11

2.2 RL Policy Gradient Algorithms

To develop a sophisticated policy, policy learning based RL algorithms were extensively

reviewed, in search of appropriate a stable algorithm.

Starting off with Deep-Q Networks (DQN) which led the bases for further development.

DQNs are Q value function-based learning, aims to converge Bellman optimality equation, to

attain maximum discounted Q value-based reward [9].

Although DQN is a promising technique but due to maximization over state and action

pare value, its scope is limited to discrete action space. This limitation is effectively resolved by

Deep Deterministic Policy Gradient (DDPG) models, by introducing a separate policy

approximator and instead of directly maximizing over Q-value function it considers the output

from policy approximator and effectively handles the continuous action space [8].

Despite of resolving the continuous action space limitation, the algorithm lacked in stable

convergence of policy approximator(actor). Twin Delayed Deep Deterministic Policy Gradient

(TD-3) [7] came up with improvement solution, ensuring the stable actor convergence and reduce

overestimation bias propagation by critic along robustness to noisy states. Figure 4 briefly

describes the significance of TD-3.

• use min value for critic update

• reduce overestimation of bias
Twin = Twin critic

networks

• stabilizes actor’s learning
Delayed = delayed actor

network updates

• smooths actor learning

• avoid overfitting on spike
Noise Regulation =

clipping noise to actions

Figure 4: Properties of TD-3

12

Algorithm

Continuous

Action

Space

Stable

Actor

Update

Bias

Propagation

Noise

Regulation

No. of

Approx.

Networks

DQN X X ✓ X 2

DDPG ✓ X ✓ X 4

TD-3 ✓ ✓ X ✓ 6

Table 2: Comparison between DQN, DDPG & TD-3 algorithm

Table 2 specifies the comparison between state of the are RL policy gradient algorithm,

in terms of stability and performance.

2.3 TD-3 Implementation in Literature

TD-3 is implemented on numerous environments in literature including, Half-cheetah

environment, Inverted pendulum environment, Reacher environment, Hopper environment and

Walker-2D environment [7] primarily on 2-D environments. However, literature do not provide

any implementation of TD-3 for differential drive race car environment.

13

CHAPTER 3: PROPOSED METHODOLOGY

3.1 Suggested Policy Design Flow

The suggested flow of policy design and training comprises of following features:

• Environment: where robot/agent explores the problem in hand by experiencing states

space of environment along with implementing action from action space of robot, gain

reward to evaluate its performance.

• Reward function: Criteria on which agent compares its performance, it precisely binds

environment state space with the problem in hand, reward function is entirely problem

dependent. Reward function proves to be the key to the solution.

• Training RL Algorithm: Technique under which robot/agent process the environment by

making use of reward function in order to approximate the policy function which maps

state to action in way to resolve the problem.

• RL Agent-Model: sophisticated learned policy approximator, that can be tested in unseen

environments.

All these components are inter-connected and dependent on each other, in terms of

performance to accomplish the anticipated goal i.e., a well-trained policy. Figure 5 blow

effectively explains the flow of policy design.

Figure 5: Policy design flow chart

Environment
Reward

Function
Training RL
Algorithm

RL Agent-Model

14

3.2 Architectural Design

 Proposed system architecture is shown in figure 6. RL agent aims to interact with the

environment and perceive the state. Perceived state is analyzed on the bases of reward function to

estimate a Value function, which in return contributes to policy estimation. Estimated policy is

required to compute actions. Estimated action is executed in environment and next state is

perceived on bases of which value function is updated. That way policy and value function

estimator will contribute to improving one another.

RL Policy Gradient Algorithm

Reward Function

Environment

Policy Function

Value Function

Environment State Environment Action

Update

Figure 6: Designed architecture of system

15

CHAPTER 4: DESIGN & IMPLIMENTATION

4.1 System Architecture

A typical robotics system consists of physical layer dealing with hardware of robot and its

surroundings i.e., world, however to analysis the perceived data and draw an appropriate

conclusion in order to perform any action an analytical layer is required. Therefore, the proposed

system figure 7, consists of multiple components synchronizing with each other to accomplish a

unanimous goal.

Physical Layer:

• Environment: consisting of robot model and the model of world.

• State Space: describes the robot’s perception of the world

• Action Space: describes the robot’s actuators state to manipulate the world

Analytical Layer:

• Reward function: criteria on which perceived state is analyzed on the bases of defined

goal.

• Twin delayed deep deterministic policy gradient-TD3: develop a generic policy on

the bases of reward and state space to accomplish the defined goal

Reward Function

Twin Delayed Deep Deterministic Policy Gradient

Environment

Environment State Environment Action

Figure 7: Implemented architecture of system

16

As described in the figure above tools used to develop the systems are, environment:

Properties of physics are implemented by, PyBullet- opensource physics engine-based library.

Model of world is implemented by OpenAI Gym environmnet, specifically designed and

extensively used to simulate RL problems. However, Reward function and TD-3 is implement

using Pytorch, a well-recognized tool for Machine learning problem domain. Whereas the whole

system collaborated under Google Collaboratory.

4.2 Environment Specifications

To train and evaluate the performance of system on differential drive, race car model in

Open AI Gym environment is utilized. Race car is equipped with LIDAR sensor, to incorporate

obstacle detection. LIDAR of 100 rays is fixed to Hokuyo joint covering the front portion of the

car, visualized in figure 8. A forward moving path environment was designed, bounded by wall

from all four sides, following all the constrains of typical world model of Gazebo to train the RL

agent, as shown in figure 9.

Figure 9: Designed training environment

Figure 8: Differential drive car model

17

4.3 State Space Design

State space is the only visible interpretation of environment for the agent. Therefore, it

must be comprised of factor, effective enough for agent makes sense of its environment, consisting

of enough information to achieve the desired policy. Thus, a continuous state space is designed to

ensure localization and mobility towards the goal along with obstacle detection, state space

consist of following component: robot’s base position and orientation along with distance to

goal this adds localization. To ensure mobility in the direction of goal robot’s linear velocity and

robot’s angular velocity is added. However, active lidar ray along with the lidar hit point are

for obstacle detection. Figure 10 visually describes the state space, dimension of entire state space

is (1 × 414).

4.4 Action Space

Action space of robot consist of 2 components, shown in figure 11. Both the components are

in continuous in nature bounded by [-1, 1], dimension of action space is (1 × 2).

Linear Velocity

Angular Velocity

Lidar Hit Points

…………………… x100 ……………………

…………………… x100 ……………………
 Active Lidar Rays

Base Position

Base Orientation

Goal Distance

Velocity Steering Angle

Figure 10: Designed state space

Figure 11: Action space

18

4.5 Reward Equation Design

Reward function is the criteria on which agent compares its performance, it precisely binds

environment state space with the problem, to attain the desired goal.

Correlation between designed state space and reward function guarantees the solution.

Therefore, for continuous state space a continuous reward function is required to be mapped over

the continuous action space. Reward function is entirely problem dependent and proves to be the

key to the solution.

To attain a compatibility between state space and reward function, reward function

comprises of 4 components, each component adds a distinct feature to achieve a step toward the

goal. All the components are normalized to get a continuous composite reward equation (5)

bounded between -1 and 1, with -1 being the worst 1 being the best as it approaches goal. Reward

function consists of following components:

To avoid collision, collision reward is one of the components. It generates a sharp -1 signal

for colliding with the wall and 1 otherwise.

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑤𝑎𝑟𝑑 = {
−1, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑤𝑎𝑙𝑙 < 0

1, 𝐸𝑙𝑠𝑒
 (1)

 To add perception about the goal, and encourage the displacement in the direction of goal,

closeness to goal is incorporated (2). Where current distance is the Perpendicular distance from

the car base and goal and total distance is perpendicular distance between car base and goal at

initial position i.e., start of episode. Closeness to goal is bounded between -1 and 1, approaches -

1 if car’s displacement is away from goal and 1 if it approaches goal.

𝐶𝑙𝑜𝑠𝑠𝑛𝑒𝑠𝑠 𝑔𝑜𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑 = 1 −
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
, [−1, 1] (2)

19

To boost the mobility straight in the direction of goal i.e., forward in y-direction, linear

velocity reward (3) suppresses the velocity in x-direction and encourages high velocity in y-

direction. Resultant velocity of system is bounded between 1 and -1 therefore, max attainable

velocity in either direction (x or y) is 1 and minimum is -1 in case the other component is

suppressed to 0. So, the difference between y component and x component of linear velocity will

be bounded between 1 and -1 representing movement in positive and negative direction of axis

respectively. However, to double the weightage of linear velocity, factor of 2 is multiplied, to avoid

local maxima.

𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑟𝑒𝑤𝑎𝑟𝑑 = 2 ∗ (𝑌𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 − |𝑋𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦|), [−2, 2] (3)

To avoid deflection from the straight path by suppressing angular velocities of car, angular

velocity reward component (4) is added, it ensures sharp -1 reward if angular velocity exceeds

from the empirically set threshold value however, reward approaches to 1 if angular velocities in

all the directions are suppressed to zero.

𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑟𝑒𝑤𝑎𝑟𝑑 = {
−1, |𝑌𝑎𝑛𝑔𝑢𝑙𝑎𝑟| + |𝑋𝑎𝑛𝑔𝑢𝑙𝑎𝑟| + |𝑍𝑎𝑛𝑔𝑢𝑙𝑎𝑟| > 0.09

1 − |𝑌𝑎𝑛𝑔𝑢𝑙𝑎𝑟| + |𝑋𝑎𝑛𝑔𝑢𝑙𝑎𝑟| + |𝑍𝑎𝑛𝑔𝑢𝑙𝑎𝑟|, 𝐸𝑙𝑠𝑒
 (4)

The composite, normalized, continuous reward equation, combining the components of reward

function is as follows:

𝑅𝑒𝑤𝑎𝑟𝑑 =

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑤𝑎𝑟𝑑 +
𝑐𝑙𝑜𝑠𝑠𝑒𝑛𝑒𝑠𝑠 𝑡𝑜 𝑔𝑜𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑 +

𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑟𝑒𝑤𝑎𝑟𝑑 + 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑟𝑒𝑤𝑎𝑟𝑑

5
, [−1,1] (5)

20

4.6 Implementation of TD3

 TD3 is implemented to enable RL-agent to develop an action approximator know as policy

which maps give state of environment to action space of the robot, maximizing cumulative reward,

to act in the quest of solving the given task as shown in figure 12.

To train an RL-agent to solve a

problem, it requires an environment

representation for agent to work on. Tuple of

Markov decision process representing

environment is used. Environment tuples

<S, A, R, S’> consist of:

• current state S

• current action A

• current reward R, received by following action A from state S

• next state S’ which is led by action A from state S

However, to add perspective of environment tuple to agent, in order to analyze the state and

action set and take an appropriate action in the direction of solution i.e., attain maximum

cumulative reward, value function and policy approximators are required.

Therefore, TD-3 consists of 6 neural networks in total, which converge simultaneously to

attain a stable system. 4 neural networks are Q-value approximators known as critic networks and

2 are policy approximators known as actor networks. Both Q-value network and policy networks

works hand in hand to learn an appropriate policy out of given environment tuple.

Critic networks or Q-value networks, 2 out of 4 are considered as target Q-networks

represented as gray block of neural networks in figures below, with frozen weights and are not

updated on regular bases i.e., on each iteration to avoid update of critic in an inappropriate

direction and getting overfit on current limited experience. However, the other pair is current Q-

network represented as red block of neural networks, is used to assign Q-value to the current state

E
n
v
ir

o
n
m

en
t

A
ct

io
n

S
ta

te

Figure 12: Policy based RL-agent

21

and action set and are step ahead of target Q-networks. This pair of networks is updated on regular

bases on each iteration and on every environment experience.

Actor network or policy network, 1 of the two networks is target policy network,

represented as gray block in figures below, with frozen weights and are not updated on regular

bases i.e., on each iteration to avoid actor getting overfit on an unstable critic update. However,

other policy network is known as current policy network represented as blue block in figures

below, likewise they do not experience regular weights update to avoid unstable actor update on

unstable critic update.

4.6.1. Critic Network Update

Critic network as evident from the name adds criticism to the performance of the agent in

the environment. Its takes state and action pair and assign it the value in terms of received reward

over time steps. Formally, critic network estimates the expected return i.e., cumulative reward

over the discounted steps given the state and action pair.

˂ S, A, R, S’˃

A
ct

o
r

N
et

w
o

rk
s

C
ri

ti
c

N
et

w
o

rk
s

S’

A’

S’

A’

R

R

R

min

min

min

min

Q

Q

S

A

mse
loss

mse
loss

loss

QT

QT

Figure 13: Critic network update

22

Therefore, to train an estimator it requires a target to be approached and minimize the

difference between estimated return and estimated target return by backpropagating the error.

This process in referred as critic network update, the architectural flow of critic network update is

briefed in figure 13.

Starting with the target Q-value QT generation, received environment tuple is utilized, next

state S’ is feed to frozen actor network (gray actor network) to estimate the next action A’. S’ and

A’ are feed to frozen critic networks (gray critic network) to get QT value (estimated discounted

reward from given S’ and estimated A’), min of QT is summed with R actual reward received from

the transition from S to S’ following A. Minimum of QT is used to suppress the propagation of

overestimation bias in Q network and stabilize the training.

To estimate the current Q value Q, current critic networks (red critic networks) are exposed

to S and A from environment tuple. Sum of mean square error loss is computed for each Q value

with the estimated Q target (QT + R) and propagated backward to update the current critic network

in the direction of loss minimization.

𝐿𝑜𝑠𝑠(𝑄) = 𝐸 [(𝑄1(𝑠, 𝑎) − (𝑟 + 𝛾 𝑚𝑖𝑛 (𝑄𝑇 (𝑠′, 𝜋𝑡𝑎𝑟𝑔𝑒𝑡(𝑠′)))))

2

]

+ 𝐸 [(𝑄2(𝑠, 𝑎) − (𝑟 + 𝛾 𝑚𝑖𝑛 (𝑄𝑇 (𝑠′, 𝜋𝑡𝑎𝑟𝑔𝑒𝑡(𝑠′)))))

2

]

This update of critic network is conducted once on every time step. However, Target critic

networks are updated with soft copy of current critic networks once after every 2-time steps, to

keep appropriate difference between target and current critic network, to avoid convergence in an

inappropriate direction.

23

4.6.2 Actor Network Update

Actor network or policy network are the estimated distribution of action given state to

maximize the expected reward. Therefore, actor network needs to ensure an appropriate action

selection to enhance the performance of agent in the given problem setting. Action is analyzed by

the given critic network and updated in the direction to maximize the return.

A stable actor is ensured by a stable critic therefore, actor is update once in every two

timesteps giving critic the time to get mature over the experiences of environment as critic is

updated on every timestep. Figure 14 defines the actor update steps.

Current state S from the tuple is utilized it is feed to the current actor network π to get

estimated current action A. To draw the analysis on the estimated action it is exposed to current

critic network along with the current state, as a result π is updated on the bases of generated Q-

value in a way that selected action A maximizes the Q-value.

S

˂ S, A, R, S’˃

A
ct

o
r

N
et

w
o

rk
s

C
ri

ti
c

N
et

w
o

rk
s

Q

S

A

-Q = loss

-Q = loss

A

Figure 14: Actor network update

24

Therefore, loss to be backpropagated to actor network is -Q, negative sign is appended to

solve maximization problem using gradient decent.

𝐿𝑜𝑠𝑠(𝜋) = −𝑄(𝑠, 𝜋(𝑠))

However, soft copy updates i.e., probabilistically updating weights of frozen actor

networks πtarget by current actor network are performed once in every 2 timesteps, to ensure

appropriate difference between the two networks and stabilize the training by restraining the target

network from divergence.

4.6.3 Critic Network Architecture

All critic networks are identical in terms of architecture, consisting of one input layer and

2 hidden layers following the output layer. Input layer consisting of 416 neurons ensuring

compatibility with 414 components for state space and 2 components of action space, nonlinearity

is ensured by incorporating Relu activation function. First hidden layer comprises of 400 neurons

along with Relu nonlinearity following 300 component based linear hidden layer 2 converging the

flow to signal neuron comprising output layer. The finalized architecture of critic neural networks

figure 15 is designed to attain the best performance of system.

H
id

d
en

 L
ay

er
_2

 =
 3

0
0

O
u

tp
u

t
La

ye
r

=
1

 H
id

d
en

 L
ay

er
_1

 =
 4

0
0

R

el
u

 A
ct

iv
at

io
n

In
p

u
t

La
ye

r
=

4
1

6

R

el
u

 A
ct

iv
at

io
n

Figure 15: Critic network architecture

25

4.6.4 Actor Network Architecture

Actor networks consisting of an input layer consisting of 414 components to accommodate

the state space, along with 2 hidden layers, comprising of 400 neurons and Relu nonlinearity and

300 neurons with tanh nonlinearity respectively. Finally converging to 2 neurons based linear

output layer, to accommodate 2-dimensional action space. The architectural design of actor neural

network figure 16 is based on overall system performance enhancement.

4.6.5 Hyperparameters of System

 All hyperparameters

are tuned to attain the best

possible performance of the

system. Hyperparameters are

listed in the table.

O
u

tp
u

t
La

ye
r

=
2

 H
id

d
en

 L
ay

er
_1

 =
 4

0
0

R

el
u

 A
ct

iv
at

io
n

In
p

u
t

La
ye

r
=

4
1

4

R

el
u

 A
ct

iv
at

io
n

H
id

d
en

 L
ay

er
_2

 =
 3

0
0

ta

n
h

 A
ct

iv
at

io
n

Figure 16: Actor network architecture

Table 3: List of TD-3 hyper-parameters

26

CHAPTER 5: TRAINING & EVALUATION

5.1 Training Results

 The training of implemented system has acquired precisely converging graphical results.

Losses of both actor and critic network are converging effectively justifying the theoretical

explanation and maximizing the received reward. Best trained policy was attained at 26k steps of

training, generated average reward value of 235 when evaluated over 10 episodes.

Actor network’s loss plot figure 17 shows loss decreasing against training time step. Stared

from zero and settled at around -30 after 150k training step. As actor’s loss is negative Q-value of

estimated action against the given state, therefore, loss minimization is proportional to Q-value

maximization. Lower the actor’s loss higher the Q-value for the estimated action.

Critic network’s loss defines the closeness between estimated target Q-value and estimated

current Q-value, minimum difference i.e., closer to zero ensures convergence. Critic’s loss plot

figure 18 shows, starting from zero due to identical target and critic network, progressed to 4 after

being exposed to 150k steps of training. Proving to be acceptable results as gained reward is

increasing with time steps.

Figure 17: Actor's convergence per training step Figure 18: Critic's convergence per training step

27

 To estimate the performance of training models, models are saved on regular intervals to

be evaluated in terms of gained reward, as shown in figure 19. High reward generating peaks and

stable plateau of the saved models plot are evaluated. Best performing and highest reward

producing model, peak at 26k steps generating reward value of 235 was selected for the testing on

unseen environment.

However, overall performance of training can be evaluated by average reward plot against

training steps figure 20. It started increasing after a sharp decline on the initial training steps, this

ensures agent exploring environment and eventually converging in the anticipated direction.

Figure 20: Saved models reward on regular training

intervals plot
Figure 19: Average reward of training per training steps

28

Reward per episode and reward per step againts traning steps are ploted in figure 21 and

figure 22 respectively, to analyze per step traninig performance and overall episode performance.

Figure 21: Episode reward per training step plot Figure 22: Step reward per training step plot

29

5.2 Testing Results of TD3

 Best reward gaining policy on the training environment was selected to be tested on the

unseen environment. During testing the policy performed precisely in new environment, gaining

reward. Policy was tested of 3 different environment, which agent have not experienced before:

• Dynamic goal environment

• Boundary free environment

• Continuous path environment

5.2.1 Dynamic Goal Environment

Agent’s performance was evaluated on a continuous path environment in which goal is

shifted forward, as the robot approaches the defined vicinity of goal figure 23. The performance

of agent can be evaluated by reward per step graph figure 24. Starting from less than 0.5, increasing

on every step approaching 1. However, it is experiencing a sharp decline when the goal is shifted

but avidly recovers the gaining reward.

Figure 24: Reward gain plot for dynamic goal environment Figure 23: Dynamic goal

environment

30

5.2.2 Boundary Free Environment

 Boundary free environment neglects the notion of obstacles by removing the boundary wall

of the environment, visualized in figure 25. This can effectively change the knowledgeable state

space values, as agent will experience no active lidar values unlike training environment.

Evaluation results clearly states that change in environment is not affecting the agent’s

performance, evident in gained reward plot figure 26.

Reward graph states the increasing reward gaining policy performance, starting from lesser

than 0.44 reward and progressing to 0.54 reward in just 400 steps episode, as agent approaches in

the direction of goal, without deviating from the straight path.

Figure 26: Reward gain plot for boundary free environment Figure 25: Boundary free

environment

31

5.2.3 Continuous Path Environment

To evaluate the agent on continuous path visualized in figure 27, front wall of the training

environment is removed which was the closest obstacle to goal in the training environment.

Subsequently this changes the experienced states of environment for agent.

Performs of agent can be evaluated by gained reward plot figure 28. Reward graph states

the increasing reward gaining policy performance, starting from lesser than 0.44 reward and

progressing to 0.56 reward in just 500 steps episode, as agent approaches in the direction of goal.

Figure 28: Reward gain plot for continuous path

environment

Figure 27: Continuous path

environment

32

5.3 TD3 & DDPG Comparison

To conduct an appropriate comparison between TD3 and DDPG both the agents are

trained and tested under similar conditions.

5.3.1 DDPG Training

To validate the selection of RL algorithm comparison on the bases of training performance

is conducted, between the designed TD3 agent with DDPG agent. For that reason, a DDPG agent

was trained under similar conditions. Performance of training was evaluated on the bases of

training stability and convergence time required for agent. After evaluation of several peaks of

saved models during training of DDPG, best policy selected is the peak after 100k steps of training

generating reward value of 210.

Convergence of actor is evident from figure 29 actor’s loss over training steps. It started

from zero decreasing over training step approached -20 over 250k training steps. However, is not

fully converged even after 250k of training. Critic’s loss is converging well figure 30, after 250k

training steps loss value is around 1.5 which is close to zero.

Figure 29: DDPG actor convergence against time step plot Figure 30: DDPG critic convergence against time step plot

33

Although average reward against training is increasing figure 31 but Rewards against

training steps plots figure 32, figure 33, figure 34 shows instability in training. As its reward plots

are extremely noisy, comprising of numerous peaks with barely any smooth plateaus. These plots

are highlighting the instability in the training system of DDPG.

Figure 31: Average reward of training per training steps plot Figure 32: Saved models reward on regular training intervals

plot

Figure 34: Episode reward per training step plot Figure 33: Step reward per training step plot

34

5.3.2 TD3 v/s DDPG Training

 To conduct justifiable training performance comparison between TD-3 and DDPG, both the

algorithms were trained under similar conditions. Values of corresponding hyper parameters were

kept equal while training both TD-3 and DDPG. However, performance on the bases of

convergence and reward maximization over training steps were observed, results are summarized

in table 4.

 Training updates of TD-3 and DDPG were based on batch size of 100 steps, discount factor

γ was set to 0.99 to maximize the reward foresight. However, algorithm dependent hyper parameters

were tuned accordingly, e.g., actor update frequency was set 2 for TD3 and 1 for DDPG. Although,

architecture of both actor and critic networks were kept similar for both the algorithms but learning

rate differed to aid the convergence of different setups. For TD3 both actor and critic observed same

learning rates of 10-6. Whereas actor and critic learning rate for DDPG were 10-4 and 10-2

respectively.

 Despite of keeping the similar training architecture convergence performance of the two

algorithms visibly differ from each other, as summarized in Table 1. Actor network loss of DDPG

has converged to -20 and critic network loss has converged to 1 with maximum average reward of

165.26 even after 250k steps of training. In contrary to that, actor network loss of TD3 has

converged to -30 and critic network loss has converged to 5 with maximum average reward rising

to 201.86 in just 200k steps of training. However, maximum reward generating policy for DDPG

Algorithm

Batch
Size

Actor’s
Update

Frequency

Discount
Factor

Actor
Learning

Rate

Critic
Learning

Rate

Training
Steps

Actor Loss
Convergence

Critic Loss
Convergence

Max
Avg

Reward

Max
Episode
Reward

TD-3 100 2 0.99 10-6 10-6 200k -30 5 201.86 235.27

DDPG 100 1 0.99 10-4 10-2 250k -20 1 165.26 210.69

Table 4: Training Performance Comparison between TD3 and DDPG

35

is with episode reward value of 210.69 on 105k training steps and for TD3, best policy is generating

235.27-episode reward value on 26k training policy.

 Moreover, instability in training of DDPG is evident by noisy reward graphs. Overall

training performance of two algorithms suggest that TD3 outperformed DDPG in the designed

setting. Training TD3 is resource efficient and stable as compared to DDPG.

5.3.2 TD3 v/s DDPG Testing

To compare the performance of TD3 and DDPG agents in unobserved environment, both

the agents were tested in all three designed testing environments, namely:

1. Dynamic goal environment

2. Boundary-free environment

3. Continuous path environment

In Dynamic goal environment, performance of trained agent was evaluated on a continuous

path in which goal is shifted forward, as the robot approaches the defined vicinity of goal,

environment shown in figure 35a. Figure 35b states the performance of TD3 agent. Starting from

less than 0.5, increasing on every step approaching 1 experiencing max reward of 0.63. It is

experiencing a sharp decline when the goal is shifted but avidly recovers by gaining reward.

Episode ended with total reward 241.38 over 400 steps. However, performance of DDPG policy

is relatively noisy, shown in figure 35c. Starting from 0.25 and approaching 1 with max reward

experienced is 0.58. Episode ended with total reward of 217.58 over 400 steps.

Figure 35: Testing results of TD3 and DDPG on dynamic goal environment

36

Boundary free environment neglects the notion of obstacles by removing the boundary wall

of the environment, visualized in Figure 36a. This can effectively change the knowledgeable state

space values, as agent will experience no active lidar values unlike training environment.

Evaluation results of TD3 figure 36b, clearly states that change in environment is not affecting the

agent’s performance, evident by gained reward plot. Trend of reward graph shows the increasing

reward gaining policy performance, starting from lesser than 0.44 reward and progressing to 0.54

reward, as agent approaches in the direction of goal, without deviating from the straight path. Total

reward of 400 steps episode is 238.73. However according to reward plot of DDPG agent figure

36c, starting reward is 0.52 and it is increasing maximum up to 0.625. sharp spike on initial steps

shows the noisy performance of policy. Total reward gained is 213.78 over the episode.

To evaluate the agent on continuous path visualized in figure 37a, front wall of the training

environment is removed which was the closest obstacle to goal in the training environment.

Subsequently this changes the experienced states of environment for agent. Performs of TD3 agent

on this environment can be evaluated by gained reward plot figure 37b.

Figure 36: Testing results of TD3 and DDPG on boundary free environment

Figure 37: Testing results of TD3 and DDPG on continuous path environment

37

Graph states the increasing reward gaining policy performance, starting from lesser than 0.53

reward and progressing to 0.625 reward in just 400 steps episode, as agent approaches in the

direction of goal. Total reward of episode is 238.60. Performance of DDPG agent on continuous

path environment is shown in figure 37c, starting from 0.20 and reaching 0.60. However,

experienced reward plot is considerably noisy. Total reward of episode is 213.79.

Testing Results of DDPG and TD3 on unseen environment clarified the performance and

stability of TD3 agent over DDPG agent. Testing results stated in table 5, shows the performance

of both the agents in previously unobserved environment, tested over 50 episodes, where each

episode is of 400 steps. In which TD3 out-performed DDPG in all the environments, generating

average rewards of 241.38, 238.72 and 238.60 in dynamic goal environment, boundary free

environment and continuous path environment respectively. In contrary to that, DDPG generated

217.58, 213.79 and 210.69 in dynamic goal environment, boundary free environment and

continuous path environment respectively.

Environments RL Agent Episode Steps
Total Evaluated

Episodes
Average Reward

Dynamic Goal

Environment

TD3 400 50 241.38

DDPG 400 50 217.58

Boundary Free

Environment

TD3 400 50 238.72

DDPG 400 50 213.79

Continuous Path

Environment

TD3 400 50 238.72

DDPG 400 50 213.78

Table 5: Testing Results on DDPG and TD3 on unseen environments

38

CHAPTER 6: CONCLUSION AND FUTURE WORK

This thesis concludes by effectively training TD-3 for Differential Drive Race Car with

continuous action space, to move forward in the direction of goal. This will exclude the need for

differential drive dependent analytical module, by designing the reward function. The reward

function correlates with the state pace of the environment to train a policy. Such policy effectively

maps state space over the action space by maximizing the cumulative reward. The trained policy

was effectively tested on unseen environments including the curved path providing sophisticated

results.

Moreover, an effective comparative result between DDPG and TD3 are included in the

study. The comparison reflets that TD3 ensures a stable and rapidly converging training system,

which is resource efficient. This comparison validates the selection of algorithm for policy free,

model free, differential drive system with continuous action space.

Future of this work can be directed to the designing and training more primitive policies

and combine them is an effective manner to construct a compound policy, performing in a complex

task environment. Furthermore, this policy can be implemented on real robot to be tested in the

real world.

39

REFERENCES

[1] A. Ibrahim, R. R. Alexander, M. Shahid, U. Sanghar, R. Donate, and D. " Souza, “Control Systems in

Robotics: A Review,” Int. J. Eng. Invent., vol. 5, no. 5, pp. 29–38, 2016, [Online]. Available:

www.ijeijournal.com

[2] D. N. J. Peters, “Model learning for robot control : a survey,” pp. 319–340, 2011, doi: 10.1007/s10339-011-

0404-1.

[3] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, vol. 1999, no. December. 2006.

[4] P. Kormushev, S. Calinon, and D. G. Caldwell, “Reinforcement learning in robotics: Applications and real-

world challenges,” Robotics, vol. 2, no. 3, pp. 122–148, 2013, doi: 10.3390/robotics2030122.

[5] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim, “MIT Cheetah 3: Design and

Control of a Robust, Dynamic Quadruped Robot,” IEEE Int. Conf. Intell. Robot. Syst., pp. 2245–2252, 2018,

doi: 10.1109/IROS.2018.8593885.

[6] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine, “Learning to Walk via Deep Reinforcement

Learning,” Robot. Sci. Syst., 2019, doi: 10.15607/RSS.2019.XV.011.

[7] S. Fujimoto, H. Van Hoof, and D. Meger, “Addressing Function Approximation Error in Actor-Critic

Methods,” 35th Int. Conf. Mach. Learn. ICML 2018, vol. 4, pp. 2587–2601, 2018.

[8] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,” 4th Int. Conf. Learn.

Represent. ICLR 2016 - Conf. Track Proc., 2016.

[9] P. Dayan, “Q-Learning,” vol. 292, pp. 279–292, 1992.

[10] Ding, Zihan, and Hao Dong. "Challenges of reinforcement learning." Deep Reinforcement Learning.

Springer, Singapore, 2020. 249-272.

