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Abstract

Data Fusion at edge computing plays an important role in IoT infrastructure and a lot

of research has already been carried out in this domain on privacy preservation of ho-

mogeneous data fusion. However, there still remains a dire need to design a secure and

lightweight privacy preserving scheme for heterogeneous data fusion which should be

dynamic and adaptive in nature that can address the issues with authentication of the de-

vices connected to CSP for communication purposes and for fused data communication

while providing privacy preservation. This research focused to take data from multiple

sensors i.e. heterogeneous data and then use data fusion techniques to accurately iden-

tify the action needed to be taken autonomously by the underlying machine. The main

objective of this study is to put forward a secure and efficient scheme to overcome these

prevailing issues. This thesis has presented a novel PPFHI scheme for heterogeneous

data fusion in IoT devices that can efficiently balance privacy and trust assessment while

requiring little overhead in terms of computation, communication, and storage to enable

distributed data fusion across the e-healthcare sector. Additionally, we have provided

in-depth theoretical research, and the findings have shown that the PPFHI scheme is

better compared to state-of-the-art schemes in many ways, including the accuracy of

fusion outcomes.
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Chapter 1

Introduction

1.1 Overview

This chapter covers the brief introduction of the research work and problem formulation

of the thesis. It also states the applications, aims and methodology adapted to complete

the research work. Lastly, it presents the organization and outline of the thesis.

1.2 Cloud Computing

Considering the huge storage requirements of data these days, the sole solution lies in

the usage of cloud computing for day-to-day tasks, thus making it a necessary require-

ment. Even with the addition of more cloud based companies in the market, the issues

related to the security have not been addressed appropriately. Cloud Computing boasts

many advantages like reliable backups, storage ease, convenience with easy accessibil-

ity and simple software / hardware maintenance [1]. Multi-tenant customers, are storing
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crucially sensitive data on cloud. This suggests that the CSP and its administrators have

taken over custody of the data. The confidentiality and integrity of data can be vulner-

able to certain important threats since the owner of the data no longer has control over

it. If the confidentiality of the data is violated, this could result in catastrophic dam-

age. Due to these issues, the businesses are always concerned about their data being

outsourced to the cloud and where it might be a potential victim of some sort of data

breach [1, 2].

As reported by McAfee, about 3.1 million external attacks were carried out in 2020 on

the cloud user accounts. Most of these attacks focused on the vulnerabilities, which

involved stolen credentials, IOT, SQL injection attacks along with XSS and malicious

file inclusion [3]. Another way to visualize the prevalent threat is being realizing that

the medical record of patients, which is to be kept confidential at all cost but when

outsourced to a cloud and becomes vulnerable to cloud attacks. Another such example

would be the criminal records being utilized by the Law Enforcement Agencies.

Internet of Things (IoT) has been omnipresent in recent years due to the developments

in sensor and computer technology and commercial uses from e-healthcare, smart farm-

ing, to autonomous vehicles. As a result, the number of network nodes connecting to

the Internet is increasing rapidly, which then produces an enormous volume of data that

must be processed and evaluated in a timely manner. The widespread use of cloud com-

puting and the quick expansion of file sharing over the cloud have compelled academics

working on newer ways to put their data on a cloud server with a reasonable level of

trust. A survey [4] conducted in 2019 indicates that 150,000,000 estimated unique vis-

itors visit just Dropbox in a month. These staggering stats are enough to justify the
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criticality of the privacy and security of the clients. Figure 1.1 shows the approximate

number of users that the most popular cloud service provider is handling.

Figure 1.1: Number of Users per Cloud Service Provider

1.3 Research Motivation

According to Gartner [5], 2020 promises to be a big year for IoT industry. The market is

expected to show a growth of 389$ billion, which is 21% more than 2019. The number

of IoT endpoints is expected to grow to about 5.8 Billion. Gartner 1 has also mentioned

that the two fastest growing industries which will benefit from this development are

automotive and healthcare. The report highlights that healthcare is expected to see a

growth rate of 29% in 2020. Figure 1.2 highlights the IoT Endpoint Market by different

segments for the duration of year 2018 to 2020.

The combination of cloud and IoT poses numerous opportunities as well as compli-

1https://www.gartner.com/en/information-technology/insights/internet-of-things
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Figure 1.2: IoT Endpoint Market By Segment

cations. The cloud-IoT model represents a significant development in information

and communication technologies (ICT). Sectors like Agricultural, e-healthcare, energy,

smart cities, and environmental protection are all influenced by this paradigm. The

cloud has made it possible to store and display data over the internet and operate de-

vices just about anywhere in the world instantly [6]. The use of cloud in IoT has assisted

in the creation and implementation of scalable systems. The two technologies support

each other by providing a platform for progress. As seen, the incorporation has re-

sulted in a variety of applications, the majority of which influence daily activities. IoTs

will benefit from the cloud by widening its reach to work with real-world objects in a

more complex and dispersed manner. In most situations, Cloud will serve as a bridge

between devices and applications, abstracting all the complexities and functionalities

used to execute the services [7].

The number of network nodes connecting to the Internet is increasing rapidly generating

enormous volume of data which must be processed and evaluated in a timely manner.

For handling such huge volume of data, a probable solution is linked to the data fusion.
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Data fusion [8] has recently drawn significant interest in IoT as a probable solution for

this data processing. Data fusion applies to the idea, methods, and resources utilized

to integrate related knowledge from different sources to produce stronger choices or

behavior would be feasible if all of these data sources were used collectively. All data

must be sent from data sources to the cloud server in order to complete the cloud-based

data fusion process leading to distressing concerns such as privacy-leaking, huge la-

tency between data capturing and computing, and excessive consumption of bandwidth

input.

1.4 Applications

There are numerous applications where the raw data from different IoT based sensors is

being processed using machine learning and deep learning into meaningful information

which can help to make decisions with the intervention of any human. The use in

healthcare can be considered as one of such examples. The demand in this sector is to

protect data privacy and access privacy. In [9], the authors have presented a survey of

heterogeneous data fusion for healthcare monitoring.

Another such example is vehicular networks [10] where the whole autonomous struc-

ture is built from tiniest of decisions. The authors have provided a lightweight scheme

which aims to solving the issue of road safety in driver-less cars.

Similarly, authors in [11], have proposed a multi-sensor data fusion technology for

smart homes using the widely available wearable intelligent technologies, sensor fusion

technology, and artificial intelligence.
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1.5 Problem Statement

Data Fusion at edge computing plays a vital role in IoT infrastructure and a lot of

research has already been carried out in this domain on privacy preservation of homo-

geneous data fusion, but it is a dire need to design a secure and lightweight privacy

preserving scheme for heterogeneous data fusion which should be dynamic and adap-

tive in nature. To address the issues with authentication of the devices connected to

CSP for communication purposes and for fused data communication while providing

privacy preservation, there needs to be a mechanism which provides high security as

well as performs efficiently. If a device from healthcare is establishing a connection

with the cloud server than there must be a proper mechanism for authentication of the

device while it attempts to establish a connection with another entity. Mainly, the focus

is to take data from multiple sensors i.e. heterogeneous data and then use data fusion

techniques to accurately identify the action needed to be taken autonomously by the

underlying machine. The main focus of this study is to put forward a secure and effi-

cient scheme to overcome these prevailing issues. This thesis explores the possibility of

providing privacy preservation and authentication mechanism while using data fusion

in the field of IoT.

1.6 Aims and Objectives

The proposed scheme aims for the following performance and security objectives:

• Comprehensive study of existing authentication schemes of data fusion in the

6



field of IoT.

• Proposal of an enhanced privacy-preserving scheme / framework for heteroge-

neous data fusion in IoT devices.

• Analysis of the proposed scheme in terms of security and efficiency.

1.7 Research Methodology

The research work starts from literature review of the existing techniques being used for

heterogeneous IoT devices using data fusion. The literature review is done from various

academic sources. This research then narrows down to the privacy preservation and

authentication of IoT devices connecting to the cloud while listing down the drawbacks

of existing schemes and formulates the problem. Then, it discusses the construction of

scheme in detail and covers thoroughly the literature, design and implementation part

of the thesis. A novel scheme is then presented for privacy preserving data fusion in

e-healthcare IoT devices. A formal analysis is carried to show the efficiency in terms of

security and performance of the proposed mechanism. In the end, a road map for future

research areas are discussed and study is concluded.

1.8 Thesis Outline

In summary, the thesis breakdown is as follows:

• Chapter 1: Introduction presents the overview of healthcare sector and data

7



fusion. It also discusses some application areas, puts forward the problem state-

ment, explains the research aims, methodology, and lastly, summarizes the re-

search’s objectives.

• Chapter 2: Literature Review discusses the existing literature on data fusion

schemes for IoT devices along with their limitations. It also explains some of the

applications of data fusion, the need for privacy preserving protocols and draws

a comparative analysis of some existing schemes.

• Chapter 3: Proposed Work puts forward the network model, explains the threat

model and design goals. Some formal definitions are presented. It also intro-

duces a scheme for privacy preserving data fusion in e-healthcare IoT devices

with detailed discussion of every phase.

• Chapter 4: Performance Analysis covers the formal analysis of the proposed

scheme in terms of performance, security and efficiency. It presents a compara-

tive analysis with different schemes with respect to storage, communication and

computation overhead.

• Chapter 5: Conclusion and Future Work concludes the thesis and discusses

the directions that can be explored in the future research.
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Chapter 2

Literature Review

2.1 Overview

In this chapter, different existing schemes and protocols, their merits and demerits are

explained in detail as well as comprehensive analysis of their security and performance

is carried out. Different challenges that are being faced in a data fusion domain are

discussed and various application areas are explored.

2.2 Related Work

The Internet of Things (IoT) seeks to constructs a world that allows for the interconnec-

tion and convergence of things in both the real and virtual realms. It is anticipated that

as an evolving technology, it would link all devices and enable them to share data. To

carry out sensing and perception of various data, several sensors/devices are typically

deployed and because of the multi-source heterogeneity and vast volume of sensory
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data, it is not practical to relay all data, as this leads to wastage of network bandwidth

and system resources. As a result, data fusion has arisen as an effective strategy for

extracting critical information from a vast volume of data collected to enhance data

accuracy and promote decision-making.

Data fusion will, for instance, shrink the size and dimensions of data, minimize the

volume of data, and extracts valuable information from it. It assists in removing data

imperfections and overcoming the complicity of sensed data from various sensors. In

simple words, Data fusion is the method of combining different data sources to provide

information that is more reliable, accurate, and beneficial than any single data source.

Based on the processing level at which fusion happens, data fusion processes are often

graded as low, moderate, or strong.

A review of techniques associated with data fusion is provided in [12]. These are ma-

jorly based on the following:

1. Classification constructed on the relationships among various data sources.

2. Classification constructed on the nature of types of input / output data.

3. Classification constructed by the JDL defined different fusion levels.

4. Classification contracted on multiple architecture types.

IoT networks are susceptible to several issues related to connectivity and privacy. Ear-

lier, the focus of the authors was towards homogeneous integration of data in IoT which

in simple terms means that there was a single data source from where the raw data was

being collected and later on turned in to something useful. But in recent times, the
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idea of heterogeneous data fusion has been in discussion and seems to have the poten-

tial to be used in major industries as well. Some existing research works have been

intending to give an outline of the data fusion efforts. Bostrom et al. [13] stated the

definition as “Information fusion is the analysis of efficient methods for automatically

or semi-automatically translating information from various sources and points in time

into a representation that provides effective support for human or automated decision

making”. This fusion of data helps in cutting the size and proportions of data, reduce

the volume of data, and derive valuable information from it. It assists in removing

data imperfections and overcoming the complicity of sensed data from various sensors.

Even with the advancement in the field of data fusion in IoT, there are still some major

challenges that question the practicality of this system.

There are some papers in which authors have provided an overview about the efforts in

the field of data fusion. In [14], Lee et al. published a review on the fusion techniques

but the limitation of this research work lies in the specifics because there is no discussion

on the design of these techniques for the IoT big data platform. In [15], the authors have

focused on the data fusion for smart environments. Although, their research seems

promising but the fact that they have not discussed about security and privacy issues in

IoT raises concerns. The authors in [16, 17] have investigated various methods of data

fusion.
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2.3 Applications of Data Fusion

Considering the applications of data fusion, the authors in [18–20] have concluded that

IoT enables the different types of objects to be sensed and even controlled without the

intervention of human and this offers a great opportunity towards integration of this

technology with the existing network systems. This would help in providing accuracy,

high efficiency, and economic benefits. With the development in this field, the applica-

tion areas keep on growing.

2.4 Privacy Preservation

Privacy preservation has come out to be primer before the implementation of this tech-

nology in the real world. A strong guarantee is necessary to not only improve the accu-

racy of the resultant fused data but also to provide the users with sense of security about

their data [21, 22]. A spate of privacy-preserving techniques for achieving secrecy and

untraceability in cooperative vehicular safety (CVS) applications have been developed

in recent years. For fog computing aided CVS applications, the authors in [23] have

developed a hierarchical pseudonym management system that protects privacy. When

compared to earlier techniques, this scheme can significantly improve vehicle location

privacy while also lowering communication overhead. Xu et al. [24] developed a novel

privacy preserving data aggregation scheme capable of combining the data classifica-

tion while preserving the privacy of vehicular sensing networks. The scheme is resistant

against sensing data link attack and is able to provide efficiency, accuracy, and scala-

bility. Despite the fact that the preceding schemes contain many outstanding concepts,
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using them with trust evaluation techniques in CVS applications is still not possible.

2.4.1 Privacy Preservation in Vehicular Networks

In CVS applications, privacy protection and trust evaluation have opposing needs, and

a suitable balance between them is required [25]. Only a few privacy-preserving trust

evaluation systems for cooperative vehicular safety applications have been presented

in recent years, group signature, leveraging pseudonym, threshold cryptography, par-

tially blind signing, blockchain technologies and homomorphic cryptography [26, 27].

Several authors [25, 28, 29] pointed out that it is easier for an attacker to link each

data provider’s reputation score in reputation certificate-based trust evaluation schemes.

Therefore, the authors carried out the conversion of the specific reputation thresholds to

a some fuzzy threshold levels, but the schemes do not achieve strong privacy preserva-

tion because the adversary can still link each vehicle’s data via the vehicle’s threshold.

The authors in [30] provided a BTMPP scheme to counter the drawbacks identified

earlier. The authors suggest that aggregating the Bloom Filter (BF)-based Private Set

Intersection (PSI) and reputation certificates is able to provide the users with a strong

guarantee about trust evaluation and privacy preservation but at a cost of computational,

storage, and communication overheads and complexities.

2.4.2 Privacy Preservation in Healthcare

Considering the privacy preservation in the field of healthcare, several authors have pre-

sented novel schemes which can be implemented in the real-world scenarios. Wang et

13



al. [31] has presented a forward privacy preservation for IoT-based healthcare systems.

The proposed model uses Searchable Encryption [32] technique with forward privacy.

The search query in this scheme is designed in such a way that it becomes difficult for

the adversary to distinguish between data and also renders it very difficult to find a re-

lationship which could help in breaking the system. The authors have also provided a

formal security analysis to prove that the scheme does provide forward secrecy.

In [33], the authors have presented a chaos-based encryption system for the privacy pro-

tection of patient’s data. The system works by using a probabilistic cryptosystem for

hiding the medical key-frames which are extracted from wireless capsule endoscopy

procedure. Leakage of information is contained against various attacks. Only autho-

rized users have the option to decrypt the encrypted data of a patient. The authors claim

that their system is providing excellent performance compared to existing systems.

Another important work was done by Wei et al. [34]. Their cryptosystem was able

to hide the human face by blurring certain regions for the use in multimedia social

networks and only authorized users were able to blur those regions.

A relatively newer approach towards privacy preservation is the use of blockchain for

healthcare in IoT. The authors in [35] have used this technology to propose a solution

which is able to protect the health related IoT data involving a security mechanism

which is capable of protecting the privacy and also provide data integrity of a patient

using blockchain.

Recently Xin Su et al. [50] also has addressed privacy leakage problems through the

data fusion process and has created a centralized data fusion system with integrated
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K-anonymous and non-interactive differential privacy applications as a standard for

privacy. Under the protection of privacy, a multiparty data fusion algorithm is intro-

duced. This approach focuses on Attribute Security. The authors introduced the idea

of participation in the phase of incorporation, together with the real condition of redun-

dancy, to prevent some sort of disruptive activities. To achieve better data protection

and privacy, They seeks to ensure the secure and effective processing of distributed data

within the DaaS architecture and the Shared Data Fusion. The authors are anticipating

and resisting a class of malicious behaviors, that is, by maliciously raising the attribute

score to minimize the probability of private data and the correctness of the experimental

algorithm as the authors demonstrated that their algorithm is effective, but in malicious

behavior monitoring misjudgment rate is high and the focus of this paper is only un-

der the semi-honest model and if we want such an algorithm to run under a malicious

framework then a better monitoring and retribution model should be designed to ad-

dress other suspicious activities and promote safety. Also, this model is still vulnerable

to internal attacks, and to resist such attacks a privacy framework such as m-privacy

should be introduced in the algorithm.

2.5 Data Fusion

Data fusion is defined as an amalgamation of multiple sources to get meaningful infor-

mation. This simply means higher quality, less expensive, and more useful information.

In recent years, data fusion in the IoT has received a lot of attention. However, some

problems and difficulties exist, such as data leakage and power usage. IoT allows a large
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range of sensors and computers to communicate in real time and make our lives easier.

By 2025, the number of sensors is projected to reach upto approximately 50 billion.

Various devices are used to perceive/collect valuable data and, through data fusion and

analytics offer a deeper view of the surroundings. knowledge-based methods, evidence

reasoning methods and probability-based methods are the three basic categories of data

fusion methods. Data Fusion can be categorized as follows:

• Probability based methods (PBM)

• Evidence reasoning methods (EBM)

• Knowledge-based methods (KBM)

Knowledge-based approach (KBM) allows the fusion center to extract information from

imprecise big data without having to obtain density or distribution functions.

Intelligent aggregation methods and machine learning are example of knowledge-based

methods.

Evidence reasoning method (EBM) instigated the concepts of belief and plausibility

to reflect ambiguity in the real world and allow inference in dynamic contexts, where

belief reflects the degree of belief with which a specific piece of evidence supporting

a particular event and plausibility refers to the degree of belief with which a particular

piece of evidence fails to contradict a particular event. In addition, it implements a

mass function to reflect conviction distribution. It does, however, have a difficult time

calculating mass functions, which limits its implementations.

To deal with data imperfection, the density function and probability distribution was
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introduced, which can articulate the dependence among random variables. Bayesian in-

ference, belief propagation, state-space models and Markov models are some common

examples of probability-based data fusion methods.

Data fusion approaches have been extensively used in multi-sensory settings to com-

bine and aggregate data from many sensors, nonetheless, similar techniques may also

be used in other areas, such as text processing. By combining data from numerous dis-

tant sources, data fusion in multi-sensory settings aims to reduce detection error proba-

bility and increase dependability. Three categories of data fusion approaches have been

established that are not mutually exclusive:

1. Data association

2. State estimation

3. Decision fusion

The purpose of this study, rather than providing a comprehensive evaluation of all the

research, is to highlight the crucial processes involved in the data fusion framework

and to look at the most popular approaches for each stage due to the vast amount of

published papers on data fusion.

2.5.1 Classification of Data Fusion Techniques

Data fusion is a multi-disciplinary area which includes several fields. We classify the

data fusion techniques based on the relationship among different data sources. A pro-

posed classification criteria based on the relationships of the data sources is provide by
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Figure 2.1: Categorization of Data Fusion Techniques

Durrant-Whyte [36]. Figure 2.1 shows various techniques for Data Fusion.

The criteria include:

• Complementary: The information given by the input sources reflects various

aspects of the scene and may thus be utilized to generate more comprehensive

global information.

• Redundant: Two or multiple input sources give knowledge about similar objec-

tive and may be combined to enhance certainty.

• Cooperative: The supplied data is integrated to create new data that is usually

more complicated than the earlier (original) data.

2.5.2 Classification Model of Dasarathy

Dasarathy’s classification model [51] is among the most well-known data fusion classi-

fication systems as shown in figure 2.2. It consists of the following elements:
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Figure 2.2: Classification Model of Dasarathy

• Data in-Data Out: The most fundamental or basic data fusion strategy that is

taken into account in categorization. Raw data is input and output in this form

of data fusion process, and the outcomes are usually more dependable or accu-

rate. At this level, data fusion takes place as soon as the data from the sensors

is collected. At this level, the algorithms are constructed on signal and image

processing methods.

• Data In-Feature Out: Technique uses raw data from sources to derive attributes

or traits that define an object in the environment at this level.

• Feature In-Feature Out: All the data i.e. input / output of the data fusion pro-

cedure are features at this level. At out-turn, the data fusion process focuses on a

group of features in order to improve, modify, or create new ones. Feature fusion,
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information fusion, symbolic fusion and intermediate level fusion are all terms

used to describe this phenomenon.

• Feature In-Decision Out: This level receives a group of features as input and

outputs a set of choices. This category of classification includes the majority of

classification systems that conclude based on sensor inputs.

• Decision In-Decision Out: Decision fusion is another name for this form of

categorization. It combines input judgments to produce better or new ones.

Dasarathy’s categorization makes a significant addition by specifying the abstraction

level as an input or output, so giving a framework for categorizing various approaches

or techniques.

2.5.3 Classification Based on Abstraction Levels

This type of classification was provided by Luo et al. [37] and has following levels:

• Signal Level: It addresses signals taken from multiple sensors.

• Pixel Level: It works at image level and provides improvement in image process-

ing related tasks.

• Characteristic: It makes use of characteristics collected from pictures or signals

• Symbol: The information is presented as symbols at this level, which is some-

times referred to as the decision level.
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There are other data fusion classification but we restrict to the above mentioned as

others are out of the scope of this study.

2.6 Data Fusion in IoT Healthcare Systems

IoT is a cutting-edge technical advancement that will make every city smart. IoT has

recently become one of the top technologies all around the world. This technology’s

success originates from its diversified character, since it combines multiple heteroge-

neous systems to function together. This varied character resulted in several difficult

challenges. Aside from all of these elements, data fusion is one of the most signifi-

cant advancements in any autonomous system, because it increases system functioning

by adopting fusion algorithms [38]. IoT enables the construction of smart spaces by

transforming current surroundings into sensor-rich data-centric cyber-physical systems

with an increasing level of automation, resulting in Industry 4.0. This trend, when im-

plemented in commercial / industrial contexts, is altering many parts of our daily lives,

including how individuals access and receive healthcare services. As we mshift towards

Healthcare Industry 4.0, the underlying IoT infrastructure of Smart Healthcare spaces

continue growing and tend to become more complex, marking it critical to ensure that

proper processing of massive amounts of collected data is carried out to provide crucial

input and decisions in accordance with existing requirements [39].

Intelligent, low-power, wireless networking medical equipment form the core of Smart

Healthcare. These devices continuously monitor, process, collect, and safeguard weight,

body position, sleep quality, movement, body temperature, blood oxygen saturation,
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blood pressure, heart rate, exhaustion levels, blood oxygen, and some other bio-metric

data. This given rise to the a relatively newer technology in the field of medicine, termed

as Internet of Medical Things (IoMT) [40].

The use of sensors in various equipment e-g wheelchairs, beds, and ventilator etc makes

this a “medical things”. The staff in a hospital is able to view and receive the valuable

bio-metric information on their personal computers or mobile devices remotely using a

wired or a wireless connection and can also perform their duties. By using this newer

approach, the doctors can take decisions immediately. The information is received from

multiple sensors because a single sensor cannot provide enough conclusive evidence for

any particular case. Therefore, a mechanism is needed to take the raw data from these

sensors and turn them into something useful which can ease the processes in the medical

field. This is where the concept of data fusion comes into play. The raw sensors data in

the field of medical is of heterogeneous nature. Data fusion helps to make efficient and

timely decisions based on the data collected from these sensors. This helps to pin point

the exact cause, effect, and treatment of a patient.

In [41], the authors have proposed a privacy enhancing technique termed as Data Fusion

Strategy (PDFS). The scheme has four components which include:

1. Homomorphic Encryption based data fusion

2. Contract design

3. Task completion assessment

4. Sensitive task classification
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The authors claim that under COVID-19 application environments based on IoMT, their

scheme is able to provide better privacy protection for data fusion.

In [42], the authors have proposed another privacy preservation and incentive-based

data fusion technique for the implementation of fair incentives and privacy security of

patients in the process of health data collection.

For the device oriented anonymous privacy protection in fog-aided IoMT, Guan et al.

[43] has presented a privacy protection and authentication-based data fusion scheme.

2.7 Privacy Preservation and Data Fusion in IoT

Data Fusion deals with sensitive user data and once the data is fused it becomes more

sensitive in nature. Data fusion at edge is vulnerable to attacks as discussed above, we

need privacy preservation techniques to safeguard user location, preference and sen-

sitive fused data which is valuable to network and servers. Different techniques for

Privacy Preservation are as follows:

• Differential Privacy

• K - Anonymity

• Homographic Encryption for access control

Wang et al. [52] reviewed data fusion in CPSS systems. After analyzing they proposed

that tensors should be used to represent CPSS data fusion as starting from CPSS def-

inition to different data fusion systems are reviewed and explained to achieve a better
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understanding. Furthermore, the authors proposed a series of CPSS device tensor-based

fusion methods. The architecture of data fusion mechanisms is also examined and a sug-

gestion for a thorough data fusion mechanism for CPSS is provided because all existing

fusion methods are CP, CS, or SP-specific, and lack of standardization, stable, effec-

tive, and productive fusion process for CPSS. Though it is an extensive review in terms

of CPSSs and data fusion, but Privacy and security are not discussed, and the energy

consumption is still to be considered in the future.

Costel et al. [44] proposed two data fusion methods for the SPIDER peer-to-peer over-

lay network to concatenate the way data is transmitted as Client-server approach are ob-

solete as intelligent objects created by sensors are prone to malfunction the focus of the

author is on ring-based and chain-based data fusion, which is evaluated for efficiency

and fault-tolerance concerning the size of the overlay network. Two case scenarios are

discussed and evaluated about the proposed algorithms and achieved the experimental

results which prove two important aspects. First, local fault recovery is easy, and the

second is that the ring-based fusion method is the efficient one. Overall, it’s a good ap-

proach but it does not support heavy network load and does not work in crowded case

scenarios and to overcome this problem fusion methods must be improved.

Yang et al. [45] addressed the issue of transferring fused data to the cloud server for

fusion, which erases concerns such as privacy-leaking, excessive bandwidth consump-

tion, and high latency, thus Offer the idea of edge temporal data fusion by way of an

algorithm architecture, "GPTDF," that functions at the edge of delivering online se-

quential prediction service. This algorithm provides real-time forecasts which are more

effective and reliable based on their demonstrations used on archived traffic data sets
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from the Caltrans (PeMS). By experimenting it is validated that GPTDF provides real-

time predictions that are more effective and reliable at the network edge. The authors

simply consider the fusion of homogeneous data sets at the edge, while heterogeneous

temporal data is not addressed. The fusion method can rely on implementations, as well

as how background knowledge such as the edge server relative positions in the fusion

phase is still a question.

The use of data fusion in intelligent transportation was primarily addressed by Faouzi

et al. [46]. Even though there are several survey articles on multisensory data fusion,

none of them offer a detailed analysis of IoT data fusion.

Existing practices to IoT data fusion and handling have depended heavily on a Cloud

system, in which gathered data (in raw form) by edge sensors is sent to a Cloud that

acts as the primary processing facility. However, according to [47], such a vertical off-

loading model continues to neglect or underrate the (increasing) computing capability of

edge devices, which are required to allow data analytics and processing, including data

fusion. As a result, rather of being conducted on the spot, certain very simple data fusion

procedures are shifted to a Cloud server through a potentially crowded public network,

causing a number of issues. For starters, not processing easy jobs locally increases av-

erage response time greatly owing to network latency and limited capacity. Second,

transferring potentially sensitive data via a public network raises security issues, while

employing extra data protection techniques to address the issue increases technical and

network effort. In light of the foregoing, the authors suggest a tiered automated data

fusion structure for Smart Healthcare settings in which individual components perform

data fusion across several data sources based on contextual information and compu-
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tational capabilities. Lower-level components perform limited data fusion and convey

aggregated information to higher-level elements, which can then move freshly statistics

further up the hierarchy after fusing the collected information. The suggested frame-

work is based on Complex Event Processing technology, which tries to find complex

event trends in a sequence of atomic events and might be used to implement data fusion

in remote IoT networks [48, 49].

2.8 Comparative Analysis

A comparative analysis of different schemes along with their limitations is given in the

table 2.1 below:

Table 2.1: Data Fusion Authentication schemes for IoT Devices

Scheme Based on Salient Features Limitations

Xin Su et

al. [50]

centralized data

fusion system

with integrated

K-anonymous and

attribute based

mechanism

the scheme is anticipating

and resisting a class of

malicious behaviors raising

the attribute score to mini-

mize the probability of pri-

vate data and the correct-

ness of the experimental al-

gorithm

the scheme is still vul-

nerable to internal attacks

with focus on semi-honest

model
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Costel et

al. [44]

SPIDER peer-to-

peer overlay net-

work, ring-based

and chain-based

data fusion

two case scenarios are dis-

cussed and evaluated about

the proposed algorithms

and achieved the experi-

mental results which prove

two important aspects.

First, local fault recovery

is easy, and the second is

that the ring-based fusion

method is the efficient one

doesn’t work in crowded

case scenarios, limited

dataset and vulnerable

against privacy attacks

Yang et al.

[45]

edge temporal data

fusion by way of

an algorithm archi-

tecture, "GPTDF,"

that functions at

the edge of deliver-

ing online sequen-

tial prediction ser-

vice

provides real-time fore-

casts which are more

effective and reliable based

on their demonstrations

used on archived traffic

data sets from the Caltrans

(PeMS), GPTDF provides

real-time predictions that

are more effective and

reliable at the network

edge

only the fusion of homo-

geneous data sets at the

edge are considered, no

mention of heterogeneous

temporal data, vulnerable

against privacy attacks
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Wang et al.

[52]

Cyber physical

social system

(CPSS) device

tensor-based

fusion methods

a suggestion for a thorough

data fusion mechanism for

CPSS is provided because

all existing fusion methods

are CP, CS, or SP-specific,

and lack of standardization,

stable, effective, and pro-

ductive fusion process for

CPSS

no mention or analysis

with respect to security or

privacy

End of Table

2.9 Summary

This chapter discussed some basic terminologies for Data Fusion in detail and some

classification techniques for data fusion. It presented various areas of applications and

their existing works with their merits as well as demerits. Chapter 3 will present the

proposed work in electronic health care domain.
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Chapter 3

Proposed Work

3.1 Overview

In this chapter, we will describe the network model for framework for heterogeneous

data fusion in IoT devices in healthcare sector. A detailed description of entities and

their communication flow will be presented for better understanding of data fusion in

e-healthcare. Security goals and assumptions will be discussed. We will present our

proposed mutual authentication protocol with all phases discussed in detail. The re-

search includes the following contributions:

• Comprehensive study of existing authentication schemes of data fusion in the

field of IoT.

• Proposal of an enhanced privacy-preserving scheme / framework for heteroge-

neous data fusion in IoT devices.

• Analysis of the proposed scheme in terms of security and efficiency.
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A formal analysis is discussed in chapter 4 in terms of security, performance and effi-

ciency.

3.2 System Model

The healthcare framework of PPFHI technique is discussed in this section.

3.2.1 Network Model

The network model of framework for heterogeneous data fusion in e-healthcare sector

consists of three major entities:

1. Cloud Trusted Authority (CTA): The PPFHI technique utilizes a centralized

Cloud trusted authority that is supposed to have sufficient processing power. CTA

is primarily in charge of registering healthcare platforms and maintaining infor-

mation for each platform in the data-set. It also has a clock that divides time into

intervals of equal length, each of which consists of a number of equal-length time

units. In addition, the Secret Information i.e. private threshold levels and private

reputation level, is generated and distributed regularly to each healthcare platform

on request.

2. E-Gateway unit (e-GW): This system incorporates an e-gateway (e-GW) that

is hooked to the CTA and serves as a bridge for interaction between the HP and

CTA.

3. Health platform (HP): PPFHI technique accommodates huge numbers of IoT
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devices related to healthcare platform in which each one is equipped with multiple

sensors and On-device unit(ODU) which is able to communicate with infrastruc-

tures as well as other platforms ODU’s Hp2Hp and Hp2CTA wireless scenario.

Though each health platform can either be data receiver or data provider. When

data is broadcast from a platform it is know as data provider and when received

then it is acknowledged as data receiver.

The framework is shown in the figure 3.1.

Figure 3.1: Communication flow between CTA and HP through e-GW

Communication flow is carried out via three channels as follows:

• between CTA to e-GW
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• between HP to e-GW

• between HP to HP

All these entities carrying out communication need to ensure confidentiality as well as

integrity of the data exchanged during these communications.

3.2.2 Threat Model

A threat model is established in which illegal access to the system is the principal goal

of the attacker. Since the e-healthcare industry communicates over a public channel, an

attacker can readily intercept the data. The attacker can perform one and / or many of

the following actions:

• Capture / sniffing of data packets

• Carry out data (message) modification

• Save old intercepted packets so you can start a communication later by pretending

to be an authentic entity

• Launch an MITM attack to intercept a session that is already underway and par-

ticipate actively in undergoing communication

3.2.3 Design Goals

Following design goals are to be met in this research:
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1. Privacy Preservation: The privacy of the data being exchanged during the com-

munication of the devices and cloud server must always be in encrypted form to

ensure confidentiality and it must also be tamper-proof.

2. Device Authentication: The devices trying to connect to the system must be

properly authentication with a state-of-the-art authentication mechanism before

the start of any kind of communication. This includes both new and old devices.

3. Data Fusion: The data outsourced to the cloud must be fused using machine

learning techniques, so that data coming from multiple sources can provide a

meaningful.

4. Practicality: The proposed scheme should be secure and practical in-terms of

efficiency and must provide ease of use.

3.2.4 Security Assumptions

The following assumptions are made in this research:

• All the devices that are to be deployed for monitoring purposes possess state-

of-the-art cryptographic properties so that the device itself is secure before de-

ployment in the infrastructure prior to installation of the devices. The healthcare

devices are registered in an off-line manner. This ensures that the privacy of de-

vices is kept intact all the time during the registration process.

• The confidential information initialized during the requesting stage is always en-

crypted using the public key of the cloud server, while the response from the
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devices is encrypted using the public key of each individual device. This ensures

that if a certain device were found to be infected, its effects on the system would

be negligible and would ensure that the infected is contained to that particular

device.

• The data exchange between the devices would frequently generate requests and

responses with different time intervals. All of the devices would process the data

of a patient individually to ensure that the data of one patient is not mixed with

another patient’s information.

• The Cloud server is a semi-trusted authority i.e. it is trusted to store the data being

provided to it only while at the same time it is curious as well and is interested in

learning about the data.

• This research does not examine the privacy of the CTA or the infrastructures and

accessing a HP’s TM to disclose its privacy. The healthcare platform’s privacy

will not be compromised as the initial stage does not involve the platform.

3.2.5 Formal Definitions

We propose two definitions for the benefit of a subsequent explanation of the structured

notation involved in the PPFHI scheme.

1. Definition I: A supplier of data In the opinion of the data recipient HPj, HPi

will be regarded as trustworthy if only when HPi is a registered platform and HPi

does not have a reputation lower than that Minimum level and reputation of HPj’s

threshold.
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2. Definition II: A data chunk sent by a data provider in view of a data receiver

HPj, HPi is considered confident only where:

(a) HPi is a licensed platform i.e. the data confirms to the authenticity of the

source of data

(b) data confirms to the integrity

(c) information confirms to the timeliness

(d) HPi’s reputation levels shall not be less than the minimum of the level of

threshold of HPj and its degree of reputation

3.3 Proposed Model

This section put forwards the proposed work i.e. Privacy Preserving Data Fusion in

E-Healthcare IoT Devices (PPFHI). The proposed scheme consists of various stages as

follows:

• Scheme Startup

• HP-2-CTA Communication

• Healthcare Platform Registration

• Private Information Query

• HP-2-HP Information Sharing
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3.3.1 Initialization of Cloud Trusted Authority (CTA)

The initialization of Cloud Trusted Authority (CTA) is presented in figure 3.2. After

the clock is set, the key pair is generated and threshold / reputation levels are defined.

The nonces are generated after division of time intervals is carried out. Hash collision

is checked after generation of congruous and incongruous private values.

The phase is carried out in the following steps:

• After installing PPFHI technique for a certain healthcare platform safety applica-

tion, the CTA generates it’s public and private keys PrCTA, PuCTA respectively by

setting it’s clock, where PrCTA is kept secretly by CTA.

• It then defines a set of numbers n {where n ∈ (2,3,..)} substitute threshold and

reputation levels S1. S2,...,Sn, where S1 = 0 < S2 = 1
n < .... < Sn = n−1

n .

• The CTA splits a sequence of time equal lengths T1, T2,... whereby each time

interval is represented as the length of the interval denoted by ε .

• For each Tβ {where β ∈ (1,2,...)}, the CTA first generates a random nonce value

Nυ
β

T (which is only known to the CTA), and then creates a congruous secret value

Csβ

γ and incongruous secret value Ciβγ for each Sγ ∈ (S1, S2,....Sn) as


Csβ

γ = hashT (Sγ ||Nυ
β

T )

Ciβγ = hashT (-Sγ ||Nυ
β

T )

(3.3.1)

where hashT (∗) denotes CTA hash function for generating incongruous and con-

gruous secret values , and || denotes the string sequence. It is presented in figure

36



Figure 3.2: Initialization of Cloud Trusted Authority (CTA)

37



3.3 as:

Figure 3.3: Generation of Congruous Secret Values

• As S1 is defined as 0, the equations S1= −S1 and Csβ

1 = Csβ

2 hold for each Tβ ,

Also if two or more elements in Csβ

1 ,Csβ

2 ,... Csβ
n , Ciβ1 ,Ciβ2 ,...Ciβn are same i.e.

a minimal rate hash collision occurs, and CTA recalculates equation 3.3.1 with

another Nυ
β

T (until collision stops) otherwise each records 〈 β , Sγ , Csβ

γ , Ciβγ 〉 in

the database, where ∀ Sγ1 , Sγ2 ∈ (S1,S2,....,Sn), ∀ Sγ3 ∈ (S2,S3,....,Sn), and Sγ1 6=

Sγ2 , in equations Csβ

γ1 6= Csβ

γ2 ,Ciβγ1 6= Ciβγ2 , Csβ

γ1 6= Csβ

γ3 always stay.

3.3.2 Healthcare Platform Registration

The registration of Healthcare Platform (HP) is carried out in the following steps:

• Whenever a new platform is registered with the CTA in offline manner , the CTA

assigns i, a unique identifier to it as HPi.

• The CTA, then, generates the public and private key PuHP1 , PrHP1 for HPi, and
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equips HPi with a Trusted Module (TM) for storing PuCTA, PrHP1 , a clock which

is in sync with that of the CTA, Cryptography methods, parameters and secret

information, exchanged with the CTA or other healthcare platforms to guarantee

integrity, confidentiality and availability.

• Next, the CTA derives the serial number for current time interval i.e. β and

evaluates HPi’s reputation stage RV β

HPi
with range from [0,1], based on number of

HPi’s on board sensors and the resolution, condition and type of each platform’s

sensor determining together the quality / condition of the data transmitted by HPi,

in offline manner.

• It then converts RV β

HPi
to the corresponding reputation value RV β

HPi
as shown in

equation 3.3.2:

RV β

HPi
=



S1 = 0, if RV β

HPi
∈ [0, 1

n )

S2 = 1
n , if RV β

HPi
∈[ 1

n ,
2
n)

Sn = n−1
n , if RV β

HPi
∈ [n−1

n ,1]

(3.3.2)

• Afterwards, the CTA stores HPi information i.e. PrHPi , RV β

HPi
etc. in the database.

• The CTA updates RV β

HPi
periodically as the data of HPi’s on board sensors may

change time to time.

The detail study of clock synchronization and TM are beyond the scope of this research

and explained in [17, 45–47] respectively. The initialization of CTA and health platform

is shown in the table 3.1 and presented in figure 3.4.
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Figure 3.4: Initialization of CTA and Platform Registration Phase(s)

.

The check for trustworthiness of HP / authentication of HP is presented in figure 3.5.

3.3.3 Secret Information Query

The query phase of acquiring secret information is carried out in the following steps:

• When a healthcare platform is linked to the e-GW, it may use the infrastructure

to request CTA secret information for the current and upcoming time intervals.

Particularly, HPi initially, acquire the current serial number of time interval β by

choosing a personalized threshold level T Sβ

HPi
from [S1,S2,..., Sn] based on it’s
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Table 3.1: Initialization of CTA and Platform Registration
Cloud Trusted Authority E-Gateway Healthcare Platform
Generate PuCTA,PrCTA
defines "n" (where n ∈ (2,3,..) )
substitute threshold and reputation
levels S1. S2,...,Sn, where S1 = 0 <
S2 = 1

n < .... < Sn = n−1
n

Splits time T1, T2,..,Tn

Generates Nυ
β

T
Generates{

Csβ

γ = hashT (Sγ ||Nυ
β

T )

Ciβγ = hashT (-Sγ ||Nυ
β

T )
(3.3.3)

Recalculates with another Nυ
β

T (if
hash collision accurs)

Health care Platform Registration

HP requests CTA f or Registeration←−−−−−−−−−−−−−−−−−−−−
Assigns "i" to HP
Generates PuHP and PrHP
Equips with "TM"
Derives β

Evaluates

RV β

HPi
=


S1 = 0, if RV β

HPi
∈ [0, 1

n )

S2 = 1
n , if RV β

HPi
∈[ 1

n ,
2
n)

Sn = n−1
n , if RV β

HPi
∈ [n−1

n ,1]
(3.3.4)

Updates RV β

HPi
periodically

CTA euips HPi with T M and updates reputation score RV β

HPi−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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Figure 3.5: Authentication Check of HP
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clock, and then a query Qβ

HPi
is generated as in the equation 3.3.5:

{
Qβ

HPi
= EncPuCTA(i||β ||Dsigβ

HPi
) (3.3.5)

where Dsigβ

HPi
is calculated as shown below:

{
Dsigβ

HPi
= SignPrHPi

(i||β ||T sβ

HPi
) (3.3.6)

In the the equations 3.3.5 and 3.3.6, Dsigβ

HPi
denotes the digital signature with

PrHPi on "i||β ||T Sβ

HPi
" and EncPuCTA(*) denotes the asymmetric encryption PrCTA

on *.

• Next, HPi sends Qβ

HPi
to the CTA via e-GW.

• After receiving Qβ

HPi
, the CTA first decrypts it with PuCTA to obtain i, β , T Sβ

HPi

and Dsigβ

HPi
and then retrieves HPi’s public key PuHPi from the data base.

• The CTA then calculates the current time intervals serial number β which can

vary from β (owing to a replay attack or delay in transmission).

• Next, the CTA verifies the Dsigβ

HPi
, β and T Sβ

HPi
by:



Dsigβ

HPi
is in line with equation 3.3.6

β= β

T Sβ

HPi
∈ (S1,S2,...,Sn)

(3.3.7)

• If any of the above verification fails, the query Qβ

HPi
is discarded by the CTA; Oth-
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erwise, the CTA attempts to obtain HPi’s secret information from the database,

namely the private reputation level set PRβ

HPi
and private threshold level PLβ

HPi
.

• If the sent result is not equal to null (which show’s that the CTA has calculated

these data from HPi) the CTA adopts the existing PRβ

HPi
and PLβ

HPi
in the collec-

tion of results instead of collecting new ones.

• Alternatively, as shown in figure 3.6, the CTA retrieves HPi reputation stage RSβ

HPi

in Tβ from its database. Without the generality loss, it is assumed RSβ

HPi
= Sγi

where Sγi ∈[S1,S2,...,Sn].

• After that the CTA calculates a private reputation level set PRβ

HPi
for HPi as:


PRβ

HPi
= § [Csβ

1 ,Csβ

2 ,..., Csβ

γi , Ciβ
γi+1,...,Ciβn ]

4 [Prβ

HPi,1,Prβ

HPi,2,..,Prβ

HPi,n]

(3.3.8)

where § signifies the set after the elements are sorted in (*) in lexicographic order

and is denoted as "4" in equation 3.3.8.

• Moreover, without generality loss, it can be assumed that min(T Sβ

HPi
, RSβ

HPi
) =

S
γ1

HPi
, where S

γ1
HPi
∈ [S1, S2,...,S[γHPi]].

• The CTA sets the HPi’s private threshold limit PLβ

HPi
in Tβ as Ciβ

γ1
i

(i.e Plβ

HPi
=

Ciβ
γ1

i
) and stores the record 〈 β , i, PRβ

HPi
, Plβ

HPi
〉 on database.

• Afterwords, The HP1 private information is tried to retrieve by CTA in Tβ+1 i.e.

PRβ+1
HPi

, PLβ+1
HPi

) from database.
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Figure 3.6: Generation of private threshold and reputation levels

• If a set other than zero is the outcome, the CTA embraces the already existant

PRβ+1
HPi

and Plβ+1
HPi

in the result set, instead of calculating new one’s.

• Otherwise, the CTA sets RV β+1
HPi

= RV β

HPi
and T Sβ+1

HPi
=T Sβ

HPi
.

• As each platform’s reputation stage upgrade duration is much greater than each

interval and each platform’s threshold level does not change frequently, and there-

fore derives PRβ+1
HPi

and Plβ+1
HPi

by adopting same methods with those deriving for

PRβ

HPi
and Plβ

HPi
.

• Subsequently, record 〈 β , i, PRβ+1
HPi

, Plβ+1
HPi
〉 is stored in the database by CTA. Not

to forget that PRβ+1
HPi
6= PRβ

HPi
and Plβ+1

HPi
6= Plβ

HPi
almost hold as with different

time intervals congruous and incongruous private value’s change.
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• Eventually, response Reβ

HPi
is generated by the CTA for H pi as:

{
Reβ

HPi
= EncPuH pi

(〈 β , PRβ

HPi
, Plβ

HPi
〉||〈 β +1,PRβ+1

HPi
, Plβ+1

HPi
〉|| Dsigβ

T,HPi
)

(3.3.9)

where Dsigβ

T,HPi
is computed as:

{
Dsigβ

T,HPi
= SignPrCTA(〈 β , PRβ

HPi
, Plβ

HPi
〉||〈 β +1,PRβ+1

HPi
, Plβ+1

HPi
〉)

(3.3.10)

In equations 3.3.9 and 3.3.10, Dsigβ

T,HPi
denotes the digital signature with PrCTA

on 〈 β , PRβ

HPi
, Plβ

HPi
〉||〈 β + 1,PRβ+1

HPi
, Plβ+1

HPi
〉 and the asymmetric encryption

with PuHPi on (*) is denoted by EncPuHOPi
(*).

• Next the response Reβ

HPi
is sent by CTA to HPi via the e-gateway.

• HPi first decrypts the received response Reβ

HPi
with PrHPi to obtain 〈 β , PRβ

HPi
,

Plβ

HPi
〉, 〈 β + 1,PRβ+1

HPi
, Plβ+1

HPi
〉 and Dsigβ

T,HPi
and then verifies Dsigβ

T,HPi
with

PuCTA. Next HPi stores 〈 β , PRβ

HPi
and Plβ

HPi
〉, 〈 in its storage if the associated

records did not exists previously.

• Additionally, if HPi does not receive Reβ

HPi
in a timely manner, it may send request

again for the TA once it enters another infrastructure’s coverage range.

The data fusion query and response exchange is presented in the table 3.2 and shown in

figure 3.7.
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Table 3.2: Data Fusion Query and Response
Cloud Trusted Authority E-Gateway Healthcare Platform

CTA euips HPi with T M and updates reputation Value RV β

HPi−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Derives β by T Sβ

HPi
from [S1,S2,..., Sn]

Query request{
Qβ

HPi
= EncPuCTA(i||β ||Dsigβ

HPi
)

(3.3.11)

Query request Qβ

HP1
is generated to CTA

←−−−−−−−−−−−−−−−−−−−−−
Decrypts with PuCTA

Obtains "i", β , T Sβ

HPi
and Dsigβ

HPi

Retrieves PuHPi

Derives β

Verifies
Dsigβ

HPi
is in line with Equation (3.1.4)

β= β

T Sβ

HPi
∈ (S1,S2,...,Sn)

(3.3.12)
If Verification fails Qβ

HPi
is discarded

Otherwise CTA retrieves PRβ

HPi
and

PLβ

HPi

If result is not-empty CTA adopts
PRβ

HPi
and PLβ

HPi

Retrieves RSβ

HPi
in Tβ

Without generality loss RSβ

HPi
= Sγi

where Sγi ∈[S1,S2,...,Sn].
Generates{

PRβ

HPi
= § [Csβ

1 ,Csβ

2 ,..., Csβ

γi , Ciβ
γi+1,...,Ciβn ]

4 [Prβ

HPi,1,Prβ

HPi,2,..,Prβ

HPi,n]
(3.3.13)

We assume min(T Sβ

HPi
, RSβ

HPi
) = S

γ1
HPi

,

where S
γ1

HPi
∈ [S1, S2,...,S[γHPi ]].

Sets PLβ

HPi
in Tβ and stores 〈 β , i,

PRβ

HPi
, Plβ

HPi
〉

After Retrieving Tβ+1 (I.e PRβ+1
HPi

,

PLβ+1
HPi

)
CTA sets RV β+1

HPi
= RV β

HPi
and T Sβ+1

HPi

=T Sβ

HPi
.

Derives PRβ+1
HPi

and Plβ+1
HPi

Stores 〈 β , i, PRβ+1
HPi

, Plβ+1
HPi
〉

As PRβ+1
HPi
6= PRβ

HPi
and Plβ+1

HPi
6= Plβ

HPi

Generates{
Reβ

HPi
= EncPuH pi

(〈 β , PRβ

HPi
, Plβ

HPi
〉||〈 β +1,PRβ+1

HPi
, Plβ+1

HPi
〉|| Dsigβ

T,HPi
)

(3.3.14)

A f ter retrieving HPi private in f ormation PRβ+1
HPi

PLβ+1
HPi

CTA sends Response Reβ

HPi−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Decrypts Reβ

HPi
with PrHPi to obtain 〈

β , PRβ

HPi
, Plβ

HPi
〉, 〈 β +1,PRβ+1

HPi
, Plβ+1

HPi

〉 and Dsigβ

T,HPi

Verifies Dsigβ

T,HPi
with PuCTA.

Stores 〈 β , PRβ

HPi
and Plβ

HPi
〉, 〈

If H pi does not receive response on
time it could re request.
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Figure 3.7: Data Fusion Query and Response Exchange

3.3.4 HP-2-HP Communication

The phase of HP-2-HP Communication is carried out in the following steps:

• In the proposed technique i.e. PPFHI; it is assumed that each time interval Tβ con-

tains κ where κ ∈ {1,2, ...} is time intervals of equal lengths Tβ ,1, Tβ ,2, ....,Tβ ,κ

and indicate the length of each Tβ ,α where α ∈ [1,2, ..,κ], each platform after

generating a fragment of data from the data collected by its on-board sensors,

transmits it to surrounding platforms.

• Specifically, each healthcare platform e.g. HPi as data provider, based on its

clock, carries out derivation of current time interval β and it’s serial number α ,
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and then information gets fused into the formatted data content FDβ ,α
HPi

input from

the on-board sensors.

• Next, as shown in figure 3.8, HPi retrieves its private reputation level set PRβ

HPi
in

Tβ from it’s storage and generates a nuance value Nυ
β ,α
HPi

, and the calculates the

hash value Ĥυ
β ,α
HPi,γ for each Prβ

HPi,γ
∈ PRβ

HPi
as:

{
Ĥυ

β ,α
HPi,γ = hashHP (β ||α ||FDβ ,α

HPi
||Prβ

HPi,γ
|| Nυ

β ,α
HPi

) (3.3.15)

where hashHP(*) indicates the hash function share among all the registered plat-

forms.

Figure 3.8: Generation of Hash value(s)

• If two or multiple elements in Ĥυ
β ,α
HPi,1, Ĥυ

β ,α
HPi,2, ..., Ĥυ

β ,α
HPi,n are same i.e. a
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collision of hash occurs with a minor rate, HPi re-evaluates the equation 3.3.15

with another Nυ
β ,α
HPi

until hash collision stops.

• Afterwords HPi generates a hash value set HV β ,α
HPi

as:


HV β ,α

HPi
= §[ Ĥυ

β ,α
HPi,1, Ĥυ

β ,α
HPi,2, ..., Ĥυ

β ,α
HPi,n]

4[Hυ
β ,α
HPi,1, Hυ

β ,α
HPi,2, ..., Hυ

β ,α
HPi,n]

(3.3.16)

and a piece of data generated as in:

{
GDtβ ,α

HPi
= FDβ ,α

HPi
||HV β ,α

HPi
||Nυ

β ,α
HPi

(3.3.17)

and then broadcast GDtβ ,α
HPi

to nearby healthcare platforms.

• Additionally, each platform continuously receives data from nearby platforms and

checks it’s reliability.

• Whenever each platform (e.g., HPj) receives data from nearby platform (e.g.,

HPi) HPj first derives the current time interval’s serial number β and the current

time unit’s serial number α based on the clock (where α may be different from

α and β from β due to replay attack or transmission delay), and the each part of

GDtβ ,α
HPi

is extracted and private threshold limit PLβ

HPi
in T

β
is retrieved from it’s

storage.

• Next HPj generates Hυ
β ,α,β ,α
HPi,HPj

as:

{
Hυ

β ,α,β ,α
HPi,HPj

= hashHP(β ||α ||FDβ ,α
HPi

||PLβ

HPi
||Nυ

β ,α
HPi

) (3.3.18)
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and checks whether Hυ
β ,α,β ,α
HPi,HPj

∈ HV β ,α
HPi

holds.

• If this is true, the following conclusions are true at a high rate which always

equates to value 1, unless a hash collision happens e.g., β 6= β , α 6= αi, or PLβ

HPi

/∈ PRβ

HPi
, but Hυ

β ,α,β ,α
HPi,HPj

∈ HV β ,α
HPi

with a minute rate c, where c denotes false

positive and it’s actual value can be determined by both n and hashHP(*)):

1. HPi(i.e., GDtβ ,α
HPi

data provider)is a registered healthcare platform

2. Integrity is satisfied by GDtβ ,α
HPi

3. GDtβ ,α
HPi

satisfies the timeliness i.e. β = β , α = α)

4. HPi’s reputation stage RSβ

HPi
is no not less than the HPj’s threshold limit

T Sβ

HPj
and reputation level RSβ

HPj
i.e. RSβ

HPi
≥ min(T Sβ

HPj
,RSβ

HPj
).

Based on Definition II, HPj regards GDtβ ,α
HPi

as trustworthy and maintains storage

for the upcoming data fusion.

• Otherwise, HPj will be unable to make any of the preceding conclusions 1-4 then,

HPj regards GDtβ ,α
HPi

as untrustworthy and discards it directly.

The communication flow between healthcare platforms is presented in table 3.3 and

shown in figure 3.9.

Each data receiver is capable of determining reliably the trustworthiness of received

data through the aforementioned method in a non-interactive, lightweight and privacy-

preserving manner. The aforementioned method ensures that HPi can only achieve a

PRβ

HPi
and a Plβ

HPi
for each Tβ though requesting the CTA more than once, and ensure
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Table 3.3: Data Fusion and Communication Between Healthcare Platforms
Healthcare Platform as Data provider On Device Unit Healthcare Platform as Data Reciever
Assumes Tβ contains κ(where κ ∈ [1,2, ...]) equal-
length time intervals Tβ ,1, Tβ ,2, ....,Tβ ,κ

Denotes Tβ ,α (where α ∈ [1,2, ..,κ])
HPi as data provider derives β and α

Fused data FDβ ,α
HPi

Retrieves PRβ

HPi
in Tβ

Generates Nυ
β ,α
HPi

Calculates{
Ĥυ

β ,α

HPi,γ = hashHP (β ||α ||FDβ ,α
HPi

||Prβ

HPi,γ
|| Nυ

β ,α
HPi

)
(3.3.19)

Checks for hash Collision
Generates{

HV β ,α
HPi

= §[ Ĥυ
β ,α

HPi,1, Ĥυ
β ,α

HPi,2, ..., Ĥυ
β ,α

HPi,n]
4[Hυ

β ,α
HPi,1, Hυ

β ,α
HPi,2, ..., Hυ

β ,α
HPi,n]

(3.3.20)
Data generated

{
GDtβ ,α

HPi
= FDβ ,α

HPi
||HV β ,α

HPi
||Nυ

β ,α
HPi

(3.3.21)

Generated Data GDtβ ,α
HPi

is Broadcasted
−−−−−−−−−−−−−−−−−−−−−→

HPj receives data from nearby platform (e.g., HPi

Derives β and α

PLβ

HPi
in T

β
is retrieved

Generates

{
Hυ

β ,α,β ,α
HPi,HPj

= hashHP(β ||α ||FDβ ,α
HPi

||PLβ

HPi
||Nυ

β ,α
HPi

)
(3.3.22)

Verifies whether Hυ
β ,α,β ,α
HPi,HPj

∈ HV β ,α
HPi

holds

(1) If β 6= β , α 6= αi, or PLβ

HPi
/∈ PRβ

HPi
, but

Hυ
β ,α,β ,α
HPi,HPj

∈ HV β ,α
HPi

) HPi(i.e., GDtβ ,α
HPi

If HPiis a registered healthcare platform,
(b) Integrity is satisfied by GDtβ ,α

HPi

(c) GDtβ ,α
HPi

satisfies the timeliness
If all of above are true HPj regards GDtβ ,α

HPi
as trust-

worthy and stores it for the upcoming data fusion
Otherwise, regards GDtβ ,α

HPi
as untrustworthy and

discards it directly.
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Figure 3.9: Communication Flow Between Healthcare Platforms

that HPi is not able to obtain a private threshold corresponding to any threshold / reputa-

tion level Sγi greater than HPi’s actual reputation value RV β

HPi
i.e., Sγi ∈ [Sγi+1, Sγi+1,...,

Sn], even though HPi deliberately sets a threshold level Plβ

HPi
higher then RV β

HPi
in it’s

query Qβ

HPi
. The above strategy as a result enhances the capability of privacy preserva-

tion to enhance the robustness of PPFHI scheme to a larger extent.
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3.4 Summary

In this chapter, the framework for heterogeneous data fusion in IoT devices in healthcare

sector was discussed with a detailed description of entities and their communication

flow. Security goals and assumptions were presented. A novel proposed mutual authen-

tication protocol with all phases was put forward in detail. Chapter 4 will present the

formal analysis of proposed scheme in terms of performance, security and efficiency.
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Chapter 4

Performance Analysis

4.1 Overview

The formal analysis of proposed in terms of security, performance and efficiency are

discussed in this chapter. The analysis is carried out in three sections. Firstly, the

security features and robustness of our enhanced suggested authentication system are

scrutinised and analysed. Secondly, a comparative analysis is drawn with the existing

schemes and lastly, performance analysis is carried out in terms of computation over-

head and comparative analysis.

4.2 Security Analysis

The security features of privacy preservation, accuracy of trust evaluation and sound-

ness of our proposed scheme PPFHI is discussed in this section.
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4.2.1 Privacy Preservation

As discussed in security assumptions, it has already been declared that the CTA is trust-

worthy and securely stores the healthcare platforms data in its storage, and only few of

the infrastructures and platforms are curious about the privacy of other platforms and

try to disclose their privacy by capturing the information broadcasted by them. Further-

more, HP registration processes are handled in an off-line manner between the CTA and

each new HP, ensuring that the platform’s privacy is protected during the HP registration

stage. Besides, in initial stage where the secret information is requested, CTA’s public

key PuCTA is used to encrypt each request (e.g., Qβ

HPi
) and HPi’s public key PuHPi is

used to encrypt each response (e.g., Reβ

HPi
). In this way the decrypted contents in Qβ

HPi

or Reβ

HPi
are secured from the curious infrastructures and the other platforms. Moreover,

the limited number of Qβ

HPi
or Reβ

HPi
and differing time intervals prevents the linkage

of Qβ

HPi
or Reβ

HPi
by the curious infrastructures and the other platforms to reveal HPi’s

privacy. Following that, the notion of strong privacy preservation can be explained in

detail as follows:

• In the PPFHI scheme, HPi’s data GDtβ ,α
HPi

does not contain the RSβ

HPi
of each data

provider (e.g., HPi) and for each Tβ every data recipient (e.g., HPj) can only

obtain a PLβ

HPi
(generated randomly by the CTA) even though it requests the CTA

for multiple. This is how the trustworthiness of GDtβ ,α
HPi

in the view of HPj is

judged but cannot disclose RSβ

HPi
.

• Both PRβ

HPi
, PLβ

HPi
have the high-entropy feature since Nυ

β

T is kept in secret by

CTA and generated randomly. Thus, by using the brute force approach to obtain
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PLβ

HPi
is still infeasible for HPj (as well as the curious infrastructures and the

other healthcare platforms). Even if it originates from the same data supplier or

a group of data providers with similar reputation scores, different data contains

distinct hash function and nuance value sets, so HPj cannot infer PLβ

HPi
using the

frequency analysis approach. As a result, PLβ

HPi
cannot be linked or disclosed

using HPi’s data. Furthermore, because PRβ

HPi
is not contained in HPi’s data and

cannot be exposed through HV β ,α
HPi

(because to the one-way aspect of HAHP(*),

PRβ

HPi
cannot be revealed or linked via HPi’s data.

• In this scheme, the Rlα
HPi

of each data provider is not contained in HPi data Dtβ ,α
HPi

and each data receiver can get the secret threshold level that the cloud server

generates at random for each equal length time unit, even if it requests the cloud

server numerous times.

• This implies that a HP is able to identify whether the digital signatures of the HP

are trustworthy in its view but won’t reveal HP’s reputation score in equal length

time units. RV β

HPi
is a secret value which is generated randomly and is kept only

by the cloud server.

• Furthermore, unlike in [25], the T Sβ

HPi
and PLβ

HPi
of each data receiver (e.g., HPj)

do not need to be broadcasted to the data provider (e.g., HPi), therefore HPi (as

well as the curious infrastructures and other platforms) cannot access T Sβ

HPi
or

PLβ

HPi
at the HP2HP data exchange stage.

• The data being broadcasted by the HP does not contain the identifier i and other

information related to the sensors are replaced by random values and hash values
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which obviously vary with different data ensuring that the unique identifier and

sensors information is not revealed.

• Lastly, each data (e.g., GDtβ ,α
HPi

) broadcasted by HPi does not contain unique clas-

sifier, and its onboard sensor information is replaced with Nυ
β ,α
HPi

and HV β ,α
HPi

which differ with different data. This helps in prevention of HPi’s unique identi-

fier and information from onboard sensors, being leaked or linked in any way.

4.2.2 Trust Evaluation Accuracy

Trust assessment primarily examine the accuracy of determining the trustworthiness

of data GDtβ ,α
HPi

broadcasted by a data provider HPi and analyzed in recipient’s view

HPj. This is done by verifying if Hυ
β ,α,β ,α
HPi,HPj

∈ HV β ,α
HPi

holds in PPFHI scheme. Without

forfeiting generality, we assume RSβ

HPi
= Sγi and min(T Sβ

HPj
, RSβ

HPj
) = Sγ j where Sγi ,Sγ j

∈ {S1, S2,..., Sn}. The following is a detailed analysis:

• if and only if (a) HPi is a registered Platform, it can acquire PRβ

HPi
and con-

struct HV β ,α
HPi

. Furthermore, the conclusion PLβ

HPi
= Csβ

γ j ∈ {Csβ

1 , {Csβ

2 ,. . . ,

Csβ

γ j ,. . . ,Ciβγi ,. . . , Ciβγi+1 ,. . . , Ciβγi+n} = PRβ

HPi
holds, if and only if (a) HPi is a regis-

tered platform, (b) GDtβ ,α
HPi

fulfills the timeliness (i.e., β = β and α = α), and (c)

in the view of HPj, HPi is trustworthy (i.e., Sγi = RSβ

HPi
≥ min(T Sβ

HPi
, RSβ

HPi
) =

Sγ j.

• Moreover, the conclusion Hυ
β ,α,β ,α
HPi,HPj

∈ HV β ,α
HPi

holds for sure if

1. HPi is a registered platform,
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2. GDtβ ,α
HPi

fulfills the timeliness,

3. in the view of HPj, HPi is trustworthy, and

4. GDtβ ,α
HPi

fulfils the integrity.

• Alternatively, the conditions mentioned above holds with a high rate of 1-F if the

conclusion Hυ
β ,α,β ,α
HPi,HPj

∈ HV β ,α
HPi

holds, where F is an insignificant false positive

rate.

• Precisely, it is supposed that n ∈ {5,10,50,100} and the HAHP(*) is calculated by

using non-cryptographic hash function and can get a high-speed hash with a low

conflict rate.

• According to definition II, in the view of HPj, GDβ ,α
HPi

is reliable if and only if

GDHPiβ ,α meets the above requirements 1-4. Thus, by checking if Hυ
β ,α,β ,α
HPi,HPj

∈

HV β ,α
HPi

holds, HPj an judge whether GDβ ,α
HPi

is trustworthy in its view.

4.2.3 Soundness

The soundness of the scheme is analyzed in which the cloud authority is assumed as a

semi-trusted entity, Some infrastructures may be down or malevolent, and some health

platforms may turn harmful. In PPFHI, both the cloud server and honest infrastruc-

tures are not participating in the HP-2-HP stage of data exchange. When a HPi is in

range of an infrastructure, it can generate a request for its confidential data to the cloud

server in the current time interval and next time via framework. If the connection is

not established, then the request would be regenerated while the health platform is in

coverage range of an infrastructure. This implies that if the cloud server is temporarily
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unavailable or inaccessible for some duration, the normal procedures of the infrastruc-

ture would still not be greatly influenced.

As the malicious infrastructure cannot decrypt Qβ

HPi
or Reβ

HPi
to obtain HP’s secret in-

formation because both would be encrypted. The eavesdropping and analysis of GDtβ ,α
HPi

cannot help any hostile infrastructure because it contains no secret information or in-

formation that can be traced to a device. Following are the attack strategies possible

against the scheme:

1. Interprets and replays requests

2. Manipulates or forges requests

3. Discards requests

In our scheme, each request contains the digital signatures and each signature contains

the hash value set. Therefore, modification to any request can be perceived and becomes

infeasible to forge them as well. The serial numbers of time unit and intervals are

contained in digital signatures which are validated by the data receiver. As a result, the

second attack tactic is ineffective against every malevolent infrastructure. If requests

are being discarded by the malicious infrastructure, then the effects would be the same

as generated by any unavailable infrastructure. Some of the attack strategies that can be

adopted by a compromised health platform include:

1. Manipulation of digital signatures by changing values of alpha and beta.

2. Generation and broadcasting of false data using expired secret reputation level.

3. Interception of digital signatures and replay them in T β ,α .
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4. Invading of cloud server’s database or TM to modify the health platform reputa-

tion information and generate / broadcast false data using the secret information

of health platform respectively.

Each data element is checked for relevance using the data receivers in our proposed

approach, and any generated data element with an expired secret information level is

destroyed and judged invalid. All the data elements would go through an integrity check

through the data receivers thus any modification would become impractical. The secret

information of a HP is well maintained by its corresponding TM and thus any other

platform cannot steal this critical information. We can safely assume that the cloud

server would protect its database and would try to eliminate any malicious attempts that

any adversary is about to launch. This goes to show that the scheme is quite secure,

robust, and provides protection against multiple attacks from the malicious entities.

While in the HP-2-HP data exchange stage the compromised infrastructures may carry

out attacks, in the HP-2-HP stage of data exchane in PPFHI scheme, the CTA and honest

infrastructures are not engaged.

Furthermore, if infrastructure’s coverage range covers platform HPi, through the infras-

tructure it can request the CTA for its private data in the current and next time intervals.

It sends request to the CTA once again it enters the coverage range of another infrastruc-

ture if HPi does not receive a timely response resulting in the acquisition of its private

information in advance in the following time interval (i.e., Tβ+1) from the CTA at any

time (when the CTA is accessible and available, and the platform is within the coverage

range of an available infrastructure). As a result, the temporary inaccessibility of the

CTA will have little impact on the PPFHI scheme’s normal operation if the interval of
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the inaccessibility and / or unavailability is less than ζ , and the unavailability of some

of the infrastructures will have minimal effect on the PPFHI scheme’s normal operation

considering each platform can come into another available infrastructure’s coverage

range within a duration less than ζ . The soundness of our proposed scheme PPFHI is

discussed as follows:

• Since Qβ

HPi
and Reβ

HPi
are encrypted with PrCTA and PrHPi respectively, malicious

infrastructure cannot decrypt Qβ

HPi
and Reβ

HPi
to obtain HPi’s secret information.

Since GDtβ ,α
HPi

does not include any private or linkable information, malevolent

infrastructure cannot gain from eavesdropping and examining GDtβ ,α
HPi

. Instead,

to compromise the PPFHI scheme, each malevolent infrastructure could use one

or more of the attack vectors listed below:

1. It controls or falsifies Qβ

HPi
, Reβ

HPi
, or GDtβ ,α

HPi
.

2. It captures and replays Qβ

HPi
, Reβ

HPi
, or GDtβ ,α

HPi
.

3. It intentionally discards Qβ

HPi
, Reβ

HPi
, or GDtβ ,α

HPi
.

• Any modification to Qβ

HPi
, Reβ

HPi
, or GDtβ ,α

HPi
can be simply observed, and counter-

feiting them is also infeasible due to the fact that each GDtβ ,α
HPi

contains the hash

value set HV β ,α
HPi

and each Qβ

HPi
and Reβ

HPi
contain the digital signatures Dsigβ

HPi
,

Dsigβ

T,HPi
respectively.

• It guarantee that even though the CTA receives Qβ

HPi
for multiple times or HPi

receives Reβ

HPi
for multiple times, for each Tβ , healthcare platform (e.g., HPi )

can only attain a PRβ

HPi
, PLβ

HPi
. In the mean time, each data recipient validates
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the time’s serial numbers and that of time unit (i.e., β and α , respectively) con-

tained in GDtβ ,α
HPi

Thus, the second attack strategy provides no gain to malicious

infrastructure.

• If a malicious infrastructure intentionally keeps discarding Qβ

HPi
or Reβ

HPi
, it will

generate the similar negative impact as that produced by an inaccessible infras-

tructure. This will not significantly impact the normal running of the PPFHI

scheme. Besides, data provider (e.g., HPi) broadcasts GDtβ ,α
HPi

to the nearby plat-

forms, the normal running of the PPFHI scheme intentionally will also not be

obviously influenced by rejecting GDtβ ,α
HPi

by a malicious infrastructure. Thus,

the third attack strategy is also mitigated.

4.3 Informal Security Analysis

In this section, we examine the PPFHI scheme’s resistance against a variety of malicious

attacks in depth and security features of our proposed scheme. To compromise the

PPFHI scheme, one or more of the following attack methods are adopted by HPk:

1. It employs its own expired private reputation level set to construct and broadcast

fake data GDtβ ,α
HPk

(which also contains false FDβ ,α
HPi

, as shown below).

2. It intercepts GDtβ ,α
HPi

which is broadcasted by HPi in Tβ ,α ) and replays it in Tβ ,α (where

α̂ 6= α or β̂ 6= β ).

3. It can control GDtβ ,α
HPi

by altering one or more parts of GDtβ ,α
HPi

.
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4. By implementing the brute force approach and utilizing PLβ

HPk
or PRβ

HPk
, it re-

constructs PLβ

HPk
to hold one or multiple coherent secret values which relates to

multiple reputation levels that are greater than the HPk’s actual value of reputation

level RSβ

HPk
in Tβ .

5. By utilizing the brute force approach, it recreates HV β ,α
HPk

to have one or more

hash values linking to one or more reputation levels greater than HPk’s actual

reputation level RSβ

HPk
in Tβ .

6. It creates and transmits false data by invading HPi’s TM to obtain HPi’s secret

information.

7. To directly alter the reputation information of healthcare platforms, it invades the

CTA’s database.

The security features and resistance against all known attacks, as discussed above, are

discussed below:

• Any malevolent platform (e.g., HPk) cannot decrypt Qβ

HPi
or Reβ

HPi
to get the

secret data of another registered healthcare platform as they are encrypted with

PrCTA and PrHPi , respectively thus gaining resistance against the 1st attack.

• HPk cannot gain from eavesdropping and evaluating GDtβ ,α
HPi

as it does not hold

any private or linkable data. In fact, the data in PPFHI scheme will be checked by

receiver for timeliness and regarded as invalid and rejected it is created by using

an expired private reputation level set. In this way, HPk will be unable to gain any

advantage from the 1st and 2nd attack method.

64



• Furthermore, the data receivers will examine each data for integrity and data al-

teration will be detected so HPk will not gain from the third attack technique. Fur-

thermore, at the requesting stage of private data, HPk is unable to get the PLβ

HPk

coherent to any reputation stage greater than RSβ

HPk
in Tβ . Each Csβ

γ and Hυ
β ,α
HPk,γ

(where γ ∈ {1,2, ..,n}) having the high-entropy feature making it infeasible for

HPk to obtain one or more consistent private hash values that are corresponding

to one or more reputation stages higher than HPk actual value of reputation level

RSβ

HPk
in Tβ by using brute force method, preventing HPk from benefiting from

the 4th and the 5th attacks.

• The HPi’s secret knowledge is presumed to be maintained properly by its TM,

and HPk is unable to acquire this information mitigating 6th attack technique. It

is plausible to believe that the CTA’s database is well-protected, and that HPk

won’t be able to directly edit the platform’s reputation information if it invades it

preventing the 7th attack. As a consequence, the PPFHI system can provide high

resistance to a variety of malicious attacks.

4.4 Performance Analysis

The performance analysis is discussed in this section.

4.4.1 Comparative Analysis

The attributes defined for our comparison are as follows:
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• A1: Mutual Authentication

• A2: Privacy Preservation

• A3: Scalability

• A4: Message Confidentiality / Resistance to Eavesdropping

• A5: Security against Impersonation Attack

• A6: Message Integrity / Resistance to Message Modification Attack

• A7: Security against Replay Attack

• A8: Security against MITM Attack

• A9: Session Key Security

• A10: Heterogeneous IOT Data

The comparison is demonstrated in table 4.1 with Xshows the existence of said at-

tribute.

Table 4.1: Comparative Analysis

Research A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

[44] X X X X X
[45] X X X
[50] X X X X X X
[52] X X X X X X X

PPFHI X X X X X X X X X X
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4.4.2 Computation Overhead

In the PPFHI policy, the frameworks are only used as interfaces for communication

between the healthcare platforms and CTA where and the CTA is supposed to have suf-

ficient processing power. As a result, the calculation overhead has a significantly bigger

influence on the actual cooperative healthcare platform’s performance of safety appli-

cations than it does on the CTA’s infrastructure. Meanwhile, the computation overhead

sustained by the data (shared between nearby platforms in an HP-2-HP manner) has a

substantially bigger effect than requests and responses on the performance of cooper-

ative vehicular safety applications (transmitted between platforms and infrastructures

in an HP2I manner). We’ll focus on the data computation overhead on the healthcare

platform side to reduce space. By counting the number of times signatures are gener-

ated, verified, hash functions are executed, and other operations in the data creation and

data trustworthiness evaluation processes, we examine the computational overhead of

creating a piece of data and concluding a trust evaluation for a piece of data.

When data GDtβ ,α
HPi

is generated by HPi, it has to calculate the hashHP(*) for n times to

generate Ĥυ
β ,α
HPi,1, Ĥυ

β ,α
HPi,2, ..., Ĥυ

β ,α
HPi,n and to carry out the sorting of n elements (i.e

Ĥυ
β ,α
HPi,1, Ĥυ

β ,α
HPi,2, ..., Ĥυ

β ,α
HPi,n) to obtain HV β ,α

HPi
. γhash denotes the execution of compu-

tation overhead of hashHP (*) once and γsort(n) denotes sorting n elements, therefore the

computation overhead of generation of a data fragment can be approximately evaluated

from:

γG ≈ n · γhash(∗)+ γsort(n) (4.4.1)

67



4.5 Summary

The formal analysis of proposed in terms of security, performance and efficiency was

discussed in this chapter. The analysis was carried out in three sections. Firstly, the

security features and robustness of our enhanced suggested authentication system were

scrutinised and analysed. Secondly, a comparative analysis was drawn with the existing

schemes and lastly, performance analysis was carried out in terms of computation over-

head and comparative analysis. Chapter 5 concludes the research and discusses some

of the future works.
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Chapter 5

Conclusion

5.1 Overview of Research

Data Fusion at edge computing plays an important role in IoT infrastructure and a lot

of research has already been carried out in this domain on privacy preservation of ho-

mogeneous data fusion. However, there still remains a dire need to design a secure and

lightweight privacy preserving scheme for heterogeneous data fusion which should be

dynamic and adaptive in nature. To address the issues with authentication of the devices

connected to CSP for communication purposes and for fused data communication while

providing privacy preservation, a mechanism is required which provides high security

as well as performs efficiently. If a device from healthcare is establishing a connection

with the cloud server than there must be a proper mechanism for authentication of the

device while it attempts to establish a connection with another entity. This research

focused to take data from multiple sensors i.e. heterogeneous data and then use data

fusion techniques to accurately identify the action needed to be taken autonomously by
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the underlying machine. The main objective of this study was to put forward a secure

and efficient scheme to overcome these prevailing issues. This thesis explored the possi-

bility of providing privacy preservation and authentication mechanism while using data

fusion in the field of IoT and presented a novel scheme for heterogeneous IoT devices

in e-healthcare domain.

5.2 Summary of Research Contributions

The research work in this thesis builds up its foundation from literature review of the

existing techniques being used for heterogeneous IoT devices using data fusion. The lit-

erature review in chapter 2 was done from various academic sources. This research then

narrowed down to the privacy preservation and authentication of IoT devices connecting

to the cloud while listing down the drawbacks of existing schemes and formulating the

problem. Then in chapter 3, it discussed the construction of scheme privacy preserving

data fusion in e-healthcare IoT devices, in detail and thoroughly covered the literature,

design and implementation part of the thesis. A formal analysis was carried out in

chapter 4 to show the efficiency in terms of performance and security of the proposed

mechanism.

5.3 Conclusion

In this study, we have proposed a novel PPFHI scheme for heterogeneous data fusion

in IoT devices that can efficiently balance privacy and trust assessment while requiring
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little overhead in terms of computation, communication, or storage to enable distributed

data fusion across the e-healthcare sector. Additionally, we have provided in-depth the-

oretical research, and the findings have shown that the PPFHI scheme is better compared

to state-of-the-art schemes in many ways, including the accuracy of fusion outcomes.

5.4 Future Work

In the future, we will continue to assess the effectiveness of our suggested scheme,

PPFHI, in other healthcare applications. Additionally, by adding an anonymous com-

ponent and improved computational robustness, we will further strengthen the PPFHI

scheme by adding new security aspects, such as resistance against traceability, Sybil

attack etc.
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