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Abstract 

Brassica Juncea, a “mustard plant,” is the second largest edible oil crop production source. This 

plant has a unique ability to store metal ions, thus recognized as a hyper-accumulator. Metal ions 

include cadmium which damages the plant at a morphological, physiological, and biochemical 

level. The previous study suggested that the different organic amendments inhibit the translocation 

of cadmium ions in plants. Thus, this research has been designed and performed with varying 

combinations of biological aspects, including - biochar, PGPR bacteria, and co-planting. The 

primary purpose is to identify the best combination for preventing cadmium ions translocation in 

the mustard plant. Eight treatments were made with different varieties, including one control and 

seven experimental groups. Phenotypical analysis revealed that cadmium reduce plant growth 

while the different combination of biological compositions helps the plant growth and yield 

quality. Moreover, the biochemical analysis identified that mustard plants with cadmium have 

higher antioxidant enzymes than other treatments. Furthermore, it has proven that cadmium 

negatively impacts the mustard plant; morphological, physiological, and biochemical aspects in 

term of phytoremediation, correspondence, with the help of different compound mixtures, its 

toxicity can reduce to a certain level. Research concludes that a combination of biochar, PGPR 

bacteria, and inter-cropping (T8) give competitively equivalent result as negative control (T1). 

This prove that if such combination can enhance growth parameters of hyperaccumulator plants 

than in future its use for non-hyperaccumulator plants more specifically crops that show highly 

effective under cadmium stress.  
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Chapter 1: Introduction 

1. Brassica Juncea  

Brassica Juncea belongs to the “Brassicaceae or Cruciferae” family with the common name 

“Brown mustard, Indian mustard, or Chinese mustard,” used for oil production and vegetable 

source. Its production occurs annually as B. Juncea is a Rabi crop cultivated from October to 

December and harvested in April. The preference of soil for B. Juncea is sandy, loamy, or clay 

with a pH; of mildly acid, neutral, or mildly basic (Wechter, Farnham, Smith, & Keinath, 2007). 

The growing availability of plants takes place in Africa, Asia, and northern America regions. The 

Brassica family plants are the second-largest oilseed crop worldwide (FAO, 2017). Brassica genus 

consists of thirty-seven species. Four are widely cultivated as oilseeds (B. juncea, B.; Rapa, B. 

napus, and B. carinate) (Raymer, 2002). B. juncea is derived from two diploid species B. Rapa 

(AA) and B. nigra (BB), with the allopolyploid chromosomal arrangement (AABB) (S. Chen et 

al., 2013). Cultivation of B. juncea began about 6000-7000 years ago in China and has thrived in 

India since 2300 BC (Prakash, 1980). 

The average height of the plant is about 1-2 feet long with obviated, ovate, and petioled in shape 

leaves; meanwhile, its flowers have four sepals and four yellow petals with two longer and two 

shorter stamens. The overall life span of the plants has considered from 40-65 days. B. Juncea 

seeds are round with different shades of brown color (Wechter et al., 2007).  

The significant life cycle stages have characterized brassica growth: a pre-emerging stage, 

seedling, rosette, budding, flowering, and ripening. The pre-emerging stage takes 4-10 days; in 

this stage, the plant is susceptible to soil-borne, biotic, and abiotic stress. Therefore, seed treatment 

is necessary at this stage. The young plant emerged from the soil with cotyledons and active 
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hypocotyl in the seedling stage. The third stage is the rosette stage, categorized by developed new 

leaves. Mustard plants that grow in spring remain in this stage for several weeks. While Mustard 

that is planted in winter also stays at this stage for several weeks. When the rosette stage ends, it 

has a maximum number of leaves area index. The fourth stage is the budding stage; in this stage, 

the upgrading temperature initiates bolting and budding in the plant. The plant’s leaf area and 30-

60% dry matter reach their maximum stage. The foliage accumulation is required to provide sugar 

during flowering and pod formation. The fifth stage is the flowering stage continues from 14-21 

days after the plantations. It has been observed that 3-5 flowers open daily while 40-50% of flowers 

develop into proper pods. The sixth and last stage is the ripening stage, when petals of the last 

flowers fall from it on the main stem and pods fill to complete 35-45 days after the flower initiates. 

Pods contain seeds with 40% of moisture in them. At this stage, the crop has considered ripe and 

ready for swathing when pods turn their colors (Vélez, 2017) 

 

  

Figure 1 Mustard plant morphology explain different part of plants. 
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1.1. Taxonomy and Morphological description  

1.1.1. Taxonomy 

Indian mustard is one of the important oilseed self-pollinated crops. The word “Brassica juncea” 

has been driven from two Latin words, “Brassica,” which means cabbage, and “juncea,” which 

means Mustard. The Brassicaceae family has vast economic importance in different fields. It 

contains thirty-seven species with complex taxonomy. In 1999 Gomez-Campo presented a 

comprehensive classification of the Brassica family. In this classification, he divides the Brassica 

into sub-genera, i.e., Brassicaria and Brassica. Later, the same author subdivided the two genera 

into Brassica and Guenthera with subgenus Brassicaria due to distinct morphological 

characteristics. The sub-genera distribution is based on a stylar portion of the pistils without seed 

primordia and other specified traits, i.e., stem structure, leave the area, and leave shape. He further 

suggests that the species belong to subgenus Brassicaria under the generic denomination of 

Guenthera Andr. Later, molecular discoveries confirmed that Guenthera should be separated from 

the Brassica family. Whereas the problem considered was the classification into sections within 

Brassica itself. The Brassica genus includes six interrelated species considered of worldwide 

economic importance. In 1935 study concluded that the cytology of the genus established the 

relationship among the six genus genomes. B. Juncea has an allopolyploid chromosomal 

arrangement derived from two diploid species B. Rapa (AA) and B. nigra (BB) as (AABB 2n = 4 

× = 36)  (Gómez-Campo, 1999). 
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Table 1 Taxonomy of Brassica Juncea 

KINGDOM PLANTAE – (VEGETAL) 

SUBKINGDOM Viridiplantae – (green plants)  

INFRAKINGDOM  Streptophyta– (land plants)  

SUPERDIVISION  Embryophyta  

DIVISION  Tracheophyta– (vascular plants, tracheophytes)  

SUBDIVISION Spermatophytina– (spermatophytes, seed plants)  

CLASS  Magnoliopsida  

SUPERORDER    Rosanne  

ORDER Brassicales 

FAMILY  Brassicaceae– (mustards, crucifers)  

GENUS  Brassica L.– (mustard) 

SPECIES  Brassica juncea (L.) Czern. – (Chinese or Indian mustard)  

 

 

1.1.2. Morphology 

The Brassicaceae family consists of herbaceous plants based on annual, biennial, or perennial life 

cycles. The leaves of plants have alternate organizations with a basal rosette or terminal rosette. 

The arrangement of flowers is uniform with four saccate sepals and clawed petals, and the petals 

can be asymmetric with cross-like structures. Tetradynamous flowers have six stamens, four are 

longer and arranged in a cross-format, and two are shorter. The pistil consists of two fused carpels 

with a small style and a bilobate stigma. Under the developmental stage, the false septum known 

as replum converts the superior ovary with unilocular properties to bilocular. 

The pollination process is expedited by entomogamy and nectar glands at the base of longer 

stamens stored on sepals. The fruit of the plant is present in a capsule named siliqua. The siliqua 

has two valves that are further modified as a part of carpels; the seeds are attached with dehisce 
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and replum from the bottom to upward. The siliqua part is sometimes separate and creates a loment 

between seeds. It expel the seed or evolved in a shot of samara (isatis) (Gómez-Campo, 1980). 

  

Figure 2 Mustard plant flower morphology show different interal 

part of flowers 
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1.2. Nutritional value of Brassica Juncea  

The brassica family is known for oil production and contains high minerals and vitamins in its 

leaves and seeds. The leaves of the plants consume food, while the seed of the plants been used as 

edible oil for 1000 years. The leaves and seeds of the plants are the primary source of 

carbohydrates, proteins, dietary fibers, minerals (Na, Ca, Mg, Zn, Fe, P, and K), and vitamins (A, 

B1, B2, B3, B6, B9, C, E, and K). This plant has phytochemicals (Brassicasterol, sitosterol, 

campesterol), glycosides, and flavonoids in the form of phenolic compounds (Jahangir, Kim, Choi, 

& Verpoorte, 2009). Table 2  shows the different concentrations of minerals, vitamins, and other 

compounds present in B. juncea according to the report of the USA Agriculture Department 2019 

(Agriculture, 2019).  

The brassica family was enriched with vitamins and minerals than other vegetables and crops. In 

comparing vitamin contents with other vegetable crops, brassica shows a high vitamin C, vitamin 

B-6, vitamin A, vitamin K, β-carotene, lutein, and carotenoid concentration than other foods. B. 

juncea has a high level of folate (B-9), which prevent cancer, neural tube defects, and vascular 

diseases (Jahangir et al., 2009). Additionally, these plants have massive content of minerals in 

them. According to (Lucarini, Canali, Cappelloni, Di Lullo, & Lombardi-Boccia, 1999), calcium 

in brassica is higher than in other vegetables. It shows exceptional bioavailability since the plant 

has a low level of oxalic and phytic acid, which makes the brassica a reliable source of calcium. 

Meanwhile, a high level of potassium and calcium is an essential mineral that plays a vital role in 

different metabolic pathways (protein synthesis, phytochemical synthesis, carbohydrate 

metabolism, and flavonoid synthesis)  (Cartea, Lema, Francisco, & Velasco, 2011).  
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1.2.1 Glucosinolates 

Glucosinolates are the class of phytochemicals present in the Brassicaceae family. The breakdown 

of glucosinolates products contains prevention from cancer, cardio-protection activity, and anti-

bacterial and anti-inflammatory properties (Smith, Lund, Clarke, Bennett, & Johnson, 2005; Traka 

& Mithen, 2009). These compounds are hydrolyzed by myrosinase (enzyme) into allyl-

isothiocyanate during the oil formation process. The allyl-isothiocyanate combination develops a 

pungent taste in brassica vegetables as they are responsible for their flavors (Fenwick, Griffiths, 

& Heaney, 1983). Glucosinolates are the essential secondary metabolites in the Brassicaceae 

family. These molecules comprise β-thiol-glucoside N-hydroxy sulfate along with side chains of 

the β-D-glucopyranose moiety. These chemicals are further classified into three different classes 

as follows; aliphatic, indolic, and aromatic, according to amino acids and other precursors 

(Giamoustaris & Mithen, 1996) 

Glucosinolate degradation was recognized long ago and benefits humans for nutrition and plant 

defense. Brassica foods, if considered functional, will provide an adequate number of bioactive 

components to improve health (Ciska, Martyniak-Przybyszewska, & Kozlowska, 2000). 

1.2.2 Antioxidant properties 

In addition, glucosinolate Brassica vegetables improve health associated with antioxidant 

properties known as “phenolic compounds.” Phenolic compounds refer to many mixtures widely 

dispersed in the plant kingdom. These compounds depict antioxidant activity by the inhibition 

mechanism of carcinogenic compounds via inducing the process of detoxifying Reactive oxygen 

species (ROS). The following characteristics classify phenolic compounds in B. Juncea:- the 

number of carbons, atoms arrangement, molecular weight, and aromatic and aliphatic properties 

(Jahangir et al., 2009; Kapusta-Duch, Kopec, Piatkowska, Borczak, & Leszczynska, 2012; 

Morales-López et al., 2017). The two major groups of phenolic compounds are flavonoids and 
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non-flavonoids. These molecules are found as a conjugate with an organic acid or sugar molecules. 

(Crozier, Clifford, & Ashihara, 2008)The antioxidant activity of phenolic compounds, specifical 

flavonoids that possess biological activities against tumors, is one of the crucial contests 

(Podsędek, 2007). 

The oil of B. Juncea also contains a wide range of fatty acids, carbohydrates, proteins, and 

vitamins. Its seeds are the major source of oil. The average oil production is 35-40% per year with 

a varied 28-45% range. In the oil following major fatty acids compound are present; - linoleic acid 

12-21%, oleic acid 8-33%, stearic acid 0.8-1.5%, palmitic acid 2-4%, arachidic acid 0.5-1.2%, 

nervonic acid 0.5-2%, lignoceric acid 0-1% and behenic acid 0-1%. The oil obtained from B. 

napus, and B. Rapa is like B. juncea. About 37-40% of the crude protein present in seed cakes 

produce through oil extraction. (Das, Bhattacherjee, & Ghosh, 2009; Service, 2001; Yokozawa, 

Kim, Cho, Choi, & Chung, 2002).  
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Table 2 Nutritional Value of Brassica Juncea 

NUTRITIONAL VALUE PER 100 GRAMS UNIT  

WATER 91.8 g  

ENERGY 110 (26 kcal) kJ  

CARBOHYDRATES 4.51 g  

SUGARS 1.41 g  

DIETARY FIBRE 2 g  

FAT 0.47 g  

PROTEIN 2.56 g  

TOTAL LIPID 0.47 g  

FIBER 2 g  

VITAMINS Quantity  %DV 

VITAMIN A EQUIV, 618 μg 77% 

BETA-CAROTENE 7400 μg 69% 

LUTEN ZEAXANTHIN/ 10400 μg  

THIAMIN (BL) 0.041 mg 4% 

RIBOFLAVIN (B2) 0.063 mg 5% 

NIACIN (B3) 0.433 mg 3% 

PANTOTHENIC ACID 

(35) 

0.12 mg 2% 

VITAMIN B6 0.098 mg 1% 

FOLATE (B9) 9 mg 8% 

VITAMIN C 25.3 mg 30% 

VITAMIN E 1.78 mg 12% 

VITAMIN K 592.7 mg 564% 

MINERALS Quantity  %DV 

CALCIUM 118 mg 12% 

IRON 0.87 mg 7% 

MAGNESIUM 13 mg 4% 

PHOSPHORUS 42 mg 6% 

POTASSIUM 162 mg 3% 

SODIUM 9 mg 1% 

ZINC 0.22 mg 2% 

COPPER 0.146 mg 0.5% 
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1.3. Economic importance  

Around 28 million hectares of land are cultivated with B. Juncea, with an annual production 

of 58 Mt.  It is considered the third-largest oil production plant after palm oil and soybeans 

(FAO, 2017). In 2021, Canada, the Europe Union, China, and India produced 19.49, 16.26, 

14.06, and 8.5 Mt rapeseeds, respectively (Service, 2001). The leaves, roots, young flowers, 

and stems are used as vegetable food. In contrast, the seeds are used for edible oil in different 

regions of the world, specifically Pakistan, Bangladesh, China, India, France, Germany, Korea, 

Japan, and America. These plants are consumed in different culinary items due to their high 

nutritional value (Grubben & Denton, 2004).  

Young plants have been eaten as raw salads or cooked vegetables, whereas older leaves can be 

eaten as boiled, canned, pickled, or salads. A different protein extract from its leaves is utilized 

for stuffing pies with banana pulp. Young flowers and stems are sweet and used to eat in raw 

or cooked form. Moreover, In Nepal and China, the thick stem of B. Juncea uses to make 

pickles. The seeds of plants convert to powdered form and are used to add food for spicy flavors 

produced by ally isothiocyanate.  

Brassica family is not immensely popular in the therapeutic field; moreover, still used in 

different remedies against colds, arthritis, rheumatism, skeletal pains, etc. The mustard plant 

has antibiotic, anti-inflammation, diuretic, digestant, rubefacient, antioxidant and anodyne 

properties that benefit the medicinal field. Traditional restorative practices of Ayurveda in 

3000 BC also explains various medicines and food preparation from the different part of this 

plant. While in the traditional medicine of China and India, mustard, its seeds, are used to cure 

exogenous and endogenous maladies. Recently, this plant has been utilized in modern 

medicine practices in Europe and North America. The healing attributes of B. juncea that link 
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with their various phytochemical presence lead to therapeutic fields  (Malan, Walia, Saini, & 

Gupta, 2011). 

A study conducted (Fadhil, Saleh, & Altamer, 2020) shows the conversion of mustard seed oil 

to biofuel with KOH- catalyzed transesterification through methanol as a co-solvent and 

methyl esters as a purifying agent. They perform the ASTM D6751 test confirming mustard 

oil conversion to biofuel.  

1.4. Stress Inductions in Brassica Juncea  

Plants are sessile and face several biotic and abiotic stresses in their life period. Biotic factors 

include attack and diseases imprinting from different living organisms, e.g. (animals, insects, 

bacteria, fungi, and viruses) which attacked them for their shelter and nutrition uptake. 

Meanwhile, abiotic factors include metal toxicity, temperature stress, and water shortage, 

negatively impacting growth, yield, and food quality (A. Sharma et al., 2020).  

Eventually, plants encounter these factors in regular interaction. Therefore, they possess an 

internal defense mechanism; with these strategies, plants protect themselves from different 

stresses (Krasensky & Jonak, 2012). Several studies have identified that altered B. juncea 

growth mechanism includes heavy metal stress, drought stress, salinity stress, and temperature 

stress (Kapoor et al., 2019; Ram et al., 2016; Srivastava, Srivastava, Lokhande, D'Souza, & 

Suprasanna, 2015; Toosi, Bakar, & Azizi, 2014). The abiotic factors, specifically heavy metals, 

and stress integer, alter physiological, morpho-anatomical, and biochemical aspects of B. 

Juncea. To survive against abiotic factors, plants accumulate an antioxidant defense system 

(Jan et al., 2017). 

The quantity of heavy metals in the soil is intensified over time, and it has become a significant 

issue for our ecosystem as these pollutants affect agronomic fields. Heavy metals (HMs) are a 
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substantial concern for plant scientists due to their effect on crops (Ashfaque, Inam, Iqbal, & 

Sahay, 2017). HMs accumulation in crops disturbs various physiological aspects of the plant 

body, food quality, the food chain, and living organisms that consume this food (Mudgal, 

Madaan, Mudgal, Singh, & Mishra, 2010). The major HMs that disrupt the plants are 

(Cadmium (Cd), Aluminum (Al), Mercury (Hg), Methylmercury (Methyl-As), Lead (Pb), 

Arsenic (As), and Nickel (Ni)) significantly proved their toxic effect in crops. HMs toxicity 

express toxicity on the genotypic, phenotypic, morphologic, and metabolomic levels. Our 

primary concern is cadmium metal, as its extensively present in our soil. Different studies 

reveal that Cd metals reduce growth (length of root or shoot, dry plant mass, photosynthesis, 

yield, and leaf area). The growth inhibition in B. Juncea plants was attributed to Cd invasion 

(Gill, Khan, Anjum, & Tuteja, 2011; Sarvajeet Singh Gill, Nafees A Khan, & Narendra Tuteja, 

2011). 

1.5. Cadmium Stress effect on Brassica Juncea  

Cadmium (Cd) is a heavy metal (HMs) present in Cd+2 with 0.1-1.0 mg kg-1 in soil. The dispersion 

of Cd in soil persists for several decades (Mutlu, Lee, Park, Yu, & Lee, 2012). Cd is found in fruits 

and vegetative parts of plants if its concentration is high in the soil. Cd influences enzymatic 

activities and the nutritional quality of B. Juncea (Irfan, Ahmad, & Hayat, 2014). Some plant has 

special Cd-binding enzymes that contain protein bound with cadmium and play a vital role in 

growth stimulation and photosynthesis against the presence of Cd as tolerant. Such plants are also 

known as hyperaccumulators. The B.Juncea also has the properties of hyperaccumulation, and a 

study shows that B. Juncea stored up to 100 mg Cd kg-1 in dry biomass (McGrath & Zhao, 2003). 

It is also observed that in hyperaccumulator plants, the concentration of chlorophyll increases and 

decreases in typical plants (Zhou & Qiu, 2005).  
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1.5.1. Morphological Change 

At the morphological level, many changes are observed under the cadmium stress in different 

plants. Cadmium toxicity decreases dry mass, root length, and yield quantity and enhances root 

diameter. Under Cd stress, the roots of B. Juncea become thicker and shorter with the inhibition 

of root elongation (Gratão, Polle, Lea, & Azevedo, 2005; Lux, Martinka, Vaculík, & White, 2011). 

Cadmium ions inhibit root elongation and depolymerize the cell cytoskeleton; it distorts 

chromosomes to repress mitotic activity in meristematic tissues (Seth, Misra, Chauhan, & Singh, 

2008). Cd stress enhances parenchyma cells, and cortical tissue growth as a result of this root 

diameter also increases, leading the plant toward resistance against ionic solutes (Maksimović, 

Kastori, Krstić, & Luković, 2007). The roots absorption potentiality depends on root length under 

Cd stress; however, root length, surface area, and the number of tips decrease, and root diameter 

increases in B. Juncea under stress, reducing the capacity of root to acquire nutrients and water. 

Some other studies show that Cd also influences root system architectures in several species. 

Therefore, root morphological parameters have been used to assess Cd toxicity (Staňová et al., 

2012; Wei, Li, Zhan, Wang, & Zhu, 2012).  

The normal 0.05- 0.2 mg kg-1 Concentration of cadmium present in leaves while >5-10 mg kg-1 

are toxic for plants. Studies show that young leaves have high Cd concentration than old leaves. 

Shoot and leaves show necrosis, chlorosis, desiccation and stunting under stress conditions 

(Pietrini et al., 2010). Some studies show that Cd also affects seed yield and germination when 

plants are exposed to stress. The seed imbibition and water repressing content also impact 

germination and growth under the presence of Cd (Alvarado & Bradford, 2005). 
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1.5.2. Physiological Change  

The toxic cadmium also interacts with the minerals present in plants as nutrients, including iron 

(Fe), Potassium (K), Copper (Cu), Silicon (Si), magnesium (Mg) and Calcium (Ca) (Nedjimi & 

Daoud, 2009) and cations Zn+2, Fe+2, Mn+2, Mg+2 and Si+2. A study conducted by (Feng et al 

(2013) reported that adding calcium, magnesium, silicon, and phosphate fertilizer significantly 

reduces Cd toxicity in soil (Feng et al., 2013). The Cd in plants influences the nutrients transported 

in leaves and roots by inhibiting nutrition transport. This load other metals in the aerial part of 

plants with phytochelatin production (Sandalio, Dalurzo, Gomez, Romero‐Puertas, & Del Rio, 

2001)  

Nelson, in 1986 stated in his study that Ca and Cd vie identical Calcium channels in plants. Cd 

pervades plasma membranes through Ca channels in guard cells and root cells (Perfus‐Barbeoch, 

Leonhardt, Vavasseur, & Forestier, 2002; White, 2000). In guard cells, Cd interacts with Ca 

metabolites, resulting in a disturbance in the signaling pathway thus leading toward stomatal 

closure, decreased transpiration rate, inhibiting cell growth, and translocation   (Perfus‐Barbeoch 

et al., 2002; Sipos et al., 2013). 

The accumulation of Nitrogen was severely affected in the presence of cadmium stress at a 

metabolic level. The presence of the Cd ion inhibits the uptake of nitrogen, which assimilates the 

enzyme activity and nitrate pathway (Chang et al., 2013; Sánchez-Pardo, Carpena, & Zornoza, 

2013). Chang et al stated that different enzymes involved in ammonium absorption declines 

extensively in cadmium stress. it shows the negative influence of the downregulation of nitrogen 

in plants. Cd stress also influences sugar metabolic and Carbon metabolic pathways. 

Cadmium in soil subdues water uptake by decreasing transpiration rate, stomatal conductance, and 

leaf water content. These circumstances damaged the physiological aspects of the cell by reducing 
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intracellular space, chloroplasts quantity, and enlargement of the cell wall. Cd stress also affects 

Cell membrane permeability, called the reduction of water content in cells (Fernández et al., 2013). 

Under cadmium stress, photochemical efficiency, photosynthetic activity, and chlorophyll content 

are considered sensitive indicators toward heavy metals stress. Different studies show that Cd 

effectively inhibits photosynthesis in plants. Cd suppresses the bending state of a protein, thereby 

damaging the photosynthetic pathways and enzymes involved in it. Cd binds competitively at all 

the essential Ca-binding enzymatic sites of Photosystem-I (PS-I) and Photosystem-II (PS-II), more 

specifically water-splitting enzymes, and inhibits the production of hydrogen ion (H+), electron 

(e+) and oxygen (O2) that are necessary components of the photosynthesis process (F. Chen, 

Wang, Zhang, & Wu, 2008; Küpper, Lombi, Zhao, & McGrath, 2000) 

1.5.3. Biochemical Change  

Many researchers have found the Cd toxic effects on a plant biochemical level. The common aspect 

analyzed after Cd exposure is an upsurge of reactive oxygen species (ROS) in plant cells  (Semane 

et al., 2007; S. S. Sharma & Dietz, 2009). The mutual observation of oxidative damage in plant 

cells is MDA content. The cell membrane lipids are considered the main indicator for the 

transmission of lipid peroxidation. The abolishment of the cell membrane and incanted free 

radicals occur through this process in plant tissues (Moller, Jensen, & Hansson, 2007; Shamsi, 

Wei, Zhang, Jilani, & Hassan, 2008). The Cd ions trigger oxidative stress mechanism in crops 

through the activation of oxidase enzyme, interruption of electron transport chain, and interaction 

with anti-oxidative defense mechanism (Schutzendubel & Polle, 2002). 

The extensive accumulation of Cd triggers ROS progression that initiate membrane lipid 

peroxidation, inhabitation of the enzyme, structural changes in metabolites, disturbance in 

metabolic pathways. ROS  also damage the structure of DNA and  RNA resulting into cell death 
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(Gratão et al., 2005). Cd stress also causes inflection in sucrose and hexose (plant sugar) levels, 

disturbing cellular activities. A higher quantity of sugar in plants is associated with cell expansion 

and disruption (Ohto, Fischer, Goldberg, Nakamura, & Harada, 2005). 

The plant has a cleanup system in them as a defense mechanism that leads to normal cellular 

function for the avoidance of ROS species damage. For a balance function, the activity of 

antioxidative enzymes and ROS production should work in an equilibrium mechanism to avoid 

damage. B. Juncea has developed a compound process for an enzymatic and non-enzymatic 

antioxidant system to reduce oxidative stress. The enzyme that works against ROS includes:- 

superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and 

glutathione reductase (GR)  (Apel & Hirt, 2004; Horváth, Pál, Szalai, Páldi, & Janda, 2007).  The 

photosynthetic membrane functions are maintained under ROS stress with the non-enzymatic 

antioxidant. The enzymatic process activates the non-enzymatic antioxidant for ROS scavenging 

(Mittler, 2002). 

1.6. Phytoremediation 

Heavy metals are toxic for plants and animals, and their presence in the soil is extensively growing 

daily, turning it into a significant concern for the survival of living organisms. The cadmium (Cd) 

toxicity cannot be neglected due to its vast effect on every aspect of a living organism. The primary 

sources of Cd in environments are sewage, phosphate fertilizers, mining, industrialization, and 

neutral disasters (Rizwan et al., 2016; Shahid, Dumat, Khalid, Niazi, & Antunes, 2016). The 

exclusion of HMs from the soil needs a comprehensive and cheap mechanism for cleanup. For this 

purpose, phytoremediation is widely used as an in-situ process. Many advantages and 

disadvantages of phytoremediation have been reported in the literature, likewise in terms of 

benefits:- it's cost-effective and easy to operate contaminants whereas, disadvantages:-  its 
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selective metals uptakes plants, slow growth, and long cleanup process (S. S. Gill, N. A. Khan, & 

N. Tuteja, 2011; Ma, Cao, Tan, Si, & Wu, 2017). 

It is hard to simultaneously understand any plant's phytoremediation potential and Cd tolerance. 

For this purpose, the brassica crop has been studied and used widely because of its high biomass 

production, short life span, and ability to store HMs. Moreover, Brassica crops also have a 

substantial economic importance in oil production. Thus, plants that grow for phytoremediation 

can’t be used for food purposes (Cojocaru, Gusiatin, & Cretescu, 2016).  

The cadmium accumulation occurs in a different part of Brassica species without showing huge 

impartation on its growth and development; thus, such plants are further used for biofuel after total 

gain (Romih, Grabner, Lakota, & Ribarič-Lasnik, 2012). Although Brassica species have 

enormous tolerance against Cd and accumulate. The Cd accumulation occurs in above-ground 

parts: - specifically in shoots, leaves, and seeds. Cd accumulation adversely affects the plant 

through stunted growth, low biomass, decreased chlorophyll quality, and low yield. Different 

exogenous application in the soil has introduced to boost plant growth. Some organic and inorganic 

approaches have been submitted for Brassica Cd uptake enhancement and extensive tolerance 

under Cd stress. The organic methods include soil microbes, co-cropping, and biochar, while 

inorganic approaches include fertilizer management, EDTA, chemical treatments and physical 

treatments (Sharmila, Kumari, Singh, Prasad, & Pardha-Saradhi, 2017; Zhichao Wu, Zhao, Sun, 

Tan, Tang, Nie, Qu, et al., 2015).  However, inorganic treatments have some disadvantages for the 

soil and plant's growth; therefore, plant scientists prefer organic amendment  (Marchand et al., 

2016; Tang et al., 2016; Yao et al., 2017).  

The uptake of Cd via different Brassica species varies from one another. Brassica species 

cultivators select Cd tolerant plants for phytoextraction. Some species have higher transcription 
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factors that enhance phytoextraction than others. It has been observed that black seeded Brassica 

Rapa has a high growth rate and biomass with the concern as a yellow seeded variety under 100 

μM Cd stress. B. Juncea produces more biomass than other Brassica species (Xuan et al., 2015; 

Yu et al., 2014). 

1.6.1. Mechanism of Phytoremediation  

The Cadmium uptake and accumulation in different plants conquered great attention of scientists 

due to its toxic effect on plants, animals, and humans. The proliferation of Cd in plants depends 

on various factors involved, including (soil pH, soil type, Cd level in soil, Cd rhizosphere 

speciation, organic matter contents, and harmful or beneficial microbes) (Rizwan et al., 2016; Ru, 

Xing, & Su, 2006). 

The uptake concentration of Cd in the plant's upper part depends upon the soil's pH concentration. 

In previous studies, it has been concluded that B. juncea uptake Cd three times more at 5.5 pH 

compared with the soil of 6.5 and 7.5, whereas the Nitrogen deficiency is higher in pH 5.5 than 

the comparisons of other (Zaurov, Perdomo, & Raskin, 1999). The Cd uptake also depends on Cd 

speciation in rhizospheric soil. Cd binds with carbonate produced by Cd accumulator Brassica in 

the rhizosphere was higher than non-accumulator Brassica. Accumulator species stored even 

insoluble Cd in them compared with non-accumulator species (Dechun, Jianping, Weiping, & 

Woonchung, 2009; Ru et al., 2006; Yang et al., 2016). Different studies show that the uptake of 

Cd also depends upon the type of experiments (hydroponic vs. soil), rhizosphere volume, Cd 

contents, exposure duration, and soil type. Furthermore, uptake regulation also depends upon root 

morphological characteristics such as (root length, surface area, root hair, and root volume)  

(Armas et al., 2015; Xia, Deng, Zhang, Liu, & Shi, 2016). 
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The Cd uptake from roots mainly translocate to shoots via xylem tissue by binding with organic 

acids, depending upon Brassica species (Zhichao Wu, Zhao, Sun, Tan, Tang, Nie, & Hu, 2015). 

The long-distance transport from roots to shoots and leaves held via phytochelatins (PCs) in B. 

Juncea under Cd stress, the PCs-Cd complex increase with the increasing Cd quantity. It has also 

been reported that Cd translocation in Brassica species is relatively easy to compare with other 

metals such as lead (Pb), Mercury (Hg) or zinc (Zn) (Angelova, Ivanova, Todorov, & Ivanov, 

2008). 

 

Figure 3  different effects of cadmium on plants and benefits impact of biochar,co-planting and 

PGPR.  
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Aim and Objective  

The study aims to evaluate the effect of organic amendment and co-planting on the growth and 

development of Brassica juncea with the given objective.  

• To Identify the morpho-physiological responses in brassica juncea against Cd stress  

• To evaluate antioxidant activities in brassica juncea towards the response of Cd stress with 

bacterial strain, biochar, and legumes co-planting.  
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Chapter 2: Review of Literature 

2.1. Persistence of Heavy Metal  

(Pallavi Sharma & Dubey, 2006) review that the presence of toxic heavy metals gradually 

increases in soil over time. HMs in high concentrations show potential harmful effects on plant 

growth and metabolism. Different methods have been introduced for the accretion of these metals 

from the soil, but most of them are expensive, hazardous to the environment or slow. In the interim, 

chemical, physical, and biological procedures have been used for soil remediation. Chemical 

remediation includes different chemicals. Fortunately, a single chemical can’t use against all HMs 

(Chaney & Oliver, 1996).  

Additionally, chemical remediation is complicated and hazardous for plants and microbes that 

reside in the soil. Physical methods consume ample time and machines for this purpose as it has 

become economical for remediation. The scientist introduced a new method known as 

“bioremediation.” Bioremediation restores contaminated sites and cleans the environment (A. J. 

Baker, McGrath, Reeves, & Smith, 2020). 

(Viehweger, 2014) perform a study that the bioremediation rate is directly proportional to plant 

growth and the total amount of remediation correlates with plant biomass. Brassica Juncea's up-

graded translocation of Cd from root to shoot significantly reduces metal presence in soil. When 

plants accumulate a high amount of Cd, their growth and metabolic process is induced negatively. 

Hyperaccumulation plants have some singular metabolites produced thru genes that have activated 

in the presence of Cd ions. These metabolites are known as Chelators. They contribute to metal 

detoxification on the cytosolic level.  
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2.2. Synthesis of Phyto-chelators  

(A. Baker, McGrath, Sidoli, & Reeves, 1994) confirm that the HMs accumulation typically 

happened in shoot more than root. (Ucer, Uyanik, & Kutbay, 2013). Their study plant shows the 

capacity to accumulate 100 mg kg-1 of Cd. Whereas, (Thijs, Langill, & Vangronsveld, 2017) stated 

that the high accumulation capacity of plants is enhanced by specific proteins and metabolites that 

work as chelators, correspondingly with the analysis of the overexpression transport system. There 

are approx. 720 plant species registered globally as hyperaccumulator plants and accumulate 

different heavy metals at a time. The following study suggests seven plants for cadmium 

accumulation (Reeves et al., 2018). (Hörger, Fones, & Preston, 2013) stated that the accumulation 

of metal ions induces defence against pathogens and herbivores. The transformation of Cd from 

roots to shoots, fruits, seeds and leaves via the phloem transport channel (Turgeon & Wolf, 2009). 

2.3.  Phyto-chelators  

Metal ions bound to ligands and proteins have a low molecular mass in plants, while a minute 

quantity of metal ions is present as free. Hyperaccumulator plants produce numerous metal-

binding ligands, including thiols group compounds likewise: - nicotianamine (NA), glutathione, 

metalothioneins (MTs) and Phyto-chelators (PCs). A study by (Krämer, Cotter-Howells, 

Charnock, Baker, & Smith, 1996) shows that Histidine (His) is an amino acid that comprises 

hyperaccumulation by acting as nitrogen donor ligands in the roots. The central complex has been 

found with Cadmium (Cd), Nickel (Ni) and Zinc (Zn). 

Another study concludes that (Stephan & Scholz, 1993) Nicotianamine (NA) is a metal chelator 

found in every plant. The enzyme NA synthase (NAS) controls the trimerization of S-

adenosylmethionine (SAM) (NAS). Nicotianamine is involved in micronutrient transportation in 

plants used in iron metabolism. Other reports show that NA bind with Cu and Cd in different 
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plants. The enhancement of Cd accumulation depends upon the NAS expression in the plant. 

Cadmium stress causes a reduction in plant growth, photosynthesis, food, oil quality, morphology, 

and physiology.  

The other most crucial metal detoxifying ligands are metallothionins (MTs), present in all plants 

and animals. Their principal function is to maintain the homeostasis of metal ions in 

hyperaccumulator and non-hyperaccumulator plants under normal physiological conditions. MTs 

family has three most important types that express under the presence of different HMs (MT-I, 

MT-II, MT-III). MT-III has been observed as an activator under the presence of Cd ion stress (Jack 

et al., 2007)  

2.4. Reactive Oxygen Species and metal Detoxification 

In several studies, glutathione (GSH) is vital for maintaining cellular ROS homeostasis and has 

been implicated in plant metal detoxification. Previous studies show that thiol ligands play a minor 

role in hyperaccumulation. (Freeman & Salt, 2007)  His studies showed increased activity of the 

assimilatory sulfur pathway, mitochondrial serine acetyltransferase (SATm), and increased 

excessive production of GSH. TgSATm-expressing Arabidopsis also showed it improved metal 

resistance (van de Mortel et al., 2008). They found that Cd exposure increased sulfate synthesis 

and GSH metabolism in T. caerulescens (also known as N. caerulescens) and increased foliar and 

root GSH production in metal hyperaccumulators. 

2.5. Assistances of biochar   

In soil, biochar provides nutrients (carbon, nitrogen, calcium, and phosphorus). It also helps to 

store water due to its porous structure that keeps the plant hydrated for longer-term than expected. 

There are diverse types of biochar on physicochemical properties (pore structure, surface area, 

phosphorus quantity, and functional groups). Biochar production at a high pyrolysis temperature 
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requires a large surface area, huge porosity, normal pH, and low cation exchange capacity (CEC) 

compared with the biochar produced at carbonization degree. Biochar properties are also related 

to certain variables, including lignin, cellulose, and moisture (Trampczynska, Küpper, Meyer-

Klaucke, Schmidt, & Clemens, 2010). Biochar is produced under the 350C- 650 C derived from 

different plants such as palm kernel shells, corn cobs, cocoa pod husks, rice husks and wheat husks 

used as nutrients booster for new plants. 

 The cadmium effect on plants and humans cannot be neglected to protect public health from 

contaminated food with Cd; different biological amendments are required. Food and Agriculture 

Organization and World Health Organization (FAO, 2017).  Studies show that the new vegetable 

maximum limit of Cd permissible is 0.05-0.2 mg kg 1.z Previous studies confirm that acidic soil 

or pH from 3-5.5 overrides Cd in accumulation (Huang et al., 2017). Limiting acidic soil will 

reduce the sorption of Cd in plants (Zhipeng Wu et al., 2014; Zhichao Wu et al., 2016). Biochar 

improves soil qualities and limits acidic soil properties. It has also been shown that biochar lowers 

the mobility of toxic heavy metals in soil due to the activation of its functional groups, includes 

(carboxylic acid (–COOH), –C=O and inorganic ionic PO4
-). 

Until now, no research has been reported that explains the impacts of different biochar 

characteristics on Cd and Pb phytoavailability in toxic metal polluted soil types and their effect on 

metal uptake by vegetable crops. As a result, this study aimed to see how biochars made from three 

different feedstocks affected soil phytoavailable Cd concentrations and plant uptake in three 

different soils. We anticipated that biochar feedstocks might vary the physiochemical 

characteristics of biochar, resulting in various modes of action in both acidic and alkaline soils. 

Biochar might change soil pH, affecting soil Cd and Pb phytomobility and plant absorption 

(Houssou et al., 2022). 
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2.6. Assistance of PGPR  

Whereas soil microbes are also negatively affected under Cd stress, many microbes develop 

resistance against Cd-stress in rhizosphere soil. Different Cd-resistant microbes have shown the 

potential to enhance Cd uptake in plants. There is another possibility that Cd-resistant microbes 

either improve or reduce Cd uptake in plants. Different organic acid has been reported in various 

plants that help in mineral solubilization includes: - (indole-3-acetic acid (IAA) and 1-

aminocyclopropane-1-carboxylate (ACC). These organic acids help to uptake Cd in the upper part 

of the plant under the presence of microbes  (Z. Deng & Cao, 2017; Zhipeng, Weidong, Shenglu, 

& Shaohua, 2016). 

Microbes mainly reduce the soil pH and help slow the Cd uptake (Jing et al., 2014). Microbes also 

enhanced Cd tolerance in Brassica species by reducing ROS production in plants with mutual 

assistance (Panwar et al., 2011). Plant growth-promoting rhizobacteria (PGPR) are microbes 

frequently used in heavy metal cleanup (Pramanik, Mitra, Sarkar, & Maiti, 2018). Plants have a 

symbiotic connection with PGPRs, which boost plant growth and competitiveness in space and 

nutrients gain, enhancing plant resistance to external challenges. These microorganisms get their 

sustenance from root exudates, providing many benefits to the plants, including synthesizing 

growth hormones (Miransari & Smith, 2014).  

2.7. Characteristic of Brassica as hyperaccumulator  

Brassicales have been studied extensively in phytoremediation because they can efficiently 

transport heavy metals from roots to shoots and survive elevated soil metal content. They also have 

a fast-growing habit and produce a lot of biomass (Marchiol, Assolari, Sacco, & Zerbi, 2004). 

Empirical research suggests that several Brassicas have an increased amount of heavy metal 

accumulation, indicating that they have a high tolerance level to heavy metal stress. The only 
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concern associated with using brassica vegetables for phytoremediation is that brassica oil may be 

contaminated due to elevated levels of metal collected in the seed, resulting in the food chain and 

environmental toxicity (Park, Kim, & Kim, 2012). 

However, experimental research show evidence (Park et al., 2012) that heavy metals are not 

absorbed into the oil during the extraction process; hence there is no risk of contamination in the 

food chain. Furthermore, there is a study on using PGPRs to improve heavy metal uptake by 

accumulator plants. This study aimed to see how Cd accumulated in B. oleraceae under controlled 

conditions. Furthermore, the plants were infected with PGPR strains and grown at different doses 

of Cd to see how microbial strains affected heavy metal uptake by plants. Experimental plants can 

survive Cd toxicity in a controlled environment (Asad, Rehman, Ahmad, & Umer, 2018). 

2.8. Assistance through Intercropping   

Intercropping or co-planting is an ancient agricultural strategy involving two or more crop species 

growing together and co-existing for a specific period (Brooker et al. 2015). Co-planting was 

coined to describe how plants improve each other phytoremediation potential via utilizing 

nutrients, water, soil space, and lights together (Wu et al. 2007; Sun et al. 2018; Zeng, Guo, Xiao, 

Peng, Feng, et al. 2019). Previous studies have primarily focused on the coplanting patterns of 

crops and hyperaccumulators in the soil to restrain the levels of heavy metal contamination, 

reducing heavy metal accumulation in crops. These studies conduct by (L. Deng et al., 2016) on 

Sedum plumbizincicola and maize (Zea mays), Thlaspi caerulescens and Ryegrass (Jiang et al., 

2010), and Solanum nigrum and "welsh" onion (Allium cepa) (S. Wang, Wei, Ji, & Bai, 2015) 

show some benefits toward the environment aginst heavy metals.  
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The research also found that the hyperaccumulator plants diminish the HMs accumulation with 

co-planting, which aided in safe agricultural production and the remediation of contaminated soil 

in these experiments. 

Pteris vittata co-planted with the metal (loid)-tolerant species Morus alba and Broussonetia 

papyrifera (Zeng et al., 2019) can optimize planting structure, remediate contaminated soil at 

various depths, and improve phytoremediation efficiency. The significant effects of co-planting 

are also proposed to be facilitation and competition, which are always present simultaneously 

(Kutrowska et al., 2017). The kind of metal, its quantity and the interaction with plant species 

among co-existing plants all influence plant growth and metal accumulation in diverse co-planting 

patterns (Ling, Shen, Gao, Gu, & Yang, 2007). 

In comparison to shrubs, arbour trees provide more ecological and economic benefits. There is 

currently limited information on the phytoremediation of co-planting in arbour trees, its 

hyperaccumulators properties towards metal-polluted soil. Solanum nigrum, a perennial weed that 

can survive high levels of Cu, Pb, Ni, and Zn, is classified as the Cd-hyperaccumulator (Rizwan 

et al., 2016). Tall and straight arbor trees with magnificent crown shape and leaf color in autumn, 

Quercus nuttallii and Quercus pagoda have been widely imported and used in greening in China's 

subtropical zones in recent decades and are also highly resistant to heavy metals-induced abiotic 

stressors (Suresh Kumar, Dahms, Won, Lee, & Shin, 2015). The phytoremediation capacity of 

heavy metals utilizing Q. nuttallii and Q. pagoda co-planting with Q. nuttallii and Q. pagoda has 

yet to be determined. 
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Chapter 3: Material and methods 

3.1 Wet lab analysis  

3.1.1. Seed and soil collection  

Fresh seeds of B. Juncea were collected for experimental purposes from the oil and seed research 

department at the National Agriculture Research Center (NARC) Islamabad, Pakistan. The sandy, 

loamy soil was also collected from NARC peanut fields for plant growth.  

3.1.2. Seed germination  

Seeds’ surfaces were sterilized with 70% ethanol for 1 min, followed by washing through distilled 

water. Seeds were then spread on filter paper inside the safety cabinet to evaporate the maximum 

amount of ethanol. After dried from ethanol, the seeds were aligned on UV-sterilized germination 

paper in a germination box and wrapped with aluminum foil, so the interaction with light was 

limited and shifted to a dark place at 25℃-28℃ for 48 hours to break seed dormancy after three 

days B. Juncea seeds appropriately germinated and were ready for soil transformation. Seeds with 

equal germination rates were transferred in pots.  

3.1.3. Soil analysis 

Soil analysis was conducted at National Agriculture Research Center (NARC) Islamabad. The 

texture of the soil is sandy loam with 7.78 pH, containing a concentration of organic matter of 

0.49%. The saturation percentage (SP) is 32, respectably (Estefan, 2013)  

3.1.4. Soil preparation  

Eight different treatment was prepared in the soil using for plant growth. The first treatment was 

taken as a control group as it does not contain cadmium stress. At the same time, the other seven 
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treatments have cadmium stress with different organic variables, including bacterial strain, also 

known as plant growth-promoting rhizobacteria (Rhizobium legumin Sarum,) Biochar (Wheat 

Husk) and co-planting (Vigna radiata) illustrated in the given table 3. Variables provide as follows 

concentrations: - biochar as 1.2%, rhizosphere as 0.1%, along with one legume plant (Vigna 

radiata) as a co-plant variable. There were two batches. The first batch contained seven replicates, 

and the second had ten replicates with soil per pot of 1kg. Ten millimole Cadmium chloride 

(CdCl2) solution was prepared, and 10ml solutions per pot were added to the required treatments. 

After adding cadmium stress solution, the soil and solution are mixed by providing water daily for 

ten days at 25℃. Seedlings were transferred in the soil for ten days with growth conditions kept 

as 25℃-28℃ with light.  

Table 3 Treatments Table 

 

 

 

CODES TREATMENT 

T1 Sole Brassica+ no cadmium 

T2 Sole Brassica + cadmium 

T3 Brassica+ cadmium + Rhizosphere Bacteria 

T4 Brassica+ cadmium + biochar 

T5 Brassica + cadmium + biochar + Rhizosphere Bacteria 

T6 Cadmium + co-planted with mung bean 

T7 Brassica+ cadmium+ Rhizosphere Bacteria+ co-planted 

T8 Brassica+ cadmium + Rhizosphere Bacteria + Biochar+ co-planted 
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3.1.5. Water holding capacity 

For the water holding capacity of the soil, we take six pots containing 1kg of soil, three with simple 

soil (control group), and 3 with a mixture of biochar and bacterial strain (experimental group). 

There are several holes at the bottom of each pot. The tissue paper was put inside them. The three 

control pots were placed in one water tub, and the three experimental pots were placed in the other 

water tub. Water was added to all six pots till it is started dropping from the bottom. After 4 hours, 

all pots are weight again with electrical balance measured as W1. Soil was dried for 2 hours at 100 

C in an oven, and calculated its weight measured as (Wa). The pot was air-dried at room 

temperature, and its weight was calculated as (Wb). For the W2 value, W2=, Wa + Wb, and water 

holding capacity is measured by a formula (D. Y. Wang, Yan, Song, & Wang, 2014).  

100% 𝑊𝐻𝐶 =  
𝑊1 +  𝑊2

𝑊2
∗ 100 

Table 4 Water Holding Capacity  

 

 
 W1 WA WB W2= 

WA+ 

WB 

WHC= 

{(W1- W2)/ 

W2} *100 

100% WHC 

IN 1000KG 

SOIL 

70% 

OF 

WHC 

 AVG 

WATER 

CONTENT 

C
O

N
T

R
O

L
  

G
R

O
U

P
 

R1 1250 1000 45g 1045 19.61 250ml 171ml  210.5  

R2 1261 1007 47g 1054 19.63 250ml 173ml  211.5 

R3 1252 1002 47g 1049 19.35 250ml 170ml  210 

E
X

P
E

R
IM

E
N

T
 

G
R

O
U

P
 

R1 1250 960 47g 1007 24.13 250ml 183ml  216.5 

R2 1254 983 46g 1029 21.86 250ml 188ml  219 

R3 1250 990 48g 1038 20.42 250ml 186ml  218 
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3.1.6. Morphological analysis  

The number of leaves was counted on days 30th and 65th after sowing. Shoot height and weight 

were measured with a measuring scale on the 30th from rhizome boxes and the 65th day from pots. 

The total root length and weight were measured on the 30th day from rhizome boxes and the 65th 

day from pots (harvesting day). The number of pods was counted on the 65th day. The fresh root 

and shoot were washed with deionized water, calculated fresh weight, then air-dried for moisture 

evaporation at 70℃ for 2 hours in an air-dried machine and collected dry weight of samples  (Aina, 

Amoo, Mugivhisa, & Olowoyo, 2019) 

3.1.6.1. Scanning Election Microscopy  

Scanning electron microscopy was performed for dry leaf samples under the TESCAN MIRA – 

SEM microscope. 

3.1.6.2. Leave Area  

The leaf area was measured with the software Image J (Rasband, 2011). The leaves were drawn 

on graph sheets, scanned with a scanner, and identified different parameters through software. 

Includes leave density, area, mean, and median.   
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3.1.7. Physiological analysis  

3.1.7.1. Chlorophyll Pigment  

The Chlorophyll content was measured by the following method (Arnon, 1949). Take a 0.5g fresh 

plant sample and homogenize it with 2ml of 80% acetone. Centrifuge it at 13000 rpm for 20mins 

at 4 degrees ℃. Collect the supernatant of plant extract for chlorophyll analysis. The absorbance 

of the supernatant was collected at 645 and 663 nm for chlorophyll a and chlorophyll b, 

respectively.  

𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 = (𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒645 × 20.2) + (𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒663 × 8.3) × ( 𝑉 1000⁄ × 𝑊) 

𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝐴 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =  {𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒663 × 0.058} − {𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒645 × 0.032} 

𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝐵 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =  {𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒645 × 0.096} − {𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒663 × 0.01872} 
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3.1.8. Biochemical assay 

3.1.8.1. Superoxide dismutase (SOD)  

The Antioxidant assay was measured following the method (Kono, 1978). Take a 0.5g fresh plant 

sample and homogenize it using 3ml of phosphate-buffered saline (PBS). Transfer it to a 10ml 

tube and further add 5ml PBS buffer. Centrifuge it at 13000 rpm for 20mins at 4 degrees ℃. Collect 

the supernatant of plant extract in another tube and store it for 24 hours at 4℃ for SOD analysis. 

Then take 25μl enzyme extract and add 1ml PBS buffer, 33μl EDTA, and 66μl (methionine, NBT, 

and Riboflavin). Take the absorbance value of the supernatant at 560 nm.  

Ae = OD value on the spectrophotometer 

Ack = OD value for the control tube under light conditions (at 4000 lux for 20 minutes) 

V= Total volume of the buffer solution used to extract the enzyme 

W= Fresh weight of the sample 

Vt = Amount of enzyme extract used in reaction solution to test SOD 

𝑆𝑂𝐷 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑂. 𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑂. 𝐷 × 𝑉

0.5 × 𝑂. 𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙 × 𝑊 × 𝑉𝑡
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3.1.8.2. Peroxidases (POD)  

The Antioxidant assay for peroxidase (POD) was measured by following the method given by 

(Bergmeyer, 1974). Take a 0.5g fresh plant sample and homogenize it using 3ml of phosphate-

buffered saline (PBS). Transfer it to a 10ml tube and further add 5ml PBS buffer. Centrifuge it at 

13000 rpm for 20mins at 4 degrees ℃. Collect the supernatant of plant extract in another tube and 

store it for 24 hours at 4℃ for POD analysis. Then take 100μl enzyme extract and add 2.7ml PBS 

buffer, 100μl, Guaicol, and 100μl 30% hydrogen peroxides (H2O2). Take the absorbance value of 

the supernatant at 270 nm 

W means Fresh weight of the sample 

V means Total volume of the buffer solution used to extract the enzyme, a means  

The amount of enzyme extract used in the reaction solution to test E means constant activity, i-

e.,26.6mM/cm270 nm. Whereas the E value is 26.6 mM/cm 

 

𝑃𝑂𝐷 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑂. 𝐷𝑣𝑎𝑙𝑢𝑒 × 𝑉
𝑣𝑡⁄

𝐸 × 𝑊
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3.1.8.3. Catalase (CAT) 

The Antioxidant assay for Catalase (CAT) was measured by the following method (Aebi, 1984). 

Take a 0.5g fresh plant sample and homogenize it using 3ml of phosphate-buffered saline (PBS). 

Transfer it to a 10ml tube and further add 5ml PBS buffer. Centrifuge it at 13000 rpm for 20mins 

at 4 degrees ℃. Collect the supernatant of plant extract in another tube and store it for 24 hours at 

4℃ for CAT analysis. Then take 100μl enzyme extract to add 2.8ml PBS buffer and 100μl 30% 

hydrogen peroxides (H2O2). Take the absorbance value of the supernatant at 240 nm. Whereas 

the E value is 39.4 mM/cm  

A means Activity of OD value 

W means Fresh weight of the sample 

V means Total volume of the buffer solution used to extract the enzyme a means 

Amount of enzyme extract used in reaction solution to test E means activity 

constant i-e.,39.4mM/cm 

𝐶𝐴𝑇 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑂. 𝐷𝑣𝑎𝑙𝑢𝑒 × 𝑉
𝑣𝑡⁄

𝐸 × 𝑊
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3.1.8.4. Ascorbate peroxidase (APX) 

Ascorbate peroxidase (APX) was measured by following the method (Habib, Chaudhary, & Zia, 

2014). Take a 0.5g fresh plant sample and homogenize it using 3ml of phosphate-buffered saline 

(PBS). Transfer it to a 10ml tube and further add 5ml PBS buffer. Centrifuge it at 13000 rpm for 

20mins at 4 degrees ℃. Collect the supernatant of plant extract in another tube and store it for 24 

hours at 4℃ for POD analysis. Then take 100μl enzyme extract and add 2.7ml PBS buffer, 100μl 

30% hydrogen peroxides (H2O2), and 100μl of Ascorbic acid (ASA). Take the absorbance value 

of the supernatant at 290 nm. Whereas the E value is 2.8 mM/cm 

Activity A means OD value 

W means Fresh weight of the sample 

V means Total volume of the buffer solution used to extract the enzyme, a means  

The amount of enzyme extract used in the reaction solution to test E means constant activity, 

i-e.,2.8mM/cm 

𝐴𝑃𝑋 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑂. 𝐷𝑣𝑎𝑙𝑢𝑒 × 𝑉
𝑣𝑡⁄

𝐸 × 𝑊
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3.1.8.5. Melo-dialdehyde Content (MDA) 

The Melo-dialdehyde content (MDA) was measured by the following method (T. Chen & 

Zhang, 2016).  Take a 0.5g fresh plant sample and homogenize it using 3ml of phosphate-

buffered saline (PBS). Transfer it to a 10ml tube and further add 5ml PBS buffer. Centrifuge 

it at 13000 rpm for 20mins at 4 degrees ℃. Collect the supernatant of plant extract in another 

tube and store it for 24 hours at 4℃ for MOA analysis. Add one hundred μl crude 

protein/enzyme extract from each sample into 1 ml 0.25% TBA solution in a 1.5 ml centrifuge 

tube. A total of 1 ml 0.25% TBA solution with one hundred μl 100 mM PBS (pH7.8) serves 

as a reference. Boil the reaction mixture in a boiling water bath for 15 min. The reaction 

mixture turns red after boiling. Cool down reaction mixture on ice for 5 min. Pipette 200 μl of 

the reaction mixture and measure the absorbance at 532 nm and 600 nm—the Value of E as 

532 (mM-1 cm-1).  

A532: the absorbance at 532 nm 

A600: the absorbance at 600 nm 

Vr: the volume of the reaction mixture 

V: total volume of crude enzyme solution 

Vt: volume of crude enzyme used in the testing tube 

Cp: crude protein concentration (mg/ml) 

E: the extinction coefficient of MDA-TBA at 532 (mM-1 cm-1) 

𝑀𝑂𝐴 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = (𝐴532 − 𝐴600) × 𝑉𝑟 ×

𝑉

𝑉𝑡

𝐸
× 1000/𝐶𝑝  
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Chapter 4: Result 
4.1 Length 

4.1.1 Root length  

 The root length of the mustard plant has measured with measuring scare on 30th and 65th day 

for each treatment (T1 =BJ, T2 = BJ+ Cd, T3 = BJ +Cd+ PGPR, T4 = BJ+ Cd+ Biochar, T5 = BJ 

+Cd+ PGPR+ Biochar, T6 = BJ+ Cd+ Co-plant, T7 = BJ+ Cd+ PGPR+ Co-plant, T8 = BJ+ Cd 

+ PGPR+ Biochar+ Co-plant). Their mean values, standard deviation (SD), and p-value have been 

calculated with R studio.  

The results show a massive reduction in treatment two concerning other treatments. It concludes 

that the presence of Cd reduces the root length compared with other treatments having different 

combinations of biochar, PGPR and co-planting. Root length results in figure 4 show the variation 

among 30th and 65th days treatments. It shows that on the 30th-day timeframe, the root length was 

less affected than 65 days. The mustard plants show a massive reduction in root length on 65 days 

in Cd soil.  

T1, T5, T7, and T8 show non-significance results with each other in figure 4, However T3, T6 

are non-significance with each other but show significance results towards the treatments having 

a lettering represent “AB”. The lowest root length on the timeframe of 65-days has noticeable in 

T2 and T4. Moreover, on 30th day timeframe T1, T5, T6, T7 and T8 show non-significant results 

towards each other but show meaningful results with T2 and T4. This confirm that the presence 

of different biological mixtures helps to induce resistive parameters against cadmium stress. 

However, T4 (contain biochar only) did not show as much significance results as provide in 

combination form.  
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4.1.2 Shoot Length 

The shoot length of the mustard plant has measured with measuring scare on 30th and 65th day 

for each treatment (T1 =BJ, T2 = BJ+ Cd, T3 = BJ +Cd+ PGPR, T4 = BJ+ Cd+ Biochar, T5 = BJ 

+Cd+ PGPR+ Biochar, T6 = BJ+ Cd+ Co-plant, T7 = BJ+ Cd+ PGPR+ Co-plant, T8 = BJ+ Cd 

+ PGPR+ Biochar+ Co-plant). Their mean values, standard deviation (SD), and p-value have been 

calculated with R studio.  

Shoot length results explain in figure 5 shows the variation among 30th and 65th days treatments. 

It shows that on the 30th-day timeframe, the shoot length has reduced up to 50% on T2 and T4 

for T1, while other treatments that include the compositions of Biochar, co-planting, and PGPR 

show non-significant results with T1. 65th-day timeframe, a 61% reduction was noticed in T2; 

however, a 30% reduction was noticed in T4 on shoot length compared to T1. On the other hand, 

T5, T6, T7, and T8 show non-significance results compare with T1 on 65 days. It illustrates that 

plants on 30 days were less affected compared to 65 days. The mustard plants show a considerable 

reduction in root length on 65 days in Cd soil. 

Shoot length have highest mean value in T1 and lowest mean value in T2. There is highly 

significant difference between the T1 and T2 however, T5, T6, T7 and T8 show no significant 

with T1 under 65th days period. On 30th day timeframe T2, T3, T4 show significant result toward 

T1, whereas T8 show equivalent mean values as T1. This confirm T8 combination show growth 

enhancement in Brassica juncea.  
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Figure 4 show the root length of mustard plant under cadmium stress. Root length results 

show the presence of Cd effect root length on T2 compare with other treatments. Data is 

shown as interaction of different combination mixture as treatments applied to plants. 

Significance was inferred with Two-way ANOVA under the Tukey’s HSD post-hoc test for 

normalizing the data distribution (Honest Significant Detection p < 0.001).  

Figure 5 Shoot length of the plant determine the results shows only T2 and T4 decline in shoot 

growth compare with other treatments. Data shown as interaction of different combination 

mixture as treatments applied to plants. Significance inferred with Two-way ANOVA under the 

Tukey’s HSD post-hoc test for normalizing the data distribution (Honest Significant Detection p 

< 0.001).  
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4.1.3 Total Length  

The Total length of the mustard plant has measured with measuring scale on 30th and 65th day 

for each treatment (T1 =BJ, T2 = BJ+ Cd, T3 = BJ +Cd+ PGPR, T4 = BJ+ Cd+ Biochar, T5 = BJ 

+Cd+ PGPR+ Biochar, T6 = BJ+ Cd+ Co-plant, T7 = BJ+ Cd+ PGPR+ Co-plant, T8 = BJ+ Cd 

+ PGPR+ Biochar+ Co-plant). Their mean values, standard deviation (SD), and p-value have 

calculated with R studio.  

The results show on a figure 6 massive reduction in T2 and T4 for other treatments. It concludes 

that the presence of Cd negatively impacts the plant length compared with other treatments having 

different combinations of biochar, PGPR and co-planting.  

The total length of plant results also shows variations among 30th and 65th days treatments. It 

shows that the 30th-day timeframe, length has reduced up to 40% on T2 and T4 with the 

comparison T1, while other treatments that include the compositions of Biochar, co-planting and 

PGPR show non-significant results with T1. However, in the 65th-day timeframe, a 61% 

reduction has been noticed in T2 and a 30% reduction in T4 compared to T1. On the other hand, 

T5, T7, and T8 non-significance results compare with T1 on 65 days, showing meaningful results 

with on T3 and T6.  

In total length of plant its shows highest significance values have been noticed in T2 and T4 at 

65th day timeframe. Although, significant differences only observed T2 and T4 under 30-day 

period. Through these results it can be concluded that these biological mixture compositions help 

to boost the plant growth parameters specifically plant height.  
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Figure 6 The total length of the plant includes shoot and root length it demonstrates the total 

length of the plant. It shows that the 30th-day timeframe size has reduced up to 40% on T2 

and T4 with the comparison T1, while other treatments that include the compositions of 

Biochar, co-planting and PGPRs show growth results with T1. However, in the 65th-day 

timeframe, a 61% reduction has been noticed in T2 and a 30% reduction in T4 compared to 

T1. On the other hand, T5, T7, and T8 non-significance results compare with T1 on 65 days, 

showing meaningful results with on T3 and T6. Data is shown as interaction of different 

combination mixture as treatments applied to plants. Significance was inferred with Two-

way ANOVA under the Tukey’s HSD post-hoc test for normalizing the data distribution 

(Honest Significant Detection p < 0.001).  
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Figure 7 Mustard plant picture has been captured on 45-day period. It shows plant height, growth, 

and leaves. 
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4.2 Weight  

4.2.1 Fresh and dry root weight  

 

The results in figure 8 show the root fresh weight a huge reduction has been noticed under 

cadmium stress in T2, T3, and T5 with the comparison to T1 in 65 days however, other treatments 

show non-significant results with toward T1. Via comparison with T1 the percentage of reduction 

rate of dry weight indicates that T2, T3, T4, T5, T6, T7, and T8 reduce to 68%, 63%, 45%, 66%, 

42%, 27.2%, and 22.7%, respectively on 65th day period. On the other hand, the result of the 30-

day timeframe shows fresh root weight reduction as follows to T1, as T2, T3, T4, T5, T6, T7, and 

T8 reduced at 66.6%, 33.3%, 37.5%, 41.1%,37.5%,33.3%, and 16.6% respectably.  

The results in figure 9 show the dry root biomass the reduction of biomass has also observed, via 

comparison with T1, it also indicates that T2, T3, T4, T5, T6, T7, and T8 reduce to 68%, 63%, 

45%, 66%, 42%, 27.2%, and 22.7%, respectively under 65th day period. The result of the 30-day 

timeframe shows fresh weight reduction as follows to T1, as T2, T3, T4, T5, T6, T7, and T8 

reduced at 66.6%, 33.3%, 37.5%, 41.1%,37.5%,33.3%, and 16.6% respectably.  

It concluded that Cd negatively impacts the fresh shoot weight, but the different combinations of 

biochar, PGPR, and co-planting help reduce its effectivity; moreover, the less reduction rate 

observed under T7, T8 elaborate that these treatments composition work positively than other. It 

concludes that the presence of Cd negatively impacts the root weight, but the different 

combinations of biochar, PGPR, and co-planting help reduce its effectivity. 
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Figure 8 Dry root weight result confirm the reduction in dry matter in the presence of Cd 

stress. Data is shown as interaction of different combination mixture as treatments applied 

to plants. Significance was inferred with Two-way ANOVA under the Tukey’s HSD post-

hoc test for normalizing the data distribution (Honest Significant Detection p < 0.001). 

Figure 9 Plant fresh root weight results demonstrate highly reduced in the presence of Cd. 

Data is shown as interaction of different combination mixture as treatments applied to plants. 

Significance was inferred with Two-way ANOVA under the Tukey’s HSD post-hoc test for 

normalizing the data distribution (Honest Significant Detection p < 0.001). 
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4.2.2 Fresh Shoot weight  

The results show on figure10 an enormous reduction in T2 and T5 for T1 in 65 days. Via 

comparison with T1, it also indicates that T2, T3, T4, T5, T6, T7, and T8 reduce to 75.5%, 57.7%, 

56.6%, 66.8%, 63.1%, 53.3% and 4%, respectively. It concluded that Cd negatively impacts the 

plant's fresh weight, but the different combinations of biochar, PGPR, and co-planting help reduce 

its effectiveness.  

The result of the 30-day timeframe shows fresh weight reduction as follows to T1, as T2, T3, T4, 

T5, T6, T7, and T8 reduced at 75%, 53.1%, 62.5%, 55.6%, 43.75%, 33.11%, and 0% respectably. 

It concludes that the presence of Cd negatively impacts the plant's fresh weight in a 30-day 

timeframe, but the different combinations of biochar, PGPR, and co-planting help reduce its 

effectiveness. Moreover, the T8 combination shows a 0% reduction in dry weight, indicating that 

this combination works quite effectively against cadmium. 

The results show on figure 11 an enormous reduction in T2, T3 and T5 for T1 in 65 days. Via 

comparison with T1, it also indicates that T2, T3, T4, T5, T6, T7, and T8 reduce to 77.7%, 64%, 

62.9%, 66.6%, 64.2%, 55.5% and 7.03%, respectively. It concluded that Cd negatively impacts 

the shoot weight, but the different combinations of biochar, PGPR and co-planting help reduce 

its effectivity.  

The result of the 30-day timeframe shows fresh weight reduction as follows to T1, as T2, T3, T4, 

T5, T6, T7, and T8 reduced at 77.5%, 50%, 56.25%, 51.2%, 47.5%, 27.5%, and 0% respectably. 

It concludes that the presence of Cd negatively impacts the shoot weight, but the different 

combinations of biochar, PGPR and co-planting help reduce its effectivity. 
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Figure 11 Fresh Shoot weight also show decline in the presence of Cd stress. However different 

combination of Biochar, co-plant, and PGPR try to reduce the effect of Cd and overcome the 

stress. Data is shown as interaction of different combination mixture as treatments applied to 

plants. Significance was inferred with Two-way ANOVA under the Tukey’s HSD post-hoc test 

for normalizing the data distribution (Honest Significant Detection p < 0.001). 

Figure 10 Dry shoot weight also show reduction in the presence of Cd stress. T2 as positive 

control have less dry mass compare with other treatments. Different combination mixture as 

treatments applied to plants. Significance was inferred with Two-way ANOVA under the 

Tukey’s HSD post-hoc test for normalizing the data distribution (Honest Significant Detection p 

< 0.001). 
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4.2.3 Fresh and dry weight of leaves 

 

The results of leave fresh weight show in figure 12 an enormous reduction in T2, T3, and T5 for 

T1 in 65 days. Via comparison with T1, it also indicates that T2, T3, T4, T5, T6, T7, and T8 

reduce to 74.8%, 46%, 42.4%, 17.2%, 8.27%, 1%, and 0.71%, respectively. The result of the 30-

day timeframe shows the fresh weight of the leaves. It shows decrease as follows to T1, as T2, 

T3, T4, T5, T6, T7, and T8 reduced at 83.05%, 32.2%, 56.25%, 61.8%, 65.25%, 1.5%, and 0.77% 

respectably.  

The results of leave dry weight show in figure 13 show reduction in T2, T3 and T5 for T1 in 65 

days. Via comparison with T1, it also indicates that T2, T3, T4, T5, T6, T7, and T8 reduce to 

75%, 50%, 45%, 25%, 15%, 5% and -2%, respectively. The result of the 30-day timeframe shows 

the dry weight of the leaves. It shows that under the Cd stress, the dry weight of leaves reduced 

to 81.25%, 31.2%, 62.5%, 61.8%, 60%, 11.2%, and 0%. with the comparison of T1, to T2, T3, 

T4, T5, T6, T7, and T8, respectively.  

These results help us to analyze that biomass of leave is highly effective with cadmium, the 

reduction in fresh leave weight in T2 as (74.8%), and dry biomass of leave as (75%) on 65th day 

period identified that how adversely cadmium inhibit the plant growth. moreover, in different 

compositions of biological methods T7, and T8 show non significance results confirm that plant 

leave biomass was not affect under cd stress in these two treatments. These two are considered as 

helpful for plant growth.  
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Figure 12 Dry weight of leaves decline in Cd stress also indicate that the presence of 

Cd reduces dry mass of plants. Different combination mixture as treatments applied to 

plants. Significance was inferred with Two-way ANOVA under the Tukey’s HSD post-

hoc test for normalizing the data distribution (Honest Significant Detection p < 0.001). 

Figure 13 Leave weight also show the decline in mass under the presence of Cd. 

Data is shown as interaction of different combination mixture as treatments applied 

to plants. Significance was inferred with Two-way ANOVA under the Tukey’s 

HSD post-hoc test for normalizing the data distribution (Honest Significant 

Detection p < 0.001). 
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4.2.1 Pods fresh and dry weight 

 

The results in figure 14 show fresh pod weight on 65 days. Via comparison with T1, other 

treatments do not show a significant result other than T2 and T4. It shows that T2 and T4 pod 

daily reduce pod weight due to cadmium while other treatments have similarities in pod fresh and 

dry weight with T1. 

 

  

Figure 14 pod fresh and dry weight demonstrate the decrease in T2 and T4 which 

show that these two treatments have high accumulation of Cd and delay in plant 

flowering and pods formation. Data is shown as interaction of different combination 

mixture as treatments applied to plants. Significance was inferred with Two-way 

ANOVA under the Tukey’s HSD post-hoc test for normalizing the data distribution 

(Honest Significant Detection p < 0.001). 



Chapter 04 

52 

 

4.2.2 Total fresh and dry weight 

 

 The results in figure 15 show total fresh weight of plant upon analysis it is indicated that T2, T3, 

T5 have significant result according to T1 in 65th day period. Percentage comparison show that 

T2, T3, T4, T5, T6, T7, and T8 reduce to 74.8%, 46%, 42.4%, 17.2%, 8.27%, 1%, and 0.71%, 

respectively. On the 30th days fresh weight results elaborate the significant difference between 

the T2, T4, T5, and T6 is high as compared to other treatments. Upon the analysis of percentage, 

reduction had me noticed in results of as follows; T1, as T2, T3, T4, T5, T6, T7, and T8 reduced 

at 83.05%, 32.2%, 56.25%, 61.8%, 65.25%, 1.5%, and 0.77% respectably. The major reduction 

found in T2 and T4 however, other treatments cope up with the cadmium stress. These results 

conclude that the presence of different biological mixtures helps in plant overcome the cadmium 

stress and maintain its biomass. 

The results in figure 16 show the root dry mass in this figure it is explained the decline of dry 

mass of a plant on 65th period. The major reduction in dry mass has been noticed in T2 (74.3%), 

T3 (53.7%), T4(51.2%) these treatments show high significance towards the comparison with T1, 

while the other treatments T5(49.2%), T6(44.8%), T7 (25.6%) and T8 (3.8%), show reduction 

less than 50% under cadmium stress. we can conclude that T5, T6, T7, and T8 biological mixture 

help in plant growth and improve the biomass quantity ask compared to other biological mixtures. 

On the analysis of 30-day dry biomass it showed that T2, and T4 are highly significant as 

compared to other treatments. T2 (77.2%), and T4 (54.5%) reduction in dry mass while, 

T3(31.8%), T5 (45.4%) T6 (31%), T7 (13.6%) and T8 (9%). Biological mixtures boost the plant 

biomass under Cd stress.  
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Figure 16 show that total fresh weight of the plant decrease in the presence of Cd. Data is shown 

as interaction of different combination mixture as treatments applied to plants. Significance was 

inferred with Two-way ANOVA under the Tukey’s HSD post-hoc test for normalizing the data 

distribution (Honest Significant Detection p < 0.001). 

 

Figure 15 total dry weight of plant show that different combination enhanced plant growth. Data 

is shown as interaction of different combination mixture as treatments applied to plants. 

Significance was inferred with Two-way ANOVA under the Tukey’s HSD post-hoc test for 

normalizing the data distribution (Honest Significant Detection p < 0.001). 
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4.2 Number of Leaves 

The number of leaves also found reduced in the presence of cadmium stress in the figure 17 the 

number of leaves reduced and go T2 (62%) and T3 (44%). However, the reduction in other 

treatment is non-significant. On percentage analysis it concludes that T4 (16%), T5 (12%), T6 

(24%), T7 (24%) and T8 (-4%) on 65th day timeframe. Whereas, on 30th day only T2 show 

significant result then other.  

4.3 Leave Area 

 

Reduction in leave area causes a decrease in photosynthesis and respiration activities. Cadmium 

induces the drop of leave area in plants. Results showed in figure 18 indicate that positive control 

treatment T2 leave area reduced on 65-days (46.2%) and 30-days (41.6%) compared with negative 

control T1. However, via comparison with T1, it also indicates that T2, T3, T4, T5, T6, T7, and 

T8 reduce to 46.2%, 25.4%, 7.7%, 15.4%, 15.4%, 20% and 6.2%, respectively. On 30-day leave 

area reduction as follows to T1, as T2, T3, T4, T5, T6, T7, and T8 reduced at 41.67%, 25%, -5%, 

13.33%, 5%, 20%, and -3.33% respectably. 
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Figure 18 Number of leave of the plant show us the reduction in positve control where as different 

mixture of combination boost the plant growth different combination mixture as treatments 

applied to plants. Significance was inferred with Two-way ANOVA under the Tukey’s HSD 

post-hoc test for normalizing the data distribution (Honest Significant Detection p < 0.001). 

Figure 17 Leave area reduction show that plant on 65 days has increases compare with 30 day time 

period. Data is shown as interaction of different combination mixture as treatments applied to 

plants. Significance was inferred with Two-way ANOVA under the Tukey’s HSD post-hoc test 

for normalizing the data distribution (Honest Significant Detection p < 0.001). 
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4.5 Number of Pods 

 

The number of pods per treatment shows that the quantity is only reduced in T2. However, the 

other treatments have the same number as the control group.   

Figure 19 Number of pod in T2 show decline with the compairison to T1 and other treatmeents. 

Data is shown as interaction of different combination mixture as treatments applied to plants. 

Significance was inferred with One-way ANOVA under the Tukey’s HSD post-hoc test for 

normalizing the data distribution (Honest Significant Detection p < 0.001). 
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4.6 Pigments  

4.6.1 Chlorophyll  

The Chlorophyll content was measured by the following method (Arnon, 1949). The absorbance 

of the supernatant was collected at 645 and 663 nm for chlorophyll a and chlorophyll b, 

respectively. The chlorophyll level was highly reduced in T2 with the comparison of T1. T1 shows 

an increased value of chlorophyll a and chlorophyll b presence. Moreover, their treatments show 

a high deviation in chlorophyll content. 

 

 

Figure 20 Chlorophyll A graph confirms the reduction of photosynthesis pigments in T2. Data is 

shown as interaction of different combination mixture as treatments applied to plants. Significance 

was inferred with Two-way ANOVA under the Tukey’s HSD post-hoc test for normalizing the 

data distribution (Honest Significant Detection p < 0.001). 
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Figure 21 Chlorophyll B graph confirms the reduction of photosynthesis pigments in T2 concluded 

that Cd presence reduces the chlorophyll content. Data is shown as interaction of different 

combination mixture as treatments applied to plants. Significance was inferred with Two-way 

ANOVA under the Tukey’s HSD post-hoc test for normalizing the data distribution (Honest 

Significant Detection p < 0.001). 
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4.7 Biochemical Assay  

4.7.4 SOD  

The Antioxidant assay of SOD was measured by the method of (Kono, 1978). UV 

spectrophotometer analysis was done at 560nm. The SOD value was found to be increasing under 

Cd stress. The control plant T1 shows a lower level of SOD compared to T2.  

 

 

Figure 22 SOD enzyme activates when the ROS production in plant cells increases due to stress. 

SOD enzyme converts the reactive O2- ions to hydrogen peroxides. The result concludes that SOD 

is extremely present at T2 as compared to other. Data is shown as interaction of different 

combination mixture as treatments applied to plants. Significance was inferred with Two-way 

ANOVA under the Tukey’s HSD post-hoc test for normalizing the data distribution (Honest 

Significant Detection p < 0.001). 
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4.7.5 POD 

The Antioxidant assay for peroxidase (POD) was measured by following the method given by 

(Bergmeyer, 1974). UV spectrophotometer analysis was done at 270nm. The POD value was 

found to be increasing under Cd stress. The control plant T1 shows a lower level of POD compared 

to T2.  

 

 

 

Figure 23 POD enzyme activates when the ROS production increase in the plant due to stress. 

POD enzyme converts H2O2 to H2O. the result shows that POD concentration was high at T2. 

Data is shown as interaction of different combination mixture as treatments applied to plants. 

Significance was inferred with Two-way ANOVA under the Tukey’s HSD post-hoc test for 

normalizing the data distribution (Honest Significant Detection p < 0.001). 
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4.7.6 CAT 

The Antioxidant assay for Catalase (CAT) was measured by the following method (Aebi, 1984). 

The reading was counted using a UV spectrophotometer at 240nm with a time point of 10 seconds. 

The CAT level was found highly increased in T2 with the comparison of T1 as a control. T1 shows 

a decline in CAT presence. However, other treatments show the presence of CAT. 

 

 

Figure 24 CAT enzyme activates when the ROS production increase in the plant due to stress. 

CAT enzyme converts H2O2 to H2O. The result shows that CAT concentration was high at T2. 

Data is shown as interaction of different combination mixture as treatments applied to plants. 

Significance was inferred with Two-way ANOVA under the Tukey’s HSD post-hoc test for 

normalizing the data distribution (Honest Significant Detection p < 0.001). 
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4.7.7 APX 

Ascorbate peroxidase (APX) was measured by the method (Habib et al., 2014). UV 

spectrophotometer readings were recorded on 290nm at 10-second intervals. APX increased Cd 

concentration in T2 compared with T1 and other treatments. 

 

Figure 25 APX Enzyme activates when the ROS production increases due to stress. APX enzyme 

converts H2O2 to H2O. Results show that APX concentration was high at T2. Data is shown as 

interaction of different combination mixture as treatments applied to plants. Significance was 

inferred with Two-way ANOVA under the Tukey’s HSD post-hoc test for normalizing the data 

distribution (Honest Significant Detection p < 0.001). 
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4.7.8 MDA 

The Melo-dialdehyde content (MDA) was measured by the following method (T. Chen & Zhang, 

2016). The reading counted using a UV spectrophotometer at 532 nm and 600 nm with a time 

point of 10 seconds. The MDA level found highly increased in T2 with the comparison of T1 as a 

control. T1 shows a decline in CAT presence. However, other treatments show the presence of 

MDA. 

 

 

Figure 26 MDA s a widely used parameter measuring lipid peroxidation in plant tissue that 

increases under oxidative stress. Its show that T2 has high MDA content than other. Data is shown 

as interaction of different combination mixture as treatments applied to plants. Significance was 

inferred with Two-way ANOVA under the Tukey’s HSD post-hoc test for normalizing the data 

distribution (Honest Significant Detection p < 0.001). 
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4.8 Scanning Electron Microscopy  

SEM and EDX results confirm the accumulation of Cadmium ions in plant leaves. The height of 

peaks defines the concentration of Cd at different points in a sample. These images explain that 

T2 and T4 have a high accumulation of cadmium in leaves; moreover, other morphological 

parameters show a reduction in T2 other than T4. It indicates that T4 decreased in different 

morpho-physio aspects of T4 due to Cd concentration. However, other treatments also confirm the 

presence of Cd in them. 

 

Figure 27 SEM /EDX result confirm the accumulation of Cd in plant leaves. It shows T2 and T4 

has high accumulation compare with other treatments.  

 

Figure 28 SEM /EDX result confirm the accumulation of Cd in plant leaves. It shows T2 and T4 

has high accumulation compare with other treatments.  
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Chapter 5: Discussion 

Brassica Juncea (Mustard Plant) used for food and edible oil. This plant has substantial 

consumables every year throughout the world. Moreover, the main concern about the mustard 

plant as it has hyperaccumulator properties that store heavy metal ions such as cadmium ions in a 

different part of the plant (Agriculture, 2019; FAO, 2017; Mutlu et al., 2012). Previous studies 

conclude that cadmium ions adversely affect plants' morphological, physiological and biochemical 

processes (Kapoor, Kaur, & Bhardwaj, 2014). The conformation changes in this aspect also 

observed in our research. Meanwhile, different composition of biochar, PGPR and inter-cropping 

boost plant growth in our study cases. 

Previous study conducted by conclude that 5 mM of Cd reduce the plant Biomass till 75% 

(Houssou et al., 2022).  In our study we use 10mM CdCl2 solution show also reduction in biomass 

75%. The morphological traits also affected under cadmium of Brassica juncea (Zhichao Wu, 

Zhao, Sun, Tan, Tang, Nie, Qu, et al., 2015).  

Cadmium affects plants at morpho-physio, genetic and enzymatic levels. Antioxidative defence 

systems include plant growth regulators and antioxidative enzymes (J. Chen & Yang, 2012). 

Enzymes like SOD, POD, CAT, APX, and MDA help scavenge free radicals and protect against 

specific stress. Protective proteins like heat shock proteins protect plants against oxidative damage. 

Due to heavy metal toxicity, several types of defence responses are produced in plants, but their 

action depends upon the doses, type of plant species, and so forth (Arora, Sairam, & Srivastava, 

2002). The ability of plants to ameliorate the heavy metal toxicity or to bear the stress makes them 

survive in those conditions (Hall, 2002). Exposure to heavy metals activates the antioxidative 

defence system. 
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Similarly, in the present work, increased SOD, POD, CAT, APX and MDA enzymes were 

stimulated with metal treatment and thus helped scavenge free radicals like DPPH. These results 

are in coherence with the findings of Doganlar et al. (Doganlar, Cakmak, & Yanik, 2012). The 

antioxidative potential of the plant enhanced in a dose-dependent manner. Another mechanism of 

plant defence involves the secondary metabolites and plant growth regulators. But with the help 

of organic amendments, including PGRP Bacteria, Biochar, and Co-planting with legume plants, 

reduce the translocation of cadmium in Brassica Juncea. These amendments improve plants' 

growth, yield, and biomass (P Sharma & Bhardwaj, 2007). 
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Chapter 6: Conclusion  

The combination of PGPR, Biochar, and co-planting helps in plant growth and provides resistance 

against Cd stress. Solitary biochar did not display improving results as it shows in different 

combinations of PGPR+ co-plant+ biochar. EDX results confirm the hyperaccumulation of Cd in 

all treatments but expressively do not show as a reduction in morpho-physiological aspects as T2 

present. Cd stress causes a reduction in plant length by 60% and Biomass up to 75%. Activation 

of the different antioxidant enzymes has noticed (SOD, POD, CAT, APX, and MDA). On T2 the 

antioxidant enzyme activity was higher as compared with other treatments. Detection of 

antioxidant confirms the activation of ROS species.  

Here we have investigated the consequence of cadmium in mustard plant and helped to overcome 

it with biochar, co-planting, and PGPR bacteria. These combinations boost the morpho-

physiological aspect of hyperaccumulator plant thus, this combination can be used to enhance the 

growth of non-hyperaccumulator plants. However, future studies should also consider different 

plants and bacteria to understand the process and features to overcome the Cd and other heavy 

metals toxicity. This study can used for further investigation for other heavy metals stresses with 

this combination. 
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APPENDIX 

REGENT  PREPARATION 

PBS BUFFER  • 200 mM Na2HPO4 stock solution 

• Dissolve 53.65 g Na2HPO4.7H2O in 1,000 ml ddH2O 

• Dissolve 27.8 g NaH2PO4.H2O in 1,000 ml ddH2O 

• Keep it four °C before using 

100 mM PBS (pH 7.0) 

• 61 ml 200 mM Na2HPO4 stock solution 

• 39 ml 200 mM NaH2PO4 stock solution 

• 100 ml ddH2O  

100 mM PBS (pH 7.8) 

• 91.5 ml 200 mM Na2HPO4 stock solution 

• 8.5 ml 200 mM NaH2PO4 stock solution 

• 100 ml ddH2O 

100 mM PBS (pH 6.5) 

• 31.5 ml 200 mM Na2HPO4 stock solution 

• 68.5 ml 200 mM NaH2PO4 stock solution 

• 100 ml ddH2O 

 

TEN PERCENT TCA • Dissolve 10 g TCA in 100 ml ddH2O 

0.25% TBA • Dissolve 0.125 g TBA in 5 ml 1 mol/L NaOH 

• Add into 45 ml 10% TCA 

• Keep it four °C before using 

 

1 MM EDTA-2NA • Dissolve 0.037 g EDTA-2Na in 100 ml ddH2O  

130 MM 

METHIONINE 
• Dissolve 0.970 g methionine in 50 ml 100 mM PBS (pH 7.8) 

• Keep it four °C before using 

 

750 ΜM NBT • Dissolve 0.031 g NBT in 50 ml 100 mM PBS (pH 7.8) 

• Keep in the dark 

 

TWENTY ΜM 

RIBOFLAVIN 

• Dissolve 0.007 g riboflabin in 100 ml ddH2O 

• Keep in the dark 
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0.2% GUAIACOL 

 
• Dissolve 0.1 g guaiacol in 0.5 ml ethanol 

• Add into 50 ml 100 mM PBS (pH 7.0) 

• Keep in the dark 

 

5 MM GSH • Dissolve 0.077 g GSH in 50 ml 100 mM PBS (pH 6.5) 

CdCl2 250 mM CdCl2 (pH 7.0) 

• 45.8g in 1000 ml ddH20  

100 mM CdCl2 (pH 7.0)  

• 18.332g in 1000 ml ddH2O 

10 Mm CdCl2 (pH 7.0)  

• 1.83g in 1000 ml ddH2O 

 

SEVENTY PERCENT 

ACETONE 
• Dissolve 70 ml acetone in 30 ml ddH2O 

FeCL3 • 3g of FeCl3 in 97ml of ddH2O 

BIPYRIDYL • 4g of bipydiryl in 96ml ddH2O 
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