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Abstract

In this work, we present the Generalization of fractional Taylor’s theorem with respect
to a function. Also, we discuss the general form of fractional power series, convergence
of power series, series solutions by using fractional Taylor’s formula and fractional power
series. Moreover, we present an operational matrix method for the numerical solution
of 1)-Caputo fractional ordinary and partial differential equations. For this purpose, a
fractional version of the Taylor’s theorem is presented in the framework of i-fractional
calculus. The method converts the underlying ordinary or partial differential equations
to systems of algebraic equations. The method is accompanied by examples in which
1-fractional differential equations are solved, to verify the applicability and effectiveness.
Further, estimates of upper bounds of error for the approximations have been derived.
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Introduction

Fractional calculus is a field of mathematics that deals with the derivatives and integrals
of non-integer order. It tends to be set apart as old as classical calculus that deals with
derivatives and integrals of integer order. Derivatives and integrals of fractional order are
considered as non-local operators since both these operators involve integration which is a
non-local operator (as it is defined on an interval). This property makes these operators
a proficient and incredible asset to characterize long term memory effects, asymptotic
scaling and hereditary properties of various physical phenomena.

Working with fractional differential equations is relatively difficult as compared with their
ordinary counterparts. In most cases, we cannot find the exact solutions to fractional
differential equations, so we use numerical approaches to find approximate solutions for
fractional differential equations. As the classical Taylor’s theorem has been widely stud-
ied, the Taylor series are widely used to approximate solutions to complicated problems.
Recently, the numerical study of fractional differential equations with variable coefficients
by the Taylor basis function has attracted some attention [10]. There are several books,
articles and research papers [5, 11] which exhibits the wide assortment of applications
of fractional calculus. Comprehensive history of fractional calculus was first time dis-
covered in [21]. A brief history of fractional differential equations was first introduced in
[19]. Fractional differential equations and its applications were discussed in [28]. Analysis
of fractional differential equations was discussed in [4] in detail. Recently, the numerical
study of fractional differential equations with variable coefficients by Taylor basis function
has attracted much attention [10]. In [12], the author used numerical approach to solve
fractional relaxation-oscillation equations. In [5], series solutions of linear and nonlinear
fractional differential equations are produced using the fractional power series technique.
Motivated by the works cited above, in this paper, we are concerned with the numerical
solution of the vy-fractional differential equations. The principal findings of this work are:
Generalized Taylor’s theorem for the differential operator D™V = (@%)” where n is
nonnegative integer. An alternate proof of the Generalized Taylor’s theorem for fractional
derivative with respect to a function. Approximations of a function by Generalized Tay-
lor’s formula with respect to another function. -Fractional power series is introduced for
demonstrating the general form of generalized Taylor’s theorem. Discussion on conver-
gence and divergence of 1-fractional power series and remainder theorem. Development
of a method to find the series solution by using ¢-fractional Taylor series and v-fractional
power series. Fractional integration matrix is developed for generalized Taylor polyno-
mials. Development of a numerical method for the solution of -fractional ordinary and
partial differential equations. The method is similar to the general operational matrix
method commonly used in literature. Estimate for the error in approximation by the
1—Taylor polynomial is presented.

viil



The operational matrix method reduces the i-fractional partial differential equation to
a system of algebraic equations. For partial differential equations, this algebraic system
forms the Sylvester equation. MATLAB programs are developed for the numerical com-
putation of entries of the fractional Taylor operational matrices. The applicability of the
method is tested with several examples.

This thesis consists of four chapters. It is organized as follows: Chapter 1 is devoted to
fundamental definitions and preliminary concepts of fractional calculus, properties, appli-
cations and important results. In Chapter 2, important concepts of generalized Taylor’s
theorem with respect to a function and -fractional power series are introduced. Chapter
3 focuses on development of Taylor series method, through which -fractional differential
equations are solved. Numerical examples for i-fractional ordinary and partial differen-
tial equations are presented to show the applicability and effectiveness of the proposed
method. Chapter 3.4.1 is the summary of the thesis.
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Chapter 1

Basic Concepts

We start by reviewing some classical facts of calculus. In this chapter, we discuss fun-
damental concepts of special functions of fractional calculus that can be used in other
chapters. We provide definitions of gamma function, beta function, Mittag-Leffler func-
tion, Norm, Leibniz rule and function spaces in detail. Also, we discuss definitions of
Reimann-Liouville fractional integral and derivatives, Caputo’s fractional derivative and
their fundamental properties. Moreover, we present basic idea of i-fractional calculus.
Some basic definitions and important properties will be discussed.

1.1 Historical background

The development of calculus was started in 17th century. Isaac Newton and Gottfried
Leibniz autonomously discovered the idea of differential calculus (1642-1727). Fractional
calculus was first invented when letters were exchanged between mathematicians Marquis
de L’Hopital and Leibniz. Leibniz developed the notation j;j—g for nth order derivative
and he assume that n € N. L’Hopital raised a question in one of his letter to Leibniz
that ”what is the derivative of non-integer number”. Leibniz replied on 30th September
1695, wrote that one day we will draw useful consequences for this”.

Fractional derivatives were first introduced by S. F. de Lacroix in his published text in
1819. Tremendous contributions were made by many great mathematicians to fractional
calculus throughout 19th and 20th century. Few of the great mathematicians who worked
for fractional calculus are are J.P.J. Fourier (1822), N.H. Abel (1823-1826), J. Liouville
(1832), B. Riemann (1847), W. Center (1850), H. R. Greer (1859), Z. Wastchenxo (1861),
A K. Grunwald (1867), A.V. Letnikov (1868), A. Cayley (1880), G. Oltramare (1893), R.
E. Mortiz (1902), H. Weyl (1917), H. T. Davis (1936), A. Erdlyi (1939), H. Kober (1940),
A. S. Peters (1961), K. B. Oldham (1972), S. G. Samko, A. A. Kilbas, O. I. Marichev
(1993).

Fractional calculus has long and rich history, yet because of absence of reasonable physical
and geometrical interpretations, it stayed new to researchers working in applied mathe-
matics up to ongoing years and was considered as numerical curiosities, not helpful for
tackling issues emerging from applied sciences. A few endeavours have been made to give
physical and geometrical interpretations to fractional operators. In 2002, I. Podlubny
[28] developed the physical and geometric interpretation for the first time in detail.
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First definition of fractional derivative was introduced by Lacroix in 1819. In 1823 Abel
was the first who solved the tautochrone problem by using arbitrary order derivative. In
1834 J. Liouville worked on complementary functions, gave a reasonable definition of a
fractional derivative. He has great contributions in fractional calculus.

In recent years, several definitions of fractional derivatives and integrals were developed.
Some of mathematicians developed their own definitions which include the Hadamard, the
Riemann-Liouville, the Erdelyi-Kober, the Weyl, the Marchaud, the Granwald-Letnikov
and the Caputo fractional derivatives and integrals. Mostly we use definitions of Riemann-
Liouville. But the situations in which this definition is not applicable we prefer to use
Caputo’s approach, which was introduced in 1967 by M. Caputo.

1.2 Special functions

Special functions play an important role in theory of fractional calculus. We will present
the basic implications and characteristics of fractional calculus in this section. To con-
tinue further in this work, we give necessary information about gamma functions, beta
functions, Mittag-Leffler function and Leibniz rule in detail. Also, we discuss function
spaces in which will be used in further development.

1.2.1 Gamma function

The gamma function is one of the basic function and plays an important role in fractional
calculus. Swiss mathematician Euler discovered the gamma function in order to convert
the factorial into non-integer case. It was studied by other mathematicians due of it’s
great importance.

Definition 1.2.1. [4] The function is defined by

e}

[ (y) = /ty_le_tdt, y >0
0

is known as Euler’s Gamma function. I'(y) converges for all y > 0.
Properties: Some important properties of Gamma function are
L T'(y+1) =yl(y).
2. T (2) = V.
3. I'(p+ 1) = p!, where p is an integer.

Proof. 1. By the definition of gamma function:

I'y+1)= /tye_tdt.
0

N}



Using integration by parts
D(y+1) =tVe | + /oo eyt tdt =0 + /oo ytV"le tdt
0 0
=y /OO tretdt = yI'(y).
0
2. By substituting, y = % in definition of gamma function and then integrating, we get

1 S oo _
F(—) :/ t2letdt:/ t7 e tdt.
2 0 0

We use substitution method to evaluate this integral. Let ¢t = u?, then

2

1 /oo e /OO ) /OO 2
=\ = 2udu = 2 e “du=2 eV dv.
(2) 0 \/a o 0
1 2 o0 0
(F (—)) = 4/ / e~ qudy.
2 o Jo

Now, we use the transformation of rectangular coordinates to polar coordinates u =
rcosf, v =rsinf, 0 <0 < 7, dudv = Jdrdf where J is called the Jacobi matrix. Here

in this case J = r. Thus
< (—)) —4/ / " rdrdf
=4 <§ — 0) /0 e " rdr.

Now,

Let y = 72, dy = 2rdr, then

1\2 T [
F - - 2— _yd = -0 0 —
<2> 2 /0 ey =me+e)

Taking square root on both sides, we get the desired result. O
3. Since I'(1) = 1, by part (1). Thus the relation is true for p = 1. Assume that for
P=1J
L(y+1) =1
For p = j + 1, we have
FG+1+1)=0U+DIG+) =G+l =(G+ 1)L

Thus I'(p + 1) = p! is true for all integers p.



Extension of domain of gamma function

The functional equation
I'w+1) =wl(w), (1.2.1)

can be used to extend definition from w > 0 to all real number except w # 0, —1, -2, - - -
From (1.2.1) we have,

r 1
FNw+1) =wl(w) or T'(w) = M
w
Right hand side is defined for w+1 > 0, w > —1, w # 0 where I'(w) is defined for w > 0.

Now from (1.2.1)

D(w+2) =(w+ 1)(w)(w)
I'(w+2)

F(w) :m, w # 0, —1, —2.

By repeating the above procedure [-times, we get

I'(w+1) CwA£0,—1,-2,-- .

L) = Dw+2) @+ i=1)

Thus domain of I'(w) is extended for all real numbers except w # 0, —1, -2, - - -
In mathematics, Euler integral of first kind is also called beta function, which is closely
related to the gamma function and to the binomial co-efficient.

1.2.2 Beta function
Definition 1.2.2. [4] We define beta function as

1
B(a, B) :/ y (1 - y) P Dy, a, B> 0.
0

Incomplete beta function is defined as

Y

B(y;a, B) = /30‘1(1 — ) tds, yelo,1]. (1.2.2)

Relation between gamma and beta functions

Gamma and beta functions are related as

where B(q, (3) is two variable function and I'(y) is function of one independent variable.



1.2.3 Mittag-Leffler function

Mittag-Leffler function is a generalized form of exponential function. We define Mittag-
Leffler function for two variables as follows.

Definition 1.2.3. [4] Let «, 5 > 0, then Mittag-Leffler function is defined as

m

N Y

m=0

1.2.4 Function Spaces

Before we proceed to our principle work, we present function spaces which will be used
in forthcoming chapters.

Definition 1.2.4. [4] The space L,[c,d] (1 <17 < 00) is the set of Lebesgue measurable
functions on A = [¢, d] such that ||¢||, < oo, where

d :
WWZ(/W@W%,1ST<M

|#|c = ess sup [o(y)|.

c<y<d

and

Definition 1.2.5. [4] The space A™[c,d] is the set of functions ¢ for which there exists
a function g € L][c,d] almost everywhere such that

Y

wﬂw:w*@+/gww

c

defines functions with absolutely continuous (n — 1) derivatives.

Theorem 1.2.6. If ¢(y1,y2) is continuous on R = [l1, 5] X [mq, ms] then,

lo  pmo ma  pla
dA = dyady; = dyydys. 1.2.3
/R/cb(yl,ya) /h / O(y1, y2)dy2di /m1 A oY1, y2)dyrdy: (1.2.3)

mi

The integrals are called iterated integral.

Leibniz rule

Lemma 1.2.7. Suppose ¢(w,u) is continuous and 8%¢ be continuous in the domain of
the yu—plane that contains the rectangular region R:=a < w < byug < u < uy and limit
of integration a(w) and f(w) are functions having continuous derivatives on a < w < b.
Then

- P(w, u)du = Cb(waﬁ(w))% — ¢(w, a(w))— + —o(w, u)du.

d B(w) dg dov /B(W) )
a(w) dw a(w) ow



1.3 Differential and integral operators

Derivatives and integrals play an important role in mathematics. Integrals help us either
to obtain the area under the graph or to find the function whose derivative is integrated.
Fractional integral can be determined by repeated integration.

1.3.1 Properties of classical differential and integral operators

Lemma 1.3.1. [4] Let ¢ : [k,l]] — R is a continuous function, and ® : [k,l] — R be
defined as

O(t) = /t o(s)ds.

Then, ® is differentiable and ®'(t) = ¢(t). k

Theorem 1.3.2. If m > n, then fort € [a,b]
D™IGo(t) = D™ (1),

and if m <n, then
D Igo(t) = 1.7 ().

Proof. Lemma (1.3.1) can also be read as

DI 6(t) = 6(t), where D — % and I,o(t) = / ' o(s)ds. (1.3.1)

Now we state the composition properties of differential and integral operators as follows.
Repeated application of (1.3.1) gives

D*I3¢(t) = D(DI.(1.¢(t))) = DI.¢(t) = 6(t). (1.3.2)
By using Eq (1.3.2) we can deduce that
D*I2(t) = D(D*I26(t)) = Do(#),
D*I36(t) = D*I3(1.¢(t)) = L.o(t).
Similarly we have
D*I26(t) = D*(DL(I26(t)) = D*I2(t) = D(DL(I¢(1))) = DLo(t) = 6(t). (1.33)

By using Eq (1.3.3)
D'I;6(t) = D(D’L;¢(t)) = Do(t),

D*G6(t) = DI (1a6(1)) = Lag(1).
In general
D™IM¢(t) = D™ "¢(t), m>n
D™ITo(t) = I~ o(t), m < n.



1.3.2 Riemann-Liouville fractional integral and derivative
Riemann-Liouville fractional integral is obtained from Cauchy iterated formula.

Lemma 1.3.3. Let ¢ be Riemann integrable on [r,u]. Then, forr <y < u and o € N
we have

176(y) = ;1), / "y — )6 (s)ds.

(@ —

Proof. Let us start from the simple integral

= /y o(s)ds. (1.3.4)

Po(y) = L(Ld)y = / ' / " 6(s)dtadt
- / ’ /t " () didty
-/ "oty — h)d,

Yy
~ [t~
The third iterate gives

Po(y) = L.(IL.( // / B(t)dtdtydt;.

By using Theorem (3.4.11)

I’o(y) // / P(t)dtydtdt,.
Po(y) /¢

Repeating the above process upto a-times we have

[terating integral (1.3.4)

Now this becomes

I%¢(y) /¢ y —t)* tdt. (1.3.5)

The last integral is called Cauchy iterated integral formula. O]

Using relation between gamma function and factorial function, we can define fractional
integral. Replacing integer n with real a > 0 in Eq (1.3.5). The integral (1.3.5) becomes
fractional integral.

Definition 1.3.4. [4, 28] Let o € R™, ¢ € Ly[a, b] we define Riemann-Liouville fractional

integral as
10) = o | =1 o) (136)

7



Example 1.3.5. [4, 28] For ¢(y) = y” we have

F(ﬁ + 1) atf

R (1.3.7)

Igo(y) =

By definition (1.3.4)
1

s -

s L [ e s\ s
I§y"” = —/ Yy <1 — —) sPds.
° I'(a) Jo Y

We evaluate the integral by substituting v = i

Igo(y) =

1 1
¢ B — a—1 1— a—1, 3 Bd
0 ) P(O[) /Ov ) ( U) yv v

ot 1 o
= 1 —0)* "’ dv.
fa 0

Since

/1(1 —v)* Wdv = B(a, B+ 1).
0

Therefore, we have

0o f_ LB+Y) 50
%y"na+ﬁ+ny+‘

Fractional integral of a function, which can be expressed in the form of Maclaurin
series can be computed by formula 1.3.5. As an example, here we will find the fractional
integral of siny for y € R.

Example 1.3.6. [4, 28] To find the fractional integral of siny. For this purpose, we
expand siny into its Maclaurin series

3 5 7
) ) )
smy—y—g%—a—ﬁ---, (1.3.8)
N (D
=Y i (1.3.9)

p=0

where p is non-negative integer. Using Eq (1.3.7) and property of gamma function we
get

' e (_1)qy2q+1+a
I¥siny = —_— .
0 SIY ; ['(2¢+2+ )

We can write in terms of Mittag-Lefller function as

ZF 2+a+2q)

q=0

E2 2+a

8



Therefore

I§ siny = y'*e i e
0 T2+ a+2)

=y Eaynya(—97).
Now, we present the semi-group property of Reimann-Liouville fractional integral.
Theorem 1.3.7. [28] Let a, 3 > 0 and ¢ € Li[p,q|. Then
L I)o(y) = I, o(y).
If € Clp,q] or a+ B > q, then the identity holds everywhere on [p, q].
Proof.
I;”I’qu( / / Yt — s) _1¢(s)dsdt1.

Now, we interchange the mtegratlon order
I;?]B?b( / / (y1 — t)* H(ty — 5)° L p(s)dt ds.

By substituting t; = s + y(y; — s), we have

1°186(y) / / Yl — )5 y(y1 — ) — )* (41 — ) (s)dyds

By rearranging the above integral, we get
8 1 " o [ 1,61
I o(y) = / Y1 —s)° ‘/1—y“‘y‘¢sdyds,
pip ( ) F(Q)F(ﬁ) ; ( 1 ) o ( ) ( )

where B(a, ) = fo Yo~ tyPLg(s)dy. Therefore, by using relation between gamma
and beta function, we have

« _ 1 Y o -1 _ g
I o(y) = m/p (y — 9)*7 7 p(s)ds = ISP p(y).

m
We have discussed all the fundamental properties of Riemann-Liouville fractional

integral. Now, we introduce the notation D¢, which will represent the Riemann-Liouville
fractional derivative.

Definition 1.3.8. [4, 28] Let o € R, ¢ € Ly[r,u] and m = [«], we define Riemann-
Liouville fractional derivative as

Do) = 1o = (5) (pommay [ -0 otas) . (310

—



Example 1.3.9. [4, 28] We will find the fractional derivative of ¢(y) = (y —e)?, B > —1
and o > 0. We use the definition and evaluate the resulting integral. By definition (1.3.8)

Dggly) = DPIE¢(y) = DPIZ =" (y —e)”.
From Eq (1.3.7) we have
r'(s+1)
F'+p—a+1

L'(B+1) .

= DP(y — e)P~ot8.
f@+p—asn @9
Case 1: If « — 8 € N, then we have

p—a+p

Dgo(y) =

)(y—e)

forala >0,pe1,2,---,[a].
Case 2: If a— (8 # N, here we generalize the integer-order derivative of a power function

D(y—e)’ =v(y—e)'!
D*(y—e)’ =v(v—1)(y—e)’?
D3y — &) = oo — (v —2)(y — &)

In general : )
. To+1 e

DP(y—e)’ = m(y )P, (1.3.11)

Equation (1.3.9) becomes
o g L(B+1) FB+p—a+l) o atsp
Dely—e) _F(ﬁ—l—p—a—l—l)f‘(p—i—l—a—i—ﬁ—p)(y e
ay_ s LB+ s
Dy —e)” = TG—at 1)(y e)’ . (1.3.12)

Example 1.3.10. Now, we will find the fractional derivative of siny. For this purpose,
we expand sin y into its Maclaurin series:

SlIl — _y_3+y_5_y_7...
O AT T T
> (_1) y2q+1
_Z (2¢+ 1)

q=0
where ¢ is non-negative integer. Using Eq (1.3.9) and property of gamma function we get
qDa 2q+1
Dy sin
- Z 2q +1

(_1)!1Dq]g Oéy2q+1

(2¢ + 1)!
(~1)T(2q + 1) + 1) Dyl

(2¢+ DI (2¢+2—-a+gq)

M 10 1

Q
Il
o

10



Case 1: If « — 2¢ — 1 € N then
Dy siny = 0.

Case 2: If a — 2¢ — 1 € N then using Eq (1.3.11)

e —1)2q2at1—a
Df siny = Z —( )"y .
q

—I'(2¢+2-a)
As,
E o= 2 _ ( y)
22-a(=Y) ;;F(Z—oz—i—Qq)
Therefore

1.3.3 Properties of Reimann-Liouville fractional integral and
derivative

Next we come to show the relationship between Riemann-Liouville fractional integral with
derivative and vice versa. Moreover, we discuss basic properties, which will be helpful for
further chapters.

Theorem 1.3.11. /28] Let o > 0. Then for every ¢ € Ly[r, u]
DRIZ(y) = o(y)
holds almost everywhere.

Proof. By using the definition (1.3.8), theorem (1.3.7) and Eq (1.3.1), we get
DYIY(y) =D™ " “I}¢(y) = D" I" " ¢(y)
=D"L"o(y) = ¢(y).

]
Theorem 1.3.12. [28] Assume that a > 0, k = [a] and ¢ € A¥[r,u]. Then
(y—r7
I*DYo(y D>~ p(y "
Z b= =i+ 1)
Proof. By definition of Riemann-Liouville fractional integral
12056 = s [ (=5 Drols)d (1313)
Try—r(a)rys Yo(s)ds. 3.
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By using Leibniz’s Rule, we have

diy (ﬁ / "y - s)apg¢(s)ds> _ ﬁ / = s iDeg(s)ds. (1.3.14)

Let us consider the left hand side of (1.3.14)

(s [ - 9rpatos)
1 d

:m(y - S)QD%(S)!s:yd—y(y)
1 o Py d 1 Y9 N
- m(y - 5) Dr ¢(S)|s=rd_y(r) + m/r a—y(y — 8) Dagb(s)ds
i | s

1 Y a—1 Nna
i | =Dt

On the other hand, repeatedly integrating and by Theorem (1.3.7) we have

1 y . g v o
F(a+1)/,, (y — 5)"Dyé(s)ds —m[ (y — 5)*DF I ¢(s)ds

— 1 /y( )a dk ]’k—a ()d
T T(a+1) ), v dy* " o

Now we evaluate this by using iterative method. Let £k =1

1 v ad o
) / (y— ) 1 (s)ds

Cla+1) J,
1 arl—a alla
R R a+1>/r L (s)ds
1 ala Y alla
=~ T I + g [ = (s

12



Y d?
[ -9 ees)ds

['a+1) ds?
1 d Yy ) d
[ o] gt [0 o e
1 d 1 y d
T s [ = e S e
1 d 1 y
= m(y - T)a%lfia(ﬁ(cg)’r + [m(@/ — 8)a71]37a¢(8)}74
— y
o | s
1 d 1
== m(y — T)QEIE_QQXS)M — m(y — T)a_llf_aqﬁ(s)’r
* ﬁ / (y = )16 (s)ds.
. 1 Y o . 2 dk=i o <y _ T)O‘_j'H
_m /r <y o S) 213 ¢(8)d8 o ; dskfj [r (b(s)‘rm
In general
1 Y dF 1 y
M/r (y — S)Qd_f[f*aqﬁ(s)ds = m/r (y — 8)a7k[,]ffa¢(s)ds
- dk_ k—a (y B r)a—j+1
PRl e
_ra—k+1[7k—o —~d" (y —r) 7!
_[r +1[[r (b(S)] - ; dSkij r ¢( >|TF<Oé — ] T 2)
L "y et pagsyas — S T ey =)
Fa+1) /T (y =) d_ykj" (s)ds = I, $(s) — ; dsi—i I ¢(S)|rm
(1.3.15)
Combing (1.3.15) and (1.3.14) we obtain
1 Y a—1 o _ d - d* k—a (y - T)aij
| 9Dzt =L 1ios) - > Ty
By Lemma (1.3.1)
a o o - dkij k—a (y B T)a J
_ . dk_] k—a (y - T)a_j
=0(s) = 2 2 T

13



An important particular case of Theorem (1.3.12) is for 0 < o < 1,
)0471

19D2(y) = b(y) Do (s))y L

o) (1.3.16)

Having established the relation between Riemann-Liouville fractional integral with
derivative. Now, we proceed to define the Caputo fractional derivative.

1.3.4 Caputo’s fractional derivative

The Riemann-Liouville has specific disadvantages while attempting to show this present
reality peculiarities with fractional differential equations. Function need not to be con-
tinuous while managing them. And also, the derivative of the constant term is not equal
to zero. We will now discuss the modified concept, which is known as Caputo derivative.
It has more advantages than the first one.

Definition 1.3.13. [4, 28] Let o € R*, ¢ € Ly[r,u] and | = [«]. Then we define the
Caputo derivative as

Dyo(y) = I7*D'(y). (1.3.17)

Example 1.3.14. [28] We find the Caputo derivative of ¢(y) = 3° as under.
By definition (1.3.13)

Yy
Dgo(y) = I, D'o(y) = ﬁ /O (y — )2 "1D'sPds. (1.3.18)

Case 1: If 3 <[, then D'y® = 0.
Case 2: If § € N and [ < 3. Then, for integer case, we have

Dyl — lyl_l

In general

DRyt =11 =11 =2)--- (I —k—1)y"*
l(l — 1)(l — 2) ... (l —k— 1)<l . k)!yl_k

(k)
o,
“a—n"
re+1)
Dyl — Ik
Y-k Y

14



Eq (1.3.18) reduce to

1 Y l—a—1 )l
— —s5) 1 DlsPds.
i, D

B (B+1) Y l—a—1 A1
T(5— m+¢wa—ay/(y_$ s""ds.

G —z(+ oy zz >/ y (1_§)lalyl_a_lsﬁ_ld8'

fe _ F(ﬁ + 1)yl—a ! l—a—1 —

Since fol (1—2)" "2z =Bll—a,f—141) = %
Thus

LB +1)y"~
r'g—a+1)

DG (y)

Let z =2
)

cD(?yﬂ -

Example 1.3.15. Now, we find the Caputo derivative of siny. For this purpose, we
proceed as follows, we expand siny into its Maclaurin series:

— (—Dpy*t!
2p+ 1)

p=0

where p is non-negative integers. Using Eq (1.3.11) and property of gamma function we
get

: o (FDPDy
Dfsiny =1 E
!
s (2p+ 1)!

(=1)PT((2p + 1) + 1) [y Ht-m
Cp+DII'2p+2—m)
(=D)PIg" oyt
I'2p+2—m)

M

0

p

M

i
o

N o )py2p+1—o¢
oD sy == Z T +2-a)

As,

Eaoof .
2 ZT2—a+2p)

p=

15



Thus
oo 2\
CDa : _ 1+« ( y)
OSIHy Yy pZOF(Q 2p_a)7

= ?JHaEz,zfa(—yz)-

1.3.5 Properties of Caputo fractional derivative

In the following we discuss the composition of Caputo derivative with Riemann-Liouville
fractional integral and vice versa.

Theorem 1.3.16. [/, 28] If ¢ is continuous and « > 0, then

DFIT0(y) = o(y). (1.3.19)
Proof. Let ® = I%¢(y), where D*®(a) = 0, then we have

DITo(y) = Dyo(y) = Dyd(y) = DI ¢(y) = ¢(y).

Theorem 1.3.17. [}] Assume that, if ¢ € A™(r,u), o >0 and m = [a], then

ID700) = o) — S0 DA gy

k=0

Proof. By using fundamental theorem of calculus and iterative method we obtain
Yd
1.D6() = [ 40y = 6(0) — 6(1)

([ o)

1, Dé(y) — I, Dé(r)
=/W ww@—Dwm/%y

r

=¢(y) — ¢(r) — Do(r)(y — 1)

<

—~

SES

=1, < / ’ %D%(y)dy)

~I2D%(y) ~ D0
~1,Do(y) — 1,Do{r) — Do(r) L

=0(y) — ¢(r) = Do(r)(y — ) — D*¢(r)

(y—r)?*
2
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In general

m—1 . k
"D™(y) = oly) — Y _ Dy*o(r) y klr> (1.3.20)
k=0 '
By definition (1.3.13)
D d(y) = LMD" ¢(y). (1.3.21)

Apply I on both sides of Eq (1.3.21), and using semi-group property, we achieve
I.D"g(y) = IP TP "D™o(y) = I D™ (y). (1.3.22)

Use Eq (1.3.22) into (1.3.20) and replacing n by o we can get the desired result.
]

In particular, if 0 < a <1 and ¢(y) € Cr,u] then I?.D¢(y) = ¢(y) — o(r).

1.4 -Fractional calculus

Fractional differentiation and integration of a function with respect to another function is
y-fractional calculus. The initial genesis idea of this work was presented in [22, 7], it was
additionally evolved in standard books [6]. We provide the necessary information about
y-fractional integral and derivatives and their important properties, where ¢: (a,c0) —
la, 00), is a one-to-one and increasing function such that ¢’(0) # 0.

1.4.1 -Riemann-Liouville fractional integral and derivatives

1-Riemann-Liouville fractional integral can be obtained from the Cauchy iterated for-
mula.

Lemma 1.4.1. Let ¢ be Riemann integrable on [r,u]. Then, forr <y < wu andn € N
we have

120) = ey || 0 = o) (o). (141)
Proof. We will start from integral
1ot) = [ oo (s)ds. (142)

By iterating the integral in (1.4.2), we have
oot = oo = [ [ oty
= [ [ ot
= [ ot o) - vi)in
= [ ot o) - vy

17



The third iteration gives

I3Yo(y) =IM (1M (1M p(y) / / / o(t) (t)dtdtadt, .

=// B (O (1) (6 () — (8))dtdty,
[ r,,

If we repeat the process for a-times, we will get the desired result.

]

Definition 1.4.2. [1] Let ¢ be Riemann integrable on [r,u]. Then, for r < y < u and

a > 0 we have )

o) = a5 || 00 =) W (9)0(s)ds
Example 1.4.3. For ¢(y) = 1 (y)? we will show that

r'p+1)

m(w(zﬂ)“*ﬁ-

I o(y) =

Using the definition (1.4.2), we achieve

1076 (y) = ﬁ / "(0ly) — 0(0) (&) ()P,
00 = o [ W (1 - %) WO
We will evaluate the above integral by substituting v = Z)’(— and du = Z(—))dt
1 ! 1 1
B0 ~Ho / W) (1 — 0 () Puldu
a+8+1-1 1
:(w(y)r)(;) ’ /0 (1-— u)a’luﬁdu.

Since,
1
/ (1—u)*"Wfdv = B(a, 4+ 1).
0

Therefore, we have

D(5 + 1) ()"

B0 = =y 5

(1.4.3)

(1.4.4)

Definition 1.4.4. [1] Let § > 0 and p = [(], the ¥-Riemann-Liouville fractional deriva-

tive is defined by

1

B — NP =B —

P
7,LZ) — _1 i
where DPV = ( W dy) )

18
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Example 1.4.5. We find the ¢-Riemann-Liouville fractional derivative of y € [r, u|, such
that ¢(y) = (¥ (y))?, B > —1 and a > 0. We use the definition and evaluate the resulting
integral.

Dy ply) = DI~ Yo (y) = DMV I (4(y))".

From Eq (1.3.7) we have

LB+1)

Bip—at 1>Dp’w(¢(y>)p’a*5- (1.4.5)

Di¥oy) = 1

Case 1: If a — # € N, the right hand side is the pth derivative of a classical polynomial
of degree p — (o — ) and so the expression vanishes that is

DP* (4 (y))* " =0,

forala >0,pe1,2,---,[a].
Case 2: If a— (8 # N, here we generalize the integer-order derivative of a power function

DM (y(y))* = DP = ( wiym%) () ()
D> (y(y))° = DM = ( W}y)d%) (s — D) ()
DM (4(y))* = DM = ( w,}y)diy) (s — 1)(s — 2 (0(y)) ¥ ().
In general |
D) = L )

Now, we have

Do) =0 = (i) e e e (o)
Eq (1.4.5) becomes
o _ B+ [B+p—a+1) p—atBp
DUW(y))B_F(ﬁ+p—a+1)F(p+l—oz—i—ﬁ—p)(w(y)) g
D5 ) = 5 e ) (1.4.7)

1.4.2 Properties of i-Reimann-Lioville fractional integral and
derivatives

Now, we present the relationship between 1-Riemann-Liouville fractional integral with
derivative and vice versa. First, we discuss the property for classical fractional integral
and derivative.
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Theorem 1.4.6. [20] If m > n, then
D™V () = D™ T(t).

And if m < mn, then
D™YIMG(t) = I (1),

Proof. From Lemma (1.3.1), we can deduce that

1 d
(1) dt

Now, we state the composition properties of differential and integral operators as follows.
Repeated application of (1.4.8) gives

DY Ie(t) = ¢(t), where D'V = ( ) , and IMo(t) = / t¢(s)¢’(s)ds. (1.4.8)

D*I}V(t) = D"(D" L1V g(t))) = DMLY g(t) = ¢(t). (1.4.9)
By using Eq (1.4.9), we get
DI I6(1) = DM(D* I29(0)) = DM(),
DIV g(t) = D*W IV (1" 6(t) = LYo ().
Similarly we have

DM IRo(t) =D*(DM IF(1240(1) = D*I2¥o(1)

(1.4.10)
DU (DM II(II()) = DI = o(t)
Using Eq (1.4.10)
DMIRo(0) = DM (DM IR o(D) = Do),
DM IIVG(t) = DRIV (I (0) = 11 Vo(0)
In general
D™V p(t) = D™ o(t), m > n
() () (1.4.11)
D™ p(t) = I"™Y (L), m < n.
O

Now, we discuss properties for 1-Reimann-Liouville fractional integral and derivatives.

Theorem 1.4.7. [28] Let a« > 0. Then for every ¢ € Ly[r,u]

DEYISYdly) = ¢(y)

holds almost everywhere.
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Proof. By the definition 1.4.2, and by semi-group property of Reimann-Liouville frac-
tional integral, we have

DEVIEg(y) =DM I VISV g(y) = DI g (y)

=DV I o(y) = d(y).

Theorem 1.4.8. [28] Assume that, if ¢ € A¥[r,u], « >0 and k =m = [«]. Then

(W) = 9()*

a) oy a—j
I D (’b ZD 5 925 |yr F(a—j—l—l)

Proof. By definition of Riemann-Liouville fractional integral

1

IUDEol) = s [ (W) = ) D) (1.4.12

By using Leibniz’s Rule, we have

i ; ! _ N (s a2 $)ds
ay (F(aﬂ) [ 6 = v )d)

_ (NI (8) DO o 5)d s
i | W) =) Do)

Let us consider the left hand side of (1.4.13)

(1.4.13)

(e [ v - serenosas)

o+
1 Y a—1 na,y
T (((y) = P(s))* D¥o(s)ds
On the other hand, by definition of Riemann-Liouville fractional derivative, repeatedly
integrating and by Theorem (1.3.7) we have

1 Y o e B 1 Y e
T [ () = w6 D)o = [ (W) = v DI o)

Now we evaluate this by using iterative method. Let £k =1

1 Y d 1 .
T /| () = ) SR )ols)ds
1

1

=~ a1 0 () — ) L) + sy / ((y) — () LI (5)p(s)ds.

For k =2

1 Y d> o
oy | (@) =St
1 d. d

i | )~ L e,
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By doing all the calculations in the similar way, we get

Y 2 k—j — (r))e—itl
w1/ <<w<y>—w<s>>a-213-%<s>dt—;js ool (=
In general

Y k
T | () eI s
=ﬁ [ @) - vori=esoas
P g ) 006
_Z Ll P(a—j+2)
=k ()] Zj e
g | @) = sl S o)
Ly o T e () = Y)Y
~hol) = g I
(1.4.14)
We have
- ()
[ DIYo(y) =6(5) - Z St or R = H
~d Y(y) —p(r)*
:¢<3)_;dswg ()i F<§/O>é_ ;/z<+ >1>> |

By solving the above expression, we get the desired result. Now, we discuss the -
Caputo’s fractional derivative and its application. O

1.4.3 -Caputo’s fractional derivative

1-Caputo’s fractional derivative was first studied in [1]. 1)-Caputo’s fractional derivative
is more convinent to deal with the ¢-fractional differential equations.

Definition 1.4.9. [2] Let § > 0, y € [r,u] and m = [f], the ¥-Caputo fractional
derivative is defined by

DAY(y) = ImPb Db g(y) = — ) / y(w(y)—w(S))m*/j*lw’(S)Dm’%(S)ds

I'(m —
=B (1.4.15)
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Example 1.4.10. We find the Caputo derivative of ¢(y) = ¥(y)? as under

D) =

ararn YW I

By definition, we have

D§o(y) = I8 DAoly) = = >/oyw(y)—¢<t>>’f—a—1w’<t>D’“W(t»ﬁdt-

Ik —«
(1.4.17)
Case 1: If 3 < k, then D*¥(4(y))? = 0.
Case 2: If f € N and k£ < 3. Then we generalize the integer-order derivative of a power
function

L d
Y'(y) dy

DY () = ( ) E() 1 ()

D200 = (054 ) K= D)
D) = (525 ) £ = D= 200 0)
e D) = Dy,
VTt
Eq (1.4.17) reduce to
Do0) =g [ () = w0 D o)
et [ - vy )
e A L R R
Let w = %
Dgoy) = F(Fﬂ(ﬁ_ ; Q(K(Fy()]z:) /0 1 (1 —w)" " wFdw.

. 1 —a— _ —)T (8=
Since f; (1 — w)k "wikdw = Bk —a,3 —m +1) = Fr(égk—a)ig—kkil))‘
Thus o
) T+ D)

D5 (¥(y)) T(B—a+1l)

1.4.4 Properties of y-Caputo fractional derivative

In this section, we discuss the composition of Caputo derivative with Riemann-Liouville
fractional integral and vice versa.
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Theorem 1.4.11. [4] If ¢ is continuous and o > 0, then
DI h(y) = d(y). (1.4.18)
Proof. Let ® = I*Y¢(y), where D*¥®(r) = 0, then we have

DIV oY) =c DFYoy) = DPvo(y) = D™VIN TV o(y) = 6(y).

Theorem 1.4.12. [}] Assume that « >0, m =m = [«a] and ¢ € A™(r,u), then

m—1 ¢
1%, D2V () D20 () — i)

k=0

Proof. By using fundamental theorem of calculus and iterative method we obtain

Ile1¢¢

w' ()dy = é(y) — 6(r)
12Y D2 (y )—Iﬁw(liwa(Dl%( )

e M1 d /
_p ( [ pee <y>dy)

=D o(y) — 1D (r)

/w’y dy )y = Do) /w
— o(r) = D" o(r) (¥ (y) — ¥(r))

L} D* §(y) =1 (L (1 DM (DM (D (y))))

e ( | d%DZ’W(y)Gb(y)dy)
s

=0(y) — o(r) — Do (r) (W (y) — ¢(r)) — D**¢(r)

(V) = 9(1)*

In general

3
L

(W) = v(r)*

D™ o(y) = ly) — Y DMybe(r) i

0

(1.4.19)

i

By thw definition of y-Caputo derivative
D () = I D), (1.4.20)
Apply I™¥ on both sides of Eq (1.4.20), we have

[ D"o(y) = VLD () = LD (). (14.21)
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Use Eq (1.4.21) into (1.4.19) we obtain

I .D"o(y) = d(y) — Y D*Yo(r)

Replacing n with real a we have

199, D0 () = oly) — 3 DFYo(r)

In particular, if 0 < o < 1 and é(y) € C[r,u] then I®Y.D*Y¢(y) = ¢(y) — ¢(r).
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Chapter 2

Generalized Taylor’s formula with

respect to a function

In this chapter, we discuss a generalization of Taylor’s theorem. To begin with the gen-
eralization, we first discuss the properties of the 1-Reimann-Liouville fractional integral.
We prove the Mean Value theorem for this purpose. Then, we prove the Taylor’s theorem
for integer case and then for the fractional case. Moreover, we discuss approximations of
a function by using generalized Taylor’s formula with respect to a function. Furthermore,
we present the convergence and remainder theorem for Taylor’s theorem. We also present
the Taylor series solution and fractional power series solution for -fractional differential
equations.

2.1 Introduction

Some properties of fractional integral were proved in [20]. We will generalize those prop-
erties of fractional integral with respect to another function. First, we find fractional
integral of power of .

Example 2.1.1. The fractional integral I¢¥ of ¢(w) = (1 (w))? is,

()P (p(w) — (r)
T(a) B( (w)

[ ((w))’ = Lo, B+ 1) . (2.1.1)

This can be computed as:
From the defination of fractional integral, we have

1

a’zpw:—ww—so"l’s s))Pds
o) =g [ (W) =0 ()05

:% / ’ (1 - %)alw%s)(w(s»%.
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Letyz(l—ff@) anddyf

in integral we get,

a, o (w(w»ail 0 a—1
Iz w¢<w>__w / Y11 = )P (4 (w)) P (w)dy

Y (w) = (r)
¥ (w)
Y (w)—=(r)
P (w)

:M/o v (1 —y)dy.

()

From the defination of incomplete beta function (1.2.2), we get

W (o ()P = (w(w))B“‘ Y(y) — w(r).a
I (Y(w)) Ia) B( o) ; ,B+1). (2.1.2)

Example 2.1.2. Let us consider ¢(w) = e®¥("), then show that

[ob @) — gac(y( i a: +(T))))k. (2.1.3)
k=0

From defination

abgevw) _ L [T N el ()6t g
et s [ i) = 0 (e

e — w1 E) =N e g
fay | ) v (1 w(w)—w(r))) Yls)eds.

_ (@(s)=%(1) __ (s)ds . . .
Let z = COEIQ) and dz = @) =00 Putting these values in above equation, we get

e (r) 1
o ep(w) _© ()™ S)eTgez((w) =) 7,
I v vy -2 d
et o [ am1 o (c2(¥(w) = (r)))"
=Ty ) — o [ - o SRR
_ecw(r) a - (C(?/f(w) _w(,r)))k ! a—1_k
=Ty )~ v S S [ o
Using defination of Beta function (1.2.2) we get,
o cp(w) _ o S v(r)*
109 ®) — goe(y(yy ; a+k+) :

2.2 Generalized Taylor’s Theorem

In this section, we introduce an alternate proof of generalization of Taylor’s Theorem
in the framework of fractional differential equations involving fractional derivative of
functions with respect to functions. First, we discuss integer order case, and then we
generalize for i-fractional operators.
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Theorem 2.2.1. Assume that, if ¢ € C"[a,b]. Then

- x)—(a)) . (nt1), z) —Y(a))™
o) = S B Y D) 006) — b)) oo

with a <n <z and z € (a,b], where here DY = ( ! i)]_

Proof. We introduce a polynomial in ¢(z) as:

3

P¥(z) = cr((x) —p(a))”. (2.2.2)

ol
[e=]

Since ¢ € C™[a, b], the polynomial P¥(z) of order n in terms of ¢ at a is the unique
polynomial of degree atmost n such that:

D¥¢(a) = DI¥P¥a), 0<j<n (2.2.3)

Now applying D7 on Eq (2.2.2), we get
DI PY(x — k=3 2.2.4
Z e v(e) - () 224

Using Eq (2.2.4) in Eq (2.2.3), we get

: F'G+1) ~ TG+ »
DY — —/ S — k=7 2.2.5
k=j+1
Now for z = a, we have, D?¢(a) = ¢;I'(j + 1), which gives, ¢; = Drj(jﬂ‘;)
Thus ¢-Taylor’s polynomial with respect to a function is:
n — J
iy o ) = 0@y
Let RY(z) = ¢(z) — P¥(z). Then applying D™ *+D¥ we achieve
DY RY (1) = DDV () — DDV pY (), (2.2.6)
Since P, is polynomial of degree n, thus
DY pY (1) = 0.
Therefore Eq (2.2.6) becomes
D(n—H)’d}Rx(l‘) _ D("H)’“’gb(x).
Now applying integral 15" o1 both sides , we get
[ DY DOADY RY (1) = [ DY DD g (), (2.2.7)
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Using Theorem 1.3.4, we get
RY(z) = IO ¥ DD g4y, (2.2.8)

By the defination of fractional integral, Eq (2.2.8) can be written as,

R = oy [ 00 = ser e @D o (229

Using mean value theorem of integral calculus and then evaluating the integral in Eq:
(2.2.9), we get
oy _ Do) (Y () — ¢(a)" !
RY(x) = :
I'(n+2)

So, ¥-Taylor’s theorem with respect to a function is:

— (Y(x) =¥(@) DY) (¢p(x) — 1p(a)) ™!
o) =2 T A T(n+2) '

2.3 Generalized fractional Taylor’s Theorem

Polynomials are often used in approximation theory to approximate functions. The in-
tention here is to approximate unknown functions which are solutions of fractional dif-
ferential equations with suitably generalized polynomial type functions which are easier
to work with, at the price of some reasonably small difference between the solution and
the approximation functions. Taylor series is often used to developed various numerical
methods for approximating solutions of differential and integral equations. Here, we gen-
eralize for fractional case.

Method 1: Here, we generalized the Taylor’s theorem with respect to a function. We
followed the method in [20].

Theorem 2.3.1. For 0 < a <1, suppose that ¢ € C[r,u| and D&¢ € Clr,u] , then

o(y) = 9(r) + ﬁwf(n)(w(y) () (2.3.1)

with r <n <wy for all y € [r,ul.

Proof. From the defination of fractional integral

y
FUDE o) = s [ 00 = 906 Do)
Using Mean Value Theorem of integral calculus,
DY Y
1 Devaty) = P [l - vl e )i (232)
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Now by evaluating the integral in (2.3.2) we get,

o,
I DEV0() = Lot (o) — w(s) 233)
We know that,
DX o(y) = dly) — o(r). (2.3.4)
From (2.3.3) and (2.3.4) we get,
0) = 0(0) + 7y D8 H ) () = v(r)™

Theorem 2.3.2. For 0 < a < 1, suppose that D{"™*¢(xz) € Cla,b] then,

Ime ¢Dmoc ¢¢( ) — m—l—l)oc ¢D(m+1 a, %( ) = (¢¥J2n;a¢_£rf;ma D;na’¢¢(r). (2.3.5)

Proof. By linearity of fractional integral, we have

LY DY (y) — IO DIV G (y) <[V [DIY (y) — IV DI g(y)],

=D () — I3V DE Do)
From Theorem (1.3.4), we have
YD (y) = oy) — ¢(r)-
So, we get
[ma mea w¢( ) m+1)a wD(m+1 w¢( )
D (y) = DIUO(y) + Do)

=17 Dy o(r)
1

= ’ — (s)) WY () D™V (1) ds
o | W) =) ) D)

By evaluating the integral on the right hand side,

LMV DI g (y) — LD DI (y) = (wr(?i,z; ‘fg)a Dy a(r).

[
In the following we generalize the Theorem (2.2.1) for ¢)-Caputo fractional derivative.

Theorem 2.3.3. For 0 < a < 1, suppose that D3¢ € C[r,u], then

Wp(r))ke D"V () (p(y) — () e
k:a+1) F((m+1)a+1)

DEo(r) +

Ms

(2.3.6)
k=0

withr <n <y andy € (r,ul.
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Proof. By theorem (2.3.2), we know that

IwupruZJ . (z—i—l)ad)D i+1)a, 'l/}( T) Dia,w 23
; 4(y) oy Z Mot Drten @37

By using the result of Theorem (1.4.8), we get

¢(y) — ](m+1)a ¢D(m+1 ¢¢ Z Za - lr ) Diaﬂ/)d}(T)' (238)
Consider,
](m+1)a7¢D(m+1)a,w¢( ) — 1 /y<w( ) _ ¢(8))(m+1)a+11/}/(S)D(m+1)a’w¢<5)d8
' ' YT vy S, Y

Using mean value theorem,

(m+1)a,y y
rpreiee pliesiy) = S0 [ty) — (s ey sgas

Evaluating the integral, we get,

(m+1)a,p
pimmw () = D760

= T(m+Datn) PW - P(s) e, (2.3.9)

Substituting Eq (2.3.9) in Eq (2.3.8), we get the desired result.
[

Method 2: Here we present an alternate method for the proof of fractional Taylor’s
theorem.

Lemma 2.3.4. Assume ¢ € Cla,b] is non-negative increasing function with ¥ (z) # 0,
f € C™a,b]. Then there exists unique polynomial P¥, iny = (1 (z) —(a))*, 0 < a <1,
of degree at most n for f(x) such that DY P¥(a) = DV f(a) for k=0,1,2,...,n

Proof. Consider the polynomial of degree at most n in y = (¢(z) — ¥ (a))* of the form
PY(z) = i o an(¥(z) — (a))®. Obviously, at © = a, we have ap = P¥(a) = f(a).
Applying D*¥, we have

DSV PY() = al(o + 1 +Z ) — vy @)

(i —a+ 1)

Substituting r = a in (2.3.10) we have D&Y P¥(a) = D*¥ f(a) = I'(a + 1)a;. Therefor

ay F(a—i—g)) Now appl’ylng D on Eq (2 3. ]_0) we achieve
) ; —
DQOC’wP¢y ol 2a +1 + E Z 1o’ 204‘ 2311
a n ( ) 2 2 1) (’(/)(l) T/J(CL)) ( )
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Repeating the above process k-times, we have

(i +1)
i — ka+1)

Di*VPY(x) = ayl(ka+1)+ > a
i=k+1
where D f(x) = D¥DYD% - .- D2 f(x). Substituting z = a in (2.3.12) we have D% P¥(a) =
ka,

DF¥ f(a) = T'(ka + 1)ay. Therefore aj, = %
Hence the unique Taylor’s polynomial, in y = (¢¥(z) — ¥(a)), of degree at most n is
~ DV f(a)
— I(ia+1)

(Y(x) —p(a)) ", (2.3.12)

P (x) = (¥(z) — ¥(a)™. (2.3.13)

]

The applicability of P¥(z) for function approximation indeed depends on error es-
timate. Just like classical Taylor polynomials, in this case, the estimate is reasonably
good in sufficiently small neighbourhood of a provided -derivatives of f are bounded.
Following theorem is the generalized case of Theorem 2.2.1 for the fractional case.

Theorem 2.3.5. For 0 < o < 1, suppose that D™ f € C([a,b]). Then, for x € |a,b],
there ezists € € (a,x) such that

n iy £,
f(x):ZDa f( )

(¥(2) — P(a)) "D
— ['(ia+1) '

(V) = (@) + D O =

(2.3.14)

where D" f(x) = DYDYD - - - D™(n — times).
Proof. Since RY(x) = f(x) — P¥(x). Note that, by Lemma 2.3.4, we have
D Ryla) = DI (a) ~ D P () =0

Since P¥ is a polynomial of degree at most n in y = (¥(z) — v¥(a))®. Therefore
DAY pU () = 0 for all x € [a, b]. Hence

DC(Ln+1)a,an(x) _ Dg”H)a’wf(x) _ DC(LHH)OWPT?(J;) = D((l”“)a’wf(x), (2.3.15)
Applying IS ™% on both sides of Equation (2.3.15)
IU(Ln-i-l)a,ngn—i-l)a,an(x) _ IC(Ln—i-l)a,z/JD((ln—&-l)a,wf(x) (2316)

Now using Theorem 1.3.4 on both sides, we have

n

Rg(x) . Z (w(x) ‘_ w(a))ZD;,an(x) _ /a: (w(fﬁ) B w(s»(n—kl)a—l D(”“)""wf(s)@//(s)ds.

P(i+1) T((n+1)a) a

(2.3.17)

Since DR, (x) = 0 for i = 1,2,3,...,n and using mean value theorem for integral
calculus, we have

_ (n+1)
RY(z) = DntDav £(¢) / W (I)F nt G >>> ) Y'(s)ds (2.3.18)
(n+1)a

_ i ey (012) = @) Va0

< R G T Da D) (2.3.19)

m

32



Using Eq (2.3.13) and Eq (2.3.18) in RY(z) = f(x) — PY(z), we get the required
result.

Remark 2.3.6. Theorem 2.3.5 is a generalization of the fractional Taylor’s theorem for 1)-
Caputo fractional derivative introduced in [1]. For ¢(z) = x it reduces to the fractional
Taylor’s theorem for Caputo fractional derivative. Furthermore, the strategy adopted
here to prove the theorem is different form the Zaid M.Odibat et.[20] al approach.

2.4 Approximation of a function

In this section, we approximate the functions by using generalized Taylor’s formula with
respect to a function (2.3.6). We describe the method of approximation as follows:

Theorem 2.4.1. [20] For 0 < a < 1, suppose that D>V ¢(y) € Cla,b]. If y € |a,b], then

Bly) = PV (y) = 3 ““é’ii; f(ﬁ))m Dy o(a) (24.1)

Moreover, if there exists ¢ with a < ( <y, then the error term R%(Y(y)) is

DU ()
T((n+ Da+1)

R¥(y) = ((y) —(s)) "D, (2.4.2)

If n is very large then accuracy of P%(y) increases and if we moves away the value
of x from center then it decreases an accuracy. Hence, for the error to not exceed the
specific bound, n should be large.

Example 2.4.2. [20] We define Mittag-Leffler function with a > 0 as

Ea(4(y)") = P (y Z Flio + (2.4.3)

And the error term is

Ea(¢)
I'((n+1a+1)

Ry (y) = (W(y) = ()™ a<( <y (2.4.4)

Table 2.1 shows approximate values of E, (1 (y)*) for different values of y and «, where
N =10 and ¥(y) = log(y® + 1).

Example 2.4.3. [20] The wright function with o and 3 is defined as

W((y); o, B) = ; % (2.4.5)

And the error term is

(_l)nw(_ca’ —Q, 1)

T((n+ Da+1) (U(y) = ()" a < ¢ <. (2.4.6)

Ry (d(y)) =
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y a=02 a=04 a=06 a=08 a=10
0.0 1 1 1 1 1
0.5 29634 1.7751 1.3948 1.2189  1.1250
1.0 7.3820 4.2731 3.0152 23811  1.9999
1.5 14.2812 10.0606 7.0381  5.3813  4.3749
2.0 21.9231 19.7650 14.6433 11.1718 8.9998
2.5 29.3865 32.9640 26.65648 20.6581 16.6221
3.0 36.4042 48.9563 43.4934 34.6517 27.9806

Table 2.1: Approximations for different values of y and «.

2.5 Fractional power series expansion

The work in this section is generalization of work presented in [20], we introduce a new
definition of fractional power series with respect to a function which will be very helpful
in demonstrating the general form of generalized Taylor’s theorem which contains -
Caputo’s definition of fractional derivative. Also we discuss some important theorems
and results. We will present the results for convergent of the series and the remainder
theorem of error bound.

Definition 2.5.1. A ¢-fractional power series expansion about 1(y) = ¥(yo) is defined

as
oo p—1

SN a(y) — ), 0<p—1<a<py > (2.5.1)
k=0 q=0
where 1 (y) is a function and ¢y,’s are constants. For a special case, when ¢(y) = 0, then
the expansion Y .-, Zg;é crq(V(y) = (yo)) T is called fractional Maclaurin series. If we

write a term corresponding to & = 0 and ¢ = 0 in Eq (2.5.1) we have (¢(y) —1(y0))° = 1
even when ¥ (y) = 1¥(yo). Now we discuss the convergence and divergence of -fractional
power series. The proof of following theorem is similar to the proof in [20].

Theorem 2.5.2. For the y-fractional power series Y -, Zq 0 ckq(¢(y))q+ka, 0<p—-1<
a<p, y>0, we have

(1) if Do 2o s Crg(W(Y))THR fory = a > 0 converges, then it converges for 0 <y <

7

(2) if >, Zq o Cka(W(Y)) 1R for y = e > 0 diverges, then it diverges for y > e.

qt+ka

Proof. We can write -fractional power series as > 2 > 1", s erg(V(y) as

D o O (¥) (W (y)™, y = 0 where d,(y) = 30— éckq(l/}(y))q-
To prove the first part, we assume that > 777 (> P~ " erqg(¥(a))4T* converges for a > 0 and

¢(a) > 0. Then we can say that lim, ., Y r—_ o Chg((@))TTFe = Tim,, o 6, (a) (¥ (@) =
0. According to the defination of limit of function with ¢ = M;/M,, where M; =
min| 0,(y) |: 0 <y <a and My = maz|d,(y) |: 0 <y < a, there is a positive integer
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N such that | 6,(a)(x(a))* |< €, we have

(a))Fe o
3028 crg (B ()0 = [62(y) ()] < Mafgpbe| = | LD ElGUUNE | | v ko My <
V() Y|k
(2
Again, if 0 <y < a, then [¢(y)/¢(a)|* < 1and > "2 [ (y)/¢(a)|* is called as geometric

series and also convergent. So the series )~ N|Z§;é crq(¥(y))9 o] is convergent by the
comparison test. So series converges absolutely.
To prove the second part, we consider that » ;- > P~ g ckq(w(e)) is divergent. Now,

if we have any function v (y) such that y > e > 0, then Zk 02 om o Cg(V(y))TFe can-
not converge by part (1), the convergence of » )7 (> "= s Crg(V(y)) 7T depends on the

convergence of » >~ o Cg(¥(€))7*. Therefore, 7% 02 ne o Cg (¥ (y))7HEe diverges
whenever y > e. [

q+ka

Theorem 2.5.3. For the y-fractional power series Y -, Zq 0 ckq(¢(y))q+ka, 0<p—-1<
a<p,y >0, then we have

(1) Ify =0, only then it is convergent
(2) For ally >0, it is also convergent series

(3) If there ezists a positive number R then the series is convergent for 0 <y < R and
divergent if y > R, where R s radius of convergence

Proof. For the proof of first part, consider a series » 2 > '~ o gV ()7t if y = 0
then ¥(0) = 0 and R = 0, so series converges for y = 0
For the proof of second part, consider a series ;% (> P~ L erg V()R R = lim,,_,50 |

a+1|

C(k+1) as k — oo, R — 00. So series converges for y > 0.
q

Now, we prove thlrd part as follows: assume that case (1) and (2) are not true. Then there
exist numbers a and e which are non-zero such that the series > 7~ />~ q_(l] ckq(w(y))‘”ka is

convergent for y = a and divergent for y = e. Therefore, the set S={y ‘Z he0 2o L erg(V(y))atEe
is convergent} is non-empty. By Theorem (2.5.2), the series is divergent if y > e, so
0<y<eforall y e S We can say that e is an upper bound for S. Thus by complete-
ness axiom , the series > ;- 5_0 crq(V(y))Hre converges.

U

Theorem 2.5.4. Suppose that y-fractional power series Y 77> 0~ s org(V(y))THre, 0 <
— 1 < o < p has a radius of convergence R > 0. If a function ¢ is defined as ¢(y) =
Zk 02 om o ()T 0<p—1<a<p, 0<y< R, then the following hold:

I'(p+ «)

Di¥é(y) = c1ol (1 + @) + eul(2+ a)p(y) + - + i) ) (W(y)~
+C20FF<(11;+2;;)<¢@>>& b n R 4y TEEZD e
> Z e W),

(2.5.2)
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DB"DS”%(y) =cnl'(2+a) + el B+ a)p(y) + -+ + Cl(;;—1)%(¢(y))p_2+

_ 1)
(14 2a) o1 (2 + 2a) N ['(p+ 2a) p—2ta
C20 F(a) (1/1( )) + C1 F(l—i—oz) (@/)( )) + 2p71)m(¢(9)) + + -

I RS By BT e

2y 2 2 T+ (h— D+ 1)
(2.5.3)
Proof. From the defination (1.4.9), we know that
Do) s [ (60— ey D o)
— ’ — ()P Y (s ! ﬁoop_lc )7 ) ds
_F@_Q)A(¢W)'W)) w()<¢%ﬂspg%qomw(»+ )d
L[ ot iy [k 1P ok
:m/o (¥(y) —(s)) Y'(s) (;gckqm@(w(s)) +h ) ds

oo p—1

_ c 1 Yy _ s p—a—1 /(s 1 ﬁ Ny ro .
_kzoqz; qu(p_a)/o (V(y) —¥(s)) v( )(W(S)dspw( )t )d ‘

By using the substitution w = zg;g and dw = zf;—ds and solving the above integral, we
get,

oo p—1

—|— ka+1) 7
Daw q g+(k—1)a
q=0
To proceed the proof, we use definition of ordlnary derivative
oo p—1
+ ka+1) N
DY DY — q ¢+ (k—1)a
p—1 oo p—1
q+a+1 q+ka+) ¢+ (k—1)a
(z M+ 25w g e
1 (%X TI(g+ta+l)d > T(g+ka+1) d
I () DY e () ),
0 (Z M1y PO 2 2 M G a1y YY)
p—1 oo k-1
q+()é+1 Q+ka+1) - D
AR D) DL ey o i L) A
q=1 k=2 q=0
So, we get the desired result. O

Theorem 2.5.5. Let ¢ has a -fractional power series representation at ¥(y) = ¥ (yo)
of the form

oo p—1

=) eg(W(y) — (o)) 0<p—l<a<p y<y<y+R (254)
k=0 q=0
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If o(y) € Clyo,yo + R), D’Zj(?‘ (y) € C(yo,yo + R), and we can differentiate D’y“g (y),
(p — 1)-times on (yo,yo + R) for k = 0,1,2,3... where 0 < p—1 < a < p. Then the
coefficients cpq are given by formula

_ Di Dy é(yo)
I'(¢g+ka+1)

Clkq 7k:071727"'7q:051727"'7p_1

Proof. Assume that ¢ is a function denoted by 1-fractional power series (2.5.1). We notice
that, if we put ¥(y) = ¥(yo) in Eq (2.5.4), then all terms after the first are vanishing,
and we get ¢(yo) = cgo. From the result of Eq. (2.5.2), we can write

D% é(y) =enol (1 + )+ enT(2 + a)((y) — ¥lgo) + - + cupn%ww) )
(14 2«) N ['(2 4 2«) ita
+C20m(¢<y) — (o)™ + Cmm@/’(y) —(yo))
+C2@—1)%(¢(y> —P(yo))P Y +

(2.5.5)

o
The substitution ¥ (y) = ¥ (yo) in Eq (2.5.5) gives ¢19 = DIZ‘Elf(ay)o). Again, from the result
of Eq (2.5.3), we can write

D™D p(y) = el 2+ ) + 12T (3 + ) (¥ (y) — ¥(wo)) + - -
I'(p+ o) p—2 I'(1+ 2a) a1
m(wy) —¥(yo))" "+ CQOTQ)W(Z/) — ¥ (Y))

(2 + 2a) . L(p+20)
+021m(w(y) — (o)™ + CQ(p*l)F(p—i——a—l)

tCip-1)

(W(y) = P (yo))P > 4 - -
(2.5.6)

v o
Again substitution ¢¥(y) = ¥(y) in Eq. (2.5.6) gives ¢1; = %ﬂf;w)

operator D;Z’O one more time on Eq (2.5.6), we obtain

. Now applying

r
Dy’ D3 (y) =cil B+ ) + -+ + cl(p_n%(wy) — (o))"
't +2 r
et 2 ) = wla) e T2 ) — )
r 2
eapy o (000) — V)P
(2.5.7)
Again using substitution ¥ (y) = ¥ (yo) in Eq. (2.5.7) , we get ¢1o = W. As we

can see that successive pattern is developed. If we pursue to operate D,, gth times with
g < p—1 and then use the substitution ¥ (y) = ¥ (yo). We can get the first gth coefficient
Dy Dy ¢ (yo)

a5 Clg = T T(qratl)

,q=0,1,2,--- ,p—1. Now, we develop the successive pattern form
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for the second gth coefficient cy,. For this purpose, we apply the operator D;g“l’, we get
the following result

DY é(y) =caol'(1 + 2a) + e T(2 + 20) (¥ (y) — (o)) + - - -

I'(p+2«) (2.5.8)

T ") ((y) — (yo))P 4 - -

By substituting ¢ (y) = ¥(yo) in Eq. (2.5.8) , we get ¢ = “(’T(Zayo Again applying

the operator D, on Eq (2.5.8) and then substituting ¢ (y) = ¢(yo) in resulting formula

2a,7

;we will obtain ¢y = %@TZSJ;)' Anyway, if we pursue to operate D,, gth-times with
g < p—1 and then substitute ¥(y) = 1(yo), we can have second qth coefficient as

_ D§ Dig ' é(yo)
€20 = TT(¢+2a+1)
tern form completely. If we apply Dq”J’D’;OZ Ek]qw(2.5.4) we can find the ¢th coefficient of
ckq Which is given by the form of ¢, = %,k =0,1,2,---¢q=0,1,2,--- ,p—1.
Substituting in series representation Eq. (2.5.4) then we can see that ¢ has i-fractional

power series expansion at ¥(y) = ¥(yo), then it’s discretized form will be: ¢(y) =
1 D D ¢( ) fe'
> ko g0 F(q+ka+1)yo (W(y) — ()™, 0<p—-1<a<p, yw<y<y+R O

Lemma 2.5.6. Suppose that ¢(y) € Clyo,yo + R), DE*¢(y) € C(yo, 4o + R), and we can
differentiate D’;Oa (y) for (p —1)-times on (yo,yo + R) for k =0,1,2,3,--- ,m+ 1 where
0<p—1<a<p. Then

m a, m+1)a, Dy D. o
1D pUEEIL ) = () S, Yms D) () () )rhe, 0 < p-1 <
a<p, yo§y<yo+R

,q=0,1,2,--- ;p—1 As a result, we develop general successive pat-

Proof. By using the properties of operator, we have
I DD () = [t (I D) D vo(y)) = Ine” (150 D) D (y)
p—1 i
Di pmast 3y
e (pyo o) -

q=0
p—1
D Dt )
__tmay myma,y ma, Y
_Iyo Dyo (b(y) - Iyo (Z ;!

q=0

(¥(y) — 1/1(3/0))‘1)

(W(y) - 1/1(1/0))")

p—1
Dq’me""wqﬁ(yo)
— [(m=Dap ( (1P ppb) p(m=1)ap _ E : Yo
Yo (( Yo Yo ) Yo ¢(y>) pure F(q+moz+1)

(V(y) — ¢<yo>>q+ma)

Pl g (m Doy
T (D( -3 O )w(y)—w(yo»q)

-1 mao
(5 DDy o)
I'(g+ma+1)

((y) — w(yo))"“”“) :

q=0

By repeating this process for m-times, we can get the desired result. O

38



Theorem 2.5.7. If | D"Jrl o(y) KM onyy <y <e wheren—1 < a < n, then the
remainder R, (y) satisfies the inequality of the general form of generalized Taylor’s series
with respect to a function

M

s Da s — )™ <y <e

Proof. From theorem (2.3.3), we know that

DIV p(y) (1(y) — (a)) Do
M((n+1)a+1)

Ru(y) =

And given that | DiptV%¢(y) |< M, So from the defination of upper bound we can say
that M

Mg s W® — v wsy<e

| Bu(y) |<

2.6 Series solutions by fractional Taylor series

In this section, we use generalized Taylor’s formula with respect to a function to find
series solution. This is a very useful method and can be used to find series solutions of
many -fractional differential equations with non-constant coefficient.

Example 2.6.1. Consider an initial value problem

DVo(y) = Ab(y), ¢(0)=do, 0<a <1, AER. (2.6.1)

Let the solution is of the form

kz - + Flha 1 1) (2.6.2)
By the definition (1.4.9), we achieve
Do (y) ch ) (2.6.3)
- 1 Ja+1)

Substituting (2.6.2) and (2.6.3) into (2.6.1) yields

Zk+1k+1 Zrk+

Equating the coefficients of (¢(y))*® to zero, we get

Cht1 = ek, (co = ¢o),
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this yields:
Cr = )\k(bo
Substituting value of ¢, in Eq (2.6.2), we obtain the solution:

0 ka
N )
¥) = o ; T(ka + 1)’
= GoEa (A (y)),
where E,(1(y)) is a Mittag-Leffler function.
Example 2.6.2. Consider an initial value problem
Dg™"6(y) + D5 ly) — 26(y) = 0. (2.6.4)

Let the solution is of the form

ka

Z Ck ka + T (2.6.5)
By the definition (1.4.9), we obtain
DSV é(y) ch ) : (2.6.6)
— 1 Jao+ 1)
and
D2 p(y) ch ) : (2.6.7)
k; 2 Jao+1)
Substituting all these values in (2.6.4) ylelds
Z(C’“” + Cpy1 — c@% = 0.

k=0
Equating coefficients of ¥ (y)*® to zero and identifying coefficients , we obtain
Cki1o = QCk — Ck+1- (268)

Therefore, we obtain following solutions

61(y) =eo (1 T ) ~ T ) + g )
10 50
Tha s YW )

62(y) =ex (ﬁwg»a - T T e )

5 4o
T T ) +>

A family of solutions of 2.6.4 is given by
d(y) = cotr(y) + c192(y), co, 1 € R.
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2.7 Series solutions by fractional power series.

In this section, we use the -fractional power series to solve two linear fractional differ-
ential equations with nonhomogeneous initial conditions at ordinary derivatives.

Example 2.7.1. Consider the following homogeneous FDE:

Dy o(y) =A(y), p—1<a<p, y>y (2.7.1)
subject to the nonhomogeneous initial equations
oW (yo) =6;, j=0,1,2,3,--- ,p— 1. (2.7.2)
where 0; and A are real constants.

Assume that solution has a form,

oo p—1

erq+ka+1 (U(y) = Y(yo))™, 0<p-1<a<p yp<y<y+R

k=0 ¢q=0

(2.7.3)

where ¢, = DgOD’;g‘ (yo),k = 0,1,2,3,--- ;¢ = 0,1,2,3,--- ,p— 1. From Eq. (2.5.2),
one can obtain

[asy

p—

ZFq—i— —1a—|—1)

1 ¢=0

(W(y) — P(yo))rHE—De

Mg

(2.7.4)

B
sl

oo p—1

_ C(k+1)q _ a+ka

By using the expansion formulas of Eq. (2.7.3) and (2.7.4) in both sides of Eq(2.7.1), we
have

oo p—1 o p—1

2.2 r qjk;; +1) W) =)™ =223 ey T(q+ k:a +1) (V) = ()"

k=0 ¢=0 k=0 q=0
Equating the coefficients of (¢(y) — ¥ (y0))?*< in above equation will lead us to:
Clk+1)g = AC(kq), k =0,1,2,3,--+,¢=0,1,2,3,--- ,p—1.

Using the initial conditions of Eq (2.7.2), we can get co; = d4,¢ = 0,1,2,3,...,p—1. Thus,
the recurrence relation can be written as

g = A0, k=0,1,2,--- ¢=0,1,2,--- ,p—1.

Now, put value of ¢, in Eq (2.7.3) to formulate the solution of Eq (2.7.1) and (2.7.2) in
the form

o) =33 () — ()

(¢ + ka+1)
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Remark 2.7.2. If we consider a special case 0 < a < 1, then series solution of Eq (2.7.1)
and (2.7.2) will be

% k
=03 )~ V)

In terms of Mittag-Leffler function
O(y) = doLa(AW(y) — ¥ (10))").
Example 2.7.3. Consider the following homogeneous fractional differential equation:
Dgoy) =td'(y), 1l<a<2, y=>0, (2.7.5)
with nonhomogeneous initial conditions
¢(0) =do,  ¢'(0) =dy, (2.7.6)

where dy and d; are real finite constants. We assume the solutions of Eq (2.7.5) and
(2.7.6) is of the form

o0 1
— an Jj+na 9
2;2;;612517¢w@» - (277)
n=0 j5=0
And the ordinary and fracional derivatives can be obtained as follows,
00 1
Ck _
(1) =coy + q q 1+k0¢7 2.7.8
H0 =+ 332 Y ) 273)
00 1
1o o Ckq +(k—Da __ k+1 +ka
D = )4 atha
wfly) ;;r(qﬂk—naﬂ)w ;; Mg+ hat+ )W)
(2.7.9)
Substituting above values in Eq. (2.7.5), yields that
Af+1 ko bk+1 1+ko
b .
m+—w-+§:< RS ) + s ) ) .
2.7.10

o+ 3 (s 0+ g )

where ar = cxo and ap = cp1. By equating coefficients of (¢(y))** and (¥(y))'**< in
both sides of above equation, we get recursively the following results: ag = ¢(0) = Jo,

= gbl(O) = 51.@1 = 0, b1 = 51,and Ap+1 = (k?Oé)CLk, bk+1 = (1 + /{ZOé)bk, k= 1,2, -« . That
is, ag = 0o, b = 01, ax = 0,k = 1,2, and by = 6, [[o_,(1+(¢—D)a)by, k=1,2,
If we substitute these values back in Eq (2.7.7), the we have

G(y) = Go + Ot + 61 Y (H(l +(qg— 1)@)) mwww

k=0 \g=1
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Chapter 3

Taylor-operational matrices method

In this chapter, Taylor series method is developed for approximations. In this method,
the solution is approximated by -Taylor basis vector. Moreover, Taylor operational
matrix of integration for i-fractional differential equation is provided. We use Taylor
basis operational matrix of -fractional integration for solving w-fractional ordinary and
partial differential equations which reduces the -fractional partial differential equation
to a special type of algebraic equation called as Sylvester equation.

3.1 Generalization of Taylor series method for -

fractional differential equations

Since the motivation is to find numerical solutions. For this purpose, we use Taylor’s
method. The ¢-Taylor basis vector is given by

Ty (t) = [L(), (W(t)%, -+, (w(®)"]",

where n is a positive integer. The 9-fractional integration ¥ of a Taylor vector is

I TV (t)
_ F(1> a F(2) 14+« F(3) 24a |, F(n + 1) n+a g
[ D(a+1) (W (£)", Fa+2) (W (®) ™, [+ 3) (W (®)™*, "T(a+n+1) (W (1))
(3.1.1)
We can write Eq (3.1.1) as
IV TY () = [ao( ()%, ar ($(8) ™, as (W () >, . an((8)) T, (3.1.2)
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I(nt1
where a,, = —L0+D

form:

where [,,(t) :=

T T(at+n+1)

()" n=0,1,2,--- ,n. We can write Eq (3.1.2) in the matrix

We can write Eq (3.1.4) as

Qo 0
0 aq
where A= [0 0

0 0

[ ao(w(®)* | [aok(t)]
al(w(t))““ arly (t)
IEVTY() = | a((0)*™ | = [asla(t) |
_an(w(t))n—‘ra_ _anln(t)_
(¥(t))"**. Now, rewrite matrix in Eq (3.1.3) as
[ag 0 0 -+ 0] [L(®)]
0 ai 0 - 0|0
YT () = [0 0 ay --- 0] |lt)
|0 0 0 Q| _ln(t)_
YT (t) = AL(1),
0 - 0] [1o(t)]
0 0 I1(t)
ags - 0 and L(t) = lg(t)
0 - a, _ln(t)_

Now, we have to calculate L(t). For this purpose, we approximate L, (t) as:

ln(t) = iwanf}(t%

o)

>0 woi Ty (1)
>0 wii T (1)
Z?:o Waj T;b (t)

Yo w1} (1)

Rewrite the above matrix, we have

lo (t) Woo
ll (t) W10
12 (t) = | W0
ln (t)_ _wnO

Wo1

Wa1

Wn1

[ ’wooTé’b + mefp —+ ..
wloTéb + wnle + -

w20Tg + wlelw + -
_wnoTéb + wanlw + e
won | [ T3 ()]

win | | T (1)
Wnp | | T, ig (t)_
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+ wOanf
+ wlnTﬁf
+ w2nT7§,p

+ w?’LTLT;Tan_

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)



We write this as

L(t) = WT¥(t), (3.1.7)
-lg(t)- -IU()O Wor - wOn- -Téb (t)-
l1(t) Wi wip vt Wip Ty (t)

where L(t) = |L(t)|, W = |wy wo -+ wa,| and TY(t) = TQw(t) , where W is
ln (t) Wpo Wp1 - wnn_ _T#) (t)_

called a vandermonde matrix. Now using Eq (3.1.7) in Eq (3.1.5), we get
ISVTY (1) = AWTY(t) = MYTY(t). (3.1.8)

The matrix MY is called a 1-Taylor basis operational matrix of fractional integration.

3.1.1 Development of the method

The generalized 1-Taylor series method is developed to find the approximations of -
fractional order differential equations. In this section, we develop the main idea of using
1-Taylor basis matrix to solve y-fractional differential equations. For this purpose, we
consider

D§ (1) + MDDy b (t) + dag(t) = f(t) (3.1.9)

with initial conditions ¢(0) = ¢y and D*¥¢(0) = ¢;. Approximating the highest order
derivative term by 1/-Taylor polynomial as

DY o(t) = CTTY (¢). (3.1.10)
Apply I on (3.1.10) and using (1.4.8), we have
(t) — (0) — De(0)((t) — ¥(0)) = CTIg TV (1). (3.1.11)
Using initial conditions
O(t) = CTMYTY(t) + do + o1 (¥ (t) — ¥(0)), (3.1.12)

where M*¥ is an integration matrix. Now applying Déw on Eq (3.1.12)

DEYo(t) = CTDEY MOYTY (1) + ¢ DY (4 (t) — 1(0)). (3.1.13)
Note that
DY MVTY (1) =Dy VI T (t)
=DV 1T (1575 T (1),
Thus
DY MYTY () = I8PV TV (1), (3.1.14)
Also )
B — _ -
Dy (i(t) —¢(0)) = F(2_6)(1/)(15) $(0))' 7. (3.1.15)
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Now using Eq (3.1.14) and (3.1.15) in Eq (3.1.13), we get

) _ T ya—p, le 1—
Do“o(t) = CTI; TV (1) + g — 5 (W(0) = (0D (3.1.16)

Substituting equations (3.1.10), (3.1.12), (3.1.16) in (3.1.9) we get

CTTH A (O TN + s (1)~ 0(0) )

FA(CTMOYTY (1) + do + (¥ (t) — ¥(0)) = f(t)

CTTY (1) +MCTISPUTY () + \CT ISV T (1)

1 1—
=f(t) — Alm@@) —1(0)) - A2 + ¢1(¥(t)) — (0)).

We can write above equation as
CT (I + MCTISPY L MCTTNTY () = G(t), (3.1.17)

where

1
I'(2-p)

Thus, in matrix notation, we have

G(t) = f(t)— M (W) — (0)7) — Xa(do + o1 (¥(2)) — 1(0)).
crQ =G, (3.1.18)
where @ = I+ \CTT* Y 4+ XCTI . and G(t) = f(1) — Mg (V(1) — (0))' 7 -

Ao (do + ¢1(0(t)) — 1(0)). Solving Eq (3.1.18) for CTand using it in Eq (3.1.12) gives a
numerical solution of Eq (3.1.9).

3.2 Error Analysis

We present error analysis and convergence analysis for the proposed numerical method
for solving v-fractional differential equations. For this purpose, we state the following
results.

Theorem 3.2.1. Let ¢o(t) be the best approzimation of ¢ and ¢ € C™1[0,1] then

Mg [
6= d0ll < =25\ s (321)

where M = sup HD(()mH)’wng.
te(0,1]
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Proof. Since ¢(t) € C™*1[0,1]. By Taylor’s Theorem 2.2.1,
¢(t) = do(t) + Rn(t).

n m ng+1),w m+1
where ¢o(t) = >, % and R, (t) = rfﬁgﬁ)(t)) :

Since M = sup ||DM 4|l we have
te(0,1]

600) = )] < e (0™

By using the defination of norm, we have

M2 (p(1))*m
(m+1)!12 2m+3

l6() = do()]* < (3.2.2)

Taking square root on both sides, we get the desired result.

3.3 Numerical Illustrations

In this segment, we present the implementation of newly developed numerical method
based on the operational matrix of fractional integration for ¢-Taylor series method. In
order to show the effectiveness of the method, four numerical illustrations are considered.
In the first example, we present the numerical approximation of a fractional integral of a
function.

Example 3.3.1. (Fractional Integration) Consider the function

o) = (1) = (¥(1)°, (3.3.1)
where ¢ € [0, 1] and 1(t) = v/t. The exact integral of Eq (3.3.1) is
o) = oo 02y - TEE D e (339

Frg+a+2) FrB+a+1)

For the numerical evaluation of fractional integral, we approximate ¢ as
m
B(t) = e TV(1). (3.3.3)
i=0

Applying fractional integration on Eq (3.3.3), we get
ISV (1) = CTIVTY (t). (3.3.4)

From Eq (3.3.4)
186(t) = CTMevT (1),

where M*¥ is an integration matrix.
Eq (3.3.4) in vector notation can be written as ®(t) = CTT¥(t). Thus the numerical
approximation of fractional integral is

ISV (1) = O(TY (1) LMY TV (1). (3.3.5)
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m a=125 «a=1.50 a=1.75 a=2.0
4 0 0.0168 0.0157 0.0120
6 0 7.8142e-04 5.0177e-04  5.5597e-16
8 0 3.1123e-04  1.2698e-04 6.8820e-14
10 0 1.6122e-04 5.8177e-05 1.6517e-12
Table 3.1: Absolute errors.
0 *
2002 - -,
%) 0.04 T . 1
go.os mm”wm mi
éo.oa * ajz: L SIS
] i
L% 0.2 * a=2
S 0z o4 o8 o8 i 12 14 16 18 2

X

Figure 3.1: Comparison between exact and numerical values of fractional integral.

Absolute errors for different values of a and m are shown in Table 3.1. We observe that
error decreases as we decrease the value of m. Exact and numerical values of fractional
integral for function given in (3.3.1) are shown in Figure 3.1.

In the above example, we compared the exact and numerical values of fractional integral
by using a Taylor series method. Now, we consider the fractional differential equations
to solve by Taylor series method and also compare it with other methods available in the
literature.

Example 3.3.2. Consider the fractional differential equation

Dy (t) — o(t) = f(t), t€[0,2]

(t
with ¢(0) = 0 and D*¥¢(0) =
The exact solution of Eq (3.3. 6) is o(t) = (V)P — 1) (¥(t) — 2)(¥(t) — 3), where

Y(t) =/t + t. Applying fractional integral on Eq (3.3.6), we get

l<a<?, (3.3.6)

o(t) = I o(t) + 1§ £ (1). (3.3.7)
For numerical evaluation, let approximate ¢ is
t) 22> T (t) (3.3.8)
i=0
We can write this in vector form as:
o(t) = CTTY (). (3.3.9)
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Now, using Eq (3.3.9) in Eq (3.3.7), we get
CTTY(t) = ISV CTT () + ISV f(t) (3.3.10)

CTTY(t) = CTM*YTY(t) + G(t),

where M®¥ is an integration matrix and G(t) := ISV f(t).
In order to determine C', we can write above equation as

CT(I — M*"TY =@

which can be written as

cTQ =G, (3.3.11)

where @ := (I — M®¥)T". Substituting value of C' from Eq (3.3.11) in Eq (3.3.9), gives
the solution

o(t) = GQ'TY(t).

The numerical implementation for m = 5,6,7,8 are shown by their absolute errors in
Table 3.2. As we can see that error decreases by increases m. Since the exact solution in
this case is known, we compare solutions for different choices of a which are depicted in
Figure 3.2.

a=125 «o=150 a=1.75 a=20

2.2204e-14 0.1405 0.1436

3.0198e-14 0.0187 9.0594e-14
1.7319e-13 0.0048 3.5837e-13
2.3110e-12  7.0266e-04 1.7625e-12

m
5
6
7
8

(el el el Nen)

Table 3.2: : Errors for different values of o and m

[N IN S o N

Exact and Numerical soluion
» &a A b M LA o 4 N
—— T

L L L L L L L T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

o

(a) Solution for different . (b) Solution for 1 < a < 2.

Figure 3.2: Comparison of exact and numerical solution.
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Example 3.3.3. Consider the fractional differential equation
DY) + N2DOYo(t) = p(t), 1<a<2, 0<f<1, tel0,2. (3.3.12)

with initial conditions ¢(0) = 0 and D*¥¢(0) = 1.
When a = 2 and # = 0, the exact solution of Eq (3.3.12) is

1

6(t) — (X - %) sin(\ (1)) + %w(t), A0, (3.3.13)

When a =2 and = 1, the exact solution of Eq (3.3.12) is

o(t) = QLAG (_ww) — 2¢O (26O 4 ((1))? + 2) + 2) , A>0 (3.3.14)

where 1 (t) = log(z* + = + 1). Applying fractional integral on Eq (3.3.12), we get
B(t) + XISV () = IS ap(t). (3.3.15)

For numerical evaluation, let approximate ¢ as
B(t) = e TV(1). (3.3.16)
i=0

We can write this in vector form as:
o(t) = CTTY (). (3.3.17)
Now, using Eq (3.3.17) in Eq (3.3.15), we get
CTTY(t) + NIgPYCTT(t) = ISV (t), (3.3.18)
CTTY(t) + CTM™YTY(t) = G(t).
where M*¥ is an integration matrix and G(t) := I"Y9(t) + .
In order to determine C', we can write above equation as
CT(I+M*)TY =G
which can be written as
cTQ =G, (3.3.19)

where Q = (I + M*¥)T?. Using value of C from Eq (3.3.19) in Eq (3.3.17) gives us the
numerical solution.

As we have y-fractional differential equation (3.3.12) whose exact solution is known
only in integer case. In Figure 3.3a, we have ploted the exact and numerical soltion
for a =2, § =0 and g = 1. Figure 3.3b shows the exact and numerical solution for
0<p<1land 1< a<2. Weobserve that in the integer case(a =2, § =0 and g = 1),
the exact and numerical solutions are close to each other. Although the exact solution
is not availabe for fractional case, but from the behaviour of solution for integer case we
predict that method works well for fractional case.
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(a) Exact and numerical solution for 5 = 0 and § = 1.(b) Numerical solution for 1 < « <2 and 0 < g < 1.

Figure 3.3: Comparison of exact and numerical solution.

Example 3.3.4. Consider the fractional differential equation
DEY(t) + MDg  $lt) + Aed(t) = 5(4(t)" = T(4(1))*,

where ¢(0) = 0 and D' ¢(0) = 1. And A\; = Ay = 1.
When o = 2 and 8 = 0, the exact solution of Eq (3.1.9) is

b(t) = % (5(6())* — BT(6(1) + Vsin(VE(1)) — BT cos(VRU(1)) +37) . (33.20)

When a =2 and = 1, the exact solution of Eq (3.3.12) is

in(¥3
60 =5(8(0)* — 2006(0)" ~ T (0)° + 13405(0) — 14552 L)
V3 (3.3.21)
112075 cos(?ﬂt)) — 120,
where ¥ (t) = t(t + 1). First we approximate ¢ as:

Dgo(t) = CTTY(1). (3.3.22)

Applying the result of (1.4.8) on (3.3.22) with initial conditions, we have
o(t) = CTISVTY (t) + ISV f(2). (3.3.23)
Now D?¥¢(t) can be evaluated as:
DEYo(t) = CTISPYTY (t) + DJYt. (3.3.24)
Substituting equations (3.3.22), (3.3.23), (3.3.24) in (3.1.9), we get
CTTY(t) + M (CTIS YTV (t) + DEV) + Mo (CTIZVTY (1) + ISV f(1)) = f(t)  (3.3.25)

CTTY(t) + MCTISPPTY () + MCTISVTY (1) = f(£) — M DSVt — IV (1) (3.3.26)
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In order to determine C7', we can write above equation as
CT(I 4+ MNCTIZ PP 4 \CTITHTY (1) = G(1), (3.3.27)

where

G(t) = f(t) — MDg "t — N I3 f(2).
crQ=a (3.3.28)

where Q = I 4+ MCTISPY 4 MCTISY . and G(t) = f(t) — M DIVt — X\ IY f(t). Using
Eq (3.3.28) in Eq (3.3.23) gives numerical solution.

In this case, exact solution is not available for the fractional case, so we first find the
solution in the integer case for a = 2,3 = 0, = 1. In Figure 3.4a, the graph shows
the exact and numerical solution for § = 0 and Figure 3.4b, shows an absolute error. In
Figure 3.5a, the graph shows the exact and numerical solution for § = 1 and Figure 3.5b
shows an absolute error. Figures 3.6 predicts the numerical solution for fractional case.

3
5 x10 ,

N
o

3=0
(numerical)

N
T

#=0
(exact)

3

Exact and Numerical solution
o
o ~

=}

°
&

1 1 1 1 1 1 1 1 1 R 1 1 1 1 1 1 h 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Exact and numerical solution for g = 0. (b) Absolute error for § = 0.

Figure 3.4: Comparison of solutions, and absolute error for § = 0 and n = 15.

25 . . ! ! ! ! ! : : 4=

p=1
*
L (numerical)
=1
(exact)

[N

exact and numerical solution

1 1 1 1 1 1 1 1 1 R 1 1 1 1 1 1 I 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Exact and numerical solution for 8 = 1. (b) Absolute error for § = 1.

Figure 3.5: Comparison of solutions, and absolute error for # =1 and n = 15

Example 3.3.5. Consider the linear fractional differential equation [24]

2

DY o(t) = ((t)* + TG-a)

(W)™ —¢(t), 0<a<1. (3.3.29)

52



Figure 3.6: Numerical solution for 0 <z <land 0 < g < 1.

with initial conditions ¢(0) = 0. The exact solution of Eq (3.3.29) is ¢(t) = (¥(t))?. First,
we apply fractional integral I Y on Eq (3.3.29), we have

2

o, _ 2 2
00)+ I3 00) = W(0)* + 7y (VO (3.3.30)
Let approximate ¢ as
o(t) = CTTY (). (3.3.31)
Now, using Eq (3.3.31) in Eq (3.3.29), we achieve
2
T ah AT (1) 2 2
CTTY(t) + 157" CTY(t) = (¥(t)” + I3+ a) (1(t)) (3.3.32)
CTTY(t) + CTM*YTY(t) = G(t), (3.3.33)
where MY is an integration matrix and G(t) := (1(¢))? + F(32+a) (¢(t))%. To determine
C', we write Eq (3.3.33) as
CT(I + M>)T*(t) = G(t),
which can be written as
ctQ =a, (3.3.34)

where Q = (I + M*¥)T%(t). Substituting value of C' from Eq (3.3.34) in Eq (3.3.31),
gives the solution.

We have compared the numerical solution obtained by our method with the method in
[24]. We show the accuracy of the method by comparing maximum absolute errors in
Table 3.3. We observe that absolute error decreases by increases m. Moreover, it is
observed that our method gives the better approximation. In Figure 3.7a, we can see
that the numerical solution has as good accuracy for ¢(xz) = z as method in [24]. Also
the graphs for ¢(z) = 22 + x and ¢(z) = 2® + 1 are shown. Figure 3.7b shows the error
curves for ¢(x) =z, Y(x) = 2? + x and Y(z) = 23 + 1.
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m  Method in [24] Presented method

6 6.4141e-4 2.7311e-12
8 5.6212e-4 1.5831e-12
10 4.4967e-4 1.1628e-12
12 4.1567e-4 2.9199e-13
14 4.0986e-4 2.6686e-13

Table 3.3: Maximum absolute errors for different choices of m.
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Figure 3.7: Exact and numerical solution, and error curves.

3.4 Taylor series method for - fractional partial dif-

ferntial equations

In this section, our aim is to approximate the numerical solutions by using the - Taylor
series method. Main objective is to approximate numerically and compare it with exact
solution. And also discuss an absolute error. We use 1-Taylor basis operational matrix
of 1-fractional integration derived in section (3.1).

3.4.1 Development of a method

The implementation of the method for i-fractional partial differential equations is the
same as Y-fractional ordinary differential equations. The method reduces the v-fractional
partial differential equation to a special type of system of algebraic equation called as
Sylvester equation.

Numerical Illustrations

We apply the newly developed Taylor series method to some -fractional partial differ-
ential equations with given initial conditions. To outline the fundamental thought of this
technique, we solve some examples for ¢-fractional partial differential equations. These
examples are discussed to test their validity and relevance.
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Example 3.4.1. Consider fractional partial differential equation

Dy (y. t) + Di*V oy, t) = f(y,1), 0 < pu, pa <1 (3.4.1)

with initial conditions ¢(y, 0) = (¢(y))"*" = (1(y))"* and ¢(0,1) = (W (1)) = ((t))",
and f(y,t) = (1 +2)9(y) — T + 1) + T(p2 +2)80(t) — I'(pg + 1). The exact solution

is ¢(y,t) = (W)™ — (L) + @@)=" — ()", where ¢(y) = y* +y and
Y (t) = t3 + t. For the numerical evaluation, we approximate D} 2’¢¢(y, t) as

DYy, 1) = Y > e T (y) « T} (1)
i=0 j=0

This can be written as
D o(y, ) =TT (y)CTY (). (3.4.2)

Applying fractional integral I/ on both sides of Eq (3.4.2), we obtain
1 DI g(y, 1) = T () IV TH(¢).
Using the result of Eq: (1.4.8),
Oy,t) — d(y,0) = T (y) CM"VT(t).
Using initial conditions, we have
Sy, t) =TT (y) OM™ T () + () = (D))", (3.4.3)

where M*#>¥ is an integration matrix. Now using Eq (3.4.2) in Eq (3.4.1),

D0y, 1) + T (1)CT*(0) = Ton +200() ~ T + 1) + Tl +2)8(1) ~ Tl +1).
(3.4.4)
Applying the fractional integral I on both sides of Eq (3.4.4)

Iy Dy oy, O+1 P T () CT (1)

=1 (D + 2)9(y) — T + 1) + Tz + 2)1b(t) — T(pe + 1)).

(3.4.5)
Using the result of Eq (1.4.8)
Sy, t)=6(0,8) + TT (y) M1V OT¥ (1)
_F<'u2 + 2) w1 P('u2 + 1> p1 po+1 B2 (3'4'6)
—mw(t)(w(y)) - m(?ﬂ(y)) + Wy = (Wy)=.

Now, using Eq (3.4.3) in Eq (3.4.6)

T () CM™ T (#) 4T () MT# Y CT (1)

~ T(pp +2) I(pe +1)

“T(n + 1)¢(t)(¢(y))“1 T T+ 1)(¢(y))”1 + (D) — (w(t))r
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where M7#1% is an integration matrix.

(3.4.7)

TT(y)CMPPTY () + TT (y) MT P CTY (1) = Gy, 1),

M D@ )" — T + @O)= = @)=

where G(y,t)
We obtain

(3.4.8)

(T" ()~ Gy, (T (1)~

When discretized, Eq (3.4.8) is a well known Sylvester equation with unknown vector C

which can be solved using MATLAB’s built-in program.

CM#QJZJ 4 MTumbC

In this case, the exact solution is known. So, Figure 3.8a shows the exact and numerical

1. Figure 3.8b shows an absolute error. Figure

0.5 and py =

3.9a shows the numerical results for m = 8, 1y

H1 =

Y

solutions for m = 5

1. Figure 3.9b shows an

absolute error. We observed that by increasing m, absolute error decreases. Fact is, we

can reduce the absolute error by increasing number of points m.

0.5 and po

(b) Absolute error for p; = 0.5 and pe = 1.

(a) Solutions for 1 = 0.5 and pe = 1.

1

, 1 = 0.5 and po =

5

Figure 3.8: Exact and numerical solutions for m

o

(b) Absolute error for 1 = 0.25 and ps = 1..

(a) Solutions for 1 = 0.25 and pue = 1.

Figure 3.9: Exact and numerical solution for m = 8, u; = 0.25 and ps =1

Example 3.4.2. Consider fractional partial differential equation

(3.4.9)

0<:u17,u2 < 17

f(y,1),

DY o(y,t) + D=V o(y,t) + ¢(y, t)
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with initial conditions u(y,0) = (¢(y))* 2 and w(0,t) = (P(¢)) ", and f(y,t) =

R t3) (4 ()2 + T +2) (10(1)) + (¥ (y) )12 + ((t))#2+1. The exact solution is ¢(y, ) =
(W(y)) 2 4 ((t))#2+t, where ¢(y) = y* +y and ¥(t) = t* + t. For the numerical
evaluation, we approximate the the term D}’ “Z’gb(y, t) as

DY p(y, t) %’iic *Tw (1).

=0 5=0

This can be written as
DIV g (y, ) = TTY (y)CTY (¢). (3.4.10)

Applying fractional integral It““b on both sides of Eq (3.4.10), we obtain
DI g(y,1) = TV G)CI T )
Using the result of Eq (1.4.8),
Oy,t) — 6y, 0) = T (y) CM">" T (t).
Applying the initial conditions, we get
Oy, t) =TTV (y) CM™ T (1) + ((y)) 2, (3.4.11)
where M*2" is an integration matrix. Now using Eq (3.4.10) and Eq (3.4.11) in Eq (3.4.9)

DI (y, 1) + T () OTY (4T () CM“T¥ (1) + ((y))

EU D) ()2 4 T+ 20000) + () + (D).
(3.4.12)

Applying the fractional integral [51#1 on both sides of Eq (3.4.12)
1, 1Y 1T 1, T, Wy 1+2
L Dyt gy, )+ Iy YT (y) CTY (1) + Iy (T (y) CMP= VTV (t) + (¥(y))* )
I(p +3
=1 (M(w(y)f + (2 + 2)3(t) + ()" + (zb(t))‘”“) :

2
(3.4.13)

Using the result of Eq (1.4.8)
T7 T 1, T, T 1, 2 1, 1
Gy, t) — ¢(0, ) +TT (y) MY COT (8) + T (y) My Y OMP=YT () + Iy (4 ()

:%ww(y))‘“ - %(w(’y))“ + @) = ()",

T (y)C M"Y TY () +TH (y) MY OTY () + TV (y) M O MY T ()

D(po +2) o 1 " - i
=T+ ) O@W)" + oy )™ + @)™+ (W),
(3.4.14)
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where M7#1% is an integration matrix. Now, we get

TTY () CMP2YTY (t) + TT (y) MY OTY () + T (y) MY C M2 TV (1) = Gy, t),
(3.4.15)

where G(y, £) = rEE VOO + g W)+ @EOP= + @)=,

We obtain,

CMuz,w+(TT,w(y) =+ TT,w(y)MTm,w)—lTT,w(y)MTm,wC

(3.4.16)
(T (y) + T () M7 )Gy, ) (T (1)

When we discretize Eq (3.4.16), it becomes an eminent Sylvester equation with unknown
vector C. Eq (3.4.16) can be solve for C'.
Numerical results for different values of p; and py are shown in Figure 3.10 and Figure
3.11. Figure 3.10a shows the numerical results for exact and numerical solutions for
m =4, up = 0.75 and pe = 1. Figure 3.10b shows an absolute error. Figure 3.11a shows
the numerical results for m = 4, u; = 1 and py = 1. Figure 3.11b shows an absolute
error. We observe that error decreases while increasing m.

[

IS

By.t)

n

(a) Solution for m =4, p1 = 0.75 and pz = 1 (b) Absolute error for m = 4, p; = 0.75 and
- % M1 — Y. 2 = 1.

uo = 1.

Figure 3.10: Exact and numerical solution.

In example (3.4.1) and (3.4.2), we presented the numerical solutions of fractional
partial differential equations and compared it with the exact solutions, with the help of
graphs of exact and numerical solutions with their absolute errors. In the following exam-
ple, we compare the numerical solution obtained by our method and method presented
in [25].

Example 3.4.3. Consider the linear fractional partial differential equation [25]:
DY o(y,t) + D ly.t) = f(y. 1), (3.4.17)

with initial conditions ¢(y,0) = (¢¥(y))?, ¢(0,t) = ¥ (t) ,where f(y,t) = %(1&(3/))7/4—1—

FIESS%) (¥(t))*>. The exact solution is ¢(y,t) = (¥(y))? + ¥(t), where (y) = 3y and
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(b) Absolute error for m =4, u; = 1 and po =

(a) Solutions for m =4, pu; =1 and pg = 1.
Figure 3.11: Exact and numerical solutions.

¥ (t) = 3t. For the numerical evaluation, we approximate the term Dt1 / 5’w¢(y, t) as

Z i TV (y) = T} (¢).

j=0

Doy, t) =

m
=0

This can be written as
DY oy, t) = T (y)CTY (1), (3.4.18)
Applying fractional integral Itl/ >% on both sides of Eq (3.4.18), we obtain
LD 6(y, 1) = T (y)CL YT (1),
Using the result of Eq: (1.4.8),
Oy, 1) — d(y,0) = T (y) CMVYT (1),

Oy,t) =TTV (y) CMY>YTV () + (U (y))*, (3.4.19)
where M'/>¥ is an integration matrix. Now using Eq: (3.4.18) in Eq: (3.4.17)

DY/ oy, t) + TV (y)CTY (t) = f(y,1). (3.4.20)

Applying the fractional integral I,/*¥ on both sides of Eq; (3.4.20)

r'@)
JUYAY D1/ TYASTTA (NCTY () = V40 [ \2)

(W) + %wa))%) |

(3.4.21)
Using the result of Eq: (1.4.8),
I'(3)

oy, t) —9(0,t) + TTW(y)M;MWCTQb(t) _ I;/‘W <F

KR
ey Toys) VW) ) '
1

TESIOM VT () + T ()M OTY (1) = g (00) () ;j(zt;)

(W(y)™" +
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where MTY/4¥ is an integration matrix. Now, we get

TTY (y)CMYPPTY (t) + T (y) MY OTY (t) = Gy, t), (3.4.23)
where G(y,t) = rarmem () (W (0)Y° + ¥(1).
We obtain,
CMYS 4 MTVACC = (TT (y)) Gy, (T (1) (34.24)

When we discretize Eq (3.4.24), it reduces to Sylvester equation with vector C' which is
unknown, and can be calculated by using built-in function in MATLAB.

Figure 3.13a and Figure 3.13b depicts the comparison of solutions for m = 10 and an
absolute error of (3.4.17) respectively. As we can see that upper bound of an absolute
error is same as in [25].

1 0%

CSOISISSSSS

I SIS ISR
SIS
0% 0% e %

(b) Absolute error for m = 10, y; = 1/4 and

(a) Solution for m = 10, y; = 1/4 and pg = 1/5.
Ho = 1/5

Figure 3.12: Exact and numerical solution.
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Summary

The aim of this paper is to develop the new concept for generalization of Taylor’s theorem
in the framework of differntial equations of integer order and fractional order involving
fractional derivative of functions with respect to functions, we introduce the new concept
of -fractional power series which is helpful in the general form of generalized Taylor’s
theorem, some important results for the convergence and divergence, remainder theorem
of error bound and series solutions are discussed.

Moreover, we inroduced a new method of ¢)-Taylor series approximation which helps us to
find numerical solutions of ¢-fractional differential equations. We provide an operational
matrix of fraction integration for -Taylor basis vector. Development of the method was
discussed in detail. Furthermore, error analysis and convergence analysis for ¢-Taylor
basis approximations are also discussed.

Numerical illustrations are also discussed to show the feasibility of the proposed method
by calculating absolute errors. In section 3.3 of Chapter 3, we discuss one example for
the approximation of fractional integration, one example for the -differential equations
in which exact solution was known, two examples for the -differential equations in
which exact solution was not known, and one example for comparison. In section 3.4.1
of Chapter 3, we present three examples for numerical approximations of -fractional
partial differential equations. The present method is expected to be further employed to
solve other similar problems.
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