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Abstract

In this thesis, we discuss some fundamental concept of Abstract Algebra like rings

and modules. Furthermore, we discuss the Algebraic invariants Stanley depth and

depth. We also discuss some known results related to these invariants. Afterwards, we

compute the exact value of Stanley depth and depth of the quotient rings of the edge

ideals associated with ϱ-fold bristled graph of ladder graph, circular ladder graph, and

strong product of two graphs when both graphs are paths or when one of them is a

cycle and other is a path. We also proved that both these invariants have the same

values for all the classes, we considered.
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Introduction

Richard P. Stanley is known for his work to develop a relationship in Algebra and

Geometry. In 1982, Stanley proposed a conjecture [25]. According to Stanley conjec-

ture, Stanley depth of a module is atleast the depth of a module. This concept garbed

the attention of algebraist but also Stanley decomposition plays an important role in

applied mathematics. In [24] Sturmfels et al. shows that Stanley decomposition can

be used to describe finitely generated graded algebras.

Herzog and Popescu [15, 21] gave some remarkable results related to this conjecture. A

while later, many articles have been published in which this conjecture was proved for

various special cases. In 2016, Dual et al. [10] disproved it by using result of Herzog

et al. [15] they constructed explicit counter example for which the conjecture was not

satisfied.

In this thesis we calculate the exact values of Stanley depth and depth for the quotient

module of edge ideal associated with some ϱ-fold bristled graphs.

This thesis has four chapters. Chapter 1 is devoted for preliminaries. This chapter is

divided into three parts. In the first part we recall some concepts related to polynomial

ring and monomial ideals. In second part we covers the exact sequence, graded ring to-

gether with other fundamentals of Module Theory. The third part of this chapter give

a precise overview of Graph Theory. Chapter 2 covers introduction to depth, Stanley

decomposition, Stanley depth and Stanley conjecture. At the end some known results

and bounds for Stanley depth are given.

In Chapter 3, the edge ideal associated with ϱ-fold bristled graph of ladder graph and

strong product of two paths are considered. The exact values for Stanley depth and

depth of the quotient ring associated to these edge ideals are computed.
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In Chapter 4, the edge ideal associated with ϱ-fold bristled graph of circular ladder

graph and strong product of cycle and path are considered. The exact values for Stan-

ley depth and depth of the quotient ring associated to these edge ideals are computed.
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Chapter 1

Preliminaries

1.1 Introduction

In 1914, Fraenkel gave the definition of ring [13]. Ring Theory have two main classifi-

cations commutative and non commutative. Basic theories of each came from different

sources. Problems and theories from Algebraic Number Theory and Algebraic Geom-

etry plays a central role in the origin of Commutative Ring Theory. The origin of non

commutative ring came from the approaches to extend complex number in hypercom-

plex number system. Noether and Artin play an important role to made the abstract

ring concepts focal in Algebra, they presented and gave importance to the algebraic

concepts as module, ideal and both ascending and descending chain conditions. See

[27, 6].

In 18th century, Euler solved the Konigsberg’s bridge problem which lead to new branch

of mathematics called Graph Theory. Graph Theory is considered as a field of modern

mathematics. In 1991 Anderson et al. [2] gave the idea of associating a graph to a

commutative ring , which is widely used these days in research.

1.2 Ring Theory

In this section we will discuss some basics of Ring Theory. For these definitions we

refer to [11].
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Definition 1.2.1. A ring (ω,+,×) is a set with two binary operations, addition and

multiplication denoted by u + v and uv, respectively. Such that for u, v, s ∈ ω satisfy

the following axioms:

• ω is an abelian group under addition.

• Multiplication is associative

(uv)s = u(vs).

• Multilplication is distributive over addition

u(v + s) = uv + us, (v + s)u = vu+ su.

Definition 1.2.2. Let (ω,+,×) be a ring. If multiplication is commutative in ω, that

is uv = vu, for all u, v ∈ ω, then ω is a commutative ring.

If there is an element e ∈ ω such that ue = u = eu, for all u ∈ ω, we say ω is a ring

with multiplicative identity (or a ring with unity). Multiplicative identity or unity of

ω is denoted by symbol 1.

In this thesis we will consider only commutative ring with unity.

Example 1.2.3. 1. Integers, real and complex number sets are examples of com-

mutative rings having unity 1.

2. Z/nZ with multiplicative identity 1 under multiplication and addition of residue

classes, forms a commutative ring.

3. The set M2×2(Z) =

{[
s o
u ν

]
: s, o, u, ν ∈ Z

}
is a non-commutative ring with

unity
[
1 0
0 1

]
with the standard matrix addition and multiplication.

Definition 1.2.4. An element ν in a commutative ring ω with unity is said to be

invertible if there exists x ∈ ω such that νx = e.

Unity and unit are different concepts and should not be confused with each other.
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Definition 1.2.5. Let (ω,+, ·) be a ring. If elements in ω∗ = ω\{0} have multiplicative

inverse, then (ω,+, ·) is called a field.

Example 1.2.6. R,C and Q are fields. But Z is not a field since Z does not have

multiplicatve inverse of its elements except {1,−1}.

Definition 1.2.7. Let ω be a ring and 0 ̸= s ∈ ω and if ∃ t ∈ ω suct that st = 0. Then

s and t are called zero divisors.

Example 1.2.8. Let Z8 be a ring, then 2̄, 4̄, 6̄ are zero divisors because 4̄.2̄ = 8̄ = 0̄

and 6̄.4̄ = 2̄.4 = 0̄.

Definition 1.2.9. Let ω be a ring then it is called a non-zero divisor ring if and only

if ∀s,κ ∈ ω if s · κ = 0, then s = 0 or κ = 0.

Definition 1.2.10. A commutative ring with unity is called an integral domain if it

has no zero divisors.

Example 1.2.11. 1. R,Q,Z and Z7 are all integral domains.

2. Let n ≥ 2, then nZ is not an integral domain as nZ does not have unity.

1.2.1 Polynomial ring

Definition 1.2.12. Let T be a commutative ring with unity. For n ≥ 0 and µi ∈ T.

P(κ) = µnκn + µn−1κn−1 + · · ·+ µ1κ + µ0

is termed polynomial in indeterminate κ. For 0 ≤ i ≤ n, µi is called co-efficient of

P(κ) and µiκi are terms of polynomial P(κ). The polynomial is of degree n if µn ̸= 0.

If P1(κ) and P2(κ) be any two polynomials, then

1. deg(P1(κ)) + deg(P2(κ)) = max{deg(P1(κ), deg(P2(κ)}.

2. deg(P1(κ) · P2(κ)) = deg(P1(κ)) + deg(P2(κ)).
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Definition 1.2.13. Let T be a commutative ring. The set of formal symbols

ω = T[κ] = {µnκn + µn−1κn−1 + · · ·+ µ1κ + µ0 : n ≥ o, µi ∈ T}

is called the ring of polynomials over T in the variable κ. The zero of the polyno-

mial ring is f(κ) = 0, and unity is g(κ) = 1. The polynomial ring for n variables

κ1,κ2, . . . ,κn with co-efficients in T is defined as

T[κ1,κ2, . . . ,κn] = T[κ1,κ2, . . . ,κn−1][κn].

Example 1.2.14. R[κ],Q[κ] and Zp[κ] are all polynomial rings.

Proposition 1.2.15. Let T[κ] be commutative ring with unity. Then

1. The units in T[κ] are the units of T.

2. If ω is an integral domain then so is T[κ].

Definition 1.2.16. Let ω be a ring and S ⊂ ω. Then S is a subring of ω if it is a ring

under the same operations as ω.

Definition 1.2.17. A map Γ : ω1 −→ ω2 that preserves both operations of ω1 that is

1. Γ(κ + ν) = Γ(κ) + Γ(ν), ∀ κ, ν ∈ ω1 and

2. Γ(κν) = Γ(κ)Γ(ν), ∀ κ, ν ∈ ω1

is called a ring homomorphism. The kernal of the map Γ is termed as,

Ker Γ = {κ ∈ ω1 | Γ(κ) = 0ω2}.

The image of map Γ is termed as ImΓ = {Γ(κ) | κ ∈ ω1}. A bijective ring homomor-

phism is a ring isomorphism and injective ring homomorphism is monomorphism.

Theorem 1.2.18. Let Γ : ω1 −→ ω2 be a ring homomorphism. Then Ker Γ = {0} iff

Γ is a monomorphism.
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Definition 1.2.19. A subring O of a ring ω is called an ideal if uκ ∈ O for all u ∈ ω,

κ ∈ O.

Definition 1.2.20. Consider J and O be two ideals of ω, then

1. J+O = {κ + ν : κ ∈ J, ν ∈ O}.

2. JO = {κ1ν1 + κ2ν2 + · · ·+ κrνr : κ1, . . .κr ∈ J, ν1 . . . νr ∈ O and r ∈ Z+}.

Definition 1.2.21. Two ideals J and O of ω, are comaximal if J+O = ω.

Proposition 1.2.22. If J and O comaximal then, JO = J ∩O.

Remark 1.2.23. The condition J+O = ω is not absolutely necessary for JO = J∩O.

For example in ring Z5, J = O = (3) then JO = (3) = J ∩O, even though J+O ̸= ω

Definition 1.2.24. Let O be an ideal of ω, then the radical of O, is denoted by
√
O

and given as
√
O = {κ ∈ ω | κt ∈ O, for some t > 0}.

√
O is an ideal containing O.

Example 1.2.25. Following are some examples of the radical of an ideal.

1. Let J = (223254) be an ideal in Z, then
√
J = (2 · 3 · 5) = (30).

2. Let ω = T[κ1,κ2,κ3,κ4] be a polynomial ring and J = (κ2
1κ5

2 ,κ3
1κ4,κ2

3κ3
4), then

√
J = (κ1κ2,κ1κ4,κ3κ4).

Definition 1.2.26. An ideal O of ω is radical ideal if
√
O = O.

Definition 1.2.27. Let ω be a ring and O be an ideal of ω. Then ω/O = {O+κ | κ ∈
ω} is also a ring called factor ring. For any κ, ν ∈ ω, the multiplication and addition

are defined as,

(O+ κ) + (O+ ν) = O+ (κ + ν).

(O+ κ)(O+ ν) = O+ κν.

Example 1.2.28. Let Z be a ring and 3Z be its subring. Also 3Z be an ideal.

Z/3Z = {3Z+ u|u ∈ 3Z}

= {3Z+ 0, 3Z+ 1, 3Z+ 2}

≈ Z3.

7



Definition 1.2.29. Let J be an ideal in ω. If for a single element κ ∈ ω, J can be

written as J = (κ) = {κµ | µ ∈ ω} then it is a principal ideal.

Example 1.2.30. The principal ideal in polynomial ring Z[κ] is

⟨g(κ)⟩ = ⟨2⟩ = {2 · γ(κ) | γ(κ) ∈ Z}

set of all polynomial in Z[κ] with even co-efficients.

Proposition 1.2.31. Let ω be a field, then every ideal of the polynomial ring ω[κ] is

a principal ideal.

Definition 1.2.32. A proper ideal J is a prime ideal in a commutative ring ω if u, v ∈ ω

and uv ∈ J, then u ∈ J or v ∈ J.

Example 1.2.33. 1. 13Z is a prime ideal in ring Z.

2. The ideal ⟨κ3⟩ = {Γ(κ)κ3 : Γ(κ) ∈ Z[κ]} is not prime ideal in ring Z[κ], as

κ2κ = κ3 ∈ ⟨κ3⟩ but κ2 /∈ ⟨κ3⟩ and κ /∈ ⟨κ3⟩.

Theorem 1.2.34. Let ω be a commutative ring with unity and J be an ideal of ω, then

J is prime iff ω/J is an integral domain.

Definition 1.2.35. A proper ideal O of a ring ω is said to be a maximal ideal if I is

an ideal of ω with O ⊆ I ⊆ ω then either O = I or ω = I.

Example 1.2.36. 2Z and 5Z are maximal ideals in Z. But 8Z is not a maximal as

8Z ⊆ 2Z ⊆ Z.

Theorem 1.2.37. Let ω be a commutative ring with unity and J be an ideal. Then,

ω/J is a field iff J is a maximal ideal.

Definition 1.2.38. If ring ω has a unique maximal ideal, then ω is called a local ring.

Definition 1.2.39. If ω is ring and ω have only finite number of maximal ideals then,

it is called semi-local ring.
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Example 1.2.40. Z10 have only two maximal ideals {0, 2, 4, 6, 8} and {0, 5}, so Z10 is

semi local ring.

Definition 1.2.41. Let ω be a ring, then intersection of all maximal ideals of ω is

called Jacobson radical of ω. It is denoted by J(ω).

Definition 1.2.42. Let A = {ωi : i ∈ J} be the collection of rings, where J is

countable set. The direct product is defined as∏
i∈J

ωi = ω1 × ω2 · · · = {(κ1,κ2, · · · ,κn, · · ·) κi ∈ ωi}.

This direct product satisfy all axioms of ring under the following binary operations of

addition and multiplication for κi, νi ∈ ωi

(κ1,κ2,κ3, · · ·) + (ν1, ν2, ν3, · · ·) = (κ1 + ν1,κ2 + ν2,κ3 + ν3, · · ·),

(κ1,κ2,κ3, · · ·)(ν1, ν2, ν3, · · ·) = (κ1ν1,κ2ν2,κ3ν3, · · ·).

The direct sum of collection of A is defined as follows⊕
i∈I

ωi = {(κ1,κ2, · · ·) ∈
∏
i∈I

ωi : κi is zero for all but finitely many i}.

1.2.2 Monomial ideals

Let ω = T[κ1,κ2, . . . ,κm] be a ring of polynomials with m variables, where T is a field.

A monomial is any product of κc1
1 ,κc2

2 , . . . ,κcn
m with ci ∈ Z+. Consider the monomial

µ = κc1
1 κc2

2 · · ·κcn
m then we write it as µ = κc, where c = (c1, c2, · · · , cn) ∈ Zn

+. If A is

the set of all monomials of ω then P form a T-basis of ω. Therefore any polynomial

in ω can be written as a linear combination of monomials with coefficients from T. So

polynomial L ∈ ω can be uniquely written as

L =
∑
ν∈P

cµµ, with cν ∈ T.

The support of L is defined as supp (L) = {µ ∈ A : cµ ̸= 0}, and the support of

monomial µ is supp (µ) = {κj : κj | µ}. A monomial µ = κc1
1 κc2

2 · · ·κcn
m is called

square free, if c′is are 0 or 1.
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Definition 1.2.43. Let the monomial ideal J ⊂ ω. If generating set of J consist of

square free monomials, then it is called a square free monomial ideal.

Example 1.2.44. Let ω = T[κ1,κ2,κ3,κ4] be a polynomial ring. Then, J = (κ3κ4,κ3κ2,

κ1κ2κ4) is a square free monomial ideal.

Definition 1.2.45. Let µ = κ⋎1
1 κ⋎2

2 · · ·κ⋎n
m and ν = κa1

1 κa2
2 · · ·κan

m be two monomials,

then

1. µ | ν if ⋎i ≤ ai for all i.

2. gcd(µ, ν) = κmin{⋎1,a1}
1 κmin{⋎2,a2}

2 · · ·κmin{⋎n,an}
n .

3. lcm (µ, ν) = κmax{⋎1,a1}
1 κmax{⋎2,a2}

2 · · ·κmax{⋎n,an}
n .

Proposition 1.2.46. Every monomial ideal J ⊂ ω has a unique minimal monomial

set of generators, denoted by G(J).

Example 1.2.47. Let ω = T[κ1,κ2,κ3,κ4] be a polynomial ring. Then, G(J) of

monomial ideal J = (κ2
3κ3

4 ,κ2
1κ4

2κ4,κ2
3κ2,κ2

3κ4,κ1) is (κ2
3κ2,κ2

3κ4,κ1).

Definition 1.2.48. Let G(J) and G(O) be minimal set of monomial generators of J

and O respectively, then

1. G(J+O) ⊆ G(J) ∪ G(O).

2. G(JO) ⊆ G(J)G(O), where G(JO) = {µν : µ ∈ J, ν ∈ O}.

Example 1.2.49. Let O = (κ1κ2,κ2κ2
3) and J = (κ2

1κ2,κ2κ3) be two ideals, then

1. G(J+O) = {κ1κ2,κ2κ2
3} ⊆ G(J) ∪ G(O) = {κ1κ2,κ2κ2

3 ,κ2
1κ2,κ2κ3}.

2. G(JO) = {κ3
1κ2

2 ,κ1κ2
2κ3,κ2

2κ3
3} ⊆ G(J)G(O) = {κ2

1κ2
2κ2

3 ,κ3
1κ2

2 ,κ1κ2
2κ3,κ2

2κ3
3}.

Proposition 1.2.50. Let O and J be two monomial ideals with G(O) = {µ1, µ2, . . . , µs}
and G(J) = {κ1,κ2, . . . ,κt}, then J ∩O = ({lcm(µi,κk) : i = 1, · · · , s, k = 1, · · · , t}).
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Example 1.2.51. Let O = (κ1κ2,κ2κ2
3) and J = (κ2

1κ2,κ2κ3) be two ideals, then

J ∩O = (κ2
1κ2,κ1κ2κ3,κ2

1κ2κ2
3 ,κ2κ2

3) = (κ2
1κ2,κ1κ2κ3,κ2κ2

3).

Proposition 1.2.52. Let G(J) and G(O) be monomial ideals with G(O) = {µ2, . . . , µm}
and G(J) = {κ1,κ2, . . . ,κn}, then

O : J =
n⋂

j=1

(J : κj),

and J : (κj) = (µi/gcd (µi,κj) : i = 1, · · · ,m).

Example 1.2.53. Let O = (κ1κ2
2 ,κ2κ2

3) and J = (κ1κ2κ3,κ2
2) be two ideals, then

O : J = ((κ1κ2
2 ,κ2κ2

3) : (κ1κ2κ3)) ∩ ((κ1κ2
2 ,κ2κ2

3) : (κ2
2))

= (
κ1κ2

2

gcd (κ1κ2
2 ,κ1κ2κ3)

,
κ2κ2

3

gcd (κ2κ2
3 ,κ1κ2κ3)

) ∩ (
κ1κ2

2

gcd (κ1κ2
2 ,κ2

2)
,

κ2κ2
3

gcd (κ2κ2
3 ,κ2

2)
)

= (
κ1κ2

2

κ1κ2

,
κ2κ2

3

κ2κ3

) ∩ (
κ1κ2

2

κ2
2

,
κ2κ2

3

κ2

)

= (κ2,κ3) ∩ (κ1,κ2
3)

= (κ1κ2,κ2κ2
3 ,κ1κ3,κ2

3)

= (κ1κ2,κ1κ3,κ2
3).

Definition 1.2.54. Let ω = T[κ1,κ2, . . . ,κm] be a polynomial ring, then prime mono-

mial ideal is the ideal generated by subsets of the variables of type κj1 ,κj2 , . . . ,κjn

where {j1, j2, . . . , jn} ⊆ {1, 2, . . . ,m}.

Example 1.2.55. Let ω = T[κ1,κ2,κ3,κ4] be a polynomial ring then, O = (κ1,κ2,κ3)

is prime ideal but J = (κ1κ3,κ2,κ4) is not a prime ideal.

Corollary 1.2.56. Let O be a squrefree monomial ideal, then O is a finite intersection

of monomial prime ideals.

Example 1.2.57. Let ω = T[κ1,κ2,κ3,κ4] be polynomial ring then, the ideal J =

(κ2κ3,κ1,κ4) = (κ3,κ1,κ4)∩(κ2,κ1,κ4), where (κ2,κ1,κ4) and (κ3,κ1,κ4) are prime

ideals.
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Definition 1.2.58. Let ω be a ring, then ideal J ̸= ω is primary if for µ, ν ∈ ω, µν ∈ J

then either µ ∈ J or νm ∈ J for some m ≥ 1.

Example 1.2.59. 1. The primary ideals of integers ring are 0 and pmZ, where p is

a prime number m ≥ 1.

2. Let ω = T[κ1,κ2] be a polynomial ring, then J = (κ2
2 ,κ1κ2) is not primary as

κ1,κ2 ∈ ω and κ1κ2 ∈ J but neither κ2 ∈ J nor some m power of κ1 is in J.

Definition 1.2.60. Let J be an ideal then the presentation J =
⋂m

i=1Mi is irredundant

if none of the ideals Mi can be omitted in this presentation.

Example 1.2.61. 1. Let J = (κ4z, y4z) be an ideal, then presentation J = (κ, y)∩
(κ4, y4)∩ (z) is not irredundant presentation of J as (κ, y) can be omitted in this

presentation.

2. Let J = (κy, z) be an ideal, then presentation J = (κ, z) ∩ (y, z) is irredundant

presentation of J.

Definition 1.2.62. Let J be an ideal then it is irreducible if it cannot be written as

an intersection of two other monomial ideals containing J. If J is not irreducible, then

it is called reducible.

Example 1.2.63. O = (κ4, y4) is irreducible, where as J = (κy, z) is reducible as it

can be written as proper intersection of two ideals (κ, z) and (y, z).

Definition 1.2.64. A presentation of an ideal J as J = M1 ∩ M2 · · · ∩ Mr, where

Mi is a primary monomial ideal for all i is called a primary decomposition of J and if

none of the Mi can be omitted in this intersection and
√
Mi ̸=

√
Mj if i ̸= j, then it

is called irredundant primary decomposition.

Example 1.2.65. Let ω = T[κ1,κ2,κ3,κ4] and J = (κ1κ4,κ2
3κ2,κ3κ4), then the

12



irredundant primary decomposition of O is

J = (κ1κ4,κ2
3κ2,κ3κ4,κ2

3) ∩ (κ1κ4,κ2
3κ2,κ3κ4 : κ2

3)

= (κ1κ4,κ3κ4,κ2
3) ∩ (κ1κ4,κ2,κ4)

= (κ1κ4,κ3κ4,κ2
3 ,κ4) ∩ (κ1κ4,κ3κ4,κ2

3 : κ4) ∩ (κ2,κ4)

= (κ2
3 ,κ4) ∩ (κ2,κ4) ∩ (κ1,κ3,κ2

3)

= (κ2
3 ,κ4) ∩ (κ2,κ4) ∩ (κ1,κ3).

Definition 1.2.66. A P-graded ring is such type of a ring ω having a decomposition

ω =
⊕
p∈P

ωp,

such that ωpωq ⊂ ωp+q ∀ p, q ∈ P.

Then for r ∈ ω, we can write a unique expression

r =
∑
p∈P

rp,

where rp ∈ ωp and almost all rp = 0. The element rp is called the pth homogeneous

component and if r = rp, then r is homogeneous of degree p.

1.3 Module Theory

In this section we will discuss some basics of Module Theory.

Definition 1.3.1. Let ω be a ring. The ω -module ℸ is a abelian group and action of

ω on ℸ is a map

· : ω × ℸ → ℸ

defined as · ((κ, τ)) = γτ , satisfying these axioms

1. κ(τ1 + τ2) = κτ1 + κτ2,

2. (κ1 + κ2)τ1 = κ1τ1 + κ2τ1,

3. (κ1κ2)τ = κ1(κ2τ1),

13



4. 1τ1 = τ1,

∀ κ1,κ2 ∈ ω and τ1, τ2 ∈ ℸ.

Modules satisfying axim 4 are called unital modules.

Example 1. 1. (Z(
√
a),+) is a Z-module, where a is any integer.

2. All abelian groups are examples of Z-modules.

Definition 1.3.2. Let ω be a ring and ℸ be an ω-module, then N ⊆ ℸ is submodule

of ℸ if it meets the following axioms

1. N ̸= ∅ and

2. τ1 + κτ2 ∈ N, where κ ∈ ω and τ1, τ2 ∈ N.

Definition 1.3.3. Let ℸ1 and ℸ2 be ω-modules, then there sum is defined as

ℸ1 + ℸ2 = {τ1 + τ2 τ1 ∈ ℸ1, τ2 ∈ ℸ2}.

Definition 1.3.4. Let ℸ and N be ω-modules. A map Γ : ℸ → N is known as ω-module

homomorphism if it satisfies

• Γ(τ1 + τ2) = Γ(τ1) + Γ(τ2), for all τ1, τ2 ∈ ℸ.

• Γ(κτ) = κΓ(τ), for all κ ∈ ω , τ ∈ ℸ.

Remark 1.3.5. An ω-module homomorphism also satisfies the axioms of additive

group homomorphism but converse is not always true. If ω is a ring and ω is ω-module,

then ω-module homomorphim need not be ring homomorphim.

Example 2. Let Z be the ring and map Γ : Z → Z is defined as Γ(κ) = nκ, where n

is any positive interger. Γ is ω-module homomorphim but not ring homomorphim.

Definition 1.3.6. Let ℸ be ω-module and A ⊂ ℸ, then

ωA = {κ1α1+κ2α2+· · ·+κmαm : κ1,κ2, · · · ,κm ∈ ω, α1, α2, · · · , αm ∈ A and m ∈ Z+},

is called submodule of ℸ generated by A. For any submodule N of ℸ if N = ωA then A

is generating set of N and if A is finit set then N is finitely generated submodule of ℸ.

If α ∈ ℸ and N = ωα = {κα : κ ∈ ω} then N is called cyclic submodule of ℸ.

14



Example 3. 1. Let Z3×Z4 be Z-module then A = {(1, 0), (0, 1)} will be generating

set of Z3 × Z4.

2. Let Z-module Z, then Z is cyclic and generated by A = {1}

Definition 1.3.7. Consider {ℸi}i∈I be the collection of ω-modules, then direct product∏
i∈I ℸi is Cartesian product of {ℸi}i∈I whose elements are of the from (τi)i∈I and

τi ∈ ℸi and operations of addition and scalar multiplication is defined as

(τi)i∈I + (yi)i∈I = (τi + yi)i∈I

γ(τi)i∈I = (γτi)i∈I .

The external direct sum of {ℸi}i∈I are defined as⊕
i∈I

ℸi = {(τi)i∈I ∈
∏
i∈I

ℸi : only finitely many τi ̸= 0}.

Remark 1.3.8. If I in above definition is finite, then⊕
i∈I

ℸi =
∏
i∈I

ℸi.

Proposition 1.3.9. Consider I1, I2, · · · , In be submodules of ω-module ℸ then the fol-

lowing are equivalent.

1. The function Γ : I1⊕ I2⊕· · ·⊕ In → I1+ I2+ · · ·+ In defined by Γ(α1, α2, · · · , αn) =

(α1+α2+ · · ·+αn) is an isomorphism that is I1⊕ I2⊕· · ·⊕ In ∼= I1+ I2+ · · ·+ In,

2. Ij ∩ (I1 + I2 + · · ·+ Ij−1 + Ij+1 + · · ·+ In) = {0}, for all j ∈ {1, 2, · · · , n}.

Example 4. Let ℸ = ω3 = {(α1, α2, α3) : αi ∈ ω} be an ω-module

1. Let I1 = {(α1, 0, 0) : α1 ∈ ω} and I2 = {(0, α2, α3) : α2, α3 ∈ ω} be submodules.

As we can see ℸ = I1+I2 also I1∩I2 = {(0, 0, 0)}. Which shows that I1⊕I2 ∼= I1+I2.

2. Let I1 = {(0,⋎2,⋎3) : ⋎2,⋎3 ∈ ω} and I2 = {(⋎1, 0,⋎3) : ⋎1,⋎3 ∈ ω} be

submodules. As we can see ℸ = I1 + I2 and I1 ∩ I2 ̸= ∅. Which shows that

I1 ⊕ I2 ≇ I1 + I2.
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1.3.1 Free modules

Definition 1.3.10. If ℸ is ω-module and A ⊂ ℸ, then A is linearly independent if for

α1, α2, · · · , αn ∈ A and κ1,κ2, · · · ,κn ∈ ω.

α1κ1 + α2κ2 + · · ·+ αnκn = 0,

then κi = 0 for all i. If for all m ∈ ℸ, we have

m = α1κ1 + α2κ2 + · · ·+ αn,κn,

then we say A spans ℸ.

Definition 1.3.11. Let ℸ is ω-module. A ⊂ ℸ are bases of ℸ if A is linearly independent

and A spans ℸ, then ℸ is called a free ω-module with basis A. | A | is called rank of ℸ.

Remark 1.3.12. For ℸ to be free ω-module on subset A it is necessary that every

τ ∈ ℸ it have unique representation such that τ = τ1κ1 + τ2κ2 + · · · + τnκn. Where

τ1, τ2, · · · , τn ∈ A and κ1,κ2, · · · ,κn ∈ ω, for some n ∈ Z+.

Example 5. let Z-module Z4 and A = {1̄} be generating set. But Z4 is not free

module as 3 ∈ Z4 and it have more then one representations 3 = 3.1̄ and 3 = 7.1̄.

Lemma 1.3.13. Let ℸ be a finitely generated ω-module of ring and J is an ideal of ω

such that J is subset of Jacobson radical J(ω). If Jℸ = ℸ, then ℸ = 0.

Definition 1.3.14. Let ω be a ring. A ω-module ℸ is called Noetherian if every

ascending chain of ω-submodule of ℸ is stationary.

Definition 1.3.15. Let ω be a ring. A ω-module ℸ is called Artinian if every descend-

ing chain of ω-submodule of ℸ is stationary.

Example 6. 1. Every finite abelian group is both Noetherian and Artinian.

2. The ring Z (as Z-module) does not satisfy the descending chain condition so it

is not Artinian.
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Corollary 1.3.16. If ℸ1,ℸ2, · · · ,ℸn are Noetherian ω-module then,
⊕n

i=1 Mi is also

Noetherian.

Definition 1.3.17. Let ℸ be an ω-module. The annihilator of ℸ is defined in this way

Ann(ℸ) = {κ ∈ ω : κℸ = 0}.

1.3.2 Exact sequences

A sequence of ω-module and homomorphisms

· · · −→ Γj−1
hj−→ Γj

hj+1−−→ Γj+1
hi+2−−→ Γj+2 · · ·

is said to be exact at Γj, if Im (hj) = Ker (hj+1). If the sequence is exact at each Γj,

then it is called exact sequence.

Proposition 1.3.18. Let ω be a ring and Γa,Γ and Γb be ω-modules, then

1. The sequence 0 → Γa
h−→ Γ is said exact at Γa iff h is one to one.

2. The sequence Γ
g−→ Γb → 0 is said to be exact at Γb iff g is onto .

Remark 1.3.19. The sequence 0 → Γa
h−→ Γ

g−→ Γb → 0 is short exact iff h is one to

one, g is onto and Im (h) = Ker (g).

Example 7. Consider sequence 0 → Z h−→ Z⊕ Z6
g−→ Z6 → 0, where h(γ) = (γ, 0) and

g((α, γ)) = γ. Then clearly h is one to one and g is onto, so this sequence is a short

exact sequence.

Definition 1.3.20. For a P-graded ring ω and ω-module ℸ

ℸ =
⊕
p∈P

ℸp,

with ωpℸq ⊂ ℸp+q for all p, q ∈ P, then ℸ is said to be a P-graded module. A non zero

element of ℸp is called a homogeneous element of degree p.
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Definition 1.3.21. For a polynomial ring ω defined over the field K, suppose b ∈ Zn,

then h ∈ ω is said to be homogeneous of degree b when h has the form βxb, where

β ∈ K. Also ω is Zn-graded with graded components:

ωb =

{
Kxb, if b ∈ Zn

+;
0 , otherwise.

An ω-module ℸ is Zn-graded if ℸ =
⊕

b∈Zn ℸb and ωb1ℸb2 ⊂ ℸb1+b2 for all b1,b2 ∈ Zn.

1.4 Graph Theory

In this section, we discuss some fundamentals of Graph Theory. We also discuss

different types of graph which we will use in next chapters.

Definition 1.4.1. A graph W is an ordered pair (V(W),E(W)), where V(W) can be

referred as vertex and E(W) can be referred as edge set. Each edge consists of two

vertices which are its endpoints. If e1 is an edge whose end points are same then e1 is

a loop. If e2 and e3 are the edges with exactly the same set of endpoints then e2 and e3

are multiple edges. If edges e2 and e3 have a common endpoint then they are adjacent

edges. Two vertices joined by an edge is known as adjacent vertices.

Definition 1.4.2. A simple graph is a graph which has no loops and multiple edges.

Definition 1.4.3. The degree of v ∈ V(W) in graph W is the number of edges incident

to v. Which can be represented by deg(V ). Each loop at v counts twice. The maximum

degree in W is represented by ∆(W) and minimum degree in W is represented by δ(W).

Definition 1.4.4. A graph with ∆(W) = δ(W) is known as regular graph. If ∆(W) =

δ(W) = t, then graph W is known as t−regular graph.

Definition 1.4.5. The totat number of vertices in graph W is the order of graph

represented by n(W) and totat number of edges is size of graph W represented by

e(W).

Definition 1.4.6. The union of graphs W1,W2, · · · ,Wn is the graph with vertix set

∪n
i=1V(Wi) and edge set ∪n

i=1E(Wi).
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Definition 1.4.7. A simple graph represented by Pn is a path if its vertices can be

ordered in such a way that two vertices have an edge between them iff they are con-

secutive in the list.

Figure 1.1: P5

Definition 1.4.8. A simple graph represented by Cn is a cycle if its | V(W) |=| E(Wi) |
and vertices can be placed around the circle in such a way that two vertices have an

edge between them iff they are consecutively in the circle.

Figure 1.2: C5

Definition 1.4.9. If in a graph W there is a path between any two vertices ν,κ ∈ V(W)

then W is termed as connected graph.

Definition 1.4.10. Let W = (V(W),E(W)), then complement of W , denoted by W̄
is defined by V(W) = V(W̄) howerver, the edge νκ ∈ E(W̄) iff νκ /∈ E(W).

Definition 1.4.11. Let D be a graph and V(D) ⊆ V(W) also E(D) ⊆ E(W) then, D is

subgraph of W .

Definition 1.4.12. A decomposition of a graph is a collection of its subgraphs in such

a way that each edge apears in exactly one subgraph of the collection.

Definition 1.4.13. The component of a graph W is its maximal connected subgraph.
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Figure 1.3: Graph on left with its subgraph on right.

Definition 1.4.14. If a vertex κ ∈ V(W) having degree zero, then κ is known as

isolated vertex. If κ have degree one then it is known as pendent and all the vertices

ν ∈ V(W) with deg (ν) ≥ 2 are known as internal vertices.

Definition 1.4.15. A graph with no cycle is known as acyclic graph and such acyclic

graphs are called forest.

Definition 1.4.16. A connected acyclic graph is known as tree.

Definition 1.4.17. The radius of a graph is the least of all eccentricities of its vertices.

Definition 1.4.18. Let U and D be two graphs with vertex set V(U) = {α1, α2, · · · , αυ}
and V(D) = {κ1,κ2, · · · ,κυ}. The Cartesian product U□D is a graph with V (U□D) =

V (U)× V (D), and for {(α1,κ1), (α2,κ2)} ∈ V (U□D), whenever

1. {α1,κ2} ∈ E(U) and κ1 = κ2 or

2. α1 = α2 and {κ1,κ2} ∈ E(D).

The ladder graph is Cartesian product of P2 and Pυ, where υ ≥ 2. The circular ladder

graph is the Cartesian product of P2 and Cυ, where υ ≥ 3.

Definition 1.4.19. Let ω = T{κ1,κ2, · · · ,κn} and W be a graph with vertex set

V(W) = {κ1,κ2, · · · ,κn} and edge set E(W). A square free monomial ideal generated

by the elements related to the edges of the graph W is called edge ideal.

I(W) = (κjκj+1 | {κj,κj+1} ∈ E(W)) ⊂ ω.

20



(a) P2□P5 (b) P2□C6

Figure 1.4: Example of Cartesian product of two graphs.

Figure 1.5: S7
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Definition 1.4.20. The ϱ−star is a tree on ϱ vertices with one internal vertex and

ϱ− 1 pendents that are attached to internal vertex. It is denote by Sϱ.

Definition 1.4.21. Let U and D be two graphs with vertex set V(U) = {α1, α2, · · · , αυ}
and V(D) = {κ1,κ2, · · · ,κυ}. The strong product U⊠ D is a graph with V (U⊠ D) =

V (U)× V (D), and for {(α1,κ1), (α2,κ2)} ∈ V (U⊠ D), whenever

1. {α1,κ2} ∈ E(U) and κ1 = κ2 or

2. α1 = α2 and {κ1,κ2} ∈ E(D) or

3. {α1, α2} ∈ E(U) and {κ1,κ2} ∈ E(D).

(a) P5 ⊠ P2 (b) C6 ⊠ P2

Figure 1.6: Example of strong product of two graphs.

Definition 1.4.22. For any given graph G, the ϱ−fold bristled graph Brsϱ(G) is

obtained by attaching ϱ pendants to each vertex of G.
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(a) Brs2(P5) (b) Brs2(C6)

Figure 1.7: Example of 2-fold bristled graph.
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Chapter 2

Depth and Stanley depth

Richard P. Stanley is known for his work to develop a relationship in Algebra and

Geometry. In 1982, Stanley proposed a conjecture [25], which relates the algebraic

invariants called Stanley depth and depth. Herzog and Popescu [15, 21] gave some

remarkable results related to this conjecture. A while later, many articles have been

published in which this conjecture was proved for various special cases. In 2016, Dual

et al. [10] disproved it by using result of Herzog et al. [15] they constructed explicit

counter example for which the conjecture was not satisfied. In this chapter we will

discuss about Stanley’s conjecture and some results related to Stanley depth obtained

in recent years.

2.1 Depth

Definition 2.1.1. Let ω be a ring and ℸ be a ω-module, then for any subset A of ω,

the set

Annℸ A = {α ∈ ℸ | αA = 0},

is called annihilator of α in ℸ.

Definition 2.1.2. Let ℸ be a ω-module. An element 0 ̸= κ ∈ ω is called a regular

element on ℸ if whenever τ ∈ ℸ and κτ = 0, then τ = 0.

Definition 2.1.3. Let ω be a ring and ℸ be a ω-module. An element 0 ̸= κ ∈ ω is

called zero divisor on module ℸ if there exists A ̸= 0 in ℸ such that Aκ = 0.
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Example 8. Let ω = T[κ1,κ2,κ3] and I = (κ2
1 ,κ1κ2) and consider ℸ = ω/I =

T[κ1,κ2,κ3]/(κ2
1 ,κ1κ2), κ1 ∈ ω also κ1 + (κ2

1 ,κ1κ2) ∈ ℸ.

κ1(κ1 + (κ2
1 ,κ1κ2)) = κ2

1 + (κ2
1 ,κ1κ2)

κ1 is a zero divisor on ℸ. Now, let α ̸= 0 in ℸ such that α + (κ2
1 ,κ1κ2) ̸= (κ2

1 ,κ1κ2).

Then clearly κ3(α + (κ2
1 ,κ1κ2)) = κ3α + (κ2

1 ,κ1κ2) ̸= (κ2
1 ,κ1κ2). Which shows that

κ3 is regular on ℸ.

Definition 2.1.4. A sequence κ1,κ2, . . . ,κn of elements of ring ω is called an ℸ-regular

sequence if it satisfies the following conditions:

1. κj is regular on ℸ/(κ1,κ2, . . . ,κj−1)ℸ for any j.

2. ℸ ̸= (κ1,κ2, . . . ,κn)ℸ.

Definition 2.1.5. Let ω be a local Noetherian ring with unique maximal ideal J and

ℸ be a finitely generated ω-module. The common length of all maximal J-sequences

in J is called the depth of ℸ and is denoted by depth(ℸ).

2.2 Stanley depth

Let ω := T[κ1,κ2, . . . ,κn] be a polynomial ring and ℸ be a Zn-graded ω-module.

Let ⋎i ∈ ℸ be a homogeneous element and Hi ∈ {κ1,κ2, . . . ,κn}, then ⋎iT[Hi] is

T-subspace of ℸ whose generating set is all elements of ⋎iµ, here µ is a monomial in

T[Hi]. The space ⋎iT[Hi] is called a Stanley space of dimension | Hi |, if it is a free

⋎iT[Hi]-module and | Hi | represents the number of indeterminates of Hi. A Stanley

decomposition is finite direct sum of Stanley spaces defined as

P : ℸ =
s⊕

i=1

⋎iT[Hi].

And

sdepthP = min{| Hi |, i = 1, . . . , s}.
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The Stanley depth of ℸ is

sdepth (ℸ) = max{P : P is a Stanley decomposition of ℸ}.

In 1982 Richard P. Stanley [25] presented a conjecture given as

sdepth (ℸ) ≤ depth (ℸ).

In [4, 3, 21] this conjecture was proved for ω/J, where the polynomial ring ω over field

T in atmost three, four and five variables respectively and J is an ideal of ω. In 2016,

Duval et al. [10] proved that this conjecture is not generally true with the help of a

counter example.

2.2.1 The method to comute Stanley depth of a monomial ideal

In this section, we will discuss the method to determine the Stanley depth of I/J Zn-

graded module by the method proposed by Herzog et al in [14]. Let κα1 ,κα2 , . . . ,καt

be the monomial set of generated of I and µ⋎1
1 , µ⋎2

2 , . . . , µ⋎t
t be the monomial set of

generated of J. Here, monomial κα(1)
1 ,κα(2)

2 , . . . ,κα(t)
n is denoted by κα. Now, choosing

σ ∈ Np with the condition that αi ≤ σ and ⋎i ≤ σ. We define subpost Aσ
I/J of Np given

as

Aσ
I/J = {α ∈ Nn : κα ∈ I/J, α ≤ σ}.

For square free monomial ideal I we consider J = 0 and σ = (1, . . . , 1). For any

s,m ∈ Aσ
I , where s ⊆ m, we define

[s,m] = {γ ∈ A
(1,... ,1)
I : s ⊆ γ ⊆ m}.

Partition of A(1,... ,1)
I is disjoint union of intervals

E : A
(1,... ,1)
I = ∪q

r=1[sr,mr].

The Stanley decomposition corresponding to each partition of A(1,... ,1)
I is

D(E) : I =
h⊕

r=1

κsrT[{κt | t ∈ mr}].
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Clearly, sdepthD(E) = min{|m1|, . . . , |mr|} and

sdepth(I) = max{sdepthD(E) | E is a partition of A
(1,...,1)
I }.

Example 9. Consider ω = T[κ1,κ2,κ3,κ4,κ5], I = (κ1κ4,κ2κ3,κ1κ2,κ1κ3κ5) be

a square-free monomial ideal and J = 0. Set α1 = (1, 0, 0, 1, 0), α2 = (0, 1, 1, 0, 0),

α3 = (1, 1, 0, 0, 0), α4 = (1, 0, 1, 0, 1). Thus I is generated by κα1 , κα2 , κα3 and κα4 .

We choose ξ = (1, 1, 1, 1, 1). The poset A = Aξ
I/J is

A = {(1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (1, 1, 0, 0, 0), (1, 1, 0, 1, 0), (1, 0, 1, 1, 0), (1, 0, 0, 1, 1),

(1, 0, 1, 0, 1), (1, 1, 1, 0, 0), (0, 1, 1, 1, 0), (0, 1, 1, 0, 1), (1, 1, 0, 0, 1), (1, 1, 1, 1, 0),

(1, 1, 1, 0, 1), (1, 1, 0, 1, 1), (0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (1, 1, 1, 1, 1)}.

Partitions of A are given by

A1 : [(1, 1, 0, 0, 0), (1, 1, 1, 1, 1)]
⋃

[(0, 1, 1, 0, 0), (0, 1, 1, 1, 1)]
⋃

[(1, 0, 0, 1, 0), (1, 0, 0, 1, 1)]
⋃

[(1, 0, 1, 1, 0), (1, 0, 1, 1, 1)]
⋃

[(1, 0, 1, 0, 1), (1, 0, 1, 0, 1)],

A2 : [(1, 0, 0, 1, 0), (1, 0, 1, 1, 1)]
⋃

[(0, 1, 1, 0, 0), (1, 1, 1, 0, 1)]
⋃

[(1, 1, 0, 0, 0), (1, 1, 0, 1, 1)]
⋃

[(0, 1, 1, 1, 0), (1, 1, 1, 1, 0)]
⋃

[(0, 1, 1, 0, 1), (1, 1, 1, 1, 1)].

Then, the corresponding Stanley decomposition is

D(A1) := κ1κ2T[κ1,κ2,κ3,κ4,κ5] ⊕ κ2κ3T[κ2,κ3,κ4,κ5] ⊕ κ1κ4T[κ1,κ4,κ5]⊕

κ1κ3κ4T[κ1,κ3,κ4,κ5] ⊕ κ1κ3κ5T[κ1,κ3,κ5],

D(A2) := κ1κ4T[κ1,κ2,κ3,κ4,κ5] ⊕ κ2κ3T[κ1,κ2,κ3,κ5] ⊕ κ1κ2T[κ1,κ2,κ4,κ5]

⊕ κ2κ3κ4T[κ1,κ2,κ3,κ4] ⊕ κ2κ3κ5T[κ1,κ2,κ3,κ5].

Then, it follows that

sdepth (I) ≥ max{sdepth (D(A1)), sdepthD(A2)}
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≥ max{3, 4}

= 4.

Now for ω/I, the poset P = P
ξ
ω/I is

P = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1),

(1, 0, 1, 0, 0), (1, 0, 0, 0, 1), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1), (0, 0, 1, 1, 0), (0, 0, 1, 0, 1),

(0, 0, 0, 1, 1), (0, 1, 0, 1, 1), (0, 0, 1, 1, 1)}.

Partitions of P are given by

P1 : [(0, 0, 0, 0, 0), (0, 0, 1, 1, 1)]
⋃

[(0, 1, 0, 0, 0), (0, 1, 0, 1, 1)]
⋃

[(1, 0, 0, 0, 0), (1, 0, 0, 0, 1)]
⋃

[(1, 0, 1, 0, 0), (1, 0, 1, 0, 0)],

P2 : [(0, 0, 0, 0, 0), (0, 1, 0, 1, 1)]
⋃

[(1, 0, 0, 0, 0), (1, 0, 0, 0, 1)]
⋃

[(0, 0, 1, 0, 0), (0, 0, 1, 1, 1)]
⋃

[(1, 0, 1, 0, 0), (1, 0, 1, 0, 0)].

The corresponding Stanley decomposition is

D(P1) := T[κ2,κ4,κ5]⊕ κ2T[κ2,κ4,κ5]⊕ κ1T[κ1,κ5]⊕ κ1κ3T[κ1,κ3],

D(P2) := T[κ3,κ4,κ5]⊕ κ1T[κ1,κ5]⊕ κ3T[κ3,κ4,κ5]⊕ κ1κ3T[κ1,κ3].

sdepth (ω/I) ≥ max{sdepth (D(P1)), sdepth (D(P2))}

≥ max{2, 2}

≥ 2.

Example 10. Consider ω = T[κ1,κ2,κ3,κ4,κ5], I = (κ1κ3,κ1κ5,κ2κ4,κ2κ5) be a

square-free monomial ideal and and J = 0. Set α1 = (1, 0, 1, 0, 0), α2 = (1, 0, 0, 0, 1),
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α3 = (0, 1, 0, 1, 0), α4 = (0, 1, 0, 0, 1). Thus I is generated by κα1 , κα2 , κα3 and κα4 .

We choose ξ = (1, 1, 1, 1, 1). The poset A = Aξ
I/J is

A = {(1, 0, 1, 0, 0), (1, 0, 0, 0, 1), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1), (1, 1, 1, 0, 0), (1, 0, 1, 1, 0),

(1, 0, 1, 0, 1), (1, 1, 0, 0, 1), (1, 0, 0, 1, 1), (1, 1, 0, 1, 0), (0, 1, 0, 1, 1), (1, 1, 1, 1, 0),

(1, 1, 1, 0, 1), (1, 1, 0, 1, 1), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1)}.

Partitions of A are given by

A1 : [(0, 1, 0, 1, 0), (0, 1, 0, 1, 1)]
⋃

[(1, 1, 1, 0, 0), (1, 1, 1, 1, 1)]
⋃

[(1, 1, 0, 1, 0), (1, 1, 0, 1, 1)]
⋃

[(1, 0, 1, 0, 0), (1, 0, 1, 0, 1)]
⋃

[(0, 1, 0, 0, 1), (0, 1, 1, 1, 1)]
⋃

[(1, 0, 0, 0, 1), (1, 1, 0, 0, 1)]
⋃

[(1, 0, 1, 1, 0), (1, 0, 1, 1, 0)]
⋃

[(1, 0, 0, 1, 1), (1, 0, 0, 1, 1)],

A2 : [(1, 0, 1, 0, 0), (1, 1, 1, 1, 1)]
⋃

[(1, 0, 0, 0, 1), (1, 1, 0, 1, 1)]
⋃

[(1, 0, 1, 0, 1), (0, 1, 1, 1, 1)]
⋃

[(0, 1, 0, 0, 1), (0, 1, 0, 0, 1)].

The corresponding Stanley decomposition is

D(A1) := κ2κ4T[κ2,κ4,κ5]⊕ κ1κ2κ3T[κ1,κ2,κ3,κ4]⊕ κ1κ2κ4T[κ1,κ2,κ4,κ5]⊕

κ1κ3T[κ1,κ3,κ5]⊕ κ2κ5T[κ2,κ3,κ4,κ5]⊕ κ1κ5T[κ1,κ2,κ5]⊕

κ1κ3κ4T[κ1,κ3,κ4]⊕ κ1κ4κ5T[κ1,κ4,κ5],

D(A2) := κ1κ3T[κ1,κ2,κ3,κ4,κ5]⊕ κ1κ5T[κ1,κ2,κ4,κ5]⊕ κ2κ4T[κ2,κ3,κ4,κ5]⊕

κ2κ5T[κ2,κ5].

Then, we have

sdepth (I) ≥ max{sdepth (D(A1)), sdepthD(A2)}

≥ max{3, 2}

≥ 3.
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Now for ω/I, the poset P = P
ξ
ω/I is

P = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1),

(1, 1, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (0, 0, 1, 1, 0), (0, 0, 1, 0, 1), (0, 0, 0, 1, 1),

(0, 1, 1, 1, 0), (0, 1, 1, 0, 1), (0, 0, 1, 1, 1)}.

Partitions of P are given by

P1 : [(0, 0, 0, 0, 0), (0, 0, 1, 1, 1)]
⋃

[(1, 0, 0, 0, 0), (1, 1, 0, 0, 0)]
⋃

[(0, 1, 0, 0, 0), (0, 1, 1, 1, 0)]
⋃

[(0, 1, 1, 0, 0), (0, 1, 1, 0, 1)]
⋃

[(1, 0, 0, 1, 0), (1, 0, 0, 1, 0)],

P2 : [(0, 0, 0, 0, 0), (0, 1, 1, 1, 0)]
⋃

[(1, 0, 0, 0, 0), (1, 0, 0, 1, 0)]
⋃

[(0, 0, 0, 0, 1), (0, 0, 1, 1, 1)]
⋃

[(1, 1, 0, 0, 0), (1, 1, 0, 0, 0)]
⋃

[(0, 1, 1, 0, 1), (0, 1, 1, 0, 1)].

The corresponding Stanley decomposition is

D(P1) := T[κ3,κ4,κ5]⊕ κ1T[κ1,κ2]⊕ κ2T[κ2,κ3,κ4]⊕ κ2κ3T[κ2,κ3,κ5]⊕

κ1κ4T[κ1,κ4],

D(P2) := T[κ2,κ3,κ4]⊕ κ1T[κ1,κ4]⊕ κ5T[κ3,κ4,κ5]κ1κ2T[κ1,κ2]⊕

κ2κ3κ5T[κ2,κ3,κ5].

Then

sdepth (ω/I) ≥ max{sdepth (D(P1)), sdepth (D(P2))}

≥ max{2, 2}

≥ 2.

Example 11. Consider ω = T[κ1,κ2,κ3,κ4,κ5], I = (κ3κ4,κ3κ5,κ1κ2,κ2κ4) be a

square-free monomial ideal and and J = 0. Set α1 = (0, 0, 1, 1, 0), α2 = (0, 0, 1, 0, 1),

α3 = (0, 1, 0, 1, 0), α4 = (1, 1, 0, 0, 0). Thus, I is generated by κα1 , κα2 , κα3 and κα4 .
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We choose ξ = (1, 1, 1, 1, 1). The poset A = Aξ
I/J is

A = {(0, 0, 1, 1, 0), (0, 0, 1, 0, 1), (0, 1, 0, 1, 0), (1, 1, 0, 0, 0), (0, 1, 1, 1, 0), (0, 0, 1, 1, 1),

(0, 1, 1, 0, 1), (1, 1, 1, 0, 0), (1, 1, 0, 1, 0), (1, 1, 0, 0, 1), (0, 1, 0, 1, 1), (1, 0, 1, 0, 1),

(1, 0, 1, 1, 0), (1, 1, 1, 1, 0), (0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (1, 1, 1, 0, 1), (1, 1, 0, 1, 1),

(1, 1, 1, 1, 1)}.

Partitions of A are given by

A1 : [(0, 1, 0, 1, 0), (1, 1, 1, 1, 1)]
⋃

[(0, 0, 1, 1, 0), (0, 0, 1, 1, 1)]
⋃

[(0, 0, 1, 0, 1), (1, 0, 1, 1, 1)]
⋃

[(1, 1, 0, 0, 0), (1, 1, 1, 0, 1)]
⋃

[(0, 1, 1, 0, 1), (0, 1, 1, 0, 1)]
⋃

[(1, 0, 1, 1, 0), (1, 0, 1, 1, 0)],

A2 : [(1, 1, 0, 0, 0), (1, 1, 0, 1, 1)]
⋃

[(0, 0, 1, 1, 0), (1, 0, 1, 1, 1)]
⋃

[(0, 0, 1, 0, 1), (1, 1, 1, 0, 1)]
⋃

[(0, 1, 0, 1, 0), (0, 1, 1, 1, 1)]
⋃

[(0, 0, 1, 1, 1), (1, 1, 1, 1, 1)]
⋃

[(1, 1, 1, 0, 0), (1, 1, 1, 1, 0)].

The corresponding Stanley decomposition is

D(A1) := κ2κ4T[κ1,κ2,κ3,κ4,κ5]⊕ κ3κ4T[κ3,κ4,κ5]⊕ κ3κ5T[κ1,κ3,κ4,κ5]⊕

κ1κ2T[κ1,κ2,κ3,κ5]⊕ κ2κ3κ5T[κ2,κ3,κ5, ]⊕ κ1κ3κ4T[κ1,κ3,κ4],

D(A2) := κ1κ2T[κ1,κ2,κ4,κ5]⊕ κ3κ4T[κ1,κ3,κ4,κ5]⊕ κ3κ5T[κ1,κ2,κ3,κ5]⊕

κ2κ4T[κ2,κ3,κ4,κ5]⊕ κ3κ4κ5T[κ1,κ2,κ3,κ4]⊕ κ1κ2κ3T[κ1,κ2,κ3,κ4].

Then

sdepth (I) ≥ max{sdepth (D(A1)), sdepthD(A2)}

≥ max{3, 4}

= 4.
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Now for ω/I, the poset P = P
ξ
ω/I is

P = {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1), (1, 0, 1, 0, 0),

(1, 0, 0, 1, 0), (1, 0, 0, 0, 1), (0, 1, 1, 0, 0), (0, 1, 0, 0, 1), (0, 0, 0, 1, 1), (1, 0, 0, 1, 1),

(0, 0, 0, 0, 0)}.

Partitions of P are given by

P1 : [(1, 0, 0, 0, 0), (1, 0, 0, 1, 1)]
⋃

[(0, 0, 0, 0, 0), (0, 0, 0, 1, 1)]
⋃

[(0, 1, 0, 0, 0), (0, 1, 1, 0, 0)]
⋃

[(0, 0, 1, 0, 0), (1, 0, 1, 0, 0)]
⋃

[(0, 1, 0, 0, 1), (0, 1, 0, 0, 1)],

P2 : [(0, 0, 0, 0, 0), (1, 0, 0, 1, 1)]
⋃

[(0, 1, 0, 0, 0), (0, 1, 0, 0, 1)]
⋃

[(0, 0, 1, 0, 0), (1, 0, 1, 0, 0)]
⋃

[(0, 1, 1, 0, 0), (0, 1, 1, 0, 0)].

The corresponding Stanley decomposition is

D(P1) := κ1T[κ1,κ4,κ5]⊕ T[κ4,κ5]⊕ κ2T[κ2,κ3]⊕ κ3T[κ1,κ3]⊕ κ2κ5T[κ2,κ5],

D(P2) := T[κ1,κ4,κ5]⊕ κ2T[κ2,κ5]⊕ κ3T[κ1,κ3]⊕ κ2κ3T[κ2,κ3].

Then

sdepth (ω/I) ≥ max{sdepth (D(P1)), sdepth (D(P2))}

≥ max{2, 2}

≥ 2.

2.3 Some results on Stanley depth and depth

Lemma 2.3.1 ([7]). If 0 → ℸ1 → ℸ2 → ℸ3 → 0 is a short exact sequence of modules

over a local ring ω, or a Noetherian graded ring with ω0 local, then

1. depth(ℸ2) ≥ min{depth(ℸ3), depth(ℸ1)}.
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2. depth(ℸ1) ≥ min{depth(ℸ2), depth(ℸ3) + 1}.

3. depth(ℸ3) ≥ min{depth(ℸ1)− 1, depth(ℸ2)}.

Lemma 2.3.2 ([23, Lemma 2.2]). Let the sequence 0 → ℸ1 → ℸ2 → ℸ3 → 0 be short

exact sequence of Zn-graded ℸ-module. Then,

sdepthℸ2) ≥ min{sdepthℸ1), sdepth (ℸ3)}.

Lemma 2.3.3 ([14, lemma 3.6]). Let J ⊂ ω be an ideal generated by monomials. If

ω∗ = ω ⊗T T[κp+1] ∼= ω[κp+1] and J∗ ⊂ ω∗. Then,

depth (ω∗/J∗ω∗) = depth(ω/J) + 1.

And

sdepth (ω∗/J∗ω∗) = sdepth(ω/J) + 1.

Lemma 2.3.4 ([1]). Let J ⊂ ω and J = I(Sn) ⊆ ω is a edge ideal of p-star. Then,

depth (ω/J) = sdepth (ω/J) = 1.

Lemma 2.3.5 ([12, Lemma 2.12]). Let J∗ ⊂ ω∗ = T[κ1, . . . ,κr], J∗∗ ⊂ ω∗∗ =

T[κr+1, . . . , xp] be the ideal generated by monomials, where 1 ≤ r < p. Then,

depth (ω∗/J∗ ⊗T ω∗∗/J∗∗) = depthω∗ (ω∗/J∗) + depthω∗∗ (ω∗∗/J∗∗).

Corollary 2.3.6 ([23, Corollary 1.3]). Let J ⊂ ω be the ideal generated by monomials.

Then

depth(ω/(J : ⋎)) ≥ depth (ω/J),

for all monomials ⋎ /∈ J.

Lemma 2.3.7 ([12, Lemma 2.13]). Let J∗ ⊂ ω∗ = T[κ1, . . . ,κr], J∗∗ ⊂ ω∗∗ =

T[κr+1, . . . ,κp] be monomial ideals and ω = T[κ1, . . . ,κr,κr+1, . . . ,κp]. Then,

sdepthω∗ (ω∗/J∗) + sdepthω∗∗ (ω∗∗/J∗∗) ≤ sdepth (ω∗∗/J∗ ⊗T ω∗∗/J∗∗).
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Proposition 2.3.8 ([9, Proposition 2.7]). Let J ⊂ ω be the ideal generated by mono-

mials. Then, for all monomial ⋎ /∈ J

sdepth (ω/J) ≤ sdepth (ω/(J : ⋎)).

Lemma 2.3.9 ([17, Lemma 3.3]). Let J ⊂ ω be a monomial ideal and ideal J be square-

free with supp (ω) = {κ1,κ2, . . . ,κp}, let µ := κi1κi2 . . .κip ∈ ω/J, such that κnµ ∈ J,

for all n ∈ {κ1,κ2, . . . ,κp} \ supp (µ). Then sdepth(ω/J) ≤ p.

Lemma 2.3.10 ([20, Lemma 2.8]). Let I = I(Ps) be an edge ideal of a path graph on

s vertices and s ≥ 2. Then,

depth (ω/I) = ⌈s
3
⌉.

Proposition 2.3.11 ([8, Proposition 1.3]). Let I = I(Cs) be an edge ideal of a cycle

on s vertices and s ≥ 3. Then,

depth (ω/I) = ⌈s− 1

3
⌉.

Proposition 2.3.12 ([14, Proposition 3.4]). Let J ⊂ ω be the ideal minimally generated

by r elements. Then,

sdepth (J) ≥ max{n− r + 1, 1}.

Lemma 2.3.13. Let I = I(C3,m) be an edge ideal of m-fold bristled graph of cycle C3.

Then,

depth (ω/I(C3,m)) = sdepth (ω/I(C3,m)) = 2m+ 1.

Proposition 2.3.14 ([26, Proposition 4.2]). Let square free monomial ideal J ⊂ ω =

T[κ1,κ2, . . . ,κs] be minimally generated by 4 elements. Then,

sdepth (J) ≥ s− 2.

Theorem 2.3.15 ([5, Theorem 2.2]). Let maximal ideal J generated by (κ1, . . . ,κs) ⊆
ω. Then,

sdepth (J) = ⌈s
2
⌉.
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Lemma 2.3.16 ([22, Lemma 3.1]). Let T be a tree graph and I = I(T) be the edge

ideal of it. Let s be the total number of leaves and r ≥ 1 be the diameter of graph.

Then,

sdepth (ω/I) ≥ ⌈s+ r − 1

3
⌉.

Theorem 2.3.17 ([19, Theorem 5.1]). Let I = I(Ps,t) be the edge ideal of strong

product of two paths on s and t vertices. Then for s ≥ 2,

depth (ωs,t/I(Ps,t)), sdepth (ωs,t/I(Ps,t)) ≥ ⌈s
3
⌉⌈ t
3
⌉.

Theorem 2.3.18 ([19, Theorem 5.3]). Let I = I(Cs,t) be the edge ideal of strong

product of path and cycle on s and t vertices respectively. Then for s ≥ 3 and m ≥ 1,

depth (ωs,t)/I(Cs,t) ≤

{
⌈ s−1

3
⌉+ (⌈ r

3
⌉ − 1)⌈ s

3
⌉, if t ≡ 1, 2(mod3);

⌈ s
3
⌉⌈ r

3
⌉, if t ≡ 0(mod3).

Lemma 2.3.19 ([18, Lemma 3.2]). Let Hs be the edge ideal of the line graph of ladder

graph. Then for s ≥ 2,

⌈s
2
⌉ ≤ depth (ωs/Hs), sdepth (ωs/Hs) ≤ s− 1.

Lemma 2.3.20 ([18, Lemma 3.6]). Let As be the edge ideal of the line graph of circular

ladder graph. Then for s ≥ 3.

⌈s
2
⌉ ≤ depth (ωs/As) ≤ s− 1.

And

⌈s
2
⌉ ≤ depth (ωs/As) ≤ s.

Theorem 2.3.21 ([16, Theorem 2.1]). Let J and O be ideals in ω generated by mono-

mials such that J ⊂ O. Then,

sdepth (O/J) ≤ sdepth (
√
O/

√
J).
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Chapter 3

Stanley depth and depth of the
quotient rings of the edge ideals
corresponding to ladder graph and a
class of strong product of two paths

In this chapter, we compute Stanley depth and depth of the quotient modules of

edge ideal associated with the ϱ−fold bristled graph of ladder graph and Lυ graph,

where Lυ = P2 ⊠ Pυ and υ ≥ 1. We prove for these graphs, the depth and Stanley

depth values are equal.

Througout this chapter, we set 𭟋υ,ϱ := T[∪υ
i=1{xi, yi},∪ϱ

j=1{x1j, x2j, . . . , xυj, y1j, y2j

, . . . , yυj}], here υ is the total of vertices of path Pυ and ϱ is the total number of pendant

vertices attached at each xi.

Definition 3.0.1. The ladder graph is Cartesian product of Pυ and P2, where υ ≥ 2.

We denote this graph by Dυ = P2□Pυ. The ϱ−fold bristled graph Brsϱ(Dυ) is obtained

by attaching ϱ pendants to each vertex of Dυ. Figure 3.1 shows Brs2(D4).
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y1 y2 y3 y4

y11 y12 y21 y22 y31 y32 y41 y42

x1 x2 x3 x4

x11 x12 x21 x22 x31 x32 x41 x42

Figure 3.1: Brs2(D4)

Definition 3.0.2. Let Lυ denotes the strong product of two paths P2 and Pυ by

Lυ = P2 ⊠ Pυ, where υ ≥ 1. The ϱ−fold bristled graph Brsϱ(Lυ) is obtained by

attaching ϱ pendants to each vertex of Lυ. Figure 3.2 shows Brs2(L4) .

y1 y2 y3 y4

y11 y12 y21 y22 y31 y32 y41 y42

x1 x2 x3 x4

x11 x12 x21 x22 x31 x32 x41 x42

Figure 3.2: Brs2(L4)

Definition 3.0.3. Let ϱ ≥ 1 and υ ≥ 2. If edge ideal Iυ,ϱ = I(Brsϱ(Dυ)), then its

minimal generating set is stated as

G(Iυ,ϱ) :=
υ−1⋃
i=1

{xixi+1, yiyi+1}
υ⋃

i=1

{xiyi}
ϱ⋃

j=1

{y1y1j, . . . , yυyυj, x1x1j, . . . , xυxυj}.
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We also define a modified graph of Brsϱ(Dυ) denoted by D′
υ,ϱ, with the set of vertices

V (D′
υ,ϱ) := V (Brsϱ(Dυ))

⋃
{yυ+1}

⋃ϱ
j=1 y(υ+1)j and edge set E(D′

υ,ϱ) := E(Iυ,ϱ)
⋃
{yυyυ+1}⋃ϱ

j=1{yυy(υ+1)j}. Figure 3.3 shows D′
4,2 graph. We assume 𭟋∗

υ,ϱ := 𭟋υ,ϱ[yυ+1,
⋃ϱ

j=1 y(υ+1)j]

and edge ideal I∗υ,ϱ = I(D′
υ,ϱ), then its minimal generating set is stated as

G(I∗υ,ϱ) := G(Iυ,ϱ)
⋃

{yυyυ+1}
ϱ⋃

j=1

{yυy(υ+1)j}.

y1 y2 y3 y4

y11 y12 y21 y22 y31 y32 y41 y42

x1 x2 x3 x4

x11 x12 x21 x22 x31 x32 x41 x42

y5

y51 y52

Figure 3.3: D′
4,2

Definition 3.0.4. Let υ = 1, then minimal generating set of the edge ideal of ϱ−fold

bristled graph of L1 is stated as

G(L1,ϱ) := {x1y1} ∪ϱ
j=1 {x1x1j, y1y1j}.

When υ ≥ 2 it is given as:

G(Lυ,ϱ) := ∪υ−1
i=1 {xixi+1, yiyi+1} ∪ϱ

j=1 {x1x1j, . . . , xυxυj, y1y1j, . . . , yυyυj} ∪υ
i=1 {xiyi}

∪{y1x2, yυxυ−1} ∪υ−1
j=2 {yixi−1, yixi+1}.

To prove our major results in our coming section, first we will prove this Lemma.

Remark 3.0.1. The ϱ−fold bristled graph of the path Pυ is denote by Pυ,ϱ Let 𭟋′
υ,ϱ =

[
⋃υ

i=1{xi},
⋃ϱ

j=1{x1j, x2j, . . . , xυj}] and G(Pυ,ϱ) :=
⋃υ−1

i=1 {xixi+1}
⋃ϱ

j=1{x1x1j, . . . , xυxυj}.

38



Lemma 3.0.2. Let ϱ ≥ 1 and n = 2, 3, then

depth (𭟋′

υ,ϱ/Pυ,ϱ) = sdepth (𭟋′

υ,ϱ/Pυ,ϱ) =

{
ϱ+ 1, if υ = 2;
ϱ+ 2, if υ = 3.

Proof. We will prove this for each value of υ separately. Consider the following exact

sequence.

0 −→ 𭟋′

υ,ϱ/(Pυ,ϱ : xυ)
·yυ−→ 𭟋′

υ,ϱ/Pυ,ϱ −→ 𭟋′

υ,ϱ/(Pυ,ϱ, xυ) −→ 0.

Case 1. For υ = 2, ϱ ≥ 1 we have 𭟋′
2,ϱ/(P2,ϱ : x2) ∼= T[x2,∪υ

i=1{x1j}]. Thus by

Lemma 2.3.3 depth (𭟋′
2,ϱ/(P2,ϱ : x2)) = ϱ + 1. Also it is clear that 𭟋′

2,ϱ/(P2,ϱ, x2) ∼=
T[V (Sϱ+1)]/I(Sϱ+1)

⊗
T T[∪υ

i=1{x2j}]. By Lemma 2.3.4 and Lemma 2.3.3,

depth (𭟋′
2,ϱ/(P2,ϱ, x2)) = ϱ+ 1. Therefore by Depth Lemma depth (𭟋′

2,ϱ/P2,ϱ) = ϱ+ 1.

Case 2. For υ = 3, ϱ ≥ 1 as we can see 𭟋′
3,ϱ/(P3,ϱ : x3) ∼= T[V (Sϱ+1)]/I(Sϱ+1)

⊗
T T[x3

,∪υ
i=1{x2j}], by Lemma 2.3.4 and Lemma 2.3.3 depth (𭟋′

3,ϱ/(P3,ϱ : x3)) = 1+ϱ+1 = ϱ+

2. Now 𭟋′
3,ϱ/(P3,ϱ, x3) ∼= 𭟋′

2,ϱ/(P2,ϱ)
⊗

T T[∪υ
i=1{x3j], using previous case and Lemma

2.3.3 we get depth (𭟋′
3,ϱ/(P3,ϱ, x3)) = ϱ+ 1 + ϱ = 2ϱ+ 1. As depth (𭟋′

3,ϱ/(P3,ϱ : x3)) ≤
depth (𭟋′

3,ϱ/(P3,ϱ, x3)), by Depth Lemma depth (𭟋′
3,ϱ/P3,ϱ) = ϱ+ 2.

For the case of Stanley depth we get the same result by following Lemma 2.3.2

instead of Depth Lemma, for upper bound in case 2 as depth (𭟋′
3,ϱ/(P3,ϱ : x3)) = ϱ+2,

using Proposition 2.3.8 depth (𭟋′
3,ϱ/P3,ϱ) ≥ ϱ+ 2.

3.1 Stanley depth and depth of the quotient rings of
the edge ideals corresponding to ϱ−fold bristled
graph of ladder graph and strong product of two
paths.

In this section, we determine the Stanley depth and depth of the quotient modules of

the edge ideal of ϱ−fold bristled graph of ladder graph and Lυ graph. We prove for

these graphs, the depth and Stanley depth values are equal.

To determine these invariants, we shall first determine these values for the quotient

modules associated with edge ideal of D′
υ,ϱ graph.
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Lemma 3.1.1. Let ϱ ≥ 1 and 2 ≤ υ ≤ 3. Then

depth (𭟋∗
υ,ϱ/I

∗
υ,ϱ) = sdepth (𭟋∗

υ,ϱ/I
∗
υ,ϱ) = (ϱ+ 1)υ + 1.

Proof. We will prove this for each value of υ separately. Consider the following exact

sequence.

0 −→ 𭟋∗
υ,ϱ/(I

∗
υ,ϱ : yυ)

·yυ−→ 𭟋∗
υ,ϱ/I

∗
υ,ϱ −→ 𭟋∗

υ,ϱ/(I
∗
υ,ϱ, yυ) −→ 0.

Let υ = 2,

G(I∗2,ϱ : y2) = {x1x2, x1y1, x2, y1, y3} ∪ϱ
j=1 {y1y1j, y3y3j} ∪

ϱ
j=1 {x1x1j, x2x2j} ∪ϱ

j=1 {y2j}.

= {y1, y3, x2} ∪ϱ
j=1 {x1x1j} ∪ϱ

j=1 {y2j}.

We have (𭟋∗
2,ϱ/(I

∗
2,ϱ : y2)) ∼= T[V (Sϱ+1)]/I(Sϱ+1)

⊗
T T[y2,∪

ϱ
j=1{y1j, y3j, x3j}]. Using

Lemma 2.3.3

depth (𭟋∗
2,ϱ/(I

∗
2,ϱ : y2)) = depth (T[V (Sϱ+1)]/I(Sϱ+1)) + 3ϱ+ 1.

Thus by Lemma 2.3.4 we get

depth (𭟋∗
2,ϱ/(I

∗
2,ϱ : y2)) = 1 + 3ϱ+ 1 = 3ϱ+ 2.

Here

G(I∗2,ϱ, y2) = {y2} ∪ϱ
j=1 {x1x2, x1y1, x1x1j, x2x2j, y1y1j} ∪ϱ

j=1 {y3y3j}.

As we can see that (𭟋∗
2,ϱ/(I

∗
2,ϱ, y2))

∼= T[V (P3,ϱ)]/I(P3,ϱ)
⊗

T T[V (Sϱ+1)]/I(Sϱ+1)
⊗

T

T[∪ϱ
j=1y2j]. Therefore, by Lemma 2.3.5 and Lemma 2.3.3

depth (𭟋∗
2,ϱ/(I

∗
2,ϱ, y2)) = depth (T[V (P3,ϱ)]/I(P3,ϱ)) + depth (T[V (Sϱ+1)]/I(Sϱ+1)) + ϱ.

By Lemma 2.3.4 and Lemma 3.0.1, we have

depth (𭟋∗
2,ϱ/(I

∗
2,ϱ, y2)) = (ϱ+ 2) + 1 + ϱ = 2ϱ+ 3.

Now by Depth Lemma

depth (𭟋∗
2,ϱ/I

∗
2,ϱ) ≥ min{depth (𭟋∗

2,ϱ/(I
∗
2,ϱ : y2)), depth (𭟋∗

2,ϱ/(I2,ϱ, y2))}.
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This implies that

depth (𭟋∗
2,ϱ/I

∗
2,ϱ) ≥ 2ϱ+ 3.

For upper bound as we have G(I∗2,ϱ : y3) = {y2}∪{x1x2, x1y1}∪ϱ
j=1 {x1x1j, x2x2j, y1y1j}

∪ϱ
j=1 {y3j}, and (𭟋∗

2,ϱ/(I
∗
2,ϱ : y3)) ∼= T[V (P3,ϱ)]/I(P3,ϱ)

⊗
T T[y3,∪

ϱ
j=1y2j]. Thus by

Lemma 2.3.3 and Lemma 3.0.1.

depth (𭟋∗
2,ϱ/(I

∗
2,ϱ : y3)) = depth (T[V (P3,ϱ)]/I(P3,ϱ)) + 1 + ϱ

= ϱ+ 2 + 1 + ϱ = 2ϱ+ 3,

as y3 /∈ I∗2,ϱ so by Corollary 2.3.6.

depth (𭟋∗
2,ϱ/I

∗
2,ϱ) ≤ depth (𭟋∗

2,ϱ/(I
∗
2,ϱ : y3)) = 2ϱ+ 3.

This prove the result for υ = 2.

Now let υ = 3, we have

G(I∗3,ϱ : y3) = {y4, x3, y2} ∪ϱ
j=1 {x1x2, x1y1, x1x1j, x2x2j, y1y1j} ∪ϱ

j=1 {y3j}.

Therefore (𭟋∗
3,ϱ/(I

∗
3,ϱ : y3))

∼= T[V (P3,ϱ)]/I(P3,ϱ)
⊗

T T[y3,∪
ϱ
j=1{y2j, y4j, x3j}]. By Lemma

3.0.1 and Lemma 2.3.3

depth (𭟋∗
3,ϱ/(I

∗
3,ϱ : y3)) = depth (T[V (P3,ϱ)]/I(P3,ϱ))+ 3ϱ+1 = ϱ+2+3ϱ+1 = 4ϱ+3.

Clearly

G(I∗3,ϱ, y3) = {y3} ∪ϱ
j=1 {x1x2, x1x3, y1y2, x2y2, x1y1, x1x1j, x2x2j, x3x3j, y1y1j, y2y2j}

∪ϱ
j=1 {y4y4i},

and (𭟋∗
3,ϱ/(I

∗
3,ϱ, y3))

∼= 𭟋∗
2,ϱ/I

∗
2,ϱ

⊗
T T[V (Sϱ+1)]/I(Sϱ+1)

⊗
T T[∪

ϱ
j=1y3j]. By previous

case and Lemma 2.3.4.

depth (𭟋∗
3,ϱ/(I

∗
3,ϱ, y3)) = depth (𭟋∗

2,ϱ/I
∗
2,ϱ) + depth (T[V (Sϱ+1)]/I(Sϱ+1)) + ϱ

= (ϱ+ 1)2 + 1 + 1 + ϱ = 3ϱ+ 4.
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So by Depth Lemma

depth (𭟋∗
3,ϱ/I

∗
3,ϱ) ≥ 3ϱ+ 4.

For upper bound as (𭟋∗
3,ϱ/(I

∗
3,ϱ : y4))

∼= (𭟋∗
2,ϱ/I

∗
2,ϱ)

⊗
T T[y4,∪

ϱ
j=1y3j]. Thus by Lemma

2.3.3 depth (𭟋∗
3,ϱ/(I

∗
3,ϱ : y4)) = depth (𭟋∗

2,ϱ/I
∗
2,ϱ) + ϱ+ 1. By previous case

depth (𭟋∗
3,ϱ/(I

∗
3,ϱ : y4)) = 2ϱ+ 3 + ϱ+ 1 = 3ϱ+ 4.

As, y4 /∈ I∗3,ϱ by Corollary 2.3.6 depth (𭟋∗
3,ϱ/I

∗
3,ϱ) ≤ 3ϱ+ 4, and it follows that

For Stanley depth when 2 ≤ υ ≤ 3, we follow the same procedure on the short exact

sequence as for depth using Lemma 2.3.2. We use Lemma 2.3.7 instead of Lemma 2.3.5

and Proposition 2.3.8 instead of Corollary 2.3.6. We get

sdepth (𭟋∗
3,ϱ/I

∗
3,ϱ) = (ϱ+ 1)υ + 1.

Theorem 3.1.2. Let υ ≥ 2 and ϱ ≥ 1. Then

depth (𭟋∗
υ,ϱ/I

∗
υ,ϱ) = sdepth (𭟋∗

υ,ϱ/I
∗
υ,ϱ) = (ϱ+ 1)υ + 1.

Proof. When υ = 2, 3, the result hold by Lemma 3.1.1. Let υ ≥ 4. Consider the

following exact sequence.

0 −→ 𭟋∗
υ,ϱ/(I

∗
υ,ϱ : yυ)

·yυ−→ 𭟋∗
υ,ϱ/I

∗
υ,ϱ −→ 𭟋∗

υ,ϱ/(I
∗
υ,ϱ, yυ) −→ 0.

Here

G(I∗υ,ϱ : yυ) = {yυ+1, xυ, yυ−1} ∪υ−1
i=1 {xixi+1, xiyi} ∪υ−2

i=1 {yiyi+1} ∪ϱ
j=1 {y1y1j, y2y2j, . . . ,

yυ−1y(υ−1)j, yυ+1y(υ+1)j, x1x1j, x2x2j, . . . , xυxυj} ∪ϱ
j=1 {yυj}.

Clearly, (𭟋∗
υ,ϱ/(I

∗
υ,ϱ : yυ))

∼= 𭟋∗
υ−2,ϱ/I

∗
υ−2,ϱ

⊗
T T[yυ,∪

ϱ
j=1{xυj, y(υ−1)j, y(υ+1)j}]. By Lemma

2.3.3 and induction, depth (𭟋∗
υ,ϱ/(I

∗
υ,ϱ : yυ)) = 1+(ϱ+1)(υ−2)+3ϱ+1 = (ϱ+1)υ+ϱ.

Now

G(I∗υ,ϱ, yυ) = {yυ} ∪υ−1
i=1 {xixi+1} ∪υ−2

i=1 {yiyi+1} ∪υ−1
i=1 {xiyi} ∪ϱ

j=1 {y1y1j, y2y2j, . . . ,

yυ−1y(υ−1)j, x1x1j, x2x2j, . . . , xυxυj} ∪ϱ
j=1 {yυ+1y(υ+1)j}.
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Here (𭟋∗
υ,ϱ/(I

∗
υ,ϱ, yυ))

∼= (𭟋∗
υ−1,ϱ/I

∗
υ−1,ϱ)

⊗
T T[V (Sϱ+1)]/I(Sϱ+1)

⊗
T T[∪

ϱ
j=1yυj]. There-

fore using Lemma 2.3.3 and Lemma 2.3.5 we get

depth (𭟋∗
υ,ϱ/(I

∗
υ,ϱ, yυ)) = depth (T[V (Sϱ+1)]/I(Sϱ+1)) + depth (𭟋∗

υ−1,ϱ/I
∗
υ−1,ϱ) + ϱ.

Using Lemma 2.3.4 also induction on υ

depth (𭟋∗
υ,ϱ/(I

∗
υ,ϱ, yυ)) = (ϱ+ 1)(υ − 1) + 1 + 1 + ϱ = 1 + (ϱ+ 1)υ.

By Depth Lemma

depth (𭟋∗
υ,ϱ/(I

∗
υ,ϱ)) ≥ (ϱ+ 1)υ + 1,

and for upper bound as

G(I∗υ,ϱ : yυ+1) = {yυ} ∪ϱ
j=1 y(υ+1)j ∪υ−1

i=1 {xixi+1} ∪υ−2
i=1 {yiyi+1} ∪ϱ

j=1 {y1y1j, y2y2j, . . . ,

yυ−1y(υ−1)j, x1x1j, . . . , xυxυj} ∪υ−1
i=1 {xiyi}.

Clearly we have (𭟋∗
υ,ϱ/(I

∗
υ,ϱ : yυ+1)) ∼= 𭟋∗

υ−1,ϱ/I
∗
υ−1,ϱ

⊗
T T[yυ+1,∪ϱ

j=1{yυj}], using Lemma

2.3.3, we have depth (𭟋∗
υ,ϱ/(I

∗
υ,ϱ : yυ+1)) = depth (𭟋∗

υ−1,ϱ/I
∗
υ−1,ϱ) + ϱ + 1. By induction

we get

depth (𭟋∗
υ,ϱ/(I

∗
υ,ϱ : yυ+1)) = (ϱ+ 1)(υ − 1) + 1 + ϱ+ 1 = (ϱ+ 1)υ + 1.

As yυ+1 /∈ I∗υ,ϱ, from Corollary 2.3.6. depth (𭟋∗
υ,ϱ/I

∗
υ,ϱ) ≤ (ϱ+ 1)υ + 1. We get

depth (𭟋∗
υ,ϱ/I

∗
υ,ϱ) = (ϱ+ 1)υ + 1.

For Stanley depth we get the same result using Lemma 2.3.2 instead of Depth

Lemma, Lemma 2.3.7 instead of Lemma 2.3.5 and Proposition 2.3.8 instead of Corollary

2.3.6.

Lemma 3.1.3. Let ϱ ≥ 1 and υ = 2, 3. Then,

depth (𭟋υ,ϱ/Iυ,ϱ) = sdepth (𭟋υ,ϱ/Iυ,ϱ) = (ϱ+ 1)υ.
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Proof. We will prove for each υ separately. We have a short exact sequence.

0 −→ 𭟋υ,ϱ/(Iυ,ϱ : xυ)
·xυ−→ 𭟋υ,ϱ/Iυ,ϱ −→ 𭟋υ,ϱ/(Iυ,ϱ, xυ) −→ 0.

Let υ = 2, we have

G(I2,ϱ : x2) = {x1, y2} ∪ϱ
j=1 {y1y1j} ∪

ϱ
j=1 {x2j}.

Clearly, (𭟋2,ϱ/(I2,ϱ : x2)) ∼= T[V (Sϱ+1)]/I(Sϱ+1)
⊗

T T[x2,∪ϱ
j=1{x1j, y2j}]. Using Lemma

2.3.3 depth(𭟋2,ϱ/(I2,ϱ : x2)) = depth (T[V (Sϱ+1)]/I(Sϱ+1)) + 2ϱ+ 1 by Lemma 2.3.4

depth (𭟋2,ϱ/(I2,ϱ : x2)) = 1 + 2ϱ+ 1 = 2(ϱ+ 1).

Here,

G(I2,ϱ, x2) = {x2} ∪ϱ
j=1 {x1y1, y1y2, y1y1j, y2y2j, x1x1j}.

As (𭟋2,ϱ/(I2,ϱ, x2)) ∼= T[V (P3,ϱ)]/I(P3,ϱ)
⊗

T T[∪
ϱ
j=1x2j]. Therefore using Lemma 2.3.3

we get depth (𭟋2,ϱ/(I2,ϱ, x2)) = depth (T[V (P3,ϱ)]/I(P3,ϱ)) + ϱ. By Lemma 3.0.1

depth (𭟋2,ϱ/(I2,ϱ, x2)) = (ϱ+ 2) + ϱ = 2(ϱ+ 1).

So by Depth Lemma, this prove the result for υ = 2.

Now let υ = 3, Clearly

G(I3,ϱ : x3) = {x2, y3} ∪ϱ
j=1 {x1y1, y1y2, x1x1j, y1y1j, y2y2j} ∪ϱ

j=1 {x3j}.

Since (𭟋3,ϱ/(I3,ϱ : x3)) ∼= T[V (P3,ϱ)]/I(P3,ϱ)
⊗

T T[x3,∪ϱ
j=1{y3j, x2j}], therefore by Lemma

2.3.3 depth (𭟋3,ϱ/(I3,ϱ : x3)) = depth (T[V (P3,ϱ)]/I(P3,ϱ)) + 2ϱ+ 1. By Lemma 3.0.1.

depth(𭟋3,ϱ/(I3,ϱ : x3)) = (ϱ+ 2) + 2ϱ+ 1 = 3(ϱ+ 1).

Now

G(I3,ϱ, x3) = {x3, x1x2, x1y1, y1y2, y2y3} ∪ϱ
j=1 {x1x1j, x2x2j, y1y1j, y2y2j, y3y3j}

= {G(I∗2,ϱ), x3}.
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We have (𭟋3,ϱ/(I3,ϱ, x3)) ∼= 𭟋∗
2,ϱ/I

∗
2,ϱ

⊗
T T[∪

ϱ
j=1{x3j}]. By Lemma 2.3.3

depth (𭟋3,ϱ/(I3,ϱ, x3)) = depth (𭟋∗
2,ϱ/I

∗
2,ϱ) + ϱ.

Using Lemma 3.1.1 we get, depth (𭟋3,ϱ/(I3,ϱ, x3)) = 2(ϱ+1)+ 1+ ϱ = 3(ϱ+1). So, by

depth Lemma, depth (𭟋3,ϱ/I3,ϱ) = 3(ϱ+ 1).

For Stanley depth we get the same result using Lemma 2.3.2 instead of Depth

Lemma. We have sdepth (𭟋υ,ϱ/Iυ,ϱ) ≥ υ(ϱ + 1). For upper bound as xυ /∈ Iυ,ϱ by

Proposition 2.3.8.

sdepth (𭟋υ,ϱ/Iυ,ϱ) ≤ sdepth (𭟋υ,ϱ/(Iυ,ϱ : xυ)) = (ϱ+ 1)υ.

Which completes the proof for Stanley depth.

Theorem 3.1.4. Let ϱ ≥ 1 and υ ≥ 2. Then

depth (𭟋υ,ϱ/Iυ,ϱ) = sdepth (𭟋υ,ϱ/Iυ,ϱ) = (ϱ+ 1)υ.

Proof. We will show this by induction on υ, when υ = 2, 3, it is already proved in

previous Lemma 3.1.3. Let υ ≥ 4, consider the following exact sequence.

0 −→ 𭟋υ,ϱ/(Iυ,ϱ : xυ)
·xυ−→ 𭟋υ,ϱ/Iυ,ϱ −→ 𭟋υ,ϱ/(Iυ,ϱ, xυ) −→ 0.

Note that

G(Iυ,ϱ : xυ) = {xυ−1, yυ} ∪υ−3
i=1 {xixi+1} ∪υ−2

i=1 {yiyi+1} ∪υ−2
i=1 {xiyi} ∪ϱ

j=1 {y1y1j, . . . ,

yυ−1y(υ−1)j, x1x1j, x2x2j, . . . , xυ−2x(υ−2)j} ∪ϱ
j=1 {xυj}.

G(Iυ,ϱ : xυ) = {G(I∗υ−2,ϱ), xυ−1, yυ} ∪ϱ
j=1 {xυj}.

Where (𭟋υ,ϱ/(Iυ,ϱ : xυ)) ∼= (𭟋∗
υ−2,ϱ/I

∗
υ−2,ϱ)

⊗
T T[xυ,∪ϱ

j=1{yυj, x(υ−1)j}]. By Lemma

2.3.3 .

depth (𭟋υ,ϱ/(Iυ,ϱ : xυ)) = depth (𭟋∗
υ−2,ϱ/I

∗
υ−2,ϱ) + 2ϱ+ 1.
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By Theorem 3.1.2

depth (𭟋υ,ϱ/(Iυ,ϱ : xυ)) = (ϱ+ 1)(υ − 2) + 1 + 2ϱ+ 1 = (ϱ+ 1)υ.

Now

G(Iυ,ϱ, xυ) = {xυ}∪υ−2
i=1 {xixi+1}∪υ−1

i=1 {yiyi+1}∪υ−1
i=1 {xiyi}∪ϱ

j=1{y1y1j, . . . , yυyυj, x1x1j,

. . . , xυ−1x(υ−1)j}.

Clearly G(Iυ,ϱ, xυ) = {G(I∗υ−1,ϱ), xυ}. Also (𭟋υ,ϱ/(Iυ,ϱ, xυ)) ∼= (𭟋∗
υ−1,ϱ/I

∗
υ−1,ϱ)

⊗
T T[

∪ϱ
j=1 xυj], using Lemma 2.3.3 depth (𭟋υ,ϱ/(Iυ,ϱ, xυ)) = depth (𭟋∗

υ−1,ϱ/I
∗
υ−1,ϱ) + ϱ. By

Theorem 3.1.2.

depth (𭟋υ,ϱ/(Iυ,ϱ, xυ)) = (ϱ+ 1)(υ − 1) + 1 + ϱ = (ϱ+ 1)υ.

Thus by Depth Lemma, depth (𭟋υ,ϱ/Iυ,ϱ) = (ϱ+ 1)υ.

For Stanley depth the get the same result using Lemma 2.3.2 instead of Depth

Lemma. We have sdepth (𭟋υ,ϱ/Iυ,ϱ) ≥ υ(ϱ + 1). For upper bound as xυ /∈ Iυ,ϱ by

Proposition 2.3.8.

sdepth (𭟋υ,ϱ/Iυ,ϱ) ≤ sdepth (𭟋υ,ϱ/(Iυ,ϱ : xυ)) = (ϱ+ 1)υ.

Which completes the proof for Stanley depth.

Lemma 3.1.5. Let 1 ≤ υ ≤ 3 and ϱ ≥ 1. Then

depth (𭟋υ,ϱ/Lυ,ϱ) = sdepth (𭟋υ,ϱ/Lυ,ϱ) = ⌊3υ
2
⌋ϱ+ ⌈υ

2
⌉.

Proof. We will prove for each υ separately. We have the following short exact sequence.

0 −→ 𭟋υ,ϱ/(Lυ,ϱ : xυ)
·xυ−→ 𭟋υ,ϱ/Lυ,ϱ −→ 𭟋υ,ϱ/(Lυ,ϱ, xυ) −→ 0.

When υ = 1 as L1,ϱ
∼= P2,ϱ, it is clear from Lemma 3.0.1 that, depth (𭟋1,ϱ/L1,ϱ) =

sdepth (𭟋1,ϱ/L1,ϱ) = ϱ+ 1.

For υ = 2,

G(L2,ϱ : x2) = {x1y1, y1y2, x1y2, x1, y2, y1} ∪ϱ
j=1 {x1x1j, y1y1j, y2y2j} ∪ϱ

j=1 {x2j}

= {x1, y2, , y1} ∪ϱ
j=1 {x2j}.
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So (𭟋2,ϱ/(L2,ϱ : x2)) ∼= T[x2,∪ϱ
j=1{x1j, y1j, y2j}]. Therefore by Lemma 2.3.3

depth (𭟋2,ϱ/(L2,ϱ : x2)) = 3ϱ+ 1.

Here

G(L2,ϱ, x2) = {x2} ∪ϱ
j=1 {x1y1, y1y2, x1y2, x1x1j, y1y1j, y2y2j}.

We have (𭟋2,ϱ/(L2,ϱ, x2)) ∼= T[V (C3,ϱ)]/I(C3,ϱ)
⊗

T T[∪
ϱ
j=1x2j]. Hence by Lemma 2.3.3

and Lemma 2.3.13

depth (𭟋2,ϱ/(L2,ϱ, x2)) = depth (T[V (C3,ϱ)]/I(C3,ϱ)) + ϱ = 2ϱ+ 1 + ϱ = 3ϱ+ 1.

So, by Depth Lemma

depth (𭟋2,ϱ/(L2,ϱ) = 3ϱ+ 1.

Now let υ = 3,

G(L3,ϱ : x3) = {x1x2, y1y2, y2y3, x1y2, x2y1, x2y3, x1y1, x2y2, , y2, y3, x2} ∪ϱ
j=1 {x1x1j,

y1y1j, y2y2j, y3y3j} ∪ϱ
j=1 {x3j}

= {y2, y3, x2} ∪ϱ
j=1 {x1y1, x1x1j, y1y1j} ∪ϱ

j=1 {x3j}.

Since (𭟋3,ϱ/(L3,ϱ : x3)) ∼= T[V (P2,ϱ)]/I(P2,ϱ)
⊗

T T[x3,∪ϱ
j=1{y3j, x2j, y2j}]. Using Lemma

2.3.3 and Lemma 3.0.1,

depth (𭟋3,ϱ/(L3,ϱ : x3)) = depth (T[V (P2,ϱ)]/I(P2,ϱ)) + 3ϱ+ 1

= ϱ+ 1 + 3ϱ+ 1 = 4ϱ+ 2.

And

G(L3,ϱ, x3) = {x1x2, y1y2, y2y3, x1y2, x2y1, x2y3, x1y1, x2y2, x3}∪ϱ
j=1{x1x1j, x2x2j, y1y1j,

y2y2j, y3y3j}.
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Now let J := G(L3,ϱ, x3). Consider the following exact sequence.

0 −→ 𭟋3,ϱ/(J : y3)
·y3−→ 𭟋3,ϱ/J −→ 𭟋3,ϱ/(J, y3) −→ 0.

G(J : y3) = {x1x2, y1y2, x1y2, x2y1, x1y1, x2y2, , y2, x2, x3} ∪ϱ
j=1 {x1x1j, y1y1j} ∪ϱ

j=1 {y3j}

= {y2, x2, x3} ∪ϱ
j=1 {x1y1, x1x1j, y1y1j} ∪ϱ

j=1 {y3j}.

As we can see (𭟋3,ϱ/(J : y3)) ∼= T[V (P2,ϱ)]/I(P2,ϱ)
⊗

T T[y3,∪
ϱ
j=1{x2j, y2j, x3j}], by

Lemma 2.3.3 and Lemma 3.0.1

depth (𭟋3,ϱ/(J : y3)) = depth (T[V (P2,ϱ)]/I(P2,ϱ)) + 3ϱ+ 1

= ϱ+ 1 + 3ϱ+ 1 = 4ϱ+ 2.

Now G(J, y3) = {x1x2, y1y2, x1y2, x2y1, x1y1, x2y2, y3, x3}∪ϱ
j=1 {x1x1j, x2x2j, y1y1j, y2y2j}

= {G(L2,ϱ), x3, y3}.

We have (𭟋3,ϱ/(J, y3)) ∼= 𭟋2,ϱ/L2,ϱ

⊗
T T[∪

ϱ
j=1{x3j, y3j}]. Therefore by Lemma 2.3.3

and previous case, we obtain

depth (𭟋3,ϱ/(J, y3)) = depth (𭟋2,ϱ/L2,ϱ) + 2ϱ = 3ϱ+ 1 + 2ϱ = 5ϱ+ 1,

by Depth Lemma, depth (𭟋3,ϱ/J) = depth (𭟋3,ϱ/(L3,ϱ, x3)) ≥ 4ϱ + 2. As by depth

Lemma, depth (𭟋3,ϱ/L3,ϱ) ≥ min{depth (𭟋3,ϱ/(L3,ϱ : x3)), depth (𭟋3,ϱ/(L3,ϱ, x3))}.

depth (𭟋3,ϱ/L3,ϱ) ≥ 4ϱ+ 2.

For upper bound as depth (𭟋3,ϱ/(L3,ϱ : y3)) = depth (T[V (P2,ϱ)]/I(P2,ϱ)) + 3ϱ + 1 =

ϱ+ 1 + 3ϱ+ 1 = 4ϱ+ 2 as y3 /∈ 𭟋3,ϱ, using Corollary 2.3.6 we get depth𭟋3,ϱ/(L3,ϱ) ≤
depth (𭟋3,ϱ/(L3,ϱ : y3)) = 4ϱ+ 2. By depth Lemma

depth (𭟋3,ϱ/L3,ϱ) = 4ϱ+ 2.

For Stanley depth we get the same result using Lemma 2.3.2 instead of Depth Lemma

and Proposition 2.3.8 instead of Corollary 2.3.6.
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Theorem 3.1.6. Let υ ≥ 1 and ϱ ≥ 1. Then

depth (𭟋υ,ϱ/Lυ,ϱ) = sdepth (𭟋υ,ϱ/Lυ,ϱ) = ⌊3υ
2
⌋ϱ+ ⌈υ

2
⌉.

Proof. We will show this result with help of induction on υ. For 1 ≤ υ ≤ 3, then we

have the desired result by Lemma 3.1.5. we have the following exact sequence.

0 −→ 𭟋υ,ϱ/(Lυ,ϱ : xυ)
·xυ−→ 𭟋υ,ϱ/Lυ,ϱ −→ 𭟋υ,ϱ/(Lυ,ϱ, xυ) −→ 0.

By Depth Lemma

depth (𭟋υ,ϱ/Lυ,ϱ) ≥ min{depth (𭟋υ,ϱ/(Lυ,ϱ : xυ)), depth (𭟋υ,ϱ/(Lυ,ϱ, xυ))},

and

G(Lυ,ϱ : xυ) = {y1x2, yυ−2xυ−3, xυ−1, yυ, yυ−1} ∪υ−3
i=1 {xixi+1, yiyi+1} ∪ϱ

j=1 {x1x1j, . . . ,

xυ−2x(υ−2)j, y1y1j, . . . , yυ−2y(υ−2)j} ∪υ−2
i=1 xiyi ∪υ−3

j=2 {yjxj−1, yjxj+1} ∪ϱ
j=1 {xυj}.

G(Lυ,ϱ : xυ) = {G(Lυ−2,ϱ), xυ−1, yυ, yυ−1} ∪ϱ
j=1 {xυj}.

Here (𭟋υ,ϱ/(Lυ,ϱ : xυ)) ∼= (𭟋υ−2,ϱ/(Lυ−2,ϱ)
⊗

K T[xυ,∪ϱ
j=1{yυj, x(υ−1)j, y(υ−1)j}]. Using

Lemma 2.3.3 and induction on υ, clearly

depth (𭟋υ,ϱ/(Lυ,ϱ : xυ)) = depth (𭟋υ−2,ϱ/Lυ−2,ϱ) + 3ϱ+ 1

= ⌊3(υ − 2)

2
⌋ϱ+ ⌈υ − 2

2
⌉+ 3ϱ+ 1

= ⌊3υ
2
⌋ϱ+ ⌈υ

2
⌉.

Now let J := G(Lυ,ϱ, xυ) = {G(Lυ−1,ϱ), yυxυ−1, yυyυ−1, xυ} ∪ϱ
j=1 {yυyυj}. Consider the

following exact sequence.

0 −→ 𭟋υ,ϱ/(J : yυ)
·yυ−→ 𭟋υ,ϱ/J −→ 𭟋υ,ϱ/(J, yυ) −→ 0. (3.1)

Here

G(J : yυ) = {G(Lυ−2,ϱ), xυ−1, xυ, yυ−1} ∪ϱ
j=1 {yυj},
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and (𭟋υ,ϱ/(J : yυ) ∼= (𭟋υ−2,ϱ/Lυ−2,ϱ)
⊗

K T[yυ,∪ϱ
j=1{y(υ−1)j, x(υ−1)j, xυj}]. Using Lemma

2.3.3 and induction on υ,

depth (𭟋υ,ϱ/(J : yυ) = depth (𭟋υ−2,ϱ/Lυ−2,ϱ) + 3ϱ+ 1

= ⌊3(υ − 2)

2
⌋ϱ+ ⌈υ − 2

2
⌉+ 3ϱ+ 1

= ⌊3υ
2
⌋ϱ+ ⌈υ

2
⌉.

It is easy to check that G(J, yυ) = {G(Lυ−1,ϱ), xυ, yυ} and (𭟋υ,ϱ/(J, yυ)) ∼= 𭟋υ−1,ϱ/Lυ−1,ϱ⊗
K T[∪ϱ

j=1{yυj, xυj}]. By Lemma 2.3.3 and induction on υ, we get

depth (𭟋υ,ϱ/(J, yυ)) = depth (𭟋υ−1,ϱ/Lυ−1,ϱ) + 2ϱ = ⌊3(υ − 1)

2
⌋ϱ+ ⌈υ − 1

2
⌉+ 2ϱ

= ⌊3υ + 1

2
⌋ϱ+ ⌈υ − 1

2
⌉.

As we can see ⌊3υ+1
2

⌋ϱ+ ⌈υ−1
2
⌉ = ⌊3υ

2
⌋ϱ+ ⌈υ

2
⌉. When υ is odd then ⌊3υ+1

2
⌋ϱ+ ⌈υ−1

2
⌉ =

⌊3υ
2
⌋ϱ + ⌈υ

2
⌉ for ϱ = 1 and ⌊3υ+1

2
⌋ϱ + ⌈υ−1

2
⌉ ≥ ⌊3υ

2
⌋ϱ + ⌈υ

2
⌉ for ϱ ≥ 2. So by Depth

Lemma depth (𭟋υ,ϱ/J) ≥ ⌊3υ
2
⌋ϱ + ⌈υ

2
⌉. Again by Depth Lemma depth (𭟋υ,ϱ/Lυ,ϱ) ≥

min{depth (𭟋υ,ϱ/(Lυ,ϱ : xυ)), depth (𭟋υ,ϱ/(Lυ,ϱ, xυ))}.

depth (𭟋υ,ϱ/Lυ,ϱ) ≥ ⌊3υ
2
⌋ϱ+ ⌈υ

2
⌉.

For upper bound as yυ /∈ 𭟋υ,ϱ and

depth (𭟋υ,ϱ/(Lυ,ϱ : yυ)) = ⌊3υ
2
⌋ϱ+ ⌈υ

2
⌉.

By Corollary 2.3.6, depth (𭟋υ,ϱ/Lυ,ϱ) ≤ depth (𭟋υ,ϱ/(Lυ,ϱ : yυ)) = ⌊3υ
2
⌋ϱ+ ⌈υ

2
⌉. We get

depth (𭟋υ,ϱ/Lυ,ϱ) = ⌊3υ
2
⌋ϱ+ ⌈υ

2
⌉.

For Stanley depth we get the same result using Lemma 2.3.2 instead of Depth

Lemma and Proposition 2.3.8 instead of Corollary 2.3.6.
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Chapter 4

Stanley depth and depth of the
quotient rings of edge ideals
corresponding to ϱ−fold bristled graph
of circular ladder graph and a class of
strong product of a path and a cycle

In this chapter, we determine the Stanley depth and depth of the quotient rings

of edge ideals of ϱ−fold bristled graph of circular ladder graph and Tυ graph, where

Tυ = P2 ⊠ Cυ, where υ ≥ 3.

Througout this chapter, we assume 𭟋υ,ϱ := T[∪υ
i=1{xi, yi},∪ϱ

j=1{x1j, x2j, . . . , xυj, y1j

, y2j, . . . , yυj}], here υ represents the total vertices of cycle Cυ and ϱ shows the total

pendant vertices attached at each xi.

Definition 4.0.1. The circular ladder graph is the cartesian product of P2 and Cυ,

where υ ≥ 3. We denote this graph by Hυ. The ϱ−fold bristled graph Brsϱ(Hυ) is

obtained by attaching ϱ pendants to each vertex of Hυ. Figure 4.1 shows Brs2(H6).
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Figure 4.1: Brs6(H2)

Definition 4.0.2. Let Tυ denotes the strong product of path P2 and cycle Cυ by

Tυ = P2 ⊠ Cυ, where υ ≥ 3. The ϱ-fold bristled graph Brsϱ(Tυ) is obtained by

attaching ϱ pendants to each vertex of Tυ. Figure 4.2 shows Brs2(T6).
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Figure 4.2: Brs2(T6)

Definition 4.0.3. Let ϱ ≥ 1 and υ ≥ 3, then the generating set of edge ideal Cυ,ϱ =

I(Brsϱ(Hυ)) is

G(Cυ,ϱ) := G(Iυ,ϱ) ∪ {x1xυ, y1yυ}.

We also define a new graph D
′′
υ,ϱ with the vertix set V (D

′′
υ,ϱ) :=

⋃υ
i=1{xi}

⋃υ+2
i=1 {yi}⋃ϱ

j=1{x1j, . . . , xυϱ, y1υ, . . . , y(υ+2)ϱ} and edge set of graph is E(D
′′
υ,ϱ) :=

⋃υ−1
i=1 {xixi+1}⋃υ+1

i=1 {yiyi+1}
⋃υ

i=1{xiyi+1}
⋃ϱ

j=1{y1y1j, . . . , yυ+2y(υ+2)j, x1x1j, . . . , xυxυj}. Figure 4.3

shows E3,2 graph. We set

𭟋∗∗
υ,ϱ := 𭟋υ,ϱ[yυ+1, yυ+2,

ϱ⋃
j=1

y(υ+1)j,

ϱ⋃
j=1

y(υ+2)j].

Then minimally generating set of associated edge ideal for υ = 1 is G(E1,ϱ) := {x1y2, y1y2

, y2y3}
⋃ϱ

j=1{x1x1j, y1y1j, y2y2j, y3y3j}, for υ ≥ 2 and edge ideal Eυ,ϱ := I(D
′′
υ,ϱ), it is
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stated as:

G(Eυ,ϱ) :=
υ−1⋃
i=1

{xixi+1} ∪υ+1
i=1 {yiyi+1}

υ⋃
i=1

{xiyi+1}
ϱ⋃

j=1

{y1y1j, . . . , yυ+2y(υ+2)j, x1x1j,

. . . , xυxυj}.

y1 y2 y3 y4

y11 y12 y21 y22 y31 y32 y41 y42

x2 x3 x4

x21 x22 x31 x32 x41 x42

y5

y51 y52

Figure 4.3: E3,2

4.1 Results for ϱ−fold bristled graph of circular lad-
der graph and a strong product related graph

In this section, we determine the Stanley depth and depth and of the quotient rings

corresponding with edge ideals of ϱ−fold bristled graph of circular ladder graph and

Tυ graph. We prove for these graphs, the depth and Stanley depth values are equal.

To determine these invariants of ϱ−fold bristled graph of circular ladder graph, we

shall first determine these values for the quotient module associated with edge ideal of

D
′′
υ,ϱ graph.

Lemma 4.1.1. Let ϱ ≥ 1. Then,

sdepth (𭟋∗∗
1,ϱ/E1,ϱ) = depth (𭟋∗∗

1,ϱ/E1,ϱ) = ϱ+ 3.

Also

sdepth (𭟋∗∗
2,ϱ/E2,ϱ) = depth (𭟋∗∗

2,ϱ/E2,ϱ) = 3ϱ+ 3.
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Proof. We have a short exact sequence.

0 −→ 𭟋∗∗
υ,ϱ/(Eυ,ϱ : yυ+2)

·yυ+2−−−→ 𭟋∗∗
υ,ϱ/Eυ,ϱ −→ 𭟋∗∗

υ,ϱ/(Eυ,ϱ, yυ+2) −→ 0.

Let υ = 1, then 𭟋∗∗
1,ϱ/(E1,ϱ : y3) ∼=

⊗2
i=1 T[V (Sϱ+1)]/I(Sϱ+1)

⊗
T T[y3,∪

ϱ
j=1y2j], by

Lemma 2.3.3, Lemma 2.3.5 and Lemma 2.3.4, we have

depth (𭟋∗∗
1,ϱ/(E1,ϱ : y3)) = 2 depth (T[V (Sϱ+1)]/I(Sϱ+1)) + ϱ+ 1 = 2 + ϱ+ 1 = ϱ+ 3.

Since 𭟋∗∗
1,ϱ/(E1,ϱ, y3) ∼= T[V (P3,ϱ)]/I(P3,ϱ)

⊗
T T[∪

ϱ
j=1y3j], by Lemma 2.3.3 and Theorem

3.0.1 depth𭟋∗∗
1,ϱ/(E1,ϱ, y3) = depth (T[V (P3,ϱ)]/I(P3,ϱ)) + ϱ = ϱ+ 2 + ϱ = 2ϱ+ 2. Now

by Depth Lemma if

depth (𭟋∗∗
1,ϱ/E1,ϱ : y3) ≤ depth (𭟋∗∗

1,ϱ/E1,ϱ, y3).

Then,

depth (𭟋∗∗
1,ϱ/E1,ϱ) = depth (𭟋∗∗

1,ϱ/E1,ϱ : y3) = ϱ+ 3.

This prove the result for υ = 1.

Now let υ = 2, we have 𭟋∗∗
2,ϱ/(E2,ϱ : y4) ∼= T[V (P4,ϱ)]/I(P4,ϱ)

⊗
T T[y4,∪

ϱ
j=1y3j]. There-

fore by Lemma 2.3.3 and Lemma 3.0.1,

depth (𭟋∗∗
2,ϱ/(E2,ϱ : y4)) = depth (T[V (P4,ϱ)]/I(P4,ϱ)) + ϱ+ 1

= 2(ϱ+ 1) + ϱ+ 1 = 3ϱ+ 3.

Now 𭟋∗∗
2,ϱ/(E2,ϱ, y4) ∼= 𭟋∗

2,ϱ/I
∗
2,ϱ

⊗
T T[∪

ϱ
j=1y4j]. Using Lemma 2.3.3 and Lemma 3.1.1,

we get depth (𭟋∗∗
2,ϱ/(E2,ϱ, y4)) = depth (𭟋∗

2,ϱ/I
∗
2,ϱ)+ϱ = 2(ϱ+1)+1+ϱ = 2ϱ+2+1+ϱ =

3ϱ+ 3. So by Depth Lemma

depth (𭟋∗∗
2,ϱ/E2,ϱ)) = 3ϱ+ 3.

For Stanley depth when υ = 1, by applying Lemma 2.3.2 instead of Depth Lemma,

Lemma 2.3.7 instead of Lemma 2.3.5 on the exact sequence. We have

sdepth (𭟋∗∗
1,ϱ/E1,ϱ) ≥ ϱ+ 3.
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For upper bound, consider µ = y21 . . . y2ϱy1y3x1 ∈ 𭟋∗∗
1,ϱ/E1,ϱ, clearly xtµ ∈ E1,ϱ, for all

t ∈ [4ϱ+ 4] \ supp(µ), therefore by Lemma 2.3.9 sdepth (𭟋∗∗
1,ϱ/E1,ϱ) ≤ ϱ+ 3.

For υ = 2, by applying Lemma 2.3.2 instead of Depth Lemma we get sdepth (𭟋∗∗
2,ϱ/E2,ϱ))

≥ 3ϱ + 3. For upper bound, as y4 /∈ E2,ϱ by Proposition 2.3.8 sdepth (𭟋∗∗
2,ϱ/E2,ϱ)) ≤

sdepth (𭟋∗∗
2,ϱ/E2,ϱ : y4)) = 3ϱ+ 3.

Theorem 4.1.2. Let ϱ ≥ 1 and υ ≥ 1, then

depth (𭟋∗∗
υ,ϱ/Eυ,ϱ) = sdepth (𭟋∗∗

υ,ϱ/Eυ,ϱ) =

{
(υ + 1)(ϱ+ 1), if υ is even;
υ(ϱ+ 1) + 2, if υ is odd.

Proof. For υ = 1, 2, it is already proved in Lemma 4.1.1. Now we will prove for υ ≥ 3,

we will prove this result with the help of induction on υ. Consider the following exact

sequence.

0 −→ 𭟋∗∗
υ,ϱ/(Eυ,ϱ : yυ+2)

·yυ+2−−−→ 𭟋∗∗
υ,ϱ/Eυ,ϱ −→ 𭟋∗∗

υ,ϱ/(Eυ,ϱ, yυ+2) −→ 0.

By Depth Lemma

depth (𭟋∗∗
υ,ϱ/Eυ,ϱ) ≥ min{depth (𭟋∗∗

υ,ϱ/(Eυ,ϱ : yυ+2)), depth (𭟋∗∗
υ,ϱ/(Eυ,ϱ, yυ+2))}.

Clearly G(Eυ,ϱ : yυ+2) = {G(Eυ−2,ϱ), xυ−2xυ−1, xυ−1yυ, xυ−1xυ, yυ+1} ∪ϱ
j=1 {y(υ+2)j}.

Let J∗ := (Eυ,ϱ : yυ+2). Now consider following exact sequence.

0 −→ 𭟋∗∗
υ,ϱ/(J

∗ : xυ)
·xυ−→ 𭟋∗∗

υ,ϱ/J
∗ −→ 𭟋∗∗

υ,ϱ/(J
∗, xυ) −→ 0.

Since 𭟋∗∗
υ,ϱ/(J

∗ : xυ) ∼= 𭟋∗∗
υ,ϱ/Eυ−2,ϱ

⊗
T T[xυ, yυ+2,∪ϱ

j=1y(υ+1)j,∪ϱ
j=1x(υ−1)j], and

𭟋∗∗
υ,ϱ/(J

∗, xυ) ∼= 𭟋∗
υ−1,ϱ/I

∗
υ−1,ϱ

⊗
T T[yυ+2,∪ϱ

j=1xυj,∪ϱ
j=1y(υ+1)j]. Thus by Lemma

2.3.3 depth (𭟋∗∗
υ,ϱ/(J

∗ : xυ)) = depth (𭟋∗∗
υ,ϱ/Eυ−2,ϱ) + 2ϱ+ 2, also

depth (𭟋∗∗
υ,ϱ/(J

∗, xυ)) = depth (𭟋∗
υ−1,ϱ/I

∗
υ−1,ϱ) + 2ϱ+ 1.

Case 1.

If υ is even then by induction on υ, depth (𭟋∗∗
υ,ϱ/(J

∗ : xυ)) = depth (𭟋∗∗
υ−2,ϱ/Eυ−2,ϱ) +

2ϱ + 2 = (υ − 2 + 1)(ϱ + 1) + 2ϱ + 2 = υ(ϱ + 1) − ϱ − 1 + 2ϱ + 2 = (υ + 1)(ϱ +

1). Similarly, Lemma 3.1.1 gives us depth (𭟋∗∗
υ,ϱ/(J

∗, xυ)) = depth (𭟋∗
υ−1,ϱ/I

∗
υ−1,ϱ) +
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2ϱ + 1 = (υ − 1)(ϱ + 1) + 1 + 2ϱ + 1 = υ(ϱ + 1) − ϱ − 1 + 1 + 2ϱ + 1 = υ(ϱ +

1) + ϱ + 1. Applying Depth Lemma we get depth (𭟋∗∗
υ,ϱ/J

∗) = υ(ϱ + 1) + ϱ + 1. Now

𭟋∗∗
υ,ϱ/(Eυ,ϱ, yυ+2) ∼= 𭟋∗

υ,ϱ/I
∗
υ,ϱ

⊗
T T[∪

ϱ
j=1y(υ+2)j]. Using Lemma 2.3.3 and Lemma 3.1.1

we get depth (𭟋∗∗
υ,ϱ/(Eυ,ϱ, yυ+2)) = depth (𭟋∗

υ,ϱ/I
∗
υ,ϱ) + ϱ = υ(ϱ+ 1) + 1 + ϱ. By Depth

Lemma

depth (𭟋∗∗
υ,ϱ/Eυ,ϱ) = υ(ϱ+ 1) + ϱ+ 1.

Case 2.

If υ is odd, then by induction on υ, depth (𭟋∗∗
υ,ϱ/(J

∗ : xυ)) = depth (𭟋∗∗
υ,ϱ/Eυ−2,ϱ)+2ϱ+

2 = (υ − 2)(ϱ+ 1) + 2 + 2ϱ+ 2 = υ(ϱ+ 1)− 2ϱ− 2 + 2 + 2ϱ+ 2 = υ(ϱ+ 1) + 2. Also

using Lemma 3.1.1 depth (𭟋∗∗
υ,ϱ/(J

∗, xυ)) = depth (𭟋∗
υ−1,ϱ/I

∗
υ−1,ϱ)+2ϱ+1 = (υ−1)(ϱ+

1) + 1 + 2ϱ+ 1 = υ(ϱ+ 1)− ϱ− 1 + 1 + 2ϱ+ 1 = υ(ϱ+ 1) + ϱ+ 1. By Depth Lemma

depth (𭟋∗∗
υ,ϱ/J

∗) ≥ υ(ϱ + 1) + 2. Here 𭟋∗∗
υ,ϱ/(Eυ,ϱ, yυ+2) ∼= 𭟋∗

υ,ϱ/I
∗
υ,ϱ

⊗
T T[∪

ϱ
j=1y(υ+2)j].

Using Lemma 2.3.3 and Lemma 3.1.1 we get

depth (𭟋∗∗
υ,ϱ/(Eυ,ϱ, yυ+2)) = depth (𭟋∗

υ,ϱ/I
∗
υ,ϱ) + ϱ = υ(ϱ + 1) + 1 + ϱ. Therefore by

Depth Lemma depth (𭟋∗∗
υ,ϱ/Eυ,ϱ) ≥ υ(ϱ + 1) + 2. For upper bound as xυ /∈ Eυ,ϱ, and

𭟋∗∗
υ,ϱ/(Eυ,ϱ : xυ) ∼= 𭟋∗∗

υ,ϱ/Eυ−2,ϱ

⊗
T T[V (Sϱ+1)]/I(Sϱ+1)

⊗
T T[xυ,∪ϱ

j=1y(υ+1)j,∪ϱ
j=1

x(υ−1)j]. Thus, by Lemma 2.3.3, Lemma 2.3.4 and principal of induction on υ.

depth (𭟋∗∗
υ,ϱ/(Eυ,ϱ : xυ)) = depth (𭟋∗∗

υ,ϱ/Eυ−2,ϱ) + depth (T[V (Sϱ+1)]/I(Sϱ+1)) + 2ϱ+ 1.

depth (𭟋∗∗
υ,ϱ/(Eυ,ϱ : xυ)) = (υ − 2)(ϱ+ 1) + 2 + 1 + 2ϱ+ 1

= υ(ϱ+ 1)− 2ϱ− 2 + 2 + 2ϱ+ 2

= υ(ϱ+ 1) + 2.

Using Corollary 2.3.6

depth (𭟋∗∗
υ,ϱ/Eυ,ϱ) ≤ depth (𭟋∗∗

υ,ϱ/(Eυ,ϱ : xυ)) = υ(ϱ+ 1) + 2.

Using Depth Lemma

depth (𭟋∗∗
υ,ϱ/Eυ,ϱ) = υ(ϱ+ 1) + 2.

For the case of Stanley depth this value come after applying Lemma 2.3.2 instead of

Depth Lemma, Lemma 2.3.7 instead of Lemma 2.3.5 and Proposition 2.3.8 instead of
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Corollary 2.3.6. When υ is even we get, sdepth (𭟋∗∗
υ,ϱ/Eυ,ϱ) ≥ (υ+1)(ϱ+1). For upper

bound consider µ = y11 . . . y1ϱ . . . y(υ−1)1 . . . y(υ−1)ϱy(υ+1)1 . . . y(υ+1)ϱx11 . . . x1ϱ . . . x(υ−3)1

. . . x(υ−3)ϱx(υ−1)1 . . . x(υ−1)ϱy2y4 . . . yυyυ+2x2x4 . . . xυ−2xυ ∈ 𭟋∗∗
υ,ϱ/Eυ,ϱ, clearly xtµ ∈ Eυ,ϱ,

for all t ∈ [2(υ+1)(ϱ+1)]\ supp(µ), therefore using Lemma 2.3.9 sdepth (𭟋∗∗
υ,ϱ/Eυ,ϱ) ≤

(υ + 1)ϱ+ υ + 1 = (υ + 1)(ϱ+ 1). Hence

sdepth (𭟋∗∗
υ,ϱ/Eυ,ϱ) = (υ + 1)(ϱ+ 1).

When υ is odd we get, sdepth (𭟋∗∗
υ,ϱ/Eυ,ϱ) ≥ υ(ϱ+1)+2. For upper bound consider µ =

y21 . . . y2ϱ . . . y(υ−1)1 . . . y(υ−1)ϱy(υ+1)1 . . . y(υ+1)ϱx21 . . . x2ϱ . . . x(υ−3)1 . . . x(υ−3)ϱx(υ−1)1 . . .

x(υ−1)ϱy1y3 . . . yυyυ+2x1x3 . . . xυ−2xυ ∈ 𭟋∗∗
υ,ϱ/Eυ,ϱ, clearly xtµ ∈ Eυ,ϱ, for all t ∈ [2(υ +

1)(ϱ + 1)] \ supp(µ), therefore using Lemma 2.3.9 sdepth (𭟋∗∗
υ,ϱ/Eυ,ϱ) ≤ υϱ + υ + 2 =

υ(ϱ+ 1) + 2.

Theorem 4.1.3. Let ϱ ≥ 1 and υ ≥ 3, then

depth (𭟋υ,ϱ/Cυ,ϱ) = sdepth (𭟋υ,ϱ/Cυ,ϱ) =

{
υ(ϱ+ 1), if υ is even;
υ(ϱ+ 1) + ϱ− 1, if υ is odd.

Proof. First we will prove the result for depth. Consider the following exact sequence.

0 −→ 𭟋υ,ϱ/(Cυ,ϱ : xυ)
·xυ−→ 𭟋υ,ϱ/Cυ,ϱ −→ 𭟋υ,ϱ/(Cυ,ϱ, xυ) −→ 0. (4.1)

Let υ = 3,

Here 𭟋3,ϱ/(C3,ϱ : x3) ∼= T[V (P2,ϱ)]/I(P2,ϱ)
⊗

T T[x3,∪ϱ
j=1y3j,∪

ϱ
j=1x1j,∪ϱ

j=1x2j]. Using

Lemma 2.3.3 and Lemma 3.0.1, we have

depth (𭟋3,ϱ/(C3,ϱ : x3)) = depth (T[V (P2,ϱ)]/I(P2,ϱ)) + 3ϱ+ 1

= (ϱ+ 1) + 3ϱ+ 1 = 4ϱ+ 2.

Now let A := (C3,ϱ, x3) and G(A) = {G(I2,ϱ), y1y3, y2y3, x3} ∪ϱ
j=1 {y3y3j}. Consider the

following exact sequence.

0 −→ 𭟋3,ϱ/(A : y3)
·y3−→ 𭟋3,ϱ/A −→ 𭟋3,ϱ/(A, y3) −→ 0.

Since 𭟋3,ϱ/(A : y3) ∼= T[V (P2,ϱ)]/I(P2,ϱ)
⊗

T T[y3,∪
ϱ
j=1x3j,∪ϱ

j=1y1j,∪
ϱ
j=1y2j]. By Lemma

2.3.3 and Lemma 3.0.1, depth (𭟋3,ϱ/(A : y3)) = depth (T[V (P2,ϱ)]/I(P2,ϱ)) + 3ϱ + 1 =
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(ϱ + 1) + 3ϱ + 1 = 4ϱ + 2. Similarly 𭟋3,ϱ/(A, y3) ∼= 𭟋2,ϱ/I2,ϱ
⊗

T T[∪
ϱ
j=1x3j,∪ϱ

j=1y3j].

Applying Lemma 2.3.3 and Lemma 3.1.3,

depth (𭟋3,ϱ/(A, y3)) = depth (𭟋2,ϱ/I2,ϱ) + 2ϱ = 2(ϱ+ 1) + 2ϱ = 4ϱ+ 2.

By Depth Lemma, depth (𭟋3,ϱ/A) = 4ϱ+ 2. By Depth Lemma

depth (𭟋3,ϱ/C3,ϱ) = 4ϱ+ 2.

Now let υ ≥ 4, here 𭟋υ,ϱ/(Cυ,ϱ : xυ) ∼= 𭟋∗∗
υ−3,ϱ/Eυ−3,ϱ

⊗
T T[xυ,∪ϱ

j=1x1j,∪ϱ
j=1x(υ−1)j,

∪ϱ
j=1 yυj]. By Lemma 2.3.3 depth (𭟋υ,ϱ/(Cυ,ϱ : xυ)) = depth (𭟋∗∗

υ−3,ϱ/Eυ−3,ϱ) + 3ϱ+ 1.

Let A∗ := (Cυ,ϱ, xυ) and G(A∗) = {G(Iυ−1,ϱ), y1yυ, yυyυ−1, xυ} ∪ϱ
j=1 {yυyυj}. Consider

the following exact sequence.

0 −→ 𭟋υ,ϱ/(A
∗ : yυ)

yυ−→ 𭟋υ,ϱ/A
∗ −→ 𭟋υ,ϱ/(A

∗, yυ) −→ 0.

where

𭟋υ,ϱ/(A
∗ : yυ) ∼= 𭟋∗∗

υ−3,ϱ/Eυ−3,ϱ

⊗
T T[yυ,∪

ϱ
j=1xυj,∪ϱ

j=1y1j,∪
ϱ
j=1y(υ−1)j], also it very

clear 𭟋υ,ϱ/(A
∗, yυ) ∼= 𭟋υ−1,ϱ/Iυ−1,ϱ

⊗
T T[∪

ϱ
j=1xυj,∪ϱ

j=1yυj].

Case 1.

When υ is even, using Lemma 2.3.3 depth (𭟋υ,ϱ/(A
∗ : yυ)) = depth (𭟋∗∗

υ−3,ϱ/Eυ−3,ϱ) +

3ϱ + 1. As υ is even so υ − 3 will be an odd number so by Theorem 4.1.2 we have

depth (𭟋υ,ϱ/(A
∗ : yυ)) = (υ−3)(ϱ+1)+2+3ϱ+1 = υ(ϱ+1)−3ϱ−3+3ϱ+3 = υ(ϱ+1).

Now by Lemma 2.3.3 and Theorem 3.1.4 depth (𭟋υ,ϱ/(A
∗, yυ)) = depth (𭟋υ−1,ϱ/Iυ−1,ϱ)+

2ϱ = (υ− 1)(ϱ+1)+ 2ϱ = υ(ϱ+1)− ϱ− 1+ 2ϱ = υ(ϱ+1)+ ϱ− 1. By Depth Lemma

depth (𭟋υ,ϱ/A
∗) ≥ υ(ϱ+ 1).

Similarly by Theorem 4.1.2 depth (𭟋υ,ϱ/(Cυ,ϱ : xυ)) = depth (𭟋∗∗
υ−3,ϱ/Eυ−3,ϱ)+3ϱ+1 =

(υ − 3)(ϱ+ 1) + 2 + 3ϱ+ 1 = υ(ϱ+ 1)− 3ϱ− 3 + 3ϱ+ 3 = υ(ϱ+ 1). Applying Depth

Lemma we get depth (𭟋υ,ϱ/Cυ,ϱ) ≥ υ(ϱ+1). For upper bound as xυ /∈ Cυ,ϱ by Corollary

2.3.6 depth (𭟋υ,ϱ/Cυ,ϱ) ≤ depth (𭟋υ,ϱ/(Cυ,ϱ : xυ)) = υ(ϱ+1). This completes the proof

when υ is even.

Case 2.

If υ is odd, using Lemma 2.3.3 depth (𭟋υ,ϱ/(A
∗ : yυ)) = depth (𭟋∗∗

υ−3,ϱ/Eυ−3,ϱ) + 3ϱ +
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1. As υ is odd so υ − 3 will be an even number so by Theorem 4.1.2 we have

depth (𭟋υ,ϱ/(A
∗ : yυ)) = (υ − 3 + 1)(ϱ + 1) + 3ϱ + 1 = υ(ϱ + 1) − 2ϱ − 2 + 3ϱ + 1 =

υ(ϱ+ 1) + ϱ− 1.

Now by Lemma 2.3.3 and Theorem 3.1.4 depth (𭟋υ,ϱ/(A
∗, yυ)) = depth (𭟋υ−1,ϱ/Iυ−1,ϱ)+

2ϱ = (υ− 1)(ϱ+1)+ 2ϱ = υ(ϱ+1)− ϱ− 1+ 2ϱ = υ(ϱ+1)+ ϱ− 1. By Depth Lemma

depth (𭟋υ,ϱ/A
∗) = υ(ϱ+ 1) + ϱ− 1.

By Theorem 4.1.2 depth (𭟋υ,ϱ/(Cυ,ϱ : xυ)) = depth (𭟋∗∗
υ−3,ϱ/Eυ−3,ϱ)+ 3ϱ+1 = (υ− 3+

1)(ϱ+ 1) + 3ϱ+ 1 = υ(ϱ+ 1)− 2ϱ− 2 + 3ϱ+ 1 = υ(ϱ+ 1) + ϱ− 1. By Depth Lemma

we get depth (𭟋υ,ϱ/Cυ,ϱ) = υ(ϱ+ 1) + ϱ− 1.

For Stanley depth the we get the same result using Lemma 2.3.2 instead of Depth

Lemma, Lemma 2.3.7 instead of Lemma 2.3.5 and Proposition 2.3.8 instead of Corollary

2.3.6.

When υ is even we have, sdepth (𭟋υ,ϱ/Cυ,ϱ) = υ(ϱ+1). Similarly when υ is odd we get

sdepth (𭟋υ,ϱ/Cυ,ϱ) ≥ υ(ϱ + 1) + ϱ − 1. For upper bound as xυ /∈ Cυ,ϱ by Proposition

2.3.8 sdepth (𭟋υ,ϱ/Cυ,ϱ) ≤ sdepth (𭟋υ,ϱ/(Cυ,ϱ : xυ)) = υ(ϱ+ 1) + ϱ− 1. Hence

sdepth (𭟋υ,ϱ/Cυ,ϱ) = υ(ϱ+ 1) + ϱ− 1.

Lemma 4.1.4. Let υ = 3, 4, and ϱ ≥ 1. Then

depth (𭟋υ,ϱ/Cυ,ϱ) = sdepth (𭟋υ,ϱ/Cυ,ϱ) = ⌊3υ + 1

2
⌋ϱ+ ⌈υ − 1

2
⌉.

Proof. Consider the following exact sequence.

0 −→ 𭟋υ,ϱ/(Cυ,ϱ : xυ)
·xυ−→ 𭟋υ,ϱ/Cυ,ϱ −→ 𭟋υ,ϱ/(Cυ,ϱ, xυ) −→ 0. (4.2)

Let υ = 3,

G(C3,ϱ : x3) = {y1y2, y2y3, x2y2, x1y2, x2y1, x2y3, , y1y3, x1y3, x2, y3, y2, x1, y1} ∪ϱ
j=1 {

x1x1i, x2x2j, y1y1j, y2y2j, y3y3j} ∪ϱ
j=1 {x3j}.

G(C3,ϱ : x3) = {x2, y3, y2, x1, y1} ∪ϱ
j=1 {x3j}.
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Clearly (𭟋3,ϱ/(C3,ϱ : x3)) ∼= T[∪ϱ
j=1{x1j, x2j, y1j, y2j, y3j}]. Thus by Lemma 2.3.3

depth (𭟋3,ϱ/(C3,ϱ : x3)) = 5ϱ+ 1. Also we have

G(C3,ϱ, x3) = {x1x2, y1y2, y2y3, x1y1, x2y2, x1y2, x2y1, x2y3, y1y3, x1y3, x3} ∪ϱ
j=1 {x1x1j,

x2x2j, y1y1j, y2y2j, y3y3j}.

Let J ′ := (C3,ϱ, x3). Consider the following exact sequence.

0 −→ 𭟋3,ϱ/(J
′ : y3)

·y3−→ 𭟋3,ϱ/J
′ −→ 𭟋3,ϱ/(J

′, y3) −→ 0.

G(J ′ : y3) = {x1x2, y1y2, x1y1, x2y2, x1y2, x2y1, y1, x1, y2, x2, x3}∪ϱ
j=1{x1x1j, x2x2j, y1y1j

, y2y2j} ∪ϱ
j=1 {y3j}.

G(J ′ : y3) = {y1, x1, y2, x2, x3} ∪ϱ
j=1 {y3j}.

As (𭟋3,ϱ/(J
′ : y3)) ∼= T[y3,∪ϱ

j=1{x1j, x2j, x3j, y1j, y2j}]. Thus by Lemma 2.3.3

depth (𭟋3,ϱ/(J : y3)) = 5ϱ+ 1. Now

G(J ′, y3) = {y3, x3} ∪ {x1x2, y1y2, x1y1, x2y2, x1y2, x2y1} ∪ϱ
j=1 {x1x1j, x2x2j, y1y1j, y2y2j}.

Where (𭟋3,ϱ/(J
′, y3)) ∼= 𭟋2,ϱ/L2,ϱ

⊗
K T[∪ϱ

j=1{y3j, x3j}]. Using Lemma 2.3.3 and Lemma

3.1.5 we get depth (𭟋3,ϱ/(J
′, y3)) = depth (𭟋2,ϱ/L2,ϱ) + 2ϱ = 3ϱ+ 1 + 2ϱ = 5ϱ+ 1. By

Depth Lemma results depth (𭟋3,ϱ/J
′) = depth (𭟋3,ϱ/(C3,ϱ, x3)) = 5ϱ+ 1. Again Depth

Lemma results gives us 4.2 depth (𭟋3,ϱ/C3,ϱ) = 5ϱ + 1. This confirm the result for

υ = 3.

Now we have υ = 4, we have

G(C4,ϱ : x4) = {y1y4, x1y4, x3, y4, y3, x1, y1, }∪2
j=2{yixi+1}∪3

j=2{yixi−1}∪3
i=1{xiyi, y1x2,

y4x3} ∪ϱ
j=1 {x1x1j, . . . , x3x3j, y1y1j, . . . , y4y4j} ∪3

i=1 {yiyi+1} ∪2
i=1 {xixi+1} ∪ϱ

j=1 {x4j}

= {x3, y4, y3, x1, y1} ∪ϱ
j=1 {x2y2, x2x2j, y2y2j} ∪ϱ

j=1 {x4j}.
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As we can see that (𭟋4,ϱ/(C4,ϱ : x4)) ∼= T[V (P2,ϱ)]/I(P2,ϱ)
⊗

K T[x4,∪ϱ
j=1{x1j, x3j, y1j,

y3j, y4j}]. By Lemma 2.3.3 and Lemma 3.0.1.

depth (𭟋4,ϱ/(C4,ϱ : x4)) = depth (T[V (P2,ϱ)]/I(P2,ϱ))+5ϱ+1 = ϱ+1+5ϱ+1 = 6ϱ+2.

Now let B := (C4,ϱ, x4), where G(B) = G(L3,ϱ) ∪ {x3y4, y3y4, y4x1, y4y1, x4}. Consider

the following exact sequence.

0 −→ 𭟋4,ϱ/(B : y4)
·y4−→ 𭟋4,ϱ/B −→ 𭟋4,ϱ/(B, y4) −→ 0.

Clearly,

G(B : y4) = {y1, x1, x3, y3, x4} ∪ϱ
j=1 {x2y2, x2x2j, y2y2j} ∪ϱ

j=1 {y4j}.

Since (𭟋4,ϱ/(B : y4)) ∼= T[V (P2,ϱ)]/I(P2,ϱ)
⊗

K T[y3,∪ϱ
j=1{y3j, y1j, x1j, x3j, x4j}]. By

Lemma 2.3.3 and Lemma 3.0.1

depth (𭟋υ,ϱ/(B : y4)) = depth (T[V (P2,ϱ)]/I(P2,ϱ)) + 5ϱ+ 1

= ϱ+ 1 + 5ϱ+ 1 = 6ϱ+ 2.

Note that G(B, y4) = (G(L3,ϱ), x4, y4) and (𭟋4,ϱ/(B, y4)) ∼= 𭟋3,ϱ/L3,ϱ

⊗
K T[∪ϱ

j=1{y4j,
x4j}], by Lemma 2.3.3 and Lemma 3.1.5

depth (𭟋4,ϱ/(B, y4)) = depth (𭟋3,ϱ/L3,ϱ) + 2ϱ = 4ϱ+ 2 + 2ϱ = 6ϱ+ 2,

by Depth Lemma

depth (𭟋4,ϱ/B) = depth (𭟋4,ϱ/(C4,ϱ, x4)) = 6ϱ+ 2,

and consequently, Depth Lemma, we get depth (𭟋4,ϱ/C4,ϱ) = 6ϱ+ 2.

For Stanley depth when υ = 3, 4, we get this result by applying Lemma 2.3.2

instead of Depth Lemma and Proposition 2.3.8 instead of Corollary 2.3.6. We get

sdepth (𭟋υ,ϱ/Cυ,ϱ) ≥ ⌊3υ+1
2

⌋ϱ + ⌈υ−1
2
⌉. For upper bound as xυ /∈ Cυ,ϱ by Proposition

2.3.8.

sdepth (𭟋υ,ϱ/Cυ,ϱ) ≤ sdepth (𭟋υ,ϱ/Cυ,ϱ : xυ) = ⌊3υ + 1

2
⌋ϱ+ ⌈υ − 1

2
⌉.
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So,

sdepth (𭟋υ,ϱ/Cυ,ϱ) = ⌊3υ + 1

2
⌋ϱ+ ⌈υ − 1

2
⌉.

Theorem 4.1.5. Let υ ≥ 3 and ϱ ≥ 1. Then

depth (𭟋υ,ϱ/Cυ,ϱ) = sdepth (𭟋υ,ϱ/Cυ,ϱ) = ⌊3υ + 1

2
⌋ϱ+ ⌈υ − 1

2
⌉.

Proof. For υ = 3, 4, Lemma 4.1.4 shows that result hold Now we will prove this for

υ ≥ 5. Consider the following exact sequence.

0 −→ 𭟋υ,ϱ/(Cυ,ϱ : xυ)
·xυ−→ 𭟋υ,ϱ/Cυ,ϱ −→ 𭟋υ,ϱ/(Cυ,ϱ, xυ) −→ 0. (4.3)

G(Cυ,ϱ : xυ) = {xυ−1, yυ, yυ−1, x1, y1} ∪υ−3
j=2 {yixi+1} ∪υ−2

j=3 yjxj−1} ∪υ−2
i=2 {xiyi} ∪ϱ

j=1 {x2x2j

, . . . , xυ−2x(υ−2)j, y2y2j, . . . , yυ−2y(υ−2)j} ∪υ−3
i=2 {xixi+1, yiyi+1} ∪ϱ

j=1 {xυj}.

Now (𭟋υ,ϱ/(Cυ,ϱ : xυ)) ∼= 𭟋υ−3,ϱ/Lυ−3,ϱ

⊗
K T[xυ,∪ϱ

j=1{x1j, x(υ−1)j, y1j, yυj, y(υ−1)j}].
Using Lemma 2.3.3 and Theorem 3.1.6.

depth (𭟋υ,ϱ/(Cυ,ϱ : xυ)) = depth (𭟋υ−3,ϱ/Lυ−3,ϱ) + 5ϱ+ 1

= ⌊3(υ − 3)

2
⌋ϱ+ ⌈υ − 3

2
⌉+ 5ϱ+ 1

= ⌊3υ + 1

2
⌋ϱ+ ⌈υ − 1

2
⌉.

Let J ′ := (Cυ,ϱ, xυ), where G(J ′) = (G(Iυ−1), xυ−1yυ, yυ−1yυ, yυy1, yυx1, xυ) ∪ϱ
j=1

{yυyυj}. Consider the short exact sequence.

0 −→ 𭟋υ,ϱ/(J
′ : yυ)

.yυ−→ 𭟋υ,ϱ/J
′ −→ 𭟋υ,ϱ/(J

′, yυ) −→ 0.

G(J ′ : yυ) = {x1, y1, xυ, xυ−1, yυ−1} ∪υ−3
i=2 {xixi+1, yiyi+1} ∪ϱ

j=1 {x2x2j, . . . , xυ−2x(υ−2)j,

y2y2j, . . . , yυ−2y(υ−2)} ∪υ−2
i=2 {xiyi, yυ−2xυ−3} ∪ {y2x3} ∪υ−3

j=3 {yixi−1, yixi+1} ∪ϱ
j=1 {yυj}.
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Since (𭟋υ,ϱ/(J
′ : yυ)) ∼= 𭟋υ−3,ϱ/Lυ−3,ϱ

⊗
K T[yυ,∪ϱ

j=1{y1j, x1j, xυj, x(υ−1)j, y(υ−1)j}], us-

ing Lemma 2.3.3 and Theorem 3.1.6

depth (𭟋υ,ϱ/(J
′ : yυ)) = depth (𭟋υ−3,ϱ/Lυ−3,ϱ) + 5ϱ+ 1

= ⌊3(υ − 3)

2
⌋ϱ+ ⌈υ − 3

2
⌉+ 5ϱ+ 1

= ⌊3υ + 1

2
⌋ϱ+ ⌈υ − 1

2
⌉.

Now G(J ′, yυ) = {G(Lυ−1,ϱ), yυ, xυ} and (𭟋υ,ϱ/(J
′, yυ)) ∼= 𭟋υ−1,ϱ/Lυ−1,ϱ

⊗
K T[∪ϱ

j=1

{xυj, yυj}]. Using Lemma 2.3.3 and Theorem 3.1.6 we have

depth (𭟋υ,ϱ/(J
′, yυ)) = depth (𭟋υ−1,ϱ/Lυ−1,ϱ) + 2ϱ

= ⌊3(υ − 1)

2
⌋ϱ+ ⌈υ − 1

2
⌉+ 2ϱ

= ⌊3υ + 1

2
⌋ϱ+ ⌈υ − 1

2
⌉.

By Depth Lemma depth (𭟋υ,ϱ/J
′) = depth (𭟋υ,ϱ/(Cυ,ϱ, xυ)) = ⌊3υ+1

2
⌋ϱ+⌈υ−1

2
⌉. Apply-

ing Depth Lemma depth (𭟋υ,ϱ/Cυ,ϱ) = ⌊3υ+1
2

⌋ϱ+ ⌈υ−1
2
⌉.

For the case of Stanley depth we get this value by applying Lemma 2.3.2 instead

of Depth Lemma. We get sdepth (𭟋υ,ϱ/Cυ,ϱ) ≥ ⌊3υ+1
2

⌋ϱ + ⌈υ−1
2
⌉. For upper bound

as xυ /∈ Cυ,ϱ by Proposition 2.3.8. sdepth (𭟋υ,ϱ/Cυ,ϱ) ≤ sdepth (𭟋υ,ϱ/(Cυ,ϱ : xυ)) =

⌊3υ+1
2

⌋ϱ+ ⌈υ−1
2
⌉.
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