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Abstract

In this thesis, we find Noether symmetries for Bianchi type IV spacetime. Different

cases have been studied. It is found that the minimal set contains four symmetries.

There are various cases, where we get five Noether symmetries. Maximum number of

Noether symmetries that the Bianchi type IV spacetime metric may admit is six.

v



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Scheme of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 4

2.1 Lie Point Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Infinitesimal Generator . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Noether Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Noether Symmetries Associated with Bianchi Type IV Metric 11

3.1 (Case a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Case I: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Case II: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Case III: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 (Case b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Case IV : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Case V : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Summary 57

vi



List of Tables

4.1 Noether symmetries of Bianchi type IV spacetimes corresponding to

different cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



Chapter 1

Introduction

1.1 Background

Differential equations (DEs) have a long history dating back to the seventeenth cen-

tury, when Newton and Leibniz separately formulated the basis of calculus. Newton’s

ideas were expressed in the form of DEs. First time word differential equation used by

Leibniz in a letter to Newton in 1676, since then DEs have been widely employed as

mathematical models in science and technology.

DEs are divided in two categories, ordinary differential equations (ODEs) and partial

differential equations (PDEs). ODEs are those differential equations, which contain or-

dinary derivatives of unknown variable that depend on a single independent variable.

However, PDEs consist of the partial derivatives of one or more dependent variables

with respect to two or more independent variables.

In 1691, Lebniz introduced the technique of seperation of variables for solving both

homogeneous and non-homogeneous DEs. Johnn and Jacob Bernoulli are pivotal fig-

ures in the theory of DEs, they coined phrase "separation of variables" [1]. Many

significant ideas in integration theory of DEs derived by Euler [2], such as method of

parameters, power series solutions, and the integrating factors, among others. Taylor

drew attention to the singular solutions of the differential equations.

There are numerous integration methods for seeking of DEs solutions, however those
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approaches are only applicable to restricted classes of ODEs and PDEs. In nineteenth

century, a Norwegien Mathematician, Lie motivated by Galois provided a useful ap-

proach for solving the DEs in 1881. This method is known as Lie Symmetries method

[3, 4, 5, 6]. In recent years, these approaches are commonly employed to the DEs.

Another remarkable point symmetry that is very important in the field of applied

mathematics is known as Noether symmetry(NS), named after German Mathematician

Emmy Noether [7]. Noether’s famous dissertation on NS theory and the invariance of

Hamilton actions under infinitesimal transformation was published in 1918 [8]. This

technique reduced the amount of effort involved in solving DEs using Lagrangians.

In the fields of geometry and physics, the groups of 3 dimensional Riemannian mani-

folds have great significance. The real 3-dimensional Lie algebras G3, enumerated by

Bianchi is classified as G3A and G3B. There are nine types, Bianchi type I to Bianchi

type IX. Type I, II, V I0, V II0, VIII and IX are contain in G3A and G3B contains

type III, IV, V,V Ih, V IIh, Here for type VII, h > 0 and for V IIh, h < 0 [9].

For batter understanding of the comparison between NSs and conformal Killing vec-

tors, Bokhari and Kara studied on NSs of Friedmann model [10]. They demonstrated

that the flat Friedman model admits additional conservation laws, and these conserved

variables cannot be derived from the Killing or conformal Killing vectors. Tsamparlis

examined the dynamical system and demonstrated that Lie symmetries of equations

of motion are generated by a Lie algebra of projective collineations, whereas NSs are

generated by the homothetic algebra [11]. Jamil presented their results in cosmology by

using the NS technique to a flat Friedmann-Robertson-Walker metric and obtained the

tachyon potential [12]. Shabir worked on multiple Bianchi types. He found conformal

vector fields of Bianchi type I space-times in f(R) gravity [13]. Using a direct integra-

tion approach, he classified Bianchi type II, VIII and IX space-times based on their

teleparallel Killing vector fields in the teleparallel theory of gravity [14, 15]. Shabir

and Ali investigated the existance of proper curvature collineations (CCS) in Bianchi

type IV spacetimes [16]. Ali, Khan and Hussain applied direct integration to inves-
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tigate technique appropriate homothetic symmetry for Bianchi type IV space-times.

Using this approach, it is determined that the given space-times admit only one case

for proper homothetic symmetry [17]. Hickman and Yazdan investigate NSs of Bianchi

type II spacetimes. They proved that,both Killing vectors and homothetic motions

contain in NSs [18]. Akhtar and Hussain investigated the NSs of LRS Bianchi type V.

They established the conservation laws and Lie algebra for all NS generators. Further-

more, several physical applications of the obtained metrics are described, including the

investigation of various energy conditions [19].

1.2 Objective of the Thesis

Objective of the thesis, is to find NSs for Bianchi type IV spacetime given as [16]

ds2 = −dt2 + e−2z
[
P (t)dx2 +

(
z2P (t) +Q(t)

)
dy2 + 2zP (t)dxdy

]
+R(t)dz2. (1.1)

The process of finding NSs leads to a set of PDEs which are solved by using the

appropriate methods of integration and differentiation.

1.3 Scheme of Work

There are four chapters in this thesis. Chapter one contains the review of significant

background information related to our thesis. Basic terms used in this study are given

in chapter two along with examples that are required to establish a framework for the

next chapter. In the third chapter, NSs for Bianchi type IV spacetime are obtained.

The NS condition is utilized to get the system of partial differential equations that

are solved analytically using methods known to us. The final chapter of this thesis is

devoted to a summary of the thesis.
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Chapter 2

Preliminaries

2.1 Lie Point Symmetries

2.1.1 Infinitesimal Generator

Consider an invertible point transformation with parameter ζ

x∗ = x∗(x, y; ζ), y∗ = y∗(x, y; ζ),

where x and y are the independent and dependent variables respectively. Expanding

above transformations at ζ = 0, we get

x∗(x, y; ζ) = x+ ζ

[
∂x∗(x, y; ζ)

∂ζ
|ζ=0

]
+ · · · = x+ ζξ(x, y) + . . . ,

y∗(x, y; ζ) = y + ζ

[
∂y∗(x, y; ζ)

∂ζ
|ζ=0

]
+ · · · = y + ζη(x, y) + . . . .

Here ξ and η are infinitesimals and defined by

ξ(x, y) =
∂x∗

∂ζ
|ζ=0, (2.1)

η(x, y) =
∂y∗

∂ζ
|ζ=0 . (2.2)

4



Infinitesimal generator is given by,

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
.

Now consider DE of the form

H(x, y, y′, y′′, . . . , y(n)) = 0, (2.3)

y′, y′′, . . . , y(n) are the derivatives of y w.r.t. x. In order to apply point transformation

in DE, we should know how to find transformed derivatives of y. To do this let us

define

y∗′ = dy∗(x, y; ζ)

dx∗(x, y; ζ)
= y ∗′ (x, y, y′

; ζ), (2.4)

y∗
′′
=
dy∗

′

dx∗
= y ∗′′ (x, y, y′

; ζ). (2.5)

So above derivatives are derivative of transformed variables. Now we prolong infinites-

imal generator [7]

x∗(x, y; ζ) = x+ ζξ(x, y) + · · · = x+ ζXx+ . . . ,

y∗(x, y; ζ) = y + ζη(x, y) + · · · = y + ζXy + . . . ,

y ∗′ (x, y, y′
; ζ) = y

′
+ ζη

′
(x, y, y

′
) + · · · = y

′
+ ζXy

′
+ . . . ,

... (2.6)

y ∗(n) (x, y, y′, . . . , y(n); ζ) = y(n) + ζηn(x, y, y
′
, . . . , y(n)) + · · · = y(n) + ζXy(n) + . . . ,

hare η, η′
, . . . , ηn are given by

η
′
=
∂y∗′

∂ζ
|ζ=0= 0, . . . , ηn =

∂y∗(n)

∂ζ
|ζ=0= 0. (2.7)

Using eq(2.6) and eq(2.7), we get

y∗′ = y
′
+ ζη

′
=
dy∗

dx∗
=
dy + ζdη + . . .

dx+ ζdξ + . . .
=
y

′
+ ζ

dη

dx
+ . . .

1 + ζ
dξ

dx
+ . . .

= y
′
+ ζ

(
dη

dx
− y′ dξ

dx

)
+ . . . ,

y∗(n) = y(n) + ζηn =
dy∗(n−1)

dx∗
= y(n) + ζ

(
dηn−1

dx
− y(n) dξ

dx

)
+ . . . .
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From above equation, we get

ηn =
dηn−1

dx
− y(n) dξ

dx
, (2.8)

here
d

dx
is known as total derivative, given by

d

dx
=

∂

∂x
+ y

′ ∂

∂y
+ y

′′ ∂

∂y′ + . . . . (2.9)

So prolongation of infinitesimal generators up-to nth-order is

X[n] = ξ
∂

∂x
+ η

∂

∂y
+ η

′ ∂

∂y′ + · · ·+ ηn
∂

∂y(n)
. (2.10)

Theorem 2.1.1. The nth-order DE of the form [7]

H(x, y, y
′
, y

′′
, . . . , y(n)) = 0, (2.11)

where y′, y′′, . . . , y(n) are the derivatives of y w.r.t. x admits a Lie point symmetry

with generator eq(2.11) iff

X[n]H = 0, (mod H = 0).

Example 1. Consider second order DE

y
′′
= 0.

To find infinitesimal generators(symmetries), we use symmetry condition for 2nd-order

ODE

η2 = 0,

ηxx + (2ηxy − ξxx)y
′
+ (ηyy − 2ξxy)y

′2 − ξyyy′3 = 0.

Comparing coefficients of y′3, y′2, y′ and y′0

y′
3

: ξyy = 0, (2.12)

y′
2

: ηyy − 2ξxy = 0, (2.13)

y
′

: 2ηxy − ξxx = 0, (2.14)

y′
0

: ηxx = 0. (2.15)
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From eq(2.12), we get

ξ(x, y) = ym(x) + n(x). (2.16)

Using eq(2.16) in eq(2.13), we get

η(x, y) = y2m
′
(x) + yp(x) + q(x). (2.17)

Now using eq(2.17)in eq(2.15)

y2m
′′′
(x) + yp

′′
(x) + q

′′
(x) = 0,

3ym
′′
(x) + 2p

′
(x)− n′′

(x) = 0. (2.18)

Comparing coefficients of y3, y2, y and y0, we get

m
′′
(x) = 0, p

′′
(x) = 0, q

′′
(x) = 0, n

′′
(x) = 2p

′
(x),

on integrating

m(x) = k1x+ k2,

n(x) = k3x
2 + k7x+ k8,

p(x) = k3x+ k4,

q(x) = k5x+ k6.

Substituting in eq(2.16) and eq(2.17), we get

ξ(x, y) = y(k1x+ k2) + k3x
2 + k7x+ k8, (2.19)

η(x, y) = y2k1 + y(k3x+ k4) + k5x+ k6. (2.20)

Where k1, k2, . . . , k8 are arbitrary constants, so we have eight corresponding symme-
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tries,

X1 = xy
∂

∂x
+ y2

∂

∂y
, X2 = y

∂

∂x
,

X3 = x2
∂

∂x
+ xy

∂

∂y
, X4 = y

∂

∂y
,

X5 = x
∂

∂y
, X6 =

∂

∂y
,

X7 = x
∂

∂x
, X8 =

∂

∂x
.

2.2 Noether Symmetry

Noether symmetry is the form of symmetry that satisfies following condition [7],

X[1]L+ (Dξ)L = DV. (2.21)

Here V (s, qa) is a guage function, D is an operator given by

D =
∂

∂s
+ q̇a

∂

∂qa
, (2.22)

and L is Lagrangian

L = L(s, qa, q̇a), (2.23)

where dot (.) is derivative w.r.t. s, and

X[1] = ξ(s, qi)
∂

∂s
+ ηa(s, qi)

∂

∂qa
+ η̇a(s, qi, q̇i)

∂

∂q̇a
, a, i = 1, 2, 3, 4, ...., n. (2.24)

Where X[1] is the 1st-order prolonged generator and to explore this we have to find η̇a

and its formula is given by

η̇a =
∂

∂s
ηa − q̇a ∂

∂s
ξ. (2.25)

Example 2. Let Lagrangian of free particle is

L =
1

2
y′

2
, (2.26)
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we have Euler-Lagrange equation

∂L

∂y
=

d

dx

∂L

∂y′
, (2.27)

substituting the Lagrangian given by eq(2.26) in Euler-Lagrange equation, we have

DE corresponding to eq(2.26) is

y′′ = 0. (2.28)

Using Lagrangian given by eq(2.26) in NS condition eq(2.21), we have(
ηx + (ηy − ξx)y′ − y′2ξy

)
y′ + (ξx + y′ξy)

1

2
y′

2
= Vx + y′Vy,

where ξ, η, V are function of x and y.

Now comparing coefficients of y′3, y′2, y′ and constant, we have

y′
3

: ξy = 0, (2.29)

y
′2 : ηy −

1

2
ξx = 0, (2.30)

y′ : ηx = Vy, (2.31)

Constant : Vx = 0. (2.32)

Solving eq(2.29), we have

ξ = a1(x), (2.33)

using eq(2.33) in eq(2.30) then integrating w.r.t. y we have

η =
1

2
a1,xy + a2(x). (2.34)

Using eq(2.34) in eq(2.31), we have

1

2
a1,xxy + a2,x = Vy,

V =
1

4
a1,xxy

2 + a2,xy + a3(x). (2.35)
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Substituting value of V (x, y) in eq(2.32), we have
1

4
a1,xxxy

2 + a2,xxy + a3,x = 0. (2.36)

Comparing coefficients of y2, y and y0, we obtain the following differential equations

y2 : a1,xxx = 0, (2.37)

y : a2,xx = 0, (2.38)

constant : a3,x = 0. (2.39)

Therefore

a1(x) =
1

2
C1x

2 + C2x+ C3,

a2(x) = C4x+ C5,

a3(x) = C6.

Substituting values of a1, a2 and a3 in eq(2.33-2.35), we get values of ξ, η and V i.e.

ξ =
1

2
C1x

2 + C2x+ C3,

η =
1

2
(C1x+ C2)y + C4x+ C5,

V =
1

4
C1y

2 + C4y + C6.

Here C1, . . . , C6 are the arbitrary constants. The NSs and corresponding gauge func-

tions are given by

X1 =
1

2
x2

∂

∂x
+

1

2
xy

∂

∂y
, V1(y) =

1

4
y2,

X2 = x
∂

∂x
+

1

2
y
∂

∂y
,

X3 =
∂

∂x
,

X4 = x
∂

∂y
, V4(y) = y,

X5 =
∂

∂y
.
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Chapter 3

Noether Symmetries Associated with
Bianchi Type IV Metric

In this chapter we discuss NSs for Bianchi type IV. The Lagrangian of corresponding

metric given by eq(1.1) is

L = −ṫ2 + e−2z
[
P (t)ẋ2 +

(
z2P (t) +Q(t)

)
ẏ2 + 2zP (t)ẋẏ

]
+R(t)ż2, (3.1)

here P (t), Q(t) and R(t) are no where zero functions of t. So substituting eq(3.1) in

NS condition eq(2.21), we have

η0[e−2z(P ′(t)ẋ2 + (z2P ′(t) +Q′(t))ẏ2 + 2zP ′(t)ẋẏ) +R′(t)ż2] + 2η3e−2z[−P (t)ẋ2 −

(z2P (t) +Q(t))ẏ2 − 2zP (t)ẋẏ + zP (t)ẏ2 + P (t)ẋẏ]− 2ṫ[η0s + (η0t − ξs)ṫ+ η0xẋ+

η0y ẏ + η0z ż − ξtṫ2 − ξxẋṫ− ξyẏṫ− ξz żṫ] + 2e−2z(P (t)ẋ+ zP (t)ẏ)[η1s + (η1x − ξs)ẋ+

η1t ṫ+ η1y ẏ + η1z ż − ξxẋ2 − ξtẋṫ− ξyẋẏ − ξzẋż] + 2e−2z((z2P (t) +Q(t))ẏ + zP (t)ẋ)

[η2s + (η2y − ξs)ẏ + η2t ṫ+ η2xẋ+ η2z ż − ξyẏ2 − ξtṫẏ − ξxẋẏ − ξzẏż] + 2R(t)ż[η3s + (η3z −

ξs)ż + η3t ṫ+ η3xẋ+ η3y ẏ − ξz ż2 − ξtṫż − ξxẋż − ξyẏż] + (ξs + ṫξt + ẋξx + ẏξy + żξz)

[−ṫ2 + e−2z(P (t)ẋ2 + (z2P (t) +Q(t))ẏ2 + 2zP (t)ẋẏ) +R(t)ż2]

= Vs + ṫVt + ẋVx + ẏVy + żVz.
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Comparing coefficients of ṫ3, ẋ3, ẏ3, ż3, ṫ2, ẋ2, ẏ2, ż2, ṫẋ, ṫẏ, ṫż, ẋẏ, ẋż, ẏż , ṫ, ẋ, ẏ, ż

and constant respectively,

ṫ3 : ξt = 0, (3.2)

ẋ3 : ξx = 0, (3.3)

ẏ3 : ξy = 0, (3.4)

ż3 : ξz = 0, (3.5)

ṫ2 : −η0t +
1

2
ξs = 0, (3.6)

ẋ2 : P ′(t)η0 + 2P (t)

(
η1x + zη2x − η3 −

1

2
ξs

)
= 0, (3.7)

ẏ2 : (z2P ′(t) +Q′(t))η0 +
(
2zP (t)− 2(z2P (t) +Q(t))

)
η3

+2zP (t)η1y + 2
(
z2P (t) +Q(t)

)(
η2y −

1

2
ξs

)
= 0, (3.8)

ż2 : R′(t)η0 + 2R(t)(η3z −
1

2
ξs) = 0, (3.9)

ṫẋ : −η0x + P (t)e−2z(η1t + zη2t ) = 0, (3.10)

ṫẏ : −η0y + e−2z(zP (t)η1t + (z2P (t) +Q(t))η2t ) = 0, (3.11)

ṫż : −η0z +R(t)η3t = 0, (3.12)

ẋẏ : zP ′(t)η0 + (1− 2z)P (t)η3 + P (t)η1y +
(
z2P (t) +Q(t)

)
η2x

+zP (t)
(
η1x + η2y − ξs

)
= 0, (3.13)

ẋż : P (t)e−2z(η1z + zη2z) +R(t)η3x = 0, (3.14)

ẏż : e−2z
(
zP (t)η1z + (z2P (t) +Q(t))η2z

)
+R(t)η3y = 0, (3.15)

ṫ : −2η0s = Vt, (3.16)

ẋ : 2e−2zP (t)
(
η1s + zη2s

)
= Vx, (3.17)

ẏ : 2e−2z
(
zP (t)η1s +

(
z2P (t) +Q(t)

)
η2s
)
= Vy, (3.18)

ż : 2R(t)η3s = Vz, (3.19)

constant : Vs = 0. (3.20)
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Eq(3.20) implies

V = V (t, x, y, z).

taking derivative of the eq(3.16-3.19) w.r.t. s, we get

η0ss = 0, (3.21)

η1ss = 0, (3.22)

η2ss = 0, (3.23)

η3ss = 0. (3.24)

On integrating twice eq(3.21-3.24) w.r.t. s, we have

η0 = a1(t, x, y, z)s+ a2(t, x, y, z), (3.25)

η1 = b1(t, x, y, z)s+ b2(t, x, y, z), (3.26)

η2 = d1(t, x, y, z)s+ d2(t, x, y, z), (3.27)

η3 = e1(t, x, y, z)s+ e2(t, x, y, z). (3.28)

Now taking derivative of eq(3.6) w.r.t. s, we have

−η0tss +
1

2
ξsss = 0,

using eq(3.21) in above, we get

ξ =
1

2
c1s

2 + c2s+ c3. (3.29)

So eq(3.6) gives

η0t =
1

2
(c1s+ c2),

η0tt = η0tx = η0ty = η0tz = 0. (3.30)

Now multiplying eq(3.10) with z then subtract from eq(3.11), we get

zη0x − η0y + e−2zQ(t)η2t = 0. (3.31)
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Multiplying eq(3.14) with z then subtract from eq(3.15), we get

e−2zQ(t)η2z +R(t)
(
η3y − zη3x

)
= 0. (3.32)

Using eq(3.25) and eq(3.30), we have

η0tt = a1,tts+ a2,tt = 0,

comparing coefficients of s and s0, we ave

s : a1,tt = 0, s0 : a2,tt = 0.

On integrating twice w.r.t. t, we get

a1(t, x, y, z) = a3(x, y, z)t+ a4(x, y, z),

a2(t, x, y, z) = a5(x, y, z)t+ a6(x, y, z).

Substituting above in eq(3.25) we have

η0 = (a3(x, y, z)t+ a4(x, y, z)) s+ a5(x, y, z)t+ a6(x, y, z). (3.33)

Again from eq(3.30) and eq(3.33), we have

a3,x = a3,y = a3,z = 0 ⇒ a3 = c4,

a5,x = a5,y = a5,z = 0 ⇒ a5 = c5.

Using above values in eq(3.33), we get

η0 = (c4t+ a4(x, y, z)) s+ c5t+ a6(x, y, z). (3.34)

Using eq(3.34) and eq(3.16), we have

−2(c4t+ a4(x, y, z)) = Vt.

from above, we have

−2a4,z = Vtz. (3.35)
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Substituting eq(3.35) in eq(3.19), we get

R
′
(t)η3s +R(t)η3st = −a4,z. (3.36)

Now substituting eq(3.6) in eq(3.9), we have

R
′
(t)η0 + 2R(t)

(
η3z − η0t

)
= 0. (3.37)

From eq(3.37), we get

R
′
(t)η0x + 2R(t)η3xz = 0, (3.38)

R
′
(t)η0y + 2R(t)η3yz = 0, (3.39)

R
′
(t)η0z + 2R(t)η3zz = 0. (3.40)

Differentiating eq(3.12) w.r.t z then using eq(3.34) and eq(3.28), we have

a4,zzs+ a6,zz = R(t)(e1,tzs+ e2,tz).

Comparing coefficients of s and s0, we have

s : a4,zz = R(t)e1,tz; s0 : a6,zz = R(t)e2,tz,

e1,z = a4,zz

∫
dt

R(t)
+ e3(x, y, z), (3.41)

and

e2,z = a6,zz

∫
dt

R(t)
+ e4(x, y, z). (3.42)

From eq(3.28) and eq(3.40), we have

R
′
(t)(a4,zs+ a6,z) + 2R(t)(e1,zzs+ e2,zz) = 0.

Comparing coefficients of s and s0,

s : R
′
(t)a4,z + 2R(t)e1,zz = 0, (3.43)

s0 : R
′
(t)a6,z + 2R(t)e2,zz = 0. (3.44)
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Using eq(3.41) in eq(3.43),

R
′
(t)a4,z + 2R(t)(a4,zzz

∫
dt

R(t)
+ e3,z) = 0.

Similarly, using eq(3.42) in eq(3.44), we have

R
′
(t)a6,z + 2R(t)(a6,zzz

∫
dt

R(t)
+ e4,z) = 0.

We find the NSs for W
(
R

′
(t), R(t), R(t)

∫ dt

R(t)

)
6= 0,

where W is the Wronskian. Comparing coefficients of R′
(t), we have

a4,z = 0 ⇒ a4(x, y, z) = a7(x, y), (3.45)

a6,z = 0 ⇒ a6(x, y, z) = a8(x, y). (3.46)

Substituting above in eq(3.34), we have

η0 = (c4t+ a7(x, y)) s+ c5t+ a8(x, y). (3.47)

Using eq(3.47) in eq(3.12), we have

η3t = 0,

so from eq(3.28), we get

η3 = e5(x, y, z)s+ e6(x, y, z).

Using eq(3.36), we have

R
′
(t)η3s = 0,

since R′
(t) 6= 0, so

η3s = 0, ⇒ η3 = e6(x, y, z). (3.48)

Now using eq(3.47) and eq(3.48) in eq(3.38), we get

R
′
(t)(a7,xs+ a8,x) + 2R(t)e6,xz = 0.
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Comparing coefficients of R(t) and R′
(t),

R(t) : e6,xz = 0 = η3xz, (3.49)

R
′
(t) : a7,xs+ a8,x = 0.

Comparing coefficients of s and s0,

s : a7,x = 0; s0 : a8,x = 0,

a7(x, y) = a9(y) and a8(x, y) = a10(y).

So eq(3.47) implies,

η0 = (c4t+ a9(y)) s+ c5t+ a10(y). (3.50)

Using eq(3.50) and eq(3.48) in eq(3.39), we get

R
′
(t)(a9,ys+ a10,y) + 2R(t)e6,yz = 0.

Comparing coefficients of R(t) and R′
(t),

R(t) : e6,yz = 0 = η3yz, (3.51)

R
′
: a9,ys+ a10,y = 0.

Comparing coefficients of s and s0,

s : a9,y = 0; s0 : a10,y = 0,

on integrating

a9 = c6; a10 = c7.

Substituting values in eq(3.50),

η0 = (c4t+ c6) s+ c5t+ c7. (3.52)
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Using above equation in eq(3.6), we get

ξ = c4s
2 + 2c5s+ c3.

Using eq(3.52) in eq(3.31), we get

e−2zQ(t)η2t = 0,

e−2zQ(t) 6= 0 ⇒ η2t = 0. (3.53)

Now using eq(3.52) and eq(3.53) in eq(3.10), we get

e−2zP (t)(η1t + zη2t ) = 0,

e−2zP (t) 6= 0 ⇒ η1t = 0. (3.54)

Using above in eq(3.26) and eq(3.27), we get

η1 = b1(x, y, z)s+ b2(x, y, z),

η2 = d1(x, y, z)s+ d2(x, y, z).

Using eq(3.52) in eq(3.38-3.40), we get

η3xz = η3yz = η3zz = 0.

Using eq(3.48) in above, we get

η3 = c8z + e7(x, y).

So, we have

ξ = c4s
2 + 2c5s+ c3,

η0 = (c4t+ c6) s+ c5t+ c7,

η1 = b1(x, y, z)s+ b2(x, y, z),

η2 = d1(x, y, z)s+ d2(x, y, z), (3.55)

η1 = b1(x, y, z)s+ b2(x, y, z),

η3 = c8z + e7(x, y),

V = V (t, x, y).
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Taking derivative of eq(3.14) and eq(3.15) w.r.t. y and x respectively, then subtract,

we get

zP (t)η1xz − P (t)η1yz + (z2P (t) +Q(t))η2xz − zP (t)η2yz = 0. (3.56)

From eq(3.7), we have

η1xx + zη2xx − η3x = 0, (3.57)

η1xy + zη2xy − η3y = 0. (3.58)

From eq(3.8), we get(
zP (t)− (z2P (t) +Q(t))

)
η3x + zP (t)η1xy + (z2P (t) +Q(t))η2xy = 0, (3.59)(

zP (t)− (z2P (t) +Q(t))
)
η3y + zP (t)η1yy + (z2P (t) +Q(t))η2yy = 0. (3.60)

Multiplying eq(3.58) with zP (t) then subtract from eq(3.59), we get(
(z − z2)η3x + zη3y

)
P (t) + (η2xy − η3x)Q(t) = 0. (3.61)

Now using eq(3.13), we get(
(1− 2z)η3x + η1xy + z2η2xx + z(η1xx + η2xy)

)
P (t) +Q(t)η2xx = 0, (3.62)(

(1− 2z)η3y + η1yy + z2η2xy + z(η1xy + η2yy)
)
P (t) +Q(t)η2xy = 0. (3.63)

From eq(3.59), we have(
(z − z2)η3x + zη1xy + z2η2xy

)
P (t) + (η2xy − η3x)Q(t) = 0. (3.64)

We have the following cases,

(Case a) When P (t) and Q(t) are linearly independent

I: P (t) and Q(t) are linearly independent, but P (t) and R(t) are linearly dependent.

II: P (t) and Q(t) are linearly independent, but Q(t) and R(t) are linearly dependent.

III: P (t), Q(t) and R(t) are linearly independent.

(Case b) When P (t) and Q(t) are linearly dependent

IV: P (t), Q(t) and R(t) are linearly dependent.

V: P (t) and Q(t) are linearly dependent but R(t) is independent.
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3.1 (Case a)

Since P (t) and Q(t) are linearly independent, so from eq(3.64) we have

(z − z2)η3x + zη1xy + z2η2xy = 0, (3.65)

and

η2xy − η3x = 0⇒ η3x = η2xy. (3.66)

Substituting eq(3.66) in eq(3.65),

z(η3x + η1xy) = 0,

z 6= 0⇒ η3x + η1xy = 0. (3.67)

Using eq(3.66) in eq(3.67),

η1xy + η2xy = 0. (3.68)

Similarly from eq(3.60), we have(
(z − z2)η3y + zη1yy + z2η2yy

)
P (t) + (η2yy − η3y)Q(t) = 0. (3.69)

Since P (t) and Q(t) are linearly independent, so

(z − z2)η3y + zη1yy + z2η2yy = 0, (3.70)

and

η2yy − η3y ⇒ η2yy = η3y. (3.71)

Substituting eq(3.71) in eq(3.70), we get

z(η1yy + η3y) = 0,

z 6= 0⇒ η1yy + η3y = 0. (3.72)

Using eq(3.71) in eq(3.72), we have

η1yy + η2yy = 0. (3.73)
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Now using eq(3.66) and eq(3.67) in eq(3.58), we get

−η3x + zη3x − η3y = 0.

Comparing coefficients of z andz0

z : η3x = 0, z0 : −η3x − η3y = 0,

η3x = η3y = 0,

so eq(3.55) implies,

e7(x, y) = c9 ⇒ η3 = zc8 + c9. (3.74)

From eq(3.72) and eq(3.67), we have

η1yy = 0,

η1xy = 0,
(3.75)

using eq(3.71) and eq(3.66), we get

η2yy = 0,

η2xy = 0.
(3.76)

Now using eq(3.55) in eq(3.76), we get

η2yy = d1,yys+ d2,yy = 0. (3.77)

Comparing coefficients of s and s0

s : d1,yy = 0; s0 : d2,yy = 0,

on integrating

d1 = yd3(x, z) + d4(x, z),

d2 = yd5(x, z) + d6(x, z).
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Substituting above equations in eq(3.55), we get

η2 = (yd3(x, z) + d4(x, z))s+ yd5(x, z) + d6(x, z). (3.78)

Again using eq(3.76), we have

η2xy = d3,xs+ d5,x = 0,

comparing coefficients of s and s0,

s : d3,x = 0; s0 : d5,x = 0,

d3(x, z) = d7(z); d5(x, z) = d8(z).

Substituting above equations in eq(3.78), we get

η2 = (yd7(z) + d4(x, z))s+ yd8(z) + d6(x, z). (3.79)

Using eq(3.74) in eq(3.32), we get

η2z = 0,

so eq(3.79) implies

(yd7,z + d4,z(x, z))s+ yd8,z(z) + d6,z(x, z) = 0.

Comparing coefficients of s and s0, we have

s : yd7,z + d4,z(x, z) = 0, s0 : yd8,z(z) + d6,z(x, z) = 0,

comparing coefficients of y and y0, we have

y : d7,z = 0, d8,z(z) = 0,

y0 : d4,z = 0, d6,z(x, z) = 0,

on integrating

d7 = c10; d8 = c11; d4(x, z) = d9(x); d6(x, z) = d10(x).
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Substituting above equations in eq(3.79), we get

η2 = (yc10 + d9(x))s+ yc11 + d10(x). (3.80)

Using eq(3.80) and eq(3.14), we have

P (t)e−2zη1z = 0,

P (t)e−2z 6= 0⇒ η1z = 0.

So eq(3.55) become,

η1 = b1(x, y)s+ b2(x, y). (3.81)

Now using eq(3.74) in eq(3.57), we have

η1xx + zη2xx = 0,

comparing coefficients of z andz0, we have

z : η2xx = 0, (3.82)

z0 : η1xx = 0. (3.83)

Using eq(3.80) in eq(3.82), we have

d9,xxs+ d10,xx = 0,

comparing coefficients of s and s0,

s : d9,xx = 0; s0 : d10,xx = 0,

on integrating

d9(x) = xc12 + c13,

d10(x) = xc14 + c15.
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Substituting above equations in eq(3.80), we get

η2 = (yc10 + xc12 + c13)s+ yc11 + xc14 + c15. (3.84)

Now using eq(3.81) in eq(3.75), we have

η1yy = b1,yys+ b2,yy = 0.

Comparing coefficients of s and s0,

s : b1,yy = 0; s0 : b2,yy = 0.

on integrating

b1 = yb3(x) + b4(x),

b2 = yb5(x) + b6(x).

So eq(3.81) implies

η1 = (yb3(x) + b4(x))s+ yb5(x) + b6(x), (3.85)

using eq(3.75), we have

η1xy = b3,xs+ b5,x = 0.

Comparing coefficients of s and s0,

s : b3,x = 0; s0 : b5,x = 0,

on integrating,

b3 = c16; b5 = c17.

Substituting in eq(3.85),

η1 = (yc16 + b4(x))s+ yc17 + b6(x). (3.86)

Using eq(3.86) in eq(3.83),

η1xx = b4,xxs+ b6,xx = 0.
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Comparing coefficients of s and s0,

s : b4,xx = 0; s0 : b6,xx = 0,

on integrating,

b4 = xc18 + c19,

b6 = xc20 + c21.

Substituting above equations in eq(3.86),

η1 = (yc16 + xc18 + c19)s+ yc17 + xc20 + c21. (3.87)

Using eq(3.74) in eq(3.19), we get

Vz = 0. (3.88)

Now from eq(3.17), we have

2e−2zP (t)(−2η1s − 2zη2s + η2s) = Vxz = 0,

2e−2zP (t) 6= 0⇒ −2η1s − 2zη2s + η2s = 0.

Comparing coefficients of z and z0 we get

η1s = 0, η2s = 0. (3.89)

Using eq(3.89) in eq(3.17) and eq(3.18), we get

Vx = 0, Vy = 0.

So using eq(3.55) and eq(3.16), we get

V = −c4t2 − 2c6t− c0. (3.90)

Now using (3.89) in (3.84) and (3.87), we have

η1 = yc17 + xc20 + c21, (3.91)
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and

η2 = yc11 + xc14 + c15.

Comparing coefficients of z and z0 from eq(3.7), we get

z : η2x = 0, ⇒ c14 = 0,

η2 = yc11 + c15, (3.92)

z0 : P ′(t)η0 + 2P (t)

(
η1x − η3 −

1

2
ξs

)
= 0. (3.93)

On differentiating eq(3.8) thrice w.r.t. z, we get

η3z = 0,

so eq(3.74) gives,

c8 = 0, ⇒ η3 = c9. (3.94)

Using above in eq(3.9), we get

R
′
(t)η0 −R(t)ξs = 0. (3.95)

Now comparing coefficients of z2, z and z0, of eq(3.8), we have

z2 : P
′
(t)η0 + 2P (t)(−η3 + η2y −

1

2
ξs) = 0, (3.96)

z : P (t)(η3 + η1y) = 0⇒ η3 + η1y = 0, (3.97)

z0 : Q
′
(t)η0 + 2Q(t)(−η3 + η2y −

1

2
ξs) = 0. (3.98)

Using eq(3.94) and eq(3.91) in eq(3.97), we get

c17 = −c9 ⇒ η1 = −yc9 + xc20 + c21.

Subtracting eq(3.93) and eq(3.96), we get

η1x = η2y ⇒ c20 = c11,
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η1 = −yc9 + xc11 + c21.

From eq(3.55), eq(3.90), eq(3.92) and eq(3.94), we have

ξ = c4s
2 + 2c5s+ c3,

η0 = (c4t+ c6) s+ c5t+ c7,

η1 = −yc9 + xc11 + c21,

η2 = yc11 + c15, (3.99)

η3 = c9,

V = −c4t2 − 2c6t− c0.

3.1.1 Case I:

P (t) and Q(t) are linearly independent, but P (t) and R(t) are linearly dependent.

Suppose R(t) = hP (t), using in eq(3.95), we

hP
′
(t)η0 − hP (t)ξs = 0,

P
′
(t)η0 − P (t)ξs = 0. (3.100)

Subtracting eq(3.100) from eq(3.96), we get

η2y = η3 ⇒ c11 = c9

Using above in eq(3.99), we have

ξ = c4s
2 + 2c5s+ c3,

η0 = (c4t+ c6) s+ c5t+ c7,

η1 = (x− y)c9 + c21,

η2 = yc9 + c15, (3.101)

η3 = c9,

V = −c4t2 − 2c6t− c0.
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Multiplying eq(3.96) and eq(3.98) with Q(t) and P(t) respectively, then subtract both

equations, we get

(P
′
(t)Q(t)−Q′

(t)P (t))η0 = 0,

since P(t) and Q(t) are linearly independent, so

P
′
(t)Q(t)−Q′

(t)P (t) 6= 0 ⇒ η0 = 0.

Using eq(3.101), we have

c4 = c5 = c6 = c7 = 0.

Substituting in eq(3.101), we have

ξ = c3,

η0 = 0,

η1 = (x− y)c9 + c21, (3.102)

η2 = yc9 + c15,

η3 = c9,

V = c0.

Here c0, c3, c9, c15 and c21, are the arbitrary constant. We have following NSs,

X0 =
∂

∂s
,

X1 = (x− y) ∂
∂x

+ y
∂

∂y
+

∂

∂z
,

X2 =
∂

∂x
, (3.103)

X3 =
∂

∂y
.

Which is the minimal set of NSs for Bianchi type IV.
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3.1.2 Case II:

P (t) and Q(t) are linearly independent, but Q(t) and R(t) are linearly dependent.

Suppose R(t) = jQ(t), using in eq(3.95), we

jQ
′
(t)η0 − jQ(t)ξs = 0,

Q
′
(t)η0 −Q(t)ξs = 0. (3.104)

Subtracting eq(3.104) from eq(3.98), we get

η2y = η3 ⇒ c11 = c9

Using above in eq(3.99), we have

ξ = c4s
2 + 2c5s+ c3,

η0 = (c4t+ c6) s+ c5t+ c7,

η1 = (x− y)c9 + c21,

η2 = yc9 + c15, (3.105)

η3 = c9,

V = −c4t2 − 2c6t− c0.

Multiplying eq(3.96) and eq(3.98) with Q(t) and P(t) respectively, then subtract both

equations, we get

(P
′
(t)Q(t)−Q′

(t)P (t))η0 = 0,

since P(t) and Q(t) are linearly independent, so

P
′
(t)Q(t)−Q′

(t)P (t) 6= 0 ⇒ η0 = 0.

Using eq(3.105), we have

c4 = c5 = c6 = c7 = 0.
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Substituting in eq(3.105), we have

ξ = c3,

η0 = 0,

η1 = (x− y)c9 + c21,

η2 = yc9 + c15,

η3 = c9,

V = c0.

From above, we again get the minimal set of NSs given by eq(3.103).

3.1.3 Case III:

P (t), Q(t) and R(t) are linearly independent. Multiplying eq(3.96) and eq(3.98) with

Q(t) and P(t) respectively, then subtract both equations, we get

(P
′
(t)Q(t)−Q′

(t)P (t))η0 = 0,

since P(t) and Q(t) are linearly independent, so

P
′
(t)Q(t)−Q′

(t)P (t) 6= 0 ⇒ η0 = 0.

Using eq(3.99), we have

c4 = c5 = c6 = c7 = 0,

substituting in eq(3.99), we have

ξ = c3,

η0 = 0,

η1 = xc11 − yc9 + c21, (3.106)

η2 = yc11 + c15,

η3 = c9,

V = c0.
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Using above eq(3.96), we get

η2y = η3 ⇒ c11 = c9. (3.107)

Substituting above in eq(3.106), we have

ξ = c3,

η0 = 0,

η1 = (x− y)c9 + c21,

η2 = yc9 + c15,

η3 = c9,

V = c0.

From above, we again get the minimal set of NSs given by eq(3.103).

3.2 (Case b)

P (t) and Q(t) are linearly dependent. Suppose we have Q(t) = kP (t), using eq(3.56),

zP (t)η1xz − P (t)η1yz + (z2P (t) + kP (t))η2xz − zP (t)η2yz = 0,

P (t) 6= 0 ⇒ zη1xz − η1yz + (z2 + k)η2xz − zη2yz = 0. (3.108)

Using eq(3.59),(
zP (t)− (z2P (t) + kP (t))

)
η3x + zP (t)η1xy + (z2P (t) + kP (t))η2xy = 0,

since P (t) 6= 0, above equation become(
z − (z2 + k)

)
η3x + zη1xy + (z2 + k)η2xy = 0. (3.109)

Using eq(3.60), we have(
zP (t)− (z2P (t) + kP (t))

)
η3y + zP (t)η1yy + (z2P (t) + kP (t))η2yy = 0,
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since P (t) 6= 0, above equation become(
z − (z2 + k)

)
η3y + zη1yy + (z2 + k)η2yy = 0. (3.110)

From eq(3.61), we get

(z − z2)η3x + zη3y + k(η2xy − η3x) = 0. (3.111)

From eq(3.62) and eq(3.63), we get

(1− 2z)η3x + η1xy + z2η2xx + z(η1xx + η2xy) + kη2xx = 0, (3.112)

(1− 2z)η3y + η1yy + z2η2xy + z(η1xy + η2yy) + kη2xy = 0. (3.113)

From eq(3.7), we have

η1xz + zη2xz + η2x − η3z = 0. (3.114)

Now multiplying eq(3.17) with z then subtract from eq(3.18), we get

2e−2zQ(t)η2s = Vy − zVx,

on differentiating twice w.r.t. z, we get

η2szz − 4η2sz + 4η2s = 0.

Using eq(3.55) in above equation, we get

d1,zz(x, y, z)− 4d1,z(x, y, z) + 4d1(x, y, z) = 0,

solving above DE, we get

d1(x, y, z) = e2z(d3(x, y) + zd4(x, y)).

Substituting above equation in eq(3.55), we have

η2 = e2z(d3(x, y) + zd4(x, y))s+ d2(x, y, z). (3.115)
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Now from eq(3.17), we have

η1sz + η2s − 2η1s + z(η2sz − 2η2s) = 0, (3.116)

from eq(3.18), we have

P (t)
(
zη1sz + (1− 2z)η1s + z2η2sz + (2z − 2z2)η2s

)
+Q(t)(η2sz − 2η2s) = 0. (3.117)

Now multiplying eq(3.116) with zP (t) then subtract from eq(3.117), we get

P (t)(zη2s + η1s) +Q(t)(η2sz − 2η2s) = 0,

but Q(t) = kP (t), we have

zη2s + η1s + k(η2sz − 2η2s) = 0. (3.118)

Using eq(3.32), we get

−Q(t)e−2zη2sz = 0,

−Q(t)e−2z 6= 0 ⇒ η2sz = 0,

so using above equation in eq(3.115),

(d4(x, y) + 2d3(x, y) + 2zd4(x, y))e
2z = 0,

e2z 6= 0⇒ d4(x, y) + 2d3(x, y) + 2zd4(x, y) = 0.

Comparing coefficients of z and z0 of above equation, we get

d4(x, y) = 0, d3(x, y) = 0, (3.119)

therefore

η2 = d2(x, y, z),

so above equation implies

η2s = 0.
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Using above equation in eq(3.118), we get

η1s = 0.

Using above result in eq(3.55), we have

ξ = c4s
2 + 2c5s+ c3,

η0 = (c4t+ c6) s+ c5t+ c7,

η1 = b2(x, y, z),

η2 = d2(x, y, z), (3.120)

η3 = c8z + e7(x, y)

V = V (t).

Now multiplying eq(3.58) with z, then subtract from eq(3.109), we get

(z − z2 − k)η3x + zη3y + kη2xy = 0, (3.121)

subtracting eq(3.58) and product of z and eq(3.57) from eq(3.112), we get

(1− 2z)η3x + η3y + zη3x + kη2xx = 0,

(1− z)η3x + η3y + kη2xx = 0. (3.122)

Now differentiating eq(3.121) and eq(3.122) w.r.t. x and y respectively, then subtract

their result, we get

(z − z2 − k)η3xx + (2z − 1)η3xy − η3yy = 0,

comparing coefficients of z2, z and z0, we have

z2 : η3xx = 0, (3.123)

z : η3xy = 0, (3.124)
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z0 : η3yy = 0. (3.125)

Using eq(3.120) in eq(3.124), we have

e7 = xe9(y) + e10(y), (3.126)

using above equation in eq(3.124), we have

e9,y = 0⇒ e9 = c11,

using above equation in eq(3.126),

e7 = c11x+ e10(y). (3.127)

Substituting above in eq(3.125), we have

e10,yy = 0⇒ e10(y) = c12y + c13,

using above equation and eq(3.126) in eq(3.120), we get

η3 = c11x+ c12y + c8z + c13. (3.128)

Now from eq(3.32), we have

η2xz = 0 =, η2yz = 0, (3.129)

again using eq(3.32), we get

η2zzz − 4η2zz + 4η2z = 0.

Using eq(3.120), we have

d2,zzz − 4d2,zz + 4d2,z = 0,

by solving above equation, we get

d2(x, y, z) = d5(x, y) + e2z(d6(x, y) + zd7(x, y)) (3.130)
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using above equation in eq(3.129), we have

d2,xz = e2z(2d6,x + 2zd7,x + d7,x) = 0,

e2z 6= 0, 2d6,x + 2zd7,x + d7,x = 0.

Comparing coefficients of z and z0, we have

z : d7,x(x, y) = 0 ⇒ d7(x, y) = d9(y),

z0 : d6,x(x, y) = 0 ⇒ d6(x, y) = d8(y).

using above in eq(3.130),

d2(x, y, z) = d5(x, y) + e2z(d8(y) + zd9(y)), (3.131)

again using above in eq(3.129), we have

d2,yz = e2z(d9,y + 2zd9,y + d8,y) = 0,

e2z 6= 0, d9,y + 2zd9,y + d8,y = 0.

Comparing coefficients of z and z0, we have

z : d9,y = 0 ⇒ d9(y) = c15,

z0 : d8,y = 0 ⇒ d8(y) = c14

using above equation in eq(3.130),

η2 = d2(x, y, z) = d5(x, y) + e2z(c14 + zc15). (3.132)

Now from eq(3.122), we have

η2xxx = 0, ⇒ η2xxy = 0. (3.133)

Using eq(3.132), we have

d5,xxx(x, y) = 0,
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by solving above, we have

d5(x, y) =
1

2
d10(y)x

2 + d11(y)x+ d12(y). (3.134)

Again using eq(3.133), we have

η2xxy = d5,xxy(x, y) = d10,y = 0⇒ d10 = c16,

so

d5(x, y) =
1

2
c16x

2 + d11(y)x+ d12(y).

Using above equation and eq(3.128) in eq(3.121),

(z − z2 − k)c11 + zc12 + kd11,y(y) = 0.

Comparing coefficients of z2, z and z0, we have

z2 : c11 = 0,

z : c12 = 0,

z0 : d11,y(y) = 0 ⇒ d11(y) = c17.

Substituting above result in eq(3.128) and eq(3.134), we have

η3 = c8z + c13, (3.135)

d5(x, y) =
1

2
c16x

2 + c17x+ d12(y),

using above equation eq(3.122), we have

η2xx = d5,xx = c16 = 0,

so using in above equation, which implies

d5(x, y) = c17x+ d12(y).
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Substituting in eq(3.132), we have

η2 = c17x+ d12(y) + e2z(c14 + zc15), (3.136)

using eq(3.135) and above equation in eq(3.32), we have

η2z = 0,

so using eq(3.136) in above equation,

2c14 + 2zc15 + c15 = 0.

Comparing coefficients of z and z0, we get

z : c15 = 0, z0 : c14 = 0,

So eq(3.136) implies,

η2 = c17x+ d12(y). (3.137)

using eq(3.136), in eq(3.14), we have

η1z = 0 ⇒ η1 = b2(x, y), (3.138)

from eq(3.110), we have

zη1yy + (z2 + k)η2yy = 0.

Comparing coefficients of z2 and z, we have

z2 : η2yy = 0, z : η1yy = 0, (3.139)

using eq(3.137) in above, we have

η2yy = d12,yy = 0,

so

d12(y) = c18y + c19,
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so eq(3.137) implies,

η2 = c17x+ c18y + c19. (3.140)

Using eq(3.138) in eq(3.139), we have

η1yy = b2,yy = 0,

η1 = b2(x, y) = yb3(x) + b4(x), (3.141)

from eq(3.112), we have

zη1xx + η1xy = 0.

Comparing coefficients of z and z0, we have

z : η1xx = 0 z0 : η1xy = 0, (3.142)

using eq(3.141) in above equation, we have

η1xy = b3,x(x) = 0 ⇒ b3(x) = c20,

so eq(3.141) implies,

η1 = b2(x, y) = yc20 + b4(x). (3.143)

Again using eq(3.142), we have

η1xx = b4,xx = 0, ⇒ b4(x) = c21x+ c22,

substituting eq(3.143), we have

η1 = b2(x, y) = yc20 + c21x+ c22. (3.144)

Using eq(3.16), we get

Vt = −2c4t− 2c6.
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From eq(3.120), we have

ξ = c4s
2 + 2c5s+ c3,

η0 = (c4t+ c6)s+ c5t+ c7,

η1 = yc20 + c21x+ c22,

η2 = c17x+ c18y + c19, (3.145)

η3 = c8z + c13,

V = −c4t2 − 2c6t− c0.

Differentiating eq(3.8) thrice w.r.t. z, we have

P (t)η3z = 0, P (t) 6= 0 ⇒ η3z = 0.

So

c8 = 0,

eq(3.145) implies,

η3 = c13. (3.146)

Comparing coefficient of z and z0 from eq(3.7), we get

z : η2x = 0 ⇒ c17 = 0,

z0 : P
′
(t)η0 + 2P (t)(η1x − η3 −

1

2
ξs) = 0. (3.147)

Now comparing coefficients of z2, z and z0, of eq(3.8), we have

z2 : P
′
(t)η0 + 2P (t)(−η3 + η2y −

1

2
ξs) = 0, (3.148)

z : P (t)(η3 + η1y) = 0⇒ η3 + η1y = 0. (3.149)

Using eq(3.145), we get

c20 = −c13,

z0 : Q
′
(t)η0 + 2Q(t)(−η3 + η2y −

1

2
ξs) = 0,
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but Q(t)=kP(t), so above equation gives

P
′
(t)η0 + 2P (t)(−η3 + η2y −

1

2
ξs) = 0.

Subtracting eq(3.147) and eq(3.148), we get

η1x = η2y, ⇒ c21 = c18.

From eq(3.145), we have

ξ = c4s
2 + 2c5s+ c3,

η0 = (c4t+ c6)s+ c5t+ c7,

η1 = c18x− c13y + c22,

η2 = c18y + c19, (3.150)

η3 = c13,

V = −c4t2 − 2c6t− c0.

3.2.1 Case IV :

P (t), Q(t) and R(t) are linearly dependent. since R(t) = hP (t), so eq(3.9), we have

hP
′
(t)η0 − hP (t)ξs = 0, (3.151)

P
′
(t)η0 − P (t)ξs = 0. (3.152)

Subtracting eq(3.152) from eq(3.147), we get

η1x = η3,

but

η3 = c13.

Using eq(3.150) and above equation, we have

c18 = c13,
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substituting above values in eq(3.150), we have

ξ = c4s
2 + 2c5s+ c3,

η0 = (c4t+ c6)s+ c5t+ c7,

η1 = (x− y)c13 + c22,

η2 = c13y + c19, (3.153)

η3 = c13,

V = −c4t2 − 2c6t− c0.

Now using eq(3.9) and eq(3.6), we have,

R
′
(t)η0 − 2R(t)η0t = 0, (3.154)

from above equation,we get,

R
′′
(t)η0 −R′

(t)η0t = 0. (3.155)

Since R(t) and R
′
(t) are linearly independent, which implies R′

(t) 6= 0. So from

eq(3.155), we have following possibilities

1: η0 = 0,

2: R
′′
(t) = 0 = η0t ,

3: R
′′
(t)η0 = R

′
(t)η0t .

Case IV-1

η0 = 0,

using eq(3.153), we have c4 = c5 = c6 = c7 = 0,

so eq(3.153) implies
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from eq(3.153), we have

ξ = c3,

η0 = 0,

η1 = (x− y)c13 + c22,

η2 = yc13 + c19,

η3 = c13,

V = c0.

Here c0, c3, c13, c19 and c22, are the arbitrary constant. Corresponding to these con-

stants, we again get the minimal set of NSs given by eq(3.103).

Case IV-2

R
′′
(t) = 0 = η0t ,

using above in eq(3.154), we have

R
′
(t)η0 = 0, (3.156)

since R′
(t) 6= 0, so η0 = 0, in both (1) and (2) cases , we get η0 = 0, from eq(3.153),

we have

ξ = c3,

η0 = 0,

η1 = (x− y)c13 + c22,

η2 = yc13 + c19,

η3 = c13,

V = c0.

From above, we again get the minimal set of NSs given by eq(3.103).
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Case IV-3

From eq(3.155), we have

R
′′
(t)η0 = R

′
(t)η0t ⇒ R

′
(t) = c23η

0, (3.157)

multiplying eq(3.154) and eq(3.155) with R′′
(t) and R′

(t) respectively, then subtract(
R

′2
(t)− 2R

′′
(t)R(t)

)
η0t = 0.

If η0t = 0 then, eq(3.154) gives η0 = 0, it is already done and we have result in eq(3.157),

so we solve for

R
′2
(t)− 2R

′′
(t)R(t) = 0. (3.158)

Using eq(3.157) in above equation, we have

c223η
02 − 2

(
c23η

0
t

)(
c23

∫
η0dt

)
= 0,

using eq(3.120) in above equation, we have

((c4t+ c6)s+ c5t+ c7)
2 − 2(c4s+ c5)((

1

2
c24t

2 + c6t)s+
1

2
c25t

2 + c7t+
c24
c223

).

Suppose
c24
c223

= c25 then simplifying above equation, we have

c26s
2 + (2c6c7 − 2c4c25)s+ c27 − 2c5c25 = 0.

Comparing coefficients of s2, s and s0

s2 : c6 = 0, (3.159)

s : c6c7 = c4c25, (3.160)

s0 : c27 = 2c5c25. (3.161)

Since c6 = 0, therefore c4c25 = 0. Hence, either c4 = 0 or c25 = 0.

If c25 = 0, then eq(3.161) implies, c7 = 0.

From above, we have three possibilities
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(i) c6 = 0, c4 = 0, c7 = 0,

(ii) c6 = 0, c4 = 0, c7 6= 0,

(iii) c6 = 0, c4 6= 0, c7 = 0.

Case IV-3-(i)

c6 = 0, c4 = 0, c7 = 0,

from eq(3.153), we have

ξ = 2c5s+ c3,

η0 = c5t,

η1 = (x− y)c13 + c22,

η2 = c13y + c19,

η3 = c13,

V = −c0.

From above, we get one more NS in addition to the minimal set of NSs given by

eq(3.103),

X4 = 2s
∂

∂s
+ t

∂

∂t
. (3.162)
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Case IV-3-(ii)

c6 = 0, c4 = 0,

using eq(3.153), we have

ξ = 2c5s+ c3,

η0 = c5t+ c7,

η1 = (x− y)c13 + c22,

η2 = c13y + c19,

η3 = c13,

V = −c0.

From above, we get two more NSs in addition to the minimal set of NSs given by

eq(3.103),

X4 = 2s
∂

∂s
+ t

∂

∂t
,

X5 =
∂

∂t
. (3.163)

Case IV-3-(iii)

c6 = 0, c7 = 0,

using eq(3.153), we have

ξ = c4s
2 + 2c5s+ c3,

η0 = c4ts+ c5t,

η1 = (x− y)c13 + c22,

η2 = c13y + c19,

η3 = c13,

V = −c4t2 − c0.
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From above, we get two more NSs in addition to the minimal set of NSs given by

eq(3.103) along with corresponding gauge function,

X4 = 2s
∂

∂s
+ t

∂

∂t
, (3.164)

X5 = s2
∂

∂s
+ st

∂

∂t
, V = −t2.

3.2.2 Case V :

P (t) and Q(t) are linearly dependent but R(t) is independent. From eq(3.37), we have

R
′
(t)η0 − 2R(t)η0t = 0, (3.165)

from equation, we get

R
′′
(t)η0 −R′

(t)η0t = 0. (3.166)

Since R(t) and R′
(t) are linearly independent, which implies R′

(t) 6= 0. So from above

equation, we have following possibilities,

1: η0 = 0,

2: R
′′
(t) = 0 = η0t ,

3: R
′′
(t)η0 = R

′
(t)η0t .

Case V-1

η0 = 0,

using eq(3.148), we have

η2y = η3, ⇒ c18 = c13,

using eq(3.150), we have

c4 = c5 = c6 = c7 = 0,
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so eq(3.150) implies,

ξ = c3,

η0 = 0,

η1 = (x− y)c13 + c22,

η2 = yc13 + c19,

η3 = c13,

V = c0.

Here c0, c3, c13, c19 and ,c22, are the arbitrary constant. Corresponding to these con-

stants, we again get the minimal set of NSs given by eq(3.103).

Case V-2

R
′′
(t) = 0 = η0t ,

using above in eq(3.165), we have

R
′
(t)η0 = 0.

Since R′
(t) 6= 0, so η0 = 0, in both (1) and (2) cases , we get η0 = 0,

using eq(3.148), we have

η2y = η3, ⇒ c18 = c13,

so eq(3.150) implies,

ξ = c3,

η0 = 0,

η1 = (x− y)c13 + c22,

η2 = yc13 + c19,

η3 = c13,

V = c0.

From above, we again get the minimal set of NSs given by eq(3.103).
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Case V-3

From eq(3.166), we have

R
′′
(t)η0 = R

′
(t)η0t ⇒ R

′
(t) = c27η

0. (3.167)

Multiplying eq(3.165) and eq(3.166) with R′′
(t) and R′

(t) respectively, then subtract(
R

′2
(t)− 2R

′′
(t)R(t)

)
η0t = 0.

If η0t = 0 then, eq(3.154) gives η0 = 0, it is already done and we have result in eq(3.167).

So we solve for

R
′2
(t)− 2R

′′
(t)R(t) = 0,

using eq(3.167) in above equation, we have

c227η
02 − 2

(
c27η

0
t

)(
c27

∫
η0dt

)
= 0.

Using eq(3.145) in above equation, we have

((c4t+ c6)s+ c5t+ c7)
2 − 2(c4s+ c5)((

1

2
c24t

2 + c6t)s+
1

2
c25t

2 + c7t+
c28
c227

).

Suppose
c28
c227

= c29 then simplifying above equation, we have

c26s
2 + (2c6c7 − 2c4c25)s+ c27 − 2c5c29 = 0.

Comparing coefficients of s2, s and s0

s2 : c6 = 0, (3.168)

s : c6c7 = c4c29, (3.169)

s0 : c27 = 2c5c29. (3.170)

Since c6 = 0, therefore c4c29 = 0. Hence, either c4 = 0 or c29 = 0.

If c29 = 0, then eq(3.170) implies, c7 = 0.

From above, we have three possibilities
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(i) c6 = 0, c4 = 0, c7 = 0,

(ii) c6 = 0, c4 = 0, c7 6= 0,

(iii) c6 = 0, c4 6= 0, c7 = 0.

and from eq(3.147), we have

P
′
(t)η0 + 2P (t)(η1x − η3 − η0t ) = 0. (3.171)

Case V-3-(i)

c6 = 0, c4 = 0, c7 = 0,

from eq(3.150), we have

ξ = 2c5s+ c3,

η0 = c5t,

η1 = xc18 − yc13 + c22,

η2 = c18y + c19, (3.172)

η3 = c13,

V = −c0.

Using above in eq(3.171), we get

tc5P
′
(t) + 2P (t)(c18 − c13 − c5) = 0. (3.173)

From above equation we have two possibilities

α : tP
′
(t) and P (t) are linearly independent.

β : tP
′
(t) and P (t) are linearly dependent.
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Case V-3-(i)-α

tP
′
(t) and P (t) are linearly independent,

using above eq(3.172) and eq(3.173), we get

c5 = 0, and c18 = c13,

using above in eq(3.172), we have

ξ = c3,

η0 = 0,

η1 = (x− y)c13 + c22,

η2 = yc13 + c19,

η3 = c13,

V = c0.

From above, we again get the minimal set of NSs given by eq(3.103).

Case V-3-(i)-β

tP
′
(t) and P (t) are linearly dependent.

Suppose tP ′
(t) = 2P (t),

using above in eq(3.172) and eq(3.173), which gives c18 = c13.

Substituting above in eq(3.172), we have

ξ = 2c5s+ c3,

η0 = c5t,

η1 = (x− y)c13 + c22,

η2 = yc13 + c19,

η3 = c13,

V = c0.
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From above, we get the same NSs as we get in Case IV-3-(i) given by eq(3.162).

Case V-3-(ii)

c6 = 0, c4 = 0,

from eq(3.150), we have

ξ = 2c5s+ c3,

η0 = c5t+ c7,

η1 = xc18 − yc13 + c22,

η2 = c18y + c19, (3.174)

η3 = c13,

V = −c0.

Using above in eq(3.171), we get

c5tP
′
(t) + c7P

′
(t) + 2P (t)(c18 − c13 − c5) = 0. (3.175)

From above equation we have two possibilities

α : P
′
(t), tP

′
(t) and P (t) are linearly independent.

β : tP
′
(t) and P (t) are linearly dependent but P ′

(t) and P (t) are linearly indepen-

dent.

γ : P
′
(t) and P (t) are linearly dependent but tP ′

(t) and P (t) are linearly indepen-

dent.

Case V-3-(ii)-α

P
′
(t), tP

′
(t) and P (t) are linearly independent,

using in eq(3.174) and eq(3.175), we get

c5 = 0, c7=0, c18 = c13.
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using above in eq(3.172), we have

ξ = c3,

η0 = 0,

η1 = (x− y)c13 + c22,

η2 = yc13 + c19,

η3 = c13,

V = c0.

From above, we again get the minimal set of NSs given by eq(3.103).

Case V-3-(ii)-β

tP
′
(t) and P (t) are linearly dependent, suppose tP ′

(t) = 2P (t),

using above in eq(3.175), we have

c7P
′
(t) + 2P (t)(c18 − c13 + c5 − c5) = 0,

c7P
′
(t) + 2P (t)(c18 − c13) = 0.

Since P ′
(t) and P (t) are linearly independent, so above equation gives

c7=0, c18 = c13.

Substituting in eq(3.174), we have

ξ = 2c5s+ c3,

η0 = c5t,

η1 = (x− y)c13 + c22,

η2 = yc13 + c19,

η3 = c13,

V = c0.

From above, we get the same NSs as we get in Case IV-3-(i) given by eq(3.162).
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Case V-3-(ii)-γ

P
′
(t) and P (t) are linearly dependent, suppose P ′

(t) = 2P (t),

using above in eq(3.175), we have

c7 + c18 − c13 + tc5 − c5 = 0,

from above we get

c5 = 0, c18 = −c7 + c13.

Substitute above in eq(3.174), we have

ξ = c3,

η0 = c7,

η1 = −xc7 + (x− y)c13 + c22,

η2 = −c7y + c13y + c19,

η3 = c13,

V = −c0.

From above, we get the one more NS in addition to the minimal set of NSs given by

eq(3.103),

X4 =
∂

∂t
− x ∂

∂x
− y ∂

∂y
. (3.176)
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Case V-3-(iii)

c6 = 0, c7 = 0,

from eq(3.150), we have

ξ = c4s
2 + 2c5s+ c3,

η0 = c4ts+ c5t,

η1 = xc18 − yc13 + c22,

η2 = c18y + c19, (3.177)

η3 = c13,

V = −c4t2 − c0.

Using above in eq(3.171), we get

(c4s+ c5)P
′
(t) + 2P (t)(c18 − c13 − c4s− c5) = 0. (3.178)

From above equation we have two possibilities

α : tP
′
(t) and P (t) are linearly independent.

β : tP
′
(t) and P (t) are linearly dependent.

Case V-3-(iii)-α

tP
′
(t) and P (t) are linearly independent,

using above in eq(3.177) and eq(3.178), we have

c4s+ c5 = 0, c18 − c13 − c4s− c5 = 0,

from above we get

c4 = 0, c5 = 0, c18 = c13.
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Substituting above in eq(3.177), we have

ξ = c3,

η0 = 0,

η1 = (x− y)c13 + c22,

η2 = yc13 + c19,

η3 = c13,

V = c0.

From above, we again get the minimal set of NSs given by eq(3.103).

Case V-3-(iii)-β

tP
′
(t) and P (t) are linearly dependent,

suppose tP ′
(t) = 2P (t),

using above in eq(3.178), we have

2P (t)(c4s+ c5 + c18 − c13 − c4s− c5) = 0,

c18 = c13.

Substitute above in eq(3.177), we have

ξ = c4s
2 + 2c5s+ c3,

η0 = c4ts+ c5t,

η1 = (x− y)c13 + c22,

η2 = c13y + c19,

η3 = c13,

V = −c4t2 − c0.

From above, we get the same set of NSs as we get in Case IV-3-(iii) given by eq(3.164).
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Chapter 4

Summary

In this thesis we have investigated Noether symmetries for Bianchi type IV spacetime.

To find Noether symmetries we used Lagrangian given by eq(3.1) in the Noether sym-

metry condition given by eq(2.21) which led to a system of nineteen partial differential

equations given by eq(3.2) to eq(3.20). Solving this system of equations for various

cases we obtain corresponding symmetries. The summarized results are presented in

the following Table 4.1.
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Table 4.1: Noether symmetries of Bianchi type IV spacetimes corresponding to different
cases.

Sr. No Case No. NSs Ref. Eqn

1 I, II, III, IV-1, X0 =
∂

∂s
, 3.103

IV-2, V-1, V-2, X1 = (x− y) ∂
∂x

+ y
∂

∂y
+

∂

∂z
,

V-3-(i)-α, V-3-(ii)-α, X2 =
∂

∂x
, X3 =

∂

∂y
.

V-3-(iii)-α. (which is the minimal set of NSs.)

2 IV-3-(i), V-3-(i)-β. X4 = 2s
∂

∂s
+ t

∂

∂t
, 3.162

V-3-(ii)-β and minimal set.

3 IV-3-(ii). X4 = 2s
∂

∂s
+ t

∂

∂t
. 3.163

X5 =
∂

∂t
,

and minimal set.

4 IV-3-(iii). X4 = 2s
∂

∂s
+ t

∂

∂t
. 3.164

V-3-(iii)-β X5 = s2
∂

∂s
+ st

∂

∂t
, V = −t2,

and minimal set.

5 V-3-(ii)-γ. X4 = t
∂

∂t
− x ∂

∂x
− y ∂

∂y
, 3.176

and minimal set.
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