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Abstract 

 

Sepsis is the body’s abnormal and dysregulated response to an infection due to 

septicaemia. It causes multiple organ damage, and eventually, the patient dies. The 

worldwide mortality ratio of sepsis is exceptionally high, with an estimated 11 million 

deaths according to 2017 global sepsis statistics. In Pakistan, an estimated 60-80% of 

intensive care unit (ICU) deaths are due to sepsis, which might reach 90% soon. Due to 

limited resources and inflation, early sepsis detection is imperative to lower mortality. 

Several machine learning-based sepsis prediction tools have been developed, and many 

studies have been conducted for sepsis prediction. However, these tools cannot predict 

sepsis as it is a time-series problem but treat it as a binary classification problem. Deep-

learning (DL) algorithm-based methods can better deal with the time-series data due to 

their robustness, allowing better insights into the data and performance. Therefore, in 

this study, a novel DL-based approach is opted to forecast the sepsis mortality risk in 

ICU patients. MissForest and Last Observation Carried Forward (LOCF)-zero (FFILL-

0) imputation methods were used to impute Not a Number (NaN) values (missing 

values) in the data, and the patient data was converted to fixed-length tensors, which 

were then used for model training and evaluation. Among the DL algorithms, Long 

short-term memory (LSTM) and Gated recurrent units (GRUs) were selected for model 

building. Finally, four models were trained on MissForest, and FFILL-0 imputed data, 

and to check the effectiveness, the models were evaluated on the hold-out datasets and 

the Area Under the Receiver Operating Characteristic curve (AUROC) was calculated 

for each model. LSTM model outperformed GRU, and the highest AUROC achieved 

in this study was 0.758. In short, DL algorithms can accurately forecast sepsis risk in 

ICU patients and can help reduce Intensive Care Unit Length of Stay (ICULOS) and 

sepsis mortality risk.  
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Introduction 

 

1.1. Insights to sepsis 

Sepsis is the earliest known illness that dates back to ancient Greeks, who 

defined sepsis as “σῆψις” or “putrefaction” [1, 2]. However, the modern context of 

sepsis is different. Sepsis is the lethal condition that ensues when the body fights against 

blood poisoning due to microbes, a condition called septicaemia [3]. The body’s organs 

and tissues get damaged so much that it causes the individual’s death [4]. The 

appropriate description of sepsis was ambiguous before 1991. Some researchers 

defined sepsis as a clinical syndrome, a systemic response to infection [5].  

However, the Chicago consensus conference held in August of 1991 by the 

Society of Critical Care Medicine (SCCM) together with the American College of 

Chest Physicians (ACCP) specified the first definition of sepsis (Sepsis-1) as “The 

infection commencing the onset of SIRS”. Furthermore, it defined SIRS as “Systemic 

Inflammatory Response Syndrome” [6, 7], and the SIRS criteria consist of heart rate 

(tachycardia), respiration rate (tachypnea), temperature (hyperthermia, hypothermia), 

and white blood cells (leukocytosis, leukopenia) [2, 5, 6, 8]. Sepsis is aggressive and 

deadly, and severe sepsis and septic shock are responsible for sepsis-related deaths.  

Severe sepsis involves organ dysfunction, including hypotension and tissue 

hypoperfusion caused by sepsis. On the other hand, septic shock is sepsis with persistent 

hypoperfusion and hypotension even with fluid resuscitation [9, 10]. All these (SIRS, 

Sepsis, Severe Sepsis, Septic shock) along with Multiple Organ Dysfunction Syndrome 

(MODS) lead to the death of the patient [11] (Figure. 1).  

 

Figure 1: The infectious and non-infectious relationship between SIRS, Sepsis, Severe Sepsis, Septic shock, and 

MODS leading to death [12] 
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However, the European Society of Intensive Care Medicine (ESICM), ACCP, 

SCCM, the Surgical Infection Society (SIS), and the American Thoracic Society (ATS) 

revised the definition of sepsis (Sepsis-2) in the second consensus conference in 2001. 

They defined sepsis as the existence of two (or more) SIRS criteria concurrently with 

the infection [13]. The third consensus conference of 2016 reviewed the definition of 

Sepsis (Sepsis-3) and described sepsis as the dysregulated and escalated response of the 

host toward an infection [14, 15]. The consensus defined the Sequential Organ Failure 

Assessment (SOFA) Score and introduced quick SOFA (qSOFA), the modified version 

of SOFA. In addition, it redefined sepsis based on SOFA and qSOFA instead of SIRS 

[16]. Figure 2 compares sepsis definitions described in the Surviving Sepsis Campaign 

Guidelines and consensus conferences [17]. 

 

Figure 2: Graphical representation of sepsis definitions from 1992 to 2016 

The SOFA score criteria comprise of Respiratory system (Partial pressure of 

oxygen in the arterial blood (PaO2), Fraction of inspired oxygen (FiO2)), Nervous 

system (Glasgow Coma Scale (GCS)), Cardiovascular system (Mean Arterial Pressure 

(MAP) and Dopamine), Liver (Bilirubin), Coagulation (Platelets), and Kidneys 

(Creatinine) [8, 18]. Now, physicians and doctors worldwide mostly use qSOFA to 

diagnose septic patients quickly. qSOFA criteria are Respiration rate, GCS, and 

Systolic Blood Pressure (SBP) [8].  

1.1. Pathophysiology of Sepsis  

When pathogens enter the host (patient) body, the patient’s defence mechanism 

is activated, which protects against the microbes [19]. The most prevalent infectious 

sites for the onset of sepsis are the urinary tract, bloodstream, lungs, and abdominal 
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cavity [14]. Immune cells like monocytes, macrophages, Natural Killer (NK) Cells, and 

neutrophils are released that attacks the invading pathogens [20]. How these cells 

recognise and attack only the invading pathogens is a fascinating capability of the 

immune system. On the surface of these immune cells are specialised receptor 

molecules called Pattern-Recognition Receptors (PRRs), such as Toll-Like Receptors 

(TLRs), Nucleotide-binding oligomerisation domain-like (NOD-like) receptors, 

Retinoic acid-inducible gene-1-like (RIG-1-like) receptors, and C-type lectin receptors 

[20-22]. Figure 3 shows the structure of a TLR type 4 and Myeloid differentiation 

factor-2 (MD-2) complex, which is bound to bacterial Lipopolysaccharide (LPS). 

 

Figure 3: Structure of a hexamer complex of a Toll-Like Receptor 4 and Myeloid differentiation factor-2 attached 

to bacterial LPS [23] 

When pathogens enter the host body, they release some molecules known as 

Pathogen-Associated Molecular Patterns (PAMPs), such as β-glucans (in the case of 

fungi), bacterial endotoxins, Deoxyribonucleic acid (DNA), flagellin, 

Lysophosphatidic acid (LPA), LPS, and superantigens like Streptococcal Pyrogenic 

Exotoxin (SPE) and double or single-stranded viral Ribonucleic acid (RNA). [20, 21, 

24, 25]. PRRs recognise these PAMPs and activate innate immune cell responses. 

Immune cells interact with pathogens, phagocytise them, and sometimes get damaged 

or killed during the encounter, thus releasing alarmins or Damage/Danger-Associated 

Molecular Patterns (DAMPs) such as heat-shock proteins, High-mobility group box 1 

(HMGB1), histones, lipoproteins, Mitochondrial DNA (mtDNA), and Adenosine 
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triphosphate (ATP) molecules. PAMPs and DAMPs, when recognised by PRRs on 

immune cells, activate signalling pathways within the immune cells [22], resulting in 

the production of pro-inflammatory proteins known as Cytokines, like Interleukin-6 

(IL-6), Interleukin-1 (IL-1), and Tumour Necrosis Factor-α (TNF-α), which promote 

inflammation.  

TNF-α is one of the earliest releasing cytokines during the onset of sepsis [25]. 

Aggregated NOD-like receptors (Inflammasomes) (Figure. 4) produce cytokines 

(caspases, Interleukin-18 (IL-18), and Interleukin-1-beta (IL-1β)) that participate in 

apoptosis. Pro-inflammatory cytokines are responsible for the activation of leucocytes, 

production of tissue factors, Nitric oxide release, inhibition of fibrinolysis, and decrease 

in thrombomodulin. Conversely, anti-inflammatory cytokines impede inflammation by 

hindering pro-inflammatory cytokine functions [25]. Pro-inflammatory and anti-

inflammatory cytokines cancel each other’s effects [26], thus maintaining the balance 

in the body. However, the excessive production of pro-inflammatory cytokines along 

with cellular dysfunction disrupts this balance in case of sepsis. 

 

 

Figure 4: The structure of the NLRP3 Inflammasome complex [27].  

When the infection is severe, immature neutrophils are released by bone marrow 

through the short maturation of granulocytes, consequently exhibiting decreased 

oxidative burst and phagocytosis capability [24]. Also, Lymphocytes undergo apoptosis 

because they lose their ability to produce cytokines owing to the overproduction of 

Complement factor 5a (C5a) protein due to infection [28] and thus exhibit reduced 
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function [29]. The endothelium plays a crucial role in sepsis pathophysiology. It 

releases pro-inflammatory cytokines and recruits inflammatory cells.  

In addition, endothelium vasodilation, leucocyte adhesion, and barrier 

functionality loss result in tissue oedema [30]. Furthermore, the loss of anticoagulant 

function due to cytokine storm stimulates coagulation [24]. Antithrombin deficiency 

causes prolonged blood clotting, and Disseminated Intravascular Coagulation (DIC) is 

evident in cases of sepsis [26, 29]. Bacterial endotoxins or LPS induce apoptosis in the 

endothelium, leading to microvascular thrombosis due to the release of intracellular 

histones. This abnormality of excessive bleeding and clotting favours coagulopathy and 

increases mortality risk [31].  

Moreover, endothelium also produces nitric oxide and its production upsurges 

due to the pro-inflammatory cytokines. This unregulated nitric oxide release results in 

vasodilation [32], which results in hypotension [33]. Peroxynitrite and nitric oxide are 

also accountable for endothelial mitochondrial dysfunction and cause cellular and tissue 

hypoxia because of poor oxygen utilisation [34, 35]. Due to hypoxia, Red Blood Cells 

(RBCs) release nitric oxide and promote vasodilation and perfusion of blood vessels. 

RBCs also become rigid, and they aggregate. Also, leucocytes produce Reactive 

oxygen species (ROS) that destroy cellular interactions and coagulation function, 

leading to oedema and cellular distress [35]. These phenomena fail multiple vital organs 

– a condition called Multiple Organ Failure Syndrome (MOFS) or MODS [36, 37].  

Lungs are the first organ affected in MODS due to capillary leakage and alveolar 

flooding, followed by myocardial dysfunction due to excessive nitric oxide production. 

The third organ most affected in MODS is the kidneys because of catecholamine 

production, even after fluid resuscitation [38]. The neurological dysfunction due to 

MODS is polyneuropathy and polymyopathy because of hyperglycaemia and 

bacteraemia. Also, gastrointestinal system dysfunction due to MODS can be 

pancreatitis and ulcers [39]. In sepsis, MODS-related multiple organ dysfunction 

increases the in-hospital mortality risk and causes the patient’s death [36, 37]. 

1.4. Challenges 

Due to the unavailability of local patient data from the Pakistani population till 

now, no study has been published on sepsis prediction and forecasting based on 
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Pakistani data. Thus, this study is limited to using open-source patient data from the 

United States of America (USA) population.  

1.5. Problem Statement 

The currently used predictive algorithm-based tools for predicting sepsis in 

patients predict sepsis as binary classification of “Yes” (septic patient) and “No” (non-

septic patient) as in at one instance the patient might classify as septic and later the 

same might be classified as non-septic. However, when a patient is admitted to the 

hospital, the data is collected over regular time intervals (primarily hourly base), thus 

making it a time-series analysis and problem, and simple prediction-based tools for 

sepsis detection are not suitable. Thus, this study uses time series forecasting to predict 

the probability of sepsis occurring.  

1.6. Proposed Strategy 

Forecasting sepsis using Deep Learning (DL) algorithms is efficient because 

DL algorithms work best with time-series data. As a result, time series forecasting is 

used in this study to deal with the data. This technique will accurately assess a patient’s 

risk for sepsis and minimise in-hospital patient mortality and ICULOS.  

1.7. Objectives 

Following are the objectives of this research: 

1. To find out the appropriate Deep Learning models for sepsis forecasting. 

2. To select the best features for building the sepsis forecasting model. 

3. To prepare and pre-process the data for model building. 

4. To develop, optimize, and evaluate the sepsis forecasting model. 
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Literature Review 

 

2.1. Sepsis Epidemiology  

Sepsis is lethal and has a high mortality and morbidity ratio globally. The 

epidemiological study conducted in the USA in the 1990s by the Centres for Disease 

Control (CDC) on sepsis using hospital data revealed that from 1979 to 1989, the sepsis 

rate per 100,000 patients increased from 73.6 to 175.9 [40]. Per the 2019 Global Sepsis 

Alliance, 60-80% of ICU deaths in Pakistan are due to sepsis [41], which might 

approach 90% soon [42]. According to the 2017 study [43] (Figure. 5), 48.9 million 

people were diagnosed with sepsis globally, and 11 million died, representing 20% 

worldwide deaths.  

 

Figure 5: Global Sepsis Statistics in 2017. 

Sepsis and severe sepsis put an estimated burden of 17 billion dollars annually 

in the USA [44], 36.4 million dollars to 72.9 million dollars in Canada [45], and 2.16 

billion dollars in Australia [46]. The rate of sepsis varies age-wise, and the average age 

of sepsis patients is allegedly between 55 to 68 years, and it is more common in men 

than women [44, 47]. The rate of sepsis is 5 per 1000 patients in infants, <5 per 1000 

patients in children, and 15 per 1000 patients in octogenarians. In sexagenarian patients, 

58% of sepsis cases and 71% of sepsis-related deaths are reported in developed 

countries [48].  

Also, a study conducted in 2017 [43] acknowledged that the percentage of age-

related sepsis deaths from infections or injuries worldwide fluctuates among 

48.9 Million

11 Million

AFFECTED PEOPLE SEPSIS  DEATHS
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individuals. It surged in early infancy, plunged amongst young adults, and spiked again 

among mature adults (Figure. 6).  

 

Figure 6: Percentage of global sepsis-related deaths in 2017 age-category-wise 

 

Over the past decade, the sepsis mortality rate decreased in high-income 

countries, but the mortality rate in middle- and low-income countries has increased. For 

example, septic patients in ICU in Brazil has a mortality rate of 55.7% [42]. In Brazil, 

from 2006 to 2015, there was a spike of 50% in sepsis incidence from 31.5 to 47.4 per 

100,000 people and a spike of 85% in sepsis mortality from 13.3 to 24.6 per 100,000 

people (Figure. 7).  

 

Figure 7: Sepsis Mortality, Incidence, Lethality from 2006 to 2015 in Brazil [49] 
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From 2000 to 2013 in Spain, sepsis-related in-hospital deaths increased from 

18% to 29%, and sepsis-related hospital admissions increased from 3.6% to 5.8% 

(Figure. 8).  

 

Figure 8: Sepsis-related hospital admission and mortality in Spain [50] 

 

2.2. Assessment of Sepsis 

Regardless of the top-notch healthcare system worldwide, sepsis assessment is 

still complicated. Early sepsis evaluation is the key to saving the patient’s life. 

Nevertheless, diagnosing sepsis is challenging due to non-infectious inflammation in 

the body. So, physicians relied on using biomarkers to properly diagnose the patient as 

septic or non-septic [51].  

A biomarker characterises a biological entity that anticipates the outcomes of a 

standard or abnormal process (like a disease) inside humans that is difficult to observe 

[52]. The use of biomarkers is extensive to diagnose heart-related issues, immune 

disorders, infections, disease screening and monitoring, drug reaction prediction, 

identification of cell types, measuring drug efficacy in clinical trials, and studying 

tumours and cancers [52, 53]. 
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Proteins like C-reactive protein (CRP), Procalcitonin (PCT), IL-6, Soluble form 

of Triggering Receptor Expressed on Myeloid cells-1 (sTREM-1), Lipopolysaccharide-

Binding Protein (LBP), Soluble form of Urokinase Plasminogen Activator Receptor 

(suPAR), Proadrenomedullin (Pro-ADM), Soluble form of Cluster of Differentiation 

14 subtype (sCD14-ST) or presepsin, Pro-atrial natriuretic peptide (pro-ANP), 

Interferon-ɣ (IFN-ɣ), resistin, Interleukin-27 (IL-27), Angiopoietin-1 (Ang-1) and 

Angiopoietin-2 (Ang-2), antibodies like Mannan (M), Antimannan (AM), Lactate, non-

coding RNAs like MicroRNAs (miRNAs), Circular RNAs (circRNAs), Long non-

coding RNAs (lncRNAs) are the potential biomarkers used to diagnose sepsis [54-56].  

Among these biomarkers, PCT, CRP, IL-6, and Lactate are widely used for 

sepsis diagnosis [57, 58]. Doctors use different scoring systems and criteria for sepsis 

diagnosis when patients are admitted to the ICU after an accident or surgery. They order 

Food and Drug Administration-approved (FDA-approved) lab tests such as PCT, 

Lactate, CRP, and Cytokines to confirm whether the patient is septic or non-septic [59]. 

Although these lab tests are efficient enough to diagnose sepsis properly, some of these 

tests take time.  

Patients with septic shock have an 8% increase in mortality each passing hour 

if there is any delay in administering antibiotics to the patients [60]. So, doctors use 

qSOFA and National Early Warning Score 2 (NEWS2) alongside SOFA and SIRS to 

quickly check a patient's mortality risk and ensure the timely administration of 

antibiotics [61]. Following is the detail of the scoring systems with their criteria:  

 

2.2.1. SIRS 

If a patient meets two (or more) out of these four SIRS criteria, their condition is 

said to be sepsis [8]: 

▪ Tachycardia - Heart rate greater than 90 beats per minute  

▪ Tachypnea - Respiration rate of more than 20 breaths/minute  

▪ Hyperthermia or Hypothermia - Temperature more than 38°C or less than 36°C 

▪ Leukocytosis or Leukopenia - Abnormal White blood cells (WBCs) count of 

more than 12,000/mL or less than 4000/mL 
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2.2.2. SOFA 

Table 1 represents the SOFA criteria [8]. Each organ system or variable that 

comprises SOFA is given a score from “0” to “4”.  

Table 1: Sequential Organ Failure Assessment (SOFA) score [8] 

 

 

 

Organ System /  

Variable 

SOFA Score 

0 1 2 3 4 

Respiration 

PaO2 mmHg 

FiO2 (kPa) 

> 400 

 

< 400 

 

< 300 

 

< 200 

with 

respirator

y support 

< 100 with 

respiratory 

support 

Coagulation 

Platelets, 103 / 

mm3 

> 150 < 150 < 100 < 50 < 20 

Liver 

Bilirubin 

(mg/dL) 

<102 
1.2 - 

1.9 
2.0 - 5.9 6.0 - 11.9 > 12.0 

Cardiovascular 

MAP 

≥ 70 

mmHg 

MAP 

< 70 

mmHg 

Dopamine 

< 5 or 

Dobutami

ne (any 

dose) 

Dopamine 

5.1 - 15 or 

Epinephri

ne ≤ 0.1 

or 

Norepinep

hrine ≤ 

0.1 

Dopamine > 15 

or Epinephrine 

> 0.1 or 

Norepinephrine 

> 0.1 

Central Nervous 

System 

GCS 

15 13 - 14 10 - 12 6 - 9 < 6 

Renal 

Creatinine 

(mg/dL) 

< 1.2 
1.2 - 

1.9 
2.0 - 3.4 

3.5 - 4.9 < 

500 
> 5.0 < 200 
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A SOFA score of “0” means normal, and a SOFA score of “4” means 

exceptionally abnormal. The score is calculated for each variable separately based on 

that variable’s value, and a patient with a combined SOFA score of 2 or more is 

considered septic with organ dysfunction [13] and needs immediate care.  

 

2.2.3. qSOFA 

A patient with a qSOFA score of 2 or more indicates sepsis and organ 

dysfunction [8, 62] and needs urgent care; otherwise, there is a mortality risk for the 

patient. qSOFA criteria are shown in Table 2. 

Table 2: Quick Sequential Organ Failure Assessment (qSOFA) score 

 

 

2.2.4. NEWS2 

In 2012, the Royal College of Physicians of London (RCPL) proposed a 

National Early Warning Score (NEWS) composed of six vital signs: Respiration Rate, 

Oxygen Saturation, Temperature, SBP, Heart Rate, and GCS. Each vital sign is 

assigned a score from 0 - 3.  

Later in 2017, RCPL proposed NEWS2, a modified version of NEWS. The 

modifications were made in each vital sign score weightage [63]. Table 3 shows the 

NEWS2 criteria [64]. A score is assigned to each vital sign value, and a combined score 

of 5 or more indicates sepsis and the patient needs urgent care.  

 

 

 

 

 

qSOFA score criteria Score 

Respiration Rate ≥ 22 per minute 1 

Level of Consciousness (GCS) 1 

SBP ≤ 100 mmHg 1 
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Table 3: National Early Warning Score 2 (NEWS2) [64] 

 

2.3. Invasive methods based sepsis detection  

 The microbial infection is the sine qua non for sepsis [65], and the earliest 

symptom of sepsis observed in hospital patients is fever [66]. Initially, researchers 

focused on early sepsis detection based on biomarkers using blood cultures (BC). 

Martin et al. [67] studied IL-6 and TNF-α patterns in critically ill patients. Their study 

involved 60 patients with multiple trauma and 25 septic shock patients without trauma. 

The serum concentrations of these cytokines were studied, and they reported that septic 

shock patients have a high concentration of both TNF-α and IL-6 and high mortality 

risk. Moreover, higher IL-6 concentrations in trauma patients are linked to the onset of 

nosocomial infections, which can lead to sepsis.  

Vital Sign / 

Parameter 

NEWS2 Score 

3 2 1 0 1 2 3 

Respiration (bpm) ≤ 8  9 - 11 12 - 20  21 - 24 ≥ 25 

SpO2 Scale 1 (%) ≤ 91 92 - 93 94 - 95 ≥ 96    

SpO2 Scale 2 (%) ≤ 83 84 - 85 86 - 87 

88 - 92 

≥ 93 on 

air 

93 - 94 

on 

oxygen 

95 - 96 

on 

oxygen 

≥ 97 on 

oxygen 

Air or Oxygen?  Oxygen  Air    

SBP (mmHg) ≤ 90 
91 - 

100 

101 - 

110 

111 - 

219 
  ≥ 220 

Pulse / HR (per 

minute) 
≤ 40  41 - 50 51 - 90 

91 - 

110 

111 - 

130 
≥ 131 

Consciousness    Alert   CVPU 

Temperature (°C) ≤ 35.0  
35.1 - 

36.0 

36.1 - 

38.0 

38.1 - 

39.0 
≥ 39.1  
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 BC is the most effective way to detect the pathogens inside a patient’s blood. 

However, specific BC conditions are required for the pathogen to grow, making them 

tedious [68]. Ziqi et al. [69] conducted a study on ICU patients from the Chinese 

population to lower the time a BC-based patient lab report takes. Patients were divided 

into two groups; Laboratory Blood Culture (LBC), BCs cultured within the hospital 

microbiology lab, and Satellite Blood Culture (SBC), BCs cultured at the collection 

site, typically in the ICU. The authors reported no considerable difference between the 

BC protocol of these two groups. However, the culture time was significantly shorter 

for SBC than for LBC.   

 Lodes et al. [70] evaluated SeptiFast (SF), a multiplex real-time Polymerase 

Chain Reaction based (PCR-based) sepsis detection kit for early detection of pathogens 

in abdominal sepsis patients’ blood. Blood samples were taken from surgical ICU 

(SICU) patients in Germany, and 77 pathogens were identified. Out of which, BC 

confirmed 25 pathogens. Therefore, it is concluded that PCR-based sepsis detection is 

a suitable method for helping doctors better care for patients. Christian et al. [71] also 

used SF for sepsis diagnosis based on BC. Data from 258 sick patients were collected 

from the Italy population, and the purpose of the study was to get a higher probability 

of pathogen detection. 

Instead of using BC-based methods, which are time-consuming, or PCR-based 

methods, which might fail due to abundant human DNA and low pathogenic DNA in 

the samples, Trung et al. [68] developed Sepsis@Quick – a sepsis diagnosis kit. This 

kit helps in the real-time removal of human DNA from the PCR samples and can detect 

more pathogens in blood samples than BC-based or other PCR-based methods. Another 

sepsis detection kit was developed by Zhang Ye et al. [72]. Blood samples were 

obtained from critically ill patients, and sepsis was diagnosed based on Cluster of 

Differentiation 64 (CD64) expression measurement using the microfluidic cell 

separation device. This sepsis chip is cost-effective, and the approach is proven precise 

for sepsis detection.  

Christopher et al. [73] introduced a mechanism for the detection of IL-6 

electrochemically. They developed a needle-shaped microelectrode for real-time 

detection of IL-6 to diagnose sepsis in the affected person. Moreover, Zupančič et al. 

[74] developed a graphene oxide nanoparticle-based multi-biomarker detection sensor 
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system, which can detect PCT, CRP, and PAMPs simultaneously. This system can 

quickly achieve parallel detection of multiple biomarkers from whole blood, which is 

otherwise challenging in electrochemical systems [75]. A bioinformatics-based study 

for finding biomarkers associated with sepsis was carried out by Jianhua et al. [76]. The 

microarray data were obtained from Gene Expression Omnibus (GEO) database, and 

differentially expressed genes (DEGs) were identified. Many DEGs were involved in 

the cell cycle and activation of neutrophils, and genes like Tripartite Motif Containing 

25 (TRIM25), MYC, and Ring Finger Protein 4 (RNF4) were identified as potential 

DEGs critical biomarkers for sepsis.  

2.4. Non-Invasive methods based sepsis detection  

However, blood culture-based detection usually takes 12-72 hours [73], and a 

one-hour delay increases mortality risk by 6-10% [60, 77]. So, researchers focused on 

more reliable ways to detect sepsis. Nguyen et al. [78] evaluated the accuracy and 

performance of an automated Electronic Medical Report (EMR) system for sepsis 

detection in the emergency department (ED) of hospitals. This system collects data like 

vital signs and lab tests of all patients in ED and generates an alert for sepsis based on 

SIRS. Out of 795 sepsis alerts, 355 were actual alerts for sepsis. Among these alerts, 

38% were for patients with respiratory tract infections, and 32.7% were for urinary tract 

infections. The EMR system also generated false sepsis alerts for patients with trauma 

and heart-related issues.  

SIRS, qSOFA and NEWS are the best tools for sepsis diagnosis. A statistical 

analysis-based study was conducted by Usman et al. [79], who performed a 

retrospective study to compare SIRS, qSOFA, and NEWS to detect severe sepsis and 

septic shock. Data was obtained from ED, and they calculated AUROC, sensitivity, and 

specificity. NEWS was the most accurate scoring system than SIRS or qSOFA. In terms 

of sensitivity, NEWS achieved similar sensitivity 84.2% (Confidence Interval (CI): 

81.5% - 86.5%) to SIRS 86.1% (CI: 83.6% - 88.2%) as it is based on vital signs only. 

However, qSOFA is a poor choice for sepsis diagnosis for ED patients, with a 

sensitivity of 28.5% (CI: 25.6% - 31.7%). Brink et al. [80] also compared the SIRS, 

qSOFA, and NEWS for sepsis detection in ED patients. They carried out a retrospective 

study using a total of 8204 patients. 3.5% (286) patients died within ten days of ICU 

admission, and 6% (490) died within 30 days after ICU admission. AUC was calculated 

for 10-days and 30-days. Ten days AUC achieved for NEWS is 0.837, qSOFA 0.744, 
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and SIRS 0.646. Similarly, 30 days AUC achieved for NEWS is 0.779, qSOFA 0.697, 

and SIRS 0.631. NEWS outperformed qSOFA and SIRS in predicting ten days and 30 

days of patient mortality in ED.  

Another statistics-based study was carried out by Shashikumar et al. [81]. They 

included vital signs like Heart Rate (HR), Systolic Blood Pressure (SBP), Mean Arterial 

Pressure (MAP), Oxygen Saturation (O2Sat), Diastolic Blood Pressure (DBP), 

Respiration Rate (Resp), GCS, and Temperature (Temp) as essential features in their 

study. Using a multivariate modelling approach for early sepsis detection in ICU 

patients, they concluded that blood pressure and HR dynamics are valuable predictors 

for detecting sepsis four hours before the onset. Also, AUROC increased from 0.67 to 

0.78 when demographics and other data like surgical history were added to the model. 

2.4.1. Machine learning based Sepsis detection 

Early detection of sepsis is the key to minimising in-hospital patient mortality. 

However, relying only on invasive methods is not a good approach, even though BC, 

PCR, and biomarkers-based studies are proven reliable for sepsis detection. Non-

invasive methods are more efficient than invasive methods [82]. Relying only on 

continuously available vital signs and incorporating Machine Learning (ML) 

algorithms is another way to diagnose sepsis effectively. There is a gradual increase in 

the use of ML for disease prediction due to improved algorithms that enable the early 

detection of deadly diseases and helps doctors control patient mortality [83-85].  

Various ML techniques such as Supervised Learning (SL), Unsupervised 

Learning (UL), Reinforcement Learning (RL), and Deep Learning (DL) are used for 

disease prediction [86]. In addition, algorithms such as Neural Networks (NN), k-

Nearest Neighbours (k-NN), Logistic Regression (LR), Support Vector Machine 

(SVM), and Gradient boosting have been used for sepsis detection [87-89]. Islam et al. 

[90] performed a meta-analysis to evaluate ML models’ performance with available 

scoring systems used for sepsis prediction. They did an extensive literature review using 

electronic databases like Google Scholar, PubMed, and others. They found out that out 

of 135 studies, only 7 met their inclusion criteria based on the Preferred Reporting Items 

for Systematic Reviews and Meta-analysis (PRISMA). 3-4 hours before the onset of 

sepsis, ML models achieved the pooled AUROC of 0.89, the sensitivity of 0.81, and 

specificity of 0.72, as compared to pooled AUROC of SIRS (0.70), Modified Early 
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Warning System (MEWS) (0.50), and SOFA (0.78). So, ML-based sepsis detection 

methods proved to be more efficient than other scoring system-based methods.  

Jacob et al. [91] developed InSight, an efficient tool for sepsis detection ahead 

of time, typically up to three hours. They trained the model using Medical Information 

Mart for Intensive Care (MIMIC) data. InSight achieved an AUROC of 0.83, a 

sensitivity of 0.90, and a specificity of 0.81 when tested on unseen data (test data). It 

outperformed biomarker-based methods for sepsis detection. Figure 9 compares the 

specificity and sensitivity of InSight and other sepsis detection methods.  

 

 

Figure 9: Comparison of Sensitivity and specificity among InSight, SIRS, Lactate, and PCT tests [91] 

Qingqinq et al. [92] evaluated the performance of the InSight tool by using data 

from the University of California, San Francisco (UCSF) for training and MIMIC data 

for transfer learning. InSight is based on a gradient tree boosting algorithm and uses 

only six vital signs as features with one outcome and achieved AUROC of 0.92 for 

sepsis and 0.87 for severe sepsis. Also, it achieved an AUROC of 0.85 for severe sepsis 

and 0.96 for septic shock four hours before the onset of sepsis. This method is prone to 

NaN values in the data and can outperform other sepsis detection algorithms.  
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Desautels et al. [93] also used the InSight algorithm and compared it with other 

sepsis detection tools and scoring systems. Using MIMIC-III data, they trained the 

model and calculated the AUROC on the hold-out dataset. Figure 10 compares the 

AUROC of InSight with other methods. It is evident that for sepsis onset, InSight 

achieved the highest AUROC (0.88), MEWS (0.803), qSOFA (0.77), SOFA (0.73), 

SAPS-II (0.70), and SIRS (0.61). Moreover, when 60% of the input data was randomly 

deleted, InSight outperformed other methods and attained an AUROC of 0.781.  

 

Figure 10: AUROC of InSight algorithm with other sepsis prediction methods [93] 

Nemati et al. [94] developed an Artificial Intelligent Sepsis Expert (AISE) 

algorithm based on Weibull Cox proportional hazards (WCPH) model. Time-series 

data from two different hospitals of Emory University was used for model training, and 

MIMIC data was used to validate the model. A total of 65 features were used in the 

model building, and AISE predicted sepsis onset before 4, 6, 8, and 12 hours of clinical 

confirmation, achieving AUROC of 0.83 to 0.85. This system can predict the onset of 

sepsis ahead of time. Another important AISE-based sepsis detection platform is 

Artificial Intelligence Decompensation Expert (AIDEx) (Figure. 11), designed by 

Amrollahi et al. [95]. The platform consists of three modules: The first module consists 
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of Healthcare Application Programming Interface (API) linked to EMR data. The 

second module consists of a Data Wrangler, MongoDB, and AIDEx APIs. Inside 

AIDEx API, a sepsis predictor algorithm (AISE) predicts the sepsis, and the results are 

stored in the MongoDB database. Finally, the third module hosts a graphical user 

interface (GUI) dashboard, which shows the prediction results. 

 

Figure 11: Architecture of AIDEx platform [95] 

Likewise, Goh et al. [96] developed a Sepsis Early Risk Assessment (SERA) 

algorithm for early sepsis prediction. This study used two data types: Structured and 

Unstructured data. Structured data consisted of vital signs, patient treatment history, 

and Investigations. Similarly, unstructured data consisted of notes like patient recovery 

progress, medication, and ICU consultation, made by nurses or doctors. LR and RF 

models were trained and evaluated on validation data based on the ensemble method 

for model training. SERA achieved an AUROC of 0.94 with 0.87 sensitivity and 

specificity. It also reduced false positives by 17% and increased early detection of 

sepsis up to 32%, compared to doctors’ confirmation of sepsis.    

Taylor et al. [97] performed a retrospective study on ED patients and proposed 

a novel sepsis prediction model which outperformed available clinical decision rules 

(CDR) models for sepsis detection. They predicted in-hospital patient mortality using 

a Random Forest-based (RF-based) model. A total of 500 features, including 

demographics, lab reports, medication history, vital signs, ED diagnosis, patients’ 

history, and nursing interventions, were involved, and an 80-20 split ratio was used for 

model training and validation. Finally, model results were compared with other ML 

models and sepsis prediction tools, including the Logistic Regression (LR) model, 

Confusion, Uremia, Respiratory Rate, Blood Pressure, Age > 65 years (CURB-65), 

Mortality in Emergency Department Sepsis (MEDS), Modified Rapid Emergency 
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Medicine Score (mREMS), and Classification And Regression Tree (CART) in terms 

of AUROC. RF model achieved highest AUROC (0.86) as compared to LR (0.76), 

CURB-65 (0.73), mREMS (0.72), MEDS (0.71), and CART (0.69) (Figure. 12).  

 

 

Figure 12: AUROC of RF model with existing CDRs for sepsis detection [97] 

Hou et al. [98] developed an XGboost-based ML model to predict 30-day 

mortality for sepsis patients using MIMIC-III data. The model was trained on 4559 

patients, and they compared their model with LR and SAPS-II score-based prediction 

models. Among them, the XGboost-based model achieved the highest AUROC (0.857) 

as compared to SAPS-II (0.797) and LR (0.819). Thus, the model was capable of 

predicting 30-day patient mortality. The Separatrix team of Zabihi et al. [99] scored 

third in the PhysioNet Cardiology Challenge 2019 for sepsis detection. They proposed 

an XGboost-based ensemble model to predict sepsis and achieved a utility score of 

0.339 on hold-out data.  

Li et al. [100] also used PhysioNet data to make a Time-Phased ML model for 

sepsis prediction, using LightGBM as a candidate algorithm. Through feature 

engineering, a total of 312 features were generated out of 40 available clinical variables 

present in the data, which were used for model training, and achieved the utility score 

of 0.354 when the model was evaluated on the test data. The Sepsis ReSepsion team 
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[101] also participated in this challenge and achieved a utility score of 0.076 with their 

DL-based Convolutional Long Short-Term Memory Neural Network (CNN-LSTM) 

algorithm.     

 Although ML-based methods can efficiently and effectively predict sepsis, they 

can fail to detect sepsis properly. Habib et al. [102] reported such incidence in their 

work. They studied Epic Sepsis Model (ESM) – a tool for sepsis detection based on 

Electronic Healthcare Record (EHR) data. As per the developers of ESM, it achieved 

an AUROC of 0.76-0.83. Nevertheless, when the tool was tested, it failed to detect 67% 

of septic patients and only generated alerts for 18% of patients. Also, the AUROC 

achieved was only 0.63, which was way too low, as claimed by developers.  

 Topiwala et al. [103] examined the InSight tool for identifying sepsis by 

carrying out a retrospective study and proposed that the tool failed to identify a 

significant number of positive sepsis cases. Out of 269 sepsis cases, InSight generated 

positive alerts for 77 cases with a sensitivity of 28.6%, of which six alerts were 

generated prior to clinical suspicion. Moreover, InSight generated 126 false positive 

alerts for Diabetes, Gastrointestinal Bleeding, End-Stage Renal Disease, Hypertension, 

and Alcoholic Cirrhosis.  

However, the EHR data is a time series that doctors or nurses collect and 

maintain regularly [104]. Furthermore, many studies have proved that DL algorithms 

can better work with time-series data [105-109]. Many researchers used DL for sepsis 

detection and proposed various tools. Shashikumar et al. [110] proposed a DL-based 

sepsis detection tool Conformal Multidimensional Prediction of Sepsis Risk 

(COMPOSER). The primary purpose of this tool is to reduce the number of false alerts 

for sepsis. Instead of labelling these alerts as final, it marks them as intermediate, thus 

reducing the false predictions. They trained a DL model based on 515,720 ICU and ED 

patients from the USA population. Finally, the COMPOSER achieved AUROC of 

0.925-0.953 in ICU patients and 0.938-0.945 in ED patients. Moreover, 20% of 

intermediate alerts were generated for non-septic patients and 8% for septic patients.  

Another important DL-based sepsis detection method Deep Artificial 

Intelligence Sepsis Expert (DeepAISE), was introduced by Shashikumar et al. [111]. 

They used data from two cohorts: the Emory cohort, which incorporates ICU data from 

two hospitals, and the MIMIC cohort, which has MIMIC-III data. The Emory cohort 
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data were used for model training, and the MIMIC cohort data was used to evaluate the 

model performance. DeepAISE is based on Gated Recurrent Units (GRU) and WCPH 

methods to predict sepsis. In addition, this model can learn the data's temporal patterns 

and essential features present in the dataset. When tested, DeepAISE achieved an 

AUROC of 0.90, and it can generate real-time sepsis predictions.  

Lauritsen et al. [112] proposed a hybrid DL model (Figure. 13) based on CNN-

LSTM for sepsis detection and classification. The study is based on 3126 patients’ data 

from the Danish population. The input data goes to five convolutional layers in the 

model architecture and is processed within. Lastly, the output goes to the LSTM layer 

that outputs the final prediction for sepsis. The model evaluation shows that it achieved 

the AUROC of 0.856 and 0.756 three hours and 24 hours before the onset of sepsis. 

Furthermore, this model outperformed gradient-boosting algorithms for sepsis 

prediction, as it can efficiently work with time-series data.  

 

Figure 13: A hybrid CNN-LSTM model architecture for sepsis prediction [112] 

Another similar LSTM-CNN hybrid model approach for sepsis detection was 

used by Rafiei et al. [113], who proposed Smart Sepsis Predictor (SSP), which is an 

early sepsis prediction tool (Figure. 14). The study is based on the PhysioNet 

Cardiology Challenge 2019 data. SSP hosts two modes. Mode 1 works by using vital 

signs along with patients’ demographics, and mode 2 includes laboratory tests 

alongside vital signs and demographics. After processing the data per the inclusion 

criteria, data is fed to the Deep Network block. Inside this block are the LSTM and 

Convolutional Neural Networks (CNN) model layers alongside dense layers. The data 

goes through the layers, and the final probabilities are calculated. Finally, sepsis 

probability is calculated based on the pre-defined probability threshold. To evaluate the 
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model, AUROC was calculated for each mode. The SSP achieved 0.89 AUROC for 

mode 1 and 0.92 for mode two, four hours before sepsis onset.  

 

Figure 14: Structure of Smart Sepsis Predictor (SSP) tool [113] 

Henry et al. [114] developed a Targeted Real-time Early Warning Score 

(TREWScore) system for septic shock prediction, which predicted septic shock patients 

with an AUROC of 0.83 before septic shock onset. Fagerström et al. [88] proposed a 

LiSep LSTM septic shock prediction tool based on the LSTM model. The study is based 

on the MIMIC-III data and incorporates vital signs and lab values as model-building 

features. The model achieved the AUROC of 0.8306 (Figure. 15) and can outperform 

other models like InSight and TREWScore with high confidence intervals.  

 

Figure 15: AUROC of LiSep LSTM and TREWScore [88] 
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Methodology 

 

This study aims to find an optimal way to forecast sepsis and its risk using DL, 

eventually helping doctors and health care specialists control mortality and ICULOS. 

The overall methodology followed in this research project to achieve this goal is 

provided in figure 16.  

 

 

 

 

 

 

 

 

 

Figure 16: Overall methodology followed in this research project 

 

3.1. Data Collection 

The data is collected from the PhysioNet Challenge 2019 [115], consisting of 

ICU patients from two US hospitals. The data of hospital A contains 20,336 patients, 

and the data of hospital B includes 20,000 patients. Each patient file is a pipe-separated 

value (PSV) file with “.psv extension” and consists of 41 variables: eight vital signs, 

26 laboratory values, six demographics, and one outcome variable (Table 4). The 

outcome variable is “SepsisLabel”, in which “0” indicates “no sepsis” and “1” means 

“sepsis”. Variable values having NaN indicate no measurement was taken for the 

corresponding variable at that time interval.  
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Table 4: Data description 

Vital Signs  

HR Heart rate (bpm) 

O2Sat Oxygen Saturation (%) 

Temp Temperature (°C) 

SBP Systolic blood pressure (mmHg) 

MAP Mean arterial pressure (mmHg) 

DBP Diastolic Blood Pressure (mmHg) 

Resp Respiration rate (breaths per minute) 

EtCO2  End-tidal carbon dioxide (mmHg) 

Laboratory Values 

BaseExcess The measure of excess bicarbonate (mmol/L) 

HCO3 Bicarbonate (mmol/L) 

FiO2 Fraction of inspired oxygen (%) 

pH N/A 

PaCO2 
The partial pressure of carbon dioxide from arterial blood 

(mmHg) 

SaO2 Oxygen Saturation in arterial blood (%) 

AST Aspartate transaminase (IU/L) 

BUN Blood urea nitrogen (mg/dL) 

Alkalinephos Alkaline phosphate (IU/L) 

Calcium mg/dL 

Chloride mmol/L 

Creatinine mg/dL 

Bilirubin_direct mg/dL 

Glucose Serum glucose (mg/dL) 

Lactate Lactic acid (mg/dL) 

Magnesium mmol/L 

Phosphate mg/dL 

Potassium mmol/L 

Bilirubin_total mg/dL 

TroponinI Troponin I (ng/mL) 
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Hct Hematocrit (%) 

Hgb Haemoglobin (g/dL) 

PTT Partial thromboplastin time (seconds) 

WBC White blood cell count (count*10^3/µL) 

Fibrinogen mg/dL 

Platelets count*10^3/µL 

Demographics 

Age In years  

Gender Male (1) and Female (0) 

Unit1 Medical ICU 

Unit2 Surgical ICU 

HospAdmTime Hours between hospital admission and ICU admission 

ICULOS Hours since ICU admission 

Outcome 

SepsisLabel Sepsis patients (1) and non-sepsis patients (0) 

 

3.2. Data Preparation 

 As the data from two different hospitals is in the form of individual patient files 

(.psv files), it must be combined into a single file for the research. Each PSV file is 

converted to a single comma-separated value (CSV) file using the Python language 

“glob” function [116] and “for loop” [117]. Also, each patient is assigned a unique 

Patient ID (P_ID) during the process. The CSV file format is preferred because it is the 

most commonly used and user-friendly [118, 119].  

3.3. Python libraries  

 Instead of writing the code from scratch, built-in Python libraries are used to 

conduct the research. Following are some essential libraries used in this study: 

▪ OS [120]: This module allows dealing with directories. 

▪ Random [120]: This module allows the creation of random numbers. 

▪ Pandas [121]: This library is used for data analysis and manipulation. 

▪ NumPy [122]: This library allows one to work with arrays. 
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▪ Seaborn [123]: Data visualisation library that allows the creation of beautiful 

graphs. 

▪ Matplotlib [124]: This library creates static plots and graphs. 

▪ Tqdm [125]: This library allows the creation of progress bars. 

▪ Sklearn [126]: An ML library for classification, regression, and clustering 

algorithms. 

▪ MissForest [127]: This is an ML-based missing value imputation method. 

▪ itertools [128]: This library allows permutations and combinations. 

▪ TensorFlow [129]: An open-source platform for building ML models. 

▪ Keras [130]: This library allows for the training and develop DL models and is 

built on top of TensorFlow.   

3.4. Data Pre-processing and Exploratory Data Analysis (EDA) 

 The most crucial phase of an ML-based study is how the data is pre-processed 

[131] because well pre-processed and cleaned data ensures the desired output of an ML 

or DL model. Also, EDA analysis was performed on the data to check for patterns and 

missing values using plots and graphs. Below are some of the steps performed in this 

study for data pre-processing and EDA. 

3.4.1. Dealing with Missing values 

A data frame is created after importing required packages and libraries [132]. 

After creating a data frame, the first step is checking for missing values (NaN values) 

inside the data. If NaN values present in the data are deleted, there is a risk of losing 

critical information, and if the ML (or DL) model is trained, the algorithm might fail, 

and we might end up with a biased model that will provide invalid output and low 

accuracy [133]. Therefore, the percentage of missing values in the data was calculated 

and then visualised by making plots enabling a quick overview of the NaN values 

present in the data and allowing us to impute them.  

3.4.2. Correlation Analysis    

 Not all the variables present in the data are used in model building. Some 

variables are more important than others. Correlation analysis is used to check the 

relatedness of variables with each other, and it helps avoid multicollinearity problems 

and helps in the feature selection process. The correlation of the variables was 
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calculated using the Python “corr” function and then visualised using a seaborn 

heatmap [134]. 

3.4.3. Feature Selection  

 The feature selection process is one of the most critical steps of an ML-based 

study. It helps remove irrelevant variables from the data and helps minimise the 

computational time and resources during model training [135]. Important features were 

selected based on the correlation heatmap, and the variables having a NaN value 

percentage of more than 70% were removed from the data.  

3.4.4. Outlier Detection  

 One of the primary steps of data pre-processing involves outlier detection and 

removal. Outliers are the measurement of variables that deviates from other 

observations of the same variable, raising uncertainty [136] and can affect model 

accuracy and performance. Boxplots [137] are one of the outlier detection methods used 

in data pre-processing. They help to check for any ambiguity in the variable 

observations. In this study, the feature range (Table 5) provided by Fagerström et al. 

[88] was used for outlier detection, and the data were plotted using the seaborn 

“boxplot” function.   

Table 5: Feature range for outlier detection 

Feature Range (min-max) 

HR 1 - 320 

O2Sat 1 - 100 

SBP 1 - 400 

DBP 1 - 300 

Resp 1 - 150 

Age 15 - 90 

 

3.4.5. Age Analysis  

 The definition of sepsis varies for adults and children [138]. To check if the age 

of patients in the data is more or less as provided in the feature range, age analysis was 
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performed using Python “min” and “max” functions. Patient count age-wise and age 

category-wise was visualised using a pandas bar plot [139]. Also, gender analysis was 

performed by plotting the gender count of male and female patients and septic and non-

septic patient count gender-wise, respectively.  

3.4.6. ICULOS Analysis  

 Patients whose ICULOS was not starting from 1st hour were removed from the 

data as they were considered ambiguous. Any effort to impute the first-hour 

observations of those particular patients was considered data corruption. Next, the 

patient ICULOS count was plotted, and those patients whose total ICULOS count was 

less than eight hours and more than 72 hours were removed from the data. Finally, the 

remaining patient data was used for model building.   

3.4.7. Patient Separation  

 Imputation of septic and non-septic patient data separately is more meaningful 

than imputing the actual data. Therefore, the entire septic and non-septic patient count 

was calculated, and based on the total number of septic patients, the same number of 

non-septic patients were randomly selected. The data was then stored in separate data 

frames for imputation. 

3.4.8. Data Imputation  

 Data imputation is crucial while pre-processing the data because NaN values in 

the data affect the model training and performance. For imputing the NaN values in the 

data, two methods were used in this study: 

▪ MissForest Imputation 

▪ Forward Fill and Zero (FFILL-0) Imputation 

3.4.8.1. MissForest Imputation  

 MissForest is a Random Forest (RF) based method for data imputation. Initially, 

the algorithm imputes the NaN values based on the mean of the data variables; then, it 

imputes the NaN using the RF model on the data columns. It first imputes NaN in the 

column with the least missing values and then moves to the column with the second 

least number of missing values. The process continues until it meets the stopping 

criteria and all the NaN values in the data are imputed [140]. In this study, MissForest 

imputation was carried out on septic and non-septic patients separately with the 

following parameters: 
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▪ max_iters: 12 

▪ n_jobs: -1 

▪ criterion: squared_error  

3.4.8.2. FFILL-0 Imputation  

 Another method of NaN values imputation used in this study is FFILL-0 

imputation. In this technique, missing values are imputed using the value previous to 

the NaN value. This process is carried out using Python's “ffill” function. This method 

is known as the Last Observation Carried Forward (LOCF) and is widely used for time-

series EHR data [141]. All the remaining missing values are imputed using “zero”.  

3.4.9. Train-Validation Data Split  

 After data imputation through MissForest and FFILL-0, septic and non-septic 

patient data were concatenated, and patients were shuffled. The shuffling was done so 

that the septic and non-septic patients could distribute randomly in the data. Two 

separate files were generated: one file had MissForest imputed septic and non-septic 

patients, while the second file had FFILL-0 imputed patients. Afterwards, the data were 

split into an 80-20 ratio (80% patients for training and 20% for validation). This process 

was done for both imputed files. 

3.4.10. Creating multi-index data frame and Tensors  

 Another crucial step in this study is the creation of multi-index data frames (data 

frames with more than one index). This method aims to create a fixed-length tensor or 

array used for model training, which is achieved by padding each patient record with 

zeros. It ensures that each patient record has a fixed length and becomes a fixed-length 

tensor. These tensors are stored in NumPy arrays (.npy extension). The criteria used for 

padding are given below: 

▪ maxlen: 72  

▪ dtype: float32 

▪ padding: post 

▪ truncating: post 

3.5. Model building and optimisation 

 The foremost step of an ML-based study is model building and optimisation. 

The choice of an ML algorithm for building the model depends on the data. Since this 
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research project’s data is time-series, using traditional ML algorithms would be a poor 

approach because they might fail for sepsis detection [102]. To avoid dire outcomes, 

the approach used in this study focused on DL algorithms like Recurrent Neural 

Networks (RNN) because they can easily handle time-series data and thus can help 

forecast sepsis risk. 

3.5.1. Selected Algorithms 

Following DL algorithms were selected for this study:   

▪ Long Short-Term Memory (LSTM) Networks 

▪ Gated Recurrent Units (GRU) Networks 

Figure 17 shows the LSTM and GRU model architecture used in this study.  

 

Figure 17: The proposed architecture of (a) LSTM and (b) GRU networks used in this research project. 
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3.5.1.1. LSTM Networks 

  One of the most broadly used RNNs is an LSTM network. Figure 18 (a) shows 

a simple LSTM network architecture. It has one input, one hidden, and one output gate. 

As a result, they can learn long-term dependencies and solve problems like Vanishing 

and Exploding gradients confronted in RNN [142].  

3.5.1.2. GRU Networks 

 GRU is another widely used RNN type. It is also capable of solving vanishing 

and exploding gradient problems. However, the difference lies in the number of gates. 

In LSTM, there are three gates, while in GRU, there are two gates: update and reset. 

Figure 18 (b) shows a simple GRU network architecture 

  

(a) (b) 

Notation:  

 

Figure 18: A simple architecture of (a) LSTM and (b) GRU networks [143]  

 

3.5.2. Model Architecture Decisions 

 Keras Functional API is used for this study to build stacked LSTM and GRU 

models instead of Sequential API as it provides more flexibility [129]. The model 

architecture is the same for LSTM and GRU; however, the only difference lies in the 

layers. One model used LSTM layers, and the other used GRU layers.  
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3.5.2.1. Masking layer 

 Since the data is processed by padding to make it a fixed-length tensor, the 

masking layer is added after the input layer. Therefore, it will force the model to ignore 

the padding, and the model will drop those time steps where all the feature’s value is 

equal to the value assigned in the masking layer.  

3.5.2.2. LSTM / GRU layer 

 For this study, the following parameters are used to build LSTM and GRU 

models: 

▪ layers: Three layers  

▪ units: 200 units in each layer 

▪ dropout: 0.20 

▪ recurrent_dropout: 0.1 

▪ return_sequences: True 

▪ implementation: 2 

3.5.2.3. Output layer 

 The output layer has a dense layer wrapped in a TimeDistributed wrapper. The 

parameters are: 

▪ units: 1 

▪ activation: sigmoid 

3.5.2.4. Model Compilation 

 After adding all the layers, the last step in building the model is to compile it. 

The following parameters are used in the model compilation step: 

▪ optimizer: RMSprop 

▪ learning_rate: 0.001 

▪ loss: binary_crossentropy 

3.5.2.5. Model Training 

 After completing all the model-building steps, the model was trained using the 

Keras “fit” API. Following are the parameters used for model training: 

▪ x: train data (fixed-length tensor) 

▪ y: test data (fixed-length tensor) 
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▪ sample_weight: 1-D array of ones  

▪ batch_size: 128 

▪ epochs: 500 

▪ verbose: 1 

3.6. Model Evaluation 

 After building and training the model, the final step of the analysis is to check 

its effectiveness in forecasting the sepsis risk by using the hold-out (or validation) 

dataset. The Keras “predict” API evaluated the model on the validation dataset. The 

results were visualised using the Matplotlib “pcolor” function [144], which creates a 

heat map-like plot of the prediction array. The mortality risk was visualised in the form 

of a Python line plot. Finally, the model is evaluated by calculating AUROC (Area 

under the Receiver Operating Characteristics Curve). 
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Results 

 

4.1. Data collection and preparation 

 The data was collected from PhysioNet, and each patient file in PSV format was 

converted to a single CSV file with both hospital patients (40336 patients). The “glob” 

function reads the path and retrieves all files matching the file pattern mentioned in the 

glob, and the “for loop” iterate over each file, reads it, assigns the patient ID, and 

appends it to a data frame. This data frame is then saved to the CSV using the Pandas 

“to_csv” function.   

4.2. Data Pre-processing and EDA 

 Data pre-processing is a necessary step in ML-based study. Below are the results 

of the data pre-processing and EDA performed in the study.  

4.2.1. Missing (NaN) values  

 NaN value analysis was performed to check for missing data. Missing values 

were calculated in the data frame and plotted using the Matplotlib bar plot. Figure 19 

shows the bar plot of the NaN values percentage present in the dataset. The x-axis shows 

the variables, and the y-axis shows the percentage. The variable names are present as 

legends on the upper left. NaN values were also plotted as a heatmap (Figure. 20). The 

khaki colour represents the NaN values, and the green-cyan colour represents the non-

missing values. 

4.2.2. Correlation analysis 

 Correlation analysis was performed to check the relationship of the variables, 

and the correlation matrix was plotted using a seaborn heatmap (Figure. 21). Most 

variables have negligible to weak positive and negative correlations. Also, some of the 

variables have a strong positive and negative correlation. 

4.2.3. Feature Selection 

 Key features were selected based on the correlation heatmap and NaN value 

percentage threshold of 70%. Out of all the variables, six vital signs, three 

demographics, and one outcome variable were considered the best features for this 

analysis and these features are used for model building. Table 6 shows the selected 

features.  
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Table 6: The finalised set of features chosen for model building 

Feature No. Type Features 

1 

Vital Sign 

HR 

2 O2Sat 

3 Temp 

4 SBP 

5 DBP 

6 Resp 

7 

Demographics 

Age 

8 Gender 

9 ICULOS 

10 Outcome SepsisLabel 

 

4.2.4. Outlier detection and removal 

 Data was plotted as a boxplot to check for outliers, and abnormal values were 

removed based on the feature range. Figure 22 shows the boxplot used for outlier 

detection in this study. All the variables were within the feature range except the age, 

which was then processed further. 

4.2.5. Age and Gender Analysis  

 Patient count based on age was plotted as a bar plot to check how many patients 

share the same age (Figure. 23). Also, a bar plot was plotted for patient count age 

category-wise (Figure. 24). Since the minimum age range is 15 and the maximum is 90, 

all those patients whose age was less than 15 years and more than 90 years were 

removed from the data. Moreover, patient counts were plotted based on gender (Figure. 

25), and septic and non-septic patient counts were also plotted based on gender (Figure. 

26). After removing the patients based on age conditions, the following is the patient 

count:  

▪ Original patient count in the dataset: 40336 

▪ Patient count after applying age conditions: 39942 
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Figure 19: Percentage of NaN values in the dataset 
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Figure 20: Missing value heatmap of the dataset 
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Figure 21: Correlation heatmap of the dataset 

 

 

Figure 22: Boxplot for outlier detection
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Figure 23: Patient count Age-wise in the dataset



Chapter 4: Results 

41 

 

 

Figure 24: Patient count in the dataset Age-category-wise 

 

 

Figure 25: Patient count based on gender in the dataset 
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Figure 26: Septic and Non-septic patient count based on Gender 

4.2.6. ICULOS Analysis 

 ICULOS is a crucial factor in the dataset and was focused on because it 

represents the number of hours since ICU patient admission. The more the ICULOS of 

a patient is, the higher burden it puts on hospitals. In this study, those patients with 

ICULOS not starting from one were removed. Following is the patient count before and 

after the first ICULOS condition: 

▪ Before first ICULOS condition: 39942 

▪ After first ICULOS condition: 31162 

Following this, a second ICULOS condition was applied. ICULOS count was 

calculated for each patient and stored in a separate column in the data frame. Patients 

with an ICULOS count of less than eight and more than 72 were removed. Following 

is the patient count before and after applying the second condition: 

▪ Before the second condition: 31162 

▪ After the second condition: 30361 

Moreover, the final patient count was visualised as a bar plot (Figure. 27). 
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Figure 27: Patient count after ICULOS conditions 
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4.2.7. Septic and non-septic patient separation 

 For imputing missing values in the data, septic and non-septic patients were 

separated. First, the septic and the non-septic patient count were plotted as a bar chart 

(Figure. 28). Then, based on the total septic patients, non-septic patients were down-

sampled, and the same number of non-septic patients were randomly selected. Also, 

gender-based septic and non-septic patient count were plotted (Figure. 29). Following 

is the septic and non-septic patient count: 

▪ Total number of septic patients: 1614 

▪ Number of non-septic patients before down sampling: 28747 

▪ Non-septic patient count after random down-sampling: 1614 

Patient data was then stored in separate CSV files so they could be imputed.  

 

 

Figure 28: Septic and non-septic patient count in the final dataset 
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Figure 29: Gender-based Septic and Non-septic patient count in the final dataset 

 

4.2.8. Missing data imputation 

 Missing values present in the septic and non-septic patients were imputed 

separately using the MissForest algorithm and FFILL-0 imputation.  

4.2.8.1. NaN imputation through MissForest 

 The MissForest algorithm was implemented using the Python “fit_transform” 

function. This function fits the MissForest imputer on the data frame. After completion, 

the output was an array, which was then converted to a data frame. The variable values 

were rounded off like original values using Python “round” function, and the data types 

of some variables, which were converted to “float”, were changed back to “int” using 

Python “astype” function. Finally, the data frame was then saved as a CSV file. 

4.2.8.2. NaN imputation through FFILL-0 method 

 Figure 30 illustrates the visual representation of the FFILL-0 method. In this 

method, the imputation was done for each patient separately using the Python 

“groupby” function based on the P_ID column. NaN values were then imputed using 
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Python “ffill” function, and the remaining NaN values were imputed with zero using 

Python “fillna” function. Finally, the data was saved as a CSV file. 

 

 

Figure 30: Visual representation of working of FFILL-0 imputation method 

4.2.9. Data Splitting  

 For model training, the patient data was split into an 80-20 ratio. Of the total 

3228 patients’ data, 80% was used in model training, and 20% was reserved for model 

validation as hold-out data. They were further split into “x” and “y” training and 

validation datasets.     

4.2.10. Multi-indexing and padding   

 After data splitting, the training and validation datasets were converted to multi-

index data frames. Then the files were converted to tensors and saved as arrays. These 

fixed-length tensors were then used for model training and validation. 

 4.3. Model training and evaluation 

 This study trained LSTM and GRU models on MissForest and FFILL-0 imputed 

data. Thus, a total of four models were trained for 500 epochs each. The model 

architecture used three LSTM and GRU layers with 200 units each. The batch size of 

128 means the parameters are updated every 128 time-steps. A dropout of 0.20 was 

used to prevent model overfitting as a regularisation method, which means it randomly 

drops 20% of input vectors in each time step.  

Also, a recurrent dropout of 0.1 was applied to the model, which means it drops 10% 

of the units. Moreover, as we dealt with the binary classification problem in our study 

to find the mortality risk,  binary cross-entropy was used as a loss function, and a small 
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learning rate of 0.001 was used in the RMSprop optimiser. The smaller the learning 

rate, the more accurate the training is. Figure 31 shows the training loss of each model.  

     

(a) 

 

 

(b) 
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(c) 

 

(d) 

Figure 31: Model Training Loss. The x-axis represents the number of epochs, and the y-axis shows the loss. (a) 

LSTM model training loss on MissForest imputed data (0.1097). (b) LSTM model training loss on FFILL-0 

imputed data (0.0854). (c) GRU model training loss on MissForest imputed data (0.1225). (d) GRU model training 

loss on FFILL-0 imputed data (0.0892) 
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The models were then evaluated on the hold-out datasets to check their 

effectiveness. Random patient predictions were also plotted as line and matrix plots 

(Figure. 32).  

 

(a) 

 

 

(b) 

Figure 32: Sepsis mortality risk calculation. (a) Patients with a low sepsis probability and mortality risk.  (b) 

Patients with a high sepsis probability and mortality risk.  
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Finally, the AUROC was calculated for each model (Figure. 33). 

 

 

Figure 33: ROC curve for LSTM and GRU models on MissForest and FFILL-0 imputed data.
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Discussion 

 

 There is no permanent solution to stop sepsis progression in ED or ICU patients. 

However, the only solution to stop patient mortality and sepsis risk is the early and fast 

detection of sepsis. Microbial infections are the leading cause of sepsis in critically ill 

patients, with most sepsis incidences related to septicaemia. Conventional sepsis 

treatment approaches involve antibiotics and drug administration [145]. However, it is 

difficult to diagnose due to non-specific symptoms of sepsis.  

Also, whether the patient’s condition is due to sepsis or some other disease is 

difficult to determine, which can delay the treatment of the patient [146]. Initial sepsis 

detection methods are based on BCs, PCRs, and biomarkers. However, specific growth 

conditions are required for pathogens to grow in BCs, making them tedious. Moreover, 

unwanted sample noise can hinder the efficiency of PCR methods [68]. 

Sepsis is detected based on SIRS, SOFA, qSOFA, NEWS2, and MEWS scoring 

systems. For SIRS, if a patient meets two out of four conditions, it is said to be septic. 

Likewise, for SOFA and qSOFA, if a patient has a score of two or more is said to be 

septic. A NEWS2 score of five or more indicates the onset of sepsis in patients. Also, 

a patient with MEWS score of more than or equal to four is said to be septic [79, 147, 

148].  

These scoring systems are widely used for sepsis detection in hospitals; still, 

they are not enough. The involvement of blood sampling to test for the abnormal values 

of biomarkers in the blood in case of SOFA takes time, and each passing hour without 

treatment can risk the patient’s life expectancy [77]. 

ML and DL-based approaches can precisely predict sepsis onset and even 

predict patient mortality with a high probability [149]. Some studies incorporate 

laboratory values alongside vital signs and demographics as essential features to train 

the model and achieve higher AUROC, which means their method can effectively 

predict sepsis. However, they have certain limitations regarding data availability, pre-

processing, or model architecture.  

The current research focused on non-invasive methods and used vital signs and 

demographics to build a DL-based sepsis risk forecasting system. However, this study 
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differs from other published studies on sepsis detection in data pre-processing and 

model architecture. For NaN values imputation in the data, MissForest [127] and LOCF 

(FFILL-0) [141] methods are used. First, the percentage of the missing data was 

calculated and plotted as a bar plot (Figure. 19) and heatmap (Figure. 20), which 

allowed us to check the percentage of NaN values in each variable, enabling the choice 

of a threshold of 70% for NaN values. Also, correlation analysis was performed and 

plotted as a heatmap to check for multicollinearity.  

Features were then selected based on the correlation and the NaN values 

threshold. Those variables with a NaN percentage greater than or equal to the threshold 

were excluded from the data, and the features were finalised. The finalised feature set 

included six vital signs (HR, O2Sat, Temp, SBP, DBP, Resp), three demographics (Age, 

Gender, ICULOS), and one outcome variable (SepsisLabel). Finally, data were plotted 

as a boxplot to check for any outliers in the finalised feature set, and outliers were 

removed based on feature range (Table 5).  

Since the definition of sepsis differs in children and adults, age analysis was 

performed to see if the patient’s age is outside the 15 – 90 (years) age range, as provided 

in Table 5. The total number of patients in the data was 40336. Gender analysis was 

also performed to see how many patients were male and female. Of the 40336 patients, 

22566 were male, and 17770 were female (Figure. 25). Also, out of 22566 male 

patients, 20827 were non-septic, and 1739 were septic. Similarly, out of 17770 female 

patients, 16577 were non-septic, and 1193 were septic (Figure. 26), which indicates that 

the male population is more prone to sepsis than females.  

Moreover, out of 40336 patients, 394 patients had ages outside the feature range. 

Out of which two patients were 14 years old, 392 were 100 years old and were removed 

from the data. The total number of patients left after removing patients was 39942. Then 

ICULOS analysis was performed, and those patients removed whose ICULOS was not 

starting from one, followed by those patients who had ICULOS count less than eight 

hours and more than 72 hours, leaving behind 30361 patients, which was then 

visualized as a bar plot (Figure. 27).    

After that, data was plotted to visualize the septic and non-septic patient count 

(Figure. 28). Out of 30361 remaining patients, 28747 were non-septic, and 1614 were 

septic. Of 28747 non-septic patients, 13042 were female, and 15705 were male. 
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Likewise, out of 1614 septic patients, 653 were females, and 961 were males. This 

analysis helped down-sample the non-septic patients to match septic patients in number 

since the number of septic patients was less than non-septic patients. The purpose of 

this technique was to avoid using artificial data generation methods such as Synthetic 

Minority Over-sampling Technique (SMOTE) to up-sample septic patients [150].  

Afterwards, NaN values were imputed in the data using MissForest and LOCF-

0 (FFILL-0) methods. Finally, the data was converted to fixed-length tensors or arrays, 

which make model training easier, and then fed to LSTM and GRU models as input. 

Four models were trained based on MissForest and FFILL-0 imputed data, and sepsis 

mortality risk was forecasted (Figure. 32). The prediction array was plotted as a heat 

map-like plot along with the line plot illustrating the forecasted sepsis probability of 

the patient. A probability threshold of 0.5 was selected. Patients with a probability less 

than the threshold represent a low risk of becoming septic and have a low mortality 

risk, while the probability greater than the threshold indicates the patient has a higher 

risk of becoming a septic patient with a higher mortality risk. 

Finally, the AUROC was calculated and visualized (Figure.33), and the highest 

AUROC was achieved by the LSTM model trained on MissForest-imputed data (0.758) 

as compared to the LSTM model trained on FFILL-0 imputed data (0.714), GRU model 

trained on MissForest imputed data (0.673), and GRU model trained on FFILL-0 

imputed data (0.746). No work, to our knowledge, has been published yet that used a 

similar data pre-processing and model architecture for sepsis risk forecasting using non-

invasive methods based on vital signs and demographics only.   

   



Chapter 6: Conclusion 

54 

 

Conclusion and Future Perspectives 

 

The study aims to forecast the sepsis mortality risk using the DL-based method. 

A novel data pre-processing method is introduced in this study, and a unique model 

architecture is used. The study used data from PhysioNet Cardiology Challenge 2019, 

and an 80-20 split ratio was used for training and validating the model. The MissForest 

algorithm and LOCF (FFILL-0) imputation methods were used to impute NaN values 

in the data, and MissForest imputed data outperformed LOCF (FFILL-0) imputation 

when models were evaluated on validation data. LSTM achieved the highest AUROC 

of 0.758 and 0.714 on MissForest data compared to GRU, which achieved AUROC of 

0.673 and 0.746 on FFILL-0 imputed data.  

Though the present study is limited to publicly available data of the USA 

population, it has very few septic patients, and the non-septic patients are down-

sampled to match the number of septic patients. For a future perspective, the study aims 

to use the local data from the Pakistani population as a validation cohort in order to test 

the effectiveness of the model, and by using the transfer learning approach, the model 

will be trained on local data with a more significant number of septic patients. It is 

surmised that the model will achieve even greater AUROC and can forecast sepsis risk 

more efficiently. 
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