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Abstract 

The Advanced Driver Assistance System (ADAS) is not a new phenomenon. To 

minimize road accidents and other related issues, the current vehicles can be improved for a 

better driving experience through an automated system that assists the driver. Some of the basic 

elements that such ADAS systems utilize include, but are not limited to, sensing the 

environment, traffic signs, pedestrians, and other vehicles. The need for traffic to be detected 

and recognized up to a certain degree of accuracy arises due to our objective i.e., to ensure that 

the car and the passengers in it are safe. Traditional Image Processing techniques have 

previously been used which are way slower. Recently, CNNs have been deployed heavily in 

Traffic detection and identification. However, CNNs do require a huge number of input images 

to work efficiently, and no such traffic recognition dataset exists in Pakistan. In this research, 

we deployed a YOLOv7 based architecture trained on a self-collected and manually annotated 

Pakistani Traffic Type and Sign Recognition Dataset (PTSD) to detect and classify the types 

of traffic. The Deep Learning model was trained and tested to produce a mean average precision 

(mAP) of 87.20%. These results are state-of-the-art and strong enough for implementation as 

real-world models. The model was further tuned to help improve the model’s working, and 

then tested in real-world scenarios. The final model was used to develop an ADAS Unit—

which works on a priority-based decision system, providing specified instructions for the 

detected conditions. 

 

Key Words: advanced driver assistance system, traffic type recognition, deep learning, object 

detection, YOLOv7
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CHAPTER 1: INTRODUCTION 

The world has moved towards Industry 4.0—Artificial Intelligence—while Pakistan is 

still playing catch-up with the rest of the world. According to an article published by The News 

International on November 21st, 2021, the past decade has seen 104,105 road accidents, which 

have caused 55,141 deaths and left 126,144 injured. A total of 120,501 vehicles were involved 

in these accidents causing huge material loss as well as the loss of human life. Different causes 

of these accidents include not abiding by traffic rules, over-speeding, driver negligence, and 

blind spots. Therefore, measures must be taken to minimize road accidents. To accomplish this, 

there is a need to make the cars smarter and the driver more able to use the information to make 

better decisions on the road [1].  

Initially, these traffic types were detected using conventional image processing systems 

which were both slower and less accurate. These systems worked based on visual features such 

as colors, and shapes with algorithms such as Color Segmentation used widely [2], [3]. Oher 

notable algorithms include Scale Invariant Feature Transform, Speeded-up Robust Features, 

and Binary Robust Invariant Scalable Keypoints among others [4], [5], [6].  

More recently learning-based algorithms have replaced them and have successfully 

been implemented on traffic type and traffic-sign recognition problems such as the use of 

CNNs of German Dataset – GTSRB [7]. CNNs require a huge no. of images to work efficiently, 

and there is an absence of any maintained dataset containing traffic-sign images from Pakistan. 

Furthermore, Pakistani traffic signs differ from other signs around the world hence an 

indigenous dataset is required. There is a need to gather a diverse set of images from across 

Pakistan, in different lighting conditions and using various cameras and imaging modes. 

Labeling the acquired data to accurately detect and classify traffic-sign images will turn it into 

an excellent benchmark for future research. 

1.1 Problem Statement 

Self-driving cars are the next step in the evolution of the automobile industry. Although 

they were meant to be a sign of luxury, they carry a lot more benefits. These range from 

environmental impacts to better traffic system which in turn brings a net positive change in the 

society as a whole. These self-driving cars require a certain number of elements to work 

properly including, but not limited to, traffic signs, nearby vehicles, and pedestrians i.e., traffic 

types. The detection of traffic types is especially difficult in countries like Pakistan where 
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standard datasets are not available. 

1.2 Proposed Solution 

To cater for arrival of self-driving cars in Pakistan a computer vision system needs to 

be made which can detect and identify types of traffic among other things. Our system is a deep 

learning-based model and needs thousands of images to train properly. Firstly, the data was 

collected in form of videos, using different cameras and in different lighting conditions. The 

video keyframes were then extracted from the collected videos and subsequently annotated 

against the set classes. These images (keyframes) were compiled into a single dataset—

Pakistani Traffic Type & Sign Recognition Dataset (PTSD). Secondly, the aforementioned 

self-collected dataset was used for training a Deep Learning based model for the identification 

of types of traffic. The model was cross-validated and regularized to help improve the model’s 

working, and then tested in real-world scenarios and tweaked according to requirements. 

Finally, the final model was used to develop an Advanced Driver Assistance System—

ADAS—which works on a priority-based decision system, dependent on the different traffic 

types on the road, providing specified instructions for the detected conditions at that time 

(traffic in front, overtaking vehicle, etc.). 

1.3 Expected Outcome 

The aim of this project was multifold and pertinent to real-world problems faced on the 

roads in Pakistan. These include, but are not limited to, real-time monitoring of traffic around 

the drivers’ vehicle using an ADAS, which can later be evolved and geared towards Self-

driving Cars and Smart City initiatives. This research was intended to, firstly, provide a massive 

dataset for the training of other models related to traffic and traffic signs. Secondly, the research 

focused on a trained model for the detection of traffic types. 

1.4 Methodology 

The research was conducted in 3 distinct phases. Firstly, the data was collected in form 

of videos. The different cameras used for the videography include smartphone cameras and a 

dashcam, all mounted on the car windshield. The videos were taken in different lighting 

conditions to avoid low variance in the evaluation model. From these videos, the keyframes 

were extracted and subsequently annotated against the set classes. Secondly, the self-collected 
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video frame dataset was used for training a Deep Learning-based model, YOLOv7, for the 

detection of traffic types. The model was cross-validated and regularized to help improve the 

model’s working, and then tested in real-world scenarios and tweaked according to 

requirements. Finally, the final model was used to develop an Advanced Driver Assistance 

System—ADAS—which works on a priority-based decision system, dependent on the 

different traffic types on the road, providing specified instructions for the detected conditions 

at that time (traffic in front, overtaking vehicle, etc.). 

1.5 Thesis Overview 

The thesis is further divided into the following chapters; firstly, the current literature 

present on the topic is reviewed in detail, in the Literature Review chapter, to extract the 

shortcomings and research gaps in relevant state-of-the-art solutions. Afterwards, based on an 

in-depth analysis of these issues, the process used to reach the solution has been described 

along with the simulation setup in the Methodology chapter, which also explains the process 

of data collection and all the pre-processing which has gone in to make the data ready for the 

detection models. Next is the Results chapter which discusses the output of the models, its 

training, validation, and testing results along with other performance metrics. The Discussion 

chapter revolves around the novelty, improvements over the state-of-the-art, and future work 

possible in the research area. Finally, the Conclusion chapter rounds up the article's key 

achievements and outcomes of the conducted research. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Related Work 

The idea of a system that assists the driver to possible blind spots and missed cues has 

been discussed as an easier way to automation and autonomy. Some of the basic elements of 

such Driver Assistance Systems included sensing the environment for different obstacles, 

traffic-signs, pedestrians, and other traffic [8], [9], [10], [11], [12].  

Traditional Image Processing techniques were previously used [13], [14], [15], [16], 

[17], [18], [19]. However, these methods are way slower compared to the current state-of-the-

art practices, and that is cause for hindrance. Considering the application of our project, the 

accuracy and precision of the ADAS is paramount to the safety of the user, the vehicle, and the 

traffic on the road.  

In several recent studies the traffic is detected and identified up to a certain degree of 

accuracy [20], [21], [22], [23]. CNNs have been deployed heavily in Traffic detection and 

identification. CNNs require a huge number of images to work efficiently, but Pakistan lacks 

any such local dataset pertaining to Traffic types. 

Such datasets are purposefully built and curated and regularly used to inspire new 

learning-based model by pitting them against each other in competitions [7]. This has proved 

fruitful as these competitions have resulted in a great deal of literature and state-of-the-art 

computer vision models being developed all of which seem to agree on the assumption that 

more data mean better performance. 

To avoid any potential accidents involving traffic, such as forward collision and vehicle 

overtaking, work has been done for assistance with safe lane change operations using symmetry 

verification to detect lanes [17], [24], [25]. Research has also been conducted on giving priority 

to certain traffic types [20], [21], [22], [23], . This helps to reduce the damage caused due to 

road accidents, or in cases of [21] and [22] to help ambulances and firetrucks avoid traffic-jams 

with help of smart city surveillance systems. 

2.1.1 Traffic Type Recognition 

Identification of traffic type is an important part of self-driving cars and assisted driving 

systems. Considering these applications, it is extremely important that the traffic is detected 

and identified up to a certain degree of accuracy to ensure that the vehicle and the passengers 

in it are safe. Research on traffic detection and recognition has been carried through different 
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methods, using both traditional image processing based, and learning based algorithms.  

A paper titled “Pedestrian, bike, motorcycle, and vehicle classification via deep 

learning Deep Belief Network and small training set” [21] presented a different and interesting 

approach to traffic classification. A Deep Belief Network (DBN) based model was used for the 

classification of four categories, namely: pedestrian, bike, motorcycle, and vehicle. The 

proposed model achieved a high accuracy classification rate of 89.53%, especially considering 

that the model was trained using only 1000 images. However, that also raises a red flag since 

a small dataset can cause the model to have sampling bias and under-perform on outliers.  

Another paper titled “Lightweight PVIDNet: A Priority Vehicles Detection Network 

Model Based on Deep Learning for Intelligent Traffic Lights” [22] introduced an algorithm for 

vehicle detection based on YOLOv3, integrated with an intelligent traffic light. The use of 

YOLOv3 as base model provided a lightweight design with low execution time. The proposed 

network was also used for traffic control after being trained on the Brazilian Traffic Code. 

However, this model worked on a single image basis and not on continuous video frames. 

A recent paper titled “A deep-learning-based computer vision solution for construction 

vehicle detection” [23] published in 2020 proposed an improved version of the single shot 

detector MobileNet. Nearly all MobileNet based architectures use the ‘depthwise separable 

convolutions’ which basically make use of the two operations: depthwise convolution and 

pointwise convolution. An mAP value of 0.912 was achieved but, the model was only trained 

and tested for detection of construction vehicles.  

2.2 Convolutional Neural Networks 

According to Li Deng and Dong Yu [26], deep learning is a class of machine learning 

algorithms that uses raw input to extract features by utilising several layers. The features 

extracted are of a higher level, incorporating greater detail into the model. Deep learning was 

introduced to machine learning by Rina Dechter in 1986 in [27]. Since then, various 

developments have taken place over time such as the daw of neural networks working in both 

supervised and unsupervised conditions. Deep learning or convolutional neural networks 

(CNN) are part of the unsupervised realm of machine learning.  

Among the pioneers of the development were Y. Lecun, L. Bottou, Y. Bengio and P. 

Haffner who developed the LeNet [5]. It was a 7-level convolutional network used to classify 

handwritten digits on cheques. Its major constraint was the high computational requirement. 

Later in 2012 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton developed the CNN, 
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AlexNet [28] that won the annual ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) held by ImageNet. The network had an architecture akin to LeNet but was deeper 

and consisted of more filters. Filters included 11x11, 5x5, 3x3, convolutions, max pooling, 

dropout, data augmentation, ReLU activations and SGD with momentum.  

Then in 2013, the ILSVRC was won by ZFNet, also a CNN, developed by Zeiler, 

Matthew D., and Rob Fergus [29] achieving a top-5 error rate of 14.8 percent, better than last 

year’s AlexNet which had a top-5 error rate of 15.3 percent. This was achieved by primarily 

fine-tuning and tweaking the hyper-parameters of the AlexNet architecture. In 2014, the 

competition was won by GoogleNet, codenamed in the journal Inception V1 [30]. It made the 

first big leap after the AlexNet in terms of a top-5 error rate of 6.67 percent. It is based on the 

LeNet architecture and used batch normalisation, image distortions ad RMSprop. This novelty 

is dubbed the Inception Module. This worked on reducing the number of parameters, using a 

22-layer deep CNN to reduce the parameter from 60 million of AlexNet to 4 million. The 

runner-up to the GoogleNet was the VGGNet developed by Simonyan, Karen and Zisserman, 

Andrew [31] of the Oxford Robotics Institute.  

The VGGNet consisted of 16 convolutional layers of 3x3 convolutions with more filters 

than the AlexNet. Its uniform structure makes it a go-to for various applications as a baseline 

feature extractor. Then in 2015, ResNet took the ILSVRC crown, formally called the Residual 

Neural Network (RNN) [32]. RNN introduces skip connections, also called gated units allow 

this neural network to use 152 layers while retaining a computational complexity less than 

VGGNet. It achieved a top-5 error rate of 3.57 percent.  

 

 
Figure 1: Convolutional Neural Network [33] 

Convolutional Layers are responsible for the convolution of the Input Image and the 

filter to extract the required features and generate a feature map according to the filter size. 
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Filter size is determined by the size of the Input Image. The filter consists of two parts the filter 

size F and the total amount of filters K. The input of the convolutional Layer would be the 

Input Image dimensions (W(i) * H(i) * D(i)) and the output (W(o) * H(o) * D(o)) where D(o) 

is equal to the total amount of filters K and W(o) and H(o) can be calculated by the following 

equation [34]. 

 
Where,  
W(i), H(i) is the Input Size of the square image  

F is the Filter Size 
p is the Padding  

Parameters for each convolution layer are calculated to get the overall trainable and 

non- trainable parameters in the model and to calculate the complete memory consumption of 

the network. If we have an input of (W(i) * H(i) * D(i)) and a convolution filter (W(f) * H(f) * 

D(f)) where W(i), H(i) and D(i) are the Width, Height and Dimension of the input to the 

convolutional layer and W(f), H(f) and D(f) are the width, height and total number of feature 

maps in a convolution filter. Thus, the parameters can be calculated by using the following 

formula: 

 
Pooling Layers are used to reduce the total number of parameters which will be used 

further in the network, and it also reduces the overall computational cost [34]. Most commonly 

used pooling techniques include Average Pooling and Max Pooling.  

Dropout Layers were made to avoid overfitting or underfitting of the model on the given 

dataset. It chooses the number of nodes which will be used in the training process. These Layers 

are commonly used after fully connected layers which are prone to overfitting [34].  

Activation function helps in providing the non-linear relation between the class of 

image and Image Data. They determine which neuron should be fired or not depending upon 

the relevancy of the neuron towards the required output [34]. Various activation functions are 

being used which include tanh, sigmoid, ReLU, Leaky ReLU etc.  

Optimization techniques are used to calculate the weights for your model. They update 

the weights in the learning process until you reach your desired output. Various optimization 

techniques are used which include SGD, SGD with momentum, NAG, Adagrad, RMSprop and 

Adam [34].  

Flatten Layers are responsible for converting the data into a one-dimensional vector so 
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it could be fed to Fully Connected Layers where classification will be completed.  

Fully Connected Layers are the feed-forward neural networks. The first FC layer 

collects the data from the last convolution Layer after getting flattened into a one-dimensional 

vector to compute the classification and the Last FC Layer provides the final probabilities 

calculated for each label.  

The Accuracy is calculated by using the f1 Score which has two metrics Precision and 

Recall [68]. Precision describes the number of true class predictions which truly belongs to the 

true class whereas recall defines the number of true class predictions completed out of all the 

true samples in the complete dataset.  

Formulae for each are given below,  

 
 

 
 

 

Where TP is True Positive, FP is False Positive, FN is False Negative  
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CHAPTER 3: METHODOLOGY 

3.1 Data Collection 

Deep Learning-based learning algorithms require massive amounts of data to be able 

to generalize. This is due to their inherent properties of modeling around the available training 

data. This is an area in which we as a country lack and there is a severe shortage of available 

data. To rectify this issue this research included a data collection phase where videos were 

collected from across Pakistan. 

The videos collected were 30 in number and deliberately collected with varying 

properties such as framerate (FPS), brightness, exposure, and lighting settings. These 

properties are known to affect the results of any learning-based model ultimately. The 

framerate is responsible for the number of frames being extracted from each second and will 

affect the number of images in total. 

The total runtime of these 30 videos amounted to 05 hours, 42 minutes, and 01 seconds. 

Of these 30 videos, 23 were collected from across a few cities in Pakistan including, but not 

limited to, Quetta, Karachi, Lahore, Islamabad, and Rawalpindi, and totaled 02 hours, 35 

minutes, and 58 seconds of video footage. Further videos were fetched from various open-

source video-sharing platforms with a total of 03 hours, 06 minutes, and 03 seconds.  

3.2 Preprocessing 

The next part after data collection is getting that ready for training and it starts with 

extracting individual frames from the video footage. The video framerate dictates the number 

of extracted frames from each second of that video. Considering various framerates of each 

video and the total runtime all the videos equate to approximately 0.56 million frames/images. 

Even though it was stated above that the number of training images is generally directly 

proportional to model performance, in this specific case a lot of the extracted frames had little 

or no visual change and would only prove expensive processing-wise. This is because the 

spatial features present in these adjacent frames are usually very similar and will not add any 

benefit.  

To cater to this, ‘key-frames’ were extracted. This resulted in 109,463 final number of 

frames. Furthermore, the input dimensions of all the images/frames being passed on to any 

learning-based algorithms need to be constant. In the case of this research, this resolution was 

fixed at 640 × 380. Another reason for setting the resolution to this specific value was that the 
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videos also differed in aspect ratios and resolutions and some of these were very high. Higher 

resolution, while carrying better spatial features, also mean longer training time and use of 

precious computational resources. After a certain point, it becomes important to look at the 

cost-benefit analysis of the input resolution. It is generally observed that after a certain 

resolution, any increase will return a very negligible increase in model performance, but it will 

take a significantly longer time to train.  

3.3 Data Annotation 

After preprocessing the video to set requirements, the frames need to be annotated for 

the presence of relevant objects. This is important as the annotations are the labels that are 

passed to the deep learning model in a supervised learning scenario. The annotations are done 

using the Computer Vision Annotation Tool—CVAT—from Intel. It can output the 

annotations in various formats depending on the type of model being trained.  

The types of objects to be detected were divided into four main classes. The four types 

of traffic being considered in this research are pedestrians, bikes, LTVs, and HTVs.  

3.4 Flow Diagram 

The overall flow of the data and all the individual steps are shown in the flow diagram 

in Fig. 2 below. The process starts with key preprocessing as detailed in section 3.2 above, it 

includes the key frame extraction, resizing and train/test split steps. The train/test split is done 

to distribute the data into two parts, one used for training the data and the other used to test the 

performance of the model by emulating real-world conditions where the model will encounter 

unseen traffic signs and types. The preprocessed data is then annotated and then passed on to 

the proposed Convolutional Neural Network—CNN.  

The proposed CNN will carry out three steps in general—using varying techniques 

based on type of CNN being used—extracting relevant features, detecting objects, and 

Figure 2: Annotation Examples 
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classifying them. The CNNs being used for the task of this research is YOLOv7 and the detailed 

architecture has been further detailed in the next section. Consequently, predictions are made, 

and further decision are taken based on them. 

 

3.5 Experimentation Setup 

The training process is performed on an Nvidia Tesla P100 GPU provided by the 

Google Collaboratory. The training has been performed for 1000 epochs/iterations to obtain 

precise and stable results. The training time is 26:27:02 on the aforementioned GPU. 

3.6 Model Architecture 

The first version of the YOLO object detector was introduced in 2015 in the paper titled 

“You Only Look Once: Unified, Real-Time Object Detection” [35]—YOLOv1. Since then, 

multiple versions, and flavors, of the base model have been released, up to the 7th version—

which was presented in the paper titled “YOLOv7: Trainable bag-of-freebies sets new state-

of-the-art for real-time object” [36]. In our research, YOLOv7 architecture is used for the 

detection and identification of traffic types. It makes the predictions for the bounding boxes 

Figure 3: Flow Diagram 
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more accurately than its predecessors, and at similar inference speeds.  

YOLO is a regression-based algorithm but, instead of selecting important features of 

an image, it predicts bounding boxes and labels/classes for the image, and the most significant 

element of this algorithm is that it does all this in one run—pertaining to its name “You Only 

Look Once”. Ultimately, the aim is to predict the object class and specify the object’s location 

through a bounding box. 

The base model of YOLO, on which every version is based, consists of three main 

modules: 

• Residual Block: The first module takes the input image and divides it into various grid 

cells, typically, 19x19. Each grid cell is then responsible for detecting objects that may 

appear within them, based on the location of the object’s center. 

• Bounding Box Regression: The second module uses Single Bounding Box Regression 

on any and all detected objects. This provides the probability of an object appearing in 

the bounding box—the outline or boundary that highlights the location of the object in 

the input image. For each bounding box, there are four attributes to predict: center (x, 

y), width, height, and class.  

• Intersection Over Union (IOU): The third module, using the concept of IOU—a 

description of how the bounding boxes overlap—provides an output box in which the 

objects are perfectly surrounded. Every grid cell is tasked with the prediction of the 

bounding boxes and their probability, or confidence score. If the prediction for the 

bounding box is the same as the real bounding box, the IOU value equals 1, and 

consequently, any predicted bounding box that is not equal to the real bounding box is 

eliminated. 

Figure 4: Model Architecture 
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3.7 Advanced Driver Assistance System 

The ADAS has been designed as an active system to assist in a wide array of issues 

while driving. Some of issues include, but are not limited to: 

• Lane-keeping 

• Over-taking vehicles 

• Jay-walking pedestrians 

• Potential blind spots 

• Negligent/distracted drivers 

The ADAS Unit consists of two modules. The first module divides each video frame 

into a grid of 3 x 2 cells. For every predicted bounding box centers (bx ,by), their location is 

then identified in the grid, along with the predicted labels for traffic type. Using the labels and 

bounding box locations, the second module provides specified instructions for the detected 

conditions at that time (traffic in front, overtaking vehicle, etc.).  

Given in table 1 below, in decreasing order of priority, is the list of instructions provided 

as assistance to the driver by the ADAS according to different situations detected. 

Table 1: ADAS Instructions for Different Situations 

# ADAS Instructions 

1 No traffic detected, assistance not required 

2 Pedestrian right in front of you, stop immediately 

3 Bike right in front of you, slow down immediately 

4 LTV right in front of you, slow down2 immediately 

5 HTV right in front of you, slow down immediately 

6 Pedestrian in front of you, slow down immediately 

7 Bicycle in front of you, slow down slightly 

8 LTV in front of you, stay cautious 

9 HTV in front of you, slow down slightly 

10 Pedestrian near your left side, watch out 

11 Pedestrian near your right side, watch out 

12 Bike overtaking from your left side, stay cautious 

13 Bike overtaking from your right side, stay cautious 
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14 LTV overtaking from your left side, stay cautious 

15 LTV overtaking from your right side, stay cautious 

16 HTV overtaking from your left side, stay cautious 

17 HTV overtaking from your right side, stay cautious 

18 Pedestrian on your far-left side, watch out 

19 Pedestrian on your far-right side, watch out 

20 Bike on your far-left side, be careful while overtaking 

21 Bike on your far-right side, be careful while overtaking 

22 LTV on your far-left side, be careful while overtaking 

23 LTV on your far-right side, be careful while overtaking 

24 HTV on your far-left side, be careful while overtaking 

25 HTV on your far-right side, be careful while overtaking 
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CHAPTER 4: RESULTS & DISCUSSION 

4.1 Performance Metrics 

It is pertinent to mention discuss the performance metric being used to characterize the 

predictions of the model. The primary metrics are True Positive—TP, False Positive—FP, True 

Negative—TN, and False Negative—FN. These are further explained in table 2 below: 

Table 2: Performance Metrics 

True Positive It is when a model makes a prediction and correctly identifies the object 

False Positive It is when a model makes a prediction even though no object was present 

True Negative It is when a model does not make a prediction when there is no object 

False Negative 
It is when a model does not make a prediction even though an object 

was present 

Another aspect which needs to be considered when an object detection model is being 

used is Intersection over Union—IoU. IoU is a measure of how much the predicted bounding 

box overlaps the original—or ground truth—bounding box in the case of a prediction being 

made, i.e., it is a ratio of the area of overlap and the total area covered by the original and 

predicted bounding boxes as given by the equation below 

IoU = Intersection of bounding boxes’ areas/Union of bounding boxes’ areas 

This metric is used along with a threshold to classify bounding boxes in accordance 

with one of the primary metrics. So as, if a bounding box is below the required threshold, it is 

classified as a false positive because it made a prediction, but that prediction did not have 

enough quality in it to be called a correct prediction or a true positive. The IOU threshold can 

be varied depending on various situations and applications as well as the size of the object 

under observation, but the default or generally accepted value is set at 0.5. 

Furthermore, the primary metrics combine to form secondary metrics, which are 

Precision and Recall and are given by the equations given in section 2.2. 

Precision is a measure of accuracy of the model’s predictions, i.e., the number—or 

percentage—of correct predictions made by the model with respect to the total number of 

predictions made. While recall is the measure of how well the model is predicting the presence 

of objects, i.e., the number—or percentage—of objects detected with respect to all the objects 

present. 
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This is then succeeded by the tertiary metric called Average Precision which is 

generally defined as the area under the precision-recall curve. This can be calculated by simple 

integration as per equation below. The main metric being used to characterize the findings of 

this research is the mean Average Precision (mAP). mAP is the cumulative mean of the 

Average Precision across all the classes of the object being predicted and is given by the 

equation below. 

 

 
4.2 Results 

Traffic type images were trained on two different state-of-the-art networks and model 

architecture of the YOLO family. Both of the selected networks have shown remarkable results 

and groundbreaking mAP numbers on the COCO Dataset over the year. As we can see in table 

3 and table 4 below the YOLOv7 model architecture produces the higher values for all the 

relevant benchmarks. Here the “P” means Precision, ”R” means Recall, “mAP@0.5” means 

mAP over IOU threshold 0.5, and “mAP@0.5:.95” means mAP over different IOU thresholds, 

from 0.5 to 0.95 with a jump of 0.05. 

Table 3: Performance Metrics for the Trained Models 
Architecture P R mAP@.5 mAP@.5:.95 

YOLOv5 0.877 0.623 0.746 0.430 

YOLOv7 0.876 0.730 0.872 0.579 

 
Table 4: Performance Metrics for the Top Performing Model 

YOLOv7 

Class P R mAP@.5 mAP@.5:.95 

all 0.876 0.730 0.872 0.579 

pedestrian 0.925 0.691 0.841 0.548 

bike 0.930 0.784 0.899 0.564 

HTV 0.818 0.500 0.834 0.452 

LTV 0.959 0.674 0.873 0.560 



17 

 
4.2.1 Graphical Results 

The graphical results of several other common and useful metric for the best performing model 

are given below. 

 
Figure 6: mAP@0.5 for YOLOv7 

The mAP is cumulative mean of the Average Precision across all the classes of the 

object being predicted. As visible from the graph in Fig. 4 above, the mAP over IOU threshold 

0.5 improves consistently and ultimately flattens out after about 70 iterations with a final value 

of 87.20%. 
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Figure 7: Precision Curve for YOLOv7 

 
Figure 8: Recall Curve for YOLOv7 

Precision is a measure of accuracy of the model’s predictions, i.e., the number—or 

percentage—of correct predictions made by the model with respect to the total number of 

predictions made. While recall is the measure of how well the model is predicting the presence 

of objects, i.e., the number—or percentage—of objects detected with respect to all the objects 

present. The values for Precision and Recall, as shown in Fig. 5 and Fig. 6, respectively, 

improve significantly as training progresses. 
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Figure 9: Bounding Box Regression Loss for YOLOv7 

Bounding boxes are the rectangles drawn around the detected object, as mentioned in 

the model architecture the bounding box coordinates are regressed in a branch of the network, 

using Mean Square Error. The loss of this regression is a strong indicator of how well these 

boxes are ‘bounding’ the objects. The values of regression loss decrease continuously to a very 

low value, showing the improvements as the training progresses. 

 
Figure 10: Objectness Loss for YOLOv7 
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relatively new term in performance metrics. It can be described as the confidence a network 

has in an object existing in a predicted bounding box. Objectness Loss helps the network 

predict a correct IOU by using Binary Cross Entropy. The graph above shows a steady decrease 

as the iterations increase showing the improvement in model’s performance.  

 
Figure 11: Classification Loss for YOLOv7 

YOLOv7 classifies the detected objects into one of the predefined classes. This part of 

the architecture uses Cross Entropy, and the loss generally trends downwards quite early and 

stays more or less steady after about 40 iterations or so. 
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4.2.1.1 YOLOv5 

 
Figure 12: mAP@0.5 for YOLOv5 

 
Figure 13: Precision Curve for YOLOv5 
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Figure 14: Recall Curve for YOLOv5 

 
Figure 15: Bounding Box Regression Loss for YOLOv5 
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Figure 16: Objectness Loss for YOLOv5 

 
Figure 17: Classification Loss for YOLOv5 
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for traffic type detection and can be used by researchers to develop and improve their models 

for the roads of Pakistan. 

Furthermore, this is pioneering research in the implementation of multiple object 

detection-based systems to recognize the Pakistani traffic type. It is the first of its kind research 

in Pakistan which has a model trained on frames from video footage from the streets. It also 

scores impressively in all performance metrics used internationally to characterize related 

models. 
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CHAPTER 5: FUTURE WORK 

This research was meant as an initial foray into enabling better traffic conditions in 

Pakistan. Even though the research resulted in favorable outcomes and performance metrics 

there is always room for improvement. The performance metrics can be improved by the use 

of data augmentation to help account for class imbalance. More training iterations/epochs can 

be used in case of the availability of better computational resources. Another case of 

improvement can be the use of all frames instead of extracting keyframes and using them at a 

higher resolution to improve results.  

Object detection is a hot research topic hence recently published models can be used 

for higher performance scores. RCNN and image segmentation models to can also be used to 

obtain pixel-wise detection but, that would require an even more tedious annotation process 

which could result in better real-world results when deploying the model. The research could 

be compounded by the development of specialized hardware to help turn the research project 

into a commercially viable product. 
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CHAPTER 6: CONCLUSION 

The motivation behind conducting this research was to lay a foundation for a dataset 

and a model which can be used by self-driving vehicles and existing vehicles to improve the 

traffic conditions in the country. During this research, a first-of-its-kind dataset was collected 

from the roads of Pakistan and across various cities including, but not limited to, Islamabad, 

Quetta, Lahore, and Karachi. The dataset amounted to 5 hours, 42 minutes and 1 second of 

video footage, and 109,463 images of keyframes. The footage was annotated using rectangular 

bounding boxes and 4 distinct classes which were pedestrians, bikes, LTVs, and HTVs.  

Consequently, a deep learning model was trained for the traffic signs. It was YOLOv7 

from the YOLO architecture family. It was trained and tested to detect and classify traffic types 

at an mAP of 87.20%. Using predictions from this model, an ADAS algorithm was designed 

to assist in a wide array of issues while driving. 
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