

i

Declaration

I certify that this research work titled “Food Quality Assessment Based on Deep Learning

Models” is my own work. The work has not been presented elsewhere for assessment. The

material that has been used from other sources has been properly acknowledged/referred to.

Signature of Student

MARYUM SANDHU

00000278117

ii

Plagiarism Certificate (Turnitin Report)

This thesis has been checked for plagiarism. Turnitin report endorsed by the supervisor is

attached.

Signature of Student

MARYUM SANDHU

Registration Number 278117

Signature of Supervisor

iii

Copyright Statement

• Copyright in the text of this thesis rests with the student author. Copies (by any process)

either in full or in extracts, may be made only in accordance with instructions given by the

author and lodged in the Library of NUST School of Mechanical & Manufacturing

Engineering (SMME). Details may be obtained by the Librarian. This page must form part

of any such copies made. Further copies (by any process) may not be made without the

permission (in writing) of the author.

• The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST School of Mechanical & Manufacturing Engineering, subject to any prior

agreement to the contrary, and may not be made available for use by third parties without

the written permission of the SMME, which will prescribe the terms and conditions of any

such agreement.

• Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST School of Mechanical & Manufacturing

Engineering, Islamabad.

iv

Acknowledgements

I am extremely thankful to Allah (SWT) for guiding me throughout this work and blessing

me with innovative thoughts and ideas. Without Your will and guidance, I would not be able to

achieve this and whosoever guided me during my work was Your will. Truly all praise belongs to

You.

I am profoundly thankful to my parents who raised me and taught me my first lessons of

life and made me who I am today. It was their unconditional support that gave me the courage and

helped me achieve every goal of my academic career. I am especially thankful to my mother for

helping me in taking care of my daughter while doing my work. Without their resolute support, I

would not have been able to do my research.

I would like to express my regards and thanks to my supervisor Dr. M. Jawad Khan for his

able guidance. I am also thankful to him for Rehabilitation and Assistive Robotics, Computer

Vision, and Deep Learning courses that he has taught me. His way of teaching has helped me grasp

the concepts easily and his constant guidance helped me complete my thesis.

I would also like to thank Dr. Hasan Sajid, Dr. Usman Bhutta, and Dr. Karamdad for being

on my thesis GEC committee.

Finally, I would like to extend my respect to everyone who has been of any help to my

research.

v

Dedicated to my beloved parents, encouraging husband and affectionate

siblings whose unconditional support and encouragement led me to this

exceptional accomplishment.

vi

Abstract

Objective. In this paper, a novel dataset has been collected in accordance with Pakistani

needs and is used to develop an architecture for the quality assessment of fruits and vegetables.

Approach. The dataset contains images captured under uncontrolled conditions with respect to

illumination, temperature, humidity, image resolution, image aspect ratio, angle of capturing

images and background. Images captured contain items individually as well as in groups. To the

best of the knowledge gathered, this is the first of its kind dataset. This dataset is then

preprocessed. Among usual preprocessing techniques, an aspect ratio adjustment algorithm has

been introduced. After preprocessing, the data is used to train multiple models (AlexNet, VGG-16,

ResNet-50, Fruits-360 Model and a proposed model with relatively lesser depth). This performs

recognition of fruits and vegetables and endorse the validity of the dataset. Going further, the

dataset is then prepared for quality assessment with three quality labels for each fruit/vegetable:

Eatable, Partially Rotten and Rotten. Quality assessment is then performed using pre-trained VGG-

16 through transfer learning, adding a fully connected network and fine-tuning the model. Main

Results. The highest recognition accuracy on the validation set is 98.9% and the highest validation

accuracy for quality assessment is 92.9%. Significance. Outcomes of this research demonstrate that

dataset collected under an uncontrolled environment can be used for recognition of

fruits/vegetables with remarkable accuracies. Moreover, quality assessment of fruits/vegetables is

performed accurately with the same dataset using deep learning and three quality labels.

Key Words: Quality Assessment of Fruits/Vegetables, Preprocessing for Aspect Ratio Adjustment,

VGG-16, Transfer Learning

vii

Table of Contents

Declaration ... i

Plagiarism Certificate (Turnitin Report) ... ii

Copyright Statement .. iii

Acknowledgements .. iv

Abstract .. vi

Table of Contents .. vii

List of Figures .. i

List of Tables………………………………………………………………………………………x

CHAPTER 1: INTRODUCTION……………………………………………………………….1

1.1 Food Quality Assessment and Deep Learning…………………………………………..1

1.2 Transfer Learning………………………………………………………………………..2

1.3 Previous Work…………………………………………………………..…………….....2

1.4 Problem Statement…………………………………………………………..……….......4

1.5 Approach Used………………………………………………………………………..…4

1.6 Objectives………………………………………………………………….………….....5

1.7 Thesis Overview…………………………………………………………………….…...5

CHAPTER 2: THEORY………………………………………………………………………....6

 2.1 Deep Learning……………………………………….……………………………………...6

 2.1.1 Deep Learning and Image Processing………………………………………….…......6

 2.1.1.1 Hyperparameters……………………………………………….……………...7

 2.1.1.2 Cost Function……………………………………………………………….…8

 2.1.1.3 Optimizer………………………………………………………………….…..8

 2.1.1.4 Regularization…………………………………………………………………8

 2.1.1.5 Batch Normalization………………………………………………………..…8

CHAPTER 3: PROPOSED METHODOLOGY……………………………………………...10

 3.1 Data Collection…………………………………………………………………..…………10

 3.1.1 Experimental Setup……………………………………………………………….…10

 3.1.2 Features of the Dataset……………………………………………………………......10

 3.2 Data Preparation and Preprocessing……………………………………………………….12

 3.2.1 Aspect Ratio Adjustment…………………………………………………...……..…12

 3.3 Recognition of Fruits/Vegetables……………………………………………………....….15

 3.3.1 AlexNet……………………………………………………………...………………..15

 3.3.2 Fruits-360 Model……………………………………………………………….........16

 3.3.3 Own Model…………………………………………………………………...……...16

 3.3.4 VGG-16………………………………………………………………...……………17

 3.3.5 ResNet-50………………………………………………………………………...….18

viii

 3.4 Quality Assessment of Fruits/Vegetables……………………………………………...….18

 CHAPTER 4: RESULTS………………………………………………………………..…….20

 4.1 Results for Recognition of Fruits/Vegetables……………………...…………………......20

 4.1.1 AlexNet……………………………………...………………………………………..20

 4.1.2 Fruits-360 Model……………………………………………...……………………...20

 4.1.3 Own Model…………………………………………………………………………...21

 4.1.4 VGG-16………………………………………………………………………..……..21

 4.1.5 ResNet-50………………………………………………………………………….…22

 4.1.6 Comparison of Recognition Models………………………………………………….23

 4.2 Results for Quality Assessment of Fruits/Vegetables……………………………….…….23

 4.2.1 Quality Assessment of Banana……………………………………………………….23

 4.2.2 Quality Assessment of Persimmon…………………………………………………...24

 4.2.3 Quality Assessment of Apple………………………………………………….……..24

 4.2.4 Quality Assessment of Peas…………………………………………………....……..25

 4.2.5 Quality Assessment of Lemon………………………………………………..………25

 4.2.6 Quality Assessment of Tomato……………………………………………….………26

CHAPTER 5: DISCUSSION ... 27

CHAPTER 6: CONCLUSION... 29

CHAPTER 7: FUTURE WORK ... 30

APPENDIX A .. 31

REFERENCES .. 51

ix

List of Figures

Figure 1.1: Work Flow for this research………………………………………………………….5

Figure 2.1: A general CNN architecture…………………………………………………….……6

Figure 2.2: Feature Map Size………………………………………………………….………….7

Figure 2.3: Early stopping for regularization……………………………………………….…….8

Figure 3.1: Experimental setup for data collection……………………………………….……..10

Figure 3.2: Sample images from dataset …………….…………………………….…………...11

Figure 3.3: Quality stages of fruits/vegetables……………………………….………………….13

Figure 3.4: Aspect ratios of images in the dataset…………………………………………….....14

Figure 3.5: Aspect ratio adjustment……………………………………………………………...14

Figure 3.6: Aspect ratios of images in the dataset…………………………………………….....15

Figure 3.7: AlexNet……………………………………………………………………………...16

Figure 3.8: Fruits-360 Model…………………………………………………………………....16

Figure 3.9: Own Model……………………………………………………………………….....17

Figure 3.10: VGG-16 through transfer learning…………………………………………….…..17

Figure 3.11: ResNet-50 through transfer learning…………………………………….………...18

Figure 3.12: VGG-16 through transfer learning for quality assessment……………….………..19

Figure 3.13: Workflow Diagram of Proposed Methodology……………………….…………...19

Figure 4.1: Results – Recognition using AlexNet…………………………………………….....20

Figure 4.2: Results – Recognition using Fruits-360 Model……………………………………..21

Figure 4.3: Results – Recognition using Own Model…………………………………………...21

Figure 4.4: Results – Recognition using VGG-16……………………………………………....22

Figure 4.5: Results – Recognition using ResNet-50…………………………………………….22

Figure 4.6: Results – Quality Assessment of Banana…………………………………………...23

Figure 4.7: Results – Quality Assessment of Persimmon……………………………………….24

Figure 4.8: Results – Quality Assessment of Apple…………………………………………….24

Figure 4.9: Results – Quality Assessment of Peas……………………………………………...25

Figure 4.10: Results – Quality Assessment of Lemon………………………………………….25

Figure 4.11: Results – Quality Assessment of Tomato…………………………………….…...26

file:///C:/Users/HP/Downloads/Thesis%20Writeup%20draft.docx%23_Toc365361337

x

List of Tables

Table 1.1: Literature Review ... 3

Table 3.1: Number of images for each class for recognition……………………………..……..12

Table 4.1: Comparison of Recognition Models ………………………………………..…….....23

Table 4.2: Summary of Quality Assessment ………………………………………………........26

1

CHAPTER 1: INTRODUCTION

The following research work is focused on quality assessment of fruits and vegetables using deep

learning models. Among other important foods, fruits and vegetables are an essential part of the

human diet on daily basis. When it comes to consuming fruits and vegetables it is highly important

to assess their quality. From being picked up from farms and orchards, packaging, transportation,

and displaying in grocery stores to reaching its consumers, there are lots of factors that deteriorate

the quality of fruits and vegetables. And it is highly important to ensure a good quality check at

every stage of this cycle. This calls for a method that is both less tedious, less error-prone and less

time-consuming than the conventional and subjective methods that include experience of observer,

past knowledge, cultural practices, etc. and thus is more error-prone as well and dependent on so

many factors like observer’s memory, some particular experience, and the decision may be biased

as well. Moreover, all the chemical and microbiological methods of quality assessment of fruits

and vegetables are destructive in nature and laborious. On the other hand, deep learning-based

methods are eco-friendly and less laborious and offer a time-efficient process. Deep learning has

been a core subject of machine learning and has helped in achieving many milestones of research

in image classification problems. Deep learning offers state-of-the-art models to accomplish

classification tasks with considerably good accuracy with the ease of automatically extracting

features combined with a classifier.

Convolutional Neural Networks (CNNs) are an integral class of deep learning that has been

recently used in agriculture and food production. The main purpose has been to achieve some sort

of image classification. In this research deep learning models have been used and a new dataset has

been introduced for performing the following tasks: Fruits and vegetables recognition followed by

the quality assessment of the corresponding fruit/vegetable.

1.1 Food Quality Assessment and Deep Learning:

The literature survey shows that little work has been done in this field. Sorting of healthy and

defective dates has been done using deep learning models (Nasiri et al, 2019). The research has

been done on the Shahani date fruit found mostly in Iran and is very much liked there. A VGG16

2

model has been fine-tuned and the data set collected contains images that had equal aspect ratios

and background of all images was kept constant. The model got an overall accuracy of 96.9%.

In another attempt, Fresh and rotten fruits have been classified using different deep learning

models with pre-collected Kaggle dataset (Chakraborty et al., 2021). The images in the data set are

taken in a highly conditioned environment. All images have constant white background, same

illumination, same resolution, same aspect ratio and covering almost same angle of the fruit. There

is little to no variation observed in the dataset as per the literature survey.

1.2 Transfer Learning:

Training models with a greater number of layers i.e., deeper networks offer more complexity and

thus take more time to train. Many deeper networks such as VGG16, RESNET50, and AlexNet

take longer when developed from scratch and trained. To overcome this, transfer learning can be

used to perform the training without having to train the whole model. The concept of transfer

learning belongs to machine learning area where a pretrained model is finetuned and used for a

new task thus saving training time and achieving better accuracy in less time and epochs. The

pretrained model is trained on a larger dataset and weights and biases are frozen and are used as

starting point for the new task at hand.

Moreover, in the domains like bioinformatics and robotics collecting a large-scale well-annotated

dataset is very difficult due to the expense of data acquisition and costly annotation. In such cases,

transfer learning can be used to obtain good accuracy for insufficient data. (Tan, C. et al., 2018).

1.3 Previous Work:

Agriculture has always been an important sector for research. Among other food products, there

has been a recent development in research work regarding the recognition of different fruits using

deep learning models. A new dataset namely Fruits-360 was used for this purpose (Moresan and

Oltean, 2018). The fruits were mounted on a shaft of a low-speed motor and a video was captured

followed by frame extraction. CNN was used for recognition. A hybrid model can also prove to be

an effective framework for fruit recognition (Xue et al., 2020).

3

Table 1.1: Literature Review

Reference Title of Paper Dataset Model Accuracy

Moresan and

Oltean, 2018

Fruit recognition from images using

deep learning

Fruits-360 dataset

(82213 images of 120

fruits)

CNN Train: 99.5 %

Test: 95.2 %

Ren et al.,

2019

Machine Learning Driven Approach

Towards the Quality Assessment of

Fresh Fruits Using Non-Invasive

Sensing

Fresh Fruit slices of

Apple and Mango for

Moisture Content

SVM, KNN, Decision

Tree

SVM: 90.9 %

KNN: 82.9 %

DT: 95.4 %

Pathmanaban

et al., 2019

Recent Application of Imaging

Techniques for Fruit Quality

Assessment

- Hyperspectral imaging,

Raman imaging, MRI

imaging and Laser

backscattering imaging

-

Nasiri et al.,

2019
Image Based Deep Learning

Automated Sorting of Date Fruit

1300 images of healthy

and defective dates

VGG16

Train: 97.9 %

Validation: 98.4

%

Xue et al.,

2020

A hybrid deep learning-based fruit

classification using attention model

and convolution autoencoder

Fruit 26 (Muresan et al.) Attention-based

DenseNet

95.8 %

Naranjo-

Torres et al.,

2020

A Review of Convolutional Neural

Network Applied to Fruit Image

Processing

Six categories from

fruits-360 dataset

CNN Train: 100 %

Test: 95.45 %

Bhole and

Kumar, 2020

Mango Quality Grading using Deep

Learning Technique: Perspectives

from Agriculture and Food Industry

RGB and Thermal

Mango Dataset (1500

Images)

Fine-tuned SqueezeNet Validation:93.3

%

Nayak et al.,

2020

Intelligent food processing: Journey

from artificial neural network to deep

learning

- ANN and CNN Comparison

Study

Maria and

Darwin, 2021

Deep Learning Approach for Food

Quality Inspection and Improvement

on Hyper Spectral Fruit Images

Hyperspectral images ANN, SVM Proposed: 60 %

Chakraborty

et al., 2021

Implementation of Deep Learning

Methods to Identify Rotten Fruits

Fruits fresh and rotten

for classification (13599

images) Kaggle.com

MobileNetV2 (53

layers)

Train: 94.5 %

Test: 94.9 %

Zhang et al.,

2021

Food and agro-product quality

evaluation based on spectroscopy and

deep learning: A review

- - -

Antony and

Satheesh,

2021

A Comparative Study on Predicting

Food Quality using Machine Learning

Techniques

Collected dataset for 10

categories

SVM, ANN Mango: 87 %

Guava:90 %

Meat: 81.5 %

Milk: 98.7 %

Bhargava and

Bansal, 2021

Fruits and vegetables quality

evaluation using computer vision: A

review

- - -

Bhargava et

al., 2022

Machine Learning–Based Detection

and Sorting of Multiple Vegetables

and Fruits

healthy and defective

vegetables and fruits (a

total of 25,988 datasets

of images)

Logistic Regression,

SRC, ANN, SVM

LR: 85.5 %

SRC: 87.6

SVM: 97.6 %

ANN: 92.6 %

4

For the past few years, use of CNN for fruit recognition has greatly increased either by developing

new models or using pre-trained models (transfer learning) (Naranjo-Torres et al., 2020). As a step

forward, attempts are being made to achieve fruit quality grading using Hyperspectral imaging,

Raman imaging, MRI imaging, laser backscattering imaging (Pathmanban, P. et al., 2019) and

thermal imaging (Bhole and Kumar, 2020). Techniques used for food quality assessment range

from K nearest neighbor (KNN), Decision Tree (Ren et al., 2019), Artificial Neural Network

(ANN) (Antony and Satheesh, 2021), Support Vector Machines (Maria and Darwin, 2021) to

CNNs.

1.4 Problem Statement:

Food quality assessment is one of the crucial steps to meet the consumers demand for high quality

and safe food products. Now-a-days when online shopping is the preference of all buyers,

shopping food items like fruits and vegetables online is still a doubtful task to perform. The food

quality (freshness and rottenness) cannot be determined by simply looking at the provided

pictures/videos. Moreover, even while making an offline purchase subjective methods are not

suitable being time-consuming and more error-prone.

1.5 Approach Used:

In this research, a dataset has been collected for six categories of fruits and vegetables. The

collected data set contains temperature and humidity recordings and is arranged as per the

sequence of days starting from purchase of the item to its rotten stage. Next step is to arrange this

data set in a folder hierarchy with proper categorical names of classes. This data preparation step is

very much required for easy acquisition of images to perform training and validation. The next

step is to perform the usual image pre-processing required to get optimum results. In addition to

the usual pre-processing, an algorithm has been developed to perform aspect ratio adjustment to all

images. After data preprocessing the next step is to develop models for recognition into six

categories of the corresponding fruits and vegetables. Then the main task is to perform quality

assessment on the recognized fruits/vegetables and model development for the task. The final

result is the quality label of the corresponding item. Figure 1.1 shows the workflow of the research.

5

Figure 1.1: Workflow for this research

1.6 Objectives:

Following are the objectives of this research:

• Collection of data samples of fruits and vegetables in accordance with Pakistan

• Use of transfer learning on the collected data of fruits and vegetables

• Development of architecture for quality assessment of fruits and vegetables

1.7 Thesis Overview:

The research work in this thesis is defined as: Chapter 2 contains the theory of all the methods

used in the approaches used for the Recognition and quality assessment of fruits and vegetables. It

includes all the theoretical concepts for understanding the proposed scheme. Chapter 3 consists of

the approach that has been used to achieve our objectives. It also includes the details of models

used, data collection, features of the dataset collected, and the algorithms used to achieve the

desired results. Chapter 4 contains the results acquired. Chapter 5 includes a discussion of the

approaches used. Chapter 6 contains the conclusion of the thesis and Chapter 7 explains the future

work briefly.

6

CHAPTER 2: THEORY

Some of the concepts necessary to understand this research are briefly explained in the following

sections.

2.1 Deep Learning

Deep learning is a subfield of machine learning that uses structures and functions which are

inspired by the human neural network. The word deep corresponds to the greater depth of deep

neural networks. And greater depth corresponds to a greater number of layers in the network.

When talking about neural networks deep learning algorithms would be deemed at the pedestal.

Deep learning has greatly influenced the task that involves image processing.

2.1.1 Deep Learning and Image processing

Convolutional Neural Networks (CNNs) are the deep learning networks that have revolutionized

the concept of image processing. CNNs have the advantage that the image shape is maintained

while feeding it as input to the networks, unlike others. Also, one major advantage of CNNs is that

they have automatic feature extraction that saves from the cumbersome process of extracting

features including the decisions to extract what kind of features are important. These advantages

have rendered these networks very useful and thus in the past few years, they have been widely

used for a number of applications regarding image processing. Figure 2.1 shows a general

architecture of a CNN.

Figure 2.1: A general CNN architecture

7

The CNN consists of mainly the convolutional layers, it may or may not have pooling layers. In

each convolutional layer there is an activation function that is applied to the result of convolution.

In figure 2.1 this is labeled as the ReLU layer.

The input has 3 dimensions: height, width, and depth. Where the height is kept equal to the width

and the depth refers to as the number of channels. Like in RGB images the depth is 3. So, the input

would be e.g., 224x224x3 (figure 3.7).

Each bunch of feature maps (Convolutional Layer) is a hidden layer. These convolutional layers

are the result of applying filters (kernels) to the input. After this, some activation function is

applied to add some nonlinearity. Next is the pooling layer which corresponds to the operation of

subsampling. Pooling can be max pooling, min pooling, or average pooling.

At the end there is a fully connected layer. This fully connected layer corresponds to the usual

fully connected network that consists of dense layers, an activation function which in most cases is

softmax and some loss function which is now-a-days mostly cross entropy loss. Size before and

after the convolution can be denoted by:

Figure 2.2: Feature Map Size

2.1.1.1 Hyperparameters:

Hyperparameters are parameters whose values are set before the learning process begins and

whose values cannot be deduced from the training data. Some hyperparameters are learning rate,

number of filters in each convolutional layer, size of filters, the batch size for training, number of

convolutional layers, choice of activation function, pooling size, number of dense layers,

regularization, dropout, etc.

8

2.1.1.2 Cost Function

The cost function is used to evaluate the performance of our model. It takes the predicted output

and the actual output and calculates how far we are from the actual output. There are many choices

for the cost functions, the one used in this research is sparse categorical cross-entropy loss.

2.1.1.3 Optimizer

While training the CNN, there is a need to update the weights at each epoch and minimize the cost

function. Optimizer is a function that changes the attributes such as weights and learning rate so as

to minimize the loss and maximize the accuracy.

2.1.1.4 Regularization

Regularization is a technique that is used to avoid the problem of overfitting while training a

model. As a result of overfitting, the model fits very tightly to the training data with a high training

accuracy but does not predict well on test data. There are several techniques used for regularization

including L1 regularization, L2 regularization, dropout, data augmentation, early stopping, etc.

Figure 2.3 shows how early stopping can be used to avoid overfitting.

Figure 2.3: Early stopping for regularization

2.1.1.5 Batch Normalization

Batch normalization can be used as a regularization technique. It basically standardizes the inputs

to a layer for each mini batch. This greatly impacts reducing the number of training epochs

required.

9

CHAPTER 3: PROPOSED METHODOLOGY

3.1 Data Collection:

3.1.1 Experimental Setup:

The setup was established outdoors. All the items were placed on a surface in groups and

individually. Keeping in mind the fact that fruits and vegetables are not always placed individually

in real life. Images were taken from smartphone camera. Images were taken at 5 times of the day

in the following order: 0900 hrs., 1200 hrs., 1500 hrs., 1800 hrs., and 2100 hrs. At each time of the

day, 10 images were captured for each category of fruits and vegetables. 5 of which were taken

individually and 5 were taken in groups of the same fruit/vegetable. Other images were also

captured under categories of fruits combined, vegetables combined, common salient feature

detection, and all of the fruits and vegetables combined. At daytime, natural illumination was used

but at night, a little illumination was required to be able to avoid all dark images. The surface was

changed with days to avoid a constant background for the images. The image resolution and aspect

ratio settings were also changed to incorporate a diversity in images. There was no camera holding

setup rather all images were taken from different angles. Figure 1.2 shows one of the settings made

during data collection.

Figure 3.1: Experimental setup for data collection

3.1.2 Features of the Dataset:

Following are the main features of the data set:

• All pictures are RGB images taken from smartphone camera

10

• The dataset comprises of 5051 images

• Images taken are from different times of the day from morning to night (9:00 am, 12:00

pm, 3:00 pm, 6:00 pm and 9:00 pm)

• Images are captured at different image resolutions

• All images have different aspect ratios

• Images are captured from different angles thus capturing almost all sides of the

fruit/vegetable

• Some images have one object (a fruit or a vegetable) while others have more than one

objects belonging to the same class

• Temperature readings have been recorded

• Humidity percentage for the time of the day has been recorded

• Each time reading has a corresponding quality label for each fruit/vegetable separately

• Three quality labels have been set: Eatable (Fresh + Eatable), Partially Rotten and Rotten

• Data set also contains images for common salient feature detection for future usage

Figure 3.2 shows some sample images from the dataset.

Figure 3.2: Sample images from dataset

Table 3.1 shows the number of images for each class of fruits and vegetables.

11

Table 3.1: Number of images for each class for recognition

To give an insight about how the fruits/vegetables looked in the three states of quality figure 3.3

shows some images from each quality label of different categories.

3.2 Data Preparation and Preprocessing:

All the data has been arranged in a folder hierarchy and all the folder names are named as the

quality labels in the case of quality assessment and for the case of recognition, the folders are

named as the names of the fruits and vegetables. After data preparation and loading the dataset for

training some preprocessing needs to be done depending upon the nature of the data. Preprocessing

is a very crucial step in any image classification problem.

The data was loaded using OpenCV-Python. Using the module of OpenCV the images imported

are in the BGR (Blue Green Red) colorspace, so we need to change its colorspace to RGB (Red

Green Blue) to avoid any confusion in the rest of our work. After solving this problem, the next

one is aspect ratio adjustment. Looking at the features of the dataset as mentioned earlier in section

3.1.2 and observing the sample images from the data in figure 3.2 and figure 3.6 it can clearly be

deduced that the images required some aspect ratio adjustment before resizing them to a suitable

size for training a model. Figure 3.4 shows the different aspect ratios in the dataset.

3.2.1 Aspect Ratio Adjustment

A novel algorithm has been presented here to overcome the problem mentioned above in section

3.2. The algorithm assumes that the object is at the center of the images taken. Since images have

different aspect ratios, so when they are resized to a smaller size as 224 x 224 (1:1 aspect ratio) the

images become squashed and distorted. The algorithm is shown in figure 3.5.

Sr.

No.

Classes No. of Images

1 Apple 1110

2 Banana 630

3 Persimmon 160

4 Lemon 660

5 Peas 570

6 Tomato 670

12

Figure 3.3: Quality stages of fruits/vegetables

13

Figure 3.4: Aspect ratios of images in the dataset

Figure 3.5: Aspect ratio adjustment

The algorithm works by finding the size of the image. Then it follows to save the maximum and

minimum dimension may it be height or width. The longer dimension is reduced to be equal to the

smaller one by performing corresponding image slicing/cropping. This results in a good shift to 1:1

ratio for the images in this dataset since all the objects are at the center of the image. After

transforming to 1:1 resizing to a small dimension e.g., 100 x 100, 224x224 etc. does not cause

distortion in the image and thus makes it easier for the model to train. The advantage of using this

algorithm can clearly be observed in figure 3.6. After this adjustment, all images are resized to 224

x 224 and rescaled by 1/255 so that all pixel values are between 0 and 1.

14

Figure 3.6: Aspect ratios of images in the dataset

3.3 Recognition of Fruits/Vegetables:

In this module, different models have been trained for the classification of fruits and vegetables.

The research used the models which are popular for fruit image processing (Naranjo-Torres et al.,

2020). Following are the models along with the details that have been trained.

3.3.1 AlexNet:

AlexNet is a popular convolutional neural network that is 8 layers deep. It has five convolutional

layers, three pooling layers, one flattening layer, three fully connected layers. The pooling layers

are performing max pooling. Batch Normalization layers and dropout layers are also used to avoid

overfitting. All the activation functions used in convolution and fully connected layers are ReLU

except for the output layer that has softmax activation function. The model is trained for 15

epochs. The training is being monitored for minimum validation loss, if the loss does not improve

in an epoch the learning rate is reduced by a factor of 0.2. Still if the validation loss does not

decrease for 3 consecutive epochs the training stops and the best model is picked up and saved.

Figure 3.7 shows the model.

15

Figure 3.7: AlexNet

3.3.2 Fruits-360 Model

The research also has used Fruits-360 model (Moresan and Oltean, 2018) to see how it performs

on the data. The model is 6 layers deep and looks like a modification of the AlexNet model (figure

3.7). The training process is monitored for maximum validation accuracy and if the accuracy does

not improve for 5 consecutive epochs, training stops, and the model is saved. Figure 3.8 depicts the

model.

Figure 3.8: Fruits-360 Model

3.3.3 Own Model

An attempt has been made to make a simpler model and see its performance on the data. It is 5

layers deep and has more pooling and dropout layers. All activation functions are ReLU except for

16

the output layer. The training process is monitored for maximum validation accuracy and if the

accuracy does not improve for 5 consecutive epochs, training stops, and the model is saved. Figure

3.9 shows the model architecture.

Figure 3.9: Own Model

3.3.4 VGG-16

This model has been used as a pretrained version. The training has been done using transfer

learning. Since the dataset was not a very large one so transfer learning yielded better performance

with smaller datasets (Tan et al., 2018). As depicted in figure 3.10 a fully connected network is

designed and connected to the pretrained (trained on Image-Net dataset, (Deng et al., 2009)) vgg-

16 base. The trainable layers are set to false. So, the model trained really fast with a good accuracy

of 97.7%. The training was monitored for maximum validation accuracy for 5 epochs. If the

accuracy does not increase further the training stops.

Figure 3.10: VGG-16 through transfer learning

17

3.3.5 ResNet-50

ResNet-50 model was also used as a transfer learning model with trainable layers set to false. The

model’s convolutional layers were pretrained on the Image-Net database, (Deng et al., 2009). The

training was done on the fully connected layers with a good enough accuracy of 98.9%. The

training was monitored for maximum validation accuracy for 5 consecutive epochs, if the accuracy

does not improve the training stops. Figure 3.11 shows the model as a pre-trained base with a new

fully connected network. The training is being monitored for minimum validation loss, if the loss

does not improve in an epoch, the learning rate is reduced by a factor of 0.2. And if the loss does

not decrease for 3 consecutive epochs the training stops and the best model is saved.

Figure 3.11: ResNet-50 through transfer learning

3.4 Quality Assessment of Fruits/Vegetables:

After the fruits and vegetables are recognized, the next step is to evaluate the quality of the

recognized fruit/vegetable. Quality assessment, as emphasized earlier in section 1.4, is a significant

need. The quality assessment problem has three categories or 3 classes namely: Eatable, Partially

Rotten (when rottenness has started and is just in the initial stages), and Rotten. Though the

classes are 3 but the partially rotten stage is equally similar to the eatable stage and rotten stage.

But at the same time, it is important to identify this class because the fruit/vegetable quality has

been compromised, and hence is necessary to be identified. The model used is a VGG-16

pretrained model through transfer learning. The model is trained separately for all the

fruits/vegetables and saved separately for each of them. The training process is monitored for

maximum validation accuracy. Total no of epochs for training is 15 but if the accuracy does not

improve further for five consecutive epochs the training stops and the model is saved (Figure

3.12). The results for all the fruits and vegetables along with the accuracy curves, loss curves and

18

confusion matrices are shared in the next chapter. The model uses sparse categorical cross-entropy

as the loss function.

Figure 3.12: VGG-16 through transfer learning for quality assessment

Figure 3.13 shows the entire proposed methodology as a workflow diagram.

Figure 3.13: Workflow Diagram of Proposed Methodology

19

CHAPTER 4: RESULTS

All results obtained after training the models depicted in chapter 3 are displayed in the following

sections.

4.1 Results for Recognition of Fruits/Vegetables:

4.1.1 AlexNet

The model performed well on the training with a training accuracy of 96.3%. The validation

accuracy was a bit lesser (89.6%). Figure 4.1 shows the performance metrics along with the

confusion matrix. The training accuracy vs validation accuracy and training loss vs validation loss

curves are also shown in figure 4.1.

Figure 4.1: Results – Recognition using AlexNet

4.1.2 Fruits-360 Model:

The fruits-360 model (Moresan and Oltean, 2018) was used to train for recognition of fruits and

vegetables yielding surprisingly good results with 94.9% training accuracy and validation accuracy

of 92.01%. Figure 4.2 shows the results graphically as well.

20

Figure 4.2: Results – Recognition using Fruits-360 Model

4.1.3 Own Model:

This is the simplest model used for training with 5 layers and gives 88.4% accuracy which is fine

enough compared to the complexity of remaining models.

Figure 4.3: Results – Recognition using Own Model

4.1.4 VGG-16:

VGG-16 was used as a pretrained base using transfer learning. A fully connected network was then

21

attached to the pretrained base. The resulting model got training accuracy of 99.5% which is the

best training accuracy out of all the models used. Results are depicted in figure 4.4.

4.1.5 ResNet-50:

The ResNet-50 model was used using transfer learning. The trainable layers were set to false and

they were used as a pretrained base as shown in figure 3.11, with a new fully connected network.

Figure 4.4: Results – Recognition using VGG-16

The model achieved a very good accuracy of 98.9%. A summary of results is depicted in figure

4.5.

Figure 4.5: Results – Recognition using ResNet-50

22

4.1.6 Comparison of Recognition Models

Table 4.1 shows the comparison of all the models for recognition of fruits/vegetables. It can be

observed that VGG-16 and ResNet-50 both obtained almost equal accuracies but in terms of both

training and validation losses, VGG-16 performed better than ResNet-50.

Table 4.1: Comparison of Recognition Models

Model Image Size Training Validation

Accuracy Loss Accuracy Loss

Modified AlexNet 224 x 224 94.9 % 0.17 93.4 % 0.22

Fruits-360 Model 224 x 224 94.9 % 0.15 92.01 % 0.33

VGG16 224 x 224 99.5 % 0.02 97.7 % 0.06

ResNet50 150 x 150 99.1 % 0.11 98.9 % 0.61

AlexNet 224 x 224 96.3 % 0.26 89.6 % 0.39

4.2 Results for Quality Assessment of Fruits/Vegetables:

The results for all six fruits and vegetables are shown in detail in the following sections.

4.2.1 Quality Assessment of Banana:

As can be seen in figure 4.6 that VGG-16 trained well on the dataset for quality assessment of

Figure 4.6: Results – Quality Assessment of Banana

23

banana. The training accuracy was 99% and the validation accuracy came to be 90%.

Since the partially rotten class is an intermediate class between eatable and rotten so there is a little

confusion in partially rotten and rotten state as can be seen in the confusion matrix but overall, the

model performed very well.

4.2.2 Quality Assessment of Persimmon:

Quality assessment was done using the model shown in figure 3.12. Overall, the model performed

good with an accuracy of 92%. Rest of the results are displayed in figure 4.7.

Figure 4.7: Results – Quality Assessment of Persimmon

4.2.3 Quality Assessment of Apple:

Figure 4.8: Results – Quality Assessment of Apple

24

The results of training VGG-16 through transfer learning for quality assessment data for apple are

shown in the figure 4.8. The accuracy achieved is 85.1%.

4.2.4 Quality Assessment of Peas:

The VGG-16 model performed well on quality assessment data for peas. The accuracy achieved is

92.9% highest among other fruits and vegetables. The results can be observed in figure 4.9.

Figure 4.9: Results – Quality Assessment of Peas

4.2.5 Quality Assessment of Lemon

Figure 4.10 shows the results. The accuracy achieved was 82.4%.

Figure 4.10: Results – Quality Assessment of Lemon

25

The model did not perform as well as it performed on other fruits and vegetables with around 90%

accuracy.

4.2.6 Quality Assessment of Tomato

Figure 4.11: Results – Quality Assessment of Tomato

All the performance metrics of the model were good. The results are as shown in figure 4.11.

Table 4.2 gives the summary of performance of quality assessment model for all fruits and

vegetables.

Table 4.2: Summary of Quality Assessment

Sr. No. Fruit/Vegetable Accuracy Precision Recall F1-score

1 Banana 90.0% 0.9178 0.9000 0.9023

2 Persimmon 92.0% 0.9284 0.9200 0.9165

3 Apple 85.1% 0.8337 0.8416 0.8218

4 Peas 92.9% 0.9227 0.9224 0.9219

5 Lemon 82.4% 0.8176 0.8151 0.8099

6 Tomato 88.8% 0.8642 0.8598 0.8568

26

CHAPTER 5: DISCUSSION

This research has been successful in collecting a new dataset that is very different from the

datasets already presented in other studies. Using the dataset, the research has achieved recognition

of fruits/vegetables and finally has performed a successful quality assessment on fruits and

vegetables.

This field of research is relatively latest and there is not much work done on the quality assessment

of fruits/vegetables. The literature research reveals that though there has been a latest surge in the

research regarding food recognition and quality assessment but, as far as deep learning is

concerned, there is very little research available for quality assessment of fruits and vegetables.

Usually, images used for food recognition are acquired through thermal imaging (Bhole and

Kumar, 2020), hyper spectral imaging (Maria and Darwin, 2021), magnetic resonance imaging,

electrical tomography (Bhargava and Bansal, 2021), Raman Imaging, Laser backscattering

imaging (Pathmanaban et al., 2019) etc. After acquiring images through these techniques they are

then subject to preprocessing, and feature extraction. The process of food image processing has

been carried out using techniques of computer vision (Bhargava and Bansal, 2021), machine

learning algorithms like logistic regression, artificial neural networks (ANN), support vector

machine (SVM) as in (Bhargava et al., 2022) and (Antony and Saatheesh, 2021), K-nearest

neighbor (KNN), Decision Tree algorithm (Ren et al, 2019).

Images captured from such sources as mentioned in the previous paragraph render it difficult to

relate to daily life or use the model in any future platform to be used by humans in daily life. The

data set collected is collected through smartphone camera and thus captures the details that can be

captured by the smartphone camera that everyone has. In (Nasiri et al.,) an attempt has been made

to classify healthy and defective dates. And images are captured through smartphone camera, but

the work is limited to a type of date mostly found in middle east (Shahani). Throughout the dataset

the background of the images was kept constant unlike the dataset introduced and used in this

research. Furthermore, in (Chakraborty et al., 2021) they have used a dataset of three fruits from

Kaggle. From the dataset it can be clearly observed that it has been taken under strictly controlled

environment with respect to different features. All images are taken with almost same background

27

and extremely good constant illumination. So, there is no chance of background clutter. And in

both these researches, almost all images have constant aspect ratios.

Unlike the researches mentioned above the dataset used in this research have different aspect ratios

and backgrounds are not kept constant to provide the model with a chance to encounter objects

with different backgrounds because in real life all items cannot be found against the same

background. One more feature that sets this dataset apart from all the researches done before is that

images of fruits and vegetables are also collected in groups since all fruits and vegetables are

actually present in groups and so there may not be a single object of attention in one frame. This

point is kept in mind, since this research can be rendered into a more general platform with less

limiting conditions.

There have been various models used to train over this dataset and despite of the images being in

groups and varying backgrounds with background clutter, the models have performed remarkably

well for recognition with highest accuracy on validation set to be 98.9% and very good for quality

assessment with the highest of 92.9 % for peas. This is the first of its kind research that has

attempted to directly classify fruit/vegetables images in groups into three quality labels:

Eatable, Partially Rotten and Rotten.

28

CHAPTER 6: CONCLUSION

This research is based on the dataset consisting of fruits and vegetables. To the best of our

knowledge this is the only quality assessment research carried out using a Pakistani dataset. The

dataset has been collected from smartphone camera, as part of the research, in uncontrolled

environment with respect to illumination, image resolution, image aspect ratios, capturing angles

and background. Images contain fruit and vegetables individually as well as in groups. The dataset

is then used to perform image recognition using the following models: AlexNet, Own (Modified

AlexNet), Fruits-360 Model, VGG-16 and ResNet-50. The techniques of transfer learning have

been used to cater a small-scale dataset. The best accuracies have been obtained using transfer

learning on VGG-16 and ResNet-50 (97.7% and 98.9% respectively). After recognition, the next

step was to perform quality assessment on the recognized fruit/vegetable. The model used for this

is VGG-16 with the highest accuracy of 92.9% for peas.

29

CHAPTER 7: FUTURE WORK

The research work is based on the dataset collected for fruits and vegetables. This is a small-scale

dataset of six categories of fruits and vegetables. As a future work, this dataset needs to be

increased including more fruits and vegetables in accordance with Pakistani needs. Increasing the

dataset will make the research more inclusive. The number of images for each category can be

increased which will boost up the accuracies for quality assessment module.

Temperature and Humidity percentages have been recorded for data samples collected at each time

of the day, but they have not been incorporated into the current research. These recordings need to

be incorporated for further advancement in decision-making of the quality of fruits and vegetables

and their obvious dependence on these parameters. Furthermore, considering the temperature and

humidity percentages can make the performance better with respect to real life.

Moreover, an online platform can be developed which can both be used at the consumer and the

seller end for quality validation and assessment.

30

APPENDIX A

Python Code for AlexNet:

import numpy as np # linear algebra

import matplotlib.pyplot as plt # Data visulation

import glob # For including images

import cv2 # OpenCV

import tensorflow as tf # Machine learning lib

from tensorflow import keras #Tensorflow high-level api

import os

from PIL import Image

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten

from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping,

ReduceLROnPlateau

from tensorflow.keras.models import load_model

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

from tensorflow.keras.applications.vgg16 import VGG16

from tensorflow.keras.applications.vgg16 import preprocess_input

from tensorflow.keras import layers, models

from sklearn.metrics import precision_score, accuracy_score, recall_score,

f1_score

import seaborn as sns

from tensorflow.python.keras.utils.vis_utils import plot_model

num_classes = 6

img_rows, img_cols = 224, 224

batch_size = 32

epochs = 15

train_data= []

train_label = []

val_data= []

val_label = []

img_size=[]

new_dim=224

#Loading Data set---

for dir_path in glob.glob("./Train_data/*"):

 img_label = dir_path.split("\\")[-1]

 for img_path in glob.glob(os.path.join(dir_path, "*.jpg")):

 img = cv2.imread(img_path)

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 h=img.shape[0]

 w=img.shape[1]

 img_size=(h, w)

 min_dim=min(img_size)

 max_dim=max(img_size)

 temp=max_dim-min_dim

 temp1=int(temp/2)

 if (h<w):

 img_crop=img[0:h,temp1:temp1+min_dim,:]

31

 elif (w<h):

 img_crop=img[temp1:temp1+min_dim,0:w,:]

 elif (w==h):

 img_crop=img

 img = cv2.resize(img_crop, (new_dim, new_dim))

 train_data.append(img)

 train_label.append(img_label)

train_data = np.array(train_data)

train_data=train_data/255

train_label = np.array(train_label)

for dir_path in glob.glob("./Val_data/*"):

 img_label = dir_path.split("\\")[-1]

 for img_path in glob.glob(os.path.join(dir_path, "*.jpg")):

 img = cv2.imread(img_path)

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 h=img.shape[0]

 w=img.shape[1]

 img_size=(h, w)

 min_dim=min(img_size)

 max_dim=max(img_size)

 temp=max_dim-min_dim

 temp1=int(temp/2)

 if (h<w):

 img_crop=img[0:h,temp1:temp1+min_dim,:]

 elif (w<h):

 img_crop=img[temp1:temp1+min_dim,0:w]

 elif (w==h):

 img_crop=img

 img = cv2.resize(img_crop, (new_dim, new_dim))

 val_data.append(img)

 val_label.append(img_label)

val_data = np.array(val_data)

val_data=val_data/255

val_label = np.array(val_label)

l=len(np.unique(val_label))

#---

label_to_id = {v : k for k, v in enumerate(np.unique(train_label))}

id_to_label = {v : k for k, v in label_to_id.items()}

train_label_id = np.array([label_to_id[i] for i in train_label])

test_label_id = np.array([label_to_id[i] for i in val_label])

#--

#Model

#Instantiation

AlexNet = Sequential()

#1st Convolutional Layer

AlexNet.add(Conv2D(filters=96, input_shape=(img_rows,img_cols,3),

kernel_size=(11,11), strides=(4,4), padding='same'))

AlexNet.add(BatchNormalization())

32

AlexNet.add(Activation('relu'))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#2nd Convolutional Layer

AlexNet.add(Conv2D(filters=256, kernel_size=(5, 5), strides=(1,1),

padding='same'))

AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#3rd Convolutional Layer

AlexNet.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1),

padding='same'))

AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

#4th Convolutional Layer

AlexNet.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1),

padding='same'))

AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

#5th Convolutional Layer

AlexNet.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1),

padding='same'))

AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#Passing it to a Fully Connected layer

AlexNet.add(Flatten())

#1st Fully Connected Layer

AlexNet.add(Dense(4096))

AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

Add Dropout to prevent overfitting

AlexNet.add(Dropout(0.4))

#2nd Fully Connected Layer

AlexNet.add(Dense(4096))

AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

#Add Dropout

AlexNet.add(Dropout(0.4))

#3rd Fully Connected Layer

AlexNet.add(Dense(1000))

AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

#Add Dropout

AlexNet.add(Dropout(0.4))

#Output Layer

AlexNet.add(Dense(num_classes))

AlexNet.add(BatchNormalization())

AlexNet.add(Activation('softmax'))

33

#Model Summary

AlexNet.summary()

#---

checkpoint = ModelCheckpoint("AlexNet.h5",

 monitor="val_loss",

 mode="min",

 save_best_only = True,

 verbose=1)

earlystop = EarlyStopping(monitor = 'val_loss',

 min_delta = 0,

 patience = 3,

 verbose = 1,

 restore_best_weights = True)

reduce_lr = ReduceLROnPlateau(monitor = 'val_loss',

 factor = 0.2,

 patience = 3,

 verbose = 1,

 min_delta = 0.0001)

we put our call backs into a callback list

callbacks = [earlystop, checkpoint, reduce_lr]

#--

We use a very small learning rate

AlexNet.compile(loss = 'sparse_categorical_crossentropy',

 optimizer = 'adam',

 metrics = ['accuracy'])

#Saving Model and Recovering--

history=AlexNet.fit(train_data, train_label_id, batch_size = 32, epochs = 15,

callbacks = callbacks, validation_data=(val_data, test_label_id))

np.save('AlexNet_history.npy',history.history)

#--

model = load_model('AlexNet.h5')

#Visualizing model

plot_model(model, to_file='model_plot.png', show_shapes=True,

show_layer_names=True)

history=np.load('AlexNet_history.npy',allow_pickle=True).item()

#--

#PlotsAccuracy--

plt.plot(history['accuracy'])

plt.plot(history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'val'], loc='upper left')

plt.show()

#plotloss

plt.plot(history['loss'])

34

plt.plot(history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'val'], loc='upper left')

plt.show()

#--

#Conf_Matrix---

y_pred = model.predict(val_data)

y_pred = np.argmax(y_pred, axis=1)

conf_mat = confusion_matrix(test_label_id, y_pred)

sns.heatmap(conf_mat, square=True, annot=True, cmap='Blues', fmt='d',

cbar=False)

#---

accuracy: (tp + tn) / (p + n)---

acc = accuracy_score(test_label_id, y_pred)

print('Accuracy: %f' % acc)

precision tp / (tp + fp)--

precision = precision_score(test_label_id, y_pred,

 average='weighted')

print('Precision: %f' % precision)

recall: tp / (tp + fn)--

recall = recall_score(test_label_id, y_pred,

 average='weighted')

print('Recall: %f' % recall)

f1: 2 tp / (2 tp + fp + fn)---

f1 = f1_score(test_label_id, y_pred,

 average='weighted')

print('F1 score: %f' % f1)

#--

Python Code for Fruits-360 Model:

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import matplotlib.pyplot as plt # Data visulation

import glob # For including images

import cv2 # OpenCV

import tensorflow as tf # Machine learning lib

from tensorflow import keras # Tensorflow high-level api

import os

from PIL import Image

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten

from tensorflow.keras.layers import Conv2D, MaxPooling2D

from tensorflow.keras.optimizers import RMSprop, SGD

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping,

ReduceLROnPlateau

35

from tensorflow.keras.models import load_model

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

from tensorflow.keras.applications.vgg16 import VGG16

from tensorflow.keras.applications.vgg16 import preprocess_input

from tensorflow.keras import layers, models

from sklearn.metrics import confusion_matrix, precision_score, accuracy_score,

recall_score, f1_score

import seaborn as sns

from tensorflow.python.keras.utils.vis_utils import plot_model

#--

num_classes = 6

img_rows, img_cols = 224, 224

batch_size = 32

epochs = 15

train_data= []

train_label = []

val_data= []

val_label = []

img_size=[]

new_dim=224

#Loading Data set--

for dir_path in glob.glob("./Train_data/*"):

 img_label = dir_path.split("\\")[-1]

 for img_path in glob.glob(os.path.join(dir_path, "*.jpg")):

 img = cv2.imread(img_path)

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 h=img.shape[0]

 w=img.shape[1]

 img_size=(h, w)

 min_dim=min(img_size)

 max_dim=max(img_size)

 temp=max_dim-min_dim

 temp1=int(temp/2)

 if (h<w):

 img_crop=img[0:h,temp1:temp1+min_dim,:]

 elif (w<h):

 img_crop=img[temp1:temp1+min_dim,0:w,:]

 elif (w==h):

 img_crop=img

 img = cv2.resize(img_crop, (new_dim, new_dim))

 train_data.append(img)

 train_label.append(img_label)

train_data = np.array(train_data)

train_data=train_data/255

train_label = np.array(train_label)

for dir_path in glob.glob("./Val_data/*"):

 img_label = dir_path.split("\\")[-1]

 for img_path in glob.glob(os.path.join(dir_path, "*.jpg")):

 img = cv2.imread(img_path)

36

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 h=img.shape[0]

 w=img.shape[1]

 img_size=(h, w)

 min_dim=min(img_size)

 max_dim=max(img_size)

 temp=max_dim-min_dim

 temp1=int(temp/2)

 if (h<w):

 img_crop=img[0:h,temp1:temp1+min_dim,:]

 elif (w<h):

 img_crop=img[temp1:temp1+min_dim,0:w,:]

 elif (w==h):

 img_crop=img

 img = cv2.resize(img_crop, (new_dim, new_dim))

 val_data.append(img)

 val_label.append(img_label)

val_data = np.array(val_data)

val_data=val_data/255

val_label = np.array(val_label)

l=len(np.unique(val_label))

 #--

label_to_id = {v : k for k, v in enumerate(np.unique(train_label))}

id_to_label = {v : k for k, v in label_to_id.items()}

train_label_id = np.array([label_to_id[i] for i in train_label])

test_label_id = np.array([label_to_id[i] for i in val_label])

#Model--

model = Sequential()

Padding = 'same' results in padding the input such that

the output has the same length as the original input

model.add(Conv2D(16,(5,5),activation='relu',input_shape=(img_rows,img_cols,3)))

model.add(MaxPooling2D(pool_size=(2, 2), strides = 2))

model.add(Conv2D(32,(5,5),activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2), strides=2))

model.add(Conv2D(64,(5,5),activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2), strides = 2))

model.add(Conv2D(128,(5,5),activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2), strides=2))

model.add(Flatten())

model.add(Dense(256))

model.add(Activation('relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes))

model.add(Activation('softmax'))

37

##--

#initiate RMSprop optimizer and configure some parameters

opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)

print(model.summary())

model.compile(

 optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'],

)

es = EarlyStopping(monitor='val_accuracy', mode='max', patience=5,

restore_best_weights=True)

history=model.fit(train_data, train_label_id, batch_size = 32, epochs = 15,

callbacks = [es], validation_data=(val_data, test_label_id))

np.save('Fruit360_Model_history.npy',history.history)

model.save('Fruit360_Model.h5')

#--

history=np.load('Fruit360_Model_history.npy',allow_pickle=True).item()

#PlotsAccuracy---

plt.figure()

plt.plot(history['accuracy'])

plt.plot(history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'val'], loc='upper left')

plt.show()

#plotloss--

plt.plot(history['loss'])

plt.plot(history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'val'], loc='upper left')

plt.show()

#--

#Conf_Matrix--

model = load_model('Fruit360_Model.h5')

y_pred = model.predict(val_data)

y_pred = np.argmax(y_pred, axis=1)

conf_mat = confusion_matrix(test_label_id, y_pred)

sns.heatmap(conf_mat, square=True, annot=True, cmap='Blues', fmt='d',

cbar=False)

accuracy: (tp + tn) / (p + n)--

acc = accuracy_score(test_label_id, y_pred)

38

print('Accuracy: %f' % acc)

precision tp / (tp + fp)--

precision = precision_score(test_label_id, y_pred,

 average='weighted')

print('Precision: %f' % precision)

recall: tp / (tp + fn)---

recall = recall_score(test_label_id, y_pred,

 average='weighted')

print('Recall: %f' % recall)

f1: 2 tp / (2 tp + fp + fn)---

f1 = f1_score(test_label_id, y_pred,

 average='weighted')

print('F1 score: %f' % f1)

plot_model(model, to_file='model_plot.png', show_shapes=True,

show_layer_names=True)

Python Code for Own Model:

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import matplotlib.pyplot as plt # Data visulation

import glob # For including images

import cv2 # OpenCV

import tensorflow as tf # Machine learning lib

from tensorflow import keras # Tensorflow high-level api

import os

from PIL import Image

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten

from tensorflow.keras.layers import Conv2D, MaxPooling2D

from tensorflow.keras.optimizers import RMSprop, SGD

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping,

ReduceLROnPlateau

from tensorflow.keras.models import load_model

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

from tensorflow.keras.applications.vgg16 import VGG16

from tensorflow.keras.applications.vgg16 import preprocess_input

from tensorflow.keras import layers, models

from sklearn.metrics import confusion_matrix, precision_score, accuracy_score,

recall_score, f1_score

import seaborn as sns

from tensorflow.python.keras.utils.vis_utils import plot_model

#---

num_classes = 6

img_rows, img_cols = 224, 224

batch_size = 32

epochs = 15

train_data= []

39

train_label = []

val_data= []

val_label = []

img_size=[]

new_dim=224

#Loading Data set---

for dir_path in glob.glob("./Train_data/*"):

 img_label = dir_path.split("\\")[-1]

 for img_path in glob.glob(os.path.join(dir_path, "*.jpg")):

 img = cv2.imread(img_path)

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 h=img.shape[0]

 w=img.shape[1]

 img_size=(h, w)

 min_dim=min(img_size)

 max_dim=max(img_size)

 temp=max_dim-min_dim

 temp1=int(temp/2)

 if (h<w):

 img_crop=img[0:h,temp1:temp1+min_dim,:]

 elif (w<h):

 img_crop=img[temp1:temp1+min_dim,0:w,:]

 elif (w==h):

 img_crop=img

 img = cv2.resize(img_crop, (new_dim, new_dim))

 train_data.append(img)

 train_label.append(img_label)

train_data = np.array(train_data)

train_data=train_data/255

train_label = np.array(train_label)

for dir_path in glob.glob("./Val_data/*"):

 img_label = dir_path.split("\\")[-1]

 for img_path in glob.glob(os.path.join(dir_path, "*.jpg")):

 img = cv2.imread(img_path)

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 h=img.shape[0]

 w=img.shape[1]

 img_size=(h, w)

 min_dim=min(img_size)

 max_dim=max(img_size)

 temp=max_dim-min_dim

 temp1=int(temp/2)

 if (h<w):

 img_crop=img[0:h,temp1:temp1+min_dim,:]

 elif (w<h):

 img_crop=img[temp1:temp1+min_dim,0:w]

 elif (w==h):

 img_crop=img

40

 img = cv2.resize(img_crop, (new_dim, new_dim))

 val_data.append(img)

 val_label.append(img_label)

val_data = np.array(val_data)

val_data=val_data/255

val_label = np.array(val_label)

l=len(np.unique(val_label))

 #---

label_to_id = {v : k for k, v in enumerate(np.unique(train_label))}

id_to_label = {v : k for k, v in label_to_id.items()}

train_label_id = np.array([label_to_id[i] for i in train_label])

test_label_id = np.array([label_to_id[i] for i in val_label])

model = Sequential()

Padding = 'same' results in padding the input such that

the output has the same length as the original input

model.add(Conv2D(32, (3, 3), padding='same',

 input_shape= (img_rows, img_cols, 3)))

model.add(Activation('relu'))

model.add(Conv2D(32, (3, 3)))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), padding='same'))

model.add(Activation('relu'))

model.add(Conv2D(64, (3, 3)))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(512))

model.add(Activation('relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes))

model.add(Activation('softmax'))

#--

initiate RMSprop optimizer and configure some parameters

#opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)

print(model.summary())

model.compile(

 optimizer=RMSprop(lr = 0.001),

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'],

)

41

es = EarlyStopping(monitor='val_accuracy', mode='max', patience=5,

restore_best_weights=True)

history=model.fit(train_data, train_label_id, batch_size = 32, epochs = 15,

callbacks = [es], validation_data=(val_data, test_label_id))

np.save('Own_history.npy',history.history)

model.save('Own.h5')

#---

history=np.load('Own_history.npy',allow_pickle=True).item()

print(history['accuracy'])

model = load_model('Own.h5')

res=model.score()

#PlotsAccuracy--

plt.figure()

plt.plot(history['accuracy'])

plt.plot(history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'val'], loc='upper left')

plt.show()

#plotloss---

plt.plot(history['loss'])

plt.plot(history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'val'], loc='upper left')

plt.show()

#---

#Conf_Matrix---

model = load_model('Own.h5')

y_pred = model.predict(val_data)

y_pred = np.argmax(y_pred, axis=1)

conf_mat = confusion_matrix(test_label_id, y_pred)

sns.heatmap(conf_mat, square=True, annot=True, cmap='Blues', fmt='d',

cbar=False)

accuracy: (tp + tn) / (p + n)--

acc = accuracy_score(test_label_id, y_pred)

print('Accuracy: %f' % acc)

precision tp / (tp + fp)--

precision = precision_score(test_label_id, y_pred,

 average='weighted')

print('Precision: %f' % precision)

recall: tp / (tp + fn)--

recall = recall_score(test_label_id, y_pred,

 average='weighted')

42

print('Recall: %f' % recall)

f1: 2 tp / (2 tp + fp + fn)---

f1 = f1_score(test_label_id, y_pred,

 average='weighted')

print('F1 score: %f' % f1)

plot_model(model, to_file='model_plot.png', show_shapes=True,

show_layer_names=True)

Python Code for VGG-16 Model:

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import matplotlib.pyplot as plt # Data visulation

import glob # For including images

import cv2 # OpenCV

import tensorflow as tf # Machine learning lib

from tensorflow import keras # Tensorflow high-level api

import os

from PIL import Image

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten

from tensorflow.keras.layers import Conv2D, MaxPooling2D

from tensorflow.keras.optimizers import RMSprop, SGD

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping,

ReduceLROnPlateau

from tensorflow.keras.models import load_model

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

from tensorflow.keras.applications.vgg16 import VGG16

from tensorflow.keras.applications.vgg16 import preprocess_input

from tensorflow.keras import layers, models

from sklearn.metrics import confusion_matrix, precision_score, accuracy_score,

recall_score, f1_score

import seaborn as sns

from tensorflow.python.keras.utils.vis_utils import plot_model

#--

num_classes = 6

img_rows, img_cols = 224, 224

batch_size = 32

epochs = 15

train_data= []

train_label = []

val_data= []

val_label = []

img_size=[]

new_dim=224

#Loading Data set---

for dir_path in glob.glob("./Train_data/*"):

 img_label = dir_path.split("\\")[-1]

 for img_path in glob.glob(os.path.join(dir_path, "*.jpg")):

43

 img = cv2.imread(img_path)

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 h=img.shape[0]

 w=img.shape[1]

 img_size=(h, w)

 min_dim=min(img_size)

 max_dim=max(img_size)

 temp=max_dim-min_dim

 temp1=int(temp/2)

 if (h<w):

 img_crop=img[0:h,temp1:temp1+min_dim,:]

 elif (w<h):

 img_crop=img[temp1:temp1+min_dim,0:w,:]

 elif (w==h):

 img_crop=img

 img = cv2.resize(img_crop, (new_dim, new_dim))

 train_data.append(img)

 train_label.append(img_label)

train_data = np.array(train_data)

train_data=train_data/255

train_label = np.array(train_label)

for dir_path in glob.glob("./Val_data/*"):

 img_label = dir_path.split("\\")[-1]

 for img_path in glob.glob(os.path.join(dir_path, "*.jpg")):

 img = cv2.imread(img_path)

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 h=img.shape[0]

 w=img.shape[1]

 img_size=(h, w)

 min_dim=min(img_size)

 max_dim=max(img_size)

 temp=max_dim-min_dim

 temp1=int(temp/2)

 if (h<w):

 img_crop=img[0:h,temp1:temp1+min_dim,:]

 elif (w<h):

 img_crop=img[temp1:temp1+min_dim,0:w,:]

 elif (w==h):

 img_crop=img

 img = cv2.resize(img_crop, (new_dim, new_dim))

 val_data.append(img)

 val_label.append(img_label)

val_data = np.array(val_data)

val_data=val_data/255

val_label = np.array(val_label)

l=len(np.unique(val_label))

 #---

44

label_to_id = {v : k for k, v in enumerate(np.unique(train_label))}

id_to_label = {v : k for k, v in label_to_id.items()}

train_label_id = np.array([label_to_id[i] for i in train_label])

test_label_id = np.array([label_to_id[i] for i in val_label])

#--

Loading VGG16 model

base_model = VGG16(weights="imagenet", include_top=False,

input_shape=(img_rows, img_cols, 3))

base_model.trainable = False ## Not trainable weights

base_model.summary()

flatten_layer = layers.Flatten()

dense_layer_1 = layers.Dense(50, activation='relu')

dense_layer_2 = layers.Dense(20, activation='relu')

prediction_layer = layers.Dense(6, activation='softmax')

model = models.Sequential([

 base_model,

 flatten_layer,

 dense_layer_1,

 dense_layer_2,

 prediction_layer

])

model.compile(

 optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'],

)

es = EarlyStopping(monitor='val_accuracy', mode='max', patience=5,

restore_best_weights=True)

history=model.fit(train_data, train_label_id, batch_size = 32, epochs = 15,

callbacks = [es], validation_data=(val_data, test_label_id))

np.save('vgg_history.npy',history.history)

model.save('vgg.h5')

#--

history=np.load('vgg_history.npy',allow_pickle=True).item()

#PlotsAccuracy--

plt.figure()

plt.plot(history['accuracy'])

plt.plot(history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'val'], loc='upper left')

plt.show()

#plotloss---

plt.plot(history['loss'])

plt.plot(history['val_loss'])

45

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'val'], loc='upper left')

plt.show()

#---

#Conf_Matrix---

model = load_model('vgg.h5')

y_pred = model.predict(val_data)

y_pred = np.argmax(y_pred, axis=1)

conf_mat = confusion_matrix(test_label_id, y_pred)

sns.heatmap(conf_mat, square=True, annot=True, cmap='Blues', fmt='d',

cbar=False)

accuracy: (tp + tn) / (p + n)------------------------------------

acc = accuracy_score(test_label_id, y_pred)

print('Accuracy: %f' % acc)

precision tp / (tp + fp)---------------------------------------

precision = precision_score(test_label_id, y_pred,

 average='weighted')

print('Precision: %f' % precision)

recall: tp / (tp + fn)---

recall = recall_score(test_label_id, y_pred,

 average='weighted')

print('Recall: %f' % recall)

f1: 2 tp / (2 tp + fp + fn)--

f1 = f1_score(test_label_id, y_pred,

 average='weighted')

print('F1 score: %f' % f1)

plot_model(model, to_file='model_plot.png', show_shapes=True,

show_layer_names=True)

Python Code for ResNet-50 Model:

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import matplotlib.pyplot as plt # Data visulation

import glob # For including images

import cv2 # OpenCV

import tensorflow # Machine learning lib

from tensorflow import keras # Tensorflow high-level api

import os

from PIL import Image

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten

46

from tensorflow.keras.layers import Conv2D, MaxPooling2D

from tensorflow.keras.optimizers import RMSprop, SGD

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping,

ReduceLROnPlateau

from tensorflow.keras.models import load_model

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

from tensorflow.keras.applications.vgg16 import VGG16

from tensorflow.keras.applications.vgg16 import preprocess_input

from tensorflow.keras import layers, models

from sklearn.metrics import confusion_matrix, precision_score, accuracy_score,

recall_score, f1_score

import seaborn as sns

#--

num_classes = 6

img_rows, img_cols = 224, 224

batch_size = 32

epochs = 15

train_data= []

train_label = []

val_data= []

val_label = []

img_size=[]

new_dim=224

#Loading Data set--

for dir_path in glob.glob("./Train_data/*"):

 img_label = dir_path.split("\\")[-1]

 for img_path in glob.glob(os.path.join(dir_path, "*.jpg")):

 img = cv2.imread(img_path)

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 h=img.shape[0]

 w=img.shape[1]

 img_size=(h, w)

 min_dim=min(img_size)

 max_dim=max(img_size)

 temp=max_dim-min_dim

 temp1=int(temp/2)

 if (h<w):

 img_crop=img[0:h,temp1:temp1+min_dim,:]

 elif (w<h):

 img_crop=img[temp1:temp1+min_dim,0:w,:]

 elif (w==h):

 img_crop=img

 img = cv2.resize(img_crop, (new_dim, new_dim))

 train_data.append(img)

 train_label.append(img_label)

train_data = np.array(train_data)

train_data=train_data/255

train_label = np.array(train_label)

47

for dir_path in glob.glob("./Val_data/*"):

 img_label = dir_path.split("\\")[-1]

 for img_path in glob.glob(os.path.join(dir_path, "*.jpg")):

 img = cv2.imread(img_path)

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 h=img.shape[0]

 w=img.shape[1]

 img_size=(h, w)

 min_dim=min(img_size)

 max_dim=max(img_size)

 temp=max_dim-min_dim

 temp1=int(temp/2)

 if (h<w):

 img_crop=img[0:h,temp1:temp1+min_dim,:]

 elif (w<h):

 img_crop=img[temp1:temp1+min_dim,0:w]

 elif (w==h):

 img_crop=img

 img = cv2.resize(img_crop, (new_dim, new_dim))

 val_data.append(img)

 val_label.append(img_label)

val_data = np.array(val_data)

val_data=val_data/255

val_label = np.array(val_label)

l=len(np.unique(val_label))

 #---

train_data=tensorflow.keras.applications.resnet.preprocess_input(train_data)

val_data=tensorflow.keras.applications.resnet.preprocess_input(val_data)

label_to_id = {v : k for k, v in enumerate(np.unique(train_label))}

id_to_label = {v : k for k, v in label_to_id.items()}

train_label_id = np.array([label_to_id[i] for i in train_label])

test_label_id = np.array([label_to_id[i] for i in val_label])

#---

model = Sequential()

pretrained_model= tensorflow.keras.applications.ResNet50(include_top=False,

 input_shape=(img_rows,img_cols,3),

 pooling='avg',classes=6,

 weights='imagenet')

for layer in pretrained_model.layers[:-8]:

 layer.trainable = False

model.add(pretrained_model)

model.add(Flatten())

model.add(Dense(units = 256, activation = 'relu'))

model.add(Dropout(0.5))

model.add(Dense(6, activation = 'softmax'))

model.summary()

 # initiate RMSprop optimizer and configure some parameters

48

#opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)

print(model.summary())

from tensorflow.keras.optimizers import RMSprop

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping,

ReduceLROnPlateau

checkpoint = ModelCheckpoint("ResNet50.h5",

 monitor="val_loss",

 mode="min",

 save_best_only = True,

 verbose=1)

earlystop = EarlyStopping(monitor = 'val_loss',

 min_delta = 0,

 patience = 3,

 verbose = 1,

 restore_best_weights = True)

reduce_lr = ReduceLROnPlateau(monitor = 'val_loss',

 factor = 0.2,

 patience = 3,

 verbose = 1,

 min_delta = 0.0001)

we put our call backs into a callback list

callbacks = [earlystop, checkpoint, reduce_lr]

model.compile(

 optimizer=RMSprop(lr = 0.02),

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'],

)

history=model.fit(train_data, train_label_id, batch_size = 32, epochs = 15,

callbacks = callbacks, validation_data=(val_data, test_label_id))

np.save('ResNet50_history.npy',history.history)

#--

history=np.load('ResNet50_history.npy',allow_pickle=True).item()

#PlotsAccuracy--

plt.figure()

plt.plot(history['accuracy'])

plt.plot(history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'val'], loc='upper left')

plt.show()

#plotloss---

plt.plot(history['loss'])

plt.plot(history['val_loss'])

plt.title('model loss')

49

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'val'], loc='upper left')

plt.show()

#--

#Conf_Matrix---

model = load_model('ResNet50.h5')

y_pred = model.predict(val_data)

y_pred = np.argmax(y_pred, axis=1)

conf_mat = confusion_matrix(test_label_id, y_pred)

sns.heatmap(conf_mat, square=True, annot=True, cmap='Blues', fmt='d',

cbar=False)

accuracy: (tp + tn) / (p + n)-----------------------------------

acc = accuracy_score(test_label_id, y_pred)

print('Accuracy: %f' % acc)

precision tp / (tp + fp)--

precision = precision_score(test_label_id, y_pred,

 average='weighted')

print('Precision: %f' % precision)

recall: tp / (tp + fn)---

recall = recall_score(test_label_id, y_pred,

 average='weighted')

print('Recall: %f' % recall)

f1: 2 tp / (2 tp + fp + fn)----------------------------------

f1 = f1_score(test_label_id, y_pred,

 average='weighted')

print('F1 score: %f' % f1)

50

REFERENCES

Nasiri, A., Taheri-Garavand, A. & Zhang, Y. (2019). ‘Image-based deep learning

automated sorting of date fruit’, Postharvest Biology and Technology.

https://doi.org/10.1016/j.postharvbio.2019.04.003

Chakraborty, S., Shamrat, F.J.M.J., Billah, Md. M., Al Jubair, Md., Alaudin, Md. & Ranjan, R. (2021).

‘Implementation of Deep Learning Methods to Identify Rotten Fruits’, International Conference on

Trends in Electronics and Informatics (ICEI). 10.1109/ICOEI51242.2021.9453004

Muresan, H. & Oltean, M. (2021). ‘Fruit recognition from images using deep learning’. Acta Univ.

Sapientiae, Informatica Vol. 10, Issue 1, pp. 26-42. https://doi.org/10.48550/arXiv.1712.00580

Xue, Z., Liu, S., Ma, Y., (2020). ‘A hybrid deep learning-based fruit classification using attention

model and convolution autoencoder’. Complex & Intelligent Systems.

https://doi.org/10.1007/s40747-020-00192-x

Naranjo-Torres, J., Mora, M., Hernández-García, R., Barrientos, R. J., Fredes, C. & Valenzuela, A.

(2020). ‘A Review of Convolutional Neural Network Applied to Fruit Image Procesing’, Applied

Sciences. 10(10), 3443

Bhole, V. & Kumar, A. (2020). ‘Mango Quality Grading using Deep Learning Technique:

Perspectives from Agriculture and Food Industry’. SIGITE '20: Proceedings of the 21st Annual

Conference on Information Technology Education. https://doi.org/10.1145/3368308.3415370

Ren, A., Zahid, A., Zoha, A., Shah, S. A., Imran, M. A., Alomainy, A. & Abbasi, Q. H., (2019).

‘Machine Learning Driven Approach Towards the Quality Assessment of Fresh Fruits Using Non-

Invasive Sensing’. IEEE Sensors Journal. 2075 - 2083. 10.1109/JSEN.2019.2949528

Nayak, J., Vakula, K., Dinesh, P., Naik, B. and Pelusi, D. (2020). ‘Intelligent food processing:

Journey from artificial neural network to deep learning’. Computer Science Review.

https://doi.org/10.1016/j.cosrev.2020.100297

https://doi.org/10.1016/j.postharvbio.2019.04.003
https://doi.org/10.1109/ICOEI51242.2021.9453004
https://doi.org/10.48550/arXiv.1712.00580
https://doi.org/10.1145/3368308.3415370
https://doi.org/10.1109/JSEN.2019.2949528
https://doi.org/10.1016/j.cosrev.2020.100297

51

Maria, T. A. & Darwin, P. (2021). ‘Deep Learning Approach for Food Quality Inspection and

Improvement on Hyper Spectral Fruit Images’. Annals of the Romanian Society for Cell Biology.

15682–15696. https://www.annalsofrscb.ro/index.php/journal/article/view/5219

Zhang, X., Yang, J., Lin, T. and Ying, Y. (2021). ‘Food and agro-product quality evaluation based

on spectroscopy and deep learning: A review’. Trends in Food Science and Technology 431-441.

https://doi.org/10.1016/j.tifs.2021.04.008

Antony, M. A., & Kumar, R. S. (2021). A Comparative Study on Predicting Food Quality using

Machine Learning Techniques. 7th International Conference on Advanced Computing and

Communication Systems (ICACCS) (Vol. 1, pp. 1771-1776). IEEE.

10.1109/ICACCS51430.2021.9441743

Bhargava, A., Bansal, A., & Goyal, V. (2022). Machine learning–based detection and sorting of

multiple vegetables and fruits. Food Analytical Methods, 15(1), 228-242.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C. (2018). A Survey on Deep Transfer

Learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds)

Artificial Neural Networks and Machine Learning – ICANN 2018. Lecture Notes in Computer

Science (), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_27

J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-scale

hierarchical image database," 2009 IEEE Conference on Computer Vision and Pattern

Recognition, 2009, pp. 248-255, doi: 10.1109/CVPR.2009.5206848.

Karagiannakos, S., 2021. “Regularization techniques for training deep neural networks”. The AI

Summer. https://theaisummer.com/regularization/

Bhargava, A., & Bansal, A. (2021). Fruits and vegetables quality evaluation using computer

vision: A review. Journal of King Saud University-Computer and Information Sciences, 33(3),

243-257. https://doi.org/10.1016/j.jksuci.2018.06.002

https://www.annalsofrscb.ro/index.php/journal/article/view/5219
https://doi.org/10.1016/j.tifs.2021.04.008
https://doi.org/10.1109/ICACCS51430.2021.9441743
https://doi.org/10.1007/978-3-030-01424-7_27
https://theaisummer.com/regularization/
https://doi.org/10.1016/j.jksuci.2018.06.002

