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Abstract 

Objective. In this paper, a novel dataset has been collected in accordance with Pakistani 

needs and is used to develop an architecture for the quality assessment of fruits and vegetables. 

Approach. The dataset contains images captured under uncontrolled conditions with respect to 

illumination, temperature, humidity, image resolution, image aspect ratio, angle of capturing 

images and background. Images captured contain items individually as well as in groups. To the 

best of the knowledge gathered, this is the first of its kind dataset. This dataset is then 

preprocessed. Among usual preprocessing techniques, an aspect ratio adjustment algorithm has 

been introduced. After preprocessing, the data is used to train multiple models (AlexNet, VGG-16, 

ResNet-50, Fruits-360 Model and a proposed model with relatively lesser depth). This performs 

recognition of fruits and vegetables and endorse the validity of the dataset. Going further, the 

dataset is then prepared for quality assessment with three quality labels for each fruit/vegetable: 

Eatable, Partially Rotten and Rotten. Quality assessment is then performed using pre-trained VGG-

16 through transfer learning, adding a fully connected network and fine-tuning the model. Main 

Results. The highest recognition accuracy on the validation set is 98.9% and the highest validation 

accuracy for quality assessment is 92.9%. Significance. Outcomes of this research demonstrate that 

dataset collected under an uncontrolled environment can be used for recognition of 

fruits/vegetables with remarkable accuracies. Moreover, quality assessment of fruits/vegetables is 

performed accurately with the same dataset using deep learning and three quality labels. 

 

Key Words: Quality Assessment of Fruits/Vegetables, Preprocessing for Aspect Ratio Adjustment, 

VGG-16, Transfer Learning 
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CHAPTER 1: INTRODUCTION 

The following research work is focused on quality assessment of fruits and vegetables using deep 

learning models. Among other important foods, fruits and vegetables are an essential part of the 

human diet on daily basis. When it comes to consuming fruits and vegetables it is highly important 

to assess their quality. From being picked up from farms and orchards, packaging, transportation, 

and displaying in grocery stores to reaching its consumers, there are lots of factors that deteriorate 

the quality of fruits and vegetables. And it is highly important to ensure a good quality check at 

every stage of this cycle. This calls for a method that is both less tedious, less error-prone and less 

time-consuming than the conventional and subjective methods that include experience of observer, 

past knowledge, cultural practices, etc. and thus is more error-prone as well and dependent on so 

many factors like observer’s memory, some particular experience, and the decision may be biased 

as well. Moreover, all the chemical and microbiological methods of quality assessment of fruits 

and vegetables are destructive in nature and laborious. On the other hand, deep learning-based 

methods are eco-friendly and less laborious and offer a time-efficient process. Deep learning has 

been a core subject of machine learning and has helped in achieving many milestones of research 

in image classification problems. Deep learning offers state-of-the-art models to accomplish 

classification tasks with considerably good accuracy with the ease of automatically extracting 

features combined with a classifier. 

Convolutional Neural Networks (CNNs) are an integral class of deep learning that has been 

recently used in agriculture and food production. The main purpose has been to achieve some sort 

of image classification. In this research deep learning models have been used and a new dataset has 

been introduced for performing the following tasks: Fruits and vegetables recognition followed by 

the quality assessment of the corresponding fruit/vegetable.  

1.1 Food Quality Assessment and Deep Learning: 

The literature survey shows that little work has been done in this field. Sorting of healthy and 

defective dates has been done using deep learning models (Nasiri et al, 2019). The research has 

been done on the Shahani date fruit found mostly in Iran and is very much liked there. A VGG16 
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model has been fine-tuned and the data set collected contains images that had equal aspect ratios 

and background of all images was kept constant. The model got an overall accuracy of 96.9%. 

In another attempt, Fresh and rotten fruits have been classified using different deep learning 

models with pre-collected Kaggle dataset (Chakraborty et al., 2021). The images in the data set are 

taken in a highly conditioned environment. All images have constant white background, same 

illumination, same resolution, same aspect ratio and covering almost same angle of the fruit. There 

is little to no variation observed in the dataset as per the literature survey. 

1.2 Transfer Learning: 

Training models with a greater number of layers i.e., deeper networks offer more complexity and 

thus take more time to train. Many deeper networks such as VGG16, RESNET50, and AlexNet 

take longer when developed from scratch and trained. To overcome this, transfer learning can be 

used to perform the training without having to train the whole model. The concept of transfer 

learning belongs to machine learning area where a pretrained model is finetuned and used for a 

new task thus saving training time and achieving better accuracy in less time and epochs. The 

pretrained model is trained on a larger dataset and weights and biases are frozen and are used as 

starting point for the new task at hand. 

Moreover, in the domains like bioinformatics and robotics collecting a large-scale well-annotated 

dataset is very difficult due to the expense of data acquisition and costly annotation. In such cases, 

transfer learning can be used to obtain good accuracy for insufficient data. (Tan, C. et al., 2018). 

1.3 Previous Work: 

Agriculture has always been an important sector for research. Among other food products, there 

has been a recent development in research work regarding the recognition of different fruits using 

deep learning models. A new dataset namely Fruits-360 was used for this purpose (Moresan and 

Oltean, 2018). The fruits were mounted on a shaft of a low-speed motor and a video was captured 

followed by frame extraction. CNN was used for recognition. A hybrid model can also prove to be 

an effective framework for fruit recognition (Xue et al., 2020).  
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Table 1.1: Literature Review 

 

Reference Title of Paper Dataset Model Accuracy 

Moresan and 

Oltean, 2018 

Fruit recognition from images using 

deep learning 

Fruits-360 dataset 

(82213 images of 120 

fruits) 

CNN Train: 99.5 % 

Test: 95.2 % 

Ren et al., 

2019 

Machine Learning Driven Approach 

Towards the Quality Assessment of 

Fresh Fruits Using Non-Invasive 

Sensing 

Fresh Fruit slices of 

Apple and Mango for 

Moisture Content 

SVM, KNN, Decision 

Tree 

SVM: 90.9 % 

KNN: 82.9 % 

DT: 95.4 % 

Pathmanaban 

et al., 2019 

Recent Application of Imaging 

Techniques for Fruit Quality 

Assessment 

- Hyperspectral imaging, 

Raman imaging, MRI 

imaging and Laser 

backscattering imaging 

- 

Nasiri et al., 

2019 
Image Based Deep Learning 

Automated Sorting of Date Fruit 

1300 images of healthy 

and defective dates 

 

VGG16 

 

Train: 97.9 % 

Validation: 98.4 

% 

Xue et al., 

2020 

A hybrid deep learning-based fruit 

classification using attention model 

and convolution autoencoder 

Fruit 26 (Muresan et al.) Attention-based 

DenseNet 

95.8 % 

Naranjo-

Torres et al., 

2020 

A Review of Convolutional Neural 

Network Applied to Fruit Image 

Processing 

Six categories from 

fruits-360 dataset 

CNN Train: 100 % 

Test: 95.45 % 

Bhole and 

Kumar, 2020 

Mango Quality Grading using Deep 

Learning Technique: Perspectives 

from Agriculture and Food Industry 

RGB and Thermal 

Mango Dataset (1500 

Images) 

Fine-tuned SqueezeNet Validation:93.3 

% 

Nayak et al., 

2020  

Intelligent food processing: Journey 

from artificial neural network to deep 

learning 

- ANN and CNN Comparison 

Study 

Maria and 

Darwin, 2021 

Deep Learning Approach for Food 

Quality Inspection and Improvement 

on Hyper Spectral Fruit Images  

Hyperspectral images ANN, SVM Proposed: 60 % 

Chakraborty 

et al., 2021 

Implementation of Deep Learning 

Methods to Identify Rotten Fruits 

Fruits fresh and rotten 

for classification (13599 

images) Kaggle.com 

MobileNetV2 (53 

layers) 

Train: 94.5 % 

Test: 94.9 % 

 

Zhang et al., 

2021 

Food and agro-product quality 

evaluation based on spectroscopy and 

deep learning: A review 

- - - 

Antony and 

Satheesh, 

2021 

A Comparative Study on Predicting 

Food Quality using Machine Learning 

Techniques  

Collected dataset for 10 

categories 

SVM, ANN Mango: 87 % 

Guava:90 % 

Meat: 81.5 % 

Milk: 98.7 % 

Bhargava and 

Bansal, 2021 

Fruits and vegetables quality 

evaluation using computer vision: A 

review 

- - - 

Bhargava et 

al., 2022 

Machine Learning–Based Detection 

and Sorting of Multiple Vegetables 

and Fruits 

healthy and defective 

vegetables and fruits (a 

total of 25,988 datasets 

of images) 

Logistic Regression, 

SRC, ANN, SVM 

LR: 85.5 % 

SRC: 87.6 

SVM: 97.6 % 

ANN: 92.6 % 
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For the past few years, use of CNN for fruit recognition has greatly increased either by developing 

new models or using pre-trained models (transfer learning) (Naranjo-Torres et al., 2020). As a step 

forward, attempts are being made to achieve fruit quality grading using Hyperspectral imaging, 

Raman imaging, MRI imaging, laser backscattering imaging (Pathmanban, P. et al., 2019) and 

thermal imaging (Bhole and Kumar, 2020). Techniques used for food quality assessment range 

from K nearest neighbor (KNN), Decision Tree (Ren et al., 2019), Artificial Neural Network 

(ANN) (Antony and Satheesh, 2021), Support Vector Machines (Maria and Darwin, 2021) to 

CNNs. 

1.4 Problem Statement: 

Food quality assessment is one of the crucial steps to meet the consumers demand for high quality 

and safe food products. Now-a-days when online shopping is the preference of all buyers, 

shopping food items like fruits and vegetables online is still a doubtful task to perform. The food 

quality (freshness and rottenness) cannot be determined by simply looking at the provided 

pictures/videos. Moreover, even while making an offline purchase subjective methods are not 

suitable being time-consuming and more error-prone. 

1.5 Approach Used: 

In this research, a dataset has been collected for six categories of fruits and vegetables. The 

collected data set contains temperature and humidity recordings and is arranged as per the 

sequence of days starting from purchase of the item to its rotten stage. Next step is to arrange this 

data set in a folder hierarchy with proper categorical names of classes. This data preparation step is 

very much required for easy acquisition of images to perform training and validation. The next 

step is to perform the usual image pre-processing required to get optimum results. In addition to 

the usual pre-processing, an algorithm has been developed to perform aspect ratio adjustment to all 

images. After data preprocessing the next step is to develop models for recognition into six 

categories of the corresponding fruits and vegetables. Then the main task is to perform quality 

assessment on the recognized fruits/vegetables and model development for the task. The final 

result is the quality label of the corresponding item. Figure 1.1 shows the workflow of the research.      
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Figure 1.1: Workflow for this research 

1.6 Objectives: 

Following are the objectives of this research: 

• Collection of data samples of fruits and vegetables in accordance with Pakistan 

• Use of transfer learning on the collected data of fruits and vegetables 

• Development of architecture for quality assessment of fruits and vegetables 

1.7 Thesis Overview: 

The research work in this thesis is defined as: Chapter 2 contains the theory of all the methods 

used in the approaches used for the Recognition and quality assessment of fruits and vegetables. It 

includes all the theoretical concepts for understanding the proposed scheme. Chapter 3 consists of 

the approach that has been used to achieve our objectives. It also includes the details of models 

used, data collection, features of the dataset collected, and the algorithms used to achieve the 

desired results. Chapter 4 contains the results acquired. Chapter 5 includes a discussion of the 

approaches used. Chapter 6 contains the conclusion of the thesis and Chapter 7 explains the future 

work briefly. 
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CHAPTER 2: THEORY 

Some of the concepts necessary to understand this research are briefly explained in the following 

sections. 

2.1 Deep Learning 

Deep learning is a subfield of machine learning that uses structures and functions which are 

inspired by the human neural network. The word deep corresponds to the greater depth of deep 

neural networks. And greater depth corresponds to a greater number of layers in the network. 

When talking about neural networks deep learning algorithms would be deemed at the pedestal. 

Deep learning has greatly influenced the task that involves image processing. 

2.1.1 Deep Learning and Image processing 

Convolutional Neural Networks (CNNs) are the deep learning networks that have revolutionized 

the concept of image processing. CNNs have the advantage that the image shape is maintained 

while feeding it as input to the networks, unlike others. Also, one major advantage of CNNs is that 

they have automatic feature extraction that saves from the cumbersome process of extracting 

features including the decisions to extract what kind of features are important. These advantages 

have rendered these networks very useful and thus in the past few years, they have been widely 

used for a number of applications regarding image processing. Figure 2.1 shows a general 

architecture of a CNN. 

 

 

 

 

 

Figure 2.1: A general CNN architecture 
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The CNN consists of mainly the convolutional layers, it may or may not have pooling layers. In 

each convolutional layer there is an activation function that is applied to the result of convolution. 

In figure 2.1 this is labeled as the ReLU layer. 

The input has 3 dimensions: height, width, and depth. Where the height is kept equal to the width 

and the depth refers to as the number of channels. Like in RGB images the depth is 3. So, the input 

would be e.g., 224x224x3 (figure 3.7). 

Each bunch of feature maps (Convolutional Layer) is a hidden layer. These convolutional layers 

are the result of applying filters (kernels) to the input. After this, some activation function is 

applied to add some nonlinearity. Next is the pooling layer which corresponds to the operation of 

subsampling. Pooling can be max pooling, min pooling, or average pooling. 

At the end there is a fully connected layer. This fully connected layer corresponds to the usual 

fully connected network that consists of dense layers, an activation function which in most cases is 

softmax and some loss function which is now-a-days mostly cross entropy loss. Size before and 

after the convolution can be denoted by: 

 

Figure 2.2: Feature Map Size 

2.1.1.1 Hyperparameters: 

Hyperparameters are parameters whose values are set before the learning process begins and 

whose values cannot be deduced from the training data. Some hyperparameters are learning rate, 

number of filters in each convolutional layer, size of filters, the batch size for training, number of 

convolutional layers, choice of activation function, pooling size, number of dense layers, 

regularization, dropout, etc. 
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2.1.1.2 Cost Function 

The cost function is used to evaluate the performance of our model. It takes the predicted output 

and the actual output and calculates how far we are from the actual output. There are many choices 

for the cost functions, the one used in this research is sparse categorical cross-entropy loss. 

2.1.1.3 Optimizer 

While training the CNN, there is a need to update the weights at each epoch and minimize the cost 

function. Optimizer is a function that changes the attributes such as weights and learning rate so as 

to minimize the loss and maximize the accuracy. 

2.1.1.4 Regularization 

Regularization is a technique that is used to avoid the problem of overfitting while training a 

model. As a result of overfitting, the model fits very tightly to the training data with a high training 

accuracy but does not predict well on test data. There are several techniques used for regularization 

including L1 regularization, L2 regularization, dropout, data augmentation, early stopping, etc. 

Figure 2.3 shows how early stopping can be used to avoid overfitting. 

 

Figure 2.3: Early stopping for regularization 

2.1.1.5 Batch Normalization 

Batch normalization can be used as a regularization technique. It basically standardizes the inputs 

to a layer for each mini batch. This greatly impacts reducing the number of training epochs 

required. 
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CHAPTER 3:  PROPOSED METHODOLOGY 

3.1 Data Collection: 

3.1.1 Experimental Setup: 

The setup was established outdoors. All the items were placed on a surface in groups and 

individually. Keeping in mind the fact that fruits and vegetables are not always placed individually 

in real life. Images were taken from smartphone camera. Images were taken at 5 times of the day 

in the following order: 0900 hrs., 1200 hrs., 1500 hrs., 1800 hrs., and 2100 hrs. At each time of the 

day, 10 images were captured for each category of fruits and vegetables. 5 of which were taken 

individually and 5 were taken in groups of the same fruit/vegetable. Other images were also 

captured under categories of fruits combined, vegetables combined, common salient feature 

detection, and all of the fruits and vegetables combined. At daytime, natural illumination was used 

but at night, a little illumination was required to be able to avoid all dark images. The surface was 

changed with days to avoid a constant background for the images. The image resolution and aspect 

ratio settings were also changed to incorporate a diversity in images. There was no camera holding 

setup rather all images were taken from different angles. Figure 1.2 shows one of the settings made 

during data collection. 

 

 

 

 

Figure 3.1: Experimental setup for data collection 

3.1.2 Features of the Dataset: 

Following are the main features of the data set: 

• All pictures are RGB images taken from smartphone camera 
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• The dataset comprises of 5051 images 

• Images taken are from different times of the day from morning to night (9:00 am, 12:00 

pm, 3:00 pm, 6:00 pm and 9:00 pm) 

• Images are captured at different image resolutions 

• All images have different aspect ratios 

• Images are captured from different angles thus capturing almost all sides of the 

fruit/vegetable 

• Some images have one object (a fruit or a vegetable) while others have more than one 

objects belonging to the same class 

• Temperature readings have been recorded 

• Humidity percentage for the time of the day has been recorded 

• Each time reading has a corresponding quality label for each fruit/vegetable separately 

• Three quality labels have been set: Eatable (Fresh + Eatable), Partially Rotten and Rotten 

• Data set also contains images for common salient feature detection for future usage 

Figure 3.2 shows some sample images from the dataset. 

 

 

 

 

 

 

 

Figure 3.2: Sample images from dataset 

Table 3.1 shows the number of images for each class of fruits and vegetables.  
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Table 3.1: Number of images for each class for recognition 

 

 

 

 

To give an insight about how the fruits/vegetables looked in the three states of quality figure 3.3 

shows some images from each quality label of different categories. 

3.2 Data Preparation and Preprocessing: 

All the data has been arranged in a folder hierarchy and all the folder names are named as the 

quality labels in the case of quality assessment and for the case of recognition, the folders are 

named as the names of the fruits and vegetables. After data preparation and loading the dataset for 

training some preprocessing needs to be done depending upon the nature of the data. Preprocessing 

is a very crucial step in any image classification problem.  

The data was loaded using OpenCV-Python. Using the module of OpenCV the images imported 

are in the BGR (Blue Green Red) colorspace, so we need to change its colorspace to RGB (Red 

Green Blue) to avoid any confusion in the rest of our work. After solving this problem, the next 

one is aspect ratio adjustment. Looking at the features of the dataset as mentioned earlier in section 

3.1.2 and observing the sample images from the data in figure 3.2 and figure 3.6 it can clearly be 

deduced that the images required some aspect ratio adjustment before resizing them to a suitable 

size for training a model. Figure 3.4 shows the different aspect ratios in the dataset. 

3.2.1 Aspect Ratio Adjustment 

A novel algorithm has been presented here to overcome the problem mentioned above in section 

3.2. The algorithm assumes that the object is at the center of the images taken. Since images have 

different aspect ratios, so when they are resized to a smaller size as 224 x 224 (1:1 aspect ratio) the 

images become squashed and distorted. The algorithm is shown in figure 3.5.  

Sr. 

No. 

Classes No. of Images 

1 Apple 1110 

2 Banana 630 

3 Persimmon 160 

4 Lemon 660 

5 Peas 570 

6 Tomato 670 
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Figure 3.3: Quality stages of fruits/vegetables 



 

13 

 

 

Figure 3.4: Aspect ratios of images in the dataset 

 

 

Figure 3.5: Aspect ratio adjustment 

The algorithm works by finding the size of the image. Then it follows to save the maximum and 

minimum dimension may it be height or width. The longer dimension is reduced to be equal to the 

smaller one by performing corresponding image slicing/cropping. This results in a good shift to 1:1 

ratio for the images in this dataset since all the objects are at the center of the image. After 

transforming to 1:1 resizing to a small dimension e.g., 100 x 100, 224x224 etc. does not cause 

distortion in the image and thus makes it easier for the model to train. The advantage of using this 

algorithm can clearly be observed in figure 3.6. After this adjustment, all images are resized to 224 

x 224 and rescaled by 1/255 so that all pixel values are between 0 and 1. 
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Figure 3.6: Aspect ratios of images in the dataset 

3.3 Recognition of Fruits/Vegetables: 

In this module, different models have been trained for the classification of fruits and vegetables. 

The research used the models which are popular for fruit image processing (Naranjo-Torres et al., 

2020). Following are the models along with the details that have been trained. 

3.3.1 AlexNet: 

AlexNet is a popular convolutional neural network that is 8 layers deep. It has five convolutional 

layers, three pooling layers, one flattening layer, three fully connected layers. The pooling layers 

are performing max pooling. Batch Normalization layers and dropout layers are also used to avoid 

overfitting. All the activation functions used in convolution and fully connected layers are ReLU 

except for the output layer that has softmax activation function. The model is trained for 15 

epochs. The training is being monitored for minimum validation loss, if the loss does not improve 

in an epoch the learning rate is reduced by a factor of 0.2. Still if the validation loss does not 

decrease for 3 consecutive epochs the training stops and the best model is picked up and saved. 

Figure 3.7 shows the model. 

 

 



 

15 

 

 

 

Figure 3.7: AlexNet 

3.3.2 Fruits-360 Model 

The research also has used Fruits-360 model (Moresan and Oltean, 2018) to see how it performs 

on the data. The model is 6 layers deep and looks like a modification of the AlexNet model (figure 

3.7). The training process is monitored for maximum validation accuracy and if the accuracy does 

not improve for 5 consecutive epochs, training stops, and the model is saved. Figure 3.8 depicts the 

model. 

 

Figure 3.8: Fruits-360 Model 

3.3.3 Own Model 

An attempt has been made to make a simpler model and see its performance on the data. It is 5 

layers deep and has more pooling and dropout layers. All activation functions are ReLU except for 
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the output layer. The training process is monitored for maximum validation accuracy and if the 

accuracy does not improve for 5 consecutive epochs, training stops, and the model is saved. Figure 

3.9 shows the model architecture. 

 

Figure 3.9: Own Model 

3.3.4 VGG-16 

This model has been used as a pretrained version. The training has been done using transfer 

learning. Since the dataset was not a very large one so transfer learning yielded better performance 

with smaller datasets (Tan et al., 2018). As depicted in figure 3.10 a fully connected network is 

designed and connected to the pretrained (trained on Image-Net dataset, (Deng et al., 2009)) vgg-

16 base. The trainable layers are set to false. So, the model trained really fast with a good accuracy 

of 97.7%. The training was monitored for maximum validation accuracy for 5 epochs. If the 

accuracy does not increase further the training stops. 

 

 

Figure 3.10: VGG-16 through transfer learning 
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3.3.5 ResNet-50 

ResNet-50 model was also used as a transfer learning model with trainable layers set to false. The 

model’s convolutional layers were pretrained on the Image-Net database, (Deng et al., 2009). The 

training was done on the fully connected layers with a good enough accuracy of 98.9%. The 

training was monitored for maximum validation accuracy for 5 consecutive epochs, if the accuracy 

does not improve the training stops. Figure 3.11 shows the model as a pre-trained base with a new 

fully connected network. The training is being monitored for minimum validation loss, if the loss 

does not improve in an epoch, the learning rate is reduced by a factor of 0.2. And if the loss does 

not decrease for 3 consecutive epochs the training stops and the best model is saved. 

 

Figure 3.11: ResNet-50 through transfer learning 

3.4 Quality Assessment of Fruits/Vegetables: 

After the fruits and vegetables are recognized, the next step is to evaluate the quality of the 

recognized fruit/vegetable. Quality assessment, as emphasized earlier in section 1.4, is a significant 

need. The quality assessment problem has three categories or 3 classes namely: Eatable, Partially 

Rotten (when rottenness has started and is just in the initial stages), and Rotten. Though the 

classes are 3 but the partially rotten stage is equally similar to the eatable stage and rotten stage. 

But at the same time, it is important to identify this class because the fruit/vegetable quality has 

been compromised, and hence is necessary to be identified. The model used is a VGG-16 

pretrained model through transfer learning. The model is trained separately for all the 

fruits/vegetables and saved separately for each of them. The training process is monitored for 

maximum validation accuracy. Total no of epochs for training is 15 but if the accuracy does not 

improve further for five consecutive epochs the training stops and the model is saved (Figure 

3.12). The results for all the fruits and vegetables along with the accuracy curves, loss curves and 
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confusion matrices are shared in the next chapter. The model uses sparse categorical cross-entropy 

as the loss function. 

 

Figure 3.12: VGG-16 through transfer learning for quality assessment 

Figure 3.13 shows the entire proposed methodology as a workflow diagram. 

 

Figure 3.13: Workflow Diagram of Proposed Methodology 
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CHAPTER 4: RESULTS 

All results obtained after training the models depicted in chapter 3 are displayed in the following 

sections. 

4.1 Results for Recognition of Fruits/Vegetables: 

4.1.1 AlexNet 

The model performed well on the training with a training accuracy of 96.3%. The validation 

accuracy was a bit lesser (89.6%). Figure 4.1 shows the performance metrics along with the 

confusion matrix. The training accuracy vs validation accuracy and training loss vs validation loss 

curves are also shown in figure 4.1. 

 

Figure 4.1: Results – Recognition using AlexNet 

4.1.2 Fruits-360 Model: 

The fruits-360 model (Moresan and Oltean, 2018) was used to train for recognition of fruits and  

vegetables yielding surprisingly good results with 94.9% training accuracy and validation accuracy 

of 92.01%. Figure 4.2 shows the results graphically as well. 
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Figure 4.2: Results – Recognition using Fruits-360 Model 

4.1.3 Own Model: 

This is the simplest model used for training with 5 layers and gives 88.4% accuracy which is fine 

enough compared to the complexity of remaining models. 

 

Figure 4.3: Results – Recognition using Own Model 

4.1.4 VGG-16:  

VGG-16 was used as a pretrained base using transfer learning. A fully connected network was then 
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attached to the pretrained base. The resulting model got training accuracy of 99.5% which is the 

best training accuracy out of all the models used. Results are depicted in figure 4.4. 

4.1.5 ResNet-50: 

The ResNet-50 model was used using transfer learning. The trainable layers were set to false and 

they were used as a pretrained base as shown in figure 3.11, with a new fully connected network. 

 

Figure 4.4: Results – Recognition using VGG-16 

The model achieved a very good accuracy of 98.9%. A summary of results is depicted in figure 

4.5. 

 

 

 

 

 

 

Figure 4.5: Results – Recognition using ResNet-50 
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4.1.6 Comparison of Recognition Models 

Table 4.1 shows the comparison of all the models for recognition of fruits/vegetables. It can be 

observed that VGG-16 and ResNet-50 both obtained almost equal accuracies but in terms of both 

training and validation losses, VGG-16 performed better than ResNet-50. 

Table 4.1: Comparison of Recognition Models 

Model Image Size Training Validation 

Accuracy Loss Accuracy Loss 

Modified AlexNet 224 x 224 94.9 % 0.17 93.4 % 0.22 

Fruits-360 Model 224 x 224 94.9 % 0.15 92.01 % 0.33 

VGG16 224 x 224 99.5 % 0.02 97.7 % 0.06 

ResNet50 150 x 150 99.1 % 0.11 98.9 % 0.61 

AlexNet 224 x 224 96.3 % 0.26 89.6 % 0.39 

 

4.2 Results for Quality Assessment of Fruits/Vegetables: 

The results for all six fruits and vegetables are shown in detail in the following sections. 

4.2.1 Quality Assessment of Banana: 

As can be seen in figure 4.6 that VGG-16 trained well on the dataset for quality assessment of  

 

Figure 4.6: Results – Quality Assessment of Banana 
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banana. The training accuracy was 99% and the validation accuracy came to be 90%.  

Since the partially rotten class is an intermediate class between eatable and rotten so there is a little 

confusion in partially rotten and rotten state as can be seen in the confusion matrix but overall, the 

model performed very well. 

4.2.2 Quality Assessment of Persimmon: 

Quality assessment was done using the model shown in figure 3.12. Overall, the model performed 

good with an accuracy of 92%. Rest of the results are displayed in figure 4.7. 

 

Figure 4.7: Results – Quality Assessment of Persimmon 

4.2.3 Quality Assessment of Apple: 

  

Figure 4.8: Results – Quality Assessment of Apple 
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The results of training VGG-16 through transfer learning for quality assessment data for apple are 

shown in the figure 4.8. The accuracy achieved is 85.1%. 

4.2.4 Quality Assessment of Peas: 

The VGG-16 model performed well on quality assessment data for peas. The accuracy achieved is 

92.9% highest among other fruits and vegetables. The results can be observed in figure 4.9. 

 

Figure 4.9: Results – Quality Assessment of Peas 

4.2.5 Quality Assessment of Lemon 

Figure 4.10 shows the results. The accuracy achieved was 82.4%.  

 

 

 

 

 

 

Figure 4.10: Results – Quality Assessment of Lemon 
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The model did not perform as well as it performed on other fruits and vegetables with around 90% 

accuracy. 

4.2.6 Quality Assessment of Tomato 

 

Figure 4.11: Results – Quality Assessment of Tomato 

All the performance metrics of the model were good. The results are as shown in figure 4.11. 

Table 4.2 gives the summary of performance of quality assessment model for all fruits and 

vegetables. 

Table 4.2: Summary of Quality Assessment 

Sr. No. Fruit/Vegetable Accuracy Precision Recall F1-score 

1 Banana 90.0% 0.9178 0.9000 0.9023 

2 Persimmon 92.0% 0.9284 0.9200 0.9165 

3 Apple 85.1% 0.8337 0.8416 0.8218 

4 Peas 92.9% 0.9227 0.9224 0.9219 

5 Lemon 82.4% 0.8176 0.8151 0.8099 

6 Tomato 88.8% 0.8642 0.8598 0.8568 
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CHAPTER 5: DISCUSSION 

This research has been successful in collecting a new dataset that is very different from the 

datasets already presented in other studies. Using the dataset, the research has achieved recognition 

of fruits/vegetables and finally has performed a successful quality assessment on fruits and 

vegetables.  

This field of research is relatively latest and there is not much work done on the quality assessment 

of fruits/vegetables. The literature research reveals that though there has been a latest surge in the 

research regarding food recognition and quality assessment but, as far as deep learning is 

concerned, there is very little research available for quality assessment of fruits and vegetables. 

Usually, images used for food recognition are acquired through thermal imaging (Bhole and 

Kumar, 2020), hyper spectral imaging (Maria and Darwin, 2021), magnetic resonance imaging, 

electrical tomography (Bhargava and Bansal, 2021), Raman Imaging, Laser backscattering 

imaging (Pathmanaban et al., 2019) etc. After acquiring images through these techniques they are 

then subject to preprocessing, and feature extraction. The process of food image processing has 

been carried out using techniques of computer vision (Bhargava and Bansal, 2021), machine 

learning algorithms like logistic regression, artificial neural networks (ANN), support vector 

machine (SVM) as in (Bhargava et al., 2022) and (Antony and Saatheesh, 2021), K-nearest 

neighbor (KNN), Decision Tree algorithm (Ren et al, 2019). 

Images captured from such sources as mentioned in the previous paragraph render it difficult to 

relate to daily life or use the model in any future platform to be used by humans in daily life. The 

data set collected is collected through smartphone camera and thus captures the details that can be 

captured by the smartphone camera that everyone has. In (Nasiri et al.,) an attempt has been made 

to classify healthy and defective dates. And images are captured through smartphone camera, but 

the work is limited to a type of date mostly found in middle east (Shahani). Throughout the dataset 

the background of the images was kept constant unlike the dataset introduced and used in this 

research. Furthermore, in (Chakraborty et al., 2021) they have used a dataset of three fruits from 

Kaggle. From the dataset it can be clearly observed that it has been taken under strictly controlled 

environment with respect to different features. All images are taken with almost same background 
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and extremely good constant illumination. So, there is no chance of background clutter. And in 

both these researches, almost all images have constant aspect ratios.  

Unlike the researches mentioned above the dataset used in this research have different aspect ratios 

and backgrounds are not kept constant to provide the model with a chance to encounter objects 

with different backgrounds because in real life all items cannot be found against the same 

background. One more feature that sets this dataset apart from all the researches done before is that 

images of fruits and vegetables are also collected in groups since all fruits and vegetables are 

actually present in groups and so there may not be a single object of attention in one frame. This 

point is kept in mind, since this research can be rendered into a more general platform with less 

limiting conditions. 

There have been various models used to train over this dataset and despite of the images being in 

groups and varying backgrounds with background clutter, the models have performed remarkably 

well for recognition with highest accuracy on validation set to be 98.9% and very good for quality 

assessment with the highest of 92.9 % for peas. This is the first of its kind research that has 

attempted to directly classify fruit/vegetables images in groups into three quality labels: 

Eatable, Partially Rotten and Rotten. 
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CHAPTER 6: CONCLUSION 

This research is based on the dataset consisting of fruits and vegetables. To the best of our 

knowledge this is the only quality assessment research carried out using a Pakistani dataset. The 

dataset has been collected from smartphone camera, as part of the research, in uncontrolled 

environment with respect to illumination, image resolution, image aspect ratios, capturing angles 

and background. Images contain fruit and vegetables individually as well as in groups. The dataset 

is then used to perform image recognition using the following models: AlexNet, Own (Modified 

AlexNet), Fruits-360 Model, VGG-16 and ResNet-50. The techniques of transfer learning have 

been used to cater a small-scale dataset. The best accuracies have been obtained using transfer 

learning on VGG-16 and ResNet-50 (97.7% and 98.9% respectively). After recognition, the next 

step was to perform quality assessment on the recognized fruit/vegetable. The model used for this 

is VGG-16 with the highest accuracy of 92.9% for peas. 
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CHAPTER 7: FUTURE WORK 

The research work is based on the dataset collected for fruits and vegetables. This is a small-scale 

dataset of six categories of fruits and vegetables. As a future work, this dataset needs to be 

increased including more fruits and vegetables in accordance with Pakistani needs. Increasing the 

dataset will make the research more inclusive. The number of images for each category can be 

increased which will boost up the accuracies for quality assessment module. 

Temperature and Humidity percentages have been recorded for data samples collected at each time 

of the day, but they have not been incorporated into the current research. These recordings need to 

be incorporated for further advancement in decision-making of the quality of fruits and vegetables 

and their obvious dependence on these parameters. Furthermore, considering the temperature and 

humidity percentages can make the performance better with respect to real life. 

Moreover, an online platform can be developed which can both be used at the consumer and the 

seller end for quality validation and assessment. 
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APPENDIX A 

Python Code for AlexNet: 

import numpy as np # linear algebra 

import matplotlib.pyplot as plt # Data visulation 

import glob # For including images 

import cv2 # OpenCV  

import tensorflow as tf # Machine learning lib 

from tensorflow import keras #Tensorflow high-level api 

import os 

from PIL import Image 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten 

from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization 

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, 

ReduceLROnPlateau 

from tensorflow.keras.models import load_model 

from sklearn.metrics import confusion_matrix 

import matplotlib.pyplot as plt 

from tensorflow.keras.applications.vgg16 import VGG16 

from tensorflow.keras.applications.vgg16 import preprocess_input 

from tensorflow.keras import layers, models 

from sklearn.metrics import precision_score, accuracy_score, recall_score, 

f1_score 

import seaborn as sns 

from tensorflow.python.keras.utils.vis_utils import plot_model 

 

num_classes = 6 

img_rows, img_cols = 224, 224 

batch_size = 32 

epochs = 15 

train_data= [] 

train_label = [] 

val_data= [] 

val_label = [] 

img_size=[] 

new_dim=224 

 

#Loading Data set------------------------------------------------------------- 

for dir_path in glob.glob("./Train_data/*"): 

    img_label = dir_path.split("\\")[-1] 

    for img_path in glob.glob(os.path.join(dir_path, "*.jpg")): 

        img = cv2.imread(img_path) 

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

        h=img.shape[0] 

        w=img.shape[1] 

        img_size=(h, w) 

        min_dim=min(img_size) 

        max_dim=max(img_size) 

        temp=max_dim-min_dim 

        temp1=int(temp/2) 

         

        if (h<w): 

            img_crop=img[0:h,temp1:temp1+min_dim,:] 
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        elif (w<h): 

            img_crop=img[temp1:temp1+min_dim,0:w,:] 

        elif (w==h): 

            img_crop=img 

         

        img = cv2.resize(img_crop, (new_dim, new_dim)) 

        train_data.append(img) 

        train_label.append(img_label) 

train_data = np.array(train_data) 

train_data=train_data/255 

train_label = np.array(train_label) 

         

for dir_path in glob.glob("./Val_data/*"): 

    img_label = dir_path.split("\\")[-1] 

    for img_path in glob.glob(os.path.join(dir_path, "*.jpg")): 

        img = cv2.imread(img_path) 

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

        h=img.shape[0] 

        w=img.shape[1] 

        img_size=(h, w) 

        min_dim=min(img_size) 

        max_dim=max(img_size) 

        temp=max_dim-min_dim 

        temp1=int(temp/2) 

         

        if (h<w): 

            img_crop=img[0:h,temp1:temp1+min_dim,:] 

             

        elif (w<h): 

            img_crop=img[temp1:temp1+min_dim,0:w] 

        elif (w==h): 

            img_crop=img 

             

         

        img = cv2.resize(img_crop, (new_dim, new_dim)) 

        val_data.append(img) 

        val_label.append(img_label) 

val_data = np.array(val_data) 

val_data=val_data/255 

val_label = np.array(val_label) 

l=len(np.unique(val_label)) 

 

#----------------------------------------------------------------------------- 

label_to_id = {v : k for k, v in enumerate(np.unique(train_label))} 

id_to_label = {v : k for k, v in label_to_id.items()} 

train_label_id = np.array([label_to_id[i] for i in train_label]) 

test_label_id = np.array([label_to_id[i] for i in val_label]) 

 

#------------------------------------------------------------------------------ 

#Model 

#Instantiation 

AlexNet = Sequential() 

 

#1st Convolutional Layer 

AlexNet.add(Conv2D(filters=96, input_shape=(img_rows,img_cols,3), 

kernel_size=(11,11), strides=(4,4), padding='same')) 

AlexNet.add(BatchNormalization()) 
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AlexNet.add(Activation('relu')) 

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same')) 

 

#2nd Convolutional Layer 

AlexNet.add(Conv2D(filters=256, kernel_size=(5, 5), strides=(1,1), 

padding='same')) 

AlexNet.add(BatchNormalization()) 

AlexNet.add(Activation('relu')) 

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same')) 

 

#3rd Convolutional Layer 

AlexNet.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), 

padding='same')) 

AlexNet.add(BatchNormalization()) 

AlexNet.add(Activation('relu')) 

 

#4th Convolutional Layer 

AlexNet.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), 

padding='same')) 

AlexNet.add(BatchNormalization()) 

AlexNet.add(Activation('relu')) 

 

#5th Convolutional Layer 

AlexNet.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), 

padding='same')) 

AlexNet.add(BatchNormalization()) 

AlexNet.add(Activation('relu')) 

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same')) 

 

#Passing it to a Fully Connected layer 

AlexNet.add(Flatten()) 

#1st Fully Connected Layer 

AlexNet.add(Dense(4096)) 

AlexNet.add(BatchNormalization()) 

AlexNet.add(Activation('relu')) 

# Add Dropout to prevent overfitting 

AlexNet.add(Dropout(0.4)) 

 

#2nd Fully Connected Layer 

AlexNet.add(Dense(4096)) 

AlexNet.add(BatchNormalization()) 

AlexNet.add(Activation('relu')) 

#Add Dropout 

AlexNet.add(Dropout(0.4)) 

 

#3rd Fully Connected Layer 

AlexNet.add(Dense(1000)) 

AlexNet.add(BatchNormalization()) 

AlexNet.add(Activation('relu')) 

#Add Dropout 

AlexNet.add(Dropout(0.4)) 

 

#Output Layer 

AlexNet.add(Dense(num_classes)) 

AlexNet.add(BatchNormalization()) 

AlexNet.add(Activation('softmax')) 
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#Model Summary 

AlexNet.summary() 

 

#----------------------------------------------------------------------------- 

                    

checkpoint = ModelCheckpoint("AlexNet.h5", 

                              monitor="val_loss", 

                              mode="min", 

                              save_best_only = True, 

                              verbose=1) 

 

earlystop = EarlyStopping(monitor = 'val_loss',  

                          min_delta = 0,  

                          patience = 3, 

                          verbose = 1, 

                          restore_best_weights = True) 

 

reduce_lr = ReduceLROnPlateau(monitor = 'val_loss', 

                              factor = 0.2, 

                              patience = 3, 

                              verbose = 1, 

                              min_delta = 0.0001) 

 

# we put our call backs into a callback list 

callbacks = [earlystop, checkpoint, reduce_lr] 

#-------------------------------------------------------------------------- 

# We use a very small learning rate 

AlexNet.compile(loss = 'sparse_categorical_crossentropy', 

              optimizer = 'adam', 

              metrics = ['accuracy']) 

 

#Saving Model and Recovering-------------------------------------------- 

 

history=AlexNet.fit(train_data, train_label_id, batch_size = 32, epochs = 15, 

callbacks = callbacks, validation_data=(val_data, test_label_id)) 

 

np.save('AlexNet_history.npy',history.history) 

#---------------------------------------------------------------------- 

model = load_model('AlexNet.h5') 

 

#Visualizing model 

plot_model(model, to_file='model_plot.png', show_shapes=True, 

show_layer_names=True) 

history=np.load('AlexNet_history.npy',allow_pickle=True).item() 

#---------------------------------------------------------------------- 

 

#PlotsAccuracy------------------------------------------------------ 

plt.plot(history['accuracy']) 

plt.plot(history['val_accuracy']) 

plt.title('model accuracy') 

plt.ylabel('accuracy') 

plt.xlabel('epoch') 

plt.legend(['train', 'val'], loc='upper left') 

plt.show() 

 

#plotloss 

plt.plot(history['loss']) 
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plt.plot(history['val_loss']) 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['train', 'val'], loc='upper left') 

plt.show() 

#---------------------------------------------------------------------- 

#Conf_Matrix----------------------------------------------------------- 

y_pred = model.predict(val_data) 

y_pred = np.argmax(y_pred, axis=1) 

 

conf_mat = confusion_matrix(test_label_id, y_pred) 

sns.heatmap(conf_mat, square=True, annot=True, cmap='Blues', fmt='d', 

cbar=False) 

#--------------------------------------------------------------------- 

 

# accuracy: (tp + tn) / (p + n)------------------------------------------- 

acc = accuracy_score(test_label_id, y_pred) 

print('Accuracy: %f' % acc) 

 

# precision tp / (tp + fp)---------------------------------------- 

precision = precision_score(test_label_id, y_pred, 

                            average='weighted') 

print('Precision: %f' % precision) 

 

# recall: tp / (tp + fn)---------------------------------------------------- 

recall = recall_score(test_label_id, y_pred, 

                      average='weighted') 

print('Recall: %f' % recall) 

 

# f1: 2 tp / (2 tp + fp + fn)--------------------------------------------- 

f1 = f1_score(test_label_id, y_pred, 

              average='weighted') 

print('F1 score: %f' % f1) 

  

#-------------------------------------------------------------------- 

 

 

Python Code for Fruits-360 Model: 

import numpy as np # linear algebra 

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) 

import matplotlib.pyplot as plt # Data visulation 

import glob # For including images 

import cv2 # OpenCV  

import tensorflow as tf # Machine learning lib 

from tensorflow import keras # Tensorflow high-level api 

import os 

from PIL import Image 

from tensorflow import keras 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten 

from tensorflow.keras.layers import Conv2D, MaxPooling2D 

from tensorflow.keras.optimizers import RMSprop, SGD 

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, 

ReduceLROnPlateau 
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from tensorflow.keras.models import load_model 

from sklearn.metrics import confusion_matrix 

import matplotlib.pyplot as plt 

from tensorflow.keras.applications.vgg16 import VGG16 

from tensorflow.keras.applications.vgg16 import preprocess_input 

from tensorflow.keras import layers, models 

from sklearn.metrics import confusion_matrix, precision_score, accuracy_score, 

recall_score, f1_score 

import seaborn as sns 

from tensorflow.python.keras.utils.vis_utils import plot_model 

 

#-------------------------------------------------------------------------- 

num_classes = 6 

img_rows, img_cols = 224, 224 

batch_size = 32 

epochs = 15 

train_data= [] 

train_label = [] 

val_data= [] 

val_label = [] 

img_size=[] 

new_dim=224 

 

#Loading Data set-------------------------------------------------------- 

for dir_path in glob.glob("./Train_data/*"): 

    img_label = dir_path.split("\\")[-1] 

    for img_path in glob.glob(os.path.join(dir_path, "*.jpg")): 

        img = cv2.imread(img_path) 

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

        h=img.shape[0] 

        w=img.shape[1] 

        img_size=(h, w) 

        min_dim=min(img_size) 

        max_dim=max(img_size) 

        temp=max_dim-min_dim 

        temp1=int(temp/2) 

         

        if (h<w): 

            img_crop=img[0:h,temp1:temp1+min_dim,:] 

             

        elif (w<h): 

            img_crop=img[temp1:temp1+min_dim,0:w,:] 

        elif (w==h): 

            img_crop=img 

         

        img = cv2.resize(img_crop, (new_dim, new_dim)) 

        train_data.append(img) 

        train_label.append(img_label) 

train_data = np.array(train_data) 

train_data=train_data/255 

train_label = np.array(train_label) 

 

         

for dir_path in glob.glob("./Val_data/*"): 

    img_label = dir_path.split("\\")[-1] 

    for img_path in glob.glob(os.path.join(dir_path, "*.jpg")): 

        img = cv2.imread(img_path) 
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        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

        h=img.shape[0] 

        w=img.shape[1] 

        img_size=(h, w) 

        min_dim=min(img_size) 

        max_dim=max(img_size) 

        temp=max_dim-min_dim 

        temp1=int(temp/2) 

         

        if (h<w): 

            img_crop=img[0:h,temp1:temp1+min_dim,:] 

             

        elif (w<h): 

            img_crop=img[temp1:temp1+min_dim,0:w,:] 

        elif (w==h): 

            img_crop=img 

                

        img = cv2.resize(img_crop, (new_dim, new_dim)) 

        val_data.append(img) 

        val_label.append(img_label) 

val_data = np.array(val_data) 

val_data=val_data/255 

val_label = np.array(val_label) 

l=len(np.unique(val_label)) 

 

  #-------------------------------------------------------------------- 

 

label_to_id = {v : k for k, v in enumerate(np.unique(train_label))} 

id_to_label = {v : k for k, v in label_to_id.items()} 

train_label_id = np.array([label_to_id[i] for i in train_label]) 

test_label_id = np.array([label_to_id[i] for i in val_label]) 

 

 

#Model-------------------------------------------------------------- 

 

model = Sequential() 

 

# Padding = 'same'  results in padding the input such that 

# the output has the same length as the original input 

model.add(Conv2D(16,(5,5),activation='relu',input_shape=(img_rows,img_cols,3))) 

model.add(MaxPooling2D(pool_size=(2, 2), strides = 2)) 

model.add(Conv2D(32,(5,5),activation='relu')) 

model.add(MaxPooling2D(pool_size=(2, 2), strides=2)) 

 

 

model.add(Conv2D(64,(5,5),activation='relu')) 

model.add(MaxPooling2D(pool_size=(2, 2), strides = 2)) 

model.add(Conv2D(128,(5,5),activation='relu')) 

model.add(MaxPooling2D(pool_size=(2, 2), strides=2)) 

 

model.add(Flatten()) 

model.add(Dense(256)) 

model.add(Activation('relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(num_classes)) 

model.add(Activation('softmax')) 
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##---------------------------------------------------------------------- 

 

#initiate RMSprop optimizer and configure some parameters 

opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6) 

print(model.summary()) 

 

model.compile( 

    optimizer='adam', 

    loss='sparse_categorical_crossentropy', 

    metrics=['accuracy'], 

) 

 

es = EarlyStopping(monitor='val_accuracy', mode='max', patience=5,  

restore_best_weights=True) 

 

history=model.fit(train_data, train_label_id, batch_size = 32, epochs = 15, 

callbacks = [es], validation_data=(val_data, test_label_id)) 

np.save('Fruit360_Model_history.npy',history.history) 

model.save('Fruit360_Model.h5') 

 

#---------------------------------------------------------------------- 

  

history=np.load('Fruit360_Model_history.npy',allow_pickle=True).item() 

 

#PlotsAccuracy--------------------------------------------------------------- 

plt.figure() 

plt.plot(history['accuracy']) 

plt.plot(history['val_accuracy']) 

plt.title('model accuracy') 

plt.ylabel('accuracy') 

plt.xlabel('epoch') 

plt.legend(['train', 'val'], loc='upper left') 

plt.show() 

 

#plotloss-------------------------------------------------------------------- 

plt.plot(history['loss']) 

plt.plot(history['val_loss']) 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['train', 'val'], loc='upper left') 

plt.show() 

 

#---------------------------------------------------------------------------- 

# #Conf_Matrix-------------------------------------------------------------- 

 

model = load_model('Fruit360_Model.h5') 

y_pred = model.predict(val_data) 

y_pred = np.argmax(y_pred, axis=1) 

 

conf_mat = confusion_matrix(test_label_id, y_pred) 

sns.heatmap(conf_mat, square=True, annot=True, cmap='Blues', fmt='d', 

cbar=False) 

 

 

# accuracy: (tp + tn) / (p + n)---------------------------------------------- 

acc = accuracy_score(test_label_id, y_pred) 
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print('Accuracy: %f' % acc) 

 

# precision tp / (tp + fp)-------------------------------------------------- 

precision = precision_score(test_label_id, y_pred, 

                            average='weighted') 

print('Precision: %f' % precision) 

 

# recall: tp / (tp + fn)------------------------------------------------- 

recall = recall_score(test_label_id, y_pred, 

                      average='weighted') 

print('Recall: %f' % recall) 

 

# f1: 2 tp / (2 tp + fp + fn)----------------------------------------------- 

f1 = f1_score(test_label_id, y_pred, 

              average='weighted') 

print('F1 score: %f' % f1) 

  

plot_model(model, to_file='model_plot.png', show_shapes=True, 

show_layer_names=True) 

 

Python Code for Own Model: 

import numpy as np # linear algebra 

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) 

import matplotlib.pyplot as plt # Data visulation 

import glob # For including images 

import cv2 # OpenCV  

import tensorflow as tf # Machine learning lib 

from tensorflow import keras # Tensorflow high-level api 

import os 

from PIL import Image 

from tensorflow import keras 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten 

from tensorflow.keras.layers import Conv2D, MaxPooling2D 

from tensorflow.keras.optimizers import RMSprop, SGD 

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, 

ReduceLROnPlateau 

from tensorflow.keras.models import load_model 

from sklearn.metrics import confusion_matrix 

import matplotlib.pyplot as plt 

from tensorflow.keras.applications.vgg16 import VGG16 

from tensorflow.keras.applications.vgg16 import preprocess_input 

from tensorflow.keras import layers, models 

from sklearn.metrics import confusion_matrix, precision_score, accuracy_score, 

recall_score, f1_score 

import seaborn as sns 

from tensorflow.python.keras.utils.vis_utils import plot_model 

 

#------------------------------------------------------------------- 

num_classes = 6 

img_rows, img_cols = 224, 224 

batch_size = 32 

epochs = 15 

train_data= [] 
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train_label = [] 

val_data= [] 

val_label = [] 

img_size=[] 

new_dim=224 

 

# #Loading Data set------------------------------------------------- 

 

for dir_path in glob.glob("./Train_data/*"): 

    img_label = dir_path.split("\\")[-1] 

    for img_path in glob.glob(os.path.join(dir_path, "*.jpg")): 

        img = cv2.imread(img_path) 

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

        h=img.shape[0] 

        w=img.shape[1] 

        img_size=(h, w) 

        min_dim=min(img_size) 

        max_dim=max(img_size) 

        temp=max_dim-min_dim 

        temp1=int(temp/2) 

         

        if (h<w): 

            img_crop=img[0:h,temp1:temp1+min_dim,:] 

             

        elif (w<h): 

            img_crop=img[temp1:temp1+min_dim,0:w,:] 

        elif (w==h): 

            img_crop=img 

         

        img = cv2.resize(img_crop, (new_dim, new_dim)) 

        train_data.append(img) 

        train_label.append(img_label) 

train_data = np.array(train_data) 

train_data=train_data/255 

train_label = np.array(train_label) 

 

         

for dir_path in glob.glob("./Val_data/*"): 

    img_label = dir_path.split("\\")[-1] 

    for img_path in glob.glob(os.path.join(dir_path, "*.jpg")): 

        img = cv2.imread(img_path) 

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

        h=img.shape[0] 

        w=img.shape[1] 

        img_size=(h, w) 

        min_dim=min(img_size) 

        max_dim=max(img_size) 

        temp=max_dim-min_dim 

        temp1=int(temp/2) 

         

        if (h<w): 

            img_crop=img[0:h,temp1:temp1+min_dim,:] 

             

        elif (w<h): 

            img_crop=img[temp1:temp1+min_dim,0:w] 

        elif (w==h): 

            img_crop=img 
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        img = cv2.resize(img_crop, (new_dim, new_dim)) 

        val_data.append(img) 

        val_label.append(img_label) 

val_data = np.array(val_data) 

val_data=val_data/255 

val_label = np.array(val_label) 

l=len(np.unique(val_label)) 

 

  #----------------------------------------------------------------- 

 

label_to_id = {v : k for k, v in enumerate(np.unique(train_label))} 

id_to_label = {v : k for k, v in label_to_id.items()} 

train_label_id = np.array([label_to_id[i] for i in train_label]) 

test_label_id = np.array([label_to_id[i] for i in val_label]) 

 

 

model = Sequential() 

 

# Padding = 'same'  results in padding the input such that 

# the output has the same length as the original input 

model.add(Conv2D(32, (3, 3), padding='same', 

                  input_shape= (img_rows, img_cols, 3))) 

model.add(Activation('relu')) 

model.add(Conv2D(32, (3, 3))) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Dropout(0.25)) 

 

model.add(Conv2D(64, (3, 3), padding='same')) 

model.add(Activation('relu')) 

model.add(Conv2D(64, (3, 3))) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Dropout(0.25)) 

 

model.add(Flatten()) 

model.add(Dense(512)) 

model.add(Activation('relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(num_classes)) 

model.add(Activation('softmax')) 

 

#-------------------------------------------------------------------- 

 

# initiate RMSprop optimizer and configure some parameters 

#opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6) 

print(model.summary()) 

 

model.compile( 

    optimizer=RMSprop(lr = 0.001), 

    loss='sparse_categorical_crossentropy', 

    metrics=['accuracy'], 

) 
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es = EarlyStopping(monitor='val_accuracy', mode='max', patience=5,  

restore_best_weights=True) 

 

history=model.fit(train_data, train_label_id, batch_size = 32, epochs = 15, 

callbacks = [es], validation_data=(val_data, test_label_id)) 

np.save('Own_history.npy',history.history) 

model.save('Own.h5') 

 

#------------------------------------------------------------------------- 

history=np.load('Own_history.npy',allow_pickle=True).item() 

print(history['accuracy']) 

model = load_model('Own.h5') 

res=model.score() 

#PlotsAccuracy------------------------------------------------------ 

plt.figure() 

plt.plot(history['accuracy']) 

plt.plot(history['val_accuracy']) 

plt.title('model accuracy') 

plt.ylabel('accuracy') 

plt.xlabel('epoch') 

plt.legend(['train', 'val'], loc='upper left') 

plt.show() 

 

#plotloss----------------------------------------------------------------- 

plt.plot(history['loss']) 

plt.plot(history['val_loss']) 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['train', 'val'], loc='upper left') 

plt.show() 

 

#------------------------------------------------------------------------- 

 

#Conf_Matrix--------------------------------------------------------- 

 

model = load_model('Own.h5') 

y_pred = model.predict(val_data) 

y_pred = np.argmax(y_pred, axis=1) 

 

conf_mat = confusion_matrix(test_label_id, y_pred) 

sns.heatmap(conf_mat, square=True, annot=True, cmap='Blues', fmt='d', 

cbar=False) 

 

 

# accuracy: (tp + tn) / (p + n)---------------------------------------- 

acc = accuracy_score(test_label_id, y_pred) 

print('Accuracy: %f' % acc) 

 

# precision tp / (tp + fp)-------------------------------------------- 

precision = precision_score(test_label_id, y_pred, 

                            average='weighted') 

print('Precision: %f' % precision) 

 

# recall: tp / (tp + fn)---------------------------------------------- 

recall = recall_score(test_label_id, y_pred, 

                      average='weighted') 
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print('Recall: %f' % recall) 

 

# f1: 2 tp / (2 tp + fp + fn)--------------------------------------------- 

f1 = f1_score(test_label_id, y_pred, 

              average='weighted') 

print('F1 score: %f' % f1) 

  

plot_model(model, to_file='model_plot.png', show_shapes=True, 

show_layer_names=True) 

 

Python Code for VGG-16 Model: 

import numpy as np # linear algebra 

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) 

import matplotlib.pyplot as plt # Data visulation 

import glob # For including images 

import cv2 # OpenCV  

import tensorflow as tf # Machine learning lib 

from tensorflow import keras # Tensorflow high-level api 

import os 

from PIL import Image 

from tensorflow import keras 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten 

from tensorflow.keras.layers import Conv2D, MaxPooling2D 

from tensorflow.keras.optimizers import RMSprop, SGD 

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, 

ReduceLROnPlateau 

from tensorflow.keras.models import load_model 

from sklearn.metrics import confusion_matrix 

import matplotlib.pyplot as plt 

from tensorflow.keras.applications.vgg16 import VGG16 

from tensorflow.keras.applications.vgg16 import preprocess_input 

from tensorflow.keras import layers, models 

from sklearn.metrics import confusion_matrix, precision_score, accuracy_score, 

recall_score, f1_score 

import seaborn as sns 

from tensorflow.python.keras.utils.vis_utils import plot_model 

 

#---------------------------------------------------------------------- 

num_classes = 6 

img_rows, img_cols = 224, 224 

batch_size = 32 

epochs = 15 

train_data= [] 

train_label = [] 

val_data= [] 

val_label = [] 

img_size=[] 

new_dim=224 

 

#Loading Data set------------------------------------------------------- 

 

for dir_path in glob.glob("./Train_data/*"): 

    img_label = dir_path.split("\\")[-1] 

    for img_path in glob.glob(os.path.join(dir_path, "*.jpg")): 
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        img = cv2.imread(img_path) 

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

        h=img.shape[0] 

        w=img.shape[1] 

        img_size=(h, w) 

        min_dim=min(img_size) 

        max_dim=max(img_size) 

        temp=max_dim-min_dim 

        temp1=int(temp/2) 

         

        if (h<w): 

            img_crop=img[0:h,temp1:temp1+min_dim,:] 

             

        elif (w<h): 

            img_crop=img[temp1:temp1+min_dim,0:w,:] 

        elif (w==h): 

            img_crop=img 

         

        img = cv2.resize(img_crop, (new_dim, new_dim)) 

        train_data.append(img) 

        train_label.append(img_label) 

train_data = np.array(train_data) 

train_data=train_data/255 

train_label = np.array(train_label) 

 

         

for dir_path in glob.glob("./Val_data/*"): 

    img_label = dir_path.split("\\")[-1] 

    for img_path in glob.glob(os.path.join(dir_path, "*.jpg")): 

        img = cv2.imread(img_path) 

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

        h=img.shape[0] 

        w=img.shape[1] 

        img_size=(h, w) 

        min_dim=min(img_size) 

        max_dim=max(img_size) 

        temp=max_dim-min_dim 

        temp1=int(temp/2) 

         

        if (h<w): 

            img_crop=img[0:h,temp1:temp1+min_dim,:] 

             

        elif (w<h): 

            img_crop=img[temp1:temp1+min_dim,0:w,:] 

        elif (w==h): 

            img_crop=img 

             

         

        img = cv2.resize(img_crop, (new_dim, new_dim)) 

        val_data.append(img) 

        val_label.append(img_label) 

val_data = np.array(val_data) 

val_data=val_data/255 

val_label = np.array(val_label) 

l=len(np.unique(val_label)) 

 

  #--------------------------------------------------------------- 
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label_to_id = {v : k for k, v in enumerate(np.unique(train_label))} 

id_to_label = {v : k for k, v in label_to_id.items()} 

train_label_id = np.array([label_to_id[i] for i in train_label]) 

test_label_id = np.array([label_to_id[i] for i in val_label]) 

 

#---------------------------------------------------------------- 

## Loading VGG16 model 

base_model = VGG16(weights="imagenet", include_top=False, 

input_shape=(img_rows, img_cols, 3)) 

base_model.trainable = False ## Not trainable weights 

base_model.summary() 

flatten_layer = layers.Flatten() 

dense_layer_1 = layers.Dense(50, activation='relu') 

dense_layer_2 = layers.Dense(20, activation='relu') 

prediction_layer = layers.Dense(6, activation='softmax') 

 

model = models.Sequential([ 

    base_model, 

    flatten_layer, 

    dense_layer_1, 

    dense_layer_2, 

    prediction_layer 

]) 

 

model.compile( 

    optimizer='adam', 

    loss='sparse_categorical_crossentropy', 

    metrics=['accuracy'], 

) 

 

 

es = EarlyStopping(monitor='val_accuracy', mode='max', patience=5,  

restore_best_weights=True) 

 

history=model.fit(train_data, train_label_id, batch_size = 32, epochs = 15, 

callbacks = [es], validation_data=(val_data, test_label_id)) 

np.save('vgg_history.npy',history.history) 

model.save('vgg.h5') 

 

#---------------------------------------------------------------- 

  

history=np.load('vgg_history.npy',allow_pickle=True).item() 

 

#PlotsAccuracy---------------------------------------------------- 

plt.figure() 

plt.plot(history['accuracy']) 

plt.plot(history['val_accuracy']) 

plt.title('model accuracy') 

plt.ylabel('accuracy') 

plt.xlabel('epoch') 

plt.legend(['train', 'val'], loc='upper left') 

plt.show() 

 

#plotloss----------------------------------------------------------- 

plt.plot(history['loss']) 

plt.plot(history['val_loss']) 
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plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['train', 'val'], loc='upper left') 

plt.show() 

 

#------------------------------------------------------------------- 

 

#Conf_Matrix------------------------------------------------------- 

 

model = load_model('vgg.h5') 

y_pred = model.predict(val_data) 

y_pred = np.argmax(y_pred, axis=1) 

 

conf_mat = confusion_matrix(test_label_id, y_pred) 

sns.heatmap(conf_mat, square=True, annot=True, cmap='Blues', fmt='d', 

cbar=False) 

 

 

# accuracy: (tp + tn) / (p + n)------------------------------------ 

acc = accuracy_score(test_label_id, y_pred) 

print('Accuracy: %f' % acc) 

 

# precision tp / (tp + fp)--------------------------------------- 

precision = precision_score(test_label_id, y_pred, 

                            average='weighted') 

print('Precision: %f' % precision) 

 

# recall: tp / (tp + fn)------------------------------------------- 

recall = recall_score(test_label_id, y_pred, 

                      average='weighted') 

print('Recall: %f' % recall) 

 

# f1: 2 tp / (2 tp + fp + fn)---------------------------------------- 

f1 = f1_score(test_label_id, y_pred, 

              average='weighted') 

print('F1 score: %f' % f1) 

  

plot_model(model, to_file='model_plot.png', show_shapes=True, 

show_layer_names=True) 

 

Python Code for ResNet-50 Model: 

import numpy as np # linear algebra 

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) 

import matplotlib.pyplot as plt # Data visulation 

import glob # For including images 

import cv2 # OpenCV  

import tensorflow # Machine learning lib 

from tensorflow import keras # Tensorflow high-level api 

import os 

from PIL import Image 

from tensorflow import keras 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten 
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from tensorflow.keras.layers import Conv2D, MaxPooling2D 

from tensorflow.keras.optimizers import RMSprop, SGD 

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, 

ReduceLROnPlateau 

from tensorflow.keras.models import load_model 

from sklearn.metrics import confusion_matrix 

import matplotlib.pyplot as plt 

from tensorflow.keras.applications.vgg16 import VGG16 

from tensorflow.keras.applications.vgg16 import preprocess_input 

from tensorflow.keras import layers, models 

from sklearn.metrics import confusion_matrix, precision_score, accuracy_score, 

recall_score, f1_score 

import seaborn as sns 

 

#------------------------------------------------------------------ 

num_classes = 6 

img_rows, img_cols = 224, 224 

batch_size = 32 

epochs = 15 

train_data= [] 

train_label = [] 

val_data= [] 

val_label = [] 

img_size=[] 

new_dim=224 

 

#Loading Data set---------------------------------------------------- 

 

for dir_path in glob.glob("./Train_data/*"): 

    img_label = dir_path.split("\\")[-1] 

    for img_path in glob.glob(os.path.join(dir_path, "*.jpg")): 

        img = cv2.imread(img_path) 

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

        h=img.shape[0] 

        w=img.shape[1] 

        img_size=(h, w) 

        min_dim=min(img_size) 

        max_dim=max(img_size) 

        temp=max_dim-min_dim 

        temp1=int(temp/2) 

         

        if (h<w): 

            img_crop=img[0:h,temp1:temp1+min_dim,:] 

             

        elif (w<h): 

            img_crop=img[temp1:temp1+min_dim,0:w,:] 

        elif (w==h): 

            img_crop=img 

         

        img = cv2.resize(img_crop, (new_dim, new_dim)) 

        train_data.append(img) 

        train_label.append(img_label) 

train_data = np.array(train_data) 

train_data=train_data/255 

train_label = np.array(train_label) 
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for dir_path in glob.glob("./Val_data/*"): 

    img_label = dir_path.split("\\")[-1] 

    for img_path in glob.glob(os.path.join(dir_path, "*.jpg")): 

        img = cv2.imread(img_path) 

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

        h=img.shape[0] 

        w=img.shape[1] 

        img_size=(h, w) 

        min_dim=min(img_size) 

        max_dim=max(img_size) 

        temp=max_dim-min_dim 

        temp1=int(temp/2) 

         

        if (h<w): 

            img_crop=img[0:h,temp1:temp1+min_dim,:] 

             

        elif (w<h): 

            img_crop=img[temp1:temp1+min_dim,0:w] 

        elif (w==h): 

            img_crop=img 

             

         

        img = cv2.resize(img_crop, (new_dim, new_dim)) 

        val_data.append(img) 

        val_label.append(img_label) 

val_data = np.array(val_data) 

val_data=val_data/255 

val_label = np.array(val_label) 

l=len(np.unique(val_label)) 

 

 #------------------------------------------------------------------- 

train_data=tensorflow.keras.applications.resnet.preprocess_input(train_data) 

val_data=tensorflow.keras.applications.resnet.preprocess_input(val_data) 

label_to_id = {v : k for k, v in enumerate(np.unique(train_label))} 

id_to_label = {v : k for k, v in label_to_id.items()} 

train_label_id = np.array([label_to_id[i] for i in train_label]) 

test_label_id = np.array([label_to_id[i] for i in val_label]) 

 

#------------------------------------------------------------------- 

model = Sequential() 

 

pretrained_model= tensorflow.keras.applications.ResNet50(include_top=False, 

                    input_shape=(img_rows,img_cols,3), 

                    pooling='avg',classes=6, 

                    weights='imagenet') 

for layer in pretrained_model.layers[:-8]: 

    layer.trainable = False 

         

model.add(pretrained_model) 

 

 

model.add(Flatten()) 

model.add(Dense(units = 256, activation = 'relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(6, activation = 'softmax')) 

model.summary() 

  # initiate RMSprop optimizer and configure some parameters 
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#opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6) 

print(model.summary()) 

 

from tensorflow.keras.optimizers import RMSprop 

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, 

ReduceLROnPlateau 

 

                      

checkpoint = ModelCheckpoint("ResNet50.h5", 

                              monitor="val_loss", 

                              mode="min", 

                              save_best_only = True, 

                              verbose=1) 

 

earlystop = EarlyStopping(monitor = 'val_loss',  

                          min_delta = 0,  

                          patience = 3, 

                          verbose = 1, 

                          restore_best_weights = True) 

 

reduce_lr = ReduceLROnPlateau(monitor = 'val_loss', 

                              factor = 0.2, 

                              patience = 3, 

                              verbose = 1, 

                              min_delta = 0.0001) 

 

# we put our call backs into a callback list 

callbacks = [earlystop, checkpoint, reduce_lr] 

model.compile( 

    optimizer=RMSprop(lr = 0.02), 

    loss='sparse_categorical_crossentropy', 

    metrics=['accuracy'], 

) 

 

 

history=model.fit(train_data, train_label_id, batch_size = 32, epochs = 15, 

callbacks = callbacks, validation_data=(val_data, test_label_id)) 

np.save('ResNet50_history.npy',history.history) 

 

#-------------------------------------------------------------------- 

  

history=np.load('ResNet50_history.npy',allow_pickle=True).item() 

 

#PlotsAccuracy------------------------------------------------------ 

plt.figure() 

plt.plot(history['accuracy']) 

plt.plot(history['val_accuracy']) 

plt.title('model accuracy') 

plt.ylabel('accuracy') 

plt.xlabel('epoch') 

plt.legend(['train', 'val'], loc='upper left') 

plt.show() 

 

#plotloss----------------------------------------------------------- 

plt.plot(history['loss']) 

plt.plot(history['val_loss']) 

plt.title('model loss') 
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plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['train', 'val'], loc='upper left') 

plt.show() 

 

#---------------------------------------------------------------- 

 

#Conf_Matrix----------------------------------------------------- 

 

model = load_model('ResNet50.h5') 

y_pred = model.predict(val_data) 

y_pred = np.argmax(y_pred, axis=1) 

 

conf_mat = confusion_matrix(test_label_id, y_pred) 

sns.heatmap(conf_mat, square=True, annot=True, cmap='Blues', fmt='d', 

cbar=False) 

 

 

# accuracy: (tp + tn) / (p + n)----------------------------------- 

acc = accuracy_score(test_label_id, y_pred) 

print('Accuracy: %f' % acc) 

 

# precision tp / (tp + fp)---------------------------------------- 

precision = precision_score(test_label_id, y_pred, 

                            average='weighted') 

print('Precision: %f' % precision) 

 

# recall: tp / (tp + fn)----------------------------------------- 

recall = recall_score(test_label_id, y_pred, 

                      average='weighted') 

print('Recall: %f' % recall) 

 

# f1: 2 tp / (2 tp + fp + fn)---------------------------------- 

f1 = f1_score(test_label_id, y_pred, 

              average='weighted') 

print('F1 score: %f' % f1) 
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