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Abstract 

Ageing and accidents all around the world are two of the main causes of disabilities. Even 

though it is quite expensive, rehabilitation is crucial for enhancing the mobility and quality of life 

of individuals with disabilities. For rehabilitation purposes, a variety of techniques are employed, 

including medication, homoeopathic remedies, and rehabilitative gadgets. Few hands 

rehabilitation gadgets are said to be a successful form of therapy, according to the literature. Due 

to developments, especially in the fields of robotics and artificial materials, the use of such 

devices without the assistance of medical professionals is expanding significantly. For hand 

disability, we have proposed the low-cost mechanical rehabilitation equipment 

EXOMECHHAND in this study, along with three distinct kinds of resistive plates. The therapist 

determines the type of resistive plate via Manual Muscle Testing. 

 

Key Words: rehabilitation, low-cost device, hand motion assistance, surface electromyograph, 

machine learning algorithm



vii 
 

Table of Contents 

 
Declaration ....................................................................................................................................................................i 

Plagiarism Certificate (Turnitin Report).................................................................................................................. ii 

Copyright Statement ................................................................................................................................................. iii 

Acknowledgements .....................................................................................................................................................iv 

Abstract .......................................................................................................................................................................vi 

Table of Contents ...................................................................................................................................................... vii 

List of Figures .......................................................................................................................................................... viii 

List of Tables ...............................................................................................................................................................ix 

1. CHAPTER 1: INTRODUCTION ....................................................................................................................... 1 

1.1. Background, Scope and Motivation ............................................................................................................. 1 

1.2. Feature and Algorithm Selection for sEMG signals ..................................................................................... 2 

2. CHAPTER 2: Design and Analysis of Prototype ExoMechHand ................................................................... 4 

2.1. Design and Material Selection for Prototype “ExoMechHand” ................................................................... 4 

2.2. Geometric features ....................................................................................................................................... 5 

2.3. Criterion of subjects/ Muscles involved ....................................................................................................... 5 

2.4. Kinematical aspect ....................................................................................................................................... 6 

3. CHAPTER 3: EXPERIMENTATION .............................................................................................................. 7 

3.1. Setting and Pre-Processing for sEMG Features ........................................................................................... 7 

3.2. Obtaining sEMG signal for training Machine Learning Algorithm ............................................................. 7 

3.3. Machine Learning Algorithm model for changing resistive plates ............................................................ 11 

3.4. Experimental process for the efficacy of device ........................................................................................ 11 

4. CHAPTER 4: RESULTS AND DISCUSSION ............................................................................................... 13 

4.1. Results ........................................................................................................................................................ 13 

4.2. Discussion .................................................................................................................................................. 15 

5. CHAPTER 5: CONCLUSION ......................................................................................................................... 17 

Ethics Statement ........................................................................................................................................................ 18 

Author Contributions ................................................................................................................................................ 18 

Data Availability Statement ...................................................................................................................................... 18 

Acknowledgments ...................................................................................................................................................... 18 

REFERENCES .......................................................................................................................................................... 20 

 

 

 

 

 



viii 
 

List of Figures 

  
Figure 1 Frame Support Designs                                   Figure 2 Resistive Plates 4 
Figure 3 Soft fabric glove                                              Figure 4 Equipment used for experiment 5 
Figure 5 Kinematic scheme of finger 6 
Figure 6 Flow of sEMG for Training Machine Learning Algorithm 7 
Figure 7 sEMG Recording of Unhealthy Subjects 9 
Figure 8 sEMG Recording Positions 11 
Figure 9 Process Flow After Training of Machine Learning Algorithm 11 
Figure 10 Cross validation Mean Accuracy of Machine Learning Algorithms 13 



ix 
 

List of Tables 

 
Table 1 Mathematical Formulas of EMG signals Features .......................................................................................... 09 

Table 2 Confusion Matrix of Extra Trees   .................................................................................................................. 14 

Table 3 Formulas of Terminologies used in Confusion Matrix of Extra Trees ........................................................... 14 

Table 4 Machine Learning Algorithms Cross-validation mean accuracy and error .................................................... 15 

 

 

 

 



 
 

1. CHAPTER 1: INTRODUCTION 

The research work in this dissertation has been presented in two parts. First part is related 

to the detailed review about design of our prototype mechanical rehabilitative device 

“EXOMECHHAND” and its analysis. The objective of this part is to study selection of materials 

and study available literature to design hand rehabilitative device. The second part includes 

training and testing of machine learning algorithms and its experimentation to evaluate its 

efficacy on patients of ulnar and median nerve neuropathies. 

1.1. Background, Scope and Motivation 

Most often, disabilities develop in older persons or as a result of global tragedies. 

Following a disability, people frequently lead secluded lives[1] and frequently experience 

physiological effects as a result of such problems. There aren't many institutions for 

rehabilitation, particularly in third-world nations where they largely serve those with higher 

socioeconomic level and offer insufficient and restricted services to people with disabilities[2]. 

Higher socioeconomic status people have access to a wide range of resources, including drugs 

and homoeopathic remedies, but lower socioeconomic status people have very few options and 

are frequently unable to attend therapy appointments for daily exercises over a longer period of 

time due to financial limitations. This strong correlation between socioeconomic level and 

patient rehabilitation implies either more funding for high-tech gadgets or accessibility to low-

cost devices to enhance people's quality of life, particularly in developing nations. Therefore, in 

the recent past, self-therapy devices and home-based technologies, notably robot mediated, have 

been utilised to try to partially solve such challenges in order to lower the cost potentialities of 

therapists for the rehabilitation of patients [3]. 

About 16 percent of Americans are disabled from independent living and self-care, and 

upper limb impairments account for almost all of this [4]. The hand is the area of the upper limb 

that is most affected by disability, especially in cases of neuropathy [5] or myopathy damage. It 

is difficult for therapists to improve hand function in order to regain motor function [6, 7]. The 

ability to do activities of daily living (ADLs) is increased by hand recovery [8]. Independence 

and lowering the social burden of impairment are directly impacted by ADL performance [9]. 



 
 

Performing ADLs can help maintain the ability to participate actively in society in some way 

while reducing the strain on coworkers, family members, or other assistance providers. 

According to studies, one of the causes of hand impairment is weakening in the finger 

flexor and extensor muscles. The literature demonstrates that many rehabilitation designs have 

shown to be intensive and effective therapies [10], and clinical trials of a few devices support the 

notion that they may aid in the restoration of upper limb mobility [12, 13]. Both active and 

passive hand rehabilitation activities strengthen the flexor and extensor muscles of the fingers. 

Repetitive active or passive training programmes based on tasks involving the flexion and 

extension of the affected fingers [14] can be used to restore the function of grasping and object 

manipulation in a hand with impairments. Analyzing hand improvement in a damaged hand 

involves a variety of techniques. An established technique for tracking and evaluating muscle 

activity is the use of sEMG signals. One of the most cutting-edge methods now employed in 

hand orthoses is sEMG. The force of a muscle flexor or extensor can also be calculated and 

measured using sEMG[15]. 

1.2. Feature and Algorithm Selection for sEMG signals 

  

 The most crucial and defining steps for determining how to judge the state of the hand are 

the type of characteristics extracted and the choice of machine learning algorithm. Finding 

pertinent features is largely a random procedure because various features are pertinent to various 

diseases and deformities. The time domain, frequency domain, or mixed time-frequency domain 

make up the characteristics of sEMG. It's still difficult to choose characteristics from the time 

domain, frequency domain, and time-frequency domain [16–18]. With regard to sEMG signals, 

frequency domain features are less important than time domain features. However, numerous 

research [19–21] have demonstrated that when it comes to speed and accuracy for sEMG signal 

detection, time domain offers superior outcomes over frequency domain. Periodically, in-depth 

research into time domain aspects has been conducted. Four criteria that Huglins et al. [18] 

suggested in several works—zero crossing (ZC), mean absolute value (MAV), waveform length, 

and slope sign change—are now frequently regarded as being necessary for any EMG-based 

recognition analysis. For pattern identification, cardinality is also a promising property [22]. 

Root mean square (RMS)-based classification of individuals into healthy, unhealthy, neuropathy, 

and myopathy groups by Elamvazuthi et al. [23] set shown accuracy between 77.5-83.5 percent. 



 
 

Additionally often utilised to determine muscle state are mean amplitude power [24] and the 

signal's power as determined by Parseval's theorem. Skewness and kurtosis were employed by 

Sapsanis et al. [25] as features to identify hand movements. The remaining features, such as 

minimum, maximum, median, standard deviation, and signal to noise ratio, are quite prevalent. 

Position of the hand and the location of the electrode channel are two more aspects. 

 Python is used for categorization after feature selection. Classification techniques of 10 

different sorts are employed for this because it is supervised learning. The training of features to 

express the type of resistive plate to be used involves the use of classification techniques such as 

K-nearest neighbours (KNN) [26], Linear Discriminant Analysis (LDA) [26-28], ensemble 

Adaboost (AB) method [29], Decision Tree (DT) [30, 31], Random Forest (RF), Extra Trees 

(ET), Logistic Regression (LR), Support Vector Machines (SVM), Gradient Boosting (GB), and 

Artificial Neural Network based. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

2. CHAPTER 2: Design and Analysis of Prototype ExoMechHand  

2.1. Design and Material Selection for Prototype “ExoMechHand”  

For ExoMechHand, a number of designs were researched and examined in the literature. 

However, three supporting frame designs are originally taken into consideration and suggested as 

shown in Fig 1 while keeping in mind the materials and resources that are readily available. 

These mechanical designs stainless steel components are chosen at a thickness of 16 gauge. They 

are produced using wire-cut Electrical Discharge machining and AutoCAD. Frame "C" is chosen 

after several trial-and-error hitting and trialing for better fitment because of its better ergonomic 

design and smaller shape. Because the support frame's upper side is the same, small screws can 

be used to attach the same three types of plates, which have similar shapes but differ in terms of 

flexibility (Fig 2). The steel used to make these plates is high carbon. Because the plates are not 

easily accessible, a whole sheet was ordered, and each plate was then further divided into two 

pieces for ulnar or median wrist neuropathies, which can be utilized separately or together. These 

plates are put into a glove made of soft fabric (Fig. 3) and then secured with strips at hand. The 

resistive plate and frame are removed using the soft fabric glove's zip, which is utilized to open 

the glove. 

 

                                              
Figure 1 Frame Support Designs                                                     Figure 2 Resistive Plates   

 

Fig 4 shows other devices used for experimentation which include Delsys Trigno 

Biofeedback System, Constant Digital Spring Hand Dynamometer 200lb(90 Kg)  and 

Goniometer.   



 
 

2.2. Geometric features  

The steel used to make these plates is high carbon. Because the plates are not easily accessible, a 

whole sheet was ordered, and each plate was then further divided into two pieces for ulnar or 

median wrist neuropathies, which can be utilized separately or together. These plates are put into 

a glove made of soft fabric (Fig. 3) and then secured with strips at hand. The resistive plate and 

frame are removed using the soft fabric glove's zip, which is utilized to open the glove. 

   

                                           
Figure 3 Soft fabric glove                                                          Figure 4 Equipment used for experiment 

 

2.3. Criterion of subjects/ Muscles involved 

Nerve palsies in the fingers of the hands impair their ability to flex, extend, and grip due to 

the involvement of numerous muscles. The phalanges of the fingers act as levers in these 

situations[39]Normal finger phalanges have a unique active range of motion (ROM)[13]: 

• metacarpophalangeal joints (MCP) 0–90 deg  

• proximal interphalangeal joints (PIP) 0–110 deg  

• distal interphalangeal joints (DIP) 0–70 deg 

However, compared to the active ROM for all joints, the functional ROM needed for 90% of 

ADLs is considerably less. For the MCP, PIP, and DIP joints, respectively, the mean functional 

ROM is 48, 59, and 60 percent of the range of active ROM[40]. 

ADL performance and improvement for the afflicted hand of nerve injury patients can be 

assessed using hand grip force, sEMG signals, and manual muscle testing. Patients with 

hemiplegia and stroke were not included since they may have completely lost all of their nerves 

and had substantially weaker grip strength than hemiparesis patients [41]. However, hemiparesis 



 
 

hand patients with nerve injury (ulnar, median, or mixed) are taken into consideration for our 

suggested design experiment. 

2.4. Kinematical aspect 

Because fingers may vary in size [12] and shape due to deformities [42], it is impossible to 

accurately simulate the movements of a finger. The kinematic compatibility of the mechanical 

device with the hand is depicted, however, in a general model with the least resistance plate in 

Fig. 5, where is the MCP angle, is the PIP angle, and is the DIP angle. In order to attain the 

highest values of angles, five healthy volunteers were instructed to apply the greatest amount of 

force to the plate that offered the least resistance while maintaining a neutral wrist posture at 0° 

[43]. Angles measured by applying this mean force have values of = 60–65°, = 22–25°, and = 

10–15°. 

                                          
Figure 5 Kinematic scheme of finger 

 

 

 

 

 

 

 

 

 



 
 

3. CHAPTER 3: EXPERIMENTATION  

3.1. Setting and Pre-Processing for sEMG Features 

The entire process flow of experimentation and data collecting is depicted in Fig. 6. The flow of 

sEMG signals is shown in Part A of Fig. 6. Delsys Trigno Biofeedback system signals are 

quantified, filtered, and processed. We made use of signals from the flexor carpi ulnaris and 

radialis muscles. In order to collect sEMG signals from both channels, the Delsys Trigno 

Biofeedback system was configured with a sampling rate of 1926 Hz, a range of 11 mV, and a 

bandpass filter from the bandwidth of 20-450 Hz. The laptop's data acquisition software was 

Delsys Trigno Control Utility 3.6.0. 

 

 
Figure 6 Flow of sEMG for Training Machine Learning Algorithm 

 

3.2. Obtaining sEMG signal for training Machine Learning Algorithm 

In our study, fifteen participants—five healthy people and three left-handed participants—with a 

mean age of 35 and a standard deviation of 10.53 each took part. Figure 7 depicts images taken 

while recording sEMG from unwell participants; two of them are wearing strips that tighten the 

electrode channels to improve the acquisition of sEMG signals from all subjects. As illustrated in 

Fig. 8, the experiment seeks to assess sEMG signals in three locations, with the remaining 

positions being repeated after the flexor and fist positions. The flexor carpi ulnaris and flexor 

carpi radialis muscles of the participants are probed with sEMG electrode channel modules while 

they are seated in a chair. The arm is placed on the table from the dorsal side. Each position is 



 
 

timed for 10 seconds, and the entire experiment on each participant lasts 52 seconds (with a 3-

second break to change hands between each cycle of four positions, which is repeated three 

times). We used a static measurement technique [44, 45] to obtain temporally steady data rather 

than dynamically fluctuated measurement [35, 44, 45] because some time-dependent features 

(such as velocity and acceleration) may vary between each trial depending on various small 

influences, such as psychological settings. Each channel yields a signal for the surface EMG. On 

the laptop, MATLAB analyses, investigates, and extracts features from the collected data. MAV, 

waveform length, ZC, slope sign change, RMS, signal energy, mean amplitude power, 

cardinality, kurtosis, skewness, variance, standard deviation, maximum, minimum, signal to 

noise ratio, type of motion, and electrode channel position were among the sixteen features that 

were extracted from these signals in MATLAB. Mathematical formulas of these features are 

given in Table 1. A physiotherapist additionally evaluates the subject's affected hand, as seen in 

Fig. 6 Part B, which includes measuring the range of motion (ROM) of the wrist, ROM of the 

MCP, hand grasp, and MMT. A goniometer is used to quantify ROMs in degrees, a constant 

hand dynamometer to evaluate hand grip in kg, and a physical inspection to assess MMT on a 

scale of zero to five. One of the resistive plates is chosen by the physiotherapist and sent to 

algorithms for training. The same experiment is conducted on each individual. 

 

 



 
 

 
Figure 7 sEMG Recording of Unhealthy Subjects 
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Table 1 Mathematical Formulas of EMG signal Features 
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3.3. Machine Learning Algorithm model for changing resistive plates 

The result following algorithm training is either a colour indication of a resistive plate or a "H" 

which denotes a healthy subject. The machine learning algorithm's process flow for indicating 

the plate is shown in Fig. 9 after it has been trained. The combined data of sEMG characteristics 

and a physiotherapist's evaluation/measurements are used to analyse and train the ten most 

popular classification models of machine learning algorithms. These include Linear Discriminant 

Analysis, Gradient Boosting, K Nearest Neighbors, AdaBoost, Decision Tree, Random Forest, 

Extra Trees, Logistic Regression, Support Vector Machine, and Multiple Layer Perceptron. 

 
Figure 8 sEMG Recording Positions 

 

 

 

 
Figure 9 Process Flow After Training of Machine Learning Algorithm  

 

3.4. Experimental process for the efficacy of device  

A small-scale experiment is also carried out as a clinical trial to determine the effectiveness of 

the ExoMechHand hand rehabilitation device. Ten unwell patients, including four women, with a 



 
 

mean age of 38 and a standard deviation of 10.87 years and either an ulnar, median, or mixed 

nerve lesion are taken into consideration as test subjects. The patient's hand is examined and 

evaluated by the therapist using a variety of tests, such as the Manual Muscle Test (MMT), grip 

force, wrist range of motion, and the MCP (Metacarpophalangeal) joint of the hand. Delsys 

Biofeedback can also be used to collect sEMG signals. ExoMechHand is worn on the injured 

hand for exercising once the therapist confirms the sort of resistive plate. In clinical settings, 

exercise is performed twice daily for 20 days at a time. Throughout these 20 days, participants 

don't perform any additional exercises. Over testing on the features of sEMG signals for all 

individuals after a period of twenty days, improvement in hand is verified using machine 

learning algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

4. CHAPTER 4: RESULTS AND DISCUSSION 

4.1. Results 

Two experimental components make up this paper. Finding the effectiveness of our suggested 

ExoMechHand hand rehabilitation gadget is one of the trials' goals. Three out of ten patients 

demonstrated noticeably improved wrist, MCP, hand grasp, or MMT range of motion after 

twenty days of exercise. Also pointing to these gains is ET, the most accurate machine learning 

algorithm. 

Figure 10 Cross validation Mean Accuracy of Machine Learning Algorithms 

 

In the second stage of the experiment, machine learning algorithms are tested to determine 

whether resistive plate or letter H is appropriate for healthy people. Fig. 10 displays the test 

accuracy and standard deviation from mean accuracy of all these methods. Through grid search, 

these algorithms are fine-tuned to get the best estimation. Three algorithms, ET, GB, and RF, had 

test mean accuracy scores higher than 92 percent, according to a comparison of the algorithms. 

With a low standard deviation, the ET Confusion Matrix on Test Data proved to be the most 

accurate algorithm in Test Accuracy. Letter H stands for healthy subjects, while letters B, G, and 

R stand for different types of plates in Table 2. Additionally, Table 3 provides the formulas for 

precision, recall, F1-score, accuracy, macro average, and weighted average. These numbers help 



 
 

to clarify accuracy in terms of uneven categorization results. Table 4 shows the cross-validation 

means and cross-validation errors on all ten machine learning algorithms.  

 

 Precision Recall F1-score 

B(black) 1.00 1.00 1.00 

G(green) 0.98 0.99 0.98 

H(healthy) 1.00 1.00 1.00 

R(red) 0.99 0.97 0.98 

    

Accuracy   0.98 

Macro avg 0.79 0.79 0.79 

Weighted Avg 0.99 0.99 0.99 

Table 2 Confusion Matrix of Extra Trees 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Formulas of Terminologies used in Confusion Matrix of Extra Trees 

 

Precision 𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆
 

 

Recall 𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆
 

F-1 Score 
𝟐 ×

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

Accuracy 𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆
 

 

Macro avg 𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 +
𝟏

𝟐
(𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 +  𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆)

 

Weighted avg 𝑭𝟏𝒄𝒍𝒂𝒔𝒔𝟏 ∗ 𝒘𝟏 + 𝑭𝟏𝒄𝒍𝒂𝒔𝒔𝟐 ∗ 𝒘𝟐 + ⋯ + 𝑭𝟏𝒄𝒍𝒂𝒔𝒔𝑵 ∗ 𝒘𝑵 



 
 

 
Table 4 Machine Learning Algorithms Cross-validation mean accuracy and error 

 

4.2. Discussion 

If the length of the exercises is extended, our experiment's conclusions about the effectiveness of 

the gadget may be enhanced. Activities on the ExoMechHand can be combined with other 

exercises to test the effectiveness of the gadget. 

In accordance with Vijayvargiya, A., et al. (Vijayvargiya et al., 2020), who got findings for 

abnormalities of knees, our results for machine learning algorithms reveal ET as the best 

classifier for determining the state of the hand and RF accuracy is greater than KNN, SVM, and 

DT. Additionally, Hassan et al. suggested adding more variables to the EMG-based preterm birth 

classification (Hasan et al., 2019). Similar to our accuracy findings, Ahmed et al. (Ahmed and 

Islam, 2021) discovered that ANN-based multilayer perceptron beats SVM. Although the most 

common machine learning approaches are utilized for training, more recent techniques might be 

tested to see if accuracy has improved. 

Although the most typical characteristics for classifying sEMG signals are used, new variables 

can be found to improve outcomes for individuals with ulnar and median neuropathy. 

Exoskeleton and end effector devices are the primary architectural or design distinctions amongst 

hand rehabilitation systems (Balasubramanian et al., 2010). While end effector devices have a 

minimum that is fully external to the hand and only a minimal portion is mechanically confined 



 
 

to the subject, exoskeleton devices use an artificial skeleton mounted on the hand (Borboni et al., 

2016). Our mechanical system consists of an end effector with a dorsal placement for patients 

with median and ulnar nerve injuries, allowing them to partially execute ADLs. Exoskeleton 

versions of the concept are possible, though. ExoMechHand can contain the sEMG module to 

stage the hand's condition and alter the plates automatically as needed. There may be more plates 

available. 

Currently ExoMechHand has two parts of resistive plate for movement of fingers innervated by 

median and ulnar nerves. However, design may be enhanced to incorporate movements of 

individual fingers.      

Experimentation of our device included patients with ulnar or median nerve neuropathies. 

ExoMechHand may be evaluated for other hand hemiparesis patients and further research can be 

done for finding effectiveness on other types of diseases such as stroke, cerebral palsy etc.  

Features extracted for this experimentation from sEMG signals for training and testing machine 

learning algorithms are sixteen in number. These features can be increased, reduced or altered to 

check the effectiveness on the test accuracy of Extra Trees for changing resistive plates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

5. CHAPTER 5: CONCLUSION 

ExoMechHand's design, testing, and evaluation are all included in this study. Exoskeleton and 

end effector devices are the primary architectural/design distinctions between hand rehabilitation 

devices [44]. While end effector devices have a minimum that is wholly external to the hand and 

only a nominal part of it is physically confined to the subject, exoskeleton devices use an 

artificial skeleton installed on the hand [13]. For patients with median and ulnar nerve injuries, 

our mechanical design is an end effector with a dorsal placement that allows them to partially do 

ADLs. However, the design can be improved and transformed into an exoskeleton as well. 

Patients with ulnar or median nerve neuropathies participated in our device's testing. Other 

patients with hand hemiparesis may be assessed for ExoMechHand and further study can be 

done. There are sixteen features that were taken from the sEMG signals for this experiment to 

train and test the machine learning system. To test the efficacy on the accuracy of cross-

validation of machine learning algorithms for modifying resistive plates, these features can be 

raised, decreased, or changed. The device also has to be more cost-effective, have an improved 

ergonomic design, and have additional plates added to increase the DOF and ROM. 
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Contribution to the field statement 

Rehabilitation is a serious concern for people with disabilities since it impedes their 

advancement in society. People who are unable to fully move their hands and fingers experience 

great distress due to their impaired hand movements. There are several hand rehabilitation tools 

available, however the majority need to be used by a therapist. ExoMechHand is a prototype 

hand rehabilitation device that we created. It is made up of three different types of plates and a 

base support. The resistance and elasticity of the three plates vary, although their shapes are 

comparable. These plates are further separated into two halves, one for each finger that has 

median and ulnar nerve supply. Additionally, research is being conducted to determine the 

device's use for individuals with median or ulnar nerve neuropathies. After exercising 

continuously for twenty days with two sessions of twenty-four minutes each, three out of ten 

patients shown improvement in hand movement. Similar to this, a machine learning model is 

employed for autodetection of the type of resistive plate the patient would use based on surface 



 
 

electromyography signals. When arm surface electromyography signals from new patients are 

used, it provides accuracy of about 98 percent. 
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