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Abstract

This thesis is based on di�erent methods of discriminant analysis applied to brain

tumor data. Tumor detection is crucial to improving medical treatment. Magnetic

Resonance Imaging (MRI) scans are crucial in several traits and therapeutic applica-

tions. For image-based classi�cation problems, Linear Discriminant Analysis (LDA)

is a potential candidate. In the current article, we have used the LDA variants in-

cluding Flexible Discriminant Analysis(FDA), Mixture Discriminant Analysis(MDA),

Sparse Discriminant Analysis(SDA), and Regularized Discriminant Analysis(RDA) for

tumor classi�cation based on MRI scans. For this MRI scans were �rst compressed

with Principal Component Analysis (PCA), moreover PCA helps to remove the outlier

samples. It appears the outlier removal slightly increases the brain tumor classi�cation

ability. Further, the above-mentioned methods have several parameters to tune, which

was done by Cross-Validation. The meta-analysis based on 100 Monte-Carlo simula-

tion runs reveals that MDA-PCA and SDA-PCA have signi�cantly (p− value ≤ 0.05)

better able to classify the brain tumor on test data (82%), while RDA-PCA has worst

ability to classify the brain tumor. The �ndings indicate the LDA variants can be used

not only for brain tumor classi�cation but also for image-based other classi�cation

problems.

Keywords: Discriminant Analysis, Classi�cation, Variants, Brain Tumor, Mixture

Discriminant Analysis (MDA), Principal Component Analysis(PCA)
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Chapter 1

Introduction

Undoubtedly a major component of the human body is the brain. Our total health, es-

pecially brain health, is essential. Unfortunately, a wide range of ailments could a�ect

brain health. In brain surgery, a biopsy is performed in order to identify and classify

any brain tumors. Technological advancements and machine learning methods may

enable radiologists to diagnose malignancies non-invasively. To distinguish between

tumorous and non-tumorous tumors, we classi�ed the tumor using a deep learning-

based method.

A crucial part of machine learning is Statistics. Analyzing raw data makes it easier

to come to insightful conclusions. When we hear the term "Machine Learning," we

think it might picture �ying cars, robots, and Arti�cial Intelligence (AI), yet when we

think of "Statistics," we might think of bell-shaped charts and the results of sports

games. However, since they both involve data analysis, these two �elds have a lot in

common. Machine learning and statistical modeling can even be used in scenarios that

are comparable to each other to solve a variety of problems.

1.1 What is Machine Learning

The �eld of machine learning focuses on developing algorithms that can learn from data

so that programs and systems can carry out tasks without explicit sets of programmed

instructions. For instance, image recognition technology frequently uses machine learn-

ing algorithms that parse enormous amounts of images and learn to recognize objects
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and other features over time and after analyzing large volumes of image data. A

sub-�eld of arti�cial intelligence research at �rst, machine learning has subsequently

developed into a separate �eld of study within the subject of AI [1].

Machine learning is particularly useful in situations like this when the amount of data

keeps increasing over time. As the study progresses, the increasing volume can help

in the training of the algorithms, enabling the algorithm to get "smarter" and provide

new, more accurate, or e�cient output. Machine learning is comparable to computa-

tional statistics, which emphasizes predicting predictions via the use of computers and

information technology. Not all machine learning, though, is regarded as statistical

learning. Since it o�ers methodology, theory, and applications in several �elds, the

study of mathematical optimization aids the science of machine learning.

1.2 Background of Machine Learning

The concept "Arti�cial Intelligence" was created in the 1950s as a basic idea of human

intellect being shown by machines [2]. Jerrold S. Maxmen stated in 1976 that Arti�cial

Intelligence (AI) will usher in the twenty-�rst century. In the current era of technolog-

ical advancement and the accessibility of gigantic data sets (also known as "big data"),

AI has advanced beyond mere theory to real application on a massive scale.

Machine learning (ML), which is considered a subcategory of AI, demonstrates the

empirical �acquisition� concerned with human intellect and has the potential to learn

and enhance its assessment by using computer algorithms. The machine can take an

input and estimate a result with repetitions and alterations to the algorithm. The al-

gorithm's accuracy is therefore tested by trying to compare the outcomes with ground

truth, which is repeatedly revised to perfect the ability to predict future events.

The challenge of developing a prediction based on data that incorporates algo-

rithms and large data calculations is tackled by machine learning. It helps predict

future predictions based on already known data. It is useful for interpreting the data

according to our preferred information. Machine learning support interpreting data

in many �elds such as Science, Medicine, Economy, Policy-Making, etc. Equations in
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mathematics, statistical analysis, and computer programming are used to implement

machine learning. supervised, unsupervised, and reinforcement learning are the three

basic categories of machine learning.

It is based on a proper programming language that deals with dependent and inde-

pendent variables, error terms, and some estimation parameters. For getting accurate

interpretations of data, researchers are still working to introduce new methods of pre-

diction corresponding to the demand for data.

Machine learning algorithms are classi�ed as supervised, unsupervised, and reinforce-

ment learning.

Figure 1.1: Flowchart of Machine Learning algorithms
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1.2.1 Supervised Learning

There are two primary ways used in Machine Learning (ML) and Arti�cial Intelligence

(AI): supervised learning and unsupervised learning. One employs labeled data to aid

in result prediction, whilst the other does not. This is a major distinction.

In this branch of Machine Learning (ML), the term "supervised learning" refers to

algorithms that learn from training datasets and are being trained to supervise the

learning process [3]. A machine learning approach termed supervised learning uses

input and output data. Input data corresponds to independent variables while output

data corresponds to the predicted response. In supervised learning, there is a possibil-

ity to test the large data by working on small training data set. In machine learning,

the algorithm provides the characteristics of �nal data sets similar to training data sets.

Supervised learning helps know the relationship between the explanatory and response

variable with accuracy. There are many practical applications of supervised learning

algorithms such as text categorization, signature recognition, weather forecast, stock

exchange predictions, face detection, etc [7].

1.2.2 Unsupervised Learning

Learning is a form of statistical learning in which only calculations are conducted on

unlabeled input, leading to the construction of various structures. It consists of only

independent variables. There is no response variable in unsupervised learning [3].

The algorithm sets the link between data sets in a random way. There is no need for a

human to give any input. The formation of di�erent structures from data makes this

learning more useful. Unsupervised Learning algorithms are useful to handle compli-

cated tasks. Examples of unsupervised learning techniques include clustering, anomaly

detection, and in some cases neural networks.

1.2.3 Reinforcement Learning

A branch of machine learning, Reinforcement learning (RL), investigates how intelli-

gent creatures should behave in a given environment in order to maximize the concept
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of cumulative reward. Reinforcement learning, along with supervised and unsuper-

vised learning, is one of the three major machine learning paradigms. By not requiring

the display of labeled input/output pairs or the explicit correction of undesirable be-

haviors, reinforcement learning di�ers from supervised learning. The foundation of

Reinforcement learning is sequential decision-making. Simply said, the current input's

state in�uences the results of the previous input, which indicates the status of the next

contribution[8].

Games of chess are an illustration of reinforcement learning.

1.3 Statistics vs Machine Learning

Statistics is a fundamental part of data analytics and machine learning. It enables

us to examine and display data in order to uncover previously hidden patterns. The

fundamental contrast between Machine Learning (ML) and Statistics is their intended

application. Machine learning models are created to make the most accurate predic-

tions feasible. Statistical models are intended to predict associations between variables.

Various ML approaches are derived from statistics (for example, linear regression and

logistic regression), as well as other �elds such as calculus, linear algebra, and computer

science. Statistics and Machine Learning are frequently grouped because they employ

comparable methods to achieve a goal. However, the objectives they are attempting to

achieve are signi�cantly di�erent. The goal of statistics is to conclude a population by

studying a sample. Machine learning is used to identify patterns in data to produce

reliable predictions.

Machine learning is used to predict future events while Statistics is used to �nd the

relationship between data points. Applications of machine learning are forecasting,

modeling, and predictions, and applications of Statistics are �nding patterns and out-

liers in the data. To obtain a reliable model of machine learning or statistical analysis,

one needs to understand the Statistics, ML algorithms, and fundamentals of mathe-

matical concepts.

5



Figure 1.2: Relation between Statistics and Machine Learning

1.4 Multivariate Analysis

Research has been using machine learning (ML) and multivariate analytic techniques

more and more recently. An important area of statistics called multivariate analysis

evaluates several variables at once. Multivariate is a supervised Machine Learning al-

gorithm that analyses multiple data variables [4]. In practice, multiple variables data

sets appear commonly and we usually concern ourselves with several features of the

observations.

Discriminant analysis is one of the multivariate statistical methods. This thesis con-

cerns contributions to variants of Linear Discriminant Analysis with applications ap-

plying to a real-world data set.

1.5 Classi�cation

Classi�cation is the statistical problem of classifying an individual into one of several

groups based on a collection of observations or measurements of the individual.
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Classi�cation is the process of classifying a set of data. It may be done on both

structured and unstructured data. Predicting the class of provided data points is the

�rst step in the procedure. The classes are also known as the goal, label, or categories.

Estimating the mapping function from discrete training data to discrete indepen-

dent variables is the problem of classi�cation predictive modeling. The basic purpose

is to determine which class/category the new data belongs to.

For classi�cation issues, a variety of methods and algorithms exist, including logistic re-

gression, linear discriminant analysis, cluster analysis, and classi�cation trees (Agresti

2002). These features are already included in most software programs. Each method

has drawbacks and advantages of its own. In this dissertation, we employed the clas-

si�cation machine learning method, which would be supervised-based.

In statistics, data categorization refers to the process of grouping data according to

their properties into homogenous and similar groupings. A supervised learning ap-

proach used to model and predict variables is classi�cation. The explanatory variables

could be quantitative or qualitative, and the response is a categorical variable. Classi-

�cation techniques or methods are also called Classi�ers.

1.5.1 Classi�cation Algorithms

Classi�cation is a supervised learning paradigm in machine learning that divides the

number of observations into classes. Speech recognition, face identi�cation, handwrit-

ing recognition, document categorization, and other recognition-based challenges are

common in classi�cation problems. It might be a binary classi�cation problem or a

multi-class classi�cation problem.

In machine learning, there are several machine learning methods for classi�cation. For

all types of data sets, classi�cation techniques are suitable. There is a substantial

toolset that is used for classi�cation purposes. The most often employed classi�cation

algorithms are listed here,

Fisher's linear discriminant

Quadratic classi�ers

Support vector machines

Logistic regression
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Random forests

Least squares support vector machines

Naive Bayes classi�er

k-nearest neighbor

Decision trees

These classi�cation algorithms are divided into mainly two categories, Linear Mod-

els and non-Linear Models. In this thesis, we'll discuss conventional discriminant anal-

ysis with its variants for classi�cation.

1.5.2 Use Cases of Classi�cation Algorithms

Di�erent circumstances require the application of classi�cation methods. Here are a

few frequent applications for classi�cation algorithms:

1) Email spam monitoring,

2) Speech Recognition

3) Identi�cations of Cancer tumor cells.

4) Drugs classi�cation

5) Biometric identi�cation, etc.

1.6 Problem Statement

Classify brain tumor images using di�erent variants of Linear Discriminant Analysis

algorithm based on Magnetic Resonance Imaging (MRI).

1.7 Aim & Objective

This dissertation aims to classify the tumorous and non-tumorous by MRI images cor-

rectly using LDA (Linear Discriminant Analysis) and its Variants.

Our objectives include:

Brain tumors classi�cation by MRI X-rays.

Comparison of di�erent variants of LDA
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Find the most accurate classi�er among all the classi�ers.

1.8 Research Questions

How may brain tumors be categorized?

Can LDA accurately di�erentiate between cancers and non-tumors?

Can LDA and its Variants be used to categorize tumors and non-tumors with more

accuracy?

1.9 Covered Topics

This thesis is organized as follows: We �rst brie�y describe Linear Discriminant analysis

(LDA) with its variants and Principal Component Analysis(PCA) classi�cation. We

provide an overview of the LDA algorithm as well as the description of di�erent variants

of LDA in chapter 2. The third chapter of this thesis is about the literature review. In

chapter 4 we explained the mathematical form of the methods.

We explained the data application in chapter 5. Results and discussions are presented

in chapter 6 and conclude with Chapter 7. The list of references is provided in the

Bibliography section.
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Chapter 2

Preliminaries

This chapter contains the technical setup for classi�cation. There are two main ap-

proaches are used. Principal Component Analysis (PCA) is used for dimensionality

reduction, the other one, Linear Discriminant Analysis (LDA), is used for classi�cation

propose.

In Section 2.1, we'll review the classical classi�cation method, Linear Discriminant

Analysis(LDA). In this section, we will �rst give an introduction to the conventional

discriminant analysis and the limitation of this method. In section 2.3, we'll discuss

variants one by one. A detailed discussion of Principal Component Analysis (PCA)

is in section 2.4. Preprocessing and analysis of variance (ANOVA) are presented in

sections 2.5 & 2.6, respectively.

2.1 Introduction

R.A. Fisher �rst introduced discriminant analysis in 1936. Fisher is a two-class classi�-

cation method (Fisher 1936). 1948 [27], when C.R. Rao expanded it to integrate issues

involving multiple classes. Regression analysis and discriminant analysis are similar,

although the dependent variable in discriminant analysis is categorical as opposed to

continuous (Draper and Smith 1981)[5]. LDA typically looks for linear combinations of

predictor factors that best distinguish the acquisition of observational data. The goal

of discriminant analysis is to predict class variables of individual observations based

on a set of predictor variables. Discriminant functions are the term referring to these

combinations (Mika et al. 1999).
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2.2 Linear Discriminant Analysis

Ronald A. Fisher initially developed the linear discriminant in 1936 and has shown

some useful applications as a classi�er. He presented it for a two-class issue, and C.R.

Rao later generalized it as "Multi-class Linear Discriminant Analysis" or "Multiple Dis-

criminant Analysis" in 1948. In addition to being a powerful classi�cation technique,

Linear Discriminant Analysis provides a technique for dimension reduction. Prior to

classi�cation, it is used to whittle down the number of features to a more suitable or

manageable quantity. One dependent variable is attempted to be expressed by LDA

as a linear combination of other characteristics or measures. For ordinarily distributed

predictor variables, LDA has been established [23].

Therefore, it makes sense to anticipate that LDA will produce better results when

the normality requirements are satis�ed. It can be applied in positioning and prod-

uct management.[21, 23] Some studies use Linear Discriminant Analysis in bankrupt

predictions, face recognition, credit scoring, and the like. LDA was formulated for a

two-class problem, later it was generalized for multi-class problems. This approach

projects the properties of a higher multidimensional space into a lower multidimen-

sional space.

Figure 2.1: Classi�cation of two classes by applying LDA in presented.
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2.2.1 Assumptions

LDA assumes some criteria about the data[5]. Discriminant algorithms have the fol-

lowing assumptions.

1) There is no multicollinearity.

2) Variables should follow a gaussian distribution.

3) Requires homoscedasticity and full rank covariances.

Quadratic Discriminant Analysis (QDA)

The only signi�cant di�erence between linear and quadratic discriminant analysis is the

relaxation of the assumption that the covariances of all classes are di�erent. Variables

must follow a normal distribution but each class should have the same covariance is

not necessary.

2.2.2 How does Linear Discriminant Analysis (LDA) work?

Example

Suppose we have 2 subjects, so we must e�ectively divide them. The classes may consist

of several properties. As seen in the following image, if we categorize them using only

one feature, overlapping may occur. As a result, we will constantly be adding features

to assure accurate classi�cation.

Figure 2.2: Two subjects are overlapping.

Let's say we wish to categorize two sets of data points that belong to two distinct

classes. As shown in the above 2D graph, when the data points are lying on the 2D

plane, there is not a perfect separation between the data points of the two classes.

In this instance, in order to maximize the separability between the two classes, LDA

12



(Linear Discriminant Analysis) is used to transform the 2D graph into a 1D graph.

(a) (b)

Figure 2.3: LDA boundary between two subjects.

Through the use of both axes (X and Y), Linear Discriminant Analysis provides a

new axis and projects data onto it to optimize the separation of the two classes and

convert the 2D graph into a 1D graph.

As shown in the aforementioned graph, a new axis (shown in red) is produced and

drawn in the 2D graph in a way that minimizes variation within each class and op-

timizes the distance between the means of the two classes. Simply said, the space

between the data points for the two groups is widened by this newly constructed axis.

As seen in the graphic below, this new axis is constructed using the aforementioned

criteria and all of the data points for the classes are displayed on it.

However, Linear Discriminant Analysis (LDA) is unable to create a new axis that

Figure 2.4: LDA divided data points of two groups separably.

renders both classes linearly separable when the distributions' means are shared. We
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employ non-linear discriminant analysis in these circumstances.

2.2.3 Why We Use LDA?

• One of the most used classi�cation methods, logistic regression, performs well for

binary classi�cation but struggles when dealing with multiple classi�cation issues in-

volving distinct classes. LDA manages these simultaneously fairly e�ectively.

• In order to reduce the number of features in data pre-processing, LDA may be em-

ployed, similar to PCA, which signi�cantly reduces computing costs.

• LDA is also used in computer vision applications and for face detection. In Fisher-

faces, LDA is used to extract pertinent data from a variety of faces. When used with

eigenfaces, it produces potent results.

2.2.4 Applications

Applications of Linear Discriminant Analysis (LDA) are given below [6],

Face Recognition

In the science of computer vision, the identi�cation of faces using a large number

of pixel values as a representation of each face is a particularly typical application.

Before the classi�cation process, Linear Discriminant Analysis is used to condense

the number of features to a more manageable amount (LDA). Each of the additional

dimensions is produced by a linear transformation of pixel values that produces a new

pattern. Fisher's faces are the linear representations generated by using Fisher's linear

discriminant.

Biomedical Studies

Based on the patient's numerous characteristics and the medical care he is receiving,

this discipline uses Linear Discriminant Analysis (LDA) to categorize the patient's ill-

ness status as mild, medium, or chronic. This enables the doctors to speed up or slow

down their course of therapy.
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Discriminant analysis is mostly used in medicine to assess a patient's degree of illness

and predict how the sickness will progress. For instance, during retrospective analysis,

patients are categorized into mild, moderate, and severe illness forms. The outcomes

of clinical and laboratory studies are then examined to identify factors that are statis-

tically di�erent in the groups under investigation. Discriminant functions are created

using these variables to assist categorize a patient's condition into mild, moderate, or

severe forms.

Customer Identi�cation

Let's say we want to �gure out which people at a mall are more likely to purchase a

speci�c item. We may compile all the characteristics of the clients by conducting a

straightforward question and response poll. Here, a Linear Discriminant Analysis will

assist in locating or choosing the variables that can characterize the traits of the clients

most likely to purchase that speci�c product at the shopping center.

2.2.5 Limitations

1) Small sample size problem.

2) Discriminative information is not in the means of classes.

3) Sometimes not good for a few categories variables.

4) It requires a normal distribution assumption on features/predictors.

Due to Linear Discriminant Analysis's (LDA) limitations, we move toward the mod-

i�ed extensions of LDA. which work with the non- linear as well as non-normal datasets.

There are several modi�cations and extensions of Linear Discriminant Analysis.

Each of them has been created to enhance the e�ectiveness and output of the Linear

Discriminant Analysis.
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2.3 Variants of LDA

Flexible Discriminant Analysis (FDA)

Mixture Discriminant Analysis (MDA)

Regularized Discriminant Analysis (RDA)

Sparse Discriminant Analysis (SDA)

2.3.1 Regularized Discriminant Analysis (RDA)

Regularized Discriminant Analysis (RDA) [29] was proposed by Friedman in [1989].

RDA (Regularized Discriminant Analysis) modi�es the impact of various variables on

LDA by introducing regularization. That can estimate the variance (actually covari-

ance) of each class. Regularizing the estimation of the covariance reduces the impact

of di�erent factors on LDA. LDA and QDA are combined in RDA. By regularizing the

group covariance matrices, RDA creates a classi�cation rule and makes the model more

resistant to multicollinearity in the data [9]. For a sizable multivariate data collection

with highly associated predictors, it is quite helpful.

Similar to LDA, RDA turns the several covariances of QDA into a single covariance.

As a consequence, the covariance matrices may be calculated more precisely when the

number of observations exceeds the classi�cation performance, possibly increasing the

model's accuracy.

Regularized Discriminant Analysis (RDA) has two parameters α and δ. This operator

uses LDA if the α argument is set to 1. Similar to how QDA is carried out when

the α value is set to 0. similarly δ is used for the class covariance. Lower δ indicates

both classes have a common variance and higher δ indicates both classes tend to have

di�erent variances.

2.3.2 Flexible Discriminant Analysis (FDA)

Only linear combinations of inputs are used in Flexible Discriminant Analysis (FDA)

[28]. In 1994, (Robert Tibshirani, Trevor Hastie, and Andreas Buja) [28] introduced

Flexible Discriminant Analysis (FDA). FDA accepts non-linear input combinations like

splines. In the FDA classi�cation model, the response variable is transformed using
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optimum scoring to improve the data's suitability for linear separation. The blend of

linear regression models serves as its foundation. It functions well with a lot of inde-

pendent variables and detects interactions between variables automatically. Despite its

complexity and robustness to outliers, it is a quick and e�ective method. FDA is useful

for showing non-linear correlations between variables within each group and making

classi�cation more precise.

Using nonparametric regression and Linear Discriminant Analysis, FDA is a multigroup

non-linear discrimination technique (LDA). LDA is extended in a non-parametric man-

ner by FDA.

2.3.3 Mixture Discriminant Analysis (MDA)

By Hastie and Tibshirani (1996), Mixture Discriminant Analysis(MDA) [30] was pro-

posed to model training data sets and to classify test data e�ectively when the structure

of the training groups is heterogeneous. The well-known Linear Discriminant Analysis

method's underlying conventional Gaussian assumptions are naturally extended by the

Mixture Discriminant Analysis (MDA) model. This is an example of supervised clas-

si�cation using a mixture model. Both linear and non-linear boundaries can be used

with MDA.

For each class, it is used to estimate the density. MDA has the ability to generate non-

linear decision limits. In comparison to LDA and QDA, the MDA classi�er successfully

recognized the subclasses. Mixture Discriminant Analysis (MDA) is a non-parametric

extension of LDA.

Although there are now fewer parameters to estimate, the LDA classi�er is ill-posed

if (p > n) due to the unique characteristics of the sample covariance matrix, in which

case either regularization methods, feature selection, or further model restrictions are

employed, such as assuming Σ is diagonal (Ramey and Young, 2013; Dudoit et al.,

2002).

Clemmensen et al. (2011)[31] argue that although LDA is often well-suited for

simple, low-dimensional settings, linear decision boundaries are often insu�cient to
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separate classes in practice. Furthermore, a single Gaussian distribution may be in-

su�cient in characterizing a single class. With the latter point in mind, Hastie, and

Tibshirani (1996) introduced Mixture Discriminant Analysis (MDA), where fk(x) is

the probability density function of the �nite Gaussian mixture model.

2.3.4 Sparse Discriminant Analysis (SDA)

Sparse Discriminant Analysis (SDA) was proposed by (Line Clemmensen, Trevor Hastie,

Bjarne Ersbøll, and Daniela Witten) in 2008[31]. The Linear Discriminant Analysis's

optimal score interpretation serves as the foundation for the Sparse Discriminant Anal-

ysis. If the classes include subgroups or nonlinear boundaries are present, LDA can be

expanded to do sparse discrimination using mixtures of Gaussian functions.

By trying to �nd the LDA score analysis with the best possible results, the SDA

approach leverages over LDA to address the two issues that LDA indicated. This tech-

nique enhanced memory e�ectiveness, temporal complexity, and prediction accuracy.

By applying a sparseness constraint to Linear Discriminant Analysis (LDA), Sparse

Discriminant Analysis (SDA) enables the simultaneous performance of feature selec-

tion and classi�cation.

LDA is not possible when the within-class covariance matrix lacks complete rank or

when the number of features is excessive in comparison to the number of observations.

In that case, Sparse Discriminant Analysis can be used instead of LDA.

2.4 Principal Component Analysis (PCA)

Karl Pearson created the Principal Component Analysis (PCA) [32] in 1901 as a math-

ematical equivalent of the principal axis theorem. Harold Hotelling then independently

extended the concept and gave it his name in the 1930s.

To reduce the dimensionality of data, a non-parametric approach called Principal Com-

ponent Analysis (PCA) is used. With its great �exibility, PCA can analyze datasets

with various characteristics, such as multicollinearity, missing values, categorical data,

and inaccurate measurements. The objective is to identify the key information in the

data and represent it as a collection of summary indices known as primary components.
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Using the fewest possible components and a mean squared error that is kept to a min-

imum, principal components o�er a linear representation of the original data. The

purpose of PCA is two-fold: dimension reduction and uncorrelated feature learning.

The PCA algorithm is based on some mathematical concepts such as:

1) Variance and Covariance

2) Eigenvalues and Eigen factors

2.4.1 PCA Applications in Arti�cial Intelligence

Data from multiple dimensions are visualized using PCA.

It is applied to signi�cantly reduce the dimensions in healthcare data..

PCA can play an important role in picture resizing.

It may be used in �nance to anticipate returns and evaluate stock data.

PCA aids in pattern recognition in high-dimensional datasets.

2.4.2 Advantages of PCA

1) PCA helps to remove all the features that are correlated

2) With the number of features reduced with PCA, machine learning algorithm per-

formance improves.

3) By removing the unnecessary features in the dataset, PCA helps to overcome over-

�tting.

2.4.3 Disadvantages of PCA

1) PCA reduces features into a smaller number of components. Each component be-

comes a linear combination of original features, which makes it less readable and in-

terpretable.

2) Data information loss may occur if we don't choose the right number of components.

3) Because PCA is a variance maximizing technique, PCA requires features to be scaled

before processing.
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4) PCA is not robust against outliers.

2.4.4 Fast Principal Component Analysis (FAST-PCA)

The modern-day dataset's size and dimensions have made the centralized PCA [33]

solutions expandable. To overcome the problems of PCA, a new approach has been

introduced. this new approach for existing solutions for distributed PCA algorithms

is called FAST-PCA. The new proposed approach FAST-PCA works more e�ciently

than PCA for dimension reduction with uncorrelated features.

Communication with the proposed algorithm is e�cient and the algorithm is proven

to converge linearly and exactly to the principal components, leading to a reduction in

dimension as well as uncorrelated features.

2.5 Preprocessing

In machine learning, Preprocessing is the process of preparing raw data (cleaning and

organizing it) for use in constructing and training machine learning models [22]. Es-

sentially stated, data pre-processing in machine learning is a data mining approach

that transforms raw data into a legible and understandable format. Preprocessing fre-

quently includes picture enhancement and smoothing. Real-world data generally fail to

capture speci�c attribute values or trends. It may contain mistakes or outliers having

inconsistency and erroneous. Handling real-world data is a tedious and time taking

process. So, pre-processing helps to clean, format, and organize the raw data and make

it ready for use by machine learning models.

Feature Extraction

Feature extraction is used in image processing to reduce dimensionality. Feature ex-

traction turned the input data into a piece of pertinent information when an algorithm's

input data was too vast to analyze. The process of turning input data into a collec-

tion of features is called feature extraction. In order to create new, more signi�cant

features, feature extraction modi�es the original features in some way. In this view,
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feature extraction may be used to simplify data representation and minimize complex-

ity by expressing a linear combination of each variable. Principal Component Analysis

is the method of feature extraction that is most extensively utilized and quite well

(PCA).

When we have a huge data collection and need to utilize fewer resources without sac-

ri�cing any crucial or pertinent information, the process of extracting the features is

helpful. The data reduction achieved by feature extraction speeds up the learning and

generalization phases of the machine learning process while also requiring less computer

work to create the model.

2.6 Analysis of Variance (ANOVA)

ANOVA [10] is a statistical method for determining if there are any di�erences or

correlations between the impact of independent factors on a dependent variable. When

there are numerical input variables and a categorical target variable, as there would be

in a classi�cation problem, ANOVA is performed. The discriminant analysis employs

continuous independent factors and a categorical dependent variable, whereas ANOVA

uses categorical explanatory variables and a continuous response variable.

Discriminant Analysis and MANOVA, the multivariate form of ANOVA, are essentially

equivalent. Both methods rely on identifying the linear combination of continuous

variables (the dimension on the multivariate space) that distinguishes the categories

speci�ed by the categorical variable the most e�ectively.

2.6.1 One-way ANOVA

One-way (or unidirectional) and two-way ANOVA are the two primary variations.

ANOVA also comes in several forms. For instance, MANOVA (multivariate ANOVA)

is di�erent from ANOVA in that the former evaluates several dependent variables

simultaneously while the latter only does so for one. The number of distinct variables in

any analysis of variance test�one or two�is referred to as one-way or two-way. A one-

way ANOVA analyses how one factor a�ects just one response variable. It establishes if

every sample is the same. To evaluate if there are any statistically signi�cant di�erences

21



between the means of three or more predictors (unrelated) groups, the one-way ANOVA

is performed.

2.6.2 Two-way ANOVA

The one-way ANOVA is expanded upon by the two-way ANOVA. One independent

variable in�uences one or more dependent variables in a one-way relationship. A two-

way ANOVA has two independent variables. A two-way ANOVA, for instance, enables

a business to compare operational e�ciency based on two independent factors, such

skill level, and compensation. It is used to examine the simultaneous e�ects of two

factors and see how the two elements interact.
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Chapter 3

Literature Review

The methods that are relevant to our work are described in this chapter. There have

been several studies on how to categorize brain tumors. Many methods, including

fuzzy clustering means (FCM), support vector machines (SVM), convolution neural

networks (CNN), arti�cial neural networks (ANN), and the expectation-maximization

(EM) algorithm technique, have been proposed in recent years for the classi�cation of

brain tumors in MR images. The application of statistical techniques to the issues of

high dimensionality, classi�cation, face recognition, feature extraction, and data visu-

alization has received a lot of attention lately [23, 27]. Discriminant analysis has been

used for decades in many biomedical applications.

In 1994, (Trevor Hastie, Robert Tibshirani, and Andreas Buja) proposed FDA [28]

One can identify a smaller number of discriminant coordinate functions that are "op-

timal" for dividing the groups when there are a lot of predictors. A classi�cation map

that divides the reduced space into areas that can be distinguished by group mem-

bership and have linear decision borders may be created using two of these functions.

Richer nonlinear classi�cation systems are the topic of this research. When utiliz-

ing ideal scorings to represent the groups, Linear Discriminant Analysis is identical

to multi-response linear regression. By substituting any nonparametric regression ap-

proach for linear regression, we were able to create nonparametric versions of Flexible

Discriminant Analysis (FDA).

Hastie and Tibshirani (1996) [30] a model for discriminant analysis based on a mix
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of Gaussians, each of which has a shared covariance matrix, has been presented. The

well-known linear and quadratic discriminant analysis methods are based on common

Gaussian assumptions, which are naturally extended by the mixed discriminant analy-

sis (MDA) model [30]. We show that the MDA classi�er recognizes three classes, each

of which has non-adjacent subclasses, whereas the typical Gaussian assumption used in

linear and quadratic discriminant analysis is insu�cient and results in subpar decision

boundaries.

Line CLEMMENSEN et al proposed Sparse Discriminant Analysis (SDA) [31], a

technique for carrying out Linear Discriminant Analysis while imposing sparseness cri-

teria, allowing for simultaneous feature selection and classi�cation. If class boundaries

are nonlinear or if the subgroups within each class are present, Sparse Discriminant

Analysis (SDA), based on the optimal scoring interpretation of LDA, can be expanded

to perform sparse discrimination using mixtures of Gaussians.

Together with other researchers, Sankari et al. [35] developed a model for the most

di�cult task in cancer diagnosis: identifying a brain tumor. PCA, Route set theory,

and the Wavelet approach have been used in the majority of this �eld's research studies.

Convolutional neural networks were employed by the authors to resolve the issue. The

authors suggested bias-�eld correction, intensity normalization, and image de-noising

as methods for pre-processing images. The noise from the MRI is eliminated using

Principal Component Analysis (PCA). For picture enhancement and feature extrac-

tion, histogram equalization is performed. Finally, CNN was applied to characterize

the photos, which produced an improved outcome.

The author classi�ed normal and abnormal brain MR images using the SVM classi�-

cation approach [24]. For implementation purposes, Matlab 7.9 was used to extract the

characteristics. Extracted data is utilized as a classi�cation process input to determine

if the �ndings are normal or abnormal. Normal photos are successfully categorized with

an accuracy of 65%, whereas aberrant ones are not. Use of Radiant Basis Function

(RBF) with categorization is the cause of the failure. This study claims that SVM
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cannot produce reliable �ndings when dealing with big amounts of data.

As well using the SVM classi�cation approach was another author[25]. 140 MR

images of brain tumors were collected from an online brain tumor archive. For tu-

mor detection, a large dataset is employed, which produced noticeably better results.

Shape, intensity, and texture are used to extract features. PCA and LDA are two

analytic methods that are used to minimize the characteristics after selection. The

accuracy rate has increased to 98.77 percent.

In 2017[26], authors use biologically inspired BWT and SVM to perform image

analysis for MRI-based brain tumor classi�cation and feature extraction. They con-

clude that in comparison to manual detection carried out by radiologists or clinical

professionals, the analysis for brain tumor identi�cation is quick and accurate based

on experimental �ndings done on various pictures.

With a similarity index of 96.20 percent, an overlap fraction of 95 percent, and an

additional fraction of 0.025 percent, Kumar and Vijayakumar proposed the segmenta-

tion and classi�cation of brain tumors based on PCA [33, 32] and RBF kernel-based

SVM. This method's classi�cation accuracy for determining the kind of tumor is 94

percent, with a total of 7.5 percent mistakes found.

In a di�erent research, the thresholding segmentation method is used to segment

MR images. Images are �rst converted to grayscale before being �ltered to reduce noise

and improve brightness or sharpness for better output. It is utilized as a classi�er us-

ing the SVM classi�cation approach to show whether the condition is benign or normal.

The authors [34] of this research suggested a four-step methodology for classifying

brain tumors. They used pre-processing, segmentation, feature extraction, and clas-

si�cation in their strategy. A novel method called hybrid SVM is used to categorize

tumors. On the OASTS dataset, this method was used. The OASTS dataset took sig-

ni�cantly less time to classify than the other two. They used the hybrid methodology
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in their method, which produced a high detection rate and quick classi�cation speed.

Figure 3.1: General system for brain tumor analysis
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Chapter 4

Featured Methodology

4.1 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) [21] based on the Bayes theorem. The mathemat-

ical formation of Linear Discriminant Analysis (LDA) is

Given a data matrix X and a class variable Y , Bayes Theorem states that

P (Y = k|X = x) =
P (X = x|Y = k)P (Y = k)

P (X = x)
for k = 1, 2, ..., K (4.1)

Where,

P (Y |X) the posterior probability

P (X|Y ) the likelihood

P (Y ) the prior probability of class

and P (X) the prior probability of predictor.

To calculate the posterior probability from the likelihood and prior probabilities,

using the Bayes rule assumption to obtain the estimation, which states that Model a

P (Y |X) = fk(x) as a multivariate normal distribution so,

Suppose that P (Y = k) = πk

P (X = x|Y = k) is multivariate normal distribution with σ and µk

πk = sample number in k class divided by a total number of samples. πk is usually

estimated by the empirical frequency of the training set.
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fk(x) = Nk(µk, σ) (4.2)

where

µk mean for all k

σ covariance matrix

By Bayes rule,

P (Y = k|X = x) =
fk(x)πk

P (X = x)
(4.3)

P (X = x) is a constant function. C represents those constant values that don't depend

upon k so

P (Y = k|X = x) = C ∗ fk(x)πk (4.4)

Now fk(x) is,

P (Y = k|X = x) =
Cπk

2π
p/2
k ∗ |σ|1/2

exp−1/2(x−µk)
tσ−1(x−µk) (4.5)

Taking log both sides and get,

ζk(x) = logπk − 1/2µt
kσ

−1µk +X tσ−1µk (4.6)

So the linear boundary is,

logπk − 1/2µt
kσ

−1µk +X tσ−1µk (4.7)

For 2-class classi�cation

ζk(x) = ζl(x) (4.8)

logπk − 1/2µt
kσ

−1µk +X tσ−1µk = logπl − 1/2µt
lσ

−1µl +X tσ−1µl (4.9)

For multi-class classi�cation,

logπk − 1/2µt
kσ̂

−1µk +X tσ̂−1µk = logπl − 1/2µt
l σ̂

−1µl +X tσ̂−1µl (4.10)

Here ζ sign is used for posterior probability.
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4.1.1 Regularized Discriminant Analysis (RDA)

Regularized Discriminant Analysis (RDA) [29] is a combination between LDA and

QDA as it diminishes σj to a pooled variance σ by describing,

σ̂j(β) = βσ̂j + (1− β)σ̂ (4.11)

and substituting σj with σj(β) in the discriminant functions. Here, β ∈ [0, 1] is a

tuning parameter de�ning whether the covariance should be estimated independently

(β = 1) or should be pooled (β = 0). Furthermore, σ̂ can also be minimized toward

the scalar covariance by making

σ̂(λ) = λσ̂ + (1− λ)σ̂2I (4.12)

where λ = 1 indicates the pooled covariance and λ = 0 indicates the scalar covariance.

Substituting σ̂j by σ̂β, λ leads to a more general perception of covariance. Although

RDA is a regularization approach, it is especially bene�cial when numerous attributes

may be associated.

RDA restricts QDA's distinct covariance to the common covariance of LDA. This

increases covariance matrix estimates when the number of predictors is greater than

the number of samples in the training data, resulting in improved model accuracy.

4.1.2 Flexible Discriminant Analysis (FDA)

Using optimal scoring, Flexible Discriminant Analysis [28] transforms the response

variable to train the classi�er for linear separation. It is a classi�cation model based on

a combination of linear regression models. Mathematical derivation of FDA by optimal

scoring is,

Let X be the N ∗ K indicator matrix with mean zero and unit variance and Y be a

class variable. Let Θ(J∗K) be a matrix of J = 0, 1, 2....j score vectors for K classes. If

we take Θ∗
0 as a N ∗K matrix of transformed values of the classes, then

Θ∗
0 = YΘ (4.13)
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Suppose an initial score matrix Θ0 With J rows and K columns such that J≤K
satis�es the constraints,

ΘTDpΘ = I (4.14)

Where

Θ is the initial score matrix.

Dp be a diagonal matrix of class proportions.

Dp =
1

n
Y TY (4.15)

If the scores were �xed, the average squared residual could be minimized by re-

gressing Θ∗
0 on data matrix X. Those responses are obtained by assigning scores to the

classes such that the transformed class labels are optimally predicted by regression on

X.

Make a transformation by �tting a multivariate response non-parametric regression of

Θ∗
0 on X. Which gives the estimated values Θ̂∗

0.

Obtain the eigenvector matrix Φ by multiplying the linear operator S(λ̂) with trans-

formed value Θ̂∗
0.

Φ = Θ∗
0
T Θ̂∗ = Θ∗

0
TS(λ̂)Θ∗

0 (4.16)

Where λ̂ is the hyper-parameter that is used to specify the amount and type of scoring.

Hence the optimal scores,

Θ = Θ0Φ (4.17)

From equation (4.17), we can update the model by using optimal scores n(x)← ΦTn(x).

n(x) are the number of scores of �tted regression functions.

Flexible Discriminant Analysis (FDA) can be considered as the application of LDA

on the matrix obtained with the non-parametric regression and on the transformed

class matrix.
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4.1.3 Mixture Discriminant Analysis (MDA)

By Hastie and Tibshirani (1996) [30] each subclass has a multivariate normal distribu-

tion with its own mean vector µkr and common covariance matrix σ. Assume that we

have K classes in our classi�cation system and the number of sub-classes in each class

is Rk, k = 1, 2, ..., K. Then the mixture density for class k as

fk(x) = P (X = x|G = k) = |2πσk|−1/2
Rk∑
r=1

πkrexp(−D(x, µkr)/2) (4.18)

where X is a data matrix.

G refers to the class of a given object.

σk is a covariance matrix assumed common to the mixture sub-classes of class k.

πkr and µkr are the mixing probabilities and mean of the r-th subclasses of the k

class.

D(x, µkr) ) refers to the Mahalanobis distance between x and µkr.

The conditional log-likelihood is

lmix(θ) = lmix(µkr, σk, πkr) =
N∑

i=1
log(fgi(xi)) (4.19)

The EM algorithm provides a convenient method for maximizing lmix(θ) The EM steps

are

E-step: For each class k, collect the samples for this class and compute the posterior

probabilities of all the Rk components.

πkrexp(−D(x, µkr)/2)∑Rk

r=1 πkrexp(−D(x, µkr)/2)
(4.20)

M-step: Compute the weighted MLEs for all the parameters. Where p̂(Ckr|x, k) =
Prob(x ∈ r-th subclass of class k|x, k) is the function of µ̂kr and σ̂.

π̂kr ∝
∑
gi=k

p(ckr|xi, k),

Rk∑
r=1

π̂kr = 1 (4.21)
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µ̂kr =

∑
gi=kxip(ckr|xi, k)∑
gi=kp(ckr|xi, k)

(4.22)

σ̂ =
1

N

K∑
k=1

∑
gi=k

Rk∑
r=1

p(ckr|xi, k)(xi − µkr)(xi − µkr)
T (4.23)

The notation
∑

gi=k used for the sum of all the observations belonging to the k-th class,

N refers to the total number of training data,

The equation (4.21) is the estimation step, whereas (4.22) to (4.24) are the maximiza-

tion steps.

Using the posterior class probabilities via Bayes theorem, are of the form,

P (G = k|X = x) ∼ ΠkProb(x|k) ∼ Πk

Rk∑
r=1

πkrexp(−D(x, µkr)/2) (4.24)

where Πk is the prior probability for class k estimated from the training data.

4.1.4 Sparse Discriminant Analysis (SDA)

In Sparse Discriminant Analysis (SDA) [31], let suppose,

X be an n ∗ k matrix of Xij = 1i∈(Cj) and is orthogonal to all of the columns of X.

and suppose that each of the n observations fall into one of K classes. Suppose that

each of the p features have been centered to have µ = 0, and the features have been

standardized to have equal variance if they are not measured on the same scale.

Dp =
1

n
XTX (4.25)

Dp be a diagonal matrix of class proportions.

For k = 1, Q1 be a k ∗ 1 matrix of 1's.

For k = 1, 2, .....,m SDA for (λk, δk) as follows:

(a) λk = (I −QkQ
T
kDp)λ∗ is a random vector of data matrix X.

Simplify λk = λT
kDpλk = 1

(b) Iterating the function until a maximum number is obtained as convergence,

let δk be the solution to the generalized problem. And γ and φ are non-negative tuning
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parameters.

minimizedδk[
1

n
||Xλk − Y δk||2 + γδTk Ωδk + φ||δk||1] (4.26)

For �xed δk,

λ̂k = (I −QkQ
T
kDξ)D

−1
ξ XTY δk, λk =

λ̂k√
λ̂k

T
Dξλ̂k

(4.27)

(c) If k < m, Qk + 1 = (Qk, λk)

The classi�cation results by performing this technique with n∗q matrix (Y δ1, Y δ2, ....., Y δq)

Once sparse discriminant boundaries have been obtained, we can plot the matrices

Xβ1, Xβ2, and so on to perform data visualization in the reduced subspace. The

classi�cation rule is obtained by performing standard LDA on the n ∗ q reduced data

matrix (Xβ1.....Xβq) with q < k.
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Chapter 5

Data Explanation and Statistical

Software

Datasets are essential to the results of classi�cation and the learning process. Firstly,

we discuss the application which we used to classify.

5.1 Brain Tumor

The brain is indeed one of the body's vital organs since it orchestrates all of the body's

movements. Infections, strokes, and tumors are just a few of the many illnesses that

may impact the human brain.

What is a brain tumor?

A brain tumor is a growth or expansion of abnormal cells formed in the parenchyma

or surrounding brain tissue. Brain tumors are classi�ed into two categories: primary

tumors and secondary tumors. A primary brain tumor originates in the brain. It can

either be benign (doesn't contain cancer cells) or malignant (does not contain cancer

cells). A subsequent or metastatic brain tumor develops when cells from a primary

malignant tumor that originated elsewhere in the body travel to the brain and begin

to grow there[17].

X-rays, powerful magnets, or radioactive chemicals are used to make images of the

brain for image testing of a brain tumor. Various scan kinds are often used to diag-

nose brain cancers. The most often utilized scan types to identify brain illnesses are
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Figure 5.1: Example of brain image (a) and (b) with tumor

Positron Emission Tomography (PET), Computer Tomography (CT), and Magnetic

Resonance Imaging (MRI). These images are so e�ective that they can provide crucial

facts regarding a tumor's presence and location.

According to the World Health Organization (WHO), [11, 12]. , cancer ranks as the

second most common cause of death worldwide. One of the main reasons why deaths

among adults and children are rising globally is brain tumor, which places a signi�cant

strain on families and healthcare systems. Only brain cancer is to blame for about

13% of all fatalities worldwide. At the age of 15, 3,540 kids were diagnosed with brain

tumors in the year 2020 [13].

The biopsy of a brain tumor is typically not performed before total brain surgery,

in contrast to cancers located elsewhere in the body. First, benign tumors cannot

metastasize outside of the brain. The majority of benign brain tumors are self-limiting

and do not require treatment. Because of their location, they may create di�culties,

however, surgery or radiation can be bene�cial. The second is that malignant tumors

are commonly referred to as brain cancer[19]. The brain may not be the only location

of these malignancies. Malignant brain tumors will inevitably become a problem if left
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untreated, and forceful treatment is nearly always necessary. Malignancies of the brain

can be categorized into two groups. The brain is where primary brain cancer starts.

The brain is a�ected by secondary or metastatic brain cancer that has spread from

another part of the body [13, 14].

When bodily cells (in this example, brain cells) divide uncontrollably, cancer devel-

ops. Brain cancer patients may experience severe limitations that severely limit their

everyday activities and lower their quality of life. It creates resistance while the brain

is trying to operate. This anomaly or dysfunction is a sign of a brain tumor. The

ability of radiologists to identify brain tumors early mostly depends on their experi-

ence. Radiologists frequently utilize magnetic resonance imaging (MRI) to assess brain

tumors to see whether the proper classi�cation is in place[15].

The �rst step in addressing the appalling number of deaths caused by brain tumors

is the classi�cation of normal and abnormal brain pictures obtained from MRI. How-

ever, due to the volume of data from MRI, manual classi�cation is laborious, di�cult

to perform, takes a long time, and calls for experience. The spectator has a very tough

time understanding and evaluating the photos to �nd the tumor. Consequently, it is

essential to create and put into use an automated picture analysis system. It needs

to be quicker, more precise, and simple to use when concluding MRI scans. Numer-

ous autonomous and precise medical diagnosis approaches that employ sophisticated

signal/image processing techniques and computationally clever machine learning algo-

rithms have been the subject of research.

The application of statistical methods to MRI o�ers knowledge to medical pro-

fessionals and aids in the diagnosis of a wide range of illnesses and ailments. Using

supervised or unsupervised algorithms, the data from MRI pictures may be evaluated,

processed, and divided into normal and pathological groups. However, how well the

characteristics are extracted from the images and how useful they are in identifying

the condition will decide how accurate the classi�cation is. The preferred option to

balance the disadvantages is to select the best technique that can determine the fewest,
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most relevant features possible to obtain the complete characteristic anatomy of the

tumor, thereby reducing the additional computational complications for unnecessary

feature extraction. Extraction of meaningful features is important, but it also increases

the computational burden of the classi�er. The Fast Principal Component Analysis

approach is one good method that considers the restrictions.

5.2 Medical Imaging and Brain Tumor Diagnostic Ap-

proaches

A prompt diagnosis aids in the therapeutic process. Di�erent methods, such as brain

imaging and brain biopsy, are used to diagnose tumors, their causes, and their conse-

quences [16].

5.2.1 Computer Tomography (CT scan)

An essential imaging method in the medical profession, a CT scan provides results in a

matter of seconds and often takes just a small fraction of the time. Compared to X-rays,

it aids in delivering clearer information, but the danger of radioactive contamination

is quite minimal.

5.2.2 Positron Emission Tomography (PET)

Positron emission tomography, or PET, is a procedure in which a radioactive substance

is injected into the blood and a scanner picks it up to provide a picture. This method

provides insight into the activity and operation of the brain. This technique uses toxic

materials but is also cost-e�ective.

5.2.3 Magnetic Resonance Imaging (MRI)

Medical professionals can diagnose diseases and make decisions since MR pictures don't

expose them to dangerous radiation [15]. Brain tumor identi�cation and diagnosis pre-

processing involve the use of MR images. Of all the scan kinds, an MRI is the most
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commonly used for diagnosis. Instead of using X-rays, MRI [20] employs radio waves

and powerful magnetic �elds. The kind of bodily tissue and speci�c disorders deter-

mine how the radio wave radiation is absorbed and then released.

The pattern is converted by a computer into a very detailed representation of various

bodily components. Gadolinium, a contrast agent and dye used in the scan, is ad-

ministered into the patient's veins before the scan to provide more accurate results.

Figure 5.2: Di�erent techniques of brain tumor imaging
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5.2.4 Biopsy of Brain

A brain biopsy is a technique in which a hole is drilled in the skull and a portion of

tissue and a tumor are extracted to be examined under a microscope to determine

the kind, content, and source of the tumor. This method poses a serious threat to

human life. To �nd the tumor and get a sample of tissue, a biopsy also uses imaging

technology.

Figure 5.3: The procedure of brain biopsy is presented.

Why are MRI-scanning images preferred over other imaging methods?

1) MRI is non-invasive.

2) MRI is economical.

3) It provides good contrast of brain tumors.

4) MRI acquisition time (total body scan) is shorter than that of PET and X-ray.

5) MRI gives an excellent description of skeletal structure and organ systems behind

them, such as the lungs behind the ribs and the brain underneath the skull.
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5.3 Statistical Software

R is used for both computations statistical analysis and modeling. https://www.

R-project.org/. Some R libraries, including MASS, rda, sda, and dplyr, are utilized

in the proposed study for classi�cation purposes.

5.4 Dataset

The data set was collected to classify brain tumors using Magnetic Resonance Imaging

(MRI) obtained from the Kaggle link

https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection

253 MRI pictures were included in the data used to categorize the data for this thesis.

There are 155 of them with the label "yes," indicating the presence of a tumor, and 98

with the label "no," indicating the absence of a tumor.

5.4 shows the images of tumor patient and 5.5 shows the image of normal patient.

40

https://www.R-project.org/
https://www.R-project.org/
https://www.kaggle.com/navoneel/ brain-mri-images-for-brain-tumor-detection


Figure 5.4: MRI x-ray of the patient when the tumor is present.

Figure 5.5: MRI x-ray of normal patient when the tumor is absent.
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Chapter 6

Results & Discussions

In this thesis, Linear Discriminant Analysis with its variants and FAST Principal Com-

ponent Analysis are the algorithms that are applied to brain tumor MRI. A detailed

process has been done with MRI images given below.

The actual images of the database have di�erent spatial and high resolutions. This

determines challenges for computer hardware and have a high computational cost.

Data is divided into two folders. 155 images in one folder of tumorous patients. The

second folder represents the images of non-tumorous patients.

Table 6.1: The length and percentage of data folders are presented in the table.
Tumor Patients 155
Normal patients 98
% of tumor patient's folder 61.26482
% of normal patient's folder 38.73518

The input data of the proposed system is in di�erent shapes (e.g., 225X225, 630X630,

180X280). In pre-processing, we changed the size of the images to 500X500. Then com-

pared the original images with the resized one shown in the 6.1.

The 253 brains MRI resized images each of 500x500 were used for the analysis. The

re-sizing that was performed on the whole database without destroying much informa-

tion is shown in 6.1. For two images, it is possible to observe both the original images

and the resized versions. This procedure must be followed for every one of the patient's
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Figure 6.1: Pre-processing results are presented. The comparison between an original
image and resized one.
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images. R studio is used for all image processing as well as programming. Analyzing

the images and converting them into a vector of pixel values rather than a matrix of

pixel values is required since the classi�cation technique relies on vectors.

Before building the discrimination model we used PCA for the removal of outliers.

For this purpose PCA biplot is constructed for both classes separately and is presented

in 6.2.

The biplot, which combines the principal component values and the loading vectors in

a discrete biplot presentation, is a widely common method for visualizing the �ndings

from PCA. The points lying outside of the outer circle can be marked as an outlier,

similarly, points lying inside of the inner circle can be marked as collinear and can be

removed from the analysis. It appears 227 MRI images, out of them 139 have a brain

tumor, and the remaining 88 have no tumor.

The full data has 253 samples while the limit where outliers are removed has 227

samples.

In order to classify response class vector Y based on the MRI images based data matrix

X, we have applied LDA and its variants over the full data and the data with removed

outliers with PCA through Monte-Carlo simulation.

In the Monte-Carlo simulation part, we go through methods for assessing classi�er

performance. The training error rate is one of the performance metrics taken into ac-

count. Assume there are n training data points for Cross-Validation.

The results of this approach include high bias but low variance, whereas, in Monte

Carlo cross-validation, each data point is evaluated arbitrarily many times. Repeti-

tive random selection and statistical approaches are used to achieve the Monte Carlo

Cross-Validation results.

This approach is analogous to arbitrary experiments, where the �nal result is not known

in advance. In the natural sciences, social sciences, and technical domains, mathemat-

ical models are used to express system dynamics. These models frequently begin with

a set of input parameters, which are then processed by the model's mathematical for-

mulae to create one or maybe more outputs.

It is also known as repeated random sub-sampling Cross-Validation. It randomly di-
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Figure 6.2: The right panel presents the PCA biplot of patients having a brain tumor,
while the lower panel presents the PCA biplot of patients having no brain tumor.
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vides the training data (perhaps 70�30% or 60�40%). That iteration �tted the classi�er

to the train data set. The training data set and the validation set are separated from

the data set. The validation set is used to calculate the test error, whereas the training

set is utilized to train the model. Depending on the Cross-Validation approach, the

procedure is repeated a few times by resampling the validation set and the training set.

The model's test error is ultimately calculated as the mean of all test errors acquired

by resampling.

We are going to take R package `e1071' to help us to do the classi�cation and prediction.

In R, we can write a `for loop' to build this Cross-Validation. For the comparison of

di�erent methods, we have used the Monte-Carlo simulation with 100 runs. When the

runs were increased, the computer hanged from processing. It was assumed that the

data was huge and required more computer hardware space. However, LDA, like other

machine learning methods has a weakness, in that it is a time-consuming process. To

deal with this problem, we re-scaled the data by PCA. 6.3 are shown the distribution

of images after re-scaling by histogram.

The data is divided into 70% training and 30% testing. The accuracy of all �tted

models is computed for both testing and training data. The calibration accuracy of

training data is computed and presented through the graph.

For reliable comparison, we have used Monte-Carlo simulation with 100 runs, where in

each run the MRI samples from each class were divided into 30% test and the rest in

the training set. Training data was used to �t the MRI classi�ers while the accuracy of

these �tted models is computed from both test and training data, respectively called

validation and calibration.

The validation and calibration accuracy from each run is computed and is presented

in 6.4. The upper left panel compares the classi�er's accuracy over training data when

the full data set is used. In the left panel in the calibration graph, Methods are applied

over full data when outliers are not removed and in the right panel, results are shown

when methods are applied after removing outliers. Similarly, the result is presented in

a validation graph.
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Figure 6.3: (a) Re-scale the data of normal patients from 0 to 1. The distribution of
normal patients is presented. (b) Re-scale the data of tumor patients from 0 to 1. The
distribution of tumor patients is presented.
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Figure 6.4: The calibrated and validated accuracy of all considered LDA variants with
and without outlier removal is presented in the upper and lower panel respectively.
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We removed outliers with PCA, and applied methods LDA-PCA, MDA-PCA, RDA-

PCA, SDA-PCA, and FDA-PCA before removing outliers and after. All methods ex-

cept RDA-PCA show 100 % accuracy while RDA-PCA has around 98 % accuracy in

training data. The upper right panel compares the classi�er's accuracy over training

data when data with outlier removal is used. In 6.4, calibration graph, the results are

presented. A similar pattern appears in validation. Notably, RDA-PCA has accuracy

is improved by removing the outliers. The lower left panel compares the classi�er's

accuracy over test data when the full data set is used.

All methods except RDA-PCA show 80% accuracy while RDA-PCA has around 73 %

accuracy. The lower right panel compares the classi�er's accuracy over test data when

the data with removed outlier is used. MDA-PCA outperforms all methods by showing

83.1 % accuracy on test data, while FDA-PCA, LDA-PCA, and SDA-PCA show 82.5

% accuracy, moreover RDA-PCA has around 71 % accuracy.

Over MDA-PCA classi�er appears the winner with best for MRI image-based tu-

mor classi�cation over the test data and training data, whereas RDA-PCA appears

the worst classi�er. Well, each classi�er being used here has some parameters to tune.

For instance, the ratio 'R' presents the number of PCA scores being used with classi-

�ers. We have used R = (0.70, 0.73, 0.76, 0.79, 0.82, 0.85, 0.88, 0.91, 0.94, 0.97), lower R

indicates lower number dimensions are used in �nal classi�ers and higher R indicates

higher number of dimensions are used.

In 6.5, the values of R are shown by a line graph. In the graph, di�erent lines represent

di�erent methods. The Red line indicates RDA-PCA, which gives the worst results.

On the other hand, the green line MDA-PCA shows better results. The upper panel

presents the distribution of R for di�erent methods. It appears PCA-RDA has the best

accuracy with R=0.97, this means PCA-RDA is consuming a high amount of principal

components and is not contributing to dimension reduction. FDA-PCA results from

the best accuracy with R=0.79, while SDA-PCA demonstrates the maximum precision

with R=0.91, moreover MDA-PCA illustrates the best accuracy with R=0.7 indicating

is consuming the least level of principal components.

49



R

V
a

li
d

a
te

d
 A

c
c
u

ra
c
y

70

75

80

0.7 0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

Method
FDA−PCA
LDA−PCA
MDA−PCA

RDA−PCA
SDA−PCA

●

●

●

●

●

Figure 6.5: The distribution of R for respective methods is presented. The Red line
indicates RD-PCA, which gives the worst results. On the other hand, the green line
MDA-PCA shows a better result.
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RDA requires tuning parameters δ and α which are the regularized parameter indi-

cating the amount of balance between LDA and QDA 6.6. α value near zero indicates

the operator performs Quadratic Discriminant Analysis (QDA), and α values toward

1 indicate the operator tends to perform Linear Discriminant Analysis (LDA).
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Figure 6.6: The distribution of alpha for respective methods is presented.

Higher δ indicates both classes have a common variance and lower δ indicates both

classes tend to have di�erent variances. To choose the optimal level, the accuracy of

test data was computed at all levels the one which results in the best accuracy for a

given Monte-Carlo simulation run is chosen. The optimal parameter being chosen from

each run is presented in Figure 6.7. In RDA-PCA most of the average α and δ are

close to 0 indicating RDA tends to be LDA for image-based classi�cation.

Finally in order to statistically describe the impact of classi�cation methods and

outlier removal methods we have used the analysis of variance (ANOVA) approach. In

ANOVA the response is taken as validated accuracy whereas the brain tumor classi�-

cation methods and choice of outlier removal are taken as factors.
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Figure 6.7: The distribution of δ for respective methods is presented.

To ascertain the statistically signi�cant variations in some of the means, we use the

p-value from the ANOVA results. And compare the p-value to determine the null hy-

pothesis and decide on the statistically signi�cant methods. The classi�cation method

has 5 levels LDA-PCA, FDA-PCA, RDA-PCA, MDA-PCA, and SDA-PCA, while the

outlier removal has 2 levels yes or no. The ANOVA results are presented in Table

6.2. It appears that only RDA-PCA is signi�cantly varying p − value ≤ 0.001. The

classi�cation accuracy of SDA-PCA, MDA-PCA, and LDA-PCA is not statistically sig-

ni�cant. Moreover, The classi�ers have signi�cantly p− value ≤ 0.001 better accuracy

when outliers are removed.

The coe�cient's standard error serves as an estimation of its standard deviation. It ef-

fectively informs us of the degree of uncertainty surrounding our level of classi�cation

method. Simply dividing the coe�cient by the standard error yields the t-statistic.

Higher t-score numbers denote a signi�cant di�erence between the two tested samples.

All methods haven't a signi�cant di�erence when outliers are presented. But the value

of t-statistics is higher when the outliers are removed.
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Table 6.2: The ANOVA results are presented, where the response is taken as validated
accuracy whereas the brain tumor classi�cation methods and choice of outlier removal
are taken as factors. The classi�cation method has 5 levels LDA-PCA, FDA-PCA,
RDA-PCA, MDA-PCA, and SDA-PCA, while the outlier removal has 2 levels yes or
no.

Factor Level Estimate Std. Error t-value p-value
Intercept 99.96 0.03 3417.18 0.00
Method LDA-PCA -0.00 0.04 -0.00 1.00

MDA-PCA -0.00 0.04 -0.00 1.00
RDA-PCA -0.31 0.04 -8.28 0.00
SDA-PCA -0.00 0.04 -0.08 0.94

Outlier Removed Yes 0.08 0.02 3.38 0.00
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Chapter 7

Conclusion

MRI images of brain tumors numerous analyses have used feature selection and extrac-

tion for classi�cation in the past. One approach for classi�cation that is often utilized

is Linear Discriminant Analysis. It is known to fail, though, if there are nonlinear

decision boundaries between the classes. In this thesis, we utilized a couple of meth-

ods for generalizing LDA to a high-dimensional situation, resulting in a discriminant

classi�er that includes both robust and nonlinear solutions. Our suggestion is based on

the straightforward optimal scoring framework, which recasts LDA as a classi�er that

takes less time and is easier to use.

The procedures of image segmentation, pre-processing, feature extraction, feature se-

lection, and classi�cation are part of the methodology provided in this thesis for the

aforementioned study. For tumor diagnosis based on MRI images, we have employed

LDA variations such as Flexible Discriminant Analysis (FDA), Mixture Discriminant

Analysis (MDA), Sparse Discriminant Analysis (SDA), and Regularized Discriminant

Analysis (RDA).

The brain MRI images can be classi�ed by LDA-based methods coupled with PCA. The

study compares 5 LDA-based methods levels LDA-PCA, FDA-PCA, RDA-PCA, MDA-

PCA, and SDA-PCA. MDA-PCA shows the best classi�cation accuracy while RDA-

PCA shows the worst classi�cation accuracy. Mixture Discriminant Analysis(MDA), a

non-linear and robust extension of Linear Discriminant Analysis, with Principal Com-

ponent Analysis (PCA) gives the best results as compared to other extensions. More-

over, it appears that PCA-based dimension reduction e�ectively classi�es the MRI

images related to a brain tumor. The proposed methods can further be used for other
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image-based classi�cation problems.

7.1 Limitations

Our thesis work has numerous limitations, including the following,

The brain tumor data set only contains 253 images. These LDA variants can also use

for a large number of the dataset. In this thesis, we only worked with 2D images.

3D images can also be used for image-based classi�cation. We might have used more

conventional classi�ers to enhance the accuracy. Tumor types could not be identi�ed.
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