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Abstract 

 

Computed Tomography (CT) is the most widely used imaging procedure for locating 

and diagnosing kidney tumors. The standard treatment for kidney tumors is surgical 

removal. It is important to accurately segment the kidney and its tumor for effective 

surgical planning. The manual segmentation of kidney tumors is time-consuming and 

subject to variability between different radiologists. Therefore, automatic semantic 

segmentation of kidney tumors using deep learning networks has become increasingly 

popular in the past few years. Automatic segmentation of kidney tumors is a very 

challenging task due to their morphological heterogenicity. This work provides the 

application of 3D UNet and 3D SegResNet on KiTS19 challenge data for accurate 

segmentation of kidney and kidney tumors. An ensembling operation was added in the 

end to average the predictions of all models. The proposed method is based on the 

MONAI framework and focuses more on training procedure rather than complex 

architectural modifications. The models were trained using KiTS19 training set of 210 

cases for which ground truth labels were available. The training data was divided into 

190:20, for training and validation respectively. We evaluated the performance of our 

network on KiTS19 official test set and obtained mean dice of 0.8964, 0.9724 kidney 

dice, and 0.8204. Our approach outperforms many submissions in terms of kidney 

segmentation and gives promising results for tumor segmentation. We also used a local 

test set of 90 cases from KiTS21 challenge to check how well our method adopts to a 

new dataset. It scored a mean dice of 0.9160, kidney dice of 0.9771, and 0.8550 tumor 

dice. The obtained results on KiTS19 official test set and local test set show that our 

approach is effective and can be used for organ segmentation.  

 

Keywords: Computed Tomography, Kidney Segmentation, Tumor Segmentation, 

KiTS19, KiTS21, MONAI 
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Chapter 1 Introduction 

 

1.1 Kidney and Kidney Tumor 

 

Kidneys are 2 bean-shaped organs, located below the ribcage in right and left 

retroperitoneal space are an essential part of urinary system (Stevens et al., 2010,  Zheng et 

al., 2021). The function of the kidneys is to filter blood and remove metabolic waste from 

the body and produce urine (Finco, 1997, Choudhary et al., 2017). Figure 1 below shows 

the  anatomy of kidney (External and Internal view). The weight of each kidney is between 

130g -150g. The kidney on the right side is located at a slightly lower position than the left 

kidney. Kidneys are part of upper urinary tract. The length of each kidney is approximately 

12cm and the width s nearly 6cm. The blood enters the kidney by renal arteries and is 

filtered in glomerulus. The filtered blood leaves the kidney via left and right renal veins 

(Mahadevan, 2019).  

 

 

 

Figure 1: This figure shows anatomy of kidney (internal and external view). The indented medial surface of 

kidney is called the hilum. Blood vessels, autonomic nerves and lymphatics enter and exit the kidney at the 

hilum. The hilum is also the point of emergence of the ureter from the kidney. 
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Kidney cancer or tumor is the uncontrolled growth of masses in kidney. Some of kidney 

masses are benign and some are malignant (L.B. da Cruz et al., 2022). Figure 2 shows a 

healthy kidney and a effected kidney. The figure clearly shows the  growth of unwanted 

cells in effected kidney. 

 

 

Figure 2: This figure shows the difference between a healthy kidney and a kidney with tumor. Effected 

kidney shows a clear growth of unwanted cells which form a mass called tumor 

 

1.2 Incidence of Kidney Cancer 

 

In 2020, the annual worldwide prevalence of new kidney cancer cases was reported to be 

more than 430, 000 causing approximately 179, 000 deaths(Sung et al., 2021). It is the 10th 

most common cancer diagnosed in women and the 6th among men. Men are at a greater 

risk of being diagnosed with high-grade large kidney tumors having worst oncological 

outcomes than women (Capitanio and Montorsi, 2016; Mancini et al., 2020). The 

established risk factors of kidney cancer include obesity, smoking, hypertension, and 

chronic kidney diseases (Scelo and Larose, 2018). The incidence of kidney tumors, also 

known as Renal Cell Carcinoma (RCC) in medical terminology, has shown an increasing 

trend within the last decade due to improved imaging techniques resulting in early-stage 

tumor detection (Kowalewski et al., 2022). However, more than 50 percent of renal tumors 

are diagnosed incidentally. The development of renal cancers in the human body (early to 

the advanced stage) is determined by general symptoms such as blood pressure, weight 
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loss, and anemia. This is the reason that majority of times kidney tumors are diagnosed by 

chance when abdominal imaging is being performed for other medical disorders (Capitanio 

and Montorsi, 2016; Capitanio et al., 2019; Cinque et al., 2021). 

 

1.3 Diagnosis and Treatment of Kidney Tumors 

 

Although renal tumors are frequently detected incidentally with abdominal ultrasound 

imaging, the gold standard for renal tumor diagnosis is Computed Tomography (CT) scans 

(van Oostenbrugge et al., 2018). This incidental diagnosis of renal masses has contributed 

to an increased survival rate of the disease as the tumors diagnosed are often small and 

localized at the time of treatment (Heller et al., 2019). The standard treatment for kidney 

tumors is surgical removal. There are two surgical approaches: Partial Nephrectomy (PN) 

and Radical Nephrectomy (RN). Nephrectomy means the removal of the kidney. RN is 

considered the traditional approach which involves the removal of both, the tumor, and the 

affected kidney whereas PN refers to the removal of the part affected by the tumor. 

 

1.4  Role of Deep Learning in Diagnosis and Treatment of Kidney 

Tumors 

 

With advancements in imaging technologies and the increasing incidence of early diagnosis 

of localized small tumors, PN is now being considered a standard surgical treatment for 

small renal tumors however, RN is still a common approach for large tumors. PN is less 

invasive as compared to RN, and it also preserves renal function (Mir et al., 2017; Graham-

Knight et al., 2019; Heller et al., 2019). A complete understanding of the extent to which 

the kidney is affected, and the exact location, size, and shape of the tumor is required for 

effective planning (RN or PN) and evaluation process of surgery (Santini et al., 2019; 

Kumaraswamy et al., 2020). In this context, accurate detection of renal tumors and their 

morphological characteristics are of great importance to a radiologist for effective 

preoperative planning (Hou et al., 2020). Currently, medical images are evaluated manually 

by physicians. The manual examination of CT images is very tiring and time-consuming. 

Also, the manual annotation of tumors varies from one radiologist to another due to its 

morphological heterogenicity. Therefore, automatic computer aided semantic segmentation 
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of kidney tumors is essential to reduce this subjective disparity and workload to make an 

accurate diagnosis in less time (Kumaraswamy et al., 2020; Rajendran et al., 2022; Hsiao 

et al., 2022). 

 

1.4 Kidney and Kidney Tumor Segmentation Challenge 2019 (KiTS19) 

 

Automatic segmentation of renal tumors is a challenging task due to the high variability in 

the tumor’s morphological properties and location. Semantic segmentation is a prominent 

research field in biomedical image analysis, but its performance depends upon the 

availability of a large well-annotated dataset (Isensee and Maier-Hein, 2019). In 2019, to 

overcome this deficiency of publicly available data for renal tumors, the Kidney and Kidney 

Tumor Segmentation Challenge (KiTS19) was proposed. The purpose of this challenge was 

to stimulate the development of accurate kidney and kidney tumor segmentation 

algorithms. Recent advances in Convolutional Neural Networks (CNNs) have shown 

phenomenal performance in the field of biomedical image classification and segmentation. 

CNNs have shown better performance in comparison to traditional methods (Rao et al., 

2015; Guo et al., 2019; Zhang et al., 2020). 

 

1.6 Research Objective 

 

Despite the great success of deep learning frameworks in segmentation methods, their 

application to relevant image analysis tasks for end-users is quite limited. There is a huge 

number of published papers that proposed novel architectural modifications and extensions 

that improve performance. However, this requires a high level of understanding and 

experience and really complicates things for a non-expert and sometimes it even becomes 

hard for an expert to evaluate these studies (Litjens et al., 2017; Isensee et al., 2019). 

Therefore, we followed a relatively simple approach without any architectural variations 

and focused more on the training workflow and achieved promising results. 
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Chapter 2 Related Work 

In the literature, many researchers have proposed methods for kidney segmentation. Yang 

et al., 2018 was the first one to use CNNs for the segmentation of kidney and tumor and 

achieved a dice score of 0.931 for kidney and 0.820 for tumor. Before KiTS19 challenge, 

there was no proper publicly available labeled dataset for kidney tumors. 100 teams from 

five continents participated in KiTS19 challenge. Most submissions used Deep 3D CNNs. 

Teams had an average kidney dice of 0.915 and average tumor dice of 0.580 (Heller et al., 

2021).  

 

Isensee and Maier-Hein (2019) scored first position on challenge leader board. They used 

KiTS19 training data to perform 5-fold cross validation on 3D UNet and its variants. The 

3 networks trained in this work were i) plain 3D U-Net, ii)  Residual 3D U-Net and iii) pre-

activation Residual 3D U-Net. A input patch size of 80x160x160 was used and models were 

trained at 1000 epochs. They applied strong data augmentation techniques using batch 

generators. Each model took five days to complete training. Residual 3D U-Net gave the 

best results than the other two models and even better than the ensemble of three. As a 

result, 3D Residual U-Net was used to make final submission on leaderboard. They scored 

a mean dice of 0.912, kidney Dice 0.974 and 0.851 tumor dice. 

 

Hou et al. (2019)  won the second place in this competition. They used a cascaded approach. 

Their pipeline consisted of 3 stages. In first stage, lightweight 3D UNet was used to perform 

coarse localization of kidneys. In second stage high-resolution 3D Unet is used to crop VOI 

and get accurate localization of kidneys (kidney and tumor treated as same label). In final 

stage, Fully Convolutional Net is used to segment both kidney and tumor. They applied 

post processing to fill holes and remove false positives. They obtained a kidney dice of 

0.967, 0.845 tumor dice. The mean dice was 0.906.  

 

Mu et al. (2019) obtained third position in this challenge. To automatically segment kidney 

and kidney tumor, they proposed a multi-resolution 3D V-Net Network. They customized 

the V-Net model using two resolutions and termed it as VB-Net. In coarse resolution, VB-
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Net can robustly localize the organ whereas in fine resolution, it can refine the boundaries 

of each organ accurately. They used PyTorch framework to train their model. Connected 

component analysis was used as post-processing step to remove false positives. Their 

submission scored a mean dice of 0.903, kidney dice 0.973 and tumor dice 0.832.  

 

Zhang et al. (2019) won the 4th place in this competition. They used 2-stage approach to 

segment kidney and kidney tumor. In first stage they used 3D UNet to perform coarse 

localization of kidney. After localization, 3D volume patches were cropped and passed to 

second stage for fine segmentation.  In second stage kidney and tumor were segmented and 

ensembling was performed. They used connected component algorithm as a pos-processing 

step. They scored a kidney dice of  0.974, 0.831 tumor Dice  and a mean dice of 0.902.  

 

Ma, 2019 used 3D UNet as the main network to segment the kidney and crop ROI and then 

in the second stage another 3D UNet is used to segment kidney and kidney tumor from 

cropped ROIs. Test time augmentations were applied, and predictions were averaged. They 

used a heuristic algorithm to remove any false positives. They achieved 0.973 and 0.825 

kidney and tumor dice respectively. The mean dice was calculated to be 0.899 

 

Figure 3 shows an overview of the top five submissions in KiTS19 challenge. All five 

submission did not make use of any external data other than KiTS19 training set of 210 

cases and evaluated their models on 90 test cases.  
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Figure 3: Overview of top five submissions of KiTS19 challenge phase 
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Chapter 3 Methodology 

Our method is based on Medical Open Network for AI (MONAI)  framework. MONAI is 

an open-source, user-friendly, PyTorch-based framework developed for deep learning in 

medical image analysis.  It is an easy-to-use API interface. Figure 4 shows the general 

workflow of our proposed method. 

 

 

Figure 4: General workflow of proposed methodology. CT data is preprocessed and divided in to training 

and validation set. Data is loaded using CacheDataset 

 

3.1 Dataset 

This section describes the datasets used in this research for training and testing. 

3.1.1 KiTS19 Dataset 
 

In this research work, we have used the official KiTS19 challenge database for training and 

validation purposes. The dataset consists of 300 CT scans, 210 of which are publicly 

available with their corresponding ground truth labels. The remaining 90 CT scans, for 

which ground truth labels are kept private, are used for objective model evaluation. The 
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data was downloaded from the official KiTS19 repository. All the data (imaging and ground 

truth) is provided in NIFTI format. The original resolution of CT scans is 512x512 and the 

number of slices varies from 29 to 1059. Figure 5 shows scans of two patients from KiTS19 

training dataset (red represents kidney and green represents tumor). 

 

Figure 5: Scans of two patients from KiTS19 dataset with their corresponding ground truth labels. Red 

represents Kidney and green represents tumor 

 

 We divided the training dataset of 210 CT scans into 190 and 20 for training and validation 

respectively. The datatypes of imaging.nii and segmentation.nii are np.float32 and np.uint8 

respectively. In the segmentation labels, the background is labeled as 0, Kidney as 1, and 

tumor as 2. We evaluated our model on KiTS19 official test set of 90 scans.  

 

3.2.2 KiTS21 Dataset  
 

KiTS21 is the second version of the Kidney Tumor Segmentation challenge held in 2021. 

The dataset is publicly available. The training set consists of 300 CT scans with their 

corresponding ground truth labels. The semantic classes in KiTS21 are Kidney, Tumor 

(defined in the same way as KiTS19), and cyst (Kidney masses if available). We only used 

the labels defined in the same way as in KiTS19. We randomly selected 150 cases from 

KiTS21 dataset. 90 cases were used as a local test set for model evaluation and the 

remaining 60 cases were combined with KiTS19 training data to check the effect of 

increasing training data on the model’s performance. Aggregated_MAJ based mask were 

used for training. Figure 5 shows cases from the KiTS21 dataset with kidney and tumor 

labels. 
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Figure 6: Scans of patients from KiTS21 dataset overlapped with their corresponding ground truth 

segmentation mask 

 

3.1.3 CT-ORG Multi Organ Dataset 
 

CT-ORG (Rister et al., 2019) is a publicly available multi-organ labeled dataset. It consists 

of 140 CT scans with 5 organs (bladder, liver, bones, lungs, and kidneys). We randomly 

selected 20 cases and only used kidney labels to evaluate how well our model segments 

kidneys from unseen data. ITK-SNAP label editor was used to remove the other 4 labels. 

Figure 6 shows a kidney label from a CT scan of CT-ORG dataset. 

 

 

Figure 7: Kidney label from CT-ORG dataset, (a) shows CT scan with all five labeled organs in CT-ORG 

dataset. (b)  shows the kidney label after removal of other four labels using ITK-SNAP editor. (c) shows the 

final kidney label in red color as KiTS19. 

 

 

(a) (b) (c) 
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3.2 Preprocessing  

We changed the orientation of CT scans from SAR (Superior, Inferior), (Anterior, 

Posterior), (Right, Left) to RAS (Right, Left), (Anterior, Posterior), (Superior, Inferior). It 

is common for publicly available large datasets to have different voxel spacings. As it is 

difficult for CNNs to understand the voxel spacings natively, we resampled all the input 

data to common voxel spacing of 1.62x1.62x2 mm (x, y, and z direction). The reason 

behind setting a lower voxel value on the z- axis is to ensure that a greater number of 

training slices are available per patient to increase generalizability. Figure 8 shows the 

effect of these applied transforms. 

 

 

Figure 8: (a) shows the original CT scan from KiTS19 dataset, (b) shows the effect of changing orientation 

from SAR to RAS, (c) shows the same scan after resampling to same voxel size 

The intensity values vary significantly in CT scans, to enhance the contrast of soft tissues 

and to remove the fat regions that surround the kidney, we clipped the intensity values in 

the range [-100, 300] HU and rescaled them between 0 and 1. The clipped images were 

then normalized in the range [-1, 1]. Input images were further cleaned by cropping the 

foreground. The cropping is based on the value of 0. The area of the image having a value 

of 0 (no organ present) is cropped. Figure 9 shows the effect of intensity clipping, 

normalization, and cropping foreground on the same slice. 

 

(a) (c) (b) 
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Figure 9: (a) Intensity clipping, (b) Normalize Intensity and (c) Crop Foreground 

3.3 Data Augmentation 

Manual annotation of large 3D images is a time-consuming and difficult process due to 

which the availability of labeled data is often limited. Therefore, we used strong data 

augmentation to increase the variation in our data and avoid overfitting during training.  

The original resolution of CT scans was 512x512xn (n is the number of slices), which was 

not suitable as an input size due to the limitation of computational resources. Therefore, we 

randomly cropped the data into 4 patches of 96x96x64 to capture high contextual 

information and reduce GPU consumption. This was only done for training data, in 

validation, original resolution images were fed into the model.  Figure 10  shows random 

cropped patches of the input image from KiTS19 training dataset. 

 

Figure 10: This figure shows the randomly cropped four patches of the input CT image and its corresponding 

ground truth segmentation mask. The size of each cropped patch was 96x96x64 for all the models 

(a) (c) (b) 
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We used 3D Rand Elastic deformation (with 0.5 probability), Rand Affine, RandRotate90, 

and Rand Flip (images were randomly flipped on all three axis) to introduce spatial 

anatomical variations in data shape while preserving the spatial information. For variations 

in intensities of CT scans, we applied RandScaleIntensity with the probability of 0.25 and 

RandShiftIntensity setting the maximum offset value to 0.1. We also introduced random 

gaussian noise augmentations. Figure 11 shows data augmentation transforms applied on a 

single image and Figure 12  shows the effect of all applied transforms (preprocessing and 

data augmentation) mentioned above on a single case. 

 

 

Figure 11: This figure shows the effect of data augmentation transforms. (a) Elastic deformation, (b) Random 

flip and (c) Random rotate 

 
 

Figure 12: This figure shows the effect of  all applied preprocessing and data augmentation transforms on 

single image 

(a) (c) (b) 
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3.4 Training Network  

 

KiTS19 dataset was used for training purposes. To accurately segment the kidney and its 

tumor we performed a segmentation model ensemble. The two models used are described 

below:   

 3.4.1 3D UNet 
 

We used Monai’s enhanced UNet architecture. It supports residual units that are 

implemented with residual units class. The purpose of using a convolution in residual part 

is to match the input dimensions with the output dimensions. Our network has five layers 

each with a encode decode path with a skip connection between them. A stride value of two 

is used for each middle layer. In encode path, data is downsampled using strided 

convolutions and is then upsampled in the decode path using strided transpose convolution. 

All encoding and decoding blocks use a kernel size of 3x3x3. We used batch normalization. 

The number of feature maps are 32, 64, 128, 256, and 512. Figure 13  shows the 3D UNet 

architecture used in our work. The total trainable parameters of 3D UNet are 19223664.  

 

 

Figure 13: The figure shows 3D UNet architecture used in proposed work. The number of feature maps are 

32, 64, 128,  256 and 512. Data is downsampled in encode path, using strided convolutions and is then 

upsampled in the decode path using strided transpose convolution 
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3.4.2 3D SegResNet 
 

The second model used is SegResNet (Myronenko, 2018). It is an encoder-decoder-based 

CNN architecture. In the encoder part, ResNet (He et al., 2016) blocks are used. Each block 

consists of two convolutions with normalization and ReLU, followed by an additive 

identity skip connection. We used batch normalization. A regular CNN approach of 

progressive downsizing image dimensions by 2 and simultaneously increasing feature size 

by 2 was used as shown in Figure 14. The decoder part is almost like the encoder part, the 

only difference is that it uses a single block per each spatial level. In the end, the decoder 

has the same spatial size as the original data, with the same number of features as the initial 

input feature size followed by convolutions into a single channel and softmax function. The 

model has 4700931 trainable parameters. 

 

  

Figure 14: The figure shows the 3D SegResNet architecture used in proposed work 
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3.5. Training Protocol 

 

We performed a segmentation ensemble of two different models mentioned above. To 

achieve better results and avoid overfitting we trained UNet and SegResNet models three 

times but with a separate validation set each time. Figure 15 shows the general training 

protocol. Pre-processing of medical images requires additional detailed parameters, so we 

used MONAI’s transforms to convert CT scans from KiTS19 in python dictionaries. We 

used LoadNiftid transform to load the CT scans and applied various pre-processing 

transforms such as Orientationd, spacingd, Clipping and Normalization. We used extensive 

data augmentation transforms such as RandCropByPosNegLabeld to crop input image in 4 

patches of 96x96x64. Other transforms include Elastic Deformation, Flip, Rotate, addition 

of Gaussian noise and adjust Contrast. MONAI’s CacheDataset was used to load data, it 

allows multi-threaded processing. We used a cache rate of 1. The transformed data is 

cached before training which greatly reduces the time in loading data. Data was shuffled 

before each training and was split randomly into 190:20 (190 training and 20 validation). 

The models were trained for 600 epochs using a batch size of 2. The activation function 

used was Softmax. The predictions generated from validation set are compared with their 

ground truth labels and dice scores are computed. After 600 epochs, when the training is 

completed a .pth file of best model is generated which is used for inference on test data. 

The details of inference, evaluation metrics and implementation details are discussed 

below.  
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Figure 15: Overview of Training protocol  

3.6. Implementation Details 

 

All models have been implemented in MONAI open-source framework. The output of the 

models is 3 channels corresponding to 3 classes (background, kidney, and tumor). We used 

DiceCELoss which is a combination of two loss functions, Dice loss, and Cross Entropy 

Loss. A learning rate of 10e-4 was used for training both models with AdamW optimizer. 

The Models were trained for 600 epochs using a batch size of 2 with NVIDIA Tesla T4 

GPU with 16GB memory and RAM. For UNet, each epoch took 2.5 minutes and training 

was completed in 26 hours. In the case of SegResNet, each epoch took 3.5 minutes, and the 

model completed 600 epochs in 37 hours. At the end of each epoch, validation was 

performed using sliding window inference with batch size 1, and the dice metric was 

computed. Table 1 shows the details of specifications of the environment used. 
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Table 1: Specifications of the environment 

Programming language Python 3.8.8 

Ubuntu version 20.04.4 LTS 

RAM 32GB 

GPU 16GB 

CUDA version 11.4 

Deep learning Framework PyTorch 1.9.0 and MONAI 0.8 

 

3.7 Evaluation Metrics  

 

The evaluation metric used in the KiTS19 challenge was the average Sorensen Dice 

coefficient between kidney and its tumor on 90 test cases for which ground truth labels are 

kept private. The kidney dice score was computed by treating kidney and tumor labels as 

foreground and everything else as background. For tumor dice, only the tumor label was 

used to compute the dice score.  

 

 

 

3.8. Inference on Test Data 

 

After training, the best model is used to generate predictions of 90 test cases. For inference, 

we used sliding window inference with an overlap of 0.8 and batch size 4. In post-

processing, the 3-channel output is converted back to a single channel as the original image, 

and the voxel spacing is restored to the original spacing using inverse transforms. Lastly, 

the SaveImage transform was used to save the predicted mask in NIFTI (.nii.gz) format. 

For evaluation, we submitted our predictions on the KiTS19 challenge leader board. Figure 

16 and Figure 17 below describes the inference method. The process shown in Figure 16 
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was performed for both networks individually. Predictions of all six models were generated 

using KiTS19 test set. The score of each model’s predictions was checked on KiTS19 

leaderboard. We used Monai’s MeanEnsemble and EnsembleEvaluator to average the  

predictions for 3 UNet and 3 SegResNet models and check their score on leaderboard. 

Finally, MeanEnsemble was used to take an average of predictions by all 6 models as shown 

in Figure 17. The results are described in the next section. 

 

 

Figure 16: This figure shows the Inference and submission method used in this work. The process shown in 

this figure is first performed on UNet and then SegResNet.  All six models are used to generate predictions 

on 90 test cases. Predictions for each model are submitted on KiTS19 leaderboard. Finally, MeanEnsemble 

is used to average predictions of 3 UNets and 3 SegResNets and their score is obtained by submitting 

predictions on KiTS19 leaderboard 
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Figure 17: This Figure shows the process of averaging predictions of all six models using Monai’s 

MeanEnsemble. The average of all 6 models was used to make a final submission on leaderboard 
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Chapter 4 Results 

As the deadline has passed, the challenge has entered an open leader board phase. Models 

were trained on 190 cases and validated on the remaining 20 cases. Figure 18 shows the 

predictions of validation cases compared with their ground truths. Finally, submissions 

were made on KiTS19 open phase leader board to evaluate our model’s performance on 

unseen test data. The metrics for evaluation are Mean Dice, Kidney Dice, and Tumor Dice. 

 

Figure 18: This figure shows the comparison of predictions of  validation set  generated from all six models 

with their corresponding ground truth segmentation labels 

 

4.1. Results on KiTS19 Test set 

This section provides results of our approach on KiTS19 official test set of 90 cases. 

4.1.1. 3D Unet 

The results of UNet on test data are shown in Table 2. It can be observed that tumor dice 

have significantly improved after combining predictions of all 3 UNet models. Figure 19 

shows the predictions generated by all three UNets and their ensemble. 
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Table 2: Results of UNet on KiTS19 Test Set 

Models Mean Dice Kidney Dice Tumor Dice 

UNet0 0.8769 0.9675 0.7863 

UNet1 0.8735 0.9577 0.7892 

UNet2 0.8771 0.9644 0.7898 

Ensemble 0.8913 0.9690 0.8136 

 

 

Figure 19: This figure shows the comparison  of Predictions generated by all three UNet models and their 

ensemble from KiTS19 official test data 

 

 

4.1.2. 3D SegResNet  

The results of SegResNet on 90 test cases are shown in Table 3. SegResNet0 and 

SegResNet1 give a significantly better dice score for tumors but the score of the ensemble 

is affected by the performance of SegResNet2. Figure 20 shows the comparison of 

predictions generated by SegResNet models. 
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Table 3: Results of SegResNet on KiTS19 Test Set 

Models Mean Dice Kidney Dice Tumor Dice 

SegResNet0 0.8841 0.9692 0.7989 

SegResNet 1 0.8804 0.9679 0.7929 

SegResNet 2 0.8619 0.9607 0.7631 

Ensemble 0.8919 0.9707 0.8130 

 

 
Figure 20: This figure shows the comparison  of Predictions generated by all three SegResNet models and 

their ensemble from KiTS19 official test data 

 

4.1.3 Ensemble of UNet and SegResNet 

Table 4 shows the results of our final submission on the KiTS19 leader board. The final 

submission included the predictions generated by an ensemble of 3 UNet and 3 SegResNet 

models. Our submission on the online leader board scored a mean dice of 0.8964. The score 

for kidney and tumor was 0.9724 and 0.8204 respectively. Figure 21 shows the comparison 

of predictions generated by mean of UNet, SegResNet and their ensemble. Figure 22 shows 

the training Dice loss of all six models trained in this work. 
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Table 4: Results of Ensemble on KiTS19 Test Set 

Models Mean Dice Kidney Dice Tumor Dice 

UNet 0.8913 0.9690 0.8136 

SegResNet 0.8919 0.9707 0.8130 

Ensemble 0.8964 0.9724 0.8204 

 

 

Figure 21: Predictions of Ensemble of UNet and SegResNet 
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Figure 22: Training loss of all six models 

Table 5 shows a general comparison of dice scores obtained from submissions made to the 

KiTS19 challenge phase leader board on 90 test cases with our study. It can be observed 

that our tumor dice outperform other submissions with a large margin. We also compared 

our dice scores with the model that won the competition. Although our tumor dice score is 

less than the winning team, our ensemble model showed a stable performance for kidney 

segmentation. They scored a kidney dice of 0.9737 whereas our ensemble model obtained 

a promising dice score of 0.9724. 

Tsai and Sun (2019) used a coarse to fine semantic segmentation approach. They used 

ResUNet for coarse kidney segmentation and captured the Region of Interest (ROI). For 

fine segmentation of kidneys and tumors, they trained DenseUNet. The input image size 

for both models was 512x512xn. The models were trained using 4 NVIDIA Tesla V100 

32GB GPU memory each using a batch size of 32. They achieved 0.9639 kidney dice, 

0.7533 tumor dice, and a mean dice of 0.8586. 
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Santini et al. (2019) used a multistage 2.5D deep learning framework which was based 

upon Residual UNet. They used a 3-stage approach. In the first stage they roughly 

segmented ROI. Using the ROI of the first stage, kidney and cancerous tissue was 

segmented in the second stage. In the third stage, final segmentation was performed using 

the ensembling approach.They used NVIDIA GTX 1080 11GB GPU. They achieved a 

score of 0.825 mean dice, 0.9627 kidney dice, and 0.7424 tumor dice. 

Myronenko and Hatamizadeh (2019) used an encoder- decoder-based 3D framework that 

was equipped with a boundary stream. It was designed to process the edge information 

separately and was supervised by edge-aware loss. They used an image input size of 

176x176x176. Their final submission used an ensemble of 5 models with Test Time 

Augmentations (TTA). The model was trained using 8 NVIDIA Tesla V100 with 16GB 

memory each with a batch size of 8. Their approach scored kidney dice of 0.9742, tumor 

dice of 0.8103, and mean dice of 0.8923. 

Zhao et al. (2020) used a Multi-Scale Supervised 3D UNet approach. They used the 

framework of a classical 3D UNet but was designed to make predictions from different 

layers in the decoder path, unlike the basic 3D UNet which only gives prediction in the 

final layer. The patch size used for training was 192x192x48 with a batch size of 8. 2 Tesla 

GPUs each with 32GB memory were used for training. The final predictions were improved 

by postprocessing. They achieved a score of 0.8961 mean dice, 0.9741 kidney dice, and 

0.8181 tumor dice. 
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Table 5: Comparison of Kidney and Tumor Segmentation Methods on KiTS19 Test Set 

Authors Network Mean Dice 
Kidney 

Dice 

Tumor 

Dice 

Tsai and Sun, 2019 ResUNet and DenseUNet 0.8586 0.9639 0.7533 

Santini et al., 2019 
Multistage 2.5D deep learning 

using Residual UNet 
0.8525 0.9627 0.7424 

Myronenko and Hatemizadeh, 

2019 

Encoder Decoder with 

boundary stream + TTA 
0.8923 0.9742 0.8103 

Wenshuai Zhao et al., 2020 MSS-UNet 0.8961 0.9741 0.8181 

Our approach  
Ensemble of UNet and 

SegResNet 
0.8964 0.9724 0.8204 

 

4.2. Results on KiTS21 Local Test Set 

We randomly selected 90 cases from the KiTS21 challenge and used it as a local test set to 

evaluate our model’s perfor mance. We removed the cyst label from the KiTS21 dataset as 

it was not defined in the KiTS19 dataset. We used the same metrics defined for the KiTS19 

challenge. Table 6 shows the dice scores of UNet on local test set and Figure 23 shows the 

comparison of  predictions with ground truth labels.  

Table 6: Results of UNet on Local Test Set 

Models Mean Dice Kidney Dice Tumor Dice 

UNet0 0.9075 0.9750 0.8400 

UNet1 0.9008 0.9571 0.8445 

UNet2 0.9065 0.9727 0.8403 

Ensemble 0.9124 0.9701 0.8547 
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Figure 23: Comparison of Ground Truth labels and Predictions generated by UNet 

 

Table 7 shows the scores obtained from SegResNet and Figure 24 shows the predictions 

generated by SegResNet and their comparison with ground truth labels. 

 

Table 7: Results of SegResNet on Local Test Set 

Models Mean Dice Kidney Dice Tumor Dice 

SegResNet0 0.9107 0.9784 0.8430 

SegResNet 1 0.9039 0.9664 0.8414 

SegResNet 2 0.8912 0.9443 0.8382 

Ensemble 0.9105 0.9754 0.8450 
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Figure 24: Comparison of ground truth and Predictions of local test set generated by SegResNet 

 

 

Table 8 shows the results of the ensemble of 3 UNet and 3 SegResNet models on our local 

test data and Figure 25 shows the predictions and their comparison. 

 

Table 8: Results of Ensemble on Local Test Set 

Models Mean Dice Kidney Dice Tumor Dice 

UNet 0.9124 0.9701 0.8547 

SegResNet 0.9105 0.9754 0.8450 

Ensemble 0.9160 0.9771 0.8550 
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Figure 25: Comparison of Predictions with their Ground truth labels on local test set 

Table 9 shows the comparison of our dice scores on the local test dataset with results of 

kidney and tumor segmentation on datasets other than the KiTS19 official test set of 90 

cases present in the literature. 

Yang et al. (2018) presented a Fully Convolutional Network (FCN) which was combined 

with Pyramid Pooling Module (PPM). The dataset consists of a total of 140 CT images of 

which 90 were used for training purpose and the remaining 50 images were kept for model 

evaluation. In the first step, ROI extraction was performed using a multi-atlas-based 

approach. The extracted ROIs were then fed as an input in 3D FCN with PPM. They 

obtained 0.931 and 0.820 kidney and tumor dice respectively. 

Tuncer and Alkan (2018) used the decision support method for the detection of kidney 

tumors. The dataset consists of 130 total images of which 100 were used for testing purpose. 

They used the K-Means algorithm to accurately segment kidneys from abdominal CT 

scans. The segmented kidneys were then used to train the Support Vector Machine (SVM) 

for the classification of renal tumors. They achieved kidney dice of 0.893. 

Mu ̈ller and Kramer (2021) proposed a newly developed framework for segmentation of 

medical images called A Framework for Medical Image Segmentation with Convolutional 
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Neural Networks and Deep Learning (MIScnn). They randomly selected 120 cases from 

the KiTS19 training database for which ground truth segmentations were available and 

divided it into 80 for training and validation and the remaining 40 were used for testing 

purpose. They performed 3-fold cross-validation on 80 randomly selected cases and 

obtained a kidney dice of 0.9319 and a tumor dice of 0.6750 on a test set of 40 cases. 

da Cruz et al. (2022) proposed a 2.5D network for balancing memory consumption and 

complexity of the model for kidney tumor segmentation. They performed initial 

segmentation using DeepLabv3 + 2.5D model with DPN-131 encoder. They used image 

processing techniques to remove false positives. They randomly selected 31 cases from the 

KiTS19 train set of 210 CT scans as a local test set, the remaining 179 were used for training 

and validation purpose. They achieved a tumor dice of 0.8517 on the local test set of 31 

cases. 

Table 9: Comparison of Kidney and Tumor Segmentation Methods on Local Test Set 

Authors Network Dataset 
Mean 

Dice 

Kidney 

Dice 

Tumor 

Dice 

Yang et al., 

2018 
3D FCN-PPM 

140 cases 

(90 Training - 50 Testing) 
- 0.931 0.820 

Tuncer and 

Alkan, 2018 
Decision Support 

130 cases (Training 30 and 100 

Testing) 
- 0.893 - 

Muller and 

Kramer, 2021 
MIScnn 

120 cases from KiTS19 (80 

Training and 40 Testing) 
- 0.9319 0.6750 

L.B. da Cruz et 

al., 2022 

DeepLabv3+ 2.5D 

and technique for 

removing false 

positives 

KiTS19 Dataset – 179 training 

and validation and remaining 

31 as local test set 

- - 0.8517 

Our approach 
Ensemble of UNet 

and SegResNet 

190 Training cases from 

KiTS19 and 90 cases from 

KiTS21(local test set) 

0.9160 0.9771 0.8550 

 

4.3. CT-ORG Multi Organ Dataset  

We only used the kidney label to evaluate how well our model segments kidney. The results 

are shown in Table 10, 11 and 12.  
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Table 10: UNet Kidney Dice on CT-ORG Dataset 

Models Kidney Dice 

UNet0 0.9318 

UNet1 0.9451 

UNet2 0.9362 

Ensemble 0.9477 

 

 

 

Table 11: SegResNet Kidney Dice on CT-ORG Dataset 

Models Kidney Dice 

SegResNet0 0.9471 

SegResNet1 0.9451 

SegResNet2 0.9362 

Ensemble 0.9477 

 

 

Table 12: Ensemble Kidney Dice on CT-ORG Dataset 

Models Kidney Dice 

UNet 0.9477 

SegResNet 0.9499 

Ensemble 0.9501 

Figure 26 below shows the comparison of kidney’s predictions generated by all six models 

and their segmentation ensemble with its ground truth labels. 
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Figure 26: Comparison of kidney’s predictions with its ground truth labels from CT-ORG dataset 

Table 13 shows a comparison of kidney segmentation methods and their dice scores in 

literature with our approach to the CT-ORG dataset. Our method outperforms all other 

methods. 

Rister et al. (2020) they released the labeled CT-ORG dataset for multi-organ segmentation 

consisting of 140 CT scans. They performed a technical validation to check the utility of 

their dataset for which they trained an FCN on 119 cases and evaluated its performance on 

21 test cases. They obtained a dice score of 0.918 for the kidney. 

Drees et al. (2022) designed a method, Octree, for semi-automatic segmentation of large 

3D multiclass segmentation dataset. The aim was to overcome restrictions in the random 

walker method. They evaluated the proposed methodology on the CT-ORG dataset for 

multi-organ segmentation. The score for the kidney was 0.915. 

Li et al. (2022) proposed a novel attention module called Large Kernel (LK) which was 

incorporated into UNet network. They used the CT-ORG dataset to train and test their 

proposed network for multi-organ segmentation. The dice score for the kidney was 0.9226. 
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Table 13: Comparison of Kidney Segmentation Methods 

Authors Network Kidney Dice 

Rister et al., 2020 FCN 0.918 

Drees et al., 2022 Octree 0.915 

Li et al., 2022 LK Attention based UNet 0.923 

Our approach 
Ensemble of UNet and 

SegResNet 
0.950 

 

4.4 Increasing the Dataset 

The availability of well-annotated datasets for segmentation tasks is often limited because 

manual annotation is tedious and error prone task. As a result, the model tends to overfit 

while training. We used 60 randomly selected cases from the KiTS21 database to compare 

the results of our network’s performance if the training data is increased. 20 random cases 

from the KiTS19 dataset were used for validation purpose and the remaining 190 were 

combined with 60 cases from KiTS21. The total number of training cases was 250. We 

trained a single UNet and SegResNet with this new training dataset using the same 

preprocessing and training parameters for 600 epochs and evaluated its performance on the 

KiTS19 official test set on the challenge leader board. The results are shown in Table 14. 

It can be observed that a single UNet and SegResNet when trained with increased data show 

more promising results than 3 UNet and 3 SegResNet models trained with 190 cases. Figure 

27  below shows the predictions of test cases from KiTS19 test set. 

Table 14: Results on KiTS19 Test Data 

Model Mean Dice Kidney Dice Tumor Dice 

UNet 0.8814 0.9637 0.7991 

SegResNet 0.8887 0.9695 0.8080 

Ensemble 0.8935 0.9705 0.8164 
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Figure 27: Predictions from KiTS19 test set generated from model trained with increased data 
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Chapter 5 Discussion  

Segmentation is an essential task in the field of medical image analysis. Over the past few 

years, the use of deep learning-based frameworks for the precise segmentation of organs 

and tumors has increased drastically. Most of the research is focused on proposing 

architectures with novel modifications and extensions that can produce better results, but 

this requires a high level of understanding and experience leading to the increased 

complexity of the model and complicating things for a layperson as well as for the experts 

(Isensee et al., 2019). As the model becomes complex it requires more resources for training 

and inference (GPU and RAM). Therefore, we followed the simple approach of ensemble 

models and focused more on training procedures rather than architectural modifications and 

complexity. We used MONAI’s UNet and SegResNet models and achieved promising 

results by focusing on preprocessing, data augmentation, and training protocol. All the 

models were trained from scratch. Our approach scored better than many submissions 

which used complex models and more computational resources as shown in Table 5. The 

competition was won by Isensee and Maier-Hein (2019) with 0.9737 and 0.8505 kidney 

and Tumor Dice respectively. Our final submission on the KiTS19 leader board obtained a 

kidney dice of 0.9724 and a tumor dice of 0.8204. Ensembling the outputs of all the models 

proved to give better dice scores compared to individual model performance. We trained 

all the models for 600 epochs whereas the winning team trained their models for 1000 

epochs. We evaluated the performance of our network on KiTS19 official test set as well 

as on a local test set of 90 randomly selected cases from KiTS21 database. The obtained 

dice scores on both test sets (official and local) and the CT-ORG dataset for kidney, shows 

that our kidney segmentation method is efficient. Our approach outperforms many 

submissions in terms of kidney segmentation. Segmenting tumors is always a difficult pro- 

cess because of their morphological heterogenicity. The proposed work shows better 

performance than many other submissions which can be improved further by implementing 

different techniques such as ROI extraction as the number of slices vary significantly in 

each CT scan and not all slices contain a Kidney and its tumor andapplying post-processing 

techniques to reduce false positive. 
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Chapter 6 Conclusion 

In this study, we proposed an ensembling approach without many architectural 

modifications. We used MONAI’s 3D UNet and 3D SegResNet. The results on the KiTS19 

leader board show that our approach is accurate for kidney segmentation but falls short on 

tumor dice. Although deep learning networks have achieved the state of the art 

performances in kidney segmentation, tumor segmentation still needs improvement. The 

main reason for this is the lack of publicly available well-annotated datasets containing 

tumors. The results in the Table 9 show that simply increasing the number of training cases 

executes better performance for tumor segmentation without any change in training 

protocol. For future work, we plan to merge the training sets of the KiTS19 and KiTS21 

databases and train the models with this data. We also plan to focus more on the 

segmentation of tumors by incorporating an additional stage for detecting small tumors. 

We hope our approach can be a leading step in the early detection of kidney tumors for 

better diagnosis and treatment planning.  
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