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Abstract 

Computer aided diagnosis is widely used in medical imaging for the diagnosis of many 

diseases such as cardiomegaly, brain and kidney tumor, lung cancer, COVID-19 and 

may more. For the past few decades, computer aided diagnosis has significantly 

improved due to the development of better architecture used for the diagnosis. Knee 

injury diagnosis using deep learning techniques is highly popular due its high detection 

rate and is highly localized. Many state-of-the-art-deep learning models have been 

used for the detection of abnormalities, meniscus tear and ACL tears in Knee MRI 

scans. These models include RESNET, Google-Net, VGG19 and VGG16, Alex-Net 

and many other, all giving significant results. In this study we used a custom 3D CNN 

model which is light in weight. For training we are using two datasets, one provided 

by Stanford ML group and the other form Hospital in Croatia. We combined the two 

dataset and split it into 80-20 ration (80% of the data used for training and remaining 

for testing purposes). Both the dataset has extreme class imbalance, so we used data 

augmentation and class weights to rectify its effect on the training process. Further the 

voxel intensities for the two datasets were different (one dataset was in 8-bit format 

and the second was in 12-bit format), so we normalized the intensity values using 

mathematical formulas. For contrast, we performed adaptive histogram equalization 

Average accuracy and AUC achieved by our model on training set is 97.6 and 99.3 

respectively, during 5-fold cross validation. 

 

INDEX TERMS: Deep Learning, MRNet, Croatia Knee MRI, classification, class 

weights, 3D-CN
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Chapter 1:Introduction 

Among different Knee joint injuries, Anterior cruciate ligament tear is the most 

common especially when it comes to professional football and basketball players 

where due to running, Knee joint constantly undergo wear and tear. When joint in 

human body undergo wear and tear for a significant amount of time the joint eventually 

fails, causing an injury. Annually, 100 out of 1000 players suffer from ACL ruptures 

which require reconstruction of ACL through surgery [1]. Reconstruction of ACL is a 

lengthy process and the person had to undergo at least 8-12 months of recovery period 

[2]. Also, ACL in Knee helps stabilize the joint by keeping the femur and tibia 

perfectly aligned and has one connection on the femur bone and other on the tibia, as 

shown in Figure 1. 

ACL provides 85 percent anterior stability to knee joint during flexion [3]. Based on 

the diagnosis, reconstruction of the ligaments grafts and rehabilitation protocols are 

constructed. There are many techniques to diagnose the ACL injury including both 

invasive and non-invasive methods. Arthroscopy is an invasive method used for the 

diagnosis of ACL injuries, but it has potential complication due to its invasive nature. 

Patients who undergo the surgery develop risk of Pulmonary embolism which happens 

2.8 cases for every 10,000 cases [4]. For diagnosis of the disease or an injury, different 

non-invasive imaging modalities are used such Computed tomography (CT), Magnetic 

Resonance Imaging (MRI), X-ray etc. MRI is the most widely used imaging technique 

Figure 1. Anatomy of knee joint representing position of anterior cruciate 
ligament and posterior cruciate ligament in Knee joint. 
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because it provides not only better soft tissue contrast and 3d Tomographic images but 

have better tendency to show physiological changes in scans. Another key significance 

of magnetic resonance imaging is that it is a radiation free modality unlike CT, X-rays 

[5, 6]. 

Humans are the most intelligent beings on the planet and what makes them intelligent 

is the brains that comprises of billions of neurons [7]. The foundation of the artificial 

intelligence is based upon the anatomy of the human brain. The importance of 

Artificial intelligence in disease detection and diagnosis is increasing because they can 

detect and diagnose the disease precisely and with less computational resources. Every 

day, researchers are employing modern techniques based on machine learning 

algorithms for better evaluation and detection of the injuries one injury being ACL 

tears in Knee joints. Researchers are incorporating machine learning algorithms in 

medical imaging to obtain better results which are not only precise but also clinically 

significant. An Artificial Intelligence or a machine learning model consist of 3 layers. 

First layer is input layer, in which we provide the data on which the training of the 

machine learning model will be done. The input data is fed to the hidden layer. These 

layers are responsible for learning key features present in the dataset, for instance in 

case for image data convolutional neural networks perform better during classification 

and segmentation of the injury or the disease due to its convolutional layers. In CNN 

hidden layer consist of three main layers,(1) Convolution layers: uses convolution to 

form features maps by moving 2-Dimensional feature detector kernel of mainly 3x3 

across the entire image, (2) Polling: use to reduce the size of the convolutional layer 

output by either max-pooling or average pooling, (3) Fully connected layer: activation 

function is applied to determine the class of the input image (intact or injured) at the 

end is output layer. See Figure 2 for graphical representation of basic Convolutional 

Neural Network.  
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After model building, we train the machine learning model on specific dataset such as 

mammographs of breast for cancer detection, CT scans of chest for COVID-19 

detection, detection of diabetic retinopathy (DR) using retinal scans. For evaluation of 

the trained model, it is tested or validated on unseen data. This is done by feeding the 

trained model unlabeled data and record the true positives and true negative [8].  

Machine learning techniques are sometimes unable to classify certain features such as 

small lesion and organs in human body due to simple nature of the models [9]. Today 

deep learning models are becoming more efficient, robust, and precise in detection, 

classification, and segmentation tasks. Deep learning models are more complex, wider 

networks that gives them better chance to differentiate multiple classes in dataset. In 

deep learning, the amount of the data and the image quality highly effect the 

performance of the model. Better image quality and subsequently large amount of data 

helps the deep learning model to classify more accurately. In this study we developed 

a custom 3D convolution neural network for the detection ACL tear in Knee MRI 

scans. The datasets for this study are publicly available. One dataset is provided by the 

Stanford ML group which contain 1250 Knee MRI scans along with the annotations. 

Second is provided by the hospital in Croatia which has 917 scans divided into 3 

classes (Intact, partial tear and completely ruptured). Before training we applied pre-

processing on the given data to improves our model performance. Our model is robust, 

lightweight having only 153k trainable parameters and takes less computational power 

to train.

Figure 2. Convolutional Neural network and its fundamental building blocks. 
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Chapter 2: Literature Review 

Researchers are developing new models to achieve better results in diagnosis of 

disease. In this study [10] used a semi-automated approach which includes extraction 

of features through manually constructed ROI using Histogram-oriented gradient and 

gist descriptor. Two machine learning algorithms were used to achieve best 

performance metrics, support vector machine and random forest. The dataset used for 

the study is obtained from the Clinical Hospital Center in Rijeka, Croatia which 

consists of 917 exams divided into 3 classes (intact, partially injured and completely 

ruptured). The HOG descriptors coupled with support vector machine obtained best 

results. The performance metrics were calculated for two classes one injured which 

gave an AUC value of 0.894 and other completely ruptured which gave AUC value of 

0.943. 

In this study [11] developed MRNet for the classification of ACL injuries in Knee MRI 

Scans. They used Stanford University medical center dataset containing 1370 knee 

MRI scans. For training 1130 exams were used, for testing 120 exams and additional 

120 exams for validation of the model. The model achieved and accuracy of 0.937, 

0.965 and 0.847 for abnormalities, ACL tears and meniscus tear respectively. And 

AUC of 0.911 on external validation dataset consist of scans from the Croatia Hospital. 

In this study [12] employs convolutional neural networks for the detection of ACL tear 

in Knee MRI scans. The dataset used for this study consisted of 260 MRI scans of 

Knee joint. For training and testing, 200 cases were used and remaining 60 scans for 

validation of the model. They used 3 different crop configurations (1) cropped (2) 

dynamic cropping (3) uncropped. The accuracy achieved for each configuration was 

0.68 for uncropped images, 0.72 for cropped images and 0.765 for dynamic cropping. 

In this study [13] used multiple state of the art model including GoogleNet [14], 

AlexNet [15], and RESNET [16] on both Multiview and single view configuration. 

They used Stanford university medical center dataset that contained 1370 knee MRI 

scans.   The performance metric AUC for single-view model was 0.8387 for AlexNet, 

0.7779 for RESNET and 0.7605 for GoogleNet while for multi-view model it was 

87.87 for Alex-Net, 85.96 for Google-Net and 85.79 for RESNET. In study, it shows 

that out of the three classes meniscus tear was the most challenging. For the 

classification of Knee MRI injuries, [17] used 18-layered residual neural network. The 

study uses dataset provided by the Stanford ML group that contains 1370 knee MRI 
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scans. Interpolation technique was used to equalize the number of slices. The average 

AUC was found to be 0.9557 for ACL tear, 0.9081 for Meniscus tear and 0.9381 for 

abnormalities. 

In this study [18] used custom convolutional neural network to detect ACL tear. The 

dataset used in this study was the one provided by Stanford ML group contain 1130 

scans of Knee MRI and additional 120 scans in validation folder. They combined the 

two folders and split it for training and testing in 90/10 ratio (1124 exams for training 

and 125 exams for testing purposes). Further they divided the dataset into two 

categories, one with the Laplacian filter applied and the other one without the 

application of Laplacian filter. They achieved significant accuracy gains with 

Laplacian filter that was 92.8% as compared to non-Laplacian dataset that was 89.2%. 

In this study [19] employs a multimodal feature fusion model for the detection of ACL 

injuries in Knee MRI scans. The dataset used for this study contained MRI scans of 30 

patients. The model showed accuracy of 92.17% in detecting ACL injury. The results 

compared with the invasive procedure for the diagnosis of ACL tear in Knee MRI. 

In this study [20] proposed a Deep convolutional neural network-based inception-v3. 

For training they used transfer learning approach which yields better results in case of 

limited amount of data. They used dataset provided by the Stanford ML group which 

contains 1370 knee MRI scans. For training and testing they used 70% (959 scans) and 

30% (411 scans) respectively. When tested on the unseen data, the best performing 

model achieved the highest test accuracy of 95.42% as compared to other deep learning 

models. 

In this study [21] proposed a custom RESNET-14 model for the classification of Knee 

injuries. The dataset used in this study contained 917 knee MRI scans which were 

divided into 3 class (intact (690 scans), partial tear (172 scans) and completely ruptured 

(55 scans)). They used a hybrid technique for class imbalance, in which the minority 

classes were up-sampled, and majority class was down-sampled to reduce the gap 

between each class in terms of number of samples. They achieved an average accuracy, 

sensitivity, and precision of 92%, 91%, and 91% respectively and average AUC and 

specificity for all three classes was 98% and 95% respectively, with 5-fold cross 

validation. This study stated that instead of artificially increasing the size of the data, 

class weights should be used. 
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In this study [22] proposed a new technique called MRPyrNet which exploits the 

localizations of injuries in diagnostic scans. The study combines MRPyrNet with state-

of-the-art model MRNet and ELNet and compares the improvement in the 

performance of baseline models. Two datasets were used separately in this study, one 

provided by Stanford ML group which has 1370 Knee MRI scans (1130 scans for 

training, 120 for validation and 120 for test set) and second dataset is the one provided 

by the Clinical Hospital Center in Rijeka, Croatia which has 917 Knee MRI scans 

annotated into 3 separate classes (intact, partially injured and completely ruptured). 

The new architecture, combined with state-of-the-art model show significant 

improvements in performance. the traning was done seperatley on the two datasets.  

The AUC for ACL tear for MRNet and ELNet with MRPyrNet report gains of 2.2% 

and 2.1% as compared to baseline models. In case of meniscal tear, the improvement 

was nearly 5.5% and 2.9% for MRNet and ELNet respectively. 

In this study [23] employs a novel RESNET-50 model for the detection of injuries in 

Knee MRI scans. The dataset used in this study has 1250 knee MRI scans provided by 

the Stanford ML group. They achieve better performance by coupling RESNET-50 

with denoising auto-encoders. The model classified the injuries with respect to 

individual plane. In this study the dataset has three planes (1) Sagittal Plane, (2) 

Coronal Plane and (3) Axial plane and in each plane the model classified the given 

scan in three classes (1) Abnormalities, (2) ACL Tear and (3) Meniscus Tear. The 

accuracy and AUC value for ACL tear was 0.7881 and 0.8947 in sagittal plane, 0.7583 

and 0.8297 in coronal plane, 0.8319 and 0.8721 in axial plane, respectively. 

Further detailed information about the accuracy and AUC of the previously done work 

is described in Table I. 

Table I Summary of the related work done regarding classification of knee joint 

injuries from MRI scans using machine learning algorithms. 

Authors Dataset 
Metrics 

Accuracy AUC 

[10] 

Croatia Knee 

MRI Dataset 

(917 cases) 

- 

Injured: 0.894 

Completely Ruptured: 

0.943 
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[11] 
MRNet 

(1130) 
- 

Abnormalities: 0.937; 

ACL tears: 0.965 

Meniscus tears: 0.847 

External validation: 

0.824 

[12] 
260 

MRI scans 

Single slice (uncropped: 0.68, 

cropped: 0.72 and cropped + 

dynamic: 0.765) 

3 slices: 0.865 

5 slices: 

(CrossValidation:0.915; Test: 

0.967) 

- 

[13] 
MRNet 

1370 scans 

AlexNet: 

Single-view: 0.7639; Muti-

view: 0.8166 

Resnet-18: 

Single-view: 0.7537; Multi-

view: 0.8167 

GoogleNet: 

Single-view:0.7046; Multi-

view: 0.7806 

AlexNet: 

Single-view: 0.8387; 

Muti-view: 0.8787 

Resnet-18: 

Single-view: 0.7779; 

Multi-view: 0.8579 

GoogleNet: 

Single-view:0.7605; 

Multi-view: 0.8596 

[17] 
MRNet 

1370 
- 

Average AUC for best 

performing 

configuration: ACL 

tear: 0.9557 

Meniscus Tear: 

0.9081; Abnormal: 

0.9381 

[18] 
MRNet 

1249 

Laplacian flter applied: 0.928 

Without Laplacian filter: 

0.892 

- 
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[19] 
30 Knee MRI 

scans 

ACL Tear detection: 0.9628 

(Sagittal plane) 

Meniscus Tear: 0.7537 

(Sagittal plane) 

ACL Tear detection: 

0.9726 (Sagittal plane) 

Meniscus Tear: 0.923 

(Sagittal plane) 

[20] 
MRNet 

1370 

ACL Tear: 

VGG16: 0.8545; 

VGG19:0.8790 

Inception ResNet-v28: 

0.8991 

Xception: 0.9225; Proposed 

Inception-v3: 0.9542 

- 

[21] 

Croatia Knee 

MRI Dataset 

(917 cases) 

Average 5-fold 

cross validation: 0.9200 

Average 5-fold cross 

validation for all three 

classes: 0.9800 

[22] 

MRNet 

1370 

(MRPryNet + MRNet) 

ACL Tear: 0.886 

Meniscus Tear: 0.808 

(ELNet + MRPryNet) 

ACL Tear: 0.881 

Meniscus Tear: 0.761 

(MRPryNet + MRNet) 

ACL Tear: 0.976 

Meniscus Tear: 0.889 

(ELNet + MRPryNet) 

ACL Tear: 0.960 

Meniscus Tear: 0.895 

Croatia Knee 

MRI Dataset 

(917 cases) 

(MRPryNet + MRNet) 

ACL Tear: 0.834 

(ELNet + MRPryNet) 

ACL Tear: 0.851 

(MRPryNet + MRNet) 

ACL Tear: 0.914 

(ELNet + MRPryNet) 

ACL Tear: 0.900 



 
9 

  

[23] 
MRNet 

1250 

Saggital Plane: 

Abnormalities: 0.8898 

ACL tears: 0.7881 

Meniscus tears: 0.7712 

Saggital Plane: 

Abnormalities: 0.9316 

ACL tears: 0.8947 

Meniscus tears: 0.7987 

Coronal Plane: 

Abnormalities: 0.8667 

ACL tears: 0.7583 

Meniscus tears: 0.75 

Coronal Plane: 

Abnormalities: 0.8029 

ACL tears: 0.8297 

Meniscus tears: 0.7393 

Axial Plane: 

Abnormalities: 0.8992 

ACL tears: 0.8319  

Meniscus tears: 0.6891 

Axial Plane: 

Abnormalities: 0.8596 

ACL tears: 0.8721 

 Meniscus tears: 

0.7075 
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Chapter 3:Methods and Material 
 

3.1 Dataset 

In this study two datasets are being used for the classification of ACL injuries in Knee 

MRI scans. One from Stanford ML group and the other from Clinical Hospital Centre 

Rijeka in Croatia. Total dataset is divided into two parts 80 percent to train the model 

and remaining for testing the performance of the trained neural network. The dataset 

provided by Stanford ML Group was primarily divided into three separate views 

(coronal, sagittal and axial) and the dataset provided by Clinical Hospital Centre 

Rijeka, Croatia had only one view (sagittal). 

3.1.1 Stanford Knee MRI Dataset 
The dataset consists of 1130 knee MRI scans provided by Stanford ML group. There 

is also a separate validation dataset containing 120 scans (66 normal scans and 54 

injured scans). Dataset also contains .csv file which specify the labels associated with 

each scan (0 for normal ACL and 1 for ruptured ACL). There are total of 922 normal 

ACL scans and 208 injured scans. See Figure 3. 

 

 

3.1.2 Croatia Knee MRI Dataset 
The dataset consists of 917 total knee MRI scans provided by the Clinical Hospital 

Centre Rijeka, Croatia performed between 2006 and 2014. Form 917 total scans, 690 

Figure 3. Sample image from the Stanford Knee MRI Dataset 
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are normal scans, 172 partially injured scans and 55 completely ruptured scans. For 

this study we are including only normal and completely ruptured scans. See Figure 4. 

3.2 Pre-processing 

3.2.1 Equalization of Number of slices 

We extracted the desired region of interest for slices for both the dataset. A .csv file 

was provided by the Clinical Hospital in Rijeka, Croatia containing ROI regions for 

anterior cruciate ligament. Based on that we obtained ROI number of slices varying 

from 2 to 6 slices. According to the anatomy of knee joint, ACL is located almost at 

the center from medial and lateral side of the knee, so we decided that the ideal size 

would be 4 number of slices (1 slices before the middle frame and 3 slices after) to  

 

Figure 4. Sample image from the Stanford Knee MRI Dataset 

Slice 10 Slice 11 Slice 12 Slice 13 

Slice 14 Slice 15 Slice 16 Slice 17 

Figure 5. Slices from the original MRI scan before pre-processing 
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obtain maximum information. Similar technique was used by [21] which showed 

significant improvement in model performance. Figure 5 shows the number of slices 

before ROI extraction. The selected ROI captures maximum information about ACL 

without losing and features. As shown in Figure 6. 

 

 

3.2.2 Size of the Image 

In the dataset provided by the Stanford ML group, the size of the single 2D image from 

3D stack has standard size of 256 x 256 while the dataset from Croatia has 2D image 

size ranges between 290 x 300 and 320 x 320.So, we resized all the images to a 

standard size of 200 x 200 x 4 using linear interpolation. The image is zoom in z-

direction keeping the features of the image in x-y direction intact. We performed this 

step to obtain our desired cropped ROI with cutting any information out of our final 

image. 

 

3.2.3 Intensity Normalization 

The intensity values for both datasets were different. For Stanford dataset, the intensity 

values were between 0 to 255 while the scans from Croatia Knee MRI dataset had 

intensities between 0 to 1024 (12-bit). From the Figure I, the image from the Stanford 

Dataset is on the brighter side as compared to image from the Croatia Knee MRI 

Figure 6. Desired ROI number of slices extracted from the original image 
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dataset. To overcome this problem, we applied standardize z-score normalization to 

scale the intensities between 0 and 1. As shown in Figure 7. 

3.2.4 Data Augmentation 

We are using a hybrid technique to address the major different in number of cases in 

each class. We have increased the cases in minority class through data augmentation 

techniques. The data augmentation includes up-sampling of minority class, rotate the 

volumes randomly between [-15 15] degrees and translate them randomly between [-

10 10] pixels. As shown in Figure 8-9 respectively. 

 

Figure 7. This figure shows the steps invovled in the preprocessing of Knee 
MRI scans before feeding it to the CNN.  

Figure 8. Translation of Image during data augmentation 
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3.2.5 Class Imbalance 

Both datasets have severe type of class imbalance. For instance, Stanford dataset has 

922 normal and 208 injured ACL scans roughly 4 to 5 times more normal scans as 

compared to injured ACL scans. In case of Croatia Knee MRI dataset, it has 12 times 

more normal scans as compared to injured scans. As shown in Table II. There are 

multiple methods to overcome the class imbalance problem like over sampling and 

under sampling, data augmentation of minority class and by using class weightage. We 

opted for hybrid method to rectify the effect of class imbalance on training of our 

model. For this we used data augmentation to decrease the difference in number of 

cases between normal class and injured class as a result, the number of cases in injured 

Figure 10. Distribution of Injured and normal classes in each configuration of dataset.  

Figure 9. Rotation of Image during data augmentation 
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class became 1268 and in normal class 1678, as shown in Figure 10. After 

augmentation we calculated the class weights to eliminate the effect of remaining 

imbalance present in the dataset. The details for the class weights are given in Table 

III. 

Table II. Class imbalance ratios in dataset 

Dataset 
Normal 

Scans 
Injured scans 

Imbalance 

Ratio (Normal 

to Injured) 

Stanford 

Knee MRI 

dataset 

988 262 3.7:1 

Croatia 

Knee MRI 

dataset 

690 55 12.5:1 

Total 1678 317 5.3:1 

 

Table III  Distribution of Dataset and Class Weights are given after Data 

Augmentation 

 Normal Scans Injured Scans 

Combined dataset 1678 317 

After 

data augmentation 
1678 1268 

Class Weights 0.87 1.16 
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3.2.6 Convolutional Neural Network 

For training we used Custom 3D convolutional neural network which takes 4-D tensor 

as an input with shape 120 x 120 x 4 x 1. We used Conv3D layer with maxpooling3D 

and batch normalization. As it is a binary classification model, so we used sigmoid 

activation function. The Network we are using is small, approximately 2MB and have 

153K trainable parameters. We tuned the hyper-parameters to get the best out of our 

model. Graphical representation of our custom 3D convolutional neural networks and 

complexity of our model is shown in Figure 11-12.  

Figure 11. This figure shows the detail of the model used for the classification of 
ACL injureies in knee MRI scans. 
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3.2.7 Hyper-parameters 

The hyper-parameters that effect the learning process greatly are learning rate, number 

of epochs, batch size and dropout regularization method. For classification, we are 

using sigmoid function and binary-cross entropy as loss function to classify ACL tear 

in MRI scans. We trained the model from scratch for 120 number of iterations or 

Figure 12. Summary of our proposed light weight convolutional neural network 
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epochs. Other details regarding hyper-parameter tuning of our model training is given 

in Table IV. We are using different attributes to better evaluate our model. These 

attributes include precision, recall, f1-score, and AUC. We cross validated the model 

using 5-fold cross validation and each fold was extracted using stratified sampling 

technique. The model was trained on 8-Gigabyte RTX2060Super with 32-GB DDR4 

memory. It took 10 minutes to train the model. Figure 13. shows a brief overall 

methodology of our proposed study to detect ACL injuries in Knee MRI scans. 

Table IV  Hyperparameter for Model Training 

Tuning Parameter Description 

Initial Learning Rate 3e-5 

Epochs 120 

Batch size 32 

Optimizer Adam 

Loss Binary cross-entropy 

 

Figure 13. Brief overview of our proposed methodology. 
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3.2.8 Performance metrics 

The performance of a deep learning model is estimated by calculating the following 

four attributes: 

Suppose positive case are those in which patient have intact ACL or Normal ACL and 

Negative cases are those in which there is tear in the ACL ligament. 

 

• True Positive (TP): Model predicts the Normal class as Normal 

• False Positive (FP): Model predicts the Injured class as Normal 

• True Negative (TN): Model predicts the Injured class as Injured 

• False Negative (FN): Model predicts the Normal class as Injured 

 

By using the attributes mentioned above we can find the accuracy, precision, recall 

and F1-score of the trained model. The predictions are created on the test set. 

 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × ( 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑡𝑖𝑚𝑒𝑠 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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Chapter 4: Results 

The results were obtained by training the model on 80% of the total data and was 

validated on the remaining 20%. After training we obtained average accuracy of 97.6% 

and average AUC of 99.3 on the validation set, which is better than the previously 

purposed networks. For further performance evaluation of our model, we plot 

confusion matrix for each fold. It shows how many scans were predicted accurately by 

our model. Figure 14-18 represents AUC-ROC curve of our trained model, having 

true positive rate on the y-axis and false positive rate on the x-axis. The highest value 

for validation accuracy in each fold was 0.9796, 0.9643, 0.9728, 0.9762, and 0.9915 

and the minimum value for the validation loss was 0.0843, 0.1152, 0.0906, 0.0802, 

and 0.0213 respectively. These values are less than any of the previously proposed and 

state of the art models. Figure 19 shows the training process of our CNN model with 

respect to each epoch. 

 

 

 

 

 

 

 

Figure 14. Area under the Curve for First fold 
during 5-fold cross validation. 
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Figure 15. Area under the Curve for second fold during 
5-fold cross validation. 

Figure 16. Area under the Curve for Third fold during 
5-fold cross validation. 
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Figure 17. Area under the Curve for fourth fold 
during 5-fold cross validation. 

Figure 18. Area under the Curve for fifth fold during 
5-fold cross validation. 
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We recorded performance metrics which includes training accuracy, training loss, 

validation accuracy and validation loss. The validation accuracy and loss for average 

5-fold cross validation was 97.6 and 0.07832, respectively. Figure 20-24 shows the 

confusion metrics drawn for each fold representing the correct and incorrect 

predictions made by our trained model by comparing it with true labels. The obtained 

performance is better that all the state-of-the-art models which includes VGG16, 

VGG19, Inception- Resnet, Xception, etc. and recently proposed models. See Table 

V for comparison with the previously used models. The comparisons shows that not 

only our model outperforms previously applied models but also is robust and 

lightweight. Also, Table VI shows the classification report of each fold of our trained 

model. 

Table V Comparison with Previous best performing CNN model 

Authors Accuracy Precision Recall F1-score AUC 

[20] 95.42 95.02 95.13 94.83 - 

[24] - - 98.1  98.3 

Proposed 97.6 97.6 97.6 97.4 99.3 

 

Figure 19. This figure shows the graphical representation of the training of our 
convolutional neural network. The graph shows the value of training accuracy, training 
loss, validation accuracy, validation loss with respect to each epoch. 
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Figure 20. Confusion matrix for fold 1 shows that the model predicted 
97.69% of the cases correctly given in the validation set 

Figure 21. Confusion matrix for fold 2 shows that the model predicted 
96.43% of the cases correctly given in the validation set. 
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Figure 23. Confusion matrix for fold 4 shows that the model predicted 
97.62% of the cases correctly given in the validation set. 

Figure 22. Confusion matrix for fold 3 shows that the model predicted 
97.28% of the cases correctly given in the validation set. 
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Table VI Classification report of individual folds 

No. of Folds Class Precision Recall F1-score 

Fold 1 

Normal 0.97 0.97 0.97 

Injured 0.96 0.96 0.96 
Weighted 
Average 0.96 0.96 0.96 

Fold 2 

Normal 0.98 0.96 0.97 

Injured 0.95 0.98 0.97 

Weighted 
Average 0.97 0.97 0.97 

Fold 3 

Normal 0.98 0.96 0.97 

Injured 0.95 0.98 0.97 
Weighted 
Average 0.97 0.97 0.97 

Figure 24. Confusion matrix for fold 5 shows that the model predicted 
99.15% of the cases correctly given in the validation set. 
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Fold 4 

Normal 0.99 0.96 0.98 

Injured 0.95 0.99 0.97 

Weighted 
Average 0.98 0.98 0.98 

Fold 5 

Normal 0.99 0.99 0.99 

Injured 0.99 0.98 0.99 

Weighted 
Average 0.99 0.99 0.99 
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Chapter 5:Discussion 
 

In this study we developed a custom 3D-CNN and trained it from scratch. The model 

we developed has very small number of trainable parameters (153K) because the knee 

MRI scans have very small number of distinguishable feature so a light- weight model 

can provide better performance than a large and complex model which tends to over-

fitting. [24] developed a custom lightweight 3D deep learning model which had only 

43 thousand trainable parameters. Model that achieved the best accuracy has 161,921 

trainable parameters, achieving an AUC-ROC of 98 and 98.3 on two different datasets 

thus proving that a lightweight model can be used to detect ACL tear in Knee MRI 

scans. Over-fitting happens when the equipped data is simple as compared to the 

complexity of the model. So, rather learning the features in an image the model 

memorizes it. This causes the training accuracy to be very high as compared to 

validation accuracy because model fails to generalize on validation dataset or unseen 

MRI scans. To avoid this, we equipped a model that is more robust and able to 

generalize the classification information learned during training on the validation set 

or un-seen data. To avoid Overfitting of our model we artificially increased the size of 

our data for better training. For this we applied data augmentation and class imbalance 

technique to help the model learn better. Data-augmentation includes up-sampling, 

rotation, and translation. There are two publicly available datasets for Knee MRI 

diagnosis, one provided by Stanford ML group which contains 1370 knee MRI scans 

in 3 different plans (coronal, sagittal and axial) and 3 categories (abnormal, ACL and 

meniscus) with additional 120 scans for validation separately, and the other by Clinical 

Hospital Centre Rijeka in Croatia with contains 917 Knee MRI scans divided into 3 

categories Normal, partially injured and completely ruptured. For classification, we 

are using sigmoid function and binary-cross entropy as loss function to classify ACL 

tear in MRI scans. We trained the model from scratch for 120 number of iterations or 

epochs with the batch size of 32 and learning rate of 3e-5 using 5-fold cross validation. 

Each fold took approximately 10 minutes to train. To save the best performing model 

we used model-checkpoints.  
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Chapter 6:Conclusion 
 

In this study we developed a lightweight 3D CNN that classifies ACL injuries in Knee 

MRI scans. We combined two datasets, one provided by Stanford ML group which 

contain 1130 knee MRI scans with additional 120 scans and the other obtained from 

Clinical Hospital Centre Rijeka which contains 917 knee MRI scans. We used eighty 

percent of our data for the training of our model and remaining twenty percent for the 

validation purposes. for better training we increased the augmented the dataset and 

deal with the class imbalance through class weights [25]. Our model accurately 

classifies the scans with 0.976 accuracy on the validation set and 0.0783 validation 

loss. This offers an opportunity for automated detection of ACL injuries in Knee MRI 

scans and help in better management of the patients in clinical practice. We are using 

precision, recall, f1-score, and AUC for the evaluation of our model. We cross 

validated the model using 5-fold cross validation with stratified sampling technique to 

have equaled proportion of normal and injured scans. 
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