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Abstract

The number of incidents involving ransomware has reached an alarming level. Organi-

zations worldwide have suffered financial loss as a result of having their data encrypted

by this type of malware. Some organizations have had no choice but to pay exorbitant

sums to obtain the decryption key and restore access to their data. Others have not

been so fortunate and have had their private data published online, deleted, or left per-

manently inaccessible. One type of ransomware, called the locker ransomware, has a

slightly different mode of operation. Instead of encrypting the victim’s data, it locks

the victim’s system or files. A ransom is demand in return for restoration of access.

In order to address the threat posed by locker ransomware, we propose a simple and

automated approach for their detection and prediction. We collected and analysed be-

haviour of locker ransomware and benign software in a sandbox environment. The APIs

called and the registry keys triggered were recorded. The data was then pre-processed,

refined, and compiled into a dataset. The Locker Ransomware Detection and Prediction

Algorithm (LRDPA) is then implemented. This algorithm contained two tiers. First

tier implemented static detection by comparing the hash digest of a suspect application

with those stored in the signature database. This enabled quick and accurate detection

of known locker ransomwares. The second tier implemented prediction and comprised

of a Machine Learning (ML) model trained using dynamic behavioural data contained

in the dataset. This data consisted of 275 APIs called and the 21,780 Registry keys

triggered. The data was then fed to the RF algorithm with 10 fold cross validation.

The resulting LRDPA model was evaluated using several metrics. To the best of our

knowledge, its accuracy of 99.44% is higher than any existing single ML model-based

study. In future, the performance of LRDPA can be improved with the expansion of

the dataset and implementation of additional feature selection. Keywords: malware,

ransomware, locker, api calls, registry keys

xiv



Chapter 1

Introduction

1.1 Ransomware

In the recent past, there has been an explosion in the prevalence of a kind of malicious

software known as ransomware. In its most basic form, ransomware works by encrypting

the data on a target machine and then demanding money in exchange for the key to

decode the data. In 1989, the first ransomware that became well recognised was called

Cyborg. Since 2012, there has been a meteoric rise in the amount of ransomware attacks

carried out against businesses. [4] [5]. According to Fortinet’s 2021 Ransomware Report,

ransomware attacks increased by 1,070% from July 2020 to June 2021 [6]. In the year

2021, approximately 37% of the organisations around the globe were targeted by a

ransomware attack [7]. A free ransomware identification tool estimates that there are

1,070 distinct types of ransomware [8]. There are a few factors behind this escalation of

ransomware attacks. The first is the pseudo-anonymity provided by the use of crypto-

currencies for payment of ransom. The second factor is the use of strong encryption

(e.g. elliptic curve cryptography). Both these factors combine to make the source of the

ransomware attack extremely difficult to locate and the payment impossible to trace.

Furthermore, the rapidly evolving techniques and targets used by adversaries exacerbate

the situation [9].

The most obvious impact of a ransomware attack is the unavailability of data to legiti-

mate users. This can be temporary or permanent. For organisations, even the temporary

loss of access to valuable or critical data leads to financial loss and reputational damage.

In order to recover access to their data, many people who have been hit by ransomware

1



Chapter 1: Introduction

attacks are forced to pay the demanded sum. This is particularly true for victims who

do not make use of cloud storage or other means of off-site data backup. When victims

of ransomware attacks do not pay the demanded amount of money, the ransomware’s

creators may disclose the victims’ private data (including trade secrets) on the internet

or the dark web.

1.2 Types of Ransomware

On the basis of their methods of operation and its intended victims, ransomware may

be divided into a number of distinct groups. In a report by Deloitte, ransomware is

classified it into two main types: Lockers (ransomwares that lock systems) and Cryp-

tos (ransomwares that encrypt system data) [10]. In the case of Lockers, a ransom is

demanded to unlock the system while in the case of Cryptos, a ransom is demanded to

decrypt the data.

However, in the malware community, the general consensus is that there are mainly

three major categories of ransomware as shown in figure 1.1.

Figure 1.1: Types of Ransomware

2



Chapter 1: Introduction

1.2.1 Crypto Ransomware

The modus operandi of crypto ransomware is to encrypt sensitive data (such as docu-

ments, images, and videos). Generally, this type of malware does not tamper with the

essential functionality of a system [11]. In other words, users are able to interact with

their systems and are usually able to see their files in a directory listing. However, they

are not able to access them. Also, in most cases a countdown timer with a demand for

ransom is displayed to the victim.

Examples of popular crypto ransomwares include:

• TeslaCrypt (2015) - files on the local computer are encrypted, and a ransom is

demanded in return for the key to decode the data. This key is required to restore

access to the encrypted files.

• Ryuk (2018) - is a ransomware that targeted large, publicly accessible Microsoft

Windows computers. Typically, Ryuk encrypts data on a victim machine and

demands payment in Bitcoins.

• Egregor (2020) - this ransomware is known for its cruel, but very effective, double-

extortion tactics. The adversary gets into sensitive data and encrypts it so that

the victim is not able to access it.

1.2.2 Locker Ransomware

Locker ransomwares are designed to lock a victim’s system or files. Once locked, the

system is usually not able to provide basic functionality to a user [12]. A lock screen

appears demanding ransom for the password to unlock the system or files. Additionally,

the locker ransomware may partially disable the mouse and keyboard.

One interesting sub-type of locker ransomware is the Master Boot Record (MBR) locker

ransomware. This ransomware can permanently remove the original MBR file, replace

the original MBR with a fake MBR file, or encrypt the original MBR file [13].

Examples of popular locker ransomwares include:

• Petya (2016) - encrypts files and overwrites the MBR. This means the operating

system is not able to start.

3



Chapter 1: Introduction

• CryptoLocker (2013) - encrypts operating system files (with a specific extension)

and makes them unavailable.

• GoldenEye (2017) - encrypts files and then appends an 8-character extension to

each encrypted file. It then alters the MBR as well.

1.2.3 Hybrid Ransomware

This category of ransomwares have features of locker and crypto ransomwares. Encrypt-

ing files and locking users out of their system or files makes this a category notoriously

dangerous. The appearance of Ransomware as a Service (RAAS), often known as ran-

somware assaults, has led to a rise in the frequency of this specific sort of ransomware

attack [14].

The emphasis of this thesis is locker ransomware. This choice was taken because locker

ransomwares have received relatively less attention and wreak more harm than crypto

ransomware. There is generally no option for recovery if the MBR is replaced, removed,

or encrypted.

1.3 Top Risks

The consequences of a ransomware attack can range from moderate (e.g. financial loss,

data loss) to extensive (e.g. complete shut down of a company). In a survey conducted by

Fortinet, 62% of the organisations reported data loss as the top concern in a ransomware

attack (see figure 1.2) [6]. A significant loss of data can take months or years to recover

from and is more serious than loss of productivity (38%) or disruption of operations

(36%).

1.4 Infection Vector

It is generally agreed that a lack of basic user-level cyber-hygiene is the most common

enabler of ransomware attacks. Specifically, phishing is the frequently used infection vec-

tor (see figure 1.3). Generally, this phishing email appears to be from legitimate source

and contains an attachment or a link to a website designed to obtain the credentials of
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Chapter 1: Introduction

Figure 1.2: Ransomware Attacks: Top Concerns [1]

a legitimate user [15].

The second most common infection vector is through the Remote Desktop Protocol

(RDP). This protocol is used access a remote system over a network. With the correct

credentials, a user is able to obtain full access. This makes RDP is a prime target for

malicious actors [16]. A study on the WannaCry ransomware found that it exploited vul-

nerabilities in Microsoft’s RDPv3 and SMB (Server Message Blocks) and spread through

phishing emails and pharming websites [17]. If the Microsoft patches and updates for

Windows platform had been properly tested, it would prevented the significant outbreak

of WannaCry .

The exploitation of vulnerabilities is the third most common infection vector and includes

attacking systems (e.g. Web servers and VPN servers) that have not been patched

properly or are missing the latest patches. This is important for Websites that integrate

plugins and libraries because contemporary software supply chains allow processes to

link to many services and functionalities - any of which might be used as an infection

vector [18].

Finally, some attacks occur through account takeover. This can be done in several ways

including downloading the ransomware as a payload by another malware or a drive-by

download [2][19].

5



Chapter 1: Introduction

Figure 1.3: Infection Vectors [2]

1.5 Payment Method

As mentioned before, the purpose of almost all ransomware is to obtain monetary ben-

efit from the victim in return for restoring access to their data or system. In older

ransomware attacks, bank accounts, prepaid cards, money transfer, or e-wallets were

used as payment methods. However, law enforcement authorities are able to track down

individuals using these tactics. With the rise of crypto-currency, the ability to conduct

anonymous transactions became possible. Ransomwares developers quickly adopted

crypto-currency for payment because it provides instant transfer without involving a

central banking system or authority [20]. For crypto ransomware, the preferred method

6



Chapter 1: Introduction

of payment is Bitcoin although other crypto-currencies like Ethereum and Monero are

also used. Additionally, Bitcoin makes it difficult to differentiate between legitimate

transactions and fraudulent ones in the history of Bitcoin transactions [21]. Figure 1.4

shows how the victim of a ransomware attack sends Bitcoins to the attacker in return

for the decryption key.

Figure 1.4: Ransom Payment Process using Bitcoins

1.6 Life Cycle

Every malware has a different life cycle based on its infection vector, target, and behavior

[22]. In order to analyse ransomware, it is essential to understand the phases of its life

7



Chapter 1: Introduction

cycle.

Figure 1.5: Life Cycle of Locker Ransomware

Ransomware life cycle commences with the infection of target system and concludes

when the victim is asked to pay the ransom. The phases of the locker ransomware

are slightly different as illustrated in figure 1.5. A target is often infected with locker

ransomware through a code dropper, by opening a malicious email attachment, or by

downloading it from an infected Website [23]. Once it has entered a target system,

the locker ransomware performs operations such as generating a unique computer iden-

tity, blocking certain applications, enabling certain programs to run at boot time, and

contacting the Command and Control (C&C) server. C&C servers are servers that

malware contacts in order to save stolen information or to download additional code

8



Chapter 1: Introduction

or instructions. Adversaries setup C&C servers to help them make their way further

inside a system and to strengthen their foothold in networks. After this step, the locker

ransomware generally creates, modifies, or deletes files and Registry keys. In the next

step, the user is locked out of the system. Then the ransom message is displayed. The

final step, which takes place only after the victim pays the ransom, is to download the

decryption key or password from the C&C server.

1.7 Problem Statement

Due to its architecture and widespread usage, the Windows platform is a prime target for

malware infections. Windows executable files and dynamic link libraries (DLLs) account

for 95% of all discovered ransomware. In line with these observations, both academia

and industry have developed a variety of methods to detect and predict ransomware.

These techniques are based on features gleaned from static and behavior analyses of

ransomware samples. This set of features represent a profile of the ransomware that is

different from that of benign software.

It is essential to be aware that the locker ransomware strain of ransomware has garnered

a very little amount of attention from cybersecurity professionals. This thesis intends

to address this vacuum by investigating how both static and behavior analysis may be

used to construct a profile that can be used to detect and forecast locker ransomware.

Specifically, this thesis will look into how these analyses can be employed.

1.8 Research Objective

The objectives of this research are:

1. To analyse the behavior of locker ransomware samples on a Windows system. This

is carried out by running samples of locker ransomware and examining the APIs

called and the Registry keys triggered.

2. To create a dataset consisting of:

(a) hash digests of benign and locker ransomware samples. This is to aid in the

static detection of locker ransomware.

9
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(b) APIs called and Registry keys triggered by benign and locker ransomware

samples. This is to aid in the dynamic detection of locker ransomware.

3. To design a machine learning algorithm based model for the locker ransomware

detection using the dataset that was developed in step (2), which will be used as

a starting point.

1.9 Thesis Organisation

This thesis starts with the introduction in chapter 1. It then presents the literature

review in chapter 2. This chapter also covers methods for malware detection and anal-

yses existing work on detection of crypto ransomware and locker ransomware. Chapter

3 provides an outline of the methodology and includes details of the methods and tools

used to analyse samples and compile the dataset. Chapter 4 presents the developed ma-

chine learning-based model and chapter 5 presents its evaluation. The thesis concludes

in chapter 6 by summarising the findings and highlighting potential future work.

10



Chapter 2

Literature Review

The numerous incidents involving ransomware has motivated several studies on individ-

ual samples of ransomware and also on families of ransomware. The long-term goal of

these studies is to aid the design of effective detection and prevention solutions. Two

useful examples of such studies are [24] and [25]. The former study focuses on the

behaviour of CTB Locker ransomware while the latter study thoroughly analyses four

prominent ransomware variants — CryptoWall, TorrentLocker, CTB Locker, and Tes-

laCrypt. Such studies, though useful, are not sufficient. A general approach, applicable

to all ransomware is required. For the most effective method, it is widely agreed that

the use of Machine Learning (ML) techniques should be utilised. This is done in order

to identify malicious software.

2.1 Machine Learning (ML)

Machine learning (ML) is a sub-field of artificial intelligence (AI) that allows computers

to learn (without being explicitly programmed) from data using statistical models and

algorithms. These algorithms identify patterns in the data and then learn from those

patterns in order to make predictions. Essentially, the ML models acquire knowledge

through experience and improve over time.

There are essentially two main decision-making principles used by machines learning

algorithms and they are used to classify ML algorithms into either Unsupervised or

Supervised ML.
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Figure 2.1: Types of Machine Learning
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2.1.1 Unsupervised Machine Learning

Unsupervised machine learning algorithms look for insights and connections in data that

has not been tagged. In this scenario, models are provided with input data, but the an-

ticipated consequences are not known; hence, they are required to form inferences based

on circumstantial evidence without being given any instruction or training. Because the

models are not provided with instruction on the correct answer, they are required to

independently identify patterns.

Clustering, which entails grouping related data, is one of the most used forms of un-

supervised learning. This technique is typically used for exploratory research and may

assist in uncovering hidden trends or patterns.

2.1.2 Supervised Machine Learning

When making predictions using labelled training data, supervised machine learning

techniques and models are used. Every training sample has a corresponding input to go

along with the predicted result. A supervised learning algorithm analyses the sample

data and develops an inference by doing so. This inference is simply an educated estimate

about the labels that should be applied to data that has not yet been observed.

This is the way of machine learning that is used the most often and extensively. It is

supervised due to the fact that these models have to be trained using example data

that has been manually annotated. The data are labelled in order to specify what

patterns (similar words and pictures, data categories, etc.) it should identify and which

associations it should recognise.

Supervised machine learning is further divided into two types: classification and regres-

sion.

• Regression - The result that may be anticipated from using regression is a contin-

uous figure. Because this model is utilized for predicting, i.e., the possibility of an

event happening, the output might be any number within a given range of values.

• Classification - Support Vector Machines and Naive Bayes are the two most used

classification algorithms used in supervised learning. When a classification job is

completed, the result is a discrete category from which a choice has to be chosen.

13
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For instance, a machine learning model designed to do sentiment analysis needs to

determine if the incoming data can be categorized as positive, negative, or neutral.

2.1.3 Random Forest (RF)

Random forest is a supervised learning method applicable to both classification and

regression applications. It is an ensemble learning approach that integrates various

classifiers in order to make predictions. This approach increases the performance of the

model and is selected for the purpose of this thesis.

RF constructs a decision tree for each subset of the provided data and calculates their

average (see Figure 2.2). Essentially, the procedure used by RF comprises of four stages:

1. Pick arbitrary subsets of data from a larger collection.

2. Make a decision tree for each sample and use each decision tree to make a predic-

tion.

3. Conduct a vote for each expected outcome.

4. Select as final prediction the outcome that received the most votes.

A typical random-forest should include 64-128 trees. The accuracy of the method is

improved by increasing the number of trees that are used. Random forest is a quick

method, that can efficiently cope with the missing and erroneous data. This robustness

of RF is another reason for its selection in this research.

2.2 ML-based Approach for Detection of Malware

This is an active field of study that makes use of characteristics collected from static

and dynamic analyses of malware. This procedure is nearly usually automated and calls

for a dataset to be provided. The findings that have been reported are likewise quite

positive. Here are two instances that illustrate the point:

• In [26], a neural network called eXpose is suggested. This method use character-

level embedding and neural network convolution to concurrently extract and cat-

egorize characteristics from potentially harmful URLs, file paths, named pipes,

14
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Figure 2.2: Random Forest Explained

named mutexes, and Registry entries. eXpose outperforms manual feature extraction-

based baselines on all studied intrusion detection tasks.

• In [27] RAMD is a novel approach that leverages an ensemble classifier to detect

both known and unknown malware. RAMD constructs a model of Registry be-

haviour shown by benign software and then searches for atypical Registry accesses

to identify malware. RAMD combines the outputs of one-class classifiers using a

particular aggregation operator called Fibonacci-based Super-increasing Ordered

Weighted Averaging (FSOWA). RAMD can successfully detect 98.52% of threats

and has an accuracy of 98.43%.

2.3 ML-based Approach for Detection of Ransomware

2.3.1 Detection of General Ransomware

The detection of ransomware has been attempted using a variety of features such as

opcode, APIs, Registry keys, network data. This section presents seven such studies

together with the ML models used and the results obtained.

In [28], an innovative mechanism called DeepAMD is proposed for the early identification
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of sophisticated ransomware that targets Android systems. DeepAMD extracts static

and dynamic data from a suspect application, and processes it to obtain the feature set.

It then uses Artificial Neural Network (ANN)s to determine the nature of the suspect

application. Its reported accuracy is 95% for static detection and 55% for dynamic

detection. DeepAMD is also able to identify scareware and adware.

In [29], a new ransomware detection method that uses hex codes is presented. The

binaries are decoded to extract the hex codes and a Random Forest (RF) classifier is

developed. This classifier is trained on files and benign software. The 10-fold cross-

validation (with information gain-based feature selection) has an accuracy of 88.5%.

[30] relies on capturing and analysing the behaviour of ransomware in its early stages.

The focus is on Windows APIs called, Registry key operations, and file system opera-

tions. The proposed framework, EldeRan [30], allows a user to watch how ransomware

performs some unique operations. This enables the dynamic evaluation of features for

ransomware detection. The Mutual Information (MI) criterion is used to choose the

informative binary features. Then, a Logistic Regression (LR) classifier is developed

and a detection rate of 96.3% is reported.

[31] provides a two-stage Mixed Markov and Random Forest (RF) ransomware detection

model. First, a Markov model is developed to capture the properties of ransomware.

Then, a RF model is applied to the remaining data. The combined model achieves

97.3% accuracy, a False Positive Rate (FPR) of 4.8%, and a False Negative Rate (FNR)

of 1.5%.

[32] a strategy for detecting ransomware is proposed that is based on the sequence in

which API calls are made and an SVM classifier. In order to see the sequence in which

Windows APIs are called when executing samples, the environment is carefully managed.

In order to create a standard vector representation of q-grams, the output log files are

used. The SVM-based model had a success rate of 97.48% of the time.

In [33], a new ransomware detecting system called PEELER is presented. To identify the

underlying behavioural traits of ransomware, PEELER first analyses large-scale OS-level

provenance data gathered from a broad group of ransomware families. It then employs

a pre-trained Bidirectional Encoder Representations from Transformers (BERT) model

to fingerprint the contextual behaviour of the suspect application. An F1-score of 99.5%

is reported for a large ransomware dataset with 67 malware types.
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[34] was the first study to explore the effect of ransomware in clinical settings and fo-

cuses specifically on WannaCry. The authors develop a ML-based system to identify

ransomware before it spreads. The first module of their system detects patterns and

variations in network traffic when ransomware executes. From these patterns, a prob-

abilistic supervised classifier extracts complicated characteristics. This module needs

human oversight to provide an appropriate dataset for the ML algorithm to identify and

classify ransomware.

[35] conducted malware analysis to obtain a wide variety of different features including

APIs, Summary Information, DLL information, and changed Registry Keys. They used

Cuckoo sandbox to dynamically analyse malware and accurately obtained more than

2300 features. Another 92 features were obtained after statically analysis of the malware.

The accuracy of their model when trained on features obtained from static analysis

was 99.36%. However, when trained on features obtained from dynamic analysis, the

accuracy reduced to 94.64%.

2.3.2 Detection of Crypto Ransomware and Locker Ransomware

The following three studies focus specifically on either crypto ransomware or locker

ransomware.

In [36] a detection model for the early detection of crypto ransomware is developed. An

analysis of the behaviour of crypto ransomware and an estimate of anomalies are em-

ployed by the model. The fusion of both findings is used to determine whether a binary

is malicious or benign. This method can identify zero-day attacks and sophisticated

advanced persistent threats(APTs). The proposed model easily detects ransomware

strands in 12,000 application. A low false positive rate means this model can be applied

to various ecosystems.

[37] undertakes the static and dynamic analysis of WannaCry. After undergoing pre-

liminary processing, the data are utilised to compile a dataset, which is then subdivided

into testing data and training data (7:3 ratio). With these three different machine learn-

ing classifiers—Random Forest (RF), Gradient Boost (GB), and K-Nearest Neighbors

(KNN)—this research obtained an accuracy of 99.99%. The Deep Neural Multilayer

Perceptron algorithm is also employed to but it provides slightly lower accuracy of 98%.

In [38] a complete investigation of the transaction mechanism and behaviours of locker
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ransomware is carried out. After that, an efficient and lightweight detection system that

makes use of six distinct sorts of behavioural traits is created. To reach the final findings,

an ensemble of four different classifiers was used, and the outcomes were determined by

majority voting. It has been stated that the accuracy overall is 99.98% of this method.

2.4 Summary

This chapter provided a comprehensive and up-to-date overview of the research pub-

lished on the topic of detecting ransomware. In addition to this, it explored how suc-

cessful an approach based on machine learning may be in the identification of malware.

In specifically, it investigated the random forest technique and its potential benefits for

the identification and forecasting of malicious software. A research gap has also been

identified that relatively little effort has been done on the detection of certain forms

of ransomware, such as locker ransomware and needs to be covered considering the

increasing number of ransomware attacks everyday.
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Research Methodology

3.1 Locker Ransomware Detection and Prediction (LRDPA)

The Locker Ransomware Detection and Prediction Algorithm (LRDPA) developed in

this thesis uses signature-based and behavior-based approaches [30]. Figure 3.1 illus-

trates the data it uses in each approach.

3.1.1 Signature-based Detection

In signature-based detection, the hash digest of a unknown sample is generated. The

digest is then compared to a list of hash digests for known locker ransomware samples.

Although, hash functions are generally used for integrity verification, the LRDPA uses

the SHA-256 hash algorithm for quick and reliable identification [39]. This is possible

because hash functions are one-way functions (which means it is not possible to obtain

the input from the hash digest) and because any minor change to a sample of locker

ransomware will result in a unique hash digest.

3.1.2 Behavior-based Detection

In behavior-based detection, a sample is run in a sandbox environment and a script is

used to extract, refine, and input API calls and Registry key data into a machine learning

algorithm. Basically, LRDPA’s behaviour-based detection consists of two steps. In the

first step, it executes a sample and extracts the data. The extracted data consists of

APIs calls and Registry keys data which is then refined. In the second step, the refined
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Figure 3.1: LRDPA: Approach and Data
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data is used to train a machine learning model. This model is then used to predict if an

unknown sample is malware or benign software.

The algorithm selected for LRDPA is Random Forest (RF) algorithm. RF is a supervised

learning algorithm and is selected for two reasons. Firstly, it is capable of effectively

handling huge datasets and secondly it provides higher accuracy than the second most

popular malware detection algorithm (i.e. the decision tree algorithm). Another benefit

of RF is its ability to handle datasets with continuous and categorical variables (e.g.

in regression and classification problems). It also produces more accurate results when

dealing with categorization tasks.

3.2 Methodology

The steps in the methodology are illustrated in Figure 3.2.

3.2.1 Collection of Samples

This phase consists of collecting samples of locker ransomware and benign software for

the Windows platform. These samples are used to create the dataset.

A total of 505 samples of locker ransomware were collected ranging from screen-lockers,

MBR lockers, and files lockers. The following five sources were used for collection:

• VirusShare - this renowned site has more than 45 million samples of malware. It

is possible to register at this site and obtain samples of malware. A total of 302

samples of locker ransomware were downloaded from this site.

• TheZoo - this is an open repository of malware on GitHub. A total of 5 locker

ransomware samples were obtained from it.

• AnyRun - 110 samples of locker ransomware were downloaded from this site.

• Malware Bazaar - 85 samples of locker ransomware were collected for this source.

• DasMalware - 3 samples were obtained from this site.

A total of 382 samples of benign software were collected from Filehippo, Softonic, and

CNET. They include a variety of software ranging from simple PDF converters, video

makers, editors, browsers, and remote desktop tools.
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Figure 3.2: Methodology
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3.2.2 Labeling of Samples

In this stage, the data is cleaned to guarantee removal of outliers and observations that

might lead to misleading conclusions. This is done to ensure that the data is accurate.

The procedure makes use of a number of methods but the most essential one is the

deletion of records that are null, empty, or duplicates. After the data has been cleaned,

the next step is labeling the data. Each sample collected in the previous phase (382

benign software and 505 locker ransomware) is labeled as either "Benign Software" or

"Locker Ransomware" with the help of VirusTotal. VirusTotal is the world’s largest anti-

malware scanning service where a suspect file or URL can be submitted for analysis.

The service uses more than 70 cutting-edge anti-malware engines to generate a report

that includes an overall detection result (i.e. benign, virus, trojan, crypto ransomware,

locker ransomware, etc.) [40]. When VirusTotal confirmed that a sample was benign,

it was labeled "Benign Software" and added to the dataset. Similarly, when VirusTotal

confirmed that a sample was a locker ransomware, it was labeled as "Locker Ransomware"

and added to the dataset. If VirusTotal returned any other label, the sample file was

not included in the dataset.

3.2.3 Setup of Cuckoo Sandbox

The Cuckoo sandbox is a tool used to execute malware in an isolated environment. It is

designed to deceive the malware into believing that it has infected a legitimate host so

that it behaves as normally as possible. The sandbox logs the activities of the malware

and prepares a detailed report on what the malware tried to accomplish while running

within the protected environment.

The Cuckoo sandbox was installed on a Dell Inspiron 15 (500GB SSD and 8GB RAM)

dual boot system. The two OSes installed were Ubuntu 18.04 3 LTS (a requirement

for Cuckoo sandbox) and Windows 10 Pro. The dependencies for Cuckoo sandbox

e.g. Python 2.7, XEN API, MongoDB, TCPdump, and Postgresql, were also installed.

Additionally, the MySQL database was setup to store the data extracted from the sample

by Cuckoo sandbox.

In order to analyse each sample using Cuckoo sandbox, a virtual environment was

needed. VirtualBox was used to create the required Windows 10 guest machine. Win-
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dows 10 was selected because it is the most popular OS and because most ransomware

attacks target the Windows OS. The network was configured to enable communication

between the host machine (running Cuckoo sandbox) and the guest machine (running

Windows 10). After each sample was executed on the guest machine, a snapshot was

taken, and the guest machine restored to its initial state. Figure 3.3 shows the final

setup.

Figure 3.3: Cuckoo Sandbox and System Architecture

3.2.4 Implementation of LRDPA

In this phase, the LRDPA algorithm was implemented in Python. Essentially, this

algorithm consists of the following steps:

1. Generate hash digest of the input sample and compare it to the hash digests stored

in the signature database.

2. Execute the input sample in Cuckoo sandbox and record all APIs called and Reg-

istry keys triggered.

3. Train the RF algorithm using the recorded data and use it to predict if an unknown

sample is benign software or locker ransomware.

The detailed LRDPA is shown in Algorithm 1.

3.2.5 Creation of Dataset

The two types of data stored in the MySQL database are explained in this section.
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Algorithm 1 Locker Ransomware Detection Algorithm
1: INPUT sample

2: if sample is zipped then

3: EXTRACT sample

4: end if

5: GENERATE hash digest of sample

6: if hash digest exists in Database then

7: SHOW Label

8: END

9: else

10: RUN sample in Cuckoo sandbox

11: SAVE Report from Cuckoo sandbox

12: EXTRACT Data (APIs and Registry keys) from Report

13: REFINE Data

14: RUN RF Model

15: SHOW Predicted Label

16: STORE hash digest in Database

17: STORE Predicted Label in Database

18: STORE Data in Database

19: UPDATE RF Model

20: end if
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1. Signatures - The first table in MySQL database consists of the hash digest or

signature of each input sample. This table is used for signature-based detection

of locker ransomware. The detection, though inflexible, happens almost instantly

(without the need for analysis using Cuckoo Sandbox). Running a sample in

Cuckoo sandbox takes around 3 to 4 minutes while comparing hash digests with

those stored in this signature table takes an average of 1.3 seconds. The fields of

the signature table (Table 3.1) are:

(a) ID of sample (alphanumeric ID assigned by Cuckoo Sandbox)

(b) Label ("Benign Software"/"Locker Ransomware")

(c) Hash Signature (SHA 256)

Table 3.1: Signature Table

Sample ID Label Hash Signature

230001 Locker Ran-

somware

7630b72ba032833fdbbc39b281014a7957d

f57e06398d4e09497c0562f957215

... ... ...

... ... ...

... ... ...

2699330 Benign Software b48d2e9338b96dd9a5511090bcbd14ec3c6

095445716a9cf76183d7d797ece4b

... ... ...

... ... ...

... ... ...

2. API and Registry Keys - The second table is created using a list of all APIs

called and Registry keys triggered by each input sample.

(a) API Calls - The Windows Application Programming Interface (API) enables

applications to communicate with the Windows OS. For example, an appli-

cation calls an API to display objects on the screen or receive input from

the mouse / keyboard. Regardless of the language, all Windows applications,

with the exception of console programs, must interface with the Windows
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API. When an application executes, the Cuckoo sandbox records the APIs

called and includes them in a summary report with the return codes for each

called API.

(b) Registry Keys - A Registry key is similar to a folder, except that it only

exists on a Windows system. Also, just as folders hold files, Registry keys hold

Registry values [41]. Additionally, a Registry key may include nested Registry

keys, which are referred to as Subkeys. Typically, when malware executes,

it modifies Registry keys and tries to switch to the privileged mode of the

OS. If successful, it gains the ability to modify the OS [42]. Malware may

also try to change the Registry in order to relaunch itself after a reboot, to

remain hidden, or to interact with an already running legitimate process [43].

Additionally, most malware also alter several Registry keys to circumvent

Windows and firewall protection. Overall, the triggering of Registry keys is

characteristic of malicious intent and is therefore utilised for identification

of malware. Multiple changes to the Registry increase the likelihood that a

program is malicious [42]. The report generated by Cuckoo sandbox for each

input sample includes the four main types of Registry keys triggered:

i. regkey-opened: Registry keys that are marked opened in Cuckoo sand-

box report.

ii. regkey-deleted: Registry keys that are marked deleted in Cuckoo sand-

box report.

iii. regkey-written: Registry keys that are marked written in Cuckoo

sandbox report.

iv. regkey-read: Registry keys that are marked read in Cuckoo sandbox

report.

The data extracted from the report is in the form of a JSON file. From this file,

the following fields are refined and stored in a CSV file:

(a) ID of sample (alphanumeric ID assigned by Cuckoo Sandbox),

(b) Label ("Benign Software"/"Locker Ransomware")

(c) API calls (total: 282)

(d) Registry keys (total: 21,780)
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When an API is called or a Registry key is triggered by an input sample, a ‘1’is

written in the column for that API or Registry key. If an API is not called or

a Registry key is not triggered, a ‘0’is written to the corresponding cell. The

contents of this file are stored in the second table (Table 5.1) of database.

Table 3.2: API and Registry Key Table

Sample ID Label API1 API2 ... RegKey1 RegKey2 ...

230001 Locker

Ran-

somware

0 1 ... 1 0 ...

230002 Locker

Ran-

somware

1 1 ... 1 0 ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

230734 Benign

Software

1 0 ... 1 0 ...

230735 Benign

Software

0 0 ... 1 0 ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

Once the dataset is compiled, it is scanned for any fields that contain the NULL value.

Such instances are removed with the help of the Python Pandas library in order to min-

imise bias in the LRDPA model. To split the dataset for training and testing purposes,

the "train_test_split" function from scikit-learn library is used with the ratio set to

80% and 20% respectively.

3.2.6 Training the Model

Training is the most critical phase in the machine learning pipeline. During this stage,

the prepared data is fed to the model. The model uses an algorithm to learn from the

data, search for patterns, and eventually generate predictions. The more data the model
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is fed, the better it becomes at making accurate predictions.

When the same dataset is applied to different ML algorithms, the output is different.

Consequently, choosing the appropriate algorithm is essential. For this thesis, the ran-

dom forest classifier from the sklearn ensemble is used. This is a meta estimator

that fits a variety of decision tree classifiers on different sub-samples of the dataset and

utilises averaging to increase the prediction accuracy and to control over-fitting.

3.2.7 Evaluation of the Model

The performance of a ML model is best evaluated using a number of metrics [44]. The

first and most basic metric is the Confusion Matrix. This matrix reports the following:

• True Positive (TP) - the number of instances where the model predicted positive

and the actual outcome was positive as well.

• True Negative (TN) - the number of instances where the model predicted negative

and the actual outcome was negative as well.

• False Positive (FP) - the number of instances where the model predicted positive

but the the actual outcome was negative.

• False Negative (FN) - the number of instances where the model predicted negative

but the the actual outcome was positive.

The second frequently-used metric is Accuracy (ACC). This metric represents the model’s

overall performance across all classes or categories. It is beneficial especially when all

classes are equally important. It is determined by dividing the number of correct pre-

dictions by the total number of predictions.

= (TP + TN)
(TP + TN + FP + FN)

The following nine metrics are also used in this thesis:

• Precision - this is the ratio of correctly predicted positives to the total expected

positives in a class [45].

= TP

(TP + FP )
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• Sensitivity - this metric is used to quantify the proportion of correctly categorized

positives over the total actual positives. It is also known as the Detection Rate or

the True Positive Rate (TPR).

= TP

(TP + FN)

• False Positive Rate (FPR) - quantifies the accuracy with which the proposed model

predicts the positives incorrectly.

= FP

(FP + TN)

• Specificity - this metric is used to quantify the proportion of incorrectly categorised

negatives. It is also known as the True Negative Rate (TNR).

= TN

(TN + FP )

• False Negative Rate (FNR) - This is the likelihood that a real positive will be

overlooked by the model. It is also known as the Miss Rate.

= FN

(FN + TP )

• Negative Predictive Value (NPV) - This refers to the likelihood that a negative

result is correct.

= TN

(FN + TN)

• False Discovery Rate (FDR) - this is the fraction of all predictions that are incor-

rect.

= FP

(FP + TP )

• F1 Score - this is another measure of the accuracy of a model on a dataset. It is

defined as the harmonic mean of the accuracy and recall [46].

= 2 × Precision × Recall

(Precision + Recall)

• Matthews Correlation Coefficient (MCC) - determines how well the predictions of

a model coincides with the actual outcomes. It evaluates the disparity between

predicted and actual values [47].

= TP × TN − FP × FN

(
√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
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3.3 Flow Diagram

The complete flow diagram of LRDPA is given in Figure 3.4. The important stages are:

1. Input a sample (executable file) for analysis.

2. If the sample is in a compressed format

(a) then extract it

3. Generate hash digest (SHA-256) of the sample.

4. Compare the hash digest with the signatures stored in the database to find a

match.

(a) If the match found has the label "Benign Software", then inform the user and

terminate.

(b) If the match found has the label "Locker Ransomware", then quarantine the

sample, generate an alert for the user, and terminate.

5. If no match is found, then store the hash digest in the database as a new entry.

6. Run the sample in Cuckoo sandbox.

7. Extract and refine the data (API calls and Registry Keys) from the Cuckoo sand-

box report.

8. Use the RF model to predict label for the sample ("Locker Ransomware" or "Benign

Software")

(a) If the predicted label is "Locker Ransomware", then quarantine the sample

and generate alert for user.

(b) If the predicted label is "Benign Software", then inform the user.

9. Update database with the predicted label and store data (API calls and Registry

Keys).
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Figure 3.4: Complete Flow Diagram
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3.4 Summary

This chapter presents the Locker Ransomware Detection and Prediction Algorithm

(LRDPA). It also covered the seven steps of the methodology used in this research.

In the beginning, samples of locker ransomware and benign software were collected.

These samples were labelled and then analysed using the Cuckoo sandbox environment.

The data collected during this analysis was used to create a dataset. Then LRDPA

was implemented using the Random Forest (RF) algorithm. The dataset was split into

training and test data (80% and 20% respectively). The former was used to train the

model and the latter to evaluate it. Finally, the metrics selected for evaluation were

presented. The complete flow diagram was included as Figure 3.4.
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Analysis

In this chapter the APIs called and the Registry keys triggered by locker ransomware

and benign software are analysed.

4.1 Unique to Locker Ransomware

4.1.1 API Calls

A quick look at the list of APIs shows that:

• some APIs are common i.e. they are called by benign software as well as locker

ransomware.

• some APIs are unique meaning they are only called by locker ransomware.

A total of 31 unique APIs were identified. The purpose of 22 of these unique APIs is

shown in Table 4.1. Examples include CryptEncrypt for encrypting data, NtWriteVirtualMemory

for writing to memory, and MessageBoxTimeout for showing a message box.

Table 4.1: 28/31 Unique APIs in Locker Ransomware [3]

API Purpose

NtSetContextThread Sets the usermode context of the specified

thread.

StartService (A & W) Starts a service.

Continued on next page
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Table 4.1 – Continued from previous page

API Purpose

CopyFile Copies an existing file to a new file.

RtlAddVectoredContinueHandler Adds vectored exception handler

ExitWindowsEx Logs off the interactive user, shuts down

the system, or shuts down and restarts the

system.

CryptDecrypt Decrypts data previously encrypted by us-

ing the CryptEncrypt function.

CryptEncrypt Encrypts data

NtWriteVirtualMemory Writes on the memory

MessageBoxTimeout Shows timed messagebox

RtlDecompressBuffer Decompresses an entire compressed buffer

CreateService (A & W) Creates a service object and adds it

to the specified service control manager

database.

NtTerminateThread Terminates a thread.

CreateRemoteThread Creates a thread that runs in the virtual

address space of another process.

ControlService Sends a control code to a service.

RtlRemoveVectoredExceptionHandler Removes vectored exception handler.

InternetOpenUrlA Opens a resource specified by a complete

FTP or HTTP URL.

CopyFileExW Copies an existing file to a new file, notify-

ing the application of its progress through

a callback function.

InternetCrackUrlA Cracks a URL into its component parts.

CryptGenKey Generates a random cryptographic session

key or a public/private key pair.

OpenService (A & W) Opens an existing service.

Continued on next page
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Table 4.1 – Continued from previous page

API Purpose

CryptUnprotectMemory Decrypts memory that was encrypted us-

ing the CryptProtectMemory function.

NtShutdownSystem Shut down all drivers, flushing Registry

hives and the disc cache, clearing the page

file, etc and then shuts the window down.

GetKeyboardState Copies the status of each of the 256 virtual

keys to the buffer you specify.

DeleteUrlCacheEntry Erases from memory a copy of any files

whose name begins with the source name,

if any.

URLDownloadToFile Downloads bits from the Internet and

saves them to a file.

NtQueryFullAttributesFile It supplies network open information for

the specified file.

NtDeleteKey Deletes an open key from the registry.

CryptProtectData Performs encryption on the data.

Figure 4.1 shows the percentage of locker ransomware samples in which these 31 unique

APIs were called. The set of unique APIs triggered by more than 70% of locker ran-

somware samples provides a strong basis for prediction of zero-day locker ransomware.

4.1.2 Registry Keys

As with APIs, some Registry keys are only called by locker ransomware. Out of the

21,780 Registry keys recorded, 5,082 Registry keys were triggered only by locker ran-

somware (but not by benign software). The distribution of these unique Registry keys

among the four categories mentioned earlier is shown in Figure 4.2:

• regkey-read category: from this category 3,562 unique Registry keys were trig-

gered. This category contains Registry keys that are read by the system to match

any pre-written condition or to find a specific Registry key that malware might

want to alter or delete.
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Figure 4.1: Triggering Percentage of 31/31 Unique APIs in Locker Ransomware

• regkey-opened category: from this category 1,314 unique Registry keys were

triggered. A pre-written Registry key must be opened before it can be edited or

updated.

• regkey-deleted category: from this category 168 unique Registry keys were trig-

gered. Registry keys marked as written are the ones written to by the locker

ransomware.

• regkey-written category: from this category 38 unique Registry keys were trig-

gered. The deleted keys are the ones that were deleted from the system by the

locker ransomware. Registry keys are typically deleted to hide activity or restrict

system performance or functionality in some manner.
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Figure 4.2: Distribution of 5,082 Unique Registry key in Locker Ransomware

4.2 Present in more than 70% locker ransomware

4.2.1 API Calls

A total of 21 APIs were called in more than 70% of locker ransomware samples. The

purpose and triggering percentage of these APIs is given in Table 4.2. The triggering

percentage is represents the proportion of locker ransomware samples which called the

API over the total number of locker ransomware sample.

Table 4.2: 21/21 APIs Called in more than 70% of Locker Ransomware[3]

API Triggering

Percent-

age

Purpose Unique

NtClose 100.00% Closes an object handle. N

NtOpenKey 98.77% Opens an existing Registry key N

Continued on next page
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Table 4.2 – Continued from previous page

API Triggering

Percent-

age

Purpose Unique

LdrGetProcedureAddress 95.82% Retrieves the address of an exported

function or variable from the specified

dynamic-link library (DLL)

N

NtQueryValueKey 95.82% returns a value entry for a Registry

key

N

LdrLoadDll 95.09% Windows will look in the application

folder as well as the system folder for

the.dll file in question.

N

NtAllocateVirtualMemory 94.59% Reserves, commits, or both, a region

of pages within the user-mode virtual

address space of a specified process

N

LdrGetDllHandle 92.38% Similar to LoadLibrary, this is a low-

level function that loads a DLL into a

process [48].

N

NtCreateFile 91.65% Creates a new file or directory, or

opens an existing file, device, direc-

tory, or volume.

N

NtFreeVirtualMemory 89.19% Releases, decommits, or both releases

and decommits, a region of pages

within the virtual address space of a

specified process.

N

RegCloseKey 86.98% Closes a handle to the specified Reg-

istry key.

N

NtReadFile 81.82% Reads data from an open file. N

RegOpenKeyExW 80.34% Opens the specified Registry key. N

GetSystemTimeAsFileTime 79.61% Retrieves the current system date and

time.

N

Continued on next page
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Table 4.2 – Continued from previous page

API Triggering

Percent-

age

Purpose Unique

RegQueryValueExW 78.38% Retrieves the type and data for the

specified value name associated with

an open Registry key.

N

RegOpenKeyExA 77.89% Opens the specified Registry key. N

NtSetContextThread 77.40 Sets the context of a thread. Y

NtProtectVirtualMemory 75.68% changes the protection on a region of

committed pages within the virtual

address space of the subject process.

N

NtMapViewOfSection 75.43% Maps a view of a section into the vir-

tual address space of a subject pro-

cess.

N

NtCreateSection 73.46% Create a new memory section. N

LdrUnloadDll 73.22% Similar to UnLoadLibrary, this is a

low-level function that unloads a DLL

into a process [48].

N

NtDuplicateObject 70.76% Creates a handle that is a duplicate of

the specified source handle.

N

4.2.2 Registry Keys

Similar to APIs, a list of Registry keys triggered by more than 70% of the locker ran-

somware samples was compiled. Table 4.3 presents this list along with the triggering

percentage and a label that indicates if the Registry key is unique or not.
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Table 4.3: 17/17 Registry keys Triggered in more that 70% of Locker Ransomware

Regkey Triggering

Percent-

age

Unique

REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\

WINDOWS\CURRENTVERSION\INTERNETSETTINGS\ZONEMAP\

INTRANETNAME

97% N

REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\

WINDOWS\CURRENTVERSION\INTERNET SETTINGS\ZONEMAP\

PROXYBYPASS

97% N

REG:DELETED:HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\

WINDOWS\CURRENTVERSION\INTERNET SETTINGS\ZONEMAP\

INTRANETNAME

78% N

REG:DELETED:HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\

WINDOWS\CURRENTVERSION\INTERNET SETTINGS\ZONEMAP\

00000000000000000000000000000000000000000000PROXYBY

PASS

78% N

REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\

OFFICE\14.0\COMMON\LANGUAGERESOURCES\LANGTUNEUP

72% Y

REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\

WINDOWS\CURRENTVERSION\EXPLORER\DISCARDABLE\

POSTSETUP\COMPONENT CATEGORIES\

{00021493-0000-0000-C000-000000000046}\ENUM\(DEFAULT)

72% Y

REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\

WINDOWS\CURRENTVERSION\EXPLORER\DISCARDABLE\

POSTSETUP\COMPONENT CATEGORIES\

{00021494-0000-0000-C000-000000000046}\ENUM\(DEFAULT)

72% Y

REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\

OFFICE\14.0\COMMON\LCCACHE\SMARTART\1033\NEXTUPDATE

71% Y

REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\

OFFICE\14.0\COMMON\LCCACHE\THEMES\1033\NEXTUPDATE

71% Y

Continued on next page
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Table 4.3 – Continued from previous page

Regkey Triggering

Percent-

age

Unique

REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\

OFFICE\14.0\COMMON\LCCACHE\WORDDOCPARTS\1033\

NEXTUPDATE

71% Y

REG:WRITTEN:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\

ASF STREAM DESCRIPTOR FILE\SETTINGS\DON’T SHOW BOOT

DIALOG

72% Y

REG:OPENED:HKEY_LOCAL_MACHINE\SOFTWARE\POLICIES\

MICROSOFT\WINDOWS NT\RPC

76% N

REG:OPENED:HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\RPC 72% N

REG:READ:HKEY_LOCAL_MACHINE\SYSTEM\CONTROLSET001\

CONTROL\NLS\CUSTOMLOCALE\EN-US

96% N

REG:READ:HKEY_LOCAL_MACHINE\SYSTEM\CONTROLSET001\

CONTROL\NLS\EXTENDEDLOCALE\EN-US

96% N

REG:READ:HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\

WINDOWS NT\CURRENTVERSION\GRE_INITIALIZE\

DISABLEMETAFILES

94% N

REG:READ:HKEY_LOCAL_MACHINE\SOFTWARE\

MICROSOFT\SQMCLIENT\WINDOWS\CEIPENABLE

72% N

4.3 Contrasting Percentage

The contrasting percentage was calculated for each API called and each Registry key

triggered by subtracting its triggering percentage for benign software from its triggering

percentage for locker ransomware. A contrasting percentage greater than +50% indi-

cates the behavior of locker ransomware, and a contrasting percentage less than -50%

indicates the behavior of benign software.
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4.3.1 Contrasting percentage of API calls

Figure 4.3 displays the contrasting percentage of APIs called by locker ransomware and

benign software. It can be easily noted that there are only 4 APIs (out of a total of 282)

with greater than +50% contrasting percentage. These APIs indicate the behaviour of

locker ransomware.

1. StartServiceA - Starts a service [3].

2. NtSetContextThread - Context to set to thread [49].

3. GetKeyboardState - Copies the status of the 256 virtual keys to the specified

buffer [3].

4. CopyFileA - Copies an existing file to a new file [3].

Only the other hand, there are only 7 APIs (out of a total of 282) with a contrasting

percentage less than -50%. These APIs indicate the behaviour of benign software:

1. GlobalMemoryStatusEx - retrieves information about the system’s current usage

of both physical and virtual memory [50].

2. DrawTextExW - draws formatted text in the specified rectangle [51].

3. CreateActCtxW - creates an activation context [52].

4. NtSetInformationFile - changes various kinds of information about a file object

[53].

5. NtSetValueKey - creates or replaces a Registry key’s value entry [54].

6. ShellExecuteExW - performs an operation on a specified file [55].

7. NtShutdownSystem - closes system [56].

4.3.2 Contrasting percentage of registry keys

Out of the 21,780 Registry keys recorded, 121 had a contrasting percentage greater than

+50% and 194 had a contrasting percentage less than -50% (see Figure 4.4).
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Figure 4.3: Contrasting Percentage for APIs Called

Figure 4.4: Distribution of Contrasting Percentage for Registry keys Triggered
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4.4 Summary

The data obtained from the dynamic analysis of 382 samples of benign software and

505 sample locker ransomware using the Cuckoo sandbox environment is analysed in

three ways. Table 4.4 summarises the key takeaways. The number of APIs called

and Registry keys is shown out of the total of 282 and 21,780 respectively. It is clear

that the profile of APIs called and Registry keys triggered by locker ransomware is very

distinctive. Only 1 API and 7 Registry keys are unique and have a triggering percentage

of more than 70%. These are:

• NtSetContextThread

• REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\OFFICE\14.0\COMMON\

LANGUAGERESOURCES\LANGTUNEUP

• REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\

EXPLORER\DISCARDABLE\POSTSETUP\COMPONENT CATEGORIES\{00021493-0000-0000-

\ENUM\(DEFAULT)

• REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\

EXPLORER\DISCARDABLE\POSTSETUP\COMPONENT CATEGORIES\{00021494-0000-0000-

\ENUM\(DEFAULT)

• REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\OFFICE\14.0\COMMON\

LCCACHE\SMARTART\1033\NEXTUPDATE

• REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\OFFICE\14.0\COMMON\

LCCACHE\THEMES\1033\NEXTUPDATE

• REG:DELETED:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\OFFICE\14.0\COMMON\

LCCACHE\WORDDOCPARTS\1033\NEXTUPDATE

• REG:WRITTEN:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\ASF STREAM DESCRIPTOR

FILE\SETTINGS\DON’T SHOW BOOTDIALOG

Also, only 4 APIs and 121 Registry keys have a contrasting percentage of more than

50% and therefore indicative of locker ransomware. Following are those 4 APIs:

• CopyFileA
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• GetKeyboardState

• NtSetContextThread

• StartServiceA

These observations should be effective for the efficient detection and prediction of locker

ransomware.

Table 4.4: Summary of Analysis

Type of Analysis Number of APIs Number of Reg-

istry Keys

Unique (Locker Ransomware) 31 5,082

More than 70% Triggering Percentage

(Locker Ransomware)

21 17

Unique AND More than 70% Triggering

Percentage

1 7

More than 50% Contrasting Percentage

(Locker Ransomware)

4 121

Less than -50% Contrasting Percentage

(Benign Software)

7 194
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Results

This chapter presents the results for LRDPA in the following three configurations:

1. only APIs called data,

2. only Registry keys triggered data, and

3. combined data - both APIs called and Registry keys triggered data.

In each case, the data was divided so that 80% was used for training and 20% was used

for testing. The accuracy and F1-scores are reported for each of the three configurations.

It is common practice to rely on accuracy only when the classes in a dataset are evenly

distributed. However, when the classes are unbalanced, as is this case, it is best to

include F1-score as well.

5.1 LRDPA Using Only APIs Called Data

The pattern of APIs called by a program presents a complete profile of its behaviour.

Therefore, fairly high accuracy (93.26%) and F1 score (91.78%) were obtained when

LRDPA is trained using only API data (see Figure 5.1).

5.2 LRDPA Using Only Registry Keys Triggered Data

LRDPA has an accuracy of 85.39% and an F1 score of 82.19% (also shown in Figure 5.1)

when only Registry keys triggered data is used. This is lower than the performance of
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Figure 5.1: Accuracy and F1-Score

LRDPA using only APIs called data. It should be noted though that Registry key data

can still contribute and provide some useful insight. During the analysis stage, it was

noted that some Registry keys are triggered by majority of the locker ransomware sam-

ples and they can be reliable indicators of malicious behaviour. One suitable example is

REG:WRITTEN:HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\ASF_STREAM_DESCRIPTOR_FILE

\SETTINGS\DON’T_SHOW_BOOT_DIALOG. This key was not triggered by any benign soft-

ware but by 81% of the locker ransomware samples. Similarly, REG:WRITTEN:

HKEY_CURRENT_USER\CONTROL_PANEL\DESKTOP\WALLPAPER was triggered by 67% of locker

ransomware samples. This key is used to change the wallpaper of the desktop and at-

tackers use it to display the ransom message.

The other notable Registry keys belonging to the regkey-written category were:

• REG:DELETED:HKEY_CURRENT_USER\CONTROL_PANEL\MMCPL\MLCFG32.CPL was trig-

gered in 56% of locker ransomware samples. Deleting this Registry key removes

the mail icon from the control panel.

• REG:DELETED:\STARTPERSIST is called to start a system and it was removed in

57% of the locker ransomware samples.

• REG:DELETED:HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\SYSTEM\CERTIFICATES

\TRUSTED_PEOPLE\CERTIFICATES deletes user certificates that are marked as trusted.

Furthermore, some Registry keys were found to be indicative of certain lockers ran-

somware. For example, REG:WRITTEN:HKEY_CURRENT_USER\SOFTWARE\MDSLK\SELF in
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Medusalocker and REG:WRITTEN:HKEY_CURRENT_USER\SOFTWARE\LOCKBIT\PUBLIC in Lock-

bit.

5.3 LRDPA using Combined Data

The combined data when fed to the LRDPA provides the best accuracy of 98.31%. The

F1 score is also the highest (98.14%) as shown in Figure 5.1. Additional fine-tuning,

discretization, and parsing of the dataset enhances the accuracy of LRPDA to 99.44%.

The other metrics confirm the conclusion that combined data provides the best result

for LRDPA. The confusion matrix, given in Figure 5.2, shows only 1 False Negative

(FN) and 0 False Positives (FP).

A comparison of the remaining eight evaluation metrics — Sensitivity, Specificity, Pre-

cision, Negative Predictive Value (NPV), False Discovery Rate (FDR), Matthews Cor-

relation Coefficient (MCC), , False Negative Rate (FDR), False Positive Rate (FPR) is

presented in Figure 5.3.

5.4 K-Fold Cross Validation

As there is never enough data to train a model, omitting some data for validation

causes under-fitting. By limiting data for training, there is risk of losing essential

patterns/trends, which increases bias-induced inaccuracy. This raises a need to have

enough data for training and validation. Cross-validation K-fold helps to achieve this

requirement. The approach essentially divides the data into k subgroups and repeats

the holdout process k times. It employs one of the k subsets as the test/validation set

and the other k-1 subsets as the training set. The total efficacy of a model is the error

estimation averaged across k trials. Every data point occurs once in the training set and

k-1 times in the validation set. This reduces bias since the majority of data is used for

fitting and validation. Switching training and test sets improves this strategy. K = 5 or

10 is preferred empirically, although it may be any number. For LRDPA, 10 fold cross

validation was used.
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Figure 5.2: Confusion Matrix for LRDPA - Combined Data

Figure 5.3: Remaining Evaluation Metrics
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Figure 5.4: 5 Fold Cross Validation

5.5 Comparison

Table 5.1 provides a summary of the performance reported in existing studies of malware

detection. It can be seen that LRDPA provides an accuracy of 0.44% higher than the

closest studies that uses only one ML model [37]. Although [38] reports marginally better

results, it uses a ensemble classifier instead of a single ML model. It is also expected

that the accuracy of LRDPA will improve with the use of addition pre-processing and

feature selection.

5.6 Summary

In this chapter, LRDPA is evaluated. In the first scenario, the metrics are obtained

when the model is trained using only the APIs called data. In the second scenario,

the evaluation is presented when the model is trained using Registry keys triggered

data. Lastly, the best results are presented using combined data to train the LRDPA

model. The highest accuracy obtained is 99.44%. The highest F1 score of 98.14% is also

obtained with combined data. Also, only 1 False Negative (FN) and 0 False Positives

(FP) are obtained. These results are very close to those presented in existing literature

and can be easily improved through additional pre-processing and feature selection.
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Table 5.1: Summary of Existing Work on ML-based Detection of Malware

Ref. Type of

Malware

ML Algorithm(s) Data Analysed Performance

[27] Malware Ensemble Classifier Registry Be-

haviour

Accuracy = 98.43%

[28] Ransomware Artificial Neural Net-

work (ANN)

Static and Dy-

namic

Accuracy = 95%

(static) = 55% (dy-

namic)

[29] Ransomware Random Forest (RF) Hex Codes Accuracy = 88.5%

[30] Ransomware Logistic Regression

(LR)

APIs, Registry

Keys, and File

System Opera-

tions

Detection Rate =

96.3%

[32] Ransomware Support Vector Ma-

chine (SVM)

APIs Accuracy = 97.48%

[33] Ransomware Bidirectional Encoder

Representations from

Transformers (BERT)

Contextual Be-

haviour

F1-score = 99.5%

[38] Locker Ran-

somware

Ensemble Classifier

(SVM, DT, RF, LR)

Behavioural Char-

acteristics

Accuracy = 99.98%

52



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The last few years has seen a surge in incidents involving ransomware particularly zero-

day attacks involving locker ransomware. It is imperative that this type of malware is

thoroughly analysed so that efficient and reliable detection and prediction methods can

be developed.

The most promising approach is based on supervised machine learning using a dataset

developed from dynamic analysis of malware. To the best of our knowledge, no com-

prehensive dataset of locker ransomware has been created yet. Likewise, no ML model

has been developed for the detection and prediction of locker ransomware. This study

aims to fill this gap by developing the Locker Ransomware Detection and Prediction

Algorithm (LRDPA).

The first step in the methodology used to develop LRDPA was the collection of samples.

A total of 382 samples of benign software and 505 samples of locker ransomware were

collected from various sources. These samples were labeled as either "Benign Software"

or "Locker Ransomware" with the help of VirusTotal.

LRDPA consists of three stages. In the first stage, the hash digest of an input sample

is generated and compared with a signature database containing hash digests of known

locker ransomware. This stage enables the efficient signature-based detection of known

samples of locker ransomware. If no match is found, then LRDPA moves onto the

second stage of dynamic analysis. The input sample is executed in the Cuckoo sandbox

environment and all APIs called and Registry keys triggered are recorded. In the third
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stage, the recorded data is fed into a trained RF model to predict if the input sample is

benign software or locker ransomware.

As the accuracy of LRDPA depends on the data used to train the RF model, each

sample of benign software and malicious software was dynamically analysed by running

it in the Cuckoo sandbox environment. All APIs called and Registry keys triggered were

compiled into a dataset.

An analysis of this dataset showed that the profile of APIs called and Registry keys

triggered by locker ransomware is very distinct from that of benign software. In fact, 1

API and 7 Registry keys was found to be unique to only locker ransomware and were

triggered by 70% of the locker ransomware samples. Likewise, 4 APIs and 121 Registry

keys had a contrasting percentage of more than 50%. This data analysis provided

strong assurance that the dataset consisting of 282 APIs called and 21,780 Registry

keys triggered would be suitable to train and test a ML model for the detection and

prediction of locker ransomware.

Three configurations for the dataset were created: only API data, only Registry key

data, and combined data. For each configuration, the dataset was split into 80:20 (80%

of data for the training and 20% for the testing). The trained RF model was then

evaluated (with 10-fold cross-validation) using multiple metrics. The results clearly

showed that the combined data configuration for LRDPA provided the highest accuracy

(99.44%) and F1 score (99.38%). Only 1 False Negative (FN) and 0 False Positives (FP)

were recorded. The other metrics also confirmed that LRDPA performs best with both

API and Registry key data.

6.2 Future Work

In the future, LRDPA can be modified to include a variety of machine learning algo-

rithms, such as regression and deep convolutional neural networks. In addition to that,

mapping and homogenising of the existing collection of features to the most prominent

characteristics in order to employ them may also help enhance the outcomes (e.g. ac-

curacy). Feature selection method, has the potential to highlight the most essential

aspects of both supervised and unsupervised learning, with the additional advantage of

making the model more effective.
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Additionally the developed dataset can be expanded by including other relevant classes

of ransomware (e.g. hybrid ransomware) and additional families of locker ransomware.
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