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Abstract 

Recently the use of vibrating wire strain gauges has increased to find out the damage 

in a reinforced concrete structure. The assembly and functioning of this acoustic strain 

gauge are presented. This gauge provides numerous benefits including its sensitivity 

to measure strain (up to 1micron) and its property of being easily attached on any 

concrete surface. The gauge apparatus can be made in a lab due to its low cost which 

gives it an edge over the conventional systems. The gauge was calibrated after 

considering the variations in temperature.   

The purpose of the experimentation was to record the changes in nonlinear vibrations 

with respect to the damage caused in the reinforced concrete member. These changes 

were later studied using the vibration tests on the reinforced concrete beam. Non-

linearities were observed by the changes in the fundamental frequency. Discrete 

Fourier transforms moving window was utilized to analyze the vibration signals 

specifically the change in frequency with respect to time. The results are presented 

and reviewed.  
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    CHAPTER 1 

1  INTRODUCTION 

1.1 Background 

Recently there has been a great development in the field of damage assessment at the 

early stages of a reinforced structure. Traditional methods revolve either around 

detecting cracks visually or using localized experimental methods such as ultrasonic 

and acoustic techniques. The requirement of these methods is that the precise location 

of the cracks is recognized and approachable. Therefore, recent methods primarily 

focus on the changes that take place in the vibrational properties of the structure itself. 

However, the existing work that has been done using the vibrational techniques 

conformed with the assumption that the vibrations are linear. Which meant that the 

modal properties of the structure did not change with the amplitude of the oscillations.   

1.2 Problem Statement 

The work discussed here involves the small amplitude behaviour of cracked concrete 

beams. This involves the need of the measurement of strain in order of tens of µ𝞮 to a 

higher degree of accuracy. The standard electrical resistance gauges are unable to 

measure at such degrees of accuracy. Moreover, these gauges are not suitable when it 

comes to attaching them on the concrete surface as they are unable to bridge the 

cracks. Hence, the vibrating wire strain gauge proves to be a useful alternative. These 

gauges in comparison to the traditional gauges provide us with strains of accuracy in 

the order of hundreds of microstrain. Other advantages of the vibrating wire strain 

gauge include the easiness of attachment and its ability to take measurements with 

cracks on the specimen.  

The vibrating wire strain gauge consists of a pre-tensioned steel wire between two 

fixed supports attached on the specimen to be assessed. When there is a change in the 

property of the concrete specimen it brings upon a change in the tension of the wire, 

resulting in the variation in fundamental frequency. This variation is then to be related 

to the value of deformation with the help of physical-mathematical models.   

One of the limitations of the use of a vibrating wire strain gauge is its sensitivity to 

the variations in temperature. 1˚ change in temperature results in a 20 µ𝞮 change in 
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the strain of the wire. This error is linked with the differences between the thermal 

expansion coefficients of both the gauge and the concrete specimen.  

1.3 Objectives 

1. Experimental setup of the gauge 

2. Calibration of the gauge 

3. Using the gauge for damage assessment 

1.4 Thesis Structure  

Followed by the introduction, a detailed literature review has been provided in chapter 

2 which discusses the linear and non-linear responses of vibrations. Chapter 3 

explains time-frequency analysis which includes the Nyquist theorem, Leakage and 

Fourier transformations. In chapter 5 theory of vibrating wire strain gauge, frequency 

strain relationship and effect of temperature on frequency of wire are explained in 

detail. Chapter 5 explains the methodology of our research which discusses in detail 

the process of how temperature correction was achieved, and the signal processing 

techniques involved. Further, the method of gauge calibration and the use of the 

gauge itself is presented. Later, in chapter 6 results and conclusions are discussed.    
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    CHAPTER 2 

2  Literature Review 

The testing techniques based on vibrations can be divided into two parts: those who 

consider vibration as 

1. Linear response 

2. Non-linear response 

Firstly, we will discuss linear vibration response and then nonlinear methods will be 

explained. Then we will discuss different possible testing techniques.  

2.1 Linear Response Methods 

The idea of using vibrations for structural health monitoring was an innovation in 

damage assessment. This idea is worked on the principle that the damage causes a 

reduction in stiffness and natural frequency of the civil engineering structures. Most 

research into using vibration techniques to detect damage looks at modal 

characteristics and assumes that they are linear, and do not consider the amplitude. 

The many sorts of indicators can be divided into numerous categories, which are 

briefly detailed below with some application examples. Some methods are explained 

below in detail. 

2.1.1 Natural Frequencies Method 

Variations in natural frequency are a rather insensitive approach to diagnosing the 

damage, according to the literature. 

The researchers named Farrarand Jauregui (Jauregui, 1998) performed a test on a steel 

plate girder bridge and found that even at significant damage states, there were only 

minor changes in frequency. The largest change in natural frequency was only 7% at a 

96.4% reduction in the stiffness of one of the main girders. There was no discernible 

variation in frequency at lower damage levels. 

Maguire and Severn (Severn, 1987) performed tests on four pre-cast post-tensioned 

reinforced concrete bridge beams with a span of 27.6 m that were simply supported. 

When the cover concrete was removed, exposing the pre-stressing tendons, they 

reported a decrease in frequency. However, the modifications were minor, and their 

frequency resolution was comparable. 
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Then Salawu (Salawu, 1997) performed a test on a concrete bridge before the support 

bearings and after the support bearings were changed and found that the average 

variation for the first six modes of vibration was just 1.7 percent. 

A considerable number of laboratory tests have also been recorded. Eccles et al (B.J. 

Eccles, 1997). discovered that when concrete beams were damaged by four-point 

loading, the fundamental frequency decreased by roughly 12 percent at first, however, 

the change in frequency was only 2.5 percent for additional damage. 

The few publications chosen here show that the frequency varies with the severity of 

the damage and that the frequency reduces as stiffness reduces. But the changes in 

frequency are minor as compared to oscillations caused by external factors, such as 

temperature changes. When the atmospheric temperatures were 0°C and 15°C, Abdel 

Wahab and De Roeck (Roeck, 1997) took two readings of the natural frequency of a 

prestressed reinforced concrete bridge. The change in natural frequency as a 

consequence of the temperature rise was roughly 4-5 percent. Roberts (Roberts, 1995) 

investigated the effects of temperature on the natural frequencies of a reinforced 

bridge structure for a year and found that temperature was the most significant cause 

of change in frequency, accounting for 4% of complete change, while a finite element 

model suggested that damage-related changes could be in the region of 1%. The 

temperature changes had no substantial effect on mode forms, according to a second 

important finding. 

2.1.2 Method of Damping Ratios 

There have been several attempts to use damping ratios as a damage measurement, 

but they have failed. Although damping ratios were altered by degradation in a steel 

girder with concrete decking, Salane and Baldwin (Jr., 1990) concluded that they 

were inadequate indicators since they initially increased and subsequently declined 

with increasing damage. Farrar and Jauregui (Jauregui, 1998) also discovered that the 

damping of a steel plate girder bridge did not vary with an increase in the damage 

consistently. 

Salawu and Williams (Williams, 1995) carried out tests on a reinforced concrete 

bridge before and after structural repairs and determined that the changes in damping 

for different modes were inconsistent. So, they found that there was no specific 

relationship between the damage and damping.  
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2.2 Non-Linear Response Methods 

In contrast to a large amount of research that has been done on damage detection 

through linear methods, little research has been done on time-dependent non-linear 

vibrational features of civil engineering reinforced concrete structures. 

2.2.1 Concrete Beams Non-Linear Testing  

There is fever research on the non-linear amplitude-dependent modal characteristics 

of concrete beams that have been published. Eccles et al (B.J. Eccles, 1997) tested 

many beams for impact excitation. They demonstrated that when the oscillation 

amplitude is big, the frequency is initially lower in comparison to when the amplitude 

is small. When the amplitude is modest, the frequency stabilizes, and no additional 

amplitude dependency can be noticed. For higher levels of damage, the gradient of 

increasing frequency with time is larger. However, the fundamental frequency of the 

beams tested was significantly greater than what is predicted for a bridge, and the 

excitation of vibration dissipated extremely quickly. 

Goldsmith (Goldsmith, 1999) observed that there was a little amplitude dependency 

while the beam was in undamaged condition, this increased as the beam was damaged 

up to the point where the rebars started to yield. After rebars yield, the amplitude 

stopped increasing, and only a decrease in whole frequency was observed. The figure 

below depicts a frequency vs. time graph for growing damage. The frequency 

information is determined by the interaction with an impulse detected at time t = 0. 

The plot with the largest natural frequencies is the undamaged condition, and the 

average frequency steadily declines as damage rises. The starting decrease in 

frequency up to roughly 0.025 s is because of the windowing effect inside the 

adjusted exponential distribution utilized in the data analysis. 
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Figure 1: Frequency vs Time 

 

Van Den Abeele and Visscher (Visscher, 2000) carried forced vibration testing. They 

built a plot of the natural frequencies at various amplitudes of vibration using 

continuous-wave excitation at varying amplitudes. The testing revealed that while the 

beams did not act linearly when it was in undamaged condition, the non-linearities 

became much more significant when the beam was damaged by the application of 

four-point loading. Owen (Owen, 2001) experimented with this strategy as well. 

Using time-domain-domain experiments, Van Den Abeele and Visscher found similar 

patterns. The testing sample was exposed to steady-state excitation near to its natural 

frequency before the test, and then the excitation was discontinued at the 

commencement of the test, allowing the natural frequency and decline of the beam to 

be observed. This test is comparable to the impulsive excitation experiments 

performed by Eccles et al (B.J. Eccles, 1997). but it has the benefit of activating only 

one mode at a frequency that is close to an excitation frequency before the start of the 

test. However, the testing necessitated the use of shaker tools, which increases 

complexity, especially if it were to be used on a large-scale structure.  

Eccles et al (B.J. Eccles J. O., 1999). revealed another potential way of detecting 

damage. They used a natural frequency to stimulate the beam and observed 

acceleration for fixed excitation energy. A phase-plane plot could be found by 

integrating the acceleration data multiple times   In the phase plane, the path 

travelled by a linear system is a circle. The extent to which the computed path 

deviates from a circle is computed by the system's non-linear response. However, 
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when displayed in the frequency domain at integral multiples of the excitation 

frequency, these non-linearities would appear in the signal, which would be easier to 

comprehend. 

2.3 Possible Testing Methods 

There has been a lot of research done on the benefits and drawbacks of the three types 

of tests, including extensive studies by Salawu and Williams (Williams, 1995) and 

Prakash Rao et al (D.S. Prakash Rao, 1983). There are three primary types of testing 

methods: 

• Forced Vibration 

• Impact Excitation 

• Ambient Excitation 

The bridge is excited over a broad frequency band, at one frequency using a shaker, or 

a steadily change in frequency in forced vibration tests. The fundamental advantage of 

vibration tests is that the amplitude can be kept uniform, allowing the periodic 

response to be averaged over several cycles, resulting in a cleaner response shape. 

Other benefits of forced vibration tests include knowing the input excitation and being 

able to regulate the frequency range. A downside is that a big shaker is necessary to 

excite a bridge at a tolerable amplitude, which raises the expense of the testing. The 

bridge must also be blocked to prevent vehicle excitement from affecting the tests. 

Salawu and Williams (Williams, 1995), as well as Kramer et al (Severn, 1987)., 

conducted forced excitation studies on bridges and found the requirement for using 

more than one shaker to reduce the influence of vibration due to moving traffic 

loading. 

Raghavendrachar and Aktan (Aktan, 1992), for example, conducted impact excitation 

tests on a bridge by constructing a hump on the road and driving a truck on it. 

Although the bridge has to close testing duration as with forced vibration testing, the 

interruption to traffic is reported to be less because the testing procedure is very 

efficient in case of impact test, and the bridge can be held open for traffic between 

tests. The truck movement across the bridge causes a shift in mass distribution, which 

is a concern with this form of excitation. Humar and Kashif (Kashif, 1993) have done 

theoretical work to analyze the effect of a truck passing along a bridge. Kramer et 

al. (C. Kr¨amer, 1999) used a different test method, which involved putting weight 
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onto the reinforced concrete bridge span. However, this is very complicated than truck 

excitation and may stop the flow of traffic between testing and measuring the input 

force is easier. On a small scale, Mazurek and DeWolf (DeWolf, 1990) compared two 

different methods of impulsive excitation They discovered that the weight of the 

vehicle affected the natural frequencies by up to 3% and that the shifting distribution 

of weight modified the damping qualities as the model vehicle traversed the beam. 

Kramer et al  (C. Kr¨amer, 1999). evaluated the three kinds of tests and determined 

that, despite the lower levels of excitation, drop-weight excitation produced similar 

modal features as forced excitation testing for the bridge they investigated. 

Ambient excitation tests are the simplest and least expensive to conduct, as they rely 

solely on the flow of traffic or other forms of ambient excitation. There would be no 

need for costly excitation equipment or traffic disruption, and the bridge vibration 

could be recorded remotely using permanently placed accelerometers and data-

gathering devices. It is, however, the hardest method of stimulation to understand. 

The mass distribution on the bridge is constantly changing, and the vibration is caused 

by interaction with the car suspensions. Although Ward has done some effort to tackle 

this difficulty, the incoming excitation is undefined and must be considered to be 

white noise. He advised that the vibration response of the road be measured and used 

to equalize the bridge's reaction. Another issue is whether the ambient stimulation will 

be large enough to allow measurement of the modal characteristics. Traffic excitation 

was suitable for measuring the starting 12 modes of a multi-span steel bridge 

structure, according to Roberts, and sufficient excitation was also adequate to assess 

the modal characteristics of a short-span concrete bridge, according to Kramer et al. 

In field trials, the suitability of different kinds of tests for detecting non-linearities has 

still not been established. 

2.4 Conclusion From Literature Review 

A review of the literature reveals that, while some promising work on damage 

identification in concrete structures using linear approaches has been published, Some 

significant challenges are still there to overcome, particularly in terms of sensitivity 

and the impact of external factors. Nonlinear approaches for detecting the dependence 

of natural frequency on amplitude should be researched further. Eccles et al (B.J. 

Eccles J. O., 1999). and Goldsmith's (Goldsmith, 1999) work on amplitude-frequency 

frequency dependence is a suitable beginning place for this research. To imitate drop-
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weight experiments on bridges, more impact tests were undertaken on simply 

supported conditioned beams with less natural frequencies and larger geometry than 

those employed by Eccles et al  (B.J. Eccles J. O., 1999). and Goldsmith (Goldsmith, 

1999). This was thought to be superior to forced vibration excitation because it would 

allow for direct measurement of the beam frequency during the decaying vibration 

caused by the hit. The work offered here is divided into three sections: 

2.4.1 Time-Frequency Distributions 

The change in natural frequency of the reinforced beam with time should be evaluated 

to detect non-linearities in impact loading. The optimal way of analyzing the data was 

determined after a thorough examination of time-frequency distribution tools. 

2.4.2 Modelling 

A mathematical non-linear model of a beam capable of evaluating multiple 

hypothetical crack mechanisms would be important to better understand the 

explanation for the non-linearity. The types of models have been used to model non-

linear cracks in homogeneous materials. Those models, on the other hand, are 

complicated, relying on fracture mechanics to estimate the distribution of stress in the 

cracked region, which is further transformed into a spring stiffness. A reinforced 

concrete beam would be extremely tough to apply this strategy on. As a result, it was 

considered that a basic vibrating beam model, which allowed for the addition of the 

moment-rotation connection over a cracked region, would be a helpful addition to the 

previous study. 

2.4.3 Experimental Work 

Impact excitation studies were carried out on a reinforced concrete beam having 

relatively less frequency. The relationship between the frequency of the beam and 

amplitude of the vibration changed with the increase in damage level, and a method 

for monitoring the moment-rotation relationship over the fractured region was 

established. This is expected to be used in conjunction with the model to help 

researchers better understand the vibration nature of cracked concrete beams. 
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  CHAPTER 3 

3  Time-Frequency Analysis 

It is important to be able to compute an estimation of the instant frequency 

components of the vibration at any moment to find a time-frequency relationship to 

analyse the non-linear effects of a vibrating beam. Several approaches will be studied 

in this chapter. 

3.1 Nyquist Theorem  

The Nyquist theorem is also referred to as the sampling theorem. It is utilized in the 

digitization of analogue signals. Samples of the analogue waveform are taken 

consistently to convert the signal from analogue to digital. Sampling rate or frequency 

is the number of samples taken in a second. The theorem states that a sinusoidal 

function in time or distance can be redeveloped while preserving the information. 

This is possible when it is sampled at a frequency equal to or larger than twice per 

cycle. This is usually the case because of the quantization errors that occur during the 

sampling process. For example, humans can hear frequencies in the range of 20-

20000Hz so that is why the audio signal is sampled at a rate of 40000HZ when music 

is stored on a CD. 

An analogue signal va can be recreated from its samples with the help of the equation 

given by the Nyquist Theorem: 

 

 

 

3.2 Aliasing: 

If the initial samples are not sufficiently closely spaced to represent high-frequency 

components present in the underlying function, then the DFT values will be corrupted 

by aliasing. To solve this problem either the sampling rate is increased, or the signal is 

pre-filtered to reduce the high-frequency spectral content. 
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3.3 Leakage: 

The continuous Fourier transform of a periodic waveform requires the integration to 

be performed over the interval - infinity to + infinity P or over an integer number of 

cycles of the waveform. If we attempt to complete the DFT over a non-integer 

number of cycles of the input signal, then we might expect the transform to be 

corrupted in some way. To solve the problem of leakage, window functions can be 

used. This tapers the sample towards zero values at both endpoints eliminating 

discontinuity with a hypothetical next period.  

3.4 Fourier Transform 

Mostly all the things can be elaborated with the help of a waveform. To view these 

waveforms, we have the Fourier Transform which is a different and effective 

approach. It is known that all the waveforms are sums of sinusoids of various 

frequencies. Here the Fourier Transform plays a vital role as it decomposes a 

waveform.  

This can be further elaborated with the help of an example provided below. 

Waveforms in the figure are broken down into their constituent frequencies as shown 

in the rest of the diagrams.  

 

 

 

Figure 2:1st fundamental frequency and original waveform 

 



13 
 

 

 

Figure 3: 2nd fundamental frequency and original waveform 

 

 

Figure 4: 3rd fundamental frequency and original waveform 

 

 

Figure 5: 4th fundamental frequency and original waveform 
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Fourier Transform has great scope and applications in various fields.  

3.5 Discrete Fourier Transform 

Discrete Fourier Transform (DFT) can be expressed as: 

 

To find the DFT of a discrete signal X(n) we multiply each value by e raised to some 

function of n. Where n is the size of its domain. Then all the results are summed for 

the given n.  

DFT Example: 

Let continuous signal be 

 

 

 

Figure 6:Example Signal for DFT 

 

Let us sample f(t) at 4 times per second (i.e. f=4Hz) from t=0 to t=3/4. 

The values of the discrete samples are given by: 
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The magnitudes of DFT coefficients are below: 

 

 

Figure 7: DFT Magnitudes 

 

DFT is only an approximation since it provides only for a finite set of frequencies. 

There are two main errors of DFT: 
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1) Aliasing 

2) Leakage 

  

3.6 Fast Fourier Transform 

Fast Fourier Transform (FFT) is an algorithm as its name implies. It finds the Discrete 

Fourier Transform of an input at a much faster rate than its direct computation. The 

Fast Fourier Transform lowers the number of computations required for a problem of 

size N from O(N^2) to O(NlogN).  

 

 

 Consider N=8 

 

It is observed that 

 

3.7 Zero-Padding: 

The Fourier transform is a frequency-resolution-infinite transformation of an 

indefinitely long duration signal. The observed frequency of a discrete-time signal is 

estimated by converting a signal of finite duration T into a number of distinct readings 

in the frequency response with an accuracy of 1/T. Zero-padding is a method that 
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enables the DFT to estimate a good prediction of the FT of a waveform. A series of 

zeros are introduced to the start and the end of the time series first before DFT is 

determined. 

 

Determining the DFT of the numbers other than integers values of parameter m can be 

regarded as the result of inserting these zeros. If the input is zero-padded to duration 

N, then the DFT formula will become:  

 

Here, parameter m is an integer ranging between N/2+1 to N/2, and the signal's time 

frame is raised from T to αT. Because the input signal is 0 outside the region of −N/2 

+ 1 ≤ n < N/2, it can be refined: 

 

This is similar to the previous equation without zero-padding (although expanded by 

1/α), however now m accepts numbers in increments of 1/α rather than increments of 

this one from N/2 + 1/ to N/2. As a result, rather than 1/T, the frequency increments 

are 1/(αT). 

 

Figure 1 illustrates the DFT (adjusted to use the WFT's highest value) of a complex-

valued waveform with frequencies 5/T and the time T, recorded at a rate of 20/T. In 

the time-frequency domain, we have twenty points, and on the other hand, in the 

frequency domain also, twenty points are here. In the time-frequency domain, we 

have twenty points, and on the other hand, in the frequency domain also, twenty 

points are here.  

 

The estimated frequency band is 9/T to 10/T, with a 1/T resolution among nodes (as 

this signal has lasted for time T).  Figure 1 is also showing the effect of zero-padding, 

in this zero-padding, changes the length of the signal to double from its previous 

length.  This results in 1/2T frequency resolution and also gives a frequency range of 

9.5/T to 10/T. This figure also shows the zero-padding as well as the effect of zero-
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padding to four times its original length, resulting in 0.25/T frequency resolution and 

a frequency range of 9.75/T to 10/T. The very same approximation is obtained with 

infinite zero-padding as with a windowed continuous FT. 

 

In this case, zero-padding the signal is represented to lead to a decrease of precision in 

the signal's frequency components. No observed frequency except at 5/T was 

expected without zero padding. This instance, meanwhile, is a special instance in 

which the signal's frequency is approximately the same as the other frequency ranges. 

As a result, while increasing the zero-padding emphasises the fundamental sinc 

function created by windowing the temporal signal to a finite length, it has no effect 

on the projected frequencies. 

 

Figure 8:Zero-padded DFT of 5/T frequency complex exponential signal 

 

 If indeed the frequency is just not equal to one of the open back signal's frequency 

ranges, zero-padding will enhance frequency prediction. The Fourier 

transformation for the 5.2/T complex-valued signal continuing for time T is shown in 

Figure 3.5. The anticipated frequency without zero padding is 5/T. Nevertheless, as 

the fundamental sinc function is shown in greater detail with greater resolution, the 

frequency estimation improves. 

 

This should be emphasized that zero-padding is only able to display a better result in a 

lower to the constant FT of a windowed signal, and hence is not a true gain in 

frequency approximation. Only by expanding the duration of the time series and 

therefore decreasing the size of the sinc function's peaks can actual resolution be 
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improved. Fig.1 shows the frequency contents projected for the 5/T frequency signal 

versus frequency estimate whenever the signal is zero-padded to double its initial 

length and captured over double its initial length. The smooth and dashed lines 

indicate an endlessly padding signal of length T and 2T, correspondingly, showing all 

of the subtleties of the fundamental sinc function generated by the temporal 

windowing. 

 

 

Figure 9: Zero-padded DFT of 5.2/T frequency complex exponential signal 

 

Apparently, the frequencies of the signal may be discovered properly by zero-padding 

to a sufficient size and searching for the frequency bins with the biggest frequency 

response. If there are 2 or even more modes, though, the sinc functions belonging to 

each mode might conflict, resulting in inaccurate predictions of the modes' frequency. 

Whether a signal of T length in the range from 0 to T is evaluated, it is required to 

verify that the repetitive signal (that uses the Fourier series technique) includes the 

real signal across the range from 0 to T in order to retain the right aspect connection. 

The signals can then be used to determine the DFT throughout the range  T/2 to T/2. 

For instance, if the signal is to be zero-padded to quadruple times its initial length, the 

repeated signal will have the value 0 over the region 2T to 0, and the input signal will 

take the price value 0 over the range of 0 to T, and the input signal will take the value 

0 over the range T to 2T. 
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3.8 Decimation: 

To accelerate up data processing, it's often advantageous to lower the sampling rate 

of signals. The information loss relevant to high-frequency content is the expense of 

this procedure. To eliminate ambiguity, signals must be filtered while omitting sets of 

data to eliminate the high frequencies portions, a procedure known as decimation. A 

Chebyshev low-pass filter is employed in this decimation process, which is a typical 

MATLAB method. 

 

3.9 Windowing: 

Windowing is frequently used to decrease shoulder. First, before DFT is determined, 

the signal is amplified by a window with the same duration as the input. When 

considering the windowed Fourier transform, employing the window has the 

consequence of replacing the rectangular window imposed on the signal. As a result, 

rather than being convolved with such a sinc function, the frequency is combined with 

the window's transformation. There seem to be a variety of windows, including the 

Hanning and Blackman windows, which are very prominent in MATLAB software. 

Figures 3.7a and 3.7b show the windows in the time domain and frequency domain, 

as well as a rectangular window for comparisons. The disadvantage of lowering the 

shoulder would be that the actual frequency peak becomes broader. The approach 

Figure 10: A comparison between zero-padding and an 

increase in sample time 
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provided here does not employ windowing because an accurate frequency estimate is 

more critical than side-lobe elimination, as the fundamental frequency predominates 

the input signal. 
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CHAPTER 4 

4  Theory of Vibrating Wire Strain Gauge 

The basic principle of the experiment is based on the fundamental frequency of 

stationary waves in the wire that is fixed at both ends. The fundamental frequency of 

the wire may get changed due to the effect of temperature. The concept of a stationary 

wave in a stretched string and the effect of temperature on its fundamental frequency 

is discussed below in detail. 

4.1 Stationary Wave: 

The resultant wave produced by the superposition of two identical waves traveling in 

opposite directions is called a stationary or standing wave. Consider the superposition 

of two waves along a string in opposite directions. The picture of such two waves at 

instants t=0, t=T/2, t=3T/2, and t=T is shown in the figure below. Where T is the time 

period of the stationary wave. 

 

Figure 11: Vibration Nodes 
 

We are interested in finding out the displacement of the points 1,2,3,4,5,6, and 7 at 

these instants as the waves are superposing at these points. From the above figure, it is 

obvious that the points 1,2,3,4,5,6, and 7 are distant λ/4 apart, λ being the wavelength 

of the stationary wave. The resultant displacement at these points can be calculated by 

applying the superposition principle. 
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It can be seen that the resultant displacement of the points 1,3,5, and 7 at instants t=0, 

t=T/2, t=3T/2, and t=T is zero. These points of the medium or string are known as 

nodes. We can see from the figure (c) that λ/2 is the distance between two connective 

nodes. The points between the two successive nodes are in phase with each other. 

The resultant displacement of the points 2,4, and 6 at instants t=0, t=T/2, t=3T/2, and 

t=T is the sum of the amplitudes of the component waves. These points of the 

medium or string are known as antinodes. We can see from the figure (d) that λ/2 is 

the distance between two connective nodes. The distance between successive and 

antinode is λ/4. 

The energy in a wave moves due to the motion of particles in the medium. The nodes 

are the points that remain at rest so there is no energy flow through these points. 

Hence energy remains standing in the medium between two consecutive nodes. 

Although energy can change its form from kinetic to potential and from potential to 

kinetic in this portion of the medium. Talking about the antinodes when they are at 

their extreme positions the energy stored is wholly potential and when they are at 

equilibrium or mean positions the energy is wholly kinetic. 

4.2 Stationary Waves in a String Fixed at Both Ends: 

Suppose we have a string of length l. It is stretched and is clamped at its two ends. 

The tension in the string is denoted by F. 

When the string is plucked and then released, two waves are generated which move in 

opposite directions along the string. Both of these waves are reflected from the 

clamped ends of the string with the opposite phase to generate stationary waves on the 

string. As both ends are clamped with rigid supports, these do not vibrate, and we get 

nodes at the ends. 

The speed of the wave depends upon the tension F in the string and mass per unit 

length or linear mass density of string which is denoted by m.  

v = √
F

m
  ----------------- (1) 

4.2.1 The first mode of vibration 

When the string is plucked at the middle of its length then the string vibrates in a 

single loop as shown in the figure. Such a mode is called the first or fundamental 

mode of vibration  
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Figure 12: First Mode of Vibrations 
 

Distance between two successive nodes = λ/2 

If λ1 be the wavelength and f1 be the frequency of the vibration in this mode, then  

𝑙 = 2λ1 

 λ1 = 2l---------------- (2) 

The speed of the wave will be  

v = 𝑓1λ1 

  𝑓1 =
𝑣

λ1
   

putting values of λ1 we get 

𝑓1 =
𝑣

2𝑙
  --------------- (3) 

putting values of v from equation (1) in equation (3) we get 

𝑓1 =
1

2𝑙
√

F

m
 

4.2.2 The Second mode of vibration 

When the string is plucked from one-quarter of its length then the string vibrates into 

two loops as shown in the figure below. If λ2 be the wavelength and 𝑓2 be the 

frequency of the vibration in this mode, then 
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Figure 13: : Second  Mode of Vibrations 
 

𝑙 =
λ2

2
+ 

λ2

2
 

λ2 = 𝑙 

The speed of the wave will be 

v = 𝑓2λ2 

𝑓2 =
𝑣

λ2
 

Putting values of λ2 we get  

𝑓2 =
𝑣

𝑙
 

𝑓2 =
2𝑣

2𝑙
 

𝑓2 = 2𝑓1 

 

Hence when the string vibrates in two loops its frequency is twice the frequency when 

it vibrates in one loop. 𝑓2 is called the first overtone or the second mode of vibration. 

4.2.3 The third mode of vibration 

When the string is plucked from one-sixth of its length then the string vibrates into 

three loops as shown in the figure below. If λ2 be the wavelength and 𝑓3 be the 

frequency of the vibration in this mode, then 
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Figure 14: Third Mode of Vibrations 

 

 

𝑙 =
λ3

2
+ 

λ3

2
+

λ3

2
 

λ3 = 𝑙 

The speed of the wave will be 

v = 𝑓3λ3 

𝑓3 =
3𝑣

2λ3
 

Putting values of λ2 we get  

𝑓3 =
𝑣

𝑙
 

𝑓3 =
3𝑣

2𝑙
 

𝑓3 = 3𝑓1 

Hence when the string vibrates in three loops its frequency is three times the 

frequency when it vibrates in one loop. 𝑓3 is called the second overtone or third mode 

of vibration. For the nth mode of vibration frequency of vibration will be 

𝑓𝑛 = n𝑓1 

So, the stationary waves have a discrete set of frequencies which is known as 

harmonic series. The frequency f1 is known as the fundamental frequency and the 

other is called overtones. 
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4.3 Frequency Strain Relationship: 

If a wire is held rigidly at both ends the expression for its fundamental frequency can 

be derived using the principle of stationary waves discussed above 

v = √
Fxl

m
 

v = √
F

m/l
   

Dividing up and down by Area A 

v = √
F/A

m/V
   

v = √
σ

ρ
   

Here 

• A = Area of wire 

• V = Volume of wire 

•  ρ = density of the wire 

•  σ = Stress the wire 

As we know the relationship between frequency and speed for the first mode of 

vibration is  

𝑓1 =
𝑣

2𝑙
   

𝑓1  =
1

2𝑙
√

σ

ρ
   

For the nth mode of vibration 

𝑓𝑛  =
𝑛

2𝑙
√

σ

ρ
   

4.3.1 Strain in Specimen: 

For a specimen shown in the figure below  



28 
 

 

Figure 15: Strained and Unstrained specimen 

 

•  Lw =Unstretched length    

• l0 = total span held at tension 

• E = Modulus of Elasticity 

 

Where 

 

After loading  

 

And its natural frequency will be 
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Strain in the specimen is 

 

The ratio of frequencies before loading and after loading is 

 

Using above expressions 

 

Considering  is equal to unity as strain in the wire and specimen is way less 

than zero so  

 

Rearranging 

 

Where G is the gauge factor. Its value only depends on the material of the wire and is 

independent of the initial strain in the wire or specimen. The value of the gauge factor 

can be determined theoretically by 

 

Normally, the value of the gauge factor is calculated through experimental calibration 

which will be explained in the coming chapters. 

4.4 Effect of Temperature: 

Suppose we have temperature variation between the two frequency readings. If the 

coefficients of thermal expansion of wire and specimen are the same there will be no 

change in the strain as both specimen and wire will expand with the same factor. On 

the other, if coefficients of thermal expansion of wire and specimen are different then 
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the effect of temperature on strain becomes significant. An additional strain will 

generate due to temperature. It is mandatory to have two gauges, one is for the 

loading test and the other is for the measurement of relative change in strain due to 

temperature. Both gauges should be in an identical operating environment. We will 

discuss the use of a control gauge in the temperature part.  So total strain due to load 

and temperature can be measured by 

 

Where 

• T0 = Initial Temperature 

• T1 = Final Temperature 

• α𝑠 = Expansion coefficients of specimen 

• α𝑤 = Expansion coefficients of wire 

To eradicate this temperature, we use a control gauge which is help close to the 

specimen or sample. So above equation will become 

 

Where 

• 𝑓𝑐𝑜 = frequency of control gauge at T0 

• 𝑓𝑐1 =  frequency of control gauge at T1 

• 𝑓0 = frequency of loading gauge before straining 

• 𝑓1 = frequency of loading gauge after straining 
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   CHAPTER 5 

5 Methodology 

The basic process of developing the gauge and using it for damage assessment can be 

broadly divided into 4 categories: 

1. Experimental setup of the gauge 

2. Signal Processing 

3. Calibration of the gauge 

4. Damage assessment using the gauge 

5.1 Experimental Setup of the Gauge 

The assembly of the vibrating wire strain gauge is quite simple. For the gauge, two 

M8 bolts were glued onto the concrete surface with the help of epoxy. The center-to-

center distance between the two bolts was kept 100 mm corresponding to the crack 

spacing occurring at the stirrup locations. A hole was drilled next to the bolt head to 

allow the wire to pass through. A guitar string having a diameter of 0.1” was passed 

through the bolts and was pre-tensioned to a force of 14.72 N with the help of a spring 

balance. The wire was clamped by the use of well lubricated washers and by 

tightening the nut. This allowed for the wire to be held in place at the initial tension.  

The figure below shows the setup of the gauge as viewed from the top and the side. 

 

Figure 16: Gauge Setup 

 

 



32 
 

As for recording the vibrating wire audio signal, a microphone was clamped onto the 

bolts near to the string. A low pass filter of 2500 Hz was applied, and the sampling 

frequency was fixed at 8 KHz. The microphone was then connected to a computer and 

then the audio was recorded and edited in Ableton (a Digital Audio Workstation). The 

wire was excited 5 times in succession and then the frequency of each signal was 

averaged to find out the frequency of the signal. The variation in the frequency 

content for each strain condition did not deviate by more than ± 0.15%.  During this 

procedure of acquiring the signal, the unstrained control gauge was kept close to the 

test sample to minimize the effect of temperature on the frequency content of the 

signal.  

 

 

 

5.2 Signal Processing 

The signal was found to be made up of two closely spaced peaks in the frequency 

domain. A potential reason for this could be because of the difference in stiffness 

offered by the supports in the y and z directions. The wire was vibrated from the 

centre in the z-direction but some vibration in the y-direction was inevitable. The 

figure below shows a typical time-domain signal recorded from the vibrating wire 

strain gauge. The signal was processed using the software OriginPro. 
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Figure 17: A Typical Time Domain Signal 

 

To determine the frequency content of the signal, the Fast Fourier Transform (FFT) of 

the signal was performed. The highest frequency peak of the signal corresponded to 

the frequency of the wire. The figure below shows a typical FFT graph of a signal 

acquired from the vibrating wire strain gauge. The initial peak has the highest 

amplitude but is discarded as it corresponds to the background noise. Next, the 

highest peak in the frequency domain plot is taken as the natural frequency of the wire 

which in this case turned out to be 902.68 Hz. This frequency for the unstrained gauge 

could be cross-checked by the theoretical value of frequency for the gauge using the 

mathematical equation described above. The graph below shows a particular 

frequency domain plot of the signal. 

 

Figure 18:Typical Frequency Domain Plot of Signal 
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However, since the initial signal is non-linear, it is essential that the non-linear portion 

of the signal be removed. This was done by determining the time-frequency 

relationship of the signal. The time-frequency relationship provides information 

regarding the constituent frequencies that the signal is composed of at a particular 

time instant. This relationship was determined by the Short-Time Fourier Transform 

(STFT) of the signal. For the STFT, the Hanning window function having an FFT 

length of 512 bins and an overlap of 256 bins was selected. Once the time-frequency 

relationship was obtained, the time till which the signal remains non-linear is removed 

from the signal and the FFT of the remaining signal is performed for the next 1.5 

seconds. After 1.5 seconds the signal-to-noise ratio decreases substantially and so the 

frequency content cannot be determined accurately (Neild, 2005).  The figure below 

shows an STFT graph obtained from the strain gauge signal. 

 

 

Figure 19:A Typical Frequency-Time Plot of the Signal 

 

It is evident from the graph that the linear signal begins at approximately 0.5 seconds. 

The amplitude corresponding to the time at which the signal begins to exhibit linear 

behavior is then identified as the threshold amplitude. The threshold amplitude for 

each gauge was determined and was kept the same for each loading condition. Once 

the amplitude of the signal falls below the threshold amplitude, the FFT of the next 

1.5 seconds of the signal is done to obtain its frequency content. To filter the signal, a 



35 
 

band pass filter having a bandwidth of 300 Hz was applied centered at the natural 

frequency of the wire to remove additional noise from the signal. The figure below 

shows the difference between the time domain plot of the filtered and unfiltered 

signal. 

 

 

 

Figure 20:Time Domain Plot of Filtered and Unfiltered Signal 

 

5.3 Calibration of the Gauge 

For both the strained and unstrained circumstances, the specimen strain was computed 

using the reference and measurement gauge frequencies. These frequencies may be 

combined using equation 6.14 to compute the strain in terms of the gauge factor, G, in 

comparison to the unstrained state. 
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Figure 21:Calibration Gauge Setup on Nylon Bar 

 

To calibrate the gauge, tests were conducted on a bar of nylon having cross-sectional 

dimensions of 16 mm x 16 mm and a length of 300 mm. The Young’s Modulus of 

nylon is 2.7 GPa. Hooks were inserted into the rod at each end and the rod was 

hanged at one end to allow no moment transfer at the supports. Known loads were 

applied at the other end by hanging them with the hooks.  

 

 

 

Figure 22:Loading Applied on Nylon Bar to Induce Applied Strain 

 



37 
 

An increment of 5N was applied in each test and the corresponding frequency of the 

signal was obtained using the same procedure as mentioned above. The change in 

frequency with incremental load was then determined and a relationship was 

developed between the factor F (difference in the square of frequencies at strained and 

unstrained level) and the applied load.  

5.4 Damage Assessment using the Gauge 

Static strain tests were conducted on the reinforced concrete beams and the strain 

readings from the vibrating wire strain gauge and demec gauge were compared to 

cross-validate the accuracy of the strain gauge. The beams were loaded using the 4-

point bend test to investigate the effect of pure flexure on the beam. 3 identical 

reinforced concrete beams having a cross-section of 4” x 6” x 60” were casted using 

the same mix design. The main reinforcement was #3 bars having a yield strength of 

60 psi. The stirrups were #2 bars of 60 psi yield strength being placed at a center-to-

center distance of 4”. 

 

Figure 23: Beam Placed on Loading Rig to Induce Damage 

 

Vibrating wire strain gauges were attached at midspan to the beam surface at depths 

of 1” and 5” from the top of the beam. Demec pips were glued onto the concrete 

surface on the opposite face of the beam at the same depths corresponding to the 

location of the vibrating wire gauges. This ensured that both the demec gauge and the 

vibrating wire strain gauge measured the same strain along the cross-section thereby 
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allowing validation of the strain measurements made from the vibrating wire strain 

gauge.  

 

 
 

Figure 24: Strain Measurements Using Demec Gauge 

 

The beam was loaded incrementally in a loading rig and the extent and location of 

cracks were studied. The load was applied in increments of 500 kg till the failure of 

the beam. Simultaneous readings of strain were taken from both the demec and 

vibrating wire strain gauges at each damage level.  

 
 

Figure 25:Cracking Induced in Beam due to Loading 
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CHAPTER 6 

6 Results and Conclusion 

6.1 Gauge Calibration Results 

For the calibration of the gauge, different readings were taken at different levels of 

applied strains. The readings are presented below in the tabulated form. 

Gauge Calibration 

Load Stress Strain Frequency F 

0 0.0 0.0 955 0.0 

10 39062.5 14.5 980.8 49943.6 

20 78125.0 28.9 1051.1 192786.2 

30 117187.5 43.4 1123.6 350452.0 

40 156250.0 57.9 1183.2 487913.6 

50 195312.5 72.3 1229.7 600137.1 

60 234375 86.8 1290.9 754397.8 

 

From these readings, a graph between the factor F and the applied strain was plotted. 

The Gauge Factor G is obtained by determining the gradient of the line of best fit 

between the two variables. The multiplication of the gauge factor with F for any 

damage level gives us the strain at that damage level.  
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The graph above shows the relationship between F and applied strain. The gauge 

factor G was determined to be 1.008 x 10-9. The coefficient of determination turned 

out to be 0.9936. An important point to note here is that the relationship between F 

and applied strain is linear. 

The cross-validation of the strain gauge readings with demec gauge readings was 

done by 4-point loading on beams. Throughout the testing, the control gauge was 

placed in the same environment as that of the test beams to minimize temperature 

differences. The fluctuation in temperatures was not so great so as to affect the 

readings of both the gauges. The table below shows the values obtained from the 

demec gauge and the vibrating wire strain gauge. 

Beam Test 

Load(kg) DG Frequency(Hz) Strain(μstrain) Difference 
Error 
(%) 

0 0 902.69 0 0 0 

500 640 1197.7 624.6 15.4 2.41 

1000 1210 1409.2 1180.4 29.6 2.45 

1500 1986 1647 1912.9 73.1 3.68 

1794   failure load       

 

Prior to reaching the 2500 kg damage level, the cracking of the beam caused the 

gauge to detach from the concrete surface because of which the vibrating wire strain 

gauge reading was not determined. The average error in the readings was 4.62%. This 

goes to show that the vibrating wire strain gauge has the ability to accurately measure 

static strains in structures. 

6.2 Conclusion  

The use of vibrating wire strain gauge provides a cheap and reliable method for long 

term damage assessment of structures like bridges, water towers etc. The design and 

setup of a vibrating wire strain gauge is presented. The vibrating wire strain gauge 

presented has the capability to measures strain accurately and so can be used for strain 

measurement purposes in structures.  
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6.3 Future Recommendations 

To further strengthen the design of the gauge proposed, the future work should be 

aimed at automating the process of signal acquisition and processing which would 

allow the acquisition of live strain data. This would be particularly useful as it would 

reduce the tedious task of repeatedly acquiring and processing the signal and would 

also give strain readings for the present time thereby improving the health monitoring 

procedure. Another recommendation would be to incorporate a thermistor in the 

current design of the gauge to remove the need of presence of control gauge near to 

the test gauge to remove the temperature effects. 
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