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Abstract

This dissertation deals with the algebraic and geometric invariants such as depth
and Stanley depth, respectively. In this thesis, we compute exact values of depth and
Stanley depth of cyclic modules associated to g-fold bristled graphs of triangular and
multi triangular snake and ourorboros snake graphs. It is shown that the values of

both invariants are same for the classes of graphs we considered.
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Introduction

Monomial ideals are vital in understanding the relationship between combinatorics
and commutative algebra. In general, combinatorial problems are translated as mono-
mial ideals and solved using commutative algebra methods and techniques. Stanley
depth is an invariant for finitely produced Z"-graded modules over the commutative
ring proposed by Stanley [23] in 1982. He also proposed a relationship between Stanley
depth and module depth known as Stanley conjecture. Later on it was proved by Du-
val et al. [11] in year 2015 that Stanley’s conjecture generally does not hold for A/T
type modules, where A is defined as a ring of polynomials with n variables and T is
a monomial ideal. Yet, finding classes which still satisfy the Stanley’s inequality is a
challenging task. In this thesis exact values of Depth and Staley depth for the cyclic
modules associated to ¢-fold bristled graphs of some graphs are computed.

The first chapter provides an overview, definitions and findings for abstract and
commutative algebra. This chapter introduces ring and module theory. This chapter
also provides a brief overview of fundamental graph theory and some important graph
operations. The second chapter discusses the fundamental theory of depth, Stanley
depth, and Stanley decomposition of ideals and modules. Furthermore, previously
known results are thoroughly explored. In chapter 3, depth and Stanley depth of cyclic
modules associated to g-fold bristled graphs of triangular and multi triangular snake
are computed. At the end, in chapter 4, depth and Stanley depth of cyclic modules
assiciated to ¢-fold bristled graphs of triangular and multi triangular ouroboros snake

are computed by using induction and some known results.



Chapter 1

Preliminaries

The following chapter includes basic definitions and significant results of abstract alge-
bra and commutative algebra in order to provide the reader with a firm background for

further ideas, that will be revealed in forthcoming chapters.

1.1 Ring theory

Ring theory deals with the study of algebraic structures, called rings.

Definition 1.1.1. A set 7 that is non-empty is a ring with the two defined binary

operations; addition and multiplication that satisfy the below axioms:
1. 7 is an abelian group under “ + 7.
2. The law of associativity under “ x ” holds in 7.
3. Distributive laws (left and right) holds in 7T, that is, for all @;, @z, @3 € T

o &; X (@y+ @3) = (&) X ®2) + (@] X @&3).

° (@1 + d?g) X kg = (CB] X 683) + (@2 X 683)

The ring 7 is called a commutative ring if all the elements @;, ®, € T commute

w.r.t multiplication. That is,
®1 X g = k9 X &y.
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Throughout this thesis, we are dealing with commutative rings possessing a multiplica-

tive identity 1 which is known as the unity of 7.

Example 1.1.2. Q, R, Z, C and Z,, are examples of commutative rings with unity.

The set of even integers is an example of commutative ring without unity.

Definition 1.1.3. Consider a ring 7 with unity. If each element of 7 that is non zero
has a multiplicative inverse then 7T is known as a division ring. A field is an example

of division ring which is commutative with respect to multiplication.

Example 1. R, C and Q are fields. But Z is not a field.

1.1.1 Ring of polynomials

The specific type of ring that is obtained by a set of polynomials is called a polynomial
ring. These polynomials are in one or more than one variable where the coefficients
belong to ring. Polynomial rings are used in several disciplines of mathematics and
studying their characteristics is one of the key motivations for the advancement of

commutative algebra and ring theory.

Definition 1.1.4. Consider a commutative ring 7 with unity, a polynomial in variable
¥ has the form
to + 10 + -+ by 0"+ 10"

where, n > 0 and each t; € T. If t,, # 0, then the polynomial is said to be of degree n,
where t,2" is known as the leading term. The set of polynomials is denoted by 7T |z].
Thus

TW = {tyg +t;9+ -+t 9" P+ t,9" :n>0,t; € T}.

T [¥] is a commutative ring with unity under addition and multiplication of polynomials

and the unity of T[¢] is the unity of 7.

Definition 1.1.5. The polynomial ring in the variables ¥, s, ..., and coefficients
belonging to T is defined inductively

T[ﬁla 1927 s 77971,] - T[ﬁlvﬁ% s 71911—1][1971]‘

3



Definition 1.1.6. 1. Consider two rings 77 and 75. A ring homomorphism is a map

& T1 — T; satisfying
o {(pa+p2) =8&(m) +&(p2), Vi, pe €T
o {(ppz) = §(1)€ (), Vo pe €T
2. The kernal of ¢ is the set ker & = {u € T : &(u) = 0}
3. A biiective ring homomorphism is called a ring isomorphism.

Example 1.1.7. A map v : Z — Z5 defined by

0, if q is even;
¥la) = {1, if q is odd.

is a ring homomorphism.

Remark 1.1.8. Let 77 and 75 be rings and let ¢ : 7; — 75 be a ring homomorphism.
Then 1 is iniective iff kery is trivial.

1.1.2 Properties and operations on ideals

Definition 1.1.1. A subset £ of a ring 7 that is non-empty is known as an ideal iff
Lh—lbel,ltelLandtlie LV l1,lh,le Landt e T.

Remark 1.1.9. If £ is an ideal of T then L is called a proper ideal if £ # T. The
ideal {0} is called the trivial ideal of T .

Definition 1.1.10. Consider a ring 7 and a proper ideal £, a quotient ring 7 /L can
be formed, that consists of cosets ¢t + L, where t € T, and the multiplication of cosets
is defined as:

(t; + L)(ts + L) = taty + L.
Next there are the isomorphism theorems for rings.

Theorem 1.1.11. (Isomorphism theorems)



1. (First isomorphism theorem) For a ring homomorphism v : 71 — 75, image of

is isomorphic to Ty /ker(1)), i.e.,

Ty /ker(y) = Im(¢)).

2. (Second isomorphism theorem) For an ideal I and a subring S of the ring 7;

(S+1)/I=S/SNI

3. (Third isomorphism theorem) Consider the ideals [; and I of ring 77, with [; C
L, then I,/1; is an ideal of 77 /1;. Also

(Ti/h)/(I2/ 1) = Ti/ L.

Definition 1.1.12. Assume that £; and L5 be the ideals of ring 7. Product of two
ideals, say L£; and L, is a set consisting of all possible finite sums of the form xy,

where x € L1 and y € L,. It is represented by L£1L,.

Example 1.1.13. Let J; = 10Z and J;, = 15Z in Z. Then J; + J; comprises all integers
of the form 10¢; + 15¢, with ¢;,q2 € Z. Since each such type of integer is divisible
by 5, so 10Z + 15Z C 5Z. On the other hand, 5 = 10(—1) + 15(1) shows that 5Z is
contained in 10Z + 15Z, hence 10Z + 15Z = 5Z. In general, r7Z + roZ = dZ, whereas
d = (r1,72). The product J;.Jo comprises all possible finite sums of the components of

the form (10q;)(15¢2) where 1, g2 € Z, which clearly gives the ideal 150Z.

Definition 1.1.14. For a ring 7, principal ideal is an ideal with a single element in
its generating set. A finitely generated ideal is an ideal with finite elements in its

generating set.

Definition 1.1.15. Consider an arbitrary ring 7, a proper ideal M is known as max-
imal ideal if there is no proper ideal in between M and 7. In other words, if an ideal

J contains M, then either M =7 or J =T.

Definition 1.1.16. . A ring 7 is said to be local if it contains a unique maximal ideal.



Example 1.1.17. Ideal generated by (2) = {0,2} is the maximal ideal in Z4. (2) is

also the unique maximal ideal in Z4. So Z, is a local ring.

Definition 1.1.18. A prime ideal Q is a proper ideal of a ring 7 such that for by, by €
T, if biby € Q, then either b; € Q or by, € Q.

Definition 1.1.19. For a ring 7T, let us suppose two ideals £; and L£,. Then their

ideal quotient is defined as
([,1 : ﬁg) = {t € T : t£2 g ‘Cl}

Definition 1.1.20. Consider a ring 7 and its ideal £. Then (0 : £) is an ideal known

as the annihilator of £ represented as Ann(L) defined as
Ann(L) ={t € R : tL = 0}.

Definition 1.1.21. Consider any ideal ) of 7. ) is said to be primary if pip, € Y,
where py,po € T, then either p; € Y or pl, € Y for any [ > 1.

1.1.3 Monomial ideals

Let S = K|p1,...,ps] is a ring over field K, monomials forms the natural K-basis for
S. Let d = (dy,...,d,) € R" where every d; > 0. A monomial is any product of the
form pf* .. phn with b, € Zy. If v = Pl .pd is a monomial, then we write v = pd
with d = (dy,...,d,) € Z7, and

dy d2 __ ,di+d2
phipdz = phitdz,

A monomial ideal is an ideal whose generating set only consists of monomials. The set

consisting of all the monomials in S is denoted by Mon(S). The set of all monomials

in S form a K-basis of S. For any polynomial h € S and for d, € K

h= > dpw,

veMon(S)

where support of h is defined as
supp(h) = {v € Mon(S) : d, # 0}.
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Proposition 1.1.22. Consider two monomial ideals T; and Y. Then T; N 7Y, is a
monomial ideal, and {lem(my, my) : my € G(YT1), ma € G(Y3)} is a generating set of

TN,

Proposition 1.1.23. Consider two monomial ideals T; and Y. Then (T1 : o) is a

monomial ideal and (Y1 : T2) =, cqer,) (T1 : m2). Furthermore { tmy €

gcd m1 ,ma) °

G(Y1)} is the set of monomial generators of T; : ms.

A monomial p9 is said to be squarefree if d has components 0 and 1. An ideal with
a generating set containing only squarefree monomials is called squarefree monomial

ideal.

1.1.4 Primary decomposition

For an ideal I, primary decomposition is a way of representing I as an intersection
I = (. _, Pn, whereas each P,, is a primary ideal. Let N,, = Ass(P,,). If none of
the P,, can be omitted in this intersection and N, # N, for all r # s then it is called

irredundant primary decomposition.
Example 1.1.24. Let I = (p2ps3, p3, p3p3, pipeps ), then

= (01, P, Papis pr1p2ps) O (s, P4, Paps, PLP2PY)

(b1, p

= (1, P3, papt, prp2ps) N (ps, P35 Papy)
( oL 08, 03y p1p20y) 0 (s, 0%, p3) 0O (s, P%, P7)
( P 3. pieps) N (ps, p3s ups) N (ps, i)

= (p

i 5)

i 5) N
2,04, pas prpapy) N (
i N (

= (p1, Py, Pas P1P2PY)

In the above example, the obtained primary decomposition is irredundant as N, #
N, for all r # s and 1 < r,s < 4. But generally it does not happen, as in the next

example.



Example 1.1.25. Let I = (p5, p3, p3p3, p2pspi, p3pi ), then
L= (pa, P, P3s p2p3P%s P3P3) O (Pas P P15 P203PY s P3PY)

03, Py, papspis papy) N (s, pys P3)

3.3

Py P3, 22, 2525 ) OV (3, p3, pspis papd) O (pas 05, p3)

p2s P35 p3) N (p2s P35 1) O (P2s P, p3) N (3, o35 P8) O (P25 P55 P1)

(

( (p
(p2, P53, p3P3) N (03, p5, ps2i) N (P3, P35, P3)
(

(

y27z3) N (p27p§7pi) N (pgap?)) M (pg7p37p4)

= (p2,P3) N (P53, p3) N (P2, 5, P3).
It is the primary decompostion of I but not irredundant. Here Ass((p2, p3)) =

Ass((p3, p3)) = {(p2, p3)}. Now for irredundant primary decomposition, take an
intersection of (ps, p3) and (p3, ps), that is
(P2, p3) N (3, p3) = (P2, p2p3, P3)-
Hence
I=1(p3. 3, P1) O (Pa, paps, p3)-

Example 1.1.26. Let U = (pyps, fofts , p1f3pt4 ) be an ideal of S, then

(paps s popla, pafafia )

(H1, paftas pa pafia) O (f, pofta, o pafia)
= (p1, prapra) N (3, prafia)
= (p, p2) O (pn, pa) O (ps p2) O (p3 pa)-

Since U is square free monomial ideal, so it can be seen that (u1, pa), (p1, ta), (13, 112)

and (u3, it4) are minimal prime ideals of U.

1.2 Module theory

Definition 1.2.1. For a commutative ring 7, a 7-module I" is abelian group under
addition, along with a scalar multiplication map - : 7 x I — I, defined as - ((¢,5)) =

t3, which satisfies the below axioms:



—_

- t(Br+ Ba) =t + tBa,

N

(i + &) = tB+ t,

@

(tity) B = t1(P3),

s

15 =P,
vtl,tz,tGTand51,52€F.

Examples 1.2.2. 1. Consider a commutative group F, let ¢ € Z and b € B, then
define - : Z x B — B, such that

(=b)+---+(=b), if ¥ <O0;
(9,0)=0b={ b+b+---+D, it 9> 0;
0, if ¥=0.

Then B is a Z-module.
2. The ideals of the ring are also 7-modules.

Definition 1.2.1. Consider a 7-module I". A subset S of I" that is non-empty is called
a submodule of I, if § is a subgroup of the additive group I" as well as it satisfies the

module axioms using the scalar multiplication on I

1.2.1 Module homomorphism and quotient module

Definition 1.2.3. For a ring 7, let us suppose two T-modules, I} and I5. A function

W It — I is known as T-module homomorphism if

o V(B + B2) = Y(Br) +¥(Ba), for all 81, B, € I7.
e Y(ap) =op(B), forallo € T, g e I4.

If ¢ is both iniective and surjective then it becomes a 7T-module isomorphism.

Examples 1.2.4. 1. For a ring 7, consider 7-module 7. Then 7-module homo-
morphism (even from 7 into itself) need not be a ring homomorphism. Consider

T =7, then Z-module homomorphism z + 2z is not a ring homomorphism.
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2. When 7 = K[w], the ring homomorphism ¢ : g(w) — g(w?) is not an Kw]-

module homomorphism.

Definition 1.2.5. For a ring 7T, let us suppose a submodule S of 7-module I'. Then
(additive abelian) quotient group I'/S becomes an T-module by using scalar multipli-

cation defined as

tp+S)=t8+S,
VieT,B+8eTl)s.
1.2.2 Generation of modules

Consider any subset N of T-module I', suppose
TN ={tic;+ - +tmcm : t1,....tm €T, C1,...,¢;y € N and m € Z"}.

If N is a finite set {c1,...,¢n}, then TN =Ty +Tea+ -+ Ty And TN is called
the submodule of I" generated by N. For any submodule S of T-module I, if there
exist an element 5 € I' such that S = T = {t8 : t € T} that is S is generated by

single element. Then § is called cyclic submodule.

Definition 1.2.6. Let F' be a T-module then it is called free on the subset N of F' if
for 0 # f € F, there are unique non-zero elements t,...,t; of 7 and unique ¢y, ..., ¢;
in N, such that

f=tici + -+ tici.

1.2.3 Noetherian rings and Noetherian modules
Proposition 1.2.7. For any poset P with respect to <, the following are equivalent.

1. Any increasing sequence 3; < By < ... < 3, < ... in P is stationary, that is
there exist p € N for which g, = 3,, for all p < gq.

2. Any () #£ U C P possesses a maximal element.

10



If P be the set of submodules of I" which is ordered w.r.t the relation C then statement
1 is known as ascending chain condition and statement 2 is known as the maximal

condition.

Definition 1.2.8. Consider a commutative ring 7, a 7-module I is known as Noethe-
rian if each ascending chain of 7-submodules of I" is stationary. A ring 7 is Noetherian

if 7 is Noetherian as a T-module.

Theorem 1.2.9. A T-module I' is Noetherian iff every submodule of I" is finitely

generated.

Definition 1.2.10. Consider a finitely generated 7-module I" where T is a Noetherian
ring, a prime ideal Q of the ring 7 is said to be associated prime ideal of I" if there
exist an elemet § € I" such that @ = Ann(f3), where Ann(8) ={t €T : tf =0} is an
ideal of T. The set of all associated prime ideals of I is represented as Ass(I).

1.2.4 Exact sequences

Definition 1.2.11. Let 7 be a commutative ring, consider a sequence of T-modules

and homomorphisms

k; kit kito
o A A — Ay —

it is exact at A; if Im(k;) = ker(k;+1). A sequence is known to be exact if it is exact
at every A;. Particularly, 0 — A’ *. Ais exact at A’ if and only if £ is one to one

and A 5 A” — 0 is exact at A” if and only if k is onto.
Proposition 1.2.12. The sequence
0— A A A — 0
is an exact sequence if and only if j is one to one, k is onto and Im(j) = ker(k).

Remark 1.2.13. The sequence in Proposition 1.2.12 is called a short exact sequence.

Corollary 1.2.14. Let S be a submodule of I'. Then I is Noetherian iff S and I'/S

are Noetherian.

11
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Corollary 1.2.15. If I, I, I3,. .., [}, are Noetherian 7-modules then € I is also

J=1
Noetherian.

1.2.5 Graded rings

Consider a commutative semigroup (w.r.t addition) 4. An H-graded ring is such type
of a ring R alongside a decomposition

R = @Re (as a group),
ecEH

such that ReRy C Rers Ve, f € H.
Then for h € R, we can write a unique expression

h=>he,

eEH
where h, € R, and almost all h, = 0. The element h, is called the eth homogeneous

component and if h = h,, then h is homogeneous of degree e. R[p;| and R[p1, ps] are

Z-graded rings as
e Rlp ] =RO®Rp1 @ Rpf @ Rp{ ©® Rpt ©RpY @ - - -,

o Rlp1,p2] = R® (Rp1+Rp2) © (Rpf + Rprp2 +Rp3) ® (Rpi +Rpipz + Rprps +

For a H-graded ring R and R-module ¢
g = @ge (as a group),

ecH
with R.Gy C Geyy forall e, f € H, then G is said to be a H-graded module. An element

of G, that is non zero is called a homogeneous element of degree u.
For a polynomial ring S defined over the field K, suppose d € Z", then g € § is
said to be homogeneous of degree d when g has the form npg, where n € K. Also S is

Z"-graded with graded components:

[ Kpd, ifde VAR
Sa = { 0, otherwise.

An S-module M is Z"-graded if M = @440 Ma and Sq, Ma, C Mg, 1q, for all
dy,d; € Z".

12



1.3 Graph theory

The most basic structures in Mathematics are the finite graphs. For this specific as-
pect, many graph-theoretic problems remained unsolved, before any systematic study
of graph theory itself. Leonhard Euler’s 1735 Konigsberg bridges Problem [21] is the
example of this type of problem and the Four-Color Problem that was initially intro-
duced by Francis Guthrie, as a coloring problem of the map of England’s countries
in 1852. Such notable experiments comprise research on polyhedra cycles by Thomas
Kirkman and William Hamilton [15], the circuit laws by Gustav Kirchhoff [25] and
research by Arthur Cayley and James [6] that had ties to theoretical chemistry to the
structure of molecules specifically. The name of "Graph" was suggested by Sylvester in
1878. Commutative algebraists have been studying the characteristics of finite simple
graphs using monomial ideals over the last 10 years. The pioneers in this field include
Simis, Froberg, Vasconcelos and Villarreal. The departure point for these approaches
is to generate a monomial ideal by using the edges of a finite simple graph, which
is commonly referred to as the edge ideal, and then investigating the qualities of the

monomial ideal using graph properties, and vice versa.

In this chapter primary definition and notion of graph theory are given. This chapter
provides a full description of many types of graphs, distinct operations of graphs and

outcomes that will be used in the forthcoming chapters.

1.3.1 Fundamentals of graph theory

Graph theory deals with the analysis of graphs, that are the mathematical framework
used to establish the relationship between the objects. This section introduces the

essential concepts of graph theory.

Definition 1.3.1. A graph K is a collection of points and lines that link some subset
of them (possibly empty). The points are most commonly known as graph vertices.

Similarly, lines connecting graph vertices are frequently referred to as graph edges.

13



The vertex and edge sets of a graph K are usually represented by V(K) and E(K)

respectively.

Definition 1.3.2. An edge having exactly the same end points is known as loop. The
edges having precisely the same set of endpoints are said to be multiple edges. A simple
graph is one that has no loops and multiple edges. A simple graph with the labelling

is shown below.

Figure 1.1: Simple Graph

Consider an edge with endpoints py, po. Then p;, po are said to be adjacent and
they are neighbors of each other. The focus is restricted to only basic graphs in several

principal applications.

Definition 1.3.3. The number of edges those are incident on vertex w of a graph K

is called degree of w, which is generally represented by dg(w) or d(w).

Definition 1.3.4. The number of vertices in vertex set V(K) is known as order of
graph K, written as n(K). And the total number of edges in edge set E(K) indicates
the size of graph, represented by e(K).

Definition 1.3.5. Any graph N consisting of the edge and vertex set represented by
E(N) and V(N) = {wy,ws, ..., w,} is said to be a null graph if its edge set is empty.

14



Figure 1.2: Null graph

Definition 1.3.6. Let » > 2. An r-star denoted by S, is a graph on r + 1 vertices,

having one internal vertex of degree r and all other vertices having degree 1.

ws (%)

Wy @ ® W1

Ws We

Figure 1.3: A labeled star graph Sg with 7 vertices and 6 edges.

Definition 1.3.7. A path graph is the sequence of vertices wy,wo,...,w, such as

whenever two vertices are consecutive in the sequence, there is an edge between them.

A graph consisting of n vertices (n > 3) is known as a cycle if we join first and last
vertices of path graph by an edge. Deleting one edge from a cycle forms a path. A

path and cycle on n vertices are represented by P, and C,,, respectively.

ws Wa
[ @ @ | ] Wy wn
wy W2 w3 Wy
Figure 1.4: P, Ws We

Figure 1.5: Cj
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Definition 1.3.8. A graph L is said to be a subgraph of another graph M, written
as L C M, if V(L) C V(M) and E(L) C E(M) and the endpoints of edges in L are

exactly the same as in M.

27 M5 22 923

He K7 He 2

Figure 1.6: Graph and its subgraph

Definition 1.3.9. A graph is considered as a connected graph if it includes a path

connecting every two vertices of graph, otherwise the graph is said to be disconnected.

M Hs Ha Hs
o—— @

® o ® ®

M1 25 3 251 25 M3

Figure 1.7: Connected and disconnected graph
Proposition 1.3.10. Any graph consisting of w vertices and h edges has at least w—h
components.

Proposition 1.3.11 (|26]). (Hand Shaking Lemma) The sum of the degrees of all the

vertices of a graph K is twice the total number of its edges,

2E(K) = Y deg(w).

weV (K)
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Definition 1.3.12. Let us have a e, h-path in graph K. The distance from e to h
is said to be the minimum length of e, h-path, written as d(e, h). The path with the

maximum length in K gives the diameter i.e.,

diamK = max d(e,h).
eh e V(K)

Definition 1.3.13. A vertex cover of a graph K is a collection of vertices which consists
of at least single endpoint of each edge of the graph. The minimal vertex cover of a

graph K is one that is not proper subset of any other vertex cover.

Definition 1.3.14. A vertex p in a connected graph is a cut vertex whose deletion
together with incident edges disconnects the graph. In fig 1.1 the vertex ps is the cut

vertex.

Definition 1.3.15. If there is no cut vertex in a maximal connected subgraph of K,

then it is called a block. K is itself a block if it is connected and has no cut vertex.

Definition 1.3.16 ([4]). Let K be a connected graph. The block cut vertex graph
denoted by bc(K), is a graph in which vertices are the cut vertices and blocks of K.
The edges of bc(K) connect cut vertices with those blocks to which they belong.

Wy Ws We wr Wy Ws Wa wr
o—0
\/ M o ws  We h I
wq W2 w3 w1y We  W3W3
K B, Bs Bs By
By By Bs B,
o o (]
Ws We w3
Ws We w3

Cut vertices of K
be(K)

Figure 1.8: A graph K, its blocks, cut vertices and be( K)
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Definition 1.3.17 ([20]). A connected graph A, consisting of n blocks is said to be a

triangular snake if every block is a triangle and the block cut vertex graph is the path.

Y11 Y21 V31

VAVAVAN

A B2 Bs B

Figure 1.9: Triangular Snake A3

Definition 1.3.18. (Fusion /Merged/Identified) The vertices w; and wy in a graph K
is said to be merged, if these two vertices are replaced by one new vertex w such that

every edge that was adjacent to either w; or ws or both, is adjacent to w.

Definition 1.3.19 ([22]). Let n > 1 and p > 1, A p-triangular snake graph denoted
by A,, is a triangular snake consisting of n blocks such that each block includes p

number of triangles having single same edge.

If we merge vertices z; and x4, in the A, , graph, we get a new graph denoted U, ,,
which is called a p-triangular ouraboros snake. In particular, if p = 1, then we call
0,1 a triangular ouroboros snake, and if p > 2, then we call U,,,, a multi triangular

ouroboros snake.

Y13 V23 Y33
Y12 V22 32 Y42

Y11 Y1 Y31 Va1

b B2 Bs Ba Bs

Y11 o1 Y31

b Do Bs Ba
Figure 1.10: Ay and As3
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Y12

V32

Figure 1.11: 2-triangular ouroboros snake Uy o

1.3.2 Graph operations

Definition 1.3.20. Let Y; = (V, E) and Y, = (V, E) are two simple graphs. The union
of these two graphs is a simple graph having edge set £ U F and vertex set VUV. The
union of Y7 and Y5 is denoted by Y; U Y5.

Definition 1.3.21 ([12]). Corona product of two (same or different) graphs Y} and
Y> denoted by Y] ® Y; is produced by picking one copy of Y; and | V(Y]) | copies
of Y5 and connecting the jth vertex of Y; to each vertex of the jth copy of Y5, where
L<j<lvy) |
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Figure 1.12: Corona product of Ay and P53 (Ay © P3)

Definition 1.3.22 ([16]). The ¢-fold bristled graph of a given graph K, denoted by
Brs,(K) is obtained by connecting ¢ vertices of degree 1 to every vertex of K. This
graph can also be obtained by taking corona product of K with empty graph consisting
of g vertices. The ¢-fold bristled graph of a given graph K is also called its g-thorny
graph.

Here are some examples of g-fold bristled graphs:

°
B11812013  Ba1f22B23  [31832033  Baifa2Bus v
FATT e
o B2 B3 B4
°

Figure 1.13: Brss(Fy)
(3-fold bristled graph of P;) Figure 1.14: Brss(S5)
(3-fold bristled graph of Ss)
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Y11 Y12 Y13

Y11Y12Y13  Y21Y22Y23  Y31Y32Y33

Ya3
Ya2

T4 yn

T11012013  T21T22T23  T31T32L33  L41T42T43

Figure 1.15: Brss(Ay)
(3-fold bristled graph of Ay)

Y33 Y32 Y31

Figure 1.16: Brss(Uy)
(3-fold bristled graph of Uy)
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Chapter 2

Depth and Stanley depth

This chapter concerns the Stanley depth and depth (named after Richard Stanley
[23] in 1982) of Z"-graded modules over a commutative ring, including the Stanley’s
conjecture. It summarises the known values and bounds of depth and Stanley depth
for monomial ideals of polynomial rings and their quotients. Throughout this chapter,

ring 7 has identity 1 # 0.

2.1 Depth
Definition 2.1.1. Consider a 7 module I". A zero divisor of a module " is an element
0 #t €T such that t3 =0, where 0 £ 3 € I'.

Definition 2.1.2. Suppose I" be a T-module. A non-zero element ¢t of 7 is ['-regular
if for every g € I', t8 = 0 implies 5 = 0.

Definition 2.1.3. A sequence § = f31, ..., 8, of elements of T is said to be I'-regular

if it satisfies the given axioms:
1. B is I'/(B, ..., Pm_1)] regular for any m;

2. I+ (B)I.

Example 2.1.4. Consider R = Kloy,09,03,04] as a module over itself. As o; is
regular in R/(0)R, o9 is regular in R/(01)R, o3 is regular in R/(01, 02)R, 04 is regular

in R/(01,09,03)R. 01,09,03,04 is the '-regular sequence in R.

22



Definition 2.1.5. Consider a finitely generated 7-module I' and suppose M be a
unique maximal ideal of local Noetherian ring 7. Then, depth of I" is common length

of all maximal I"-sequences in M, represented by depth([").

Lemma 2.1.6 ([13]). (Depth Lemma) Given a short exact sequence 0 — I} — Iy —

I's — 0 of T-modules where T is a local ring, then
1. depth(I%) > min{depth([3),depth(/7)}.
2. depth(I3) > min{depth(I%),depth(I7) + 1}.
3. depth(I%) > min{depth(l3) — 1, depth([%)}.

Lemma 2.1.7 ([18, Lemma 2.2|). Given a short exact sequence of Z"-graded T-
modules

0211 —>1y—>15—0.

Then
sdepth(/3) > min{sdepth(I?),sdepth(/3)}.

2.2 Stanley decomposition and Stanley depth

Definition 2.2.1. Let T = Z[f,...,,] be a ring of polynomials and consider Z"-
graded T-module I'. Suppose § € I" and also consider W C {51, ...,5,}, then 5Z[W]
represents the Z-subspace of I', whose generating set comprises of elements (homoge-
neous in degree) of the form fw, where w is a monomial in Z[W]. If 5Z[W] be a free
Z[W]-module so it is known as a Stanley space having dimension |W|. The Stanley

decomposition of I is defined as:
k
D:I'=@szWi,
j=1

and
sdepthD = min{ |W;|, j =1,...,k}.
Also,

sdepthg(I") = max{sdepthD : Dis a Stanley decomposition of I'}.
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2.2.1 Stanley’s conjecture

In 1982, Stanley [23] gave a conjecture about an upper bound for the depth of a Z"-
graded S-modules.
depth(I") < sdepth(I").

It has been extremely significant as it gave a comparison of two very different invariants
of modules. For a ring of polynomials 7 in n number of variables, consider J C T be
the monomial ideal, then for n < 3, n = 4 and n = 5 the conjecture for 7 /J is proved
by Apel [3], Anwar [2] and Popescu [17], respectively. Also, when J is an intersection
of three monomial prime ideals, or three monomial primary ideals or four monomial
prime ideals of 7T, the conjecture holds for J. But in 2016, Duval et al. [11] proved
that Stanley’s coniecture is generally false, by giving a counter example for the module

of type T /J for which the conjecture does not hold.

2.2.2 Method of computing Stanley depth for squarefree mono-
mial ideals

In 2009, Herzog et al. [13]| presented a method of computing the lower bound for
Stanley depth of monomial ideals in finite number of steps by using posets. Suppose
F be a squarefree monomial ideal with G(F) = {f1,..., fm}. The characteristic poset
of Fwrth=(1,...,1), written as (’)%1 """ Y is defined as

where supp(f;) = {¢ : =;|f;} C [n] :={1,...,n}. For each p,o € OS """ Y where p C o,

and

, and for every j, suppose
s(j) € {0,1}™ is the tuple with supp(z*")) = 3;, then the Stanley decomposition D(O)

of F'is given as

D(O) : F = @xs(j)K[{xk |k € n;l.
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Clearly, sdepth D(O) = min{|m|,...,|n.|} and
sdepth(F) = max{sdepth D(O) | O is a partition of (9}1 ..... 1)}.

Example 2.2.2. Consider a square-free monomial ideal I = (0103, 0104, 0203, 0204) C
Kloy,09,03,04] and J = 0. Set ¢, = (1,1,0,0), ¥ = (1,0,0,1), 93 = (0,1,1,0) and
¥4 = (0,1,0,1). Thus I is generated by oV1,0%2, 0% % and choose h = (1,1,1,1).
The poset P = Plh/ ; s given by
P=1{(1,1,0,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(1,1,1,0),(1,1,0,1), (1,0, 1, 1),
(0,1,1,1),(1,1,1,1)}.

Partitions of P are given by

P11 [(1,1,0,0),(1,1,0,0)] _J[(1,0,0,1),(1,0,0,1)] [ J[(0,1,1,0),(0,1,1,0)] | J
[(0,1,0,1),(0,1,0, )] | J[(1,1,1,0),(1,1,2,0)] | J[(1,1,0,1),(1,1,0,1)] |
[(1,0,1,1),(1,0,1,1)] [ J[(0,1,1,1),(0,1,1,1)] | JI(1 ),(1,1,1,1)].

Py [(1,1,0,0),(1,1,0,1)]  J[(1,0,0,1),(1,0,1,1)] [ J[(0,1,1,0),(1,1,1,0)] |
[(0,1,0,1),(1,1,1,1)].

Ps: [(1,1,0,0),(1,1,1,0)]  J[(1,0,0,1),(1,1,0,1)] [ J[(0,1,1,0),(0,1,1,1)] |
[(1,0,1,1),(1,1,1,1)] U [(0,1,0,1),(0,1,0,1)].
and the corresponding Stanley decomposition is
D(P1) = 0109K][01,09] ® 0104K[01,04] ® 0203K [09, 03] ® 0904 K [02, 04D
010203K 01, 09, 03] ® 01020, K 071, 02, 04] ® 010304 K071, 03, 04)D

090304 K [09, 05, 04] @ 0102030, K [01, 02, 03, 04].
D(Ps) = 0102K]01,09,04) ® 0104K[01,03,04] ® 0903K |01, 09, 03] B 204K |01, 09, 03, 04].

D(P3) := o109K[01,09,03] ® 0104K 01,09, 04] ® 0903K |02, 03, 04]®

010304 K [01, 02,03, 04] © 0204 K [02, 04].
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Then

sdepth(I) > max{sdepth(D(P1)), sdepth(D(P2)), sdepth(D(Ps))}
= max{2,3,2}
= 3.

Since I is not principal, so sdepth(/) = 3.

Example 2.2.3. Consider I = (0105, 0204,010304) C Klo1,09,03,04,05] and J = 0.
Set ¥; = (1,0,0,0,1), ¥2 = (0,1,0,1,0) and ¥5 = (1,0,1,1,0). Thus [ is generated by
o1, 02 0% and choose h = (1,1,1,1,1). The poset P = PIh/J is given by

P =1{(1,0,0,0,1),(0,1,0,1,0),(1,1,0,0,1),(1,0,1,0,1),(1,0,0,1,1), (1,1,0,1,0),
(0,1,1,1,0),(0,1,0,1,1),(1,0,1,1,0),(1,1,1,1,0),(1,1,0,1,1), (1,1,1,0, 1),
(1,0,1,1,1),(0,1,1,1,1),(1,1,1,1,1)}.

Partitions of P are given by

1,0,0,0,1),(1,0,0,0,1 0,1,0,1,0),(0,1,0,1,0

1,1,0,0,1),(1,1,0,0,1 1,0,1,0,1),(1,0,1,0,1

1,0,0,1,1),(1,0,0,1,1 1,1,0,1,0),(1,1,0,1,0

U ) ( U
Ui ) ( U
U ) ( U
LJI1(0,1,0,1,1),(0,1,0,1,1)] | J
1,0,1,1,0 Ui, 1,1,1,0),(1,1,1,1,0] |
U ) ( U
U ) ( U

Y

1,1,0,1,1),(1,1,0,1,1 1,1,1,0,1),(1,1,1,0,1

1,0,1,1,1),(1,0,1,1,1

It ) (

It ) (

It ) (
(0,1,1,1,0), (0,1,1,1,0
It ) (

It ) (

I ), ( 0,1,1,1,1),(0,1,1,1,1
It ) (

)]
)]
)]
)]
1,0,1,1,0)]
)l
)
)

1,1,1,1,1

Y Y ) Y

1,1,1,1,1

Y P Y

J

Y

Py [(1,0,0,0,1),(1,1,0,0,1)] | J[(0,1,0,1,0),(1,1,0,1,1)]
[(1,0,1,0,1),(1,1,1,0,1)  J[(1,0,0,1,1),(1,0, 1,1, 1)]
[(1,0,1,1,0),(1,1,1,1,0)]  J[(0,1,1,1,0),(1,1,1,1,1)].

C C

? Y Y
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Ps: [(1,0,0,0,1),(1,1,1,0,1)]  J[(0,1,0,1,0),(1,1,0,1,1)] | ]
[(1,0,0,1,1),(1,0,1,1,1)]  J[(0,1,1,1,0),(0,1,1,1,1)] | ]
[(1,0,1,1,0), (1,1,1,1,1)].
and the corresponding Stanley decomposition is
D(P1) = 0105K]|01,05] ® 0904 K |09, 04] & 010205K |01, 09, 05] ® 010305K |01, 03, 05D
010405 K [01, 04, 05] ® 010204 K[010204] ® 02030, K |02, 03, 04]®
090405 K [09,04,05] ® 01030, K01, 03, 04] B 01020304 K [01, 09, 03, 04D
01020405 K |01, 09,04, 05| ® 010920305 K [01, 09, 03, 05] © 01030405K |01, 03, 04, 05|

02030405K[02, 03,04, 05] S 0102U3U4U5K[0'1, 02,03,04, 05]-

D(P2) = 0105K[01,09,05] ® 0204K[01,09,04,05) © 010305 K [01, 09, 03, 05D
010405 K01, 03,04, 05| @ 010304 K [01, 09, 03, 04] B 02030, K |01, 09,03, 04, 05].
D(P;3) = o0105K]01,02,03,05] B 0204 K[01,02,04,05] & 010405 K01, 03,04, 05|

020304[([027 03,04, 05] ¥ 010304[([017 02,03,04, 05]-

Then
sdepth(I) > max{sdepth(D(P;)), sdepth(D(Pz)), sdepth(D(P3))}
= max{2,3,4}
= 4.

Since I is not principal, so sdepth(7) = 4. The next example illustrates the method of
finding the Stanley depth of S/I.

Example 2.2.4. For S = K[y, B2, 83, B4, B, consider I = (133, 8204, B354, B2335).
Then choose h = (1,1,1,1,1) and the poset P = PS/I is given by

P ={(0,0,0,0,0),(1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0), (0,0,0,1,0), (0,0,0,0, 1),
(1,1,0,0,0),(1,0,0,1,0),(1,0,0,0,1),(0,1,1,0,0),(0,1,0,0,1), (0,0,1,0, 1),
(0,0,0,1,1),(1,1,0,0,1),(1,0,0,1,1)}.
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Partitions of P are given by

[(0,0,0,0,0),(1,0,0,0,0)] U[(O,l,O 0,0),(0,1,0,0,1)]
[(0,0,1,0,0),(0,1,1,0,0)] U[(O 0,0,1,0),(1,0,0,1,0)]
[(0,0,0,0,1),(0,0,1,0,1)] U[(l 0,0,0,1),(1,0,0,1,1)]
[(1,1,0,0,0),(1,1,0,0,1)] U[(O 0,0,1,1),(0,0,0,1,1)].

Py : [(0,0,0,0,0),(1,0,0,1,1)] | J[(0,1,0,0,0), (1,1,0,0,1)] | J
[(0,0,1,0,0), (0,0,1,0,1)] | J[(0,1,1,0,0),(0,1,1,0,0)].
and the corresponding Stanley decomposition is
D(P1) = K[5] ® BoK[Ba, B5] ® B3K (B2, Bs] & BaK[B1, Ba] ® P5 K5, 5]
BrBsK[B1, By, B5] © P12 KB, B2, B5] ® Bafs K [Ba, Bs).
D(P2) = KB, B4, B5] ® BoK[B1, Ba, B5] © B3 K [B3, B5] © B285K [Ba, B3]
Then

sdepth(S/I) > max{sdepth(D(P;)), sdepth(D(P,))}
= max{l,2}
= 2.
Example 2.2.5. Let S = M |0y, 09, 03, 04, 05, 06, consider U = (0109, 09203, 0206, 010306).
Then select g = (1,1,1,1,1,1) and the poset p = p%/U is given by
P = {(0,0,0,0,0,0),(1,0,0,0,0,0),(0,1,0,0,0,0),(0,0,1,0,0,0), (0,0,0,1,0,0),

(0,0,0,0,1,0),(0,0,0,0,0,1),(1,0,1,0,0,0),(1,0,0,1,0,0),(1,0,0,0,1,0),
(

(
1,0,0,0,0,1),(0,1,0,1,0,0), (0,1,0,0,1,0), (0,0,1,1,0,0), (0,0,1,0, 1,0),
0,0,1,0,0,1),(0,0,0,1,1,0), (0,0,0,1,0,1).(0,0,0,0,1,1), (1,0,1, 1,0, 0),

Y 1?0707071?1)7(07 17071?]‘70 )

) ( ) ( );
) ( ) ( )
) ( ) ( )-
1,0,1,0,1,0),(1,0,0,1,1,0),(1,0,0,1,0,1)
) ( ) ( )
1,0,1,1,0,1),(1,0,1,0,1,1),(1,0,0,1,1,1),(0,1,1,0,1,1),(0,0,1,1,1,1),
)

(
(
( ( )
(0,0,1,1,1,0),(0,0,1,1,0,1),(0,0,1,0,1,1),(0,0,0,1,1,1),(1,0,1,1,1,0),
( ( )
(1,0,1,1,1,1)}.
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The partitions of p can be written as

PQ:

0,0,0,0,0,0),(1,0,0,0,0,0 [(0,1,0,0,0,0),(0,1,0,0,0,0

[( ) ( I ) ( )]
[(0,0,1,0,0,0),(0,0,1,0,0,0)] | J[(0,0,0,1,0,0), (0,0,0,1,0,0)]
[(0,0,0,0,1,0),(0,0,0,0,1,0)] | J[(0,0,0,0,0,1), (0,0,0,0,0,1)]
[(1,0,1,0,0,0),(1,0,1,0,0,0)] | J[(1,0,0,1,0,0),(1,0,0,1,0,0)
[(1,0,0,0,1,0),(1,0,0,0,1,0)] | J[(1,0,0,0,0,1),(1,0,0,0,0,1)]
[(0,1,0,1,0,0),(0,1,0,1,0,0)] | J[(0,1,0,0,1,0),(0,1,0,0,1,0)]
[(0,0,1,1,0,0),(0,0,1,1,0,0)] | J[(0,0,1,0,1,0),(0,0,1,0,1,0)]
[(0,0,1,0,0,1),(0,0,1,0,0,1)] | J[(0,0,0,1,1,0), (0,0,0,1,1,0)]
[(0,0,0,1,0,1),(0,0,0,1,0,1)] | J[(0,0,0,0,1,1),(0,0,0,0,1,1)]
[(1,0,1,1,0,0),(1,0,1,1,0,0)] | J[(1,0,1,0,1,0),(1,0,1,0,1,0)]
[(1,0,0,1,1,0),(1,0,0,1,1,0)] | J[(1,0,0,1,0,1), (1,0,0,1,0,1)]
[(1,0,0,0,1,1),(1,0,0,0,1,1)] | J[(0,1,0,1,1,0),(0,1,0,1,1,0)
[(0,0,1,1,1,0),(0,0,1,1,1,0)] | J[(0,0,1,1,0,1),(0,0,1,1,0,1)]
[(0,0,1,0,1,1),(0,0,1,0,1,1)] | J[(0,0,0,1,1,1),(0,0,0,1,1,1)]
[(1,0,1,1,1,0),(1,0,1,1,1,0)] | J[(1,0,1,1,0,1),(1,0,1,1,0,1)]
[(1,0,1,0,1,1),(1,0,1,0,1,1)] | J[(1,0,0,1,1,1),(1,0,0,1,1,1)]
[( ) ( I ) ( )]
[( ) ( )]

[(0,0,1,1,1,1),(0,0,1,1,1,1

ccCcccccccccccocococcaca

0,1,1,0,1,1),(0,1,1,0,1,1
1,0,1,1,1,1),(1,0,1,1,1,1)].

0,0,0,0,0,0),(0,1,1,0,1,1)] | J[(1,0,0,0,0,0),(1,0,1,1,0,1)]
0,0,0,1,0,0),(0,0,0,1,1,1)] | J[(1,0,0,0,1,0),(1,0,0,1,1,1)
) (
) (

C CC

0,1,0,1,0,0),(0,1,0,1,1,0)] | J[(0,0,1,1,0,0),(0,0,1,1,1,1)]

It
It
It
[(0,0,1,0,1,0),(1,0,1,1,1,1)].

)]
)]
)]
)]
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So the corresponding Stanley decomposition is of the partitions will be

D(Py) = Mo1] ® 0aM[os] ® o3M|[o3] ® o4M[o4] ® 05M[05] B 06M[o6] B o103M [01, 053]

D(PQ) .

Then

o104M[0y, 04] © 0105 M 01, 05] © 0106 M |01, 06] © 7204 M [03, 04D

0905 M 09, 05] ® 0304 M [03,04] B 0305 M |03, 05] B 0306 M |03, 06]D

o405M (o4, 05| ® 0506 M |05, 06] D 010304 M 071, 03, 04] B 010305 M [0, 03, 05D
010405 M 01,04, 05] © 010406 M |01, 04, 06] B 010506K |01, 05, 06)D

090405 M |09, 04, 05) B 030405 M [03, 04, 05] B 030406 M |03, 04, 06]B

030506 M [03, 05, 06] ® 040506 M [04, 05, 06] D 01030405 M [01, 03, 04, 05D
01030406 M |01, 03,04, 06] ® 01030506 M [01, 03, 05, 0] © 01040506 M [01, 04, 05, 06D
09030506 M |09, 03,05, 06] ® 03040506 M [03, 04, 05, 0¢] B 0103040506 M [01, 03, 04, 05, 0g).
Mlos, 03,05, 06| ® 01 M[0o1, 03,04, 06] B 04 Moy, 05,06 B 0105M [01, 04, 05, 06D

0204 M |03, 04, 05] B 0304 M|, 03,04, 05,06 @ 0305 M [0, 03, 04, 05, 0.

sdepth(S/U) > max{sdepth(D(P;)), sdepth(D(P,))}
= max{l,3}
= 3.

Some fundamental results on Stanley depth and depth of S-modules are given below.

Theorem 2.2.6 ([11, Theorem 1.3]). Let ¢y,. .., ¢y, be some positive integers, then

sdepth((w!, . .., wm)) = sdepth((wy, - .., wn)) = (%1.
In particular, for any 1 <n <m
sdepth((wit, ..., wi)) =m —n+ [g}

Corollary 2.2.7 (|18, Corollary 1.3]). Consider a monomial ideal £ C 7. Then
depth(7 /L) < depth(T /(L :1)) ¥ monomials [ ¢ L.

Proposition 2.2.8 ([8, Proposition 2.7|). Let £ C T is a monomial ideal. Then
sdepth(7 /L) < sdepth(7 /(L : 1)) for all monomials [ ¢ L.
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Lemma 2.2.9 (|9, Lemma 2.12|). Assume that £; C [ = K[xy,...,24, Ly C " =

Klxgt1, ..., Ty] be monomial ideals, with 1 < ¢ < m, then
depth(I"/L1@ "/ Lo) = depth(I'/ (L1 +LoI)) = depth, (I /L1)+depth (I / Lo).

Lemma 2.2.10 (|18, Theorem 3.1]). Assume that £, C I = K[x1,...,x,], Ly C I =

Klzg41, ..., %) be monomial ideals, with 1 < ¢ < m, then
sdepth(I'/(L1I" + LoI7)) > sdepth, (I /L1) + sdepth ., (I ] Ls).

Lemma 2.2.11 (|9, Lemma 2.13]). Assume that £, C I" = K[zy,...,2,), Lo C " =

Klzg41, ..., Ty be monomial ideals, with 1 < ¢ < m, then
sdepth(I"/Ly @ I'"/L3)) > sdepth, (I /L1) + sdepth . (1) L3).

Lemma 2.2.12 (|13, Lemma 3.6]). Consider a monomial ideal £ C I' = K{z1, ..., x,]

and I'" = I'[Tp41, - - -, Tnas] be a ring of polynomials then
depth(I"/LI") = depth(I'/LI") + s and sdepth(I"/LI") = sdepth(I'/LI") + s.
Theorem 2.2.13 (|1, Theorem 2.6]). Let S, be a g-star. If Z = Z(S,), then
depth(U/Z) = sdepth(U/T) = 1,
where, U = K[V (S,)] and

depth(U /Z"), sdepth(U /T") > 1

Corollary 2.2.14. Let ¢ > 1 and p > 2 and [ = I(S,,) where S, , = Brs,(S,) then

depth(K[V (Brsy(S5p))]/1), sdepth(K[V (Brsy(S5,))]/1) = p + ¢
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Chapter 3

Depth and Stanley depth of cyclic
modules associated with g¢-fold
bristled graphs of triangular and multi
triangular snake graphs

Let n,p,q > 1, a ¢-fold bristled graph of p-tringular snake denoted by Brs,(A,,)
is obtained by connecting ¢ vertices of degree 1 to every vertex of p-tringular snake
A, . In particular, if p = 1, then A,; = A, is a tringular snake and its g-fold bris-
tled graph is denoted by Brs,(A,). Clearly, |V (Brs,(An,))|= (1 + ¢)(1 + n + np).
The graph Brs,(A,,) has np vertices of degree ¢ + 2, n — 1 vertices having degree
2p+ g+ 2, two vertices having degree p+ ¢+ 1 and (1 + n + np)q vertices are of degree
1. So by using Lemma 1.3.11, we have |E(Brs,(Anp))|= n + ng + q + 2np + npg =
2np +n + (1 + n 4+ np)q. For example see figure 1.15 and 3.1. The vertices of the
Brs,(A,,,) graph are labelled by using the following sets of variables {¢1, @2, ..., ©nt1},
{{9011, 012, Prg )t P21, P22, P2 ), -+ {@(n+1)17 P(n+1)2; - - - 7()0(n+1)q}}7{{§117 &ot,

Y (ST PR3 MO (P SN S R (ST TR PR ST P
a1 -+ 1 &n115 Ennzy -5 Snig Fr16i21, §12, - - - S12gs E215 222, - -+ €22gy -+ -5 §n2ns S22 - -+ Enag )
oo a1 €z € Gty G2+ Gapa - Gt Gz upa} | S0 figure 3.1, Tet
I, g = K[sf?l, P2, - Pt P11, P12, - -5 Plgy P21, P22, - - -, P2g - -5 Pn+1)1 P(n+1)25 - - - 5
Pnt1)gs §115 8215+ -+ €n1, 612,822, §nz ooy S1ps Eopy -5 Enpy €111, S112, - - -5 E11gy S2115 €125

~~7£21q ceey §n117§n127~--7§n1q7£1217§1227~--7512q7§2217§2227~-7€22q ceey §n217§n227~~7
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§n2q sy §1p17£1p27'"7€1pq7€2p1752p2a'"7€2pq ey 5np17£np27"'7§npq] be the ring Of

polynomials in these variables over the field K. Then I,,, is squarefree monomial
ideal of II,,,. Now with the labelling as shown in Figure 3.1, the minimal set of

monomial generators of I, ,, , is given as:

n+1 q

M(Iypq) = CJ{%%H} U Q{Q{%fiw %’Hfij}}U L__J { L_J{%%k}} U
{Q{}Q{&j&jk}}}-

n

i=1

5132 5232 5332

5131 §133 5231 6233 5331 5333

©1

©Y11 ¥13 P21 ©23 P31 ¥33 P41 P43
P12 P22 ©32 P42

Figure 3.1: Brss(Asy3)
(3-fold bristled graph of Aj3)
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Let us consider a supergraph Brs,(A}, ) of the graph Brsq(Anp) The vertex and
edge sets of Brs,(A% ) are V(Brs,(A% ) = V(Brsy(An,) U U { U {€nnin} g(nﬂ)]}

and

E(Brsq(Ay,,)) = E(Brsg(Anyp)) U U{U{f(n+1)jf(n+1)jk}7 90n+1f(n+1)j}-

j=1 k=1

For example of graph Brsy(A}, ), see Figure 3.2. We denote the edge ideal of graph
Brsy(Ay,,) with I ) . which is the monomial ideal of the polynomial ring IT}, =~ =
My pq (€115 Emt1)2s - - > Ent)ps S )11 Ema1)125 - - - Emr1)1gs Emr1)215 St )22, - - - 5
Ent1)2g -+ St Emr1)p2 - - - ,f(n+1)pq]. The minimal set of monomial generators of

p q
L is M(Ly ) = M (L, p,) UjL:Jl{kL:Jl{f(nH)jf(nH)jk}, 90n+1§(n+1)j}.

5132 5232 §332
5131 §133 5231 5233 6331 5333

€33

€32

300
/32 L 323

€31

E311 L 313

5312

¥1

Y11 ¥13 P21 P23 P31 ©33
P12 P22 P32

Figure 3.2: Brsz(Aj ;)
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3.0.1 Depth and Stanley depth of cyclic modules associated
with ¢-fold bristled graph of triangular snake graph

If p =1, then we can simply denote the edge ideals by I,, , and I; , and the polynomial
rings by I, , and 117 .

Lemma 3.0.1. Let n,q > 1 and p = 1, then depth(ITy, /I ) = sdepth(IT; /I* ) =
(g+1)(n+1).

Proof. First, we consider depth.
Case 1.

For ¢ > 1 and p,n = 1. Let us consider the exact sequence

0— IOy, /(I : ¢2) AN Iy /I, — i, /(If . ¢2) — 0, (3.1)

by Depth Lemma
depth(Hiq/[l*’q) > min{depth(ﬂiq/(ll*’q :pa), depth(Hiq/([ﬁq, v2) }.

We have (]fiq D 02) = (1,11, €21, Pa1, P22, - - -, Pagq), it follows that

Hiq/([fq : 902) = K[@z, P11, P125 - - -, Plg» ST SICINEE ,511q, &1, 8212, - - - ,leq]~
This implies, depth(IT7 /(1] : ¢2)) = 3¢ + 1. Now as

(I, 02) = (1(S1,9); P2, pa1pa11, P210212, - - - Pa1parg) = (L(S1,q), 2, 1(5y)),
so we obtain
I3 /(I 02) = K[V (S19)]/1(S1,4) @k K[V (Sy)]/1(S,) @K K21, P22, - -, Pag)-

By using Lemma 2.2.9

depth (I}, /(I}y, 2)) = depth (K[V(S1,4)]/1(51,4)) + depth(K[V (Sy)]/1(5,))+

depth K [pa1, 022, . . ., P2q].
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By Corollary 2.2.14, Theorem 2.2.13 and Lemma 2.2.12,
depth(IIy /(L] p2)) = 2q + 2.

Since depth(I0y ,/(I7, : ¢2)) = depth(Il} ,/(I],, ¢2)), so by Depth Lemma
depth(IIy ,/(1f,)) > depth(IT} /(I},, 2)). That is, depth(IT} /I},) > 2q + 2.
Now since {11621 ¢ I7, and ([ﬁq 1&néa) = Klp1, 02, &1, 812, - - -5 §11gy §a11, §212, -+ -5 §21g)

it follows Hf,q/(]f,q P &116a1) = K611, 801, 0115 P12, - -+ P1gs P21, P22, - - - 5 P2g]- This shows
that, depth(IT} /(17 : 11€21)) = 2¢ + 2. Using Corollary 2.2.7, we get

depth(Ily ,/1},) < 2q + 2.

Hence

depth(IT} ,/I}",) = 2q + 2. (3.2)
Case 2.

For ¢ > 1, p=1 and n = 2. Consider the exact sequence
0 — 105, /(L3 = a) > 13 /15, — 105 /(15 03) — 0, (3.3)
by Depth Lemma
depth(I13 /I ,) > min{depth(I; /(I3 : v3),depth(Il; /(L5 ,, ¥3)}.
We have (qu p3) = (I1(S1,4), P2, €21, E31, P31, P32, - - -, P3q). Now

H;,q /(]2*,(1 : 903) = K[V<Sl,q)]/](sl,q) K K[SOQZ, P21, P22, - - - P2g5 52117 62127 s a€21q>
6311, 53127 s 7531(]]

Applying Lemma 2.2.9, Proposition 2.2.14 and Lemma 2.2.12
depth(I1; /(L5 : ¥3)) = 4q + 2.
Now as (I, 3) = (I}, 3, [(S,)), it follows that
105,/ (15,4, p3) = 17,/ 1T @i K[V (S9)]/1(Sg) @k K@, @32, - -5 #3q]-
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By using Lemma 2.2.9

depth ( Hg,q /([2*,q7 @n—}-l)) = depth(HT,Lq/[l*,Lq) + depth<K[V(Sq)]/]<Sq))

+ depth K[ps1, 32, - . ., P34].

Using Eq 3.2, Theorem 2.2.13 and Lemma 2.2.12, depth(Il5 /(15 ¢3)) = 3q + 3.
Since depth(Il5 /L5, : w3) > depth(I5 /(L5 ¥3)), so by Depth Lemma
depth(I; /15 ,)) = 3q + 3. Now since {51831 ¢ Iy, and

([2*,(1 1€a831) = (L(S1,9), P2, 93, §o11, E212, - - -5 €195 311, 312, - - -, §314), We Obtain
H;,q/([;,q : 521531) = K[V(Sl,q)]/]<Sl,q)®KK[£217 §31, P21, P22 - - - y P2q, P31, P32y - - - 903q]-

Using Corollary 2.2.14 and Lemma 2.2.12, depth(I13 /(5 : £21831)) = 3q + 3. Using
Corollary 2.2.7, depth(IT5 ,/I5,) < 3¢ + 3. Hence depth(II3 /I3 ,) = 3¢ + 3.

Case 3.

For ¢ > 1, p = 1 and n > 3, we prove this result inductively. Consider the exact

sequence

0— H:L,q/([;,q : (pn+1) % H;,q/[;,q — H;,q/(]*,(p Spn+1) — 07 (34>

n

by Depth Lemma

depth(H;,q/[;,q) > mln{depth<H2,q/<[rzq : @n+1>); depth(ﬂz,q/<]7:q7 90n+1>)}
Here (Ir:q : Son—&—l) = (](2,2)7(17 Pns gnla §(n+1)17 Pn+1)15 P(n+1)25 -« -5 Qp(n+1)q)a and we have
szq/(Iﬁ:q : 90n+1) = (H){n72)’q/[(;72)’q) ®K K[¢TL+17 QOTL17 §0n27 e vy SOTL(N é-nll; £n127 ceey
§n1q7 §(n+1)117 §(n+1)121 s 7§(n+1)1q]'

By induction and Lemma 2.2.12, depth(IT;  /(1}, : ¢nt1)) = (1 +q)n + 2q.
Now (I3 ;s n+1) = (L5, 1) 4 Prt1, 1(5)), it follows

H;,q/([;,qv ‘PHH) = (H?nfl),q/l(:lfl),q) KK K[V(Sq)]/U(Sq) K K[S"(nﬂ)b P(n+1)2,
c+y Plnt1)gl-
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By induction and Theorem 2.2.13 and Lemma 2.2.12,

depth(IT7 /(17 3> #n41)) = (0 + 1) (1 + q).

Since depth(IT; /(I : ¢nt1)) > depth(ILy /(L ,, @nt1)), hence by Depth Lemma
depth(IT; /17 ,) > (n+1)(1+ q). Now since {uiémyiy € Ly, and

(Irt,q : gnlg(nJrl)l) = (1(2_2)417 Pns P+l gnlla 571127 cee 7£n1q7 €(n+1)11a €(n+1)12> s a€(n+1)1q)'

We obtain, IT;  /(Lr, : &niémi) = (Hz(n_z)7q/](2_2)7q)®KK[§n17 E(n+1)15 Pnls Pn2; - - - 5 Pngs
Cn+1)1s P(n1)2s - -+ 5 go(n+1)q]. Again by induction and Lemma 2.2.12

depth(TL,  /(I7, : EmEiny)) = (n— (1 +g) + 24 +2 = (n+1)(1 + ).
Using Corollary 2.2.7, depth(Il;, /I ,) < (n+ 1)(1 + ¢). Hence
depth(IT; /17 ,) = (n +1)(1 +q).

The consequence for Stanley depth follows by applying Lemma 2.1.7 and Lemma
2.2.11 instead of Depth Lemma and Lemma 2.2.9 on exact sequences 3.1, 3.3 and 3.4,
respectively. And we use Proposition 2.2.8 instead of Corollary 2.2.7.

O
Theorem 3.0.2. For n,q > 1 and p = 1, depth(Il,,,/1,,) = sdepth(Il, ,/I.,) =
(1+q)n+q.
Proof. First, we consider depth.
Case 1.
For ¢ > 1 and n,p = 1. Consider the exact sequence
0 — g/ (Lt o) — i/ Ly — 1y g/ (L g, p2) — 0, (3.5)

applying Depth Lemma

depth(HLq/]l,q) Z min{depth(ﬂlyq/(h,q : QOQ), depth(HLq/(ILq, QOQ)}
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Here (11,4 : ¢2) = (01,811, P21, P22, - - - Pam), so we have Iy o /(114 : @2) = K@z, 11, P12,
e <p1q7 6111, 5112, RN ,fllq], 1t 1mphes depth(HLq/(]Lq : (pg)) = 2q + 1. AISO

([l,qa %02) = (@1511, P1P11, P1P12, - - -5 P1P1g> i e, - - 7511511q7 902)
= (‘[(Sl,q)v (702>7

so we obtain Iy ;/ (1,4, ¢2) = K[V (S1,9)]/1(S1,4) @k Klpa1, P22, - - ., Pag)-
Using Corollary 2.2.14 and Lemma 2.2.12, depth(Ily /(1 4, ¢2)) = 2¢ + 1. Since
depth(Iy ,/(f1,4 : ¥2)) = depth(LL; , /(11 4, ¥2)), hence by depth lemma

depth(Il; ,/f 4) = 2¢ + 1.
Case 2.
For ¢ > 1, p=1 and n = 2. Consider the exact sequence
0 —Tlyy/(ly : p3) 221y ,/ by — My y/(Ig, p3) — 0, (3.6)

applying Depth Lemma

depth(Ily /L ,) > min{depth(Ily /(L4 : ¢3)),depth(Ils,/ (L4, v3))}-
We have (L, : p3) = (1(S1.4), 02, &1, P31, P32, - - -, P3q), it follows that

HQ,q/<]2,q : %03) = K[V(Sl,q)]/[(sl,q) QK [@3, P21, P22, - - - P2g, &211,8212, - - - ,§2lq]-
Using Corollary 2.2.14 and Lemma 2.2.12, depth(Ily,/(L, : v3)) = 3¢ + 2. As
(Ioq, 03) = (I} 4 ¥3),

so we obtain Hyq/(hy,w3) = (S7,/1F,) @Kx K[ps1, @3, ..., 3. Using Eq 3.2 and
Lemma 2.2.12, depth(Ils ./ (124, ¥3)) = 3¢ + 2.
Since depth(Ily, /(L : ¢3)) = depth(Ily, /(L 4, ¥3)), hence by Depth Lemma

depth(HZq/Ig,q) = 3(] + 2.
Case 3.
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For ¢ > 1, p=1 and n > 3. We will prove this result by using Lemma 3.0.1. Consider

the exact sequence

‘Pn+1

0— Hn,q/(]n,q : ‘PnH) — I, q/[n,q — Hn,q/([n,qa ‘Pnﬂ) — 0, (3-7>

by Depth Lemma

depth(ﬂn,q/]n,q) > min{depth(ﬂn,q/(]n,q L Pnt1)), depth(ﬂmq/(lmqv 90n+1>)}-
Here (1,4 : ¥nt1) = ([(*n_g),qa ©Ons Enly Pt )1-Pn1)2s - - - 5 80(n+1)q)> and we have

Hn,q/([n,q . SOn—&-l) = (H?n_2)7q/](2_2)7q) ®K K[Spn—i-la Pnls Pn2s -, San? 571117 £n12a s agpnlq]'

Using Lemma 3.0.1 and Lemma 2.2.12, depth(Il,, /(1. 4) : ¢n+1)) = (1 +¢)n + g. Now

(In,(p 90714’1) = (I(:Lfl)’qu (Pn+1)7

it follows qu/(]n,qa Spn—i-l) ( (n—1), q/ (n—1), q)®KK[SO(n+1)1> P(n+1)2; - - - 790(n+1)q]- Using
Lemma 3.0.1 and Lemma 2.2.12, depth(IL,, ;/ (1,4, ¥n+1)) = (1 + ¢)n + ¢. Since

depth(IL,, 4/ (Lnq : @nt1)) = depth(I, 4/ (Lngs Yn+1)), hence by Depth Lemma
depth(IL,, ,/1.4) = (1 + ¢)n +q.

For Stanley depth, we apply Lemma 2.1.7 and Lemma 2.2.11 rather than Depth
Lemma and Lemma 2.2.9 on exact sequences 3.5, 3.6 and 3.7, respectively and have
sdepth(Il, ¢/ 1, 4) > (14+¢)n+q. To compute the upper bound since @411 Pm+1)2 € In,g
and (Lng : Emr1)1€(mr1)2) = (](2—1)@7 ©ni1), It follows that
sdepth (I, 4/ (Tng : @(n+1)19(m+1)2)) = (1 + ¢)n + ¢. Thus by using Propositon 2.2.8
sdepth(IL, 4/ 1.4) < (1 + ¢)n + g. Hence sdepth(1l, ,/1,,) = (1 +¢)n +q

O

3.0.2 Depth and Stanley depth of cyclic module associated with
g-fold bristled graph of multi triangular snake graph

Lemma 3.0.3. Forn,q > 1 and p > 2, depth(IT
(p+a)(n+1).

npq/ npq) _Sdepth( npq/ npq) -
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Proof. First, we consider depth.
Case 1.

For ¢ > 1, p > 2 and n = 1. Consider the exact sequence

0— Iy, /(I 02) 2 10 /g — o/ (I g 02) — 0, (3.8)
applying Depth Lemma
depth( 1pq/]1*p q) > mln{depth( 1pq/(]1*pq ) depth( 1pq/(]1*p q’ 902)}

Here ([1,p,q : 902) = K[9017 P21, P22, - - -5 P2q;5 §115612; - - - aflpa §21,822, - - - 7€2p]7 we obtain

Hi(pq/([ﬁp7q . @2) = K[@Qa P11, P12, - - -5 Plg; 6111751127 s 7511q7€1217€1227 cee a€12q sy

flph 51p2> . 7€1pq7 §o11, 6212, - - 7521(1, §221,8222, - - 752211 ceey §2p1> Yop2, - - - >y2pq]'

This implies depth(ITy , ,/([f,, : ¥2)) = 2pg + g+ 1. Also
([ﬁp,w p2) = (1(Sp.q), P2, 216211, E216212, - - - 5 216214, §226221, §226222, -+ -5 §22622g -+
Eapbapts E2pap2, - - - > §2pSapg)- It follows

* * ~ p
Hl N q/(]Lp,q’ 902) = K[V<Sp7q)]/[<sp,q)(?;lfK[V(Sq)]/I(Sq> Rk K[@ZL P22y« -y 902q]'
Applying Lemma 2.2.9

depth (117, ; /(L7 4> ¢2)) =depth (K[V(Sp.g)]/1(Sp,q))

+ Z depth (K[V(S,)]/1(S,)) + depth K[pa1, 02, - - - , Paq]-

Using Corollary 2.2.7, Theorem 2.2.13 and Lemma 2.2.12, depth(Ily , /(If, , ¥2)) =
2p + 2q. Since depth(Ily , /(If,, : ¢2)) > depth(Il} /(I ., ¥2)), hence by Depth
Lemma depth(IT} , /17, ) > 2p + 2q. Now since 5160 ... &op & I, and

<1pq §21822 - - f2p> (f ( ) 02,8211, 8212, - - -, €219, §221, §222, - -, §22g -5 Sopt,
€2p27 s 7€2pq)‘
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We have
prq/( 1,p,q * D& 5210) = K[V(Sp,q)]/(](Sp,q)@)kK[fma5227 < 7§2p7 P21, P225 - -+ 902q]-

By Theorem 2.2.13 and Lemma 2.2.12, depth(I0y , . /(I , : {21622 - - - §2p) = 2p + 2¢.
Now using Corollary 2.2.7, we obtain depth(I1,, /I, ,) < 2p + 2q. Hence

depth(I0y, /17, ) = 2p + 2q. (3.9)
Case 2.

For ¢ > 1, p > 2 and n = 2. Consider the exact sequence
0— 105, /(5 03) 2 15, /10 — Wb, 0/ (13,40 03) — 0, (3.10)

by Depth Lemma

depth( 2pq/]2*p q) > mln{depth( 2pq/([2*pq ) depth( qu/(IQ*p q’ 903)}

We have <]2pq : @3) = (I<SP,(1)7 Y2, P31, P32, -+ -5, P3q; §21,622, - - - 7£2p7 31,632, - - - 7£3p)7
it follows that ngq/([;pq 905) = K[V(an)]/I(Sp’q) RK K[@g, Y21, P22, - - -, P2g, 6211,

52127 v 7521(17522175222, o 7522(1 ceey §2p17§2p27 s a§2pq7§3117€312a cee 7531(175321’5322’ sy
Es2g -y Eap1,Eap2, - - - E3pg)- By Corollary 2.2.14 and Lemma 2.2.12,

depth(ngq/(Iprjq 3)) = 2pq + 2q + p + 1, also we have

(L340 #3) = (I 0 35 §318311, §318312, - - - 5 §318314, §326321, §328322, - -+, §326324 - -
£3p£3p1: £3p£3p27 L a€3p€3PQ)7

it shows that, H’Q*pq/(]g’p’q, 03) = lpq/ll*pq®KK[ (SPHI/L(S) @Kk K [@31, P32, - - - 5 P3q)-

By using Lemma 2.2.9

depth(I13, ./ (13, 4 3)) = depth(IL}, /I, ) + Zdepth K[V(S)I/1(Sy)) +
7j=1
depth K[@31, @32, - . -, ©3q]-
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Using Eq 3.9, Theorem 2.2.13 and Lemma 2.2.12, depth(I; , /(L5 ¥3)) = 3p + 3¢.
So by Depth Lemma depth(Il5 , /L5, ) > depth(Il5,  /(15, ., ¢3))-
Hence depth(II3, /15, ,)) > 3p + 3q. Now since 31830 ... &3, & I3, , and we have

( 2 531532 £3p> ( 1 » P3, 53117 §3127 v 7531q7 §3217 53227 v >§B2q cey £3p17
»Pq P4
€3p27 v 7£3pq)7

it follows

H;pq /( 20,9 831832 - fsp) = Squ/]fp,q QK K[5317532, e 753;07 P31, P32; - - - 7903q]-
Using Eq 3.9 and Theorem 2.2.13 and Lemma 2.2.12, we obtain
depth(I13,, ./ (15, : §31832 - - - €3p)) = 3p + 3¢.
By Corollary 2.2.7, depth(Sa,q/15,,) < 3p + 3q. Hence depth(S;, /15, ,) = 3p + 3q.
Case 3.

For ¢ > 1, p > 2 and n > 3. We prove this result inductively. Consider the exact

sequence

0 — 1T, /([* SDTL-H) <p”+1 npq/ n,p,q — H;pq/([;,pg? Spn—i-l) — O’ (311)

0,9 ,Dp,q

using Depth Lemma

depth( npq/ npq) > mln{depth(H;pq/([gpq : SOTL‘H))’ depth(H:qu/([nylMI? SOTH-I))}

Here (Inp q- Qon—l-l) (](2_2)71,,(17 Pny Pn4+1)15 P(n+1)2s - -+ s P(n+1)g §n1, &n2s - - - 7€npa §(n+1)17

Ent1)2s - - - (n+1)p)), SO We have

H:qu /([;pq §0n+1) = (H?n—2)7p7q/[a7,—2)7p7q) KK [Qanrla Pnl, Pn2s - - -5 Pngs 57111: 571127 )
fnlq; £n217 £n227 cee 7€n2q ceey fnpla fana cee 7£npq7 f(n—kl)ll? f(n+1)127 cee 7§(n+1)1q; f(n+1)217

é(n+1)227 s 7£(n+1)2q SRR £(n+1)p17 é(n-‘rl)p?a s 7£(n+1)pq]~
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By induction and Lemma 2.2.12, depth(IT%  /(Ir, . : ¢nt1)) = 2pg+nqg+np —p+ 1,

0,9 0,9

and

(In,p,qa 90n+1) = ([(*71_1),,3,(1, Pn+1, f(n+1)1f(n+1)11> €(n+1)15(n+1)127 e 75(n+1)190(n+1)1q,
£(n+1)2()0(n+1)217 £(n+1)2£(n+1)227 s 7£(n+1)2€(n+1)2q SRR f(n—o—l)pf(n—&-l)pla €(n+1)p€(n+1)p27

. 7£(n+1)p£(n+1)PQ>7

it follows

* * ~ TT* * b
anq /(In,p,q’ QDTZ-H) = H(n—l),p,q/‘[(n—l),p,q(?;ffK[V(Sq)]/(I(Sq))®K
K[@(nﬂ)h Pn+1)25 -+ 90(n+1)q]-

By using Lemma 2.2.9

depth (HZp q/(‘[?:,p,(p Son—l-l)) depth(H (n—1),p, q/]n 1),p,q +Z depth [V<Sq)]/](sq))

J=1
+ depth K[@mi1)1, Pn+1)2 - - - » Plnt1)q)-

Again by induction and Theorem 2.2.13 and Lemma 2.2.12,

depth(IT}, , /(L , 4 Pnt1)) = (R +1)(p+q).

Since depth(ITy, , /(L . ¢nt1)) = depth(ILy | /(Ly, ., ¥nt1)), hence by Depth Lemma

,p,q n,p,q * ,p,q n,

depth(II npq/ npq) > (n+1)(p + q). Now since {pi1)1€m+1)2 - - - Enr1)g & 1 g &
(Lrpg Sz - - - §mnyg) = U1y pgr Prt1s Emr)its §ma)izs - -+ §nri)igs
En+1)21, Emt1)225 - s Em41)2g - Emt)ps St 1)p2s - - - E(n+1)pg)s
we obtain
H;qu /(I;L(pq 5(""‘1)16(”"‘1)2 T é(71'*‘1)(1) = anfl),p,q/](tzfl),p,q
Ok K[€mnt1)1: Ent1)2s - - - Em41)2> Pt 1)1 Lnt1)25 - - - » Plnt1)q)-
Thus by induction and Lemma 2.2.12
depth(IL; , ./ (L) ,q  Smai€mrnz - - - Emrnyg)) = (n+1)(p + q).
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By Corollary 2.2.7, depth(Il; , /I, ) < (n+1)(p + q). Hence

depth(Il; , /17, )= (n+1)(p+q).

The consequence for the Stanley depth follows by applying Lemma 2.1.7 and Lemma
2.2.11 rather than Depth Lemma and Lemma 2.2.9 on exact sequences 3.8, 3.10 and
3.11, respectively. And we use Proposition 2.2.8 instead of Corollary 2.2.7.

Theorem 3.0.4. Forn,q> 1 and p > 2, depth(IL,, , /1 pq) = sdepth(W,, 4/ Lnpq) =
(P+an+aq

Proof. First, we consider depth.
Case 1.

For ¢ > 1, p > 2 and n = 1. Consider the exact sequence
0 — ipg/(lipq : ¥2) = Wipq/lpg — Uipa/(Tipq p2) — 0, (3.12)
by Depth Lemma
depth(IL g/ N1p,q) = min{depth(Ilyp ¢/ (L pq : @2), depth(Ilypq/ (L pq, 02)}-
Here (114 : p2) = (01,921, P22, - - - P2g: €11, E125 - - -, E1p), 1t follows that

Wi pg/(Lpg  p2) = Klpa, 011,012, - -+ P19, 11, §112s -+ &1ngs G121, §122, - -+, 12g -+
§1p17 §1p27 s 7§1pq]'

This implies depth(Il; ¢/ (L1pq : @2)) = g+ q+ 1, also (L1 pq, 2) = (1(Sp,q), 2), 5O
we obtain Iy .4/ (N1p.q, 02) = K[V (I(Sp,0)]/1(Sp.q) @k [21, P22, - - pag]-

Using Theorem 2.2.14 and Lemma 2.2.12, we find depth(I1y /([ pq, ©2)) = 2¢ + p.
By Depth Lemma depth(Il ,, ./ 11 ) > depth(Il; , /(L1 pg. p2)). Hence

depth(Ily 4/ 1 pq)) > 2 + p.
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Now since o109 & I p 4 and (L1 4 @21922) = (1(S,.4), ¢2), it follows

Hl,p,q/(ll,p,q : 80218022) = K[V(I(Sp,qm/—,(Sp,q) KK [@217 ¥225 - - 902(1]-

Using Corollary 2.2.14 and Lemma 2.2.12, depth(Il; , ./ (L1 4 : P21922)) = 2¢ + p. Now
by Corollary 2.2.7, depth(Ily ,, ,/ 11 4) < 2¢ + p. Hence depth(Il; , ./ 54) = 2¢ + p.

Case 2.
For ¢ > 1, p > 2 and n = 2. Consider the exact sequence
00— Hopg/(Lpq: ¥3) = Wopq/bopg — Uopq/(Lpq p3) — 0, (3.13)

applying Depth Lemma

depth(ﬂlp,q/]?m,q) > min{depth(ﬂlp,q/(—fzp,q L p3)), depth<ﬂ27p7q/(l2,p,qv ©3))}-

Here (L4 1 03) = (I(Sp.q); P2, 031, 325 - - - P3ps &1, €22, - -+, E2p), and we have

H2,p,q/(—f2,p,q : 903) = K[V(Sp,q)]/](Sp,q)@’KK[SOsa P21, P22, - - -5 P2gs §211, 6212, - - - 7521q7
€291, 6292, - - €29q -y Eop1,&apay - - -5 Eapg. using Corollary 2.2.14 and Lemma 2.2.12,

depth(Hy,,/(Lypg : v3)) = pg+2q+p+1, and (Lyg, ¢3) = (I, ,, ¥3), so we obtain

Uopq/(Lpg, w3) = (107, , /1)) @ Klos1, 032, -+, @3]

Using Eq 3.9 and Lemma 2.2.12, we obtain depth(S2,,,/(l2pq, ¢3)) = 2p + 3¢. Since
depth(Myp,q/(f2p.q © 3)) 2 depth(Ispq/(f2pq,3)), s0 by Depth Lemma

depth(Ila 4/ L2pq) > 2p + 3q.

Now since ¥P31¥32 ¢ -[2,p,q and HQ,p,q/(-[Q,p,q : 90318032) = (Hl,p,q/]ﬁnq)@K[(p?)la 325 - - - 7@3(]]‘
Using Eq 3.9 and Lemma 2.2.12, depth(Ily, /(L @ @31932)) = 2p + 3¢. Thus by

Corollary 2.2.7, depth(ls ./ 2.p4) < 2p + 3¢. Hence depth(Ils /by q) = 2p + 3q.

Case 3.
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For ¢ > 1, p > 2 and n > 3. We will prove this result by using Lemma 3.0.3. Consider

the exact sequence

0— Hn,p,q/([n,p,q : 90n+1) T Hn,p,q/In,p,q — Hn,p,q/([n,p,q‘PnH) — 0, (3'14>

Using Depth Lemma

depth(Il,, g/ I pg) = min{depth(Il, , o/ (Inpq : Pnr1)), depth(Il, o/ (I pgs Pry1)) }-
Here ([n,’p,q : 9071-1-1) = (]():1—2)717@7 Pn, fnla §n27 s 7§np7 Pn+1)1, P(n+1)2 - - - 7@0(714-1)‘1)7 Y

Hn,p#]/(]n,p,q : §0n+1) = (H(nf2),p,q/1(:b_2)7p,q) QK K[Sanrla Pnls Pn2s - -+ Pngs €n11> 671127 )

fnlqa 571217 §n227 s 7’£n2q cevy fnpla 5np27 o 7£npq]'

By Lemma 3.0.3 and Lemma 2.2.12, depth(I1,, , 4/ (Lupg : ©nt1)) = (p+q)n+pg—p+1,

and (In,p,qu 90n+1> = (I():L_l)’p,qu 90n+1>7 so we obtain
Hn,p,q/([n,p,qa 9071"!‘1) = <H?n—1)7p,q/1(t1—1),p7q) ®K K[(p(nJrl)la P(n+1)2 - -+ SO(nJrl)q]‘

By Lemma 3.0.3 and Lemma 2.2.12, depth(IL,,, ,/(Lnp.q> ©nt1)) = n(p + q) + ¢. Since

depth(ﬂmp,q/([n,p,q D Pnt1)) > depth(ﬂmp,q/([n,p,qa Pni1))-

Hence by Depth Lemma depth(I1,, .4/ 1np,q) > (p+q)n+q. Now since @110 m+1)2 ¢

*

Lipg and (Inpg @ Pni1)1Pm+1)2) = U(n—l),p,qv ©ni1), it follows

*

Hn,p,q/(jn,p,q : So(n+1)190(n+1)2) = ( H(nfl),p,q /](271),;),(1) K [@(n+1)17 Pn+1)2s - - - 790(n+1)q]-

By Lemma 3.0.3 and Lemma 2.2.12, depth(IL, ;, ¢/ (L pq : Pnt1)19m+1)2)) = (P+q)n+q.
Thus by using Corollary 2.2.7, depth(Il,, , o/ I p.q) < n(p + ¢) + q. Hence

depth(ﬂn,p,q/[n,p,q) =(@+qgn+q

The consequence for Stanley depth follows by applying Lemma 2.1.7 and Lemma
2.2.11 rather than Depth Lemma and Lemma 2.2.9 on the exact sequences 3.12, 3.13
and 3.14, respectively. And we use Proposition 2.2.8 instead of Corollary 2.2.7.
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Chapter 4

Depth and Stanley depth of cyclic
modules associated to g-fold bristled
graphs of triangular and multi
triangular ouroboros snake graphs

Let p,g > 1 and n > 3, a ¢-fold bristled graph of p-tringular ouroboros snake

denoted by Brs,(U,,,) is obtained by connecting ¢ vertices of degree 1 to each vertex
of p-tringular ouroboros snake U,, ,. In particular, if p = 1 then U,,; = U, is a tringular
ouroboros snake and its g-fold bristled graph is denoted by Brs,(U,).
Clearly |V(Brsy(Onp))|= (¢ + 1)(p + 1)n. The graph Brs,(U,,) has np vertices of
degree g + 2, n vertices of degree 2p + ¢ + 2 and (1 + p)ng vertices of degree 1. So by
using Lemma 1.3.11, we have |E(Brs,(U,,))|= ((p+ 1)g + 2p + 1)n. For example see
Figure 1.16 and 4.1.

The vertices of the Brs,(U,,) graph are labelled by following sets of variables
{e1, 02, n}, {{9011,9012,---,901q},{9021,9022,-..,902(1}, R {S0n1790n2>---790nq}}7
{{5117521, o G612, 800, G2ty o {1 Eopy - - >§np}}a{{5111,§112, ST
&, 12,5 &a1g -y Euins Gnazs s Gnag i {&ians Gaoas s Ga2gy G221, E222, - €22g -

oo €z > Eazabs o L€t e Eupas s G+ Eop s gt o> Eon} |
see figure 1.16. Let C,, 4 := K[@1, 02, -+, Pns P11, P125 - - - s P1g, P21 922, - P2q -+ Pnl,
P2y Pngs 11,8215, 6n1, 612,602, - En2 - os Eapy Sopy -+ -5 Snps §1115 €112, -+ -5 Sy
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521175212)'-'7521q ceey fnllagnl%--'7£n1q>€1217€1227--'7612q7§221752227---7522q ceey

§n217£n227~-a§n2q R §1p17§1p27--‘7§1pqa§2p1a§2p2w“a§2pq R gnphgnp?w"vfnpq]

be the ring of polynomials in these variables over the field K. We can write

H”apvq = Cn,pvq[‘Pn-&-l) P(n+1)1s P(n+1)2y - - - 7%0(n+1)q]~

Then J,,, is squarefree monomial ideal of C, ,,. Now with the labelling as shown in

Figure 4.1.

U{mﬂ}u{wnmUU{U{%,W&J}}UU{

i=1 j=1 %

C =

{%“Pik}} U
{fijfijk}}}-

C =
——
S

CQ
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5122

§121 123
€12
©13 P21
P12 P22
Y11 a3
423 £221
422 222
a1 §12 §22 5223
n
P42 y ©31
P43 P32
P41 ©33
§32
§323 §321
322

Figure 4.1: Brss(Uy)
(3-fold bristled graph of Uy42)

Let us consider a supergraph Brsy(Ay%) of the graph Brs,(A}, ). The vertex and
edge sets of Brs,(Ayy,) are V(Brs,(Ay,) = V(Brsy(A; ) UL 21, Emrzs - - > Emt2yps
Ent2)115 E(nt2)125 - -+ Emt2)1g0 Ent2)215 E(n12)225 - - - Em42)205 - - > Em+2)p1> Em+2)p2s - - - 5
Snr2pey and E(Brs,(Ayy)) = E(Brsy(A;,)) Uj@l{kgl{g(nﬁ-l)jf(n-&-l)jk}7Qpn+1§(n+1)j}.
For example of graph Brs,(Ay*), see Figure 4.2. We denote the edge ideal of graph
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Brs,(A;7,) with J; ., where J is the monomial ideal of the polynomial ring

npq_H;quU{U{gnJrZ]k} §(n+2)) }
j=1 k=1

The minimal set of monomial generators of J; 1

N(‘];pq) = npq U U{U{§ n+1 ]g(n‘f‘l)ﬂf} Qpn+1£(n+1)]}

j=1 k=1

132 §232 &332 432
131 133 §a31 §233 &331 333 a1 §433
13 a3
§13 a2
122 7 oo
121 L 5123 LI I
&n En
IS ® 03 ® 0,3
5112 ©1 412
P11 ¥13 ©21 ©23 P31 ©33
P12 P22 P32

Figure 4.2: Brsz(A5%)
4.0.1 Depth and Stanley depht of cyclic module associated with
g-fold bristled graph of triangular ouroboros snake graph

If p =1, then we can simply denote the edge ideals by J,, ;, and J; . and the polynomial
rings by C, 4 and Cy, ,
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Lemma 4.0.1. For n,q > 1 and p = 1, depth(C}, /J;;,) = sdepth(C} ,/J;,) = (¢ +
(n+1)+1.

Proof. First, we consider depth.
Case 1.

For ¢ > 1, n,p = 1. Let us consider the exact sequence

0— qu/(Jl*’q D p9) 2, Cf’q/Jlfq — Cf,q/(Jl*’q, pa) — 0, (4.1)
by Depth Lemma
depth(Ciq/sz) > min{depth(Ciq/(Jf’q :v2)), depth(Ciq/(Iﬁq, ©2))}-
Here (qu t) = (&€ Enang, - - &g, P15 P21, P22, - - -5 Paq, €21, €31), it follows

Clo/ (I 1 02) = K[V(S)I/1(S,) @k Klw2, 11,012, - - -5 P1g, §211, §2125 - - -5 €215 €311,
53127 s 7531(1]-

Using Theorem 2.2.13 and Lemma 2.2.12, we have depth(Cy ,/(J7, : ¢2) = 3¢ + 2.
Also (J7,,2) = (1(S2,9), 1(S,), ¢2, ), so we obtain

C*/(Jf g p2) = K[V (S2)]/1(S24) @k K[V (8,)]/1(5g) @k [021, 022, - - -, P2q)-
By using Lemma 2.2.9
depth (C ./ (175, p2)) = depth(K[V(S2,)]/1(52,4)) + depth(K[V(S,)]/1(5,))
+ depth (K21, pa2, - - -, P24))-
Using Corollary 2.2.14 and Theorem 2.2.13 and Lemma 2.2.12
depth(Cy,/(Jf,; ¢2)) = 2q + 3.

Asdepth(Cy,/(J7, : ¢2)) = depth(Cy,/(Jf,; ¢2)), so by Depth Lemmadepth(Ci% / Jf,) >

2q+3. Now since €91831 ¢ Ji, and (J7, : €a1€31) = (1(S,), 1, P2, §a11, E2125 - - - §2145 €311,

312, - - -, €314), SO We obtain

Ciq/(Jf,q : 521531) = K[V(Sq)]/I(Sq) K [521, 31, P11, P125 - - - )y Plg) P21, P22 - - - 902q]-
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By Theorem 2.2.13 and Lemma 2.2.12, depth(Cy,/(J7, : {21831)) = 2¢ + 3. Thus by
Corollary 2.2.7, depth(C7,/J;,) < 2q + 3. Hence

depth(C7,/J7,) = 2q + 3. (4.2)
Case 2.
For ¢ > 1, p=1 and n = 2. Consider the exact sequence
0 Cho/ T3y @3) 25 Ciof Ty — Chaf (S5 grips) — 0. (43)
applying Depth Lemma
depth(C3,/J5,) > min{depth(C /(i : s), depth(Cs,/ (5, 5)}-
Here (J3, 1 ¢3) = (I(S24); P2, P31, ¥32, - - -, P34: €315 €a1), S0 We have

CS,q/(szq p3) = K[V (S29)]/1(52,4) @k K[ps, a1, 022, - - -, P2g, 311, €312, - - -, €314,
§4117 6412 <. 7641q]-

Using Corollary 2.2.14 and Lemma 2.2.12, depth(C;,/(J5, : ¥3)) = 4q + 3, and
(JQ*,qa 903) = (‘]1*,(17 ¥3, 64154117 64154127 SR 7641541q) = (Jl*,qa I(Sq)a 903)7 it follows that

Coq/ (Jgr03) = Cl /iy ©x KIV(Sy)I/1(5g) Ok Klps1, a2, - 5 Pag]-

By using Lemma 2.2.9

depth (C3,/(J34,s)) = depth(Cy,/J7,)
+ depth(K[V(5y)1/1(S,)) + depth(K[@s1, ¢sa, - - -, Paq])-
Using Eq 4.2 and Lemma 2.2.12, depth(C5,/(J5,, ¥3)) = 3¢ + 4. Since
depth(C3 /()5 : ¢s)) = depth(C3 ./ (J54, ¢3))-

Therefore by Depth Lemma depth(C;,/J5,) > 3¢ + 4. Now since {31641 ¢ J5, and
(JZ*,q 1&316m) = (1(S2,4); P2, 03, &311, 312, - - - §3195 §a11, §anzs - - -5 Eanq), 8O We obtain

C3o/ (5, &316a1) = K[V (S2,0)]/1(52,0) @ K €31, a1, 021, 022, - - - 5 P2g5 P31, P32, - - -, P3)-
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By Corollary 2.2.14 and Lemma 2.2.12, depth(C3,/(J5, : £31641)) = 3¢ + 4. Thus by
Corollary 2.2.7, depth(C5,/J5,) < 3¢ + 4. Hence

depth(C3,/J5,) = 3q + 4. (4.4)
Case 3.

For ¢ > 1, p =1 and n > 3. We prove this result by using induction on n. Consider

the exact sequence
0— C;,q/(‘];,q : 80n+1) M} C;,q/J;,q — C:L,q/(‘]rt,(ﬁ Qon-l-l) — 0, (45>
by Depth Lemma
depth(C},/ 7 ,) > min{depth(Cy /(17 = 9ur1)), depth(Chy/ (1 g 9ns1))}-

Here (J;;:q : §0n+1) = (](2,2)7(]7 Py Pn4+1)15 P(n+1)25 - -+ » P(n+1)g» €(n+1)17 g(n+2)1)7 we get

C;,q/(‘]ﬁ,q : 9071-"-1) = C?n—2),q/J(;1—2),q QK K[@n—f—h Pnl; Pn2s - - - Pngs f(n-‘rl)lh g(n-i—l)l?a

.. af(n+1)1q; €(n+2)11a g(n+2)127 B af(n+2)1q]-

By induction and Lemma 2.2.12, depth(C}; ./(J),) : @ns1)) = (¢ + 1)n +2¢ + 1. Also

(o gs Prt1) = (Jim1).g0 Pt 15 Emr21§mr)in, ma1§mr2)12, - - - §nr1€(nt2)1q)
= (J(*;Lfl),m [(Sq)7 ()OTL+1)7

it follows that

Cra/ (JngrPni1) = Cluny o/ (J1) g ©x K[V (Sg)1/1(5,) @k
K[@(nﬂ)h Pn+1)25 -« 90(n+1)q]~
By using Lemma 2.2.9
depth (C} o/ (74> Pn+1)) = depth(CF, ), /(J(1y o) + depth(K[V(S)]/1(S,))+

depth(K[gO(n+1)1, Pln+1)25 -+ - 90(n+1)q])‘
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Again by induction and Theorem 2.2.13 and Lemma 2.2.12
depth(Cy ,/ (/5 g Pns1)) = (L+q)(n+1) + L.

Since, depth(C;; ,/(Jyx, : ¥ns1)) > depth(C}  /(J),, ¥nt1)). Hence by Depth Lemma

Pn+1 n

depth(C}; ./ J5r,) = (1+¢q)(n+ 1) + 1. Now since {1)18§ni2n ¢ /5, and
<']7:,q : f(n+1)1§(n+2)1) = (J(*n72),q7 Ony Prt1, Enr1)11s Enr)12y - - - St 1)1g E(n+2)115
§(n+2)127 s 7£(n+2)1q)‘
We have
C:L,q/(‘]rt,q : £(n+1)1§(n+2)1) = CanQ),q/<J(*nf2),q
Rk K[Ent1)15 Ent2)ts Pnls Pn2s - - > Prgs Plnt1)1> Pnd1)2s - - - s L(nt1)ql-

By induction and Lemma 2.2.12, depth(C}; . /(J5r, : {myniémin)) = (1+q)(n+1)+1.
Thus by Corollary 2.2.7, depth(Cy; ./ /) < (1 +¢)(n + 1) + 1. Hence

depth(C;/Jr,) = (1+q)(n+1) + 1.

For the Stanley depth the consequence follows by applying Lemma 2.1.7 and Lemma
2.2.11 rather than Depth Lemma and Lemma 2.2.9 on the exact sequences 4.1, 4.3 and
4.5, respectively. And we use Proposition 2.2.8 instead of Corollary 2.2.7.

O
Theorem 4.0.2. For n,q > 1 and p = 1 depth(C, 4/ Jn,) = sdepth(Cp 4/ Jny) =
(1+g)n.
Proof. First, we consider depth.
Case 1.
For ¢ >, p=1 and n = 3. Consider the exact sequence
0 — Ca,q/(Jaq: 93) = Cag/Jsg — Caq/(J4:03) — 0, (4.6)
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using Depth Lemma

depth(Cg,q/Jg,q) Z min{depth(C&q/(Jg,’q . @3), depth(Cg,q/(J&q, (,03)}

Here (134 : p3) = (¢1, P2, 931, 932, - - - s P3q, &1, E31, E11&111, §11éies - - - §11éi1g)- We get

Caq/(J3q 1 p3) = K[V (Sg)]/1(Sg) @k K[ps, 021,022, - - ., P2g: P31, 0325 - - - » P35 2115

E12s - -5 €214, Ea11, E12, - -+, E314)-

Using Theorem 2.2.13 and Lemma 2.2.12, depth(Cs,/(J5, : ¢3)) = 4¢ + 2. Also

(JS,qa 303) = (‘]1*,(17 903)7 S0 C3,q/<‘]3,q7 303) = Ciq/‘]l*,q QK K[90317 ©32; - - - 7(103(1]‘USing Eq 4.2
and Lemma 2.2.12, depth(Cs,/(Js4,3)) = 3¢ + 3. Since, depth(Cs,/(J54 = ¥3)) >
depth(Cs 4/(J5,4, ¢3)). Hence by Depth Lemma depth(Cs,/Js,) > 3¢ + 3. Now since

3132 & Jag and (Jzq 1 @aips2) = (I, 3). So we have C3,/(J3q 1 @31932) =
Clo/ It @ Klps1, 032, p3]. Using Eq 4.2 and Lemma 2.2.12, depth(Cs /(54
©319¢32)) = 3¢ + 3. Thus by Corollary 2.2.7 depth(Cs ,/J5,) < 3¢ + 3. Hence

depth(Cs4/J5,4) = 3¢ + 3.

Case 2.

For ¢ >, p = 1land n = 4. Consider the exact sequence
0 — Cug/(Jug : 04) = Cag/J1q — Cag/(Jig, a) — 0, (4.7)
by Depth Lemma
depth(Cyq/Jsq) > min{depth(Cyq/(Jaq : ¥1)),depth(Ca,q/(Jaq, ¢a))}-
Here (Jy4: pa) = (1(S2,4), P15 ©3, €31, Ea15 Pat, Pazs - - -, Pag). We obtain
Cag/(Jag:pa) = K[V(S2,q)]/](52,q) QK Klpa, 11, 012, - - - , P1g, P31, P32, - - - P3¢, E311,

63127 s a§31q> 64117 54127 cee 7541q]-
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Using Corollary 2.2.14 and Lemma 2.2.12, depth(Cy,/(Jaq : 1)) = 5g + 3. Also
(Jag,7a) = (5, pa), so we have Cy g/ (Ja g, 01) = Cs /I3 @k K[Pa1, Paz, - - -, Pag). Using
Eq 4.4 and Lemma 2.2.12, depth(Cy,/(Jaq, ¢a)) = 4q + 4.

Since depth(Caq/(J1q : a)) > depth(Cay/(Jag, pa)), hence depth(Cyy/Jsq) > 4q + 4.
Now since @q1040 ¢ Juq and (Ji, : Qa1012) = (Jiq, ©4). So we have

C47q/<‘]4,q : 8041()042) = C;,q/‘];,q K K[§0417 P42, - - - 7904q]-

Again Using Eq 4.4 and Lemma 2.2.12, depth(Cy/(Jsq : pa1pa2)) = 4¢ + 4. Thus by
Corollary 2.2.7, depth(Cy 4/ J14) < 4q + 4. Hence depth(Cy,/ Js,) = 4q + 4.

Case 3.

For ¢ > 1, p =1 and n > 3. We will prove this result by using Lemma. Consider the

exact sequence
0 — Cog/(Jng : 00) = Cg/ Ing — Cusa/ (Jngs n) — 0, (4.8)
applying Depth Lemma
depth(C, 4/ Jnq) = min{depth(C,, ,/(Jnq : ¢n)), depth(Cp o/ (Jngs ©n))}-
Here (Jnq @ ¢n) = (J(*n_4),qa 01, Pn—1,&n1s En—1)1, Pn1s Pn2; - - - , Pnq), We have

Cn,q/(']n,q : (10”) = (C(n—4)7q/‘](*n—4),q) ®K K[SOTH P11 P125 - - -5 Plgy P(n—1)1) P(n—1)25 - - -

P(n—1)q> fnl; €n27 cee 7£nq7 f(n—l)la f(n—l)Qa cee 7§(n—1)q]-

Using Lemma 4.0.1 and Lemma 2.2.12, depth(C,, /(Jng : ¢n)) = (¢+1)(n—3)+4q+2.

AS (Jn,qv 90n> = (J(tz—Q),qﬂ (pn>7 S0 Cn,q/(Jn,qv 90”) = Cz(n—2),q/J(tL—2),q®KK[90n17 P2y - - - 7(107%]]'
Using Lemma 4.0.1 and Lemma 2.2.12, depth(C,.,/(Jn.q, ¢n)) = (1 + g)n. Since

depth(Cn,q/(qu L on)) > depth(cn,q/(Jmm ©n)),

hence by depth lemma depth(C, ,/Jn,) > (1 + g)n. Now since ¢n1¢0n2 ¢ Jng and
(g + Pr1pn2) = (J(,_g) 40 Pn)- So we have Cpg/(Jng + On1on2) = Cl_gy (/J5o1)0 Ok
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K[©n1,¢n2, - - -, Png)- By induction and Lemma 2.2.12, depth(C, ,/(Jng @ ©n1Pn2)) =
(1 + g)n. Thus by Corollary 2.2.7, depth(C,, 4/ Jnq) < (1 + ¢)n. Hence

depth( nq/Jn q) (1 + q)

For the Stanley depth the consequence follows by applying Lemma 2.1.7 and Lemma
2.2.11 rather than Depth Lemma and Lemma 2.2.9 on the exact sequences 4.6, 4.7 and
4.8, respectively. And we use Proposition 2.2.8 instead of Corollary 2.2.7.

]

4.0.2 Depth and Stanley depht of cyclic module associated with
g-fold bristled graph of multi triangular ouroboros snake
graph

Lemma 4.0.3. For n,q > 1 and p > 2, depth(C
(p+a)n+1)+p.

sdepth(

npq/ npq) npq/ npq)_

Proof. First, we consider depth.
Case 1.

For ¢ > 1, ¢ > 2 and n = 1. Let us consider the exact sequence

0— CIpq/(‘]l*pq ) i> 1pq/’]1*pq E— Crp q/(Jip,q7 902) — 07 (49>
by Depth Lemma
depth(C7, ./ J,,) = min{depth(C{,, ,/(J7,, : ¥2)),depth(CT, ./ (J],, ¥2))}-

Since (Jf,p,q L pa) = (1,801,822, - - - s §apy §31, 832, - -+, E3py P21, P22, - - -, P2g5 E118111, §116112,
8118119, 128121, §1281225 - - 5 E12812¢ -+ §1p€ipt, E1pSip2s - - - ,€1p§1pq)- We have

p
Cfp q/<J1*,p,q : 902) = ®11<K[V(Sq>]/f<5q) QK K[902, P11, P12 - - - Plgy §o11, 8212, - - 7521(17
j=

5221752227-"7522(1 R 521717521)27'"7521?6175311753127'"7&31(]75321753227"'7532(1 cey

53;717 £3p27 s 75317!1]‘
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Using Lemma 2.2.9

depth (C5 /() t ©2)) Zdepth S)I/1(S,)) + depth(K [@2, 011, 012, - - -

@1q;$i2117£2127-"7521q7£2217£2227-”7£22q ceey 52;01752}727"'7§2pq7£3117£3127”'7g3lq7£3217

53227 s 7532q ceey §3p17§3p27 s 7£3pq])'
By Theorem 2.2.13 and Lemma 2.2.12, depth(C;,, ./ ([}, , : ¥2)) = 2pg+p+q+1, and

(Jip,qa 902) = ([(SQP,(])a P2, 53153117 53153127 s 7531631(17 53253217 532&3227 v 7532’532(1 )
g3p€3p17 5317531727 cee 7£3p£3pq)7

so we obtain
* * ~Y p
Cl D5 q/(‘]Lp,q’ 902) = K[V(S%,q)]/I(S2p,q>(j8;ll(K[V(Sq)]/[(Sq) ®K K[S"Zla P22, - - - :90211]'

By Lemma 2.2.9

depth(Cqu/(Jip,qywz))=depth( [V (S2p.4)1/1(52p.4))

—|—Zdepth S/ 1(Sy)) + depth(K[par, @aa, - - -, 2q])-

Using Corollary 2.2.14, Theorem 2.2.13 and Lemma 2.2.12, depth(C{,, ,/(J, ., ¥2)) =
3p + 2q. Since depth(Cy,,/(J7,, = ¢2)) > depth(Cy, . /(Jf, . ¥2)); hence by Depth
Lemma depth(Cy,, ,/Jf,,) = 3p + 2q. Now since {31832 .. &3, & JT,, and

( 1,p,q 531532 £3p) = ([(S2p,q)7 Y2, 63117 53127 e afSlqa 53217 53227 cee 7§3Qq cevy €3p17
531727 S 7£3pq)-

It follows that

Cqu/( 1,p,q * 531532 5310) [ (‘8210(1)]/[(8210(1) ®K K[6317§327'"7€3p7<10217§0227---7902q]'

Using Corollary 2.2.14 and Lemma 2.2.12, depth(Cy, . /(Jf,,  €31&s2 - - - €3p)) = 3p+2q.
Thus by Corollary 2.2.7, depth(C{,, ,/J*1p,4) < 3p + 2¢. Hence

depth(CT, ./ J7,,) = 30 + 2q. (4.10)
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Case 2.
For p,g > 1 and n = 2. Let us consider the exact sequence

0—0C3,./ (3,4 ¥3) RN Copal T2pqg = Copal (I3 03) — 0, (4.11)

by Depth Lemma

depth(C 2pq/szq) > m1n{depth(C§p q/(‘];,p,q L p3), depth(Cs, ./ (I3, ©3)}.

Since (‘];,p,q : 903) - (](SQp,q)v P2, §317 5327 e 7§3q7 541a 5427 e a£4q7 P31, P32, - - - 7(;0311)7
We have

Cpal Uz pq + 03) = K[V (S2p.g)]/1(S2pq) @k K[p3, 021, P2, - - - g5 E3115 €312, - - - €314,
§321,8322, - -5 €32 -5 E3p1,83p2s - -+ §3pgs ant, Sa12s - - Ea1gy Sa1, Eanay - Eag e

§4p17 €4p27 CI a§4pq]'

Using Corollary 2.2.14 and Lemma 2.2.12, depth(C5,, ./ ()5, , : ¥3)) = 2pg+2p+2q+1,

and (J2*,p,q7 P3) = (pr,q7 ©3,Ea1€a11, Ea1€a12s - - -, Emargs §a28azn, Ea2bazas - - -, Ea2azg - - -,
Eapapts Eapapas - - - Eapapq), 1t Tollows that

C;p q/(JQ*,p,qﬂ (103) lpq/‘]l*pq®KK[ (Sq)]/I(Sq) QK K[SO317 32, - - 7@311]‘

By Lemma 2.2.9

depth (C;,p,q/(‘];,p,q? (203» depth( 1,p, q/‘]l D, q)

Z depth(K[V (5,)]/1(S,)) + depth(K @31, 032, - - -, 34])-

Using Eq 4.10, Theorem 2.2.13 and Lemma 2.2.12, depth(Cs, ./ (J5,.,, ©3)) = 4p + 3q.
By Depth Lemma depth(C3, ,/J5, ) = depth(C5, . /(J5,.,, ¥3)). Hence
depth(Cs, ./ J5,,)) = 4p+3q. Now since {41842 - .- &ap & S5, and (S5, o - Ennéaz - Eap) =

(‘]l,p,qﬂ ©3,8411, 8412, - - -, Sa1gs Sa21, 84225 -+ €a2g -5 Sap1s Sap2s - - - af4pq)7 we obtain

Cgpq/( 2.0, - t&aéaz - §4p) 1pq/J1pq®KK[§41;§42,-~-7§4p78031790327~-7<ﬂ3q]-
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Using Eq 4.10 and Lemma 2.2.12, we get depth(Cs, ,/(J5,, : Ea1éaz - - - Eap)) = 4p + 3q.
Thus by Corollary 2.2.7, depth(43 , ./ J5,,) < 4p + 3q. Hence

depth(C3,,/I5,.,) = 4p + 3q. (4.12)
Case 3.

For p,q > 1 and n > 3. We will prove this consequence inductively. Consider the

exact sequence

— Cr

0—C, /(‘]* '90714-1) 90"""1 npq/ n,p,q npq/(

n,0,9 n,p,q

th,p,q7 SOTH—l) — 0, (413)
by Depth Lemma

depth( npq/ npq) > mln{depth(c:zpq/<]1:pq 90”-1'1))7 depth(C;pq/(‘]ﬂ,IMN (pn+1)>}

Since (5 g+ Ont1) = (J_9) pg» P S, €t 1)2s - - -5 Enr)ps S, Ent2)2s - - -+ En2)gs

Pn+1)15 Pn+1)2: P(n+1)q), SO We have

Crpal (Tnpa t Pnt1) = (Cluz)pal Toi-2) p.) O [Ont1s Pnts n2, - - s Prgy Emayins Emt)iz,
S 8t D)1gs §nr)21s Smr1)22s - - §man2g -5 St Dpls St D)p2s -+ > St 1pgs §(nt2)115

Ent2n2s - - Emt2)igr Eme2)2n, Ema2)22, - - - Ema22q > Emt2pls Ema2)p2s - - - En+2)pg)-

By induction and Lemma 2.2.9 and Lemma 2.2.12,

depth(Cy; , /(S pg s Pni1)) = (P +q@)(n—1) +p+2pg+q+ 1.

Also

(T pr 1) = (Jm1) prgp Pt a2 18211 nr2)1€(na2)12s - - -5 §nt2)18§(n+2)105
£(n+2)2£(n+2)217 €(n+2)2€(n+2)227 <o 7€(n+2)2€(n+2)2q ceey é(n+2)p€(n+2)p17 f(n+2)p£(n+2)p2;

- En+2p€(n+2)pa)
it follows that
* * ~J * * p
Cnpq/(Jn,p,(p ganrl) = (C(nfl),p,q/J(nfl),p,q>(?;ffK[V(S(I)]/I(SQ) QK
K[@(nﬂ)h Pn+1)25 -« - 90(n+1)q]-
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By Lemma 2.2.9

depth (Crtpq/(J;pqﬂOn-i—l)) depth((c(n 1) pq/‘]n 1)pq))+

Z depth(K[V (5,)]/1(S;)) + depth(K[@mi1)1; Pnt1)2s - - -5 Plnt1)al)-
By induction and Theorem 2.2.13 and Lemma 2.2.12,

depth(Cy, ./ (S pgs Pnt1)) = (P + @) (n + 1) + p.

Since depth(Cy; , /(4 # nt1)) > depth(Cy; /(S 4 Pnt1)), hence by depth lemma

n,p,q n,p,q

depth( npq/ npq) (p + q) (n + 1) + p. Now as 5(”4‘2)15(”4‘2)2 T £(n+2)P ¢ J;,p,q and
(Jrqu 5(n+2)15(n+2)2 .- -5(n+2)p) = (J();’L—l)p,q? Pnt1, €(n+2)117 5(n+2)127 ceey
€(n+2)1q> €(n+2)217 5(11—&—2)227 cee 7€(n+2)2q SRR €(n+2)p1: £(n+2)p27 s :£(n+2)pq)7
we obtain
C;pq/< n,p,q * £(n+2 1£(Tl+2 f(n+2 ) (C(n 1)pq/Jn 1) pq)
K K[g(n+2)1, §(n+2)2, e 7§(n+2)p7 P(n+1)1s P(n+1)2s - -+ 90(n+1)q]~

By induction and Lemma 2.2.12

depth(czpq/u;pq f(n+2)1f(n+2)2 - -5(n+2)p)) = (p + Q)<” + 1) +p.

Thus by Corollary 2.2.7, depth(Cy; , ./ J ., ) < (p+¢q)(n + 1) + p. Hence

depth(C}, , ./ I pa) = @+ @) (n+ 1) + p.

For the Stanley depth the result follows by applying Lemma 2.1.7 and Lemma 2.2.11
rather than Depth Lemma and Lemma 2.2.9 on the exact sequences 4.9, 4.11 and 4.13,
respectively. And we use Proposition 2.2.8 instead of Corollary 2.2.7.

[]

Theorem 4.0.4. Forn,q > 1 and p > 2, depth(C,, p.q/ Jnpq) = sdepth(Cppq/ Inpqg) =
(p+ q)n.
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Proof. First, we consider depth.
Case 1.

For p,q > 1 and n = 3. Let us consider the exact sequence

0— CS,p,q/(JS,p,q L p3) st C3,p,q/*]3,p,q — C3,p,q/(‘]3,p,q> @3) — 0, (4.14)

by Depth Lemma

depth(c&p,q/‘]&p,q) > min{depth(ci%,p,q/(J&p,q L p3), depth(C&p,q/(JS,p,qa ©3)}.

Since (Jqu 903) (801, Y2, P31, P32, - - -, P3q» §21,822, - - - 752;0531, §32, - - - 753p, Sy e,
. a§11€11q7 5125121, 5125122, . ,§1zfl2q, S 7€1p€1p17 €1p€1p27 . ,flpflpq)~ We have

p
C3,p,q/(J3,p,q L p3) = ®11(K[V(Sq)]/1(5q)®KK[<,03,9011,9012, s Plgs P15 P22, - - -5 P2g, E211,
j:

§212, -, €219, €221, 6222, -, €229y - - > Eop1s E2p2s - - - Eopgy §3115 €312 - - - 5§31, €321, €322, - - -5 §32¢5

§3p17 53;027 cee a§3pq]'

By Lemma 2.2.9

depth (Cs,p,4/(J3pq * ¥3)) Zdepth So)l/1(Sy)) + depth(K[ps, p11, ¢12, - - -,
P1q; P21, P225 - - -, P2q5 52117 52127 v 7521(17 52217 52227 s 7§22Q7 s 752]217 52]727 s 7£2pqa 53117
5312, s 7§31q7 f321a 53227 R 7532qa §3p17 §3p27 s a§3pq]>-

Using Theorem 2.2.13 and Lemma 2.2.12, depth(Cs .,/ (J34 : ¢3)) = 2pg+2q+p+ 1.

As (g, 03) = (J1p.g,#3), 50 Capq/(J3pg, P3) = lpq/JI p.q OK Klps1, 032, - - -, P34]-
Using Eq 4.10 and Lemma 2.2.12, we get depth(Cs ,,.4/( /3,4, ¥3)) = 3p + 3¢. Since

depth(Cspq/(J3p,q = ¢3)) = depth(Cspq/(Bp.g, ¢3))-

Hence by depth lemma depth(Cs, ./ J5,4) > 3¢ + 3¢. Now since @313 ¢ J3,, and
(J3p.q - ©319032) = (J1,p.q:P3), SO We obtain

C:)qu/(Jg*,p,q L 31032) = 1pq/J1 p.q OK K(ps1, p32,. .. 7<P3q]-
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Again Using Eq 4.10 and Lemma 2.2.12, we have depth(Cs2,4/(J3,.4, ¢3)) = 3p + 3¢.
Thus by Corollary 2.2.7, depth(Cs .4/ J3,4) < 3p + 3¢. Hence

depth(Cs 2,4/ J32,4) = 3p + 3¢.
Case 2.
For p,g > 1 and n = 4. Consider the exact sequence
0 — Capg/(Japg : 1) - Capal Japa — Capa/(Japg pa) — 0, (4.15)

by Depth Lemma

depth(c4,p,q/J4,p,q> > min{depth(C4,p,q/(J4,p,q L 4)), depth(C47p,q/(J47p,q, ©4))}-

Here (Jipgq @ p1) = (I(Sopg)s 1,93, Qa1 a2y - - - Pagr €31, 832, - - -, E3py §a15 a2 - - -5 Eap)-
We have

C4,p,q/(<]4,p7q L py) & K[V(S2p,q)]/](52p,q) QK [P1, P11, P12, - - - 5 P1g) P31, P325 - -, P3qg;
§311, 83125 -+, &319, €321, €322, -, 8329 -+ -5 E3p1, E3p2, - -+, E3pgy §a115 Sa12, - - -5 Sangs 21,

f422a s 7§42q ceey §4p17€4p27 cee a§4pq]'

Using Corollary 2.2.14 and Lemma 2.2.12, depth(Cy 4/ (Japq : Pa)) = 2pq+3q+2p+1.

As (J47P7Q’ 904) = (JQ*,p,(p (104)7 S0 C47p,q/(=]47p,qv 904) = (Cg,p,q/JZ*,p,q) ®K [90417 P42, - - - 7(10411]'
Using Eq 4.12 and Lemma 2.2.12, depth(Cy,p4/(J1pq, ¢3)) = 4p + 4g. Since

depth(Cupq/(Japq : p1)) > depth(Capq/(Japg a))-

Hence by depth lemma depth(Cy 4/ Japq) = 4p + 4q. Now since wa1040 ¢ Jipq and

<J4,P7q : 90419042) = (JQ*,p,qﬂ ()04)7 S0 Cz,p,q/(sz,p,q : 9041()042) = (Cg,p,q/‘];,p,q)(gf{[go‘lla P42, - - - ,@4(1]-
Again Using Eq 4.12 and Lemma 2.2.12, depth(Cy 4/ (Japq © Pa1pa2)) = 4p+4q. Thus

by Corollary 2.2.7, depth(Cy p 4/ J1pq) < 4p + 4q. Hence depth(Cyp o/ J1pq) = 4p + 4q.

Case 3.
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For p,q > 1 and n > 5. We will prove this result by using Lemma. Consider the exact
sequence

0— Cn,p,q/(Jn,p,q L Pn) o Cn,p,q/‘]n,p,q — Cn,p,q/(Jn,p,qa SOn) — 0, (4'16>

applying Depth Lemma

depth(Cpp.q/ Jnpq) = min{depth(Cppq/(Jnpq : ©n)); depth(Crpg/ (Jnp.q ©n))}-

Here (Jn,p,q : SOTI) - (‘](,;1_4)7197(17 Y1, Pn—1; Pnl, Pn2s - - - Pngs 57117 57127 s 7577477 5(71—1)17 5(71—1)27
- &m-1)p), and we have
Copal (Jnpq : Pn) = C(n—4),p,q/J@—4),p,q®KK[90n, P11, P12 - - -5 Plgy P(n—1)1) P(n—1)2) - - - »
Sp(n—l)qy fnn, 571127 e 7€n1q; £n217 §n227 cee 7£n2q ey fnpl; fan; cee >§npq7 é(n—l)llu g(n—1)127
5§11 Sn-1)21, §n-1)225 - - - Em-1)2¢ -5 En-1)pLs Em—1)p2s - - - » E(n—1)pql-
By induction and Lemma 2.2.12
depth(Cppq/(Jnpq) : n)) = (p+q)(n —3) +p+2pg +2q + 1.
Since (Jnp.q: Pn) = (35,9 .4 ¥n), SO we obtain
Cn,2,q/(Jn,p,q7 Son) = C?n72),p,q/‘](”(nf2),p7q K K[(pnla Pn2y - - - 7(an])~
Again by induction and Lemma 2.2.12, depth(C,, .4/ (Jnpq, n)) = (p + g)n. Since
depth(C,p,q/ (Jnpq : Pn)) = depth(Cppq/(Jnpqpn))-
Hence by depth lemma depth(C, 4/ Jnpq) = (P + ¢)n. Now since @n1pn2 & Jppq and
(Jn,p,q : (pnl(pn2> = (J(tl_2)7p7q7 Son) We Obtain
Cn,p,q/(Jn,p,q : S0n190n2) = Cz(n—2),p,q/‘](’;z—2),p7q ®K K[spnh Pn2y ey Sﬁnq]~

By induction and Lemma 2.2.12, depth(Cypq/(Jnpq @ Pn1pn2)) = (p + ¢)n. Thus by
Corollary 2.2.7, depth(Cpp.q/ Inpq) < (p + ¢)n.Hence depth(Cppq/Jnpq) = (0 + @)n.
For the Stanley depth the consequence follows by applying Lemma 2.1.7 and Lemma
2.2.11 rather than Depth Lemma and Lemma 2.2.9 on the exact sequences 4.14, 4.15

and 4.16, respectively. And we use Proposition 2.2.8 instead of Corollary 2.2.7.
O
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