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Abstract

Quantum Key Distribution (QKD) has come a long way since the advent of

the BB84 protocol and an integral step in this development has been that

of Measurement Device Independence (MDI). As such I have attempted to

track this development in Discrete Variable-Quantum Key Distribution (DV-

QKD) by studying theoretically the important aspects that make up a QKD

type setup. I then move on to explain one of the more recently developed

protocols in light of the physics involved that transmits and generates the

signal state as well as how it is interpreted for it to be considered as one of

the Bell States, a necessity for MDI type protocols.



Contents

1 Thesis Outline 4

2 Introduction 6

3 Basic Quantum Key Distribution Protocols 14

3.1 Shannon Entropy . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 The BB84 Protocol . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Decoy State Protocol . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Decoy State Methods . . . . . . . . . . . . . . . . . . . 23

3.3.2.1 General Decoy State method . . . . . . . . . 24

3.3.2.2 Two Weak Decoy States . . . . . . . . . . . . 25

3.3.2.3 One Vacuum and One Weak Decoy State . . . 29

3.4 Eve’s Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Photon-Number Splitting Attack . . . . . . . . . . . . 31

3.4.2 Trojan Horse attack . . . . . . . . . . . . . . . . . . . 32

3.4.3 Backflash Attacks . . . . . . . . . . . . . . . . . . . . . 33

4 Device Independence 34

4.1 DI QKD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 The Beam Splitter . . . . . . . . . . . . . . . . . . . . . . . . 36

2



4.2.1 Input State: |0〉A |1〉B . . . . . . . . . . . . . . . . . . . 38

4.2.2 Input State: |1〉A |1〉B . . . . . . . . . . . . . . . . . . . 38

5 Measurement Device Independence 40

5.1 MDI QKD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1 Protocol Outline . . . . . . . . . . . . . . . . . . . . . 41

5.1.2 Protocol Analysis . . . . . . . . . . . . . . . . . . . . . 46

5.1.3 Experimental Realization . . . . . . . . . . . . . . . . . 50

5.2 The Coherent State . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Input State: |0〉A |α〉B . . . . . . . . . . . . . . . . . . 52

5.2.2 Input State: |α〉A |−α〉B . . . . . . . . . . . . . . . . . 53

5.3 Curty 2020 MDI Protocol . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Protocol Outline . . . . . . . . . . . . . . . . . . . . . 56

5.3.2 Secret Key Rate . . . . . . . . . . . . . . . . . . . . . . 58

5.3.3 Phase Error . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusion 61

3



Chapter 1

Thesis Outline

Chapter 2 In this chapter, I give a brief history and development of cryp-

tography in general. Then moving on to describing the need for the relatively

recent, with respect to the history of cryptography, quantum cryptography.

Described concepts include Cryptography through history, One-Time Pad,

breaking of classical encryption protocols and the development of quantum

protocols to maintain secure communication.

Chapter 3 In this chapter I have introduced some of the key concepts that

one will come across throughout the literature of quantum key distribution

(QKD) protocols. These include but are not limited to, the Shannon Entropy,

BB84 protocol and the modification of the BB84 protocol using decoy states.

Of course a cyrptographic setup is only as good as the security it provides,

security against malicious actors, hence we also introduce some of the most

common techniques an eavesdropper might use.

Chapter 4 Finally in the last chapter I have discussed a relatively new

approach to the problem of insecure quantum key distribution, which was

device independent quantum key distribution. Going on to give the modified
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measurement device independent (MDI) protocol and finally a very recent

variant of an MDI type setup introduced in a 2020 paper. Described in the

chapter is the physics behind the protocols and how it ties into the security

aspect of a general MDI-QKD protocol.
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Chapter 2

Introduction

As the world heads into a new quantum revolution, where we see quantum

technologies used especially in telecommunications, the concept of quantum

information is one that lies at it’s heart. The ability to effectively transfer

information from one place to another, it can be reasoned, has been one of

the most important aspects of human development. Of course as humanity

develops, more efficient ways of communication get developed. The need for

newer methods of information transfer can be simplified, somewhat, down to

two key reasons, speed and security. Where speed is concerned, we have seen

development from the stone ages up until the advent of modern communica-

tions using the electromagnetic spectrum. Starting from relaying information

on foot by word of mouth in prehistoric times. Then developing to using an-

imals to quicken the pace whether it be riders on horses or various birds

trained to relay information. Further development in pace took place only

relatively recently in human history with electricity being used through long

wires laid down over large distances. While currently we have reached a sort

of limit on speed when humans started using the electromagnetic spectrum,

from radio waves (FM, AM, etc) to light (in optical fibers), to communicate.
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This is so because of the universal speed limit on light or any sort of infor-

mation moving through space-time.

Now let us take a look at the security aspect of it all. Of course one can

understand why secure information transfer is necessary. Conflict is natural,

and as such one can always assume malicious third parties looking to use our

information for their benefit. Hence it is paramount to have the information

safeguarded against any attempts to steal it. To track the development of

secure communication we shall look at only some key developments through

history that would help us develop the understanding for this thesis. It is

necessary to understand a thing or two about encryption. Firstly, what is en-

cryption? It is the coding of information via some kind of scheme or system

that should render the information incomprehensible to anyone else. The

only way to decode the information is then to use a secret key.

Encryption has been around for a long time, dating back to a few hundred

years BC presently known, when the Spartans had used cryptography to re-

lay information between commanders. There had been various encryption

methods in those times, these methods relied on both parties having an un-

derstanding of the encryption scheme used in order to be able to decode the

message, they must possess the same key that was used to encrypt the infor-

mation. This does of course rely on the fact that the third party either never

finds out about the encryption scheme or one of the two parties never leak

the scheme. In either case, if the encryption key is known then no message

would be secure after that point and they would have to come up with a

totally new key. This method of using a common fixed key to be used for

encryption is known as the symmetric key.

The other more secure method of encryption is by using the asymmetric key.

This concept is relatively modern, first introduced in 1976 by Diffie and Hell-
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man [5]. In this method there is a public key that is, as the name suggests,

available to the public so that anyone can use it to encrypt their message to

send. While the private key that is held by the receiver only is used to de-

code that message. Whereas if the person with the private key encrypts the

message, the public will be able to decrypt that message using the public key.

There are more benefits to this procedure than just its security. It provides

authentication to the message as well as does not warrant key distribution

as the private key is always with the receiver while the public key is always

available. Such a process is however slow and if a third party has access to

the private key then the whole process is rendered useless.

After having briefly discussed symmetric and asymmetric keys, we look to-

wards a method that we follow to develop the keys discussed in this thesis.

The One-Time Pad(OTP); the One-Time Pad is an encryption scheme that

makes use of the symmetric key. It is claimed to be unbreakable, if certain

conditions are fulfilled. The conditions for the success of the One-Time Pad

are:

� Key should be completely random

� Key should be as long as the message

� As per the name, one key for one message only, never to be reused in

any shape or form

� The key should be kept secret by both the parties
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Figure 2.1: One-Time Pad

The way this works can be illustrated in 2.1. It shows how Alice and Bob

can exchange messages, labeled as Plaintext by firstly having a shared key.

Then the sender, Alice in this case, encrypts her message using the shared

secret key. That message is then transmitted via a public channel where it

is able to be targeted by malicious actors like Eve. However, due to the key

being secret Eve cannot decrypt the message. When fulfilling these require-

ments, OTP has a quality known as perfect secrecy [19] which can be seen

since firstly the key is random and hence completely secure, only the two

communicating parties know of it, and never use the same key again. So the

encoded message, known as the ciphertext, reveals nothing about the real

message, the plaintext. From this point on the task is to find suitable ways

to fulfill these requirements.

OTP was classically, not using quantum methods, used during the World

War era where communications had to mostly be sent to the front-lines or

to headquarters. Information that was one way and hence could utilize one

key for one message, which would then obviously be discarded, could be sent

through the OTP method while also being very secure. So long as both

parties maintain a certain amount of keys to encode their messages, infor-

mation transfer is possible, while if they run out of keys the problem that
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arises is how to transmit more keys securely and without enemy interference.

Clearly we have a problem now when we enter the modern age of informa-

tion, where both speed and secrecy are of great value, the OTP method of

encryption runs into problems. What do the users do once they run out of

their random keys? Communication is secure so long as they have random

keys left to encode their messages, but once out, do they wait for new keys

and hence compromise on the speed or do they reuse some of their previous

keys. No choice is without consequence. Clearly the choice to reuse keys

violates one of the key requirements of the OTP, that of using the key once.

While waiting for a new set of keys requires the parties to somehow exchange

keys securely, which would in itself require some other method of transmit-

ting keys that will not be as secure as the OTP, hence vulnerable to attack,

hence compromising the security of the OTP itself. It is because of these

kinds of problems with the OTP that we do not see it being used in classical

information transfer anymore.

Since there are more effective classical encryption protocols than the OTP, it

begs the question as to why there is a need for any sort of quantum protocol

in the first place. In short, classical encryption schemes were proven to be

weak against hacking by a quantum computer [15]. Which then necessitates

some other way to securely communicate and exchange information, lest we

wish to forfeit information security to quantum computers. Hence, with the

advent of Quantum Information, there came protocols for transmitting infor-

mation that were secure against attacks by third parties due to the laws of

physics themselves rather than elaborate encryption schemes. Enter, Quan-

tum Key Distribution (QKD), as the name suggests, it is a method through

which we can transmit keys using quantum mechanics rather than classical

information transfer protocols. To have a secret key is the foundation of the
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OTP, and having protocols that are guaranteed security from physical laws

gives a secure method to transmit those keys amongst users. Owing to this

fact, the OTP has seen a resurgence in recent times. Now it is important to

always remember that these quantum protocols will be used to only transmit

the keys and not the messages themselves. The messages can be sent much

more easily, at present, through classical channels using the OTP with the

keys that were transferred by quantum means. Using quantum channels, we

make use of not the classical bits which were the on and off states of a tran-

sistor. But rather a quantum bit (qubit) state, which in addition to being in

the state |0〉 and |1〉 can also be in a linear superposition of the two states,

represented by the following:

|Ψ〉 = cos

Å
θ

2

ã
|0〉+ eiΦ sin

Å
θ

2

ã
|1〉 (2.1)

In the quantum description, we have to also look at how we are going to mea-

sure our qubits as measurement plays an important role. Since the act of the

measurement destroys the state, we have to be careful where in the protocol

the measurement device is placed, they are usually placed at the end of the

signal where we want to record the information contained within the signal.

The devices used are detectors, and specific arrangements of detectors and

other devices allow us to measure different kinds properties of the signals,

depending on how they were encoded.

We now establish the need to better develop quantum protocols. It just so

happens that mostly all of the QKD protocol implementations encounter de-

vice imperfections and other short comings existing in the physical realm.

These imperfections introduce errors in the protocol and compromise the

security of our key [17]. These points of information leakage are known as

side-channels which can be exploited by malicious third parties, also known
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as the eavesdropper (Eve). Hence new protocols are required to overcome

Eve’s ability to siphon off information from our system, this counts as a ma-

jor driving factor in the development of more secure QKD protocols.

Now the first viable QKD protocol dates back to 1984, known as BB84

[3]. BB84 does itself run into some practical problems when it comes to

implementation as well as risks data leak via different kinds of attacks that

Eve can execute on the protocol. The decoy state protocol was introduced

to deal with some of Eve’s attacks, to give a better key generation rate. This

decoy state protocol can alert the users, commonly called Alice and Bob, to

Eve’s presence as well as help them estimate the error she introduces. There

have been various offshoots of the BB84 protocol such as the E91 [6], Six

State Protocol [4] and more. Each protocol wants to maximize security and

fend off Eve’s attacks, which for the most part goes hand in hand. Quickly

however, all these QKD protocols ran into problems occurring due to the

devices. Hence Device Independent (DI) QKD was introduced to minimize

the side-channels occuring due to the devices, be they at Alice or Bob’s end.

Further development led to Measurement Device Independent (MDI) QKD

which claims to be rid of all side-channels related to the measurement device

by virtue of the setup itself. This type of QKD protocol introduces a third

party that does the measurement for us and announces their result. The

setup allows for security despite the measurement result being public.

The field of QKD is still rapidly developing to safeguard against all kinds

of attacks that Eve can come up with. Of course Eve’s attacks themselves are

also of special interest so as to understand the weaknesses of protocols and

not be caught off guard by an actual malicious eavesdropper. In the thesis

below, we link the development and understanding of a few key concepts with
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a recent paper on MDI-QKD. The thesis organized by firstly taking a look at

some important mathematical concepts required to understand the protocols.

Leading on to the BB84 protocol, which is the basis of the following chapter

on MDI-QKD. Lastly, we link up to one of the more recently developed

MDI-QKD protocol.
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Chapter 3

Basic Quantum Key

Distribution Protocols

Here I start off by reviewing the most basic of QKD protocols and then move

on to discussing a vital modification to improve security. This is needed to

understand how certain modifications are helpful in dealing with attacks

made by the eavesdropper. However, first we must discuss how we quantify

information by making use of Shanon Entropy.

3.1 Shannon Entropy

A concept which is very fundamental to QKD and indeed any field within

Quantum Information, is the way in which we understand information. The

task, of course, is not easy to have a set definition of information that can then

be used to evaluate how much of it is contained within messages or codes.

However, we start by giving a verbal explanation of information. In any

scenario we say that the information contained within (about) a particular

object (variable) is only as much as what we do not already know about it,
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also called the apriori information. Of course if everything is known about,

say, the variable X, then no one stands to gain any new ’information’ about

X. It is hence that we modify our discussion slightly to discuss not the

information contained but our ignorance about the object. So say we knew

X to be the result of the throw of a fair 6 sided die. From this we could say

that the probability of any number X would be 1
6
. The information that we

gain by learning the value of X is what we need to define. The information

contained in a variable is defined as

S(p(x)) = −
∑
x

p(x) log2 p(x) (3.1)

Since S is a log function of probability we see that due to the negative

sign it will always remain positive since probabilities are always less than 1.

For much the same reason, the function S is known as an entropy. Of course,

if for a variable X we have its value known, say X = 7, then p(7) = 1 and

we see that S = 0. Now as for the case of the fair die, we have that p(x) = 1
6

for all X and so S = −(log2
1
6
) S ≈ 2.58 which we know to be the maximum

value of S for this case. It is seen that for N values of X, the value of S

is maximized when the probabilities of X are uniformly distributed. Which

is to say that in such a scenario we will gain maximum information if the

probabilities are all uniform for all values of X. This Entropy function is

known as the Shannon Entropy. For the case when X can take only two

values X ∈ {a, b}, we have a binary entropy function where if p(a) = p then

p(b) = 1− p and the function becomes

H(p) = −p log2 p− (1− p) log2(1− p) (3.2)

The Shannon Entropy is written with the symbol H rather than S, which
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will be seen throughout this document. As for the binary entropy function,

we have that 0 ≤ H(p) ≤ 1

3.2 The BB84 Protocol

The BB84 protocol [3], named after its two developers Charles Bennett and

Gilles Brassard who released the paper in 1984, is perhaps the most fa-

mous and among the first proposed protocols for quantum key distribution

(QKD).This experiment is based around an ideal scenario where there will

be no physical imperfections in their devices or channels, and hence, no er-

rors induced in the quantum states that they send (this assumption will hold

throughout this section). To realize the protocol the two users, Alice (A)

and Bob (B) have available to them the following 4 states, or qubits, in their

respective basis. In the Z basis we have {|0〉 , |1〉} and in the X basis they

have {|+〉 , |−〉}, where |±〉 = (|0〉 ± |1〉)/
√

2. The states (|0〉 , |+〉) both

correspond to a binary bit value of 0 while the other two states (|1〉 , |−〉)

represent the binary bit value 1. They proceed by having either Alice being

the sender and Bob the receiver or vice versa, both situations are equivalent.

Alice sends her bits to Bob over the quantum channel. The probability of

selecting between the X and Z basis is
1

2
while the choice of state to send

in each basis is also
1

2
. Theoretically, if Bob were to measure the bits that

Alice sent in the same basis that Alice prepared them in, then their bit values

should be the same. On the other hand however, if Bob uses a different basis

for measurement than Alice, his results will differ. Table 1 will outline their

outcomes for this scenario.

Knowing now all possible measurement outcomes, we can continue to setup

16



Table 3.1: Alice and Bob’s state results

Basis (A) State (A) Basis (B) Output (B) Binary States

Z

|0〉
Z |0〉 0

X
|+〉 0
|−〉 1

|1〉
Z |1〉 1

X
|+〉 0
|−〉 1

X

|+〉
X |+〉 0

Z
|0〉 0
|1〉 1

|−〉
X |−〉 1

Z
|0〉 0
|1〉 1

the protocol for information transfer. Alice sends her bits by randomly se-

lecting either the X or Z basis and then randomly selecting among the states.

Bob then measures the received bit by randomly selecting a measurement ba-

sis. Alice and Bob’s results will be correlated when both use the same basis

for preparation and measurement. To check for these correlated outputs, Al-

ice announces her choice of basis for each state sent, not the particular choice

of state, over an insecure classical channel. For example, if Alice made the

following choices for the first ten qubits Basis: X Z Z X X X Z X Z Z

and the States: |0x〉 |0〉 |1〉 |1x〉 |0x〉 |0x〉 |1〉 |0x〉 |1〉 |1〉, then she will announce

only the string of Basis. Bob checks his results, by choosing the states where

they both used the same basis, against the announcement made by Alice

and obtains a correlation between their bits. (We shall see later how the

presence of an eavesdropper, Eve, introduces errors in the correlated bits.)

These correlated bits are known as the sifted key, which can then be used to

establish secure communication.

In a slightly more realistic scenario, we have to consider the possibility of
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there being an eavesdropper in our quantum communication. The benefit of

QKD however comes through with the ability to detect Eve due to the errors

that she will inevitably induce when she disturbs Alice and Bob’s quantum

states. A straightforward attack that Eve can carry out is known as the

intercept and resend attack. Eve will simply measure the output states of

Alice by randomly selecting one of the two measurement basis. If she selects

the same basis as Alice, she gets the state that Alice had intended to send and

then prepares the qubit in the same state to send on to Bob. On the other

hand, if she measures the qubit in the wrong basis, there is a 50% that she

does not get the state Alice intended to send, as can be seen from the table.

3.1 In order to avoid being detected, Eve does have to send on the state she

measured, from Alice, to Bob. Herein lies the error that she can introduce in

the setup. When Eve disturbs the measurement and sends on the qubit she

measured, there is a 50% chance she used the same basis as Alice. Whereas

if she prepared the qubit in the wrong basis, there is a 50% chance that Bob

will measure it in the same basis as both Alice and Eve. Since Alice and

Bob will both discard the bits that do not correlate in the sifting process, i.e.

the bits sent for which their basis choice do not match, the discarded bits

do not benefit Eve since they do not make up part of the final key. While

during the instances when A & B agree for their basis choice, their bit values

may differ due to the presence of Eve, which necessitates that they further

discard some bits in order to ensure that Eve gets minimum information. In

order to hide her presence better, Eve can then be tempted to try some more

sophisticated attacks on A & B’s quantum communication. Such attacks are

discussed in section 3.4

In 3.2 we have the full extent of the BB84 protocol in outlined in a very

basic scenario with 10 bits.
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Table 3.2: BB84 With Eve

Alice’s State 0 1 0 0 1 1 1 0 0 1
Alice’s Basis Z Z Z X X Z Z Z X Z
Polarization State Sent 0 1 0 + - 1 1 0 + 1
Eve’s Random Basis X X Z X Z Z Z X Z X
Eve’s State (measured and sent) - - 0 + 0 1 1 + 1 -
Bob’s Basis Z X Z X X Z Z Z Z X
Bob’s State 0 - 0 + - 1 1 0 1 -
Public Channel discussion
Shared Secret Key 0 0 0 1 1 1 0
Errors Introduced No No No No No No No

In this whole process, the quantum channel is used only for the communica-

tion of qubits. All other types of information exchanges take place through

classical insecure channels, where the assumption is that Eve is always listen-

ing. After having done the initial communication about their basis choice,

the post processing is also done over this insecure channel. Post processing

events include error correction and privacy amplification.

3.3 Decoy State Protocol

The decoy state method was proposed in 2003 by W.-Y. Hwang [11] as a

means to counter Eve’s attempt at eavesdropping. There are of course more

than one types of attacks at Eve’s disposal, the benefit of Decoy States is that

it helps us identify Eve’s presence. Since technology has not caught up with

theory, it is not possible to generate perfect single photon signals. Which is

why we send our signals as weak coherent pulses (WCP). Eve can carry out

a photon number splitting attack (PNS) or the intercept and resend attack

on our signals and gain information that we want to transmit securely. We

will take a look at the decoy state method as applied to the BB84 setup [14].
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The BB84 setup has the following key generation rate expression:

R ≥ q{−Qµf(Eµ)H2(Eµ) +Q1[1−H2(e1)]} (3.3)

q in this case is a factor of implementation and if we use an efficient variant

of the BB84 protocol, we have q ≈ 1. The factors that have subscript 1, all

tell us about the single photon case, while µ and ν and so on, represent the

intensities for the WCP’s. Q is known as the gain, E is the overall Quantum

Bit Error Rate (QBER), e1 is the error rate for the single photon only. f is

the function of the error correction protocol, and depends on the particular

protocol used, its value is always f(x) ≥ 1. H(x) is the Shannon Entropy.

The factors Qµ and Eµ can be measured experimentally from the results of

the protocol, while we need to find out Q1 and e1 ourselves using the math-

ematical expressions we will soon generate. But before we move on to the

expressions that help us obtain bounds on the error and gain, we begin by

defining certain parameters to be used in the expressions.

3.3.1 Modeling

We need to understand on what parameters the protocol is built upon in

order to better understand how the gain and error are effected.

Source

When using the weak coherent pulses, the signals states that we generate

have the following density matrix:

ρA =
∞∑
i=0

µi

i!
e−µ |i〉 〈i| (3.4)
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Where the state with i = 0, |0〉 〈0|, is our vacuum state and with i ≥ 1 we

are given the matrix which has its entries as the probabilities for that state

to occur. The photon probabilities are poisonian for the WCP’s, as can be

seen from the expression.

Channel

To model the channel, we need to account for the kind of quantum channel

that is in use, as such, the channel assumed is the optical fiber. The ex-

pression that gives us the transmittance of the channel for communication

between A and B.

tAB = 10−
αl
10 (3.5)

Here, α[db/Km] is the loss coefficient and l[Km] is the length of the optic

fiber

Detector

The detectors at Bob’s end have an efficiency of ηD. While the total efficiency

at Bob’s end means that the signal was transmitted to Bob through the

channel successfully first, hence it is given by the expression: ηBob = tBobηD.

Using this we can define the overall efficiency to be

η = tABηBob (3.6)

We have to note that this case is describing a scenario where Alice is the

sender and Bob is the receiver, only on quantum channel is in use between

the two parties. Furthermore, we assume the use of threshold detectors for

the protocol, which are commonly used in QKD protocols. These detectors

can only distinguish between a zero (vacuum) and a non-zero photon (|i〉 〈i|)
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state. Assuming that the photons in the i photon state are independent, the

transmittance can be written as

ηi = 1− (1− η)i (3.7)

Which gives us the probability of the ith photon being detected.

Yield & Gain

We have the yield which is defined as the probability of a photon being

detected. We note here that the detection event is not only restricted to the

case where Alice (or Bob) send a photon (true signal) but also when there

is a dark count, i.e. a photon from the background detected. As such, the

expression for the yield is as follows.

Yi = Y0 + ηi(1− Y0) (3.8)

The first term Y0 is the probability of a dark count, which is around

Y0 = 10−5 while the second term is that a photon is transmitted and there

is no dark count, for which we say that 1− Y0 ≈ 1. Hence we can now write

the yield as

Yi = Y0 + ηi (3.9)

The gain is the product of a detection event at the receiver and the

probability that the source sends out a photon in the ith state, hence the

gain of the ith state is given by.

Qi = Yi
µi

i!
e−µ (3.10)
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While for the overall gain we have simply

Qµ =
∞∑
i=0

Yi
µi

i!
e−µ (3.11)

Which then simplifies to the expression below after putting the form of Yi

Qµ = Y0 + 1− e−ηµ (3.12)

Error & QBER

To find the Quantum Bit Error Rate (QBER) we must have the error rate,

this is given by

ei =
e0Y0 + edetηi

Yi
(3.13)

Where we define edet as the probability that the photon hits a part of the

detector leading to an error, such as a misaligned face. While e0 is the error

due to the random background, which is given the value of e0 = 1
2

Now in

order to define the QBER we have the expression

QBER = EµQµ (3.14)

Substituting in for the overall gain, we can get the expression

QBER = e0Y0 + edet(1− e−ηµ) (3.15)

3.3.2 Decoy State Methods

Given above are all the elements that factor in to finding our secret key rate,

R. Our goal, as always in a QKD protocol, will be to maximize R and hence

we must make a selection of µ that does so. Noting first that R ∝ Q1 we
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need to have a maximal value for Q1. Qµ on the other hand needs to be

low in order to ensure security. Hence we have that
Q1

Qµ

should be a large

value for which it is straightforward to see that Qµ ∈ (0, 1]. Now in order to

determine the values for Y1 and e1 we will look at a few cases of the decoy

state method.

3.3.2.1 General Decoy State method

With the general method we assume there to be m decoy states. So the ex-

pected photon numbers for these states are represented as µ, ν1, ν2, ..., νm.

Now Alice and Bob will have the following equations for their gain and

QBER. First noting that we can rewrite the expression for gain as

Qµe
µ =

∞∑
i=0

Yi
µi

i!
(3.16)

and the QBER expression as

EµQµe
µ =

∞∑
i=0

eiYi
µi

i!
(3.17)

We can similarly write out all the decoy states in such a manner upto the

general decoy state with νm as

Qνme
νm =

∞∑
i=0

Yi
νim
i!

(3.18)

EνmQνme
νm =

∞∑
i=0

eiYi
νim
i!

(3.19)

The main task at hand is to obtain a tight lower bound on the value of R.

For this the values of e1 and Y1 are necessary as discussed earlier. In order to
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bound R we need to be able to find a lower bound on Y1 and an upper bound

on e1, that will be enough to analyze the protocol to compare its values with

other implementations. With the general method in the asymptotic case,

where m −→ ∞, the results were assessed in an earlier body of work by

the authors. This is of course a theoretical implementation of the procedure

and is impractical. For real world application we will now explore only the

following two cases where we will have:

a . 2 Weak Decoy States

b . 1 Vacuum and 1 Weak Decoy State

3.3.2.2 Two Weak Decoy States

The key to using the decoy states is that the decoy signals should be weaker

than the signal state µ [11]. As such the decoy states that the protocol uses

have the following restrictions:

0 ≤ ν2 ≤ ν1

ν1 + ν2 < µ (3.20)

Using the equations for gains of the decoy states in 3.18 We generate an

expression to begin finding a lower bound on the background yield Y0

ν1Qν2e
ν2 − ν2Qν1e

ν1 (3.21)

ν1

∞∑
i=0

Yi
νi2
i!
e−ν2eν2 − ν2

∞∑
i=0

Yi
νi1
i!
e−ν1eν1 (3.22)

The Y1 contributions are seen to cancel out while the rest of the expression

can be written as follows.
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Y0(ν1 − ν2) − ν1ν2(Y2
ν1 − ν2

2!
+ Y3

ν2
1 − ν2

2

3!
+ ...) (3.23)

So now we have that

Y0(ν1 − ν2) − ν1ν2(Y2
ν1 − ν2

2!
+ Y3

ν2
1 − ν2

2

3!
+ ...) ≤ Y0(ν1 − ν2) (3.24)

Hence

ν1Qν2e
ν2 − ν2Qν1e

ν1 ≤ Y0(ν1 − ν2) (3.25)

Y0 ≥
ν1Qν2e

ν2 − ν2Qν1e
ν1

ν1 − ν2

(3.26)

Obtaining the lower bound on Y0 to be

Y0 ≥ Y L
0 = max[

ν1Qν2e
ν2 − ν2Qν1e

ν1

ν1 − ν2

, 0 ] (3.27)

Which is that the greater of the two values is then the lower bound.

Also, we have that for ν2 = 0 (the vacuum state), Y0 = Y L
0 while otherwise

Y0 > Y L
0

Now we can move on to find the lower bound on Y1

We first note that we can rewrite the equation for the overall gain as:

Qµe
µ − Y0 − Y1µ =

∞∑
i=2

Yi
µi

i!
(3.28)

As well as noting the following conditions on ν1, ν2 and µ

ν1 + ν2 < µ −→ ν1 + ν2

µ
< 1

0 ≤ ν1 ≤ ν2 −→ 0 ≤ ν1 − ν2 (3.29)
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We write out an expression to help us get the lower bound on Y1

Qν1e
ν1 − Qν2e

ν2 =
∞∑
i=0

Yi
νi1
i!
e−ν1eν1 −

∞∑
i=0

Yi
νi2
i!
e−ν2eν2 (3.30)

Which helps us get the following form

Y1(ν1 − ν2) +
∞∑
i=2

Yi
νi1 − νi2
i!

(3.31)

The following mathematical condition holds: ai − bi ≤ a2 − b2 if 0 <

a+ b < 1 and that i ≥ 2. Hence νi1 − νi2 ≤ ν2
1 − ν2

2

Now we see that if we multiply
ν2

1 − ν2
2

µ2
with

∑∞
i=2 Yi

µi

i!
we can go on to

build the following inequality:

Y1(ν1 − ν2) +
∞∑
i=2

Yi
νi1 − νi2
i!

≤ Y1(ν1 − ν2) + (
ν2

1 − ν2
2

µ2
)
∞∑
i=2

Yi
µi

i!
(3.32)

Using the right hand side of the above inequality along with the expression

in (3.28) and Y0 ≥ Y L
0 . A second inequality is generated:

Y1(ν1−ν2) + (
ν2

1 − ν2
2

µ2
)(Qµe

µ−Y0−Y1µ) ≤ Y1(ν1−ν2) + (
ν2

1 − ν2
2

µ2
)(Qµe

µ−Y L
0 −Y1µ)

(3.33)

Solving now the right hand side of the second inequality to obtain Y L
1 we

now get:

Y1(ν1 − ν2) + (
ν2

1 − ν2
2

µ2
)(Qµe

µ − Y0 − Y1µ)

≤ Y1(
µ(ν1 − ν2) + ν2

1 − ν2
2

µ
) + (

ν2
1 − ν2

2

µ2
)(Qµe

µ − Y L
0 ) (3.34)

While also noting that the left hand side was obtained from the expression

Qν1e
ν1 − Qν2e

ν2 so we rewrite the inequality:
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Qν1e
ν1 − Qν2e

ν2 ≤ Y1(
µ(ν1 − ν2) + ν2

1 − ν2
2

µ
) + (

ν2
1 − ν2

2

µ2
)(Qµe

µ − Y L
0 )

(3.35)

[Qν1e
ν1 −Qν2e

ν2 − (
ν2

1 − ν2
2

µ2
)(Qµe

µ − Y L
0 )]

µ

µ(ν1 − ν2) + ν2
1 − ν2

2

≤ Y1 (3.36)

Finally we have the lower bound on Y1 being:

Y1 ≥ Y L,ν1,ν2
1 = [Qν1e

ν1−Qν2e
ν2−(

ν2
1 − ν2

2

µ2
)(Qµe

µ−Y L
0 )]

µ

µ(ν1 − ν2) + ν2
1 − ν2

2

(3.37)

It is then straightforward to see the lower bound on the gain for the single

photon signal, Q1

Q1 ≥ QL,ν1,ν2
1 = [Qν1e

ν1−Qν2e
ν2−(

ν2
1 − ν2

2

µ2
)(Qµe

µ−Y L
0 )]

µ2e−µ

µ(ν1 − ν2) + ν2
1 − ν2

2

(3.38)

Now that we have obtained the lower bounds on the yield, and hence,

gain, the error needs to be upper bounded for the single photon case. We

start the process by using the following two equations.

Eν1Qν1e
ν1 = e0Y0 + e1ν1Y1 +

∞∑
i=2

eiYi
νi1
i!

(3.39)

Eν2Qν2e
ν2 = e0Y0 + e1ν2Y1 +

∞∑
i=2

eiYi
νi2
i!

(3.40)

Then in similar fashion to how we obtained the equations for our lower

bound, subtracting the above two expressions from one another, (3.39) -

(3.40), we shall obtain the upper bound on the error. The expression is as

follows:

e1 ≤ eU,ν1,ν21 =
Eν1Qν1e

ν1 − Eν2Qν2e
ν2

(ν1 − ν2)Y L,ν1,ν2
1

(3.41)
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Having obtained all the necessary bounds on the single photon signal

state, we can now use these in the key generation rate formula to obtain the

lower bound on it. The lower bounded key generation rate is then obtained

and the protocol can now be completely defined.

R ≥ q{−Qµf(Eµ)H2(Eµ) +QL,ν1,ν2
1 [1−H2(eU,ν1,ν21 )]} (3.42)

This concludes the section on the two weak decoy state protocol. Next

we will examine the Weak + Vacuum state protocol as an optimized decoy

state protocol.

3.3.2.3 One Vacuum and One Weak Decoy State

To ’send’ what is a vacuum state, Alice will simply turn off her source, and

all the times that she has done this are then of course recorded. Hence,

this method can be used to get the background rate estimate. We have the

following forms for the gain and error of the vacuum state:

Qvacuum = Y0 (3.43)

Evacuum = e0 =
1

2
(3.44)

As discussed previously, that the error rate for the background is random

and set at a half, also known as the dark count.

Now for the weak decoy state the expressions obtained earlier for the 2 decoy

state protocol will be used where we say that one of the decoy state’s (ν2)

tends to zero. Since Y0 can be accurately obtained from the vacuum state

signals it will basically serve as the value for Y L
0 . As for the lower bound on
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the yield of the single photon state, we have that

Y1 ≥ Y L,ν,0
1 = Y L,ν1,ν2

1 |ν2→0

Y L,ν1,ν2
1 |ν2→0 =

µ

µν − ν2
(Qνe

ν −Qµe
µ ν

2

µ2
− µ2 − ν2

µ2
Y0) (3.45)

In the same manner as before we then have the lower bound on the gain:

Q1 ≥ QL,ν,0
1 =

µ2e−µ

µν − ν2
(Qνe

ν −Qµe
µ ν

2

µ2
− µ2 − ν2

µ2
Y0) (3.46)

The next step is to find the upper bound on the single photon error rate.

e1 ≤ eU,ν,01 =
EνQνe

ν − e0Y0

Y L,ν,0
1 ν

(3.47)

This concludes the section on the decoy state protocol in which we have

explored only two kinds of decoy states. However, for most protocols im-

plementing the decoy state, the methods discussed above shall be enough to

understand them. Next we shall look at the nature of a few attacks on our

QKD protocols.

3.4 Eve’s Attacks

In any QKD protocol we must always factor in the effects of an eavesdropper,

named Eve for short, in order to better develop the security measures used to

deal with their interference. Interference of this sort is generally also referred

to as hacking or quantum hacking. Due to the ever present gap between the-

ory and implementation including the assumptions made in security proofs,

Eve will always find imperfections to exploit and gain information, these are

knows as side-channels. It is important to note that each QKD protocol has
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associated security proofs that rely on certain assumptions to guarantee se-

curity. In the event that one or more of these assumptions cannot be upheld,

Eve finds herself some useful side-channels to exploit.Protocols like BB84

and B92 [2] make the assumptions of using signle-photon sources and since

this technology does not allow this, Eve can make use of the imperfections

introduced. [8]

3.4.1 Photon-Number Splitting Attack

One of the most basic yet potent of Eves’ hacks is the photon-number split-

ting (PNS) attack. As the name suggests, in this hack Eve makes use of

the fact that while most elementary protocols such as BB84 and B92 make

use of a single-photon source, practically we use of strongly attenuated laser

pulses. These laser pulses have a probability with which single photons are

sent while also containing some multiple photon signals. Eve makes use of

this imperfection by beam splitting the multiple photon signal sending a sin-

gle photon back in the quantum channel while saving the other signal in her

quantum memory. Point to be noted here is that even though the implemen-

tation of quantum memories is still imperfect, we must always assume that

Eve is only restricted by the laws of physics but not technology. With the

signal states stored she waits for the classical communication phase where

the preparation states are declared by Alice. Using this knowledge Eve shall

perform the required measurements on her stored signals and gain perfect

information about all those signals that were sent via multiple photons. Now

there is a counter-measure to the PNS attack described above, which is the

incorporation of the Decoy States in order to understand the action of the

channel, in so doing we should be able to detect a PNS attack. This is pos-
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sible because Eve would not know, prior to Alice’s declaration through the

classical channel, which of the signal states was a decoy, hence Eve would

attack indiscriminately upon all multiple photon signals. However, a further

problem arises when it was found [10] that different intensity settings cause

varying but distinguishable time delays in the signals. This would mean that

Eve could exploit this fact and attack only the pulses she understands to be

the true signals and not the decoys. Remaining undetected even through the

application of the decoy state protocol. However, it was also found that if

the intensity was to be modulated after generation of the signals, there no

longer existed a correlation between intensities and time-delays of the signals,

providing a countermeasure to Eve’s counter to the decoy states.

3.4.2 Trojan Horse attack

In essence, a Trojan Horse Attack (THA) [9] is a multi-pronged mechanism

through which Eve can obtain information about the system in use by Alice

and Bob. This information can be about various settings, from their basis

choice to the decoy state settings. This all depends on the reflected signals

that Eve receives, by a process known as reflectometry. The different kinds of

information that she can receive will all compromise the security of the pro-

tocol, some to greater degree than others. To start off, Eve can, in some DV

protocols like SARG04 and B92, get information from Bob’s device instead

[20]. If she obtains information about the measurement basis she will be able

to perform an intercept and resend attack which would be undetectable since

she would have perfect knowledge of the measurement Bob was supposed to

make. Since most protocols that use BB84 implementation always use decoy

states for increased security, Eve, using THAs can obtain information on the

states that are decoy and the signal states. Knowing which states are which,
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she will target only the signal states using PNS attacks and get information

undetected. Eve does this by targeting the intensity modulator that gener-

ates the decoy states to gain information on its settings. Ultimately, a THA

is Eve’s attempt to send signals to Alice and Bob’s setup so that she can

obtain any kind of information that may compromise the protocol informa-

tion transfer. However, in order to actually get said information, she does

ultimately have to pair a THA with a PNS or an intercept-resend attack.

3.4.3 Backflash Attacks

Whereas in THAs Eve relied on the reflected signals that she sent, the back-

flash is actually an unintended side-channel due to the types of detectors

that Bob uses in the BB84 scenarios. The avalanche photodiodes (APDs)

when detecting a pulse [12], signal state or otherwise, probabalistically emit

light which is called backflash light. With the probability of occurrence being

significant, and the fact that this light can carry with it polarization infor-

mation from the devices it passes through, Eve has a significant side channel

to exploit.

In order to overcome some, if not all, side channels that Eve introduces

there have been many developed QKD protocols with increased security. How

they work and what are some of the assumptions involved will be discussed

in the upcoming chapters.
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Chapter 4

Device Independence

In this chapter we will seek to understand Device Independent Quantum Key

Distribution and how the flaws in the prior QKD protocols lead to it. Also

take a look at the application of the beam splitters as they apply in most

DIQKD protocols.

The initial protocols for QKD: E91, BB84, B92 and others, assumed the use

of equipment that the eavesdropper Eve could not tamper with. There was

also the assumption that the devices that were in use would not be flawed.

Given that these assumptions hold, the amount of information that Eve

could obtain was restricted by physical principles and each protocol had a

security proof based on these principles. But indeed theoretical and practical

applications have many differences, and as with any practical application of

physics, devices are never perfect, a fact which Eve can use to her advantage

by using the flaws in our devices to gain more information than the amount

given by the security proof. Eve has at her disposal a number of sophisticated

attack strategies to exploit the imperfections of the devices and we shall

discuss them in the following sections.
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4.1 DI QKD

In order to overcome some of the side channels, ones that arise due to Eve’s

exploiting flaws in the devices, the Device Independent approach was put

forth. We will briefly go through this approach to build towards the Mea-

surement Device Independent(MDI) approach.

The crux of Device Independence is that the devices may as well be of Eve’s

making, however, as long as we can establish a correlation, that violates a

Bell inequality, between the signal states of Alice and Bob, we should be able

to generate our secret key. This concept is what helps in building protocols

that do not rely on the security of the measurement devices and hence deny-

ing Eve at least those side channels that were introduced by the devices. Eve

still has other attacks that she can execute to obtain information about the

secret key. The violation of the Bell Inequality ensures that our outputs are

random and hence cannot be predetermined by Eve. In order to elaborate,

we can make use of a DI protocol, but first we must outline the assumptions

that we still need to make to carry out DI QKD.

1. Within their own laboratories, Alice and Bob control all incoming and

outgoing channels. Meaning Eve cannot get to the devices within the

labs.

2. Alice and Bob can carry out their post processing (Privacy Amplifica-

tion and Error Correction) reliably.

3. They are able to generate perfectly random, as well as secure (given by

1), bits.

4. They have an insecure classical channel which is still authenticated.
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The eavesdropper can intercept all data on the classical channel without

detection.

5. Their quantum channel is also insecure and Eve can use any quantum

mechanical device to interact with our signals.

Device independent protocols, such as the CHSH spot checking protocol have

been tested. However, a problem quickly arises from these protocols, that of

obtaining suitable key generation rates. DI protocols do indeed make QKD

very secure since we rely on the violation of Bell inequalities which can only

be done by a quantum system, but, practical implementation yields low key

rates and hence we have to further develop our approach. Additionally, DI

protocols make use of single photon sources, which are not readily available.

4.2 The Beam Splitter

Important to the discussion of DI protocols, will be the understanding of

what happens to light when it passes a beam splitter. In what follows, we

shall take a look at the action of a Beam Splitter (BS) on light, and more

specifically, how a 50-50 BS acts on light. [1]

We start our discussion by mentioning first that light, made up of the electric

and magnetic fields, is going to be represented by field operators or the ladder

operators from the harmonic oscillator description. The operators we shall be

working with, are of course the creation and annihilation operators (a , a†)

and it will be sufficient to see how they change after the 50-50 BS action.

The way the beam splitter works is by allowing some of the light to pass on

through (transmittance) while reflecting the rest of the incident light. It has

two inputs and two outputs. Since our discussion takes place in the realm
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of Quantum Mechanics, we make note of the fact that when we send light

through only one of the inputs, at the other input we must account for the

vacuum state |0〉.

The beam splitter action on the input modes is defined by the following

unitary operator.

U(θ) = eθ(a
†b−b†a) (4.1)

U(θ) is indeed unitary. Since we can clearly see that

U †(θ) = eθ(ab
†−ba†) = e−θ(a

†b−b†a)

Hence

U(θ)U †(θ) = 1 (4.2)

Now that we have our operator, we define its action on the inputs a and

b.

U(θ) a U †(θ) = a(θ) (4.3)

The following commutators are of importance throughout this discussion.

[a, a†] = [b, b†] = 1 While all other commutators are 0. Using the BCH

identity on the above expression, we obtain the forms for a(θ) and similarly

for b(θ) as well as those for a†(θ), b†(θ). So for all the input modes we have

the following transformation by the beam splitter:

a(θ) = a cos(θ)− b sin(θ) (4.4)

b(θ) = b cos(θ) + a sin(θ) (4.5)
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a†(θ) = a† cos(θ)− b† sin(θ) (4.6)

b†(θ) = b† cos(θ) + a† sin(θ) (4.7)

Now we make the following simplification, relating the changed input

modes to the output modes a(θ) = c, b(θ) = d, a†(θ) = c†, b†(θ) = d†

Furthermore, for a 50-50 BS, the value of θ =
π

4
. Where the value of θ

relates to the reflectivity and transmitivity of the BS. Now finally before

applying the 50-50 BS on an input state, we express the output modes in

terms of the input modes to help us in the process of transforming our states.

c =
a− b√

2
(4.8) c† =

a† − b†√
2

(4.9)

d =
a+ b√

2
(4.10) d† =

a† + b†√
2

(4.11)

For the output modes we have the following important commutators,

[c, c†] = [d, d†] = 1, while all others are 0

4.2.1 Input State: |0〉A |1〉B

|0〉A |1〉B −→ b† |0〉A |0〉B
BS−→ d† − c†√

2
|0〉C |0〉D

So we have that the input state go to the following output state:

|0〉A |1〉B
BS−→ 1√

2
(|0〉C |1〉D − |1〉C |0〉D) (4.12)

4.2.2 Input State: |1〉A |1〉B

|1〉A |1〉B −→ a†b† |0〉A |0〉B
BS−→ (

d† + c†√
2

)(
d† − c†√

2
) |0〉C |0〉D
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Which leads to the following expression:

(
d† + c†

2
)(|0〉C |1〉D−|1〉C |0〉D) −→ 1

2
(
√

2 |0〉C |2〉D−|1〉C |1〉D+|1〉C |1〉D−
√

2 |2〉C |0〉D)

After canceling the like terms, the final expression becomes:

|1〉A |1〉B
BS−→ 1√

2
(|0〉C |2〉D − |2〉C |0〉D) (4.13)

Which is an interesting outcome. Here we find that if one were to send

two photons, number states or Fock states, 1 in each input, the photons

bunch together on either of the output ports but do not come out 1 on each

port. This effect was discovered by Hong-Ou-Mandel and was hence given

that name.

This concludes the chapter discussing Device Independence. In the next

chapter we will see the development of DI to MDI or Measurement Device

Independence as well as some associated protocols.
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Chapter 5

Measurement Device

Independence

This chapter deals with Measurement Device Independence, its requirements

and implementation as well as a protocol that was recently developed to

overcome a few more side channels. Additionally we shall have a brief look

at the Coherent State in this chapter as well, since it plays a major role in

one of the MDIQKD protocols.

5.1 MDI QKD

Measurement Device Independent (MDI) QKD, as the name suggests, grants

us independence from only our measurement devices. This gives us less

independence than proposed in DI protocols, however, we will see how this

protocol is not only secure but gives reasonably better key generation rates

than DI protocols. MDI-QKD was initially proposed in a 2012 paper [13]

and the goal was to have a secure and effective QKD protocol that could also

be implemented using the devices available on the market at the time.
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5.1.1 Protocol Outline

The assumptions made for both DI and MDI QKD are similar except for the

added assumption in MDI that Alice and Bob should be able to generate

their states perfectly, i.e. no state preparation flaws. Let us now look at

a simplified MDI protocol that was proposed by the authors of the original

paper.

1. Alice and Bob send their signals, which in this case are phase random-

ized Weak Coherent Pulses (WCPs) and their decoy states in the BB84

state setting, to an untrusted middle party, Charles.

2. Charles has been given the task to perform a Bell State Measurement

(BSM) on the incoming signals and to announce the success or failure

of this operation as well as which Bell State was obtained.

3. After the quantum communication with Charles, Alice and Bob use

an authenticated public channel to select only those events where a

successful result was announced by Charles. Furthermore, just like in

BB84, they keep only those events where they used the same basis.

Lastly, based on an earlier decision, either one of them, Alice or Bob

flip their bit values based on the Bell State obtained by Charles, to

ensure the correct correlation of their bits.

4. The sifting process complete, Alice and Bob can now move on to obtain

a QBER and gain for their experiment.

In this protocol, we have used a BB84 like setup due to its ability to ex-

pose Eve in the errors that she introduces. Since quantum states cannot be

cloned, Eve will always introduce errors when wanting to gain information

41



about the system and we can find out this information by calculating the

Quantum Bit Error Rate (QBER). Afterwards, just like the BB84 protocol,

privacy amplification is carried out to further restrict Eve’s information.

The use of the quantum channel is only during the communication of the

WCPs from Alice & Bob to Charles. All other communications are car-

ried out on an authenticated public channel, and hence, are completely

open to Eve. Furthermore, we also have that it may as well be Eve act-

ing as the relay between Alice & Bob and yet still the protocol will re-

main secure from Eve, given that she announces the BSM results. The-

oretically, the signal states can be projected into one of the four possible

Bell States, however, in the experimental realization of the protocol, we are

restricted to only two Bell States: The state which is anti-symmetric un-

der particle exchange |ψ−〉 =
1√
2

(|HV 〉 − |V H〉) and the symmetric state

|ψ+〉 =
1√
2

(|HV 〉 + |V H〉). |H〉 & |V 〉 here are representing the horizontal

and vertical polarization states respectively. They arise from the physical re-

alization of the BSM apparatus which houses a Photon Beam-Splitter (PBS)

and a Beam Splitter (BS). To generate the Bell states, we show the quantum

circuits used and the inputs required for each state in figures 5.1, 5.2, 5.3

and 5.4.

Figure 5.1: Φ+
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Figure 5.2: Φ−

Figure 5.3: Ψ+

Figure 5.4: Ψ−
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Even though through the Quantum Circuit Diagram (QCD) it looks sim-

ple enough to generate the four Bell States, however, in practical application

it is easier to generate and identify the two states of Ψ+ & Ψ−. In the MDI

protocol discussed above, the particular setup that we have is one which acts

on the inputs from Alice and Bob to output either Ψ+ or Ψ− or neither. This

is achieved in the following way:

Input State: |0〉A |0〉B
For this input state, we have quite simply that the output state will also just

be the same after the BS action.

|0〉A |0〉B
BS−→ |0〉C |0〉D (5.1)

Input State: |1〉A |0〉B
This follows from (4.12) and in the same way we have the output as

|1〉A |0〉B
BS−→ 1√

2
(|0〉C |1〉D + |1〉C |0〉D) (5.2)

Input State: |0〉A |1〉B
This is the input state from (4.12)

Input State: |1〉A |1〉B
This is the input state from (4.13)

Since we have polarizing beam splitter in the measurement apparatus, it

is important to know how the polarization modes are related to the spatial

modes [21]. For the two Bell states that we can obtain in our outputs, we

have the following relations when the beams leave the 50:50 BS and into the

PBS: ∣∣ψ+
〉

=
1√
2

(|H1〉 |V2〉+ |V1〉 |H2〉)(|a1〉 |b2〉+ |b1〉 |a2〉) (5.3)
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∣∣ψ−〉 =
1√
2

(|H1〉 |V2〉 − |V1〉 |H2〉)(|a1〉 |b2〉 − |b1〉 |a2〉) (5.4)

The action of the PBS is such that it transmits the vertically polarized photon

while reflecting the horizontal one. As such, for the cases of the input states

|1〉A |1〉B and |0〉A |0〉B the output does not resemble a Bell State. While

the two input states |1〉A |0〉B and |0〉A |1〉B are likened to the Bell States

Ψ+ or Ψ− respectively. This is so because in the polarization states we see

|Ψ+〉 =
1√
2

(|H〉 |V 〉 + |V 〉 |H〉) and |Ψ−〉 =
1√
2

(|H〉 |V 〉 − |V 〉 |H〉) where

the two output states are symmetric and anti-symmetric respectively. Hence

in a detection event where the horizontal and vertical detectors on the same

side, after the BS, detect photons then we have the state |Ψ+〉 while if the

opposite side horizontal and vertical detectors go off we’ll have an output of

the state |Ψ−〉.

It is useful to see how the input bits are correlated for each BSM result.

In the practical case where we got only two of the Bell States as the outputs,

the correlation between the measurement basis and BSM result is represented

in the following table.

Table 5.1: State Correlations

Alice & Bob Charles’ Output: |Ψ−〉 Charles’ Output: |Ψ+〉

Rectilinear Basis Bit Flip Bit Flip
Diagonal Basis Bit Flip -

In this protocol, our basis choices are like those of BB84. We use the

polarization states which are in the Diagonal and the Rectilinear basis. We

will now analyze our protocol, how the key is generated and how Eve’s in-

formation is limited after we get to know of the error she introduces. The

rectilinear basis are going to be used to obtain the sifted key, while the di-

agonal basis is used only for the purpose of finding the amount of privacy
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amplification required. The diagram in 5.5 shows a most simplistic of setups,

given the proper optical elements of course, to execute an MDI type protocol.

Figure 5.5: Black Box Diagram

While when we look at the measurement device itself for the MDI protocol

under discussion, we find that it is structured in the following way.

5.1.2 Protocol Analysis

Going forward, we will be using the following notation for gain and QBER in

the rectilinear and diagonal basis respectively: Qn,m
rect , Q

n,m
diag & en,mrect , e

n,m
diag. For

this protocol, when talking about the error in the rectilinear basis we have

assumed first that Alice and Bob have perfect state preparation, without

flaws such as misalignment of optical elements. Given this assumption, we

say that the only way for an error to occur is if both Alice and Bob send

their states in the same polarization state and Charles to output a successful
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measurement. Surely, since their results need to be anti-correlated for the

rectilinear case for either output, we have that so long as the same polariza-

tion states were sent by Alice and Bob, en,mrect = 0 for all choices of n,m.

Now for the diagonal case, which is to say that the states sent were in the

diagonal basis, when we say an error has occurred, it means the output of

|ψ−〉 while they sent the same state and output of |ψ+〉 when they prepared

orthogonal states. This is so due to how the particular Bell States corre-

late Alice and Bobs input states. Going with the same assumption as given

above, for the ideal preparation of states, we have that e1,1
diag = 0.

All of this is to say that since in this protocol one can identify exactly when

the error has occurred, in the ideal case, and hence the key generation rate

is given very simply by just the gain in the rectilinear basis. Since only the

rectilinear basis are used to get our sifted key, the key generation rate is

R = Q1,1
rect in the special case of sending an infinite number of signals, i.e. the

asymptotic scenario.

Realizing however that an ideal scenario cannot be achieved physically due

to a host of errors, we find that the key generation rate for the asymptotic

case is actually given by

R ≥ Q1,1
rect[1−H(e1,1

diag)]−Qrectf(Erect)H(Erect))

Q1,1
rect gives us the gain in the rectilinear basis for the single photon case.

This gain implies that Alice and Bob sent single photon signals to Charles,

who then declared a successful BSM result. This is similar to the ideal

scenario without errors as mentioned prior. However, this time there is a

factor multiplying with our single photon gain. Here,

H(x) = −xlog2(x)− (1− x)log2(1− x)
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is the Shanon Binary Entropy function while e1,1
diag is the error rate calculated

using the diagonal basis, which we established at the start of the protocol.

It gives us the expression Q1,1
rect − Q

1,1
rectH(e1,1

diag) where the second term tells

us about the information, to be taken out of the final key, lost during the

privacy amplification for the protocol.

The next term represents the information that is to be taken out of the sifted

key due to the the error correction part of the protocol. This information

gets revealed by Alice and hence must be discarded. Here, Qrect is the gain in

the rectilinear basis for all signal states and for this protocol it has the form

Qrect =
∑

n,mQ
n,m
rect . While Erect has the form Erect =

∑
n,mQ

n,m
recte

n,m
rect/Qrect.

The term f(E) or fe is known as the error correction inefficiency function

whose value is greater than equal to 1, (fe ≥ 1). The exact value depends

upon the error correction protocol that is used within the QKD protocol.

It must be noted here that Qrect and Erect can be obtained from the experi-

ment itself, such is the setup of the protocol, while in order to obtain Q1,1
rect

and e1,1
rect we turn to a slightly modified version of the Decoy State protocol

as it applies on this MDI setup. As discussed in the Decoy State section.

The way we calculate gain and the error rate is in much the same way. The

equations for gain and error rate are indeed mostly the same with the differ-

ence here being that both parties are the ones sending signals, so both will

have their own decoy state settings. Hence the modified expressions are:

Qi,j
rect =

∞∑
n,m=0

µni
n!
e−µi

µmj
m!

e−µjY n,m
rect (5.5)

Qi,j
diag =

∞∑
n,m=0

µni
n!
e−µi

µmj
m!

e−µjY n,m
diag (5.6)
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While for the QBER in both basis we have:

Qi,j
rectE

i,j
rect =

∞∑
n,m=0

µni
n!
e−µi

µmj
m!

e−µjY n,m
rect e

n,m
rect (5.7)

Qi,j
diagE

i,j
diag =

∞∑
n,m=0

µni
n!
e−µi

µmj
m!

e−µjY n,m
diag e

n,m
diag (5.8)

The index i and j here denote the different decoy state settings for Alice

and Bob respectively. There can of course theoretically be an infinite amount

of decoy state settings, but practically we need only a few to obtain the

relevant parameters involved in the determination of the key generation rate.

As was also demonstrated in the decoy state protocol section. In order to

begin solving the large system of equations, we should note here that the

following simplifications can be made. Firstly looking to find the gain in the

rectilinear basis Qi,j
rect we can write eq.(5.5) as

Qi,j
rect =

∞∑
n=0

µni
n!
e−µiY j

n;rect (5.9)

Here we have that

Y j
n;rect =

∞∑
m=0

µmj
m!

e−µjY n,m
rect (5.10)

We note first that eq.(5.9) looks very similar to eq.(3.16) if we hold j fixed.

This is how we can then find out the parameter Y j
n;rect. Having done so we

realize that eq.(5.10) follows through in similar fashion so now both parties

can obtain an estimate on the parameter Y n,m
rect . As for the diagonal gain, it

follows the same idea as applied on the rectilinear gain. Next we turn our

attention to the QBER for this protocol, we shall realize that this also relies

on the same tactic as applied on the previous case for the gain. We start off
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by rewriting the the QBER expression as:

Qi,j
rectE

i,j
rect =

∞∑
n=0

µni
n!
e−µiW j

n;rect (5.11)

Where

W j
n;rect =

∞∑
m=0

µmj
m!

e−µjY n,m
rect e

n,m
rect (5.12)

Here also we draw a similar equivalence as before, that eq.(5.11) resembles

eq.(3.17) for fixed j. For now we can evaluate W j
n;rect and then make the same

equivalence to estimate en,mrect from eq.(5.12). The same can be then done for

the diagonal basis as well.

5.1.3 Experimental Realization

Theoretically, MDI-QKD offers a very secure and effective way for commu-

nication, however, a practical application has very many short comings. Of

course single photon sources have not been an issue for this protocol since it

establishes the key using weak coherent pulses. There is, however, a require-

ment in this protocol that the signal photons produced from two independent

sources (Alice and Bob) need to be indistinguishable. This requirement ex-

ists for the photon bunching effect to occur, which in turn is what allows

us to realize this protocol. It was shown that two off-the-shelf lasers could

indeed produce indistinguishable photons when, by interfering the signals

from these two sources, a Hong-Ou-Mandel dip was obtained.

Furthermore, one can alter the encoding schemes for the signals. For the

case of the polarization encoding scheme discussed in this protocol, one has

to be mindful about the errors induced while the signal travels the length of

a long cable. Polarization rotation error in the fibre can be overcome using
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polarization feedback control, which was indeed demonstrated in [7]

5.2 The Coherent State

Before we can move on to the next protocol, we shall first have a look at the

Coherent State. We shall only briefly look at the Coherent State as it relates

to the action of the BS. The coherent state is expressed as: [18]

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 (5.13)

We see that it is a state made by the superposition of the number states.

From this we can get the probability of having a particular number state. So

we have then that the probability of getting the state |m〉 from the coherent

state is Pn = e−|α|
2 (|α|2)n

n!
This probability is a Poissonian distribution for

n.

Now lets express the coherent state in terms of the vacuum state which

would then help us in the BS action. The coherent state can be written in

the following way:

|α〉 = D(α) |0〉 (5.14)

Where D(α) is known as the displacement operator and defined as

D(α) = e(αa†−α∗a) (5.15)

While we can also express this exponent using the disentanglement formula

as:

D(α) = e−
1
2
|α|2eαa

†
e−α

∗a (5.16)

For the coherent state, an interesting property to note is for D†(α), for
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which we have that:

D†(α) = D(−α) = D−1(α) = e−(αa†−α∗a)

Now to see how the beam splitter action effects inputs that have the

coherent states.

5.2.1 Input State: |0〉A |α〉B

|0〉A |α〉B −→ D(α) |0〉A |0〉B −→ e(αa†−α∗a) |0〉A |0〉B

e(αa†−α∗a) |0〉A |0〉B
BS−→ e

(α( c
†+d†√

2
)−α∗( c+d√

2
)) |0〉A |0〉B

By rearranging the terms in the exponential we get the following form.

e
1√
2

(αc†−α∗c)+ 1√
2

(αd†−α∗d) |0〉A |0〉B

Now since the two terms in the exponent, for input c and input d, com-

mute with one another, we can disentangle them easily. So:

e
1√
2

(αc†−α∗c)+ 1√
2

(αd†−α∗d) −→ e
1√
2

(αc†−α∗c)
e

1√
2

(αd†−α∗d)

Where on the right of the expression, the two terms of the exponent basically

just represent modified displacement operators of the form DC( α√
2
)DD( α√

2
)

Finally then, we get,

|0〉A |α〉B
BS−→

∣∣∣∣ α√2

∑
C

∣∣∣∣ α√2

∑
D

(5.17)
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5.2.2 Input State: |α〉A |−α〉B

Here, the state |−α〉 is defined by the action of D(−α) on the vacuum state.

So then we have that:

|α〉A |α〉B −→ DA(α)DB(−α) |0〉A |0〉B

DA(α)DB(−α) |0〉A |0〉B −→ e(αa†−α∗a)e(α∗b−αb†)

Noting that the operators in the exponent transform through the BS

action, we have the prior transformation equations to help us transform

a, a†, b, b†

e(αa†−α∗a)e−(αb†−α∗b) BS−→ e
(α( c

†+d†√
2

)−α∗( c+d√
2

))
e

(α∗( c−d√
2

)−α( c
†−d†√

2
))

Rearranging the first exponent as done earlier, we have

e
(α( c

†+d†√
2

)−α∗( c+d√
2

)) −→ e
1√
2

(αc†−α∗c)
e

1√
2

(αd†−α∗d)

The other exponent term that came from DB(−α) modifies in the follow-

ing way.

e
(α∗( c−d√

2
)−α( c

†−d†√
2

)) −→ e
1√
2

(α∗c−αc†)− 1√
2

(α∗d−αd†)

Where the exponent at the end can be disentangled in much the same

way as the one associated with DA(α),
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e
1√
2

(α∗c−αc†)
e
− 1√

2
(α∗d−αd†) −→ e

− 1√
2

(αc†−α∗c)
e

1√
2

(αd†−α∗d)

,

Putting all of the exponents together from the term e
(α( c

†+d†√
2

)−α∗( c+d√
2

))
e

(α∗( c−d√
2

)−α( c
†−d†√

2
))

we will be able to simplify the expression.

e
1√
2

(αc†−α∗c)
e

1√
2

(αd†−α∗d)
e
− 1√

2
(αc†−α∗c)

e
1√
2

(αd†−α∗d)

,

Notice that the two exponents in the middle have operators that com-

mute, and hence we can switch their positions, simplifying the expression

and leaving us only with the exponents associated with the operators for the

output d.

e
1√
2

(αd†−α∗d)
e

1√
2

(αd†−α∗d) −→ e
2√
2

(αd†−α∗d) −→ e
√

2(αd†−α∗d)

,

where the term e
√

2(αd†−α∗d) is just DD(
√

2α), so going from the input to

the output, we can finally express our output state in the following way:

DA(α)DB(−α) |0〉A |0〉B
BS−→ |0〉C

∣∣∣√2α
∂
D

(5.18)

We can similarly get the output states for a few other cases where in both

inputs we have a combination of the states |α〉 or |−α〉. Accounting for all

the possible inputs, we have:

a: |α〉A |α〉B

b: |−α〉A |−α〉B
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c: |−α〉A |α〉B

d: |α〉A |−α〉B

For the above mentioned inputs, by the action of the BS, we shall have

the following outputs, respectively:

è

∣∣∣√2α
∂
C
|0〉D (5.19)

è

∣∣∣−√2α
∂
C
|0〉D (5.20)

è |0〉C
∣∣∣−√2α

∂
D

(5.21)

è |0〉C
∣∣∣√2α

∂
D

(5.22)

5.3 Curty 2020 MDI Protocol

Despite MDI-QKD protocol proposed in the original 2012 paper being an

effective and secure protocol given physical constraints, we still had certain

assumptions that needed to be satisfied. Primarily, the assumption on the

state preparation of Alice and Bob being perfect. It is hard for them to

to do so in reality due to the errors that can be introduced by the devices

themselves or indeed the presence of the eavesdropper Eve. Eve can carry

out what’s known as a Trojan Horse Attack (THA) and obtain information
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about the internal settings of the devices inside Alice and Bob’s labs, devices

assumed to be secure. The goal is to remove all side channels that are in-

troduced by the devices, as stated in Device Independent QKD. The authors

hence proposed a simple MDI protocol that can makeup for the security

loophole due to Alice and Bob’s devices [16].

5.3.1 Protocol Outline

The present protocol carries out similarly to the original MDI protocol, in

that there is still the untrusted observer, Charles, who is in control of the

measurement device. Again, the assumption is that Eve may as well be the

one controlling the measurement device, as long as she announces the result

of the measurement outcome.

1. Alice and Bob both send coherent states to Charles.

(a) The states are |ν〉a & |ω〉b where ν, ω ∈ τ := [α,−α, vac] with

respective probabilities pa&pb

(b) Here, |α〉 is registered as the bit value 0 and |−α〉 is the bit value

1. The vacuum states are sent in order to estimate the parameters

required for the secret key rate.

2. Charles interferes the two incoming signals in a 50:50 beamsplitter(BS).

We assume Charles is honest and performs the task given.

(a) There are two threshold detectors where the signals from the 50:50

BS reach. Detectors are labeled Dc & Dd.

(b) Measurement outcomes in this case are Ω ∈ {Ωc,Ωd}, correspond-

ing to a click in Dc and Dd respectively. Otherwise the measure-
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ment is a failure.

3. This process is repeated N times. Alice and Bob will reveal all those

states where at least one vacuum state was sent by either party. The

remaining events where Charles announced a successful measurement

will constitute the sifted key.

4. Using the sifted key, Alice and Bob can estimate the bit and phase

error rate, after which they perform error correction and privacy am-

plification.

Since this is a MDI type setup, we know that the side-channels related to

the measurement device will not effect the security of the protocol. Hence

the discussion can be focused on the side-channels on the transmitter end.

Protocol Diagram:

Figure 5.6: MDI Protocol

In the diagram in figure 5.6, we have the two detectors Dc and Dd which

are respectively associated with constructive and destructive interference. As

seen in the results of eq.(19-22) we have that when they send the opposite

signal states, detector Dd should click while if they send the same states, then
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Dc should click. For a click in Dd, their states are seen to be anti-correlated

and hence one of the parties involved, Alice and Bob, must perform a bit flip

to have the correct correlation.

5.3.2 Secret Key Rate

The secret key rate for this protocol is given by

R ≥ Q[1−H(eUph)− feH(ebit)] (5.23)

Since we will be using only those instances where both Alice and Bob send

key states and Charles outputs a successful result, Q denoted the probability

of such an event taking place. The phase error rate, denoted by eph is to

be defined in the upcoming section as it is not clearly observable from the

protocol itself. While the bit error rate ebit is given by:

ebit =
pd

2pd + e2
√
ηα2 − 1

(5.24)

5.3.3 Phase Error

In order to understand what a phase error looks like in this protocol, we make

use of the virtual scenario constructed earlier, and go through the following

bit of maths, which does use the results of the coherent states passing through

beam splitters, obtained in the section on Beam Splitters.

First we write out our virtual state fully, as:

|Ψ〉vir =
1

2
(|00〉AB |α, α〉ab + |01〉AB |α,−α〉ab + |10〉AB |−α, α〉ab + |11〉AB |−α,−α〉ab)

(5.25)

It is important to note that the virtual states [AB] are expressed in the z-
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basis. When the above state is passed through the beam splitter, or rather,

after applying the beam splitter operation on the inputs [ab].

|Ψ〉vir =
1

2

(
|00〉AB

∣∣∣√2α
∂
c

+ |11〉AB
∣∣∣−√2α

∂
c

)
+

1

2

(
|01〉AB

∣∣∣√2α
∂
d

+ |10〉AB
∣∣∣−√2α

∂
d

)
(5.26)

Now we look at the terms dealing with the output at c, and recall the

form of the coherent state when it was expressed as a superposition of number

states. Modifying the expression for |α〉 to get the expression for
∣∣√2α

∂
∣∣∣√2α

∂
= e−

1
2
|
√

2α|2
∞∑
n=0

(
√

2α)n√
n!
|n〉 (5.27)

And similarly for
∣∣−√2α

∂
.

Labeling the virtual state that deals with the output at c as |Ψ〉c we have

that:

|Ψ〉c =
1

2

(
|00〉AB

∣∣∣√2α
∂
c

+ |11〉AB
∣∣∣−√2α

∂
c

)
(5.28)

We separate the odd and even portions of the sum of states and get

|Ψ〉c =
e−|α|

2

2

(
|00〉AB

[
∞∑

n=1;odd

(
√

2α)n√
n!
|n〉+

∞∑
n=2;even

(
√

2α)n√
n!
|n〉+ |0〉

]
+

|11〉AB

[
∞∑

n=1;odd

(−
√

2α)n√
n!

|n〉+
∞∑

n=2;even

(−
√

2α)n√
n!

|n〉+ |0〉

])
(5.29)

After rearranging the terms a bit and simplifying, we finally get the form
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of |Ψ〉c as

|Ψ〉c =
eα

2

√
1− e2α2

([
∞∑

n=1;odd

(
√

2α)n√
n!
|n〉

]
⊗ 1√

2
(|00〉AB − |11〉AB)

+

[
∞∑

n=2;even

(
√

2α)n√
n!
|n〉

]
⊗ 1√

2
(|00〉AB + |11〉AB)

)
(5.30)

Now we make the approximation for small α which gives us the expression

|Ψ〉c ≈
eα

2
α√

1− e2α2
(|00〉AB − |11〉AB)⊗ |1〉c (5.31)

Where we see the n = 1 term only in the above expression. Since the

measurement on the ancilla bits was supposed to be done in the X-basis, we

have one final transformation of the above expression. Since the ancilla bits

expressed up till now were done so in the Z-basis, making the change to the

X-basis we get:

|Ψ〉c =
eα

2
α√

1− e2α2
(|0x1x〉AB + |1x0x〉AB)⊗ |1〉c (5.32)

As for |Ψ〉d we obtain the result,

|Ψ〉d =
eα

2
α√

1− e2α2
(|1x0x〉AB − |0x1x〉AB)⊗ |1〉d (5.33)

It is now that we can finally see how in the virtual scenario a phase error

can be defined, it is when Alice and Bob observe outcomes |0x0x〉 or |1x1x〉

we would then say that a phase error has occurred. This is most important

for the protocol to know the errors and hence incorporate them in the Key

Generation rate.
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Chapter 6

Conclusion

In this thesis we have was presented the development from BB84 with decoy

states to a measurement device independent protocol that is secure against

trojan horse attacks. The development was traced in terms of how the pro-

tocols work with their particular signal states and the devices involved. As is

the case with all QKD protocols, they are secure so long as the assumptions

in their respective security proofs are upheld. We have also seen that with

each imperfection in the devices, there arise side-channels for Eve to exploit

and since imperfections are a part of our physical reality, there will always

be a need for more secure QKD protocols. In terms of Discrete Variable

(DV) QKD, which has been discussed in this document, MDI protocols are

so far the optimal. There are further avenues of research to pursue for the

current protocol. This is the case since the last protocol discussed here [16]

satisfies an MDI setup and any development in the DVQKD realm will now

have to at least include some form of device independence. The reason for

this is simple, security. In conclusion, the pursuit of an optimal QKD proto-

col will continue, dare i say, endlessly and will always need countermeasures

the more we learn to characterize the environment through which the signals
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travel hence the more side-channels that pop up.
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