
Exploitation and Defense against Android

Collusion

By

Sadaf Rasheed

A thesis submitted to the faculty of Information Security Department, Military College of

Signals, National University of Sciences and Technology, Rawalpindi in partial fulfillment of

the requirements for the degree of MS in Information Security

Aug 2022

ii

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS Thesis written by Ms. Sadaf Rasheed, Registration No.

00000278498, of Military College of Signals has been vetted by undersigned, found complete in

all respects as per NUST Statutes/Regulations/MS Policy, is free of plagiarism, errors, and

mistakes and is accepted as partial fulfillment for award of MS degree. It is further certified that

necessary amendments as pointed out by GEC members and local evaluators of the scholar have

also been incorporated in the said thesis.

Signature: ______________________________________

Name of Supervisor: Assoc Prof Dr. Mian M Waseem Iqbal

Date: __

Signature (HOD): _________________________________

Date: ___

Signature (Dean/Principal) ___________________________

Date: ___

iii

DECLARATION

I hereby declare that no portion of work presented in this thesis has been submitted in support

of another award or qualification either at this institution or elsewhere.

iv

DEDICATION

“In the name of Allah, the most Beneficent, the most Merciful"

I dedicate this thesis to my mother, sister, and teachers who supported me each step of the

way.

v

ACKNOWLEDGEMENTS

All praises to Allah for the strengths and His blessing in completing this thesis.

I would like to convey my gratitude to my supervisor, Associate Professor Dr. Mian

Muhammad Waseem Iqbal for his supervision and constant support. His invaluable help of

constructive comments and suggestions throughout the experimental and thesis works are

major contributions to the success of this research.

Last, but not the least, I am highly thankful to my parents. They have always stood by my

dreams and aspirations and have been a great source of inspiration for me. I would like to

thank them for all their care, love and support through my times of stress and excitement.

vi

ABSTRACT

Each app in a mobile requires a certain type of user’s data in order to function for example

WhatsApp requires contacts, Facebook requires access to Gallery/Camera. Applications ask

for permissions to its users before accessing their personal data saved in mobile and users can

allow or deny these permissions, however, denying these permissions will limit app’s

functionality. Since almost every app is accessing some level of user’s private data saved on

mobile, it is difficult to classify which app is benign and which one is malicious. Android

Collusion is a new type of attack where two or more apps collude to access user’s data illicitly

or perform malicious activity. It is not necessary that every app involved in this attack is

malicious. The aim of this research is to determine new ways of application collusion between

two apps in android and find possible ways to avert from such attacks occurring.

vii

Contents

ABSTRACT .. vi

LIST OF FIGURES .. ix

LIST OF TABLES ... x

ACRONYMS .. xi

CHAPTER 1 ... 1

INTRODUCTION ... 1

1.1 INTRODUCTION ... 1

1.2 PROBLEM STATEMENT ... 2

1.3 RESEARCH OBJECTIVE ... 3

1.4 SCOPE OF RESEARCH .. 3

1.5 SIGNIFICANCE OF RESEARCH .. 3

CHAPTER 2 ... 5

LITERATURE REVIEW ... 5

2.1 INTRODUCTION: .. 5

2.2 ANDROID APPLICATIONS AND PERMISSIONS: ... 5

2.2.1 Install Time Permissions .. 6

2.2.1.1 Normal Permissions .. 7

2.2.1.2 Signature Permissions ... 7

2.2.2 Dangerous Permissions .. 7

2.2.3 Special Permissions .. 7

2.3 ANDOIRD ATTACKS: .. 8

2.3.1 SMSHING ... 8

2.3.2 PHISHING .. 8

2.3.3 ROOTING ... 8

2.3.4 UNTRUSTED APKS .. 9

2.4 ANDROID MALWARES ... 9

2.4.1 BACKDOOR .. 9

2.4.2 CLICK FRAUD .. 9

2.4.3 RANSOMWARE .. 9

2.4.4 SPYWARE .. 10

2.4.5 ADWARE .. 10

2.4.6 TROJAN.. 10

2.4.7 DOWNLOADERS .. 10

CHAPTER 3 ... 19

viii

EXPERIMENTAL SETUP AND SCENARIOS ... 19

3.1 INTRODUCTION ... 19

3.2 ANDROID ARCHITECTURE .. 20

3.2.1 LINUX KERNAL ... 21

3.2.2 LIBRARIES .. 21

3.2.3 ANDROID RUNTIME ... 21

3.2.4 APPLICATION FRAMEWORK ... 21

3.2.5 APPLICATION .. 21

3.3 ATTACK METHODOLOGY ... 22

CHAPTER 4 ... 29

RESULTS AND ANALYSIS .. 29

4.1 INTRODUCTION ... 29

4.2 EFFECTIVENESS .. 29

4.3 EVALUATION AND ANALYSIS ... 30

4.4 DEFENCE MECHANISM ... 32

4.5 DISCUSSION .. 35

CHAPTER 5 ... 37

CONCLUSION AND FUTURE WORK .. 37

5.1 CONCLUSION .. 37

5.2 FUTURE WORK .. 38

BIBLIOGRAPHY ... 40

ix

LIST OF FIGURES

Figure 1 - permission flow .. 6

Figure 2 - Android permission dialogue .. 6

Figure 3 - Android Malware Classification ... 9

Figure 4 - Android OS Architecture .. 20

Figure 5 - application access to user data in a sequence .. 22

Figure 6 - Attack Methodology Flow Chart .. 24

Figure 7 - App 1 Shareduserid with permissions in manifest file ... 25

Figure 8 - App 2 Shareduserid with no permission .. 25

Figure 9 - App 2 Connection to Database ... 26

Figure 10 - App 1 UI with a message .. 26

Figure 11 - App 1 Link generation after clicking button .. 27

Figure 12 - Redirection to a site with app 2 apk .. 27

Figure 13 - App 2 UI with a button having firebase connectivity .. 28

Figure 14 - Data stored in firebase in 3 different categories .. 30

Figure 15 - realtime account ids saved in device ... 30

Figure 16 - call log of incoming call ... 31

Figure 17 - Call log of outgoing call ... 31

Figure 18 - Call log of missed calls ... 32

Figure 19 - Saved contact in device .. 32

Figure 20 - Defense solution flowchart ... 33

Figure 21 - Set of permissions stored in firebase ... 34

Figure 22 - Warning message when app 2 is opened ... 34

x

LIST OF TABLES

Table 1 - Static and Dynamic analysis .. 14

Table 2 - Application Collusion detection tools .. 18

Table 3 - Tools and software used .. 23

Table 4 - Resources for each apps ... 28

Table 5 - Potential Colluding Features in Android .. 35

Table 6 – Colluding probability of each feature set ... 35

xi

ACRONYMS

OS Operating System

PII Personally Identifiable Information

DB Database

SQL Structured Query Language

API Application Programming Interface

APK Android Package Kit

URL Uniform Resource Locators

SDK Software Development Kit

1

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Initially mobile phones were made with the aim of communicating without any wired

telephonic line. However, gradually the development in science and technology led to many

new discoveries in day-to-day life and evolution in mobile phones as well. This evolution

facilitated its users to a next level. Other than attending phone calls, mobile phones provided

conveniences like sending SMS, MMS, listening to radio etc. But in the early 2000s,

advancements in mobile phones further emerged and revolutionized the whole concept of

mobile phones due to which they were renamed as smartphones. Today smartphones are so

much more than just sending SMS or attending phones calls. They can assist with web

browsing, Bluetooth, emails, GPS, weather and news updates, ecommerce, online banking

and so much more. Smartphones have undoubtedly provided ease at life by facilitating all

these features and there is literally no such huge difference left between a smartphone and a

computer. A smartphone can pretty much do all the jobs that requires computer/PC to some

extent. However, everything comes with a price, and in this case, it is users’ private data such

as web history, credentials, location, contacts, personally identifiable information (PII). While

all the features of smartphones were being introduced to assist its users’ in performing day to

day activities with ease, different types of attacks were also being discovered alongside that

puts users’ data at high risk. Therefore, it would not be wrong to say that every smartphone

feature that assists its users at some tasks, compromises some level of user’s private data. For

example, if a user logs into his banking app to perform some transactions, the user is given a

choice to store these credentials on his device for future use. Once stored, these credentials

become vulnerable to different types of attacks in smartphones. Just like computers,

smartphones are also vulnerable to attacks especially if it is comprised of user’s private data.

Some of the known attacks in smartphones are, data theft, spyware, phishing attack, network

spoofing etc.

All these attacks are studied, and much research have been done on it already and though

these attacks if performed, can bring harm to user’s assets, data etc. attackers are now onto

something even bigger. A unique android-based attack is in the market known as application

collusion. Application collusion is always comprised of at least two applications. In this, the

attacker makes two or more applications, group together and communicate i.e., share data, in

order to perform malicious activities.

2

This research aims to learn new techniques and methods of performing application collusion

so that new areas of threats and vulnerabilities in Android can be discovered and provide a

solution on preventing from such attacks to enhance the security.

1.2 PROBLEM STATEMENT

Application collusion is a type of attack where attacker makes an application that can illegally

access user’s personal data without user’s permission. It is easier to gain deep level access

into a user’s device by designing an application and masquerading it to be as legitimate and

then making it communicate with other applications installed to share some sensitive data. In

this way the attacker without any complicated coding can access users’ private data and

perform harmful activities. The user, however in this case has no knowledge that his private

data is being accessed. The main motive of every intruder after getting access into any

network or device is to remain hidden and not get caught, this is because he wants as much

information and data of user as he can get and therefore, for this purpose he makes sure never

to perform any action which could lead to make the user aware of any irregular activity.

Hence, once the private data is accessed illegally, the attacker can easily use this data for any

malicious purpose such as stealing credentials, send out data, monitoring user’s location,

eavesdropping etc.

Previously several research have been conducted on how application collusion could possibly

be detected and prevented but they all come with their own drawbacks. Moreover, there are

various reasons why it is difficult to detect or prevent this attack. Some of the reasons could

be as follows:

• Presence of covert communication channels.

• There are still new areas or techniques of this attack to be discovered therefore there

can’t be a strong solution on how to detect or prevent from it entirely.

• Unavailability of present colluding applications is the most important factor why this

type of attack has still not been addressed properly.

• There is a large number of applications being developed every single day, grouping

each one of them in order to detect this attack is a huge computational work and

impossible.

• Since the user under this attack is unaware that his data is being accessed illicitly, it is

difficult to apply a preventive solution to it unless detected properly.

3

• The Android OS allows itself for applications to communicate to share data with some

built in features.

Considering all the above-mentioned reasons, this study will work on a new version of

application collusion attack. It will be shown how an application with low security can be

exploited to share data with a malicious application that appear to be benign. Furthermore,

a framework to detect application collusion in this scenario is also proposed which works

on a probability matrix.

1.3 RESEARCH OBJECTIVE

The main objectives of this study are:

• To study and analyze existing Android collusion attack parameters.

• Propose collusion detection and prevention mechanism.

1.4 SCOPE OF RESEARCH

Application Collusion is relatively a new type of attack and there is yet a vast amount of

research to be conducted to discover its new approaches. The available prevention and

detection tools for application collusion do not entirely prevent or detect this attack and the

results are not completely accurate. Since there are multiple factors, this attack is based upon,

none of the previous research has yet covered all the potential factors of it.

This study will be conducted in two divisions, offensive and defensive. In offensive section,

the aim is to discover a new technique to perform collusion attack and bring into light the

present vulnerabilities in Android. In defensive section, the goal is to perform deep analysis of

present tools and propose preventative solution in form of a probability matrix that could be

applied so it can help identify potential colluding applications in a device.

1.5 SIGNIFICANCE OF RESEARCH

An application in a smartphone requires some user’s private data to function, for example

Google maps require an access to user’s location, WhatsApp requires an access to user’s

contacts, Instagram requires an access to user’s Camera and Gallery. Each application

developed in Android has some access to user’s data in order to function. Applications ask for

such access requests in form of permissions. It is up to the user to allow or deny these

permissions. If the permission is granted, the applications have control to read and write over

user’s private data and therefore, this private data is always vulnerable to attacks like data

theft, identity theft, spyware etc. However, Android assures that every application developed

is authentic and their data is protected within the device, but since Android OS is an open

4

source, and too common around the world, it is the foremost target for attackers to intrude

into users’ mobile phones and misuse their personal data after getting access to it. Application

collusion is known to be an attack where user is not aware that his data is being read or

modified by other applications through intruders. Moreover, this type of attack exists till date,

and there is still a vast range to be discovered in this field since it is not addressed entirely due

to some setbacks. This research is going to help understand new potential approaches leading

on to application collusion attacks and how one can avoid from being affected by such threats.

5

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION:

Smartphones are known to be one of the biggest advancements in technology that has brought

massive impact in everyone’s lives. People use smartphones for work, education, social life,

and personal use. Just like computers, smartphones also have operating systems. By now the

two most prominent operating systems are IOS and Android. IOS is supported by Apple and

is only designed for Apple devices such as iPhone, MacBook, iPad, etc. Android, on the other

hand, is supported by Google. It is an open source and more common among people which is

why it is more exposed to threats and attacks. It has been in the market for about 15 years

now. According to studies in August 2021, Android has over 3 billion active users which

makes 39% of the entire population. [1] Due to its openness, a large number of developers use

it as a community driven projects and therefore its new features and updates are better in

quality as well as faster than any other official manufacturer channels. [2]. Android OS is

comprised of multiple applications. Applications can be described as a software that runs on a

smartphone. They provide users with services. These services are usually small, particular

software components with some measure of function.

2.2 ANDROID APPLICATIONS AND PERMISSIONS:

Android applications need user's data to function. Applications request to access user's data in

form of permissions. The user either denies or allows them. If an app is denied a permission,

it cannot access user's data. If the permission is granted, the app can read and even write over

user's data in some cases. [3] However, there is one major drawback of allowing apps to read

data i.e., the user's data remains exposed to various types of android attacks. Therefore, the

major benefit of using permissions is to take user's consent, which means the user is aware of

the possible threats and risks and still willingly allows the apps to view his data in order to use

the app's functionality.

6

Figure 1 - permission flow

According to the release of Android OS (Android Marshmallow 6.0 - API 23) in 2017, all

required permissions in an app must be declared in its manifest file with the tag of “user

permissions”, which means that no app provider can access user’s data without displaying

user with custom dialog prompt about permissions. [4]

Figure 2 - Android permission dialogue

There are four different categories of permissions in android. Each category of permission

specifies the range of restricted action the app can perform or the range of restricted data of

user that an app can access after the system has granted the permissions. [3]

2.2.1 Install Time Permissions

These types of permissions have very low to almost no access to sensitive and restricted

data. Once an application with such permissions is installed, the system grants the access

to application automatically because these can only perform actions that affect system or other

apps to the minimal. In an App Store, install time permissions can be viewed on an app’s

7

detail page. Examples of such permissions could be access network state, Bluetooth etc. It has

further two subcategories that are explained below.

2.2.1.1 Normal Permissions

Such permissions do not require runtime prompts. System examines the manifest file of the

app and goes through the list of all permissions and allows these at runtime automatically.

With such permissions, an app can perform actions such as location access, creating app’s

shortcuts, killing background processes etc.

2.2.1.2 Signature Permissions

Every application that is developed has a signed certificate by its developer. If there are two

applications with the same developer, both applications would have the same signed

certificate, which means that both of them will have same level of permissions.

2.2.2 Dangerous Permissions

These types of permissions have capability to affect user’s private data or device’s

operations. Therefore, a runtime prompt is mandatory before accessing these

permissions. Android apps are not allowed to use these permissions until the user himself

agrees and explicitly grant these permissions. Some of the examples could be read/write

contacts, messages, make or answer phone calls, accessing location, gallery, external storage,

call logs etc.

2.2.3 Special Permissions

These permissions are related to certain application operations. They can be defined by

only Original Equipment Manufacturer. Moreover, these are defined only when it

is intended to protect access to mainly powerful actions, such as drawing over other apps. The

Special app access page in system settings contains a set of user-toggleable operations. Many

of these operations are implemented as special permissions.

Presently, the procedure for applications to access sensitive and restricted data or perform

actions on it is that, first the developer of the application must define permissions in

application’s manifest file, once the application is installed, the system goes through manifest

file looking for install time permissions and allows those permissions automatically as

discussed above. In case there are further runtime(dangerous) or special permissions

present, A custom prompt message appears asking the user for accessing restricted data or to

perform certain actions. If the permissions are legitimate, then the user allows those

permissions else they are simply denied. Considering this, the scenario depicts that no

8

application can access user’s data without his consent and therefore no malware can enter in

a device, nor any attack should take place. But since android attacks and android malwares are

so sophisticated today, it is not always easy to detect or prevent from them. Malicious

applications are disguised as benign ones and ask for permissions to access user data and

perform restricted actions. After the permissions are granted, they perform illicit actions at the

backend such as spying, monitoring user actions, and sending all the recorded data to

attacker. These applications can further install malwares at the backend. And as the user is

unaware of this whole situation, such malicious applications and malwares remain

undetected meanwhile all of the user data is being sent to attacker which can lead to even

bigger attacks. Some malicious applications and malwares are so refined that they can easily

evade smartphone’s security and authentication process. Once a malware evades the security

and authentication barrier, they can convincingly perform any malicious attack without letting

the user have any idea of it.

2.3 ANDOIRD ATTACKS:

Android is most aimed at platform for attackers due to its open-source nature. The purpose

behind every attack is ultimately to compromise or steal data from mobile devices for various

reasons such as sending out the data, signing up users for services without user’s knowledge,

locking device to demand ransom etc. [5] There are numerous kinds of attacks and malwares

in Android that puts user’s data at danger in different ways. [6]

2.3.1 SMSHING

This attack involves a malicious website link, designed by attackers to gain unauthorized

access to victim’s smartphones to make calls, send texts and even send sensitive information

to malicious websites without user’s knowledge. This link is distributed among

target phones. The user is unaware that his phone is under attack

2.3.2 PHISHING

Phishing is similar to smshing attack, the only difference is that the malicious website link is

propagated through emails and once the user clicks on this link, all his sensitive information is

sent to attacker.

2.3.3 ROOTING

Rooting is done to unlock the OS in order to install unapproved apps, replace firmware,

update OS etc. However, this process makes smartphones vulnerable to various kinds of

malware and give access to attackers.

9

2.3.4 UNTRUSTED APKS

Users are convinced to install applications from third parties and untrusted sources. Once the

untrusted APK is installed, it can perform several malicious activities such as spying and

sending reports to attackers, sending out data, perform illegal actions etc. The installed APKs

could also possibly contain malicious software, giving remote access to the attackers.

2.4 ANDROID MALWARES

Malwares are malicious software designed by hackers to intrude into smartphones in order to

steal information, monitoring activities spying, gain control over user’s smartphone etc.

With the passage of time as smartphones evolved, malwares became more sophisticated

and their methods to evade smartphones’ security and authentication processes have improved

as well. Discussed below are different ways and types of malwares that are most common

and threatening to smartphone’s security. [7]

Figure 3 - Android Malware Classificatio

2.4.1 BACKDOOR

A way to breach smartphone’s security and authentication processes and then covertly

execute unwanted, malicious codes and perform harmful activities. It allows attackers to gain

access to user’s data. It can also be used to establish further communication channels for other

malwares and attackers to intrude in smartphone.

2.4.2 CLICK FRAUD

Hackers are paid when a user clicks on adds. They generate fake clicks by overlaying buttons,

images, and test layouts over advertisements.

2.4.3 RANSOMWARE

A type of malware with which an attacker prevents a device or a block of data from user

access. Attacker then demands a ransom from user or asks to perform certain actions in order

to unblock the device or data from access.

10

2.4.4 SPYWARE

It is a type of malware that allows attackers to monitor and record user’s sensitive information

without his/her permission. It can also covertly transmit all the recorded data from user’s

device’s hardware.

2.4.5 ADWARE

Adware is also a malware that hides on a device and displays advertisements. It operates in

the background and generates a popup window to display fake ads and sell fake products.

Adware also monitors user action

2.4.6 TROJAN

An application that is designed by attackers and is disguised as legitimate but once

downloaded, it starts to function maliciously and executes malicious code hidden from user.

Attackers can gain backdoor access, steal, or spy sensitive information from user’s device

with the help of such malwares

2.4.7 DOWNLOADERS

In Android, a downloader can be defined as a malicious application that, when gets an access

to internet, downloads further malicious malwares without user’s knowledge.

Just like how smartphones are getting faster, better and improved every day, android

malwares are also getting repackaged and more advanced with an intend to infect Android

devices on a bigger level. Initially any attack or malware created was eventually detected due

to suspicious behavior of device such as slowed processes, unidentified files or software

downloaded etc. But since more refined and sophisticated malwares and attacks have been

taking place, it becomes difficult to detect and identify them because most of them are

performing their actions at the backend. Different research has been conducted on tools and

solutions for malware detection have been submitted, each study focused on a certain

behavior of an application based on which they were identified as either malicious or benign.

In 2019, research presented a method to detect malware applications in a device by collecting

mobile traffic generated by the applications when they get connected to the internet. The

traffic was then evaluated, and each URL visited by applications were examined. URLs were

divided into several segments and analyzed by applying algorithms. [8] Though, this method

is not effective because it only focuses on the URLs. Plus, there is a chance of false

positive result as well. Another limitation of this method is that it only focuses on HTTP

URLs traffic which means this method is not applicable on any non-HTTP protocols

or even HTTP encryptions. In the same year, another research was conducted, and a new

method was designed to determine malicious applications. This method focused on a

11

concept of every application in order to use system’s services, depend on Android APIs. This

is because each Android API supports a unique system service such as I/O management,

graphic processing, memory management etc. Consequently, it means that an application’s

main objective and characteristics can be determined by looking at the list of APIs it has. In

this research, two classified ranked lists were constructed benign_api_list and

malicious_api_list. Benign_api_list contained all the commonly used APIs among benign

applications. Malicious_api_list contained APIs that were usually found in malicious

applications. Then for any suspicious application, its APIs were analyzed. For all the benign

APIs present in that suspicious application, sum of the inverse values of the ranked APIs were

calculated and similarly sum of the inverse values of the ranked APIs for malicious APIs

present in that application were calculated as well. As a result, if the sum of inverse values of

benign APIs were greater than that of malicious APIs, then the app was determined as benign

else malicious. [9] However, this method also fails to serve the purpose since 1000s of

applications are developed, and new malicious APIs are constructed, it is impossible to keep a

track of all of them and updating the API list every now and then. Plus, it is not a strong

solution to completely rely on APIs for malicious app detection since there is a possibility that

malicious apps could use benign APIs also. During the same year another research focused

on android permissions to detect malicious apps by acquiring datasets of malicious and

normal applications (from 2010- 2014 and 2014-2018) and extracting permission pairs from

their respective manifest files. A graph of all the permission pairs is structed and an edge

weight is assigned to permission pair based on the number of malicious application it is

present in. [10] This approach has limitations and some grey areas in it. Firstly, this approach

requires all the permission pairs for the detection of malicious application. Secondly, there

aremany malicious applications containing very few normal permissions and they can evade

this detection approach. Moreover, this approach cannot work on any app with no

permissions. Thirdly, many social media applications require dangerous permissions such as

access gallery, access contacts etc. This approach identifies normal social media applications

as malicious applications based on the permissions in manifest files. Hence, this method also

has false positive rate. A survey discussed how attackers are always ahead of anti-malware

groups and how important it is to keep a track of all the malicious apps, their

working, and what tools have been presented for their detection. It further explains all

the timely various static and dynamic approaches that have been proposed to counter the

advance malicious applications. This study helps to open new directions for

future research. [11] Later in the year, another systematic survey was done on 236 papers

(from 2011-2019) about android malicious application detection. It discussed all the

limitations of the detection tools and solutions. With that, the paper

12

also provided recommendations on how those solutions could improve. Moreover, it also

stated why detection of malicious applications are difficult and what are the possible solutions

to overcome the challenges faced meanwhile. [12]

In the early 2020, A host-based intrusion detection system (HIDS) was introduced, this model

was incorporated with statistical and semi supervised machine learning algorithms. It required

only benign applications’ behavior as features with a few malicious ones for tuning. Rather

than supervising each application individually for suspicious behavior, this model worked on

dynamic analysis and constantly looked for suspicious activity at the device level based on

incorporated set of features. Afterwards, to define an application’s run time behavior, the

model applies a machine learning or a statistical algorithm and classifies it either benign or

malicious. [13] This model and its working approach seemed comparatively better than most

of the solutions provided prior, yet it had some restrictions as well. Firstly, in order for this

model to work effectively, it requires richer data sets for feature learning of both malicious

and benign applications working. But since every day new means to evade malicious

application detection are being made by the intruders, it becomes a challenge to create a

dataset of all the malicious features. Secondly this model could be more useful if it had a

prevention mechanism integrated in it as well because it only detects the malicious

applications, a mitigation mechanism could make this model more efficient. Later, in the mid

of the same year, MADFU (Malicious Application Detection on Features Uncertainty) was

introduced. MADFU works on the basis of logistic regression function to describe the

relationship between permissions and labels. The analysis found out that there are some

uncertainties in the features of android that effects the detection of malicious application. As a

solution MADFU was presented that solved the uncertainties of dangerous

permissions. [14] However, further studies revealed several limitations of MADFU, because it

only classifies malicious applications on the basis of dangerous permissions, but that may not

be the case always because there are various root-exploit level malicious applications that do

not have any permissions to use during the analysis. Therefore, it is impossible to carry out

malicious application detection based on dangerous permissions only. Another paper that is

important to include in this research is basically a comparative study about how malicious app

works differently from a benign application and what are their similarities. It studies both

static and dynamic analysis of each set of applications and brings into light important factors

to consider on detection of malicious applications based on their run time behavior. [15]

13

It can be observed that in the past years, every research on malicious application detection has

focused on a particular feature of android application. A table below gives a concise

description of what each paper focused on and what it contributed.

Analysis Year Title Description

Dynamic 2019 Deep and broad URL feature

mining for android malware

detection

Focuses on traffic generated by apps and

analyzes URLs visited by applying

algorithms in order to determine whether app

is malicious or not

Dynamic 2019 Detecting malicious android

apps using the popularity

and relations of APIs

Constructs two APIs list i.e., malicious, and

benign and compares the list for any

suspicious app by calculating its sum of

inverse values. If the sum value of benign API

is greater than malicious then the app is benign

else malicious

Static 2019 Group wise classification

approach to improve android

malicious application

detection accuracy

Uses drebin benchmark malware dataset in

order to explain how malicious app detection

can be enhanced by analyzing the apps after

grouping the collected data based on the

permissions

Static 2019 Permpair: Android malware

detection using permission

pairs.

Extracts permission pairs from dataset of

malicious apps and compares the permissions

for any suspicious application

Survey 2019 A survey on the detection of

android malicious apps

Discusses potential features any malicious

application could contain and how they could

be detected

Survey 2019 Constructing features for

detecting android malicious

applications: issues,

taxonomy, and directions

A systematic review off 236 papers from 2011

to 2018 of all the tools presented for malicious

app detection and provides recommendations

on their limitations.

Dynamic 2020 An autonomous host-based

intrusion detection system

for android mobile devices.

Mobile Networks and

Applications

Presents a model HIDS that is trained by a set

of features and detects malicious apps on a

device level dynamically based on app’s

activities.

Static 2020 MADFU: An Improved Solves the uncertainties while detection of

14

Malicious Application

Detection Method Based on

Features Uncertainty

malicious applications and classifies any app

to be malicious or benign based on dangerous

permissions accessed by them.

Literature

review

2020 A study of run-time

behavioral evolution of

benign versus malicious

apps in android

A comparative study between malicious apps

and benign apps and what their similarities and

differences are in working. This study helps

to understand more about malicious apps and

how a better solution for detection can be

provided.

Table 1 - Static and Dynamic analysis

In a paper [12], it discussed various challenges that are faced during detection

of malicious applications, some major challenges are mentioned bellow:

 Threat of application collusion is neglected  

 Applications that contain malware may have their code obfuscated through several

techniques and complicated program comprehension.  

 Malicious applications could contain encrypted code which could have gone unnoticed

during detection mechanism. 

 Datasets included in research studies do not include datasets of malwares like clones,

adware, data miners etc. 

 During static analysis of malicious applications, dynamic loading and reflection call

are still a challenge that requires more work. 

 Metamorphic malware modifies its code itself by rewriting for example renaming

methods or classes in an application. Detecting such apps that contain such malwares

is a major challenge. 

 The process of extracting features can be time consuming due to the increase in size

and highly complicated behaviors of Android Package which results in a non-effective

detection. 

 Extraction of well discriminated static features is also a challenge because the

behaviors of android apps have become progressively more polymorphic and

sophisticated. 

 During malicious application detection, dynamic analysis cannot track all the possible

paths of execution which could result into false negatives results. 

 Extracting app’s features could go up to a million, major issue is how to process the

sparse vectors. 

15

 Dynamic features extraction is difficult if an app is protected at runtime security

mechanisms 

Any malicious application could potentially contain a malware or a piece of code that

performs harmful activities on a user’s device.  Out of all

the existing challenges confronted in detection of malicious application, this study focuses on

the first point mentioned, application collusion. It is an attack where two or more applications

group together to share data and perform malicious activities. Though not much

of the research has been done on it because it is comparatively a new attack and there are still

many considerations that need to be discovered in order to address this attack

properly. The complication of this attack is that these malicious applications are developed

in such a way that they seem like a legitimate application. Therefore, no detection

method could detect them either. It could have all the features that a benign application

contains and at the same time it could take advantage of android vulnerabilities to access

user’s sensitive data and perform malicious activities at the backend without user having any

idea of it. In order to detect application collusion, a model named FUSE was proposed in

2014, this model first analyzes every single app and stores relatable information and then

combine all information to detect collusion based on some restricted policy engine. The

issue with this model is that this policy is not publicly

available. [16] Another research performed a number of experiments on

all the models proposed as solution for detecting application collusion and indicated that none

of them could work for the detection of application collusion, because all the solutions offered

prior had some level of limitation or false positive results. This research then further presented

a map of all the possible communication channels among Android apps in order to statically

characterize inter-app ICC. The presented map even though does not provide any solution to

application collusion detection, but it can identify which applications could possibly be

communicating. Hence the motive to present this static ICC map was for future researchers to

identify communication channels and apply potential security policies for prevention from

application collusion. [17] A number of researchers tried to develop a novel analysis method

to detect ICC. Their research proposed a model that statically analyzes each application and

retrieves applications’ communication at component level. This communication retrieved is

then further represented in the form of a state machine in order to detect collusion. [18]

However, this method only works to detect collusion between two applications and that too

only at component level.

Even after above mentioned research, application collusion still remained a challenge for

Android security because attackers always found a way to evade authentication procedures by

16

masquerading as a benign application and then accessing user’s restricted data by sharing

resources of other applications. A paper in 2017, analyzed over 10,000 Android applications

and discussed most important factors in occurrence of application collusion. First It presents a

tool that analysis applications statically on a large level and is named as called AppHolmes.

This tool first extracts two things (i) manifest file, for learning application’s component,

intent files and permissions, (ii) smali code, to carry out static analysis. After gathering all the

required information and performing analysis, the too AppHolmes categorizes the

information. This study then further discusses the root causes of application collusion and

categorizes the potential causes into four main categories i.e., push service by third parties

(77%), functional SDK (15%), shared resources (5%), miscellaneous (3%). As all the research

discussed above had some ambiguity along.

Therefore, along with other studies and research being done on android collusion, it was

identified that Android OS provided some of the features itself that enabled applications to

access data that was only allowed for limited and highly privileged applications such as

READ_WORLD_MODE, WRITE_WORLD_MODE. [20] Using these two flags in any

application installed in a device, allows all other applications to read its content and

even modify it.  Further in year 2020, new research represented a model that analyzed and

detected only potentially collusive applications which helped to reduce the time consumed to

detect all the benign applications as well. Then a function was used that tracked the flow of

sensitive information. If any flow of sensitive information through an application ended up in

a shared resource, then that specific application was marked as collusive. The function used in

method works only on detection of any two applications. [21] Another paper presented

somehow same thing but used K-means algorithms and some linear of SVMs in order to learn

about behavior of malicious and benign applications. It then uses vector parameters with the

concept of potential colluding applications will pose same threats as malwares. Along with

this, a simple decision function was used to detect collusion between

applications. [22] Furthermore, in 2020, a study showed that detecting or analyzing single

application at a time does not exhibit any collusive property. Therefore, in order to detect

malicious collusion between applications, it is important to create pairs based on

their possibly collusive features. In this way the study further carried out an experiment by

creating pairs of applications based on the feature of SharedPreferences (), this object in an

application enables it to view key-value pairs in other applications and provides a simple way

to read and write over those values with the help of GET and PUT method. This study

really benefits on detecting colluding applications.[23] Similarly another paper that benefits

this study was presented this year, the study presents an architectural design and

17

implementation for ContentAnalyzer to detect sensitive information leakage and prevention in

Android devices. It performed static and dynamic analysis of suspicious applications for

collusion. Then with the help of these static and dynamic combinations, illegal data leakage

was discovered. [24] Even though the approach and analysis in ContentAnalyzer appeared to

be effective, some of the drawbacks of this implementation were slowing down over all

system’s performance. Moreover, it required pre-installation of the application on the target

device which means that ContentAnalyzer could not detect or prevent information leakage

between applications that were installed prior to ContentAnalyzer. [25]

A brief explanation of all the papers studied for detection of malicious applications and

colluding applications are presented in the table below

Title Description Year

A survey of malware

detection in Android apps:

Recommendations and

perspectives for future

research

Provides a detail of all the tools presented to detect

malwares in android apps and discusses drawbacks of each

of them. Moreover, this paper also provides

recommendations as solutions for their drawbacks for future

research

2021

Multi-app security analysis

with fuse: Statically

detecting android app

collusion

Proposed a model that analyzes and stores relatable

information of every single application installed then

combines all information together and detects collusion

between apps based on a policy.

2014

On the need of precise

inter-app ICC

classification for detecting

Android malware

collusions

Discusses why a detection solution is required for

application collusion and further presents a map of all the

possible communication maps of android apps that could

benefit to statically track and characterize app collusion

based on ICC

2015

Intersection automata-

based model for android

application collusion

Proposes a model that tracks all components communication

and presents it in a form of state machine to detect

application collusion.

2016

Appholmes: Detecting and

characterizing app

collusion among third-

party android markets

Introduces a model AppHolmes that extracts smali code and

information from manifest file and then combines all related

information to analyze all applications statically to classify

them either collusive or benign.

2017

Malicious Collusion

Detection in Mobile

Environment by means of

Model Checking

 Introduced a model that analyzed and detected only

potentially collusive applications. A function was used that

tracked the flow of sensitive information. If any flow of

sensitive information through an application ended up in a

shared resource, then that specific application was marked

as collusive

2020

Hybrid classification

model to detect android

application-collusion

This paper used K-means algorithms and some linear SVMs

in order to learn about behavior of malicious and benign

applications. It then uses vector parameters with the concept

of potential colluding applications will pose same threats as

malwares. Along with this, a simple decision function was

2020

18

used to detect collusion between applications

Android Collusion:

Detecting Malicious

Applications Inter-

Communication

through SharedPreferences

Detects app collusion by creating pairs of applications based

on the feature of SharedPreferences (), this object in an

application enables it to view key-value pairs in other

applications and provides a simple way to read and

write over those values with the help of GET and PUT

method.

2020

Implementation

of contentanalyzer for

information leakage

detection and prevention

on android smart devices

Presents an architectural design and implementation

for ContentAnalyzer to detect sensitive information leakage

and prevention in Android devices. It performed static and

dynamic analysis of suspicious applications for collusion.

2021

Table 2 - Application Collusion detection tools

19

CHAPTER 3

EXPERIMENTAL SETUP AND SCENARIOS

3.1 INTRODUCTION

All the solutions or tools that were presented in research previously focused on external

elements i.e., code designed by the attackers in malicious applications. These codes were then

extracted for further info to detect application collusion. However, there are various internal

features i.e., features supported by Android OS itself that could be used potentially by

attackers or intruders to perform application collusion or any malicious activity. As discussed

in chapter 2, READ_WORLD_MODE is a flag that was supported by Android OS. Whenever

a file is created in an application with SharedPreferences (), openFileOutput (),

openOrCreateDatabase (String, int, SQLiteDatabase.CursorFactory), adding this flag along

enabled all the other packages to read its content. Similarly WRITE_MODE_WORLD is a

flag that enabled all the other packages to write or modify file content though the file is still

owned by the application to which it was created in but due to these flags the file becomes

global for all other applications installed to read or write its content. Thus, there are several

features presented by Android which can be misused by attackers to tackle authentication and

security in mobile phones.

Therefore, this study focuses on exploring particularly Android features that help attackers to

evade mobile authentication to perform application collusion attack. Furthermore, a

preventative solution is introduced that could assist future researchers for developing tools

from opposing apps to collude. This chapter is divided in two main parts Attack methodology

and defensive measures. Attack methodology discusses Android features that are favorable

for intruders to gain unauthorized access to user’s sensitive information. Moreover, it includes

how to perform application collusion attack with such features. The other section offers a

probability framework on how to identify potential colluding applications in a mobile device.

This research presents an attack based on a feature provided by Android i.e., SharedUserId.

This research aims to develop two android applications and perform application collusion

among them. During the literature review stage, it was observed that a study conducted

research in 2020 on locating potential collusive apps on the basis of using SharedPreferences

() object. In consideration to that, this study targets on a different shared object feature in

android which is sharedsuerid (). A userid in an application is simply a unique identifier. With

this userid the OS identifies the application to share resources and services accordingly. In

Android an application is assigned a userid by default, but it can also be assigned explicitly by

20

the developer in the manifest file while developing the app in Android Studio. After an

application is installed in a device, the device’s OS looks up in the manifest file for a userid to

classify that application in order to perform activities, share resources and allow permissions.

3.2 ANDROID ARCHITECTURE

This Linux based OS architecture is stacked with software components and is divided into

four main layers. The five software components are discussed below.

 Linux kernel

 Libraries

 Android runtime

 Application Framework

 Applications

Figure 4 - Android OS Architecture

21

3.2.1 LINUX KERNAL

Linux kernel is responsible for managing input and output requests from the software. It also

manages basic functionalities of the system such as process management, memory and device

management for camera, keypad, display etc.

3.2.2 LIBRARIES

Above Linux Kernel, there is a set of libraries consisting open-source web browsers for

example WebKit, library libc. These libraries are used for playing audio and video recordings.

The SQLite is a database which is used for storing and sharing application data. Additionally,

SSL libraries are responsible for internet security.

 3.2.3 ANDROID RUNTIME

This component is responsible to provide Dalvik Virtual Machine (DVM) which is a virtual

machine-like java, specially designed and optimized for Android. It has to process the virtual

machine in Android OS so that the apps can run on Android devices. Dalvik VM utilizes the

core features of Linux like memory management and multithreading. It also enables apps to

run in their own processes.

3.2.4 APPLICATION FRAMEWORK

This component is in the next layer which provides several high-level services to apps such as

windows manager, view system, package manager and resource manager etc. The app

developers are permitted to use these services for their applications.

3.2.5 APPLICATION

This layer is on top, and all the applications are written and installed on it such as contacts,

browsers, services books etc. Each of these applications perform a different type of role in

over all applications.

The basic architecture and flow of how an application after installation in a device is

identified by the OS through user id and how the application is allowed to access user data

based on permissions mentioned in manifest file, is explained below with the help of

sequence diagram.

22

Figure 5 - application access to user data in a sequence

The diagram illustrates the process of identifying an application when installed in a device.

Each step is described below

1- Once the app is installed, the OS looks up for the unique identifier also known as

userid.

2- The userid is declared in the manifest file of the app.

3- After the userid is discovered, the app is identified by OS.

4- Since the app needs to access user data to perform some functions in order to provide

services to user, it requests the access in form of permissions.

5- OS looks up for the permissions in the manifest files

6- Data access permissions are stated in manifest file of the app.

7- After the user allows these permissions, OS allows the app to access user data.

8- App accesses user data to perform actions.

3.3 ATTACK METHODOLOGY

Every android application is assigned a user id, this user id is a unique identifier for an

application. The motive behind assigning each app with its own unique user id is that no

application could use resources of any another application, nor they can run on each other’s

processes or activities. Therefore, when an activity is in running and a new activity of another

23

application is called, the control is passed to the new activity and both activities run on

different processes. However, Android gives option for developers to create applications with

same user id. When applications have same user id, they can share each other’s resources,

permissions, fields etc. Moreover, applications can run data of other applications in their

processes as well. This can be done by explicitly declaring same user id using Android feature

sharedUserId in both applications’ manifest files, provided that both applications are

developed by same developer and have same signature certificate. After mentioning

sharedUserId, both apps can share permissions, resources, data, fields and much more.

Tools/Setup

Android Studio 2021.2

Mobile Model Huawei P30 Lite

Android OS Version 20.0.5

Firebase Database 10

App 1 SharedUserID com.ncsael

App 2 SharedUserID com.ncsael

Table 3 - Tools and software used

Proposed attack methodology work is consisted of several steps. Since our research is based

on android, we used Android Studio tool as a simulator. Android studio is an open source and

easy-to-understand tool with minimal human efforts required. For developing the two apps,

programming language Java is used, it’s a high-level programming language and is easily

understandable. The aim is to develop two android apps with different group of permissions

but design them in such a way that these applications when installed on any device together,

communicate to share each other’s permissions to perform collusion attack. It is necessary to

make sure that the targeted user installs both of our developed apps in his device. After both

apps are installed only then android application collusion attack can be accomplished. The

process and series of steps included while performing application collusion attack within two

applications in Android is explained below with the help of block diagram.

24

Figure 6 - Attack Methodology Flow Chart

The steps taken in this proposed attack are explained below:

1- App 1 and App 2 are developed with same userid using shareduserid feature of

Android.

2- App 1 is given permissions to access user data.

3- App 2 has no permission assigned but is connected with firebase.

4- After both apps are installed on the device, the OS fails to distinguish them as two

different apps and instead identifies them as generic individual App due to same user

id.

5- This generic App has permissions of App 1 and connectivity to firebase of App 2.

6- Hence App 2 can access permissions of App 1 and access restricted data of user

illegally.

7- Lastly App 2 uses the connectivity with firebase to send this accessed data to store and

maintain for malicious purpose.

To perform this attack, the applications were developed in Android Studio using high level

programming language java and were named as App1 and App2. Both apps contain an object

SharedUserId in their manifest files and are given the same user id i.e., “com.ncsael”. App1

has number of permissions assigned such as to read user’s contacts, read call logs,

accounts info stored in user’s device etc.

Figure 7 - App 1 Shared

However, App2 is not assigned to any permission and in its manifest file it only has the object

SharedUserid with user id same as of App1 “com.ncsael”

Figure 8 - App 2 Shared

But at the same time, app 2 is connected to an external realtime

contacts and accounts info and store them in Firebase even though app 2 has no permission to

access any of this user info.

has number of permissions assigned such as to read user’s contacts, read call logs,

accounts info stored in user’s device etc.

App 1 Shared user id with permissions in manifest file

However, App2 is not assigned to any permission and in its manifest file it only has the object

with user id same as of App1 “com.ncsael”

App 2 Shared user id with no permission

But at the same time, app 2 is connected to an external realtime DB to send out call log info,

contacts and accounts info and store them in Firebase even though app 2 has no permission to

has number of permissions assigned such as to read user’s contacts, read call logs, get all

However, App2 is not assigned to any permission and in its manifest file it only has the object

DB to send out call log info,

contacts and accounts info and store them in Firebase even though app 2 has no permission to

Figure

When a user downloads app1, The UI

shown says that a famous sports brand Nike on the occasion of their 55

away free cash prizes and rewards, to avail the chance click the button below to download

official app. Once the button is clicked, it generates a link that seems like a legitimate NIKE

site URL, but it redirects user to a different website directing to download App 2.

Figure

Figure 9 - App 2 Connection to Database

When a user downloads app1, The UI of app1 contains a message and a button. The message

shown says that a famous sports brand Nike on the occasion of their 55
th

 anniversary is giving

away free cash prizes and rewards, to avail the chance click the button below to download

the button is clicked, it generates a link that seems like a legitimate NIKE

site URL, but it redirects user to a different website directing to download App 2.

Figure 10 - App 1 UI with a message

of app1 contains a message and a button. The message

anniversary is giving

away free cash prizes and rewards, to avail the chance click the button below to download

the button is clicked, it generates a link that seems like a legitimate NIKE

site URL, but it redirects user to a different website directing to download App 2.

27

Figure 11 - App 1 Link generation after clicking button

Figure 12 - Redirection to a site with app 2 apk

App2 has almost a similar UI consisting of a message and a button. It is not assigned any

permission; however, it is connected to a firebase DB in the backend. Since both app1 and

app2 are given the same user id. On the frontend, it only contains a button and a message

saying “Congratulations, you are our 50th lucky user and we are happy to declare you that

you have won 50,000 USD. That’s not all, we are giving you 25 of our limited editions 2022

Nike shoes. We hope that you are prepared for great changes that will come to your life soon.

Enjoy and stay safe. Click below to provide your account information and address so that we

can wire out your cash prize and your reward”. When the button was clicked, on the backend,

it has been coded in a way that when user presses the button, it uses permissions of app1 to

read contacts, call logs and accounts residing in the device and uses the connection to firebase

28

to send out all the accessed data to be stored. Attached below is the screenshot of app 2 and

the message it shows.

Figure 13 - App 2 UI with a button having firebase connectivity

The table below displays what resources were shared with each application

App Name Permissions Firebase connectivity

App 1  Contacts

 Call logs

 Accounts

-

App 2 - Connected

Table 4 - Resources for each apps

29

CHAPTER 4

RESULTS AND ANALYSIS

4.1 INTRODUCTION

Our evaluation is based on the accuracy and effectiveness of presented work. The presented

research provided an efficient method to evade Android OS authentication and gaining

unauthorized access to restricted data using Android built-in feature. The efficiency of this

work can be evaluated by developing two Android applications one with access permission to

user’s restricted data and the other with no permission to access at all. Once launched in an

Android device, the OS gives permissions of first app to another app which had no

permissions defined. This clearly proves that Android authentication has been compromised

with sharing permissions and applications could gain unauthorized access to user’s restricted

data. The restricted data being revealed and being accessed by apps without any authorized

permissions assigned, leaves a huge question mark on Android security measures.

4.2 EFFECTIVENESS

In this proposed work, it is shown how an application collusion attack is performed using

nothing, but Android built- in feature of SharedUserId to gain unauthorized access to user’s

restricted data with invading Android OS authentication process. Furthermore, it is also

shown how the accessed data is sent out from compromised device to a firebase Db without

user’s knowledge. The effectiveness can be calculated by examining the stored data residing

in Firebase. Firstly, as both apps App1 (with permissions defined) and App2 (with no

permissions defined but connected to Firebase at backend) are installed in a device.

Installation of both applications in a same device can be achieved by luring user through

phishing emails, adds on malicious websites. Usually, malicious applications or applications

that are developed by attackers cannot be found on Google Play Store. Attackers make these

applications available on third party sources and trap users by promising to provide them such

services which are not usually found free on any platform for example Tube Mate (YouTube

videos downloader). After the user downloads and installs such malicious applications from

third party sources it is quite possible that attacker gains some access to user’s data and

perform illegal actions.

In our presented attack user can download App1 from any phishing mail by being trapped by

a message saying Nike is giving away cash prizes. After app1 is installed on user’s device, the

app asks user is shown a URL to visit to download official app i.e., app 2. Both app1 and app

2 share the same user id and due to that Android OS allows App1 and App2 to share resources

and permissions etc. Now App 2 is designed in such a way that when a user clicks the

provided button, all the accessed data using

sent to firebase includes call logs, contacts, accounts info stored in device.

4.3 EVALUATION AND ANALYSIS

The data accessed is stored in Firebase which is a cloud

sync data between users in real-time. It enables to store apps data and maintains data storage

such as syncing and query app data at a global scale. The picture below explains how user’s

data is stored in three categories Accounts, Call Logs and Contacts.

Figure 14 - Data stored in firebase in 3 different categories

The Accounts category has three things included when stored i.e., full email, id with which it

was saved in the device and name of the user.

Figure 15

Second category is Call logs, Firebase stores date of call, call duration, caller id, name, phone

number and call type of each entry stored in call log. There are three types of call type

and permissions etc. Now App 2 is designed in such a way that when a user clicks the

provided button, all the accessed data using permissions of App1 is sent to firebase. The data

sent to firebase includes call logs, contacts, accounts info stored in device.

4.3 EVALUATION AND ANALYSIS

The data accessed is stored in Firebase which is a cloud-based real time database to store and

time. It enables to store apps data and maintains data storage

such as syncing and query app data at a global scale. The picture below explains how user’s

data is stored in three categories Accounts, Call Logs and Contacts.

Data stored in firebase in 3 different categories

The Accounts category has three things included when stored i.e., full email, id with which it

was saved in the device and name of the user.

15 - realtime account ids saved in device

Second category is Call logs, Firebase stores date of call, call duration, caller id, name, phone

number and call type of each entry stored in call log. There are three types of call type

and permissions etc. Now App 2 is designed in such a way that when a user clicks the

permissions of App1 is sent to firebase. The data

based real time database to store and

time. It enables to store apps data and maintains data storage

such as syncing and query app data at a global scale. The picture below explains how user’s

The Accounts category has three things included when stored i.e., full email, id with which it

Second category is Call logs, Firebase stores date of call, call duration, caller id, name, phone

number and call type of each entry stored in call log. There are three types of call types

outgoing, incoming, and missed. Incoming call type is assigned a value of 1 while storing

entry in firebase, whereas outgoing calls are assigned value of 2 and calls that are missed are

assigned a value of 0.

Figure

Figure

outgoing, incoming, and missed. Incoming call type is assigned a value of 1 while storing

entry in firebase, whereas outgoing calls are assigned value of 2 and calls that are missed are

Figure 16 - call log of incoming call

Figure 17 - Call log of outgoing call

outgoing, incoming, and missed. Incoming call type is assigned a value of 1 while storing

entry in firebase, whereas outgoing calls are assigned value of 2 and calls that are missed are

Figure

Duration is saved in seconds and Call date is stroed

timestamp.

Third category of data stored in firebase is Contacts with storing contact number, contact ID

and contact name.

Figure

4.4 DEFENCE MECHANISM

After the proposed attack methodology, we present two defense solution in respect to that. As

we have seen it is difficult to detect android collusion if applications are sharing user id. By

storing set of permissions of each app into firebase, we can prev

proposed attack methodology. The diagram below explains each step taken to prevent from

this attack.

Figure 18 - Call log of missed calls

Duration is saved in seconds and Call date is stroed as String date that can be converted into

Third category of data stored in firebase is Contacts with storing contact number, contact ID

Figure 19 - Saved contact in device

4.4 DEFENCE MECHANISM

After the proposed attack methodology, we present two defense solution in respect to that. As

we have seen it is difficult to detect android collusion if applications are sharing user id. By

storing set of permissions of each app into firebase, we can prevent from occurrence of our

proposed attack methodology. The diagram below explains each step taken to prevent from

as String date that can be converted into

Third category of data stored in firebase is Contacts with storing contact number, contact ID

After the proposed attack methodology, we present two defense solution in respect to that. As

we have seen it is difficult to detect android collusion if applications are sharing user id. By

ent from occurrence of our

proposed attack methodology. The diagram below explains each step taken to prevent from

Figure

1- Both apps share the same user id and app 1 contains some

data.

2- User allows those permissions to app 1.

3- After user allows these permissions, they are stored in firebase.

4- App 1 accesses user data based on the allowed permissions.

5- App 2 tries to gain access to same set permissions

6- It will show a warning message about app 2 using permission set of app 1.

While it is seen in the proposed attack that when both applications app 1 and app 2 are

installed in the device sharing same user id, their permissions, resources, and data everything

is shared between them. As a defense we have proposed a solution that on installation of

every application, their set of permissions can be stored in firebase and whenever any other

application tries to access those specific set of permissions, it shows a warn

application collusion. Below attached screenshots represent how permissions are stored in

firebase and what warning message it shows.

Figure 20 - Defense solution Workflow

Both apps share the same user id and app 1 contains some permissions to access user

User allows those permissions to app 1.

After user allows these permissions, they are stored in firebase.

App 1 accesses user data based on the allowed permissions.

App 2 tries to gain access to same set permissions

l show a warning message about app 2 using permission set of app 1.

While it is seen in the proposed attack that when both applications app 1 and app 2 are

installed in the device sharing same user id, their permissions, resources, and data everything

hared between them. As a defense we have proposed a solution that on installation of

every application, their set of permissions can be stored in firebase and whenever any other

application tries to access those specific set of permissions, it shows a warning message of

application collusion. Below attached screenshots represent how permissions are stored in

firebase and what warning message it shows.

permissions to access user

l show a warning message about app 2 using permission set of app 1.

While it is seen in the proposed attack that when both applications app 1 and app 2 are

installed in the device sharing same user id, their permissions, resources, and data everything

hared between them. As a defense we have proposed a solution that on installation of

every application, their set of permissions can be stored in firebase and whenever any other

ing message of

application collusion. Below attached screenshots represent how permissions are stored in

Figure 21

Figure 22 -

Another preventative solution that we have come up with is probability framework, since it is

difficult to detect colluding apps because of some legitimate features of Android such as

shared preferences, shareduserid etc. We have grouped together all the potential colluding

features that can be used by attackers while developing the apps to evade Android security

and perform application collusion. After grouping these features, we have assig

of them an absolute value and represented a theoretical probability framework to calculate

their collusion degree. As we are focused on collusion attacks with same developer, signature,

and user id. That is why, X in the table is kept as const

21 - Set of permissions stored in firebase

 Warning message when app 2 is opened

Another preventative solution that we have come up with is probability framework, since it is

difficult to detect colluding apps because of some legitimate features of Android such as

d preferences, shareduserid etc. We have grouped together all the potential colluding

features that can be used by attackers while developing the apps to evade Android security

and perform application collusion. After grouping these features, we have assig

of them an absolute value and represented a theoretical probability framework to calculate

their collusion degree. As we are focused on collusion attacks with same developer, signature,

and user id. That is why, X in the table is kept as constant

Another preventative solution that we have come up with is probability framework, since it is

difficult to detect colluding apps because of some legitimate features of Android such as

d preferences, shareduserid etc. We have grouped together all the potential colluding

features that can be used by attackers while developing the apps to evade Android security

and perform application collusion. After grouping these features, we have assigned each one

of them an absolute value and represented a theoretical probability framework to calculate

their collusion degree. As we are focused on collusion attacks with same developer, signature,

35

Features Assigned value

Same developer + Same signature certificate + Shared user id X

IF (App has  demystified permission) 1 (Assign)

IF (App Uses  Shared preference) 2 (Assign)

IF (App Uses  DB access flag) 3 (Assign)

IF (App creates  Data backup) 4 (Assign)

IF (App sends  out data) 5 (Assign)

Table 5 - Potential Colluding Features in Android

After a comprehensive scan and acquired results, tested application is further classified into 4

major categories based on their probability. These categories are Vulnerable, Suspicious,

Risky, Critical, and Under Attack.

Probability

Equation

Values Percentage Probability

(P) (0-1)

Probability

Value

Application

Status

Collusion

Degree

P = X+1 Demystified

permission

20% 0.2 Low Vulnerable Minor

P = X+2 Shared

preferences

40% 0.4 Average Suspicious Slight

P = X+3 DB access flag 60% 0.6 Moderate Risky Dangerous

P = X+4 Data backup 80% 0.8 High Critical Dangerous

P = X+5 Send out data 100% 1 Max Under

Attack

Unsafe

Table 6 – Colluding probability of each feature set

4.5 DISCUSSION

After the evaluation of stored data, it can be proved that stored information in firebase is

accurate and effective. With just one feature of sharing same user id, apps were allowed to

share permission and with this, any malicious app residing in mobile device can take

advantage of it. As it is mentioned in previous chapters that application collusion attack can

only take place when there is more than one app included, which means that a combination of

at least two apps is required in our proposed work, and it must have the same user id. In our

methodology we used one app to show message and lure the user into believing that he may

have a chance to win a cash prize and rewards by downloading App2. But there are many

36

other ways through which Apps can be downloaded into targeted device. Since Google Play

store only includes apps that are developed by trusted developers and publishers, such

malicious apps as they have been developed by attackers and intruders, cannot be found in

Google play store. However, there are several ways to get such apps with illicit intent to

targeted user such as phishing mails. Through phishing mails attackers can make the mail

look reliable and offer something appealing for user so that he can be convinced into

believing that this mail is authentic These mails can simply ask user to download either both

apps or single app at first by offering a service or feature in app that cannot be easily found in

google store for example free downloading of YouTube videos. After the first app is

downloaded, user grants permissions and avails the service of the app. Meanwhile

advertisements and messages to download app2 can be displayed through app1. As the user

has gained trust through app1, it is quite predictable for user to download app2. After app2 is

downloaded with a unique service to offer, both the downloaded apps now share the same

userid which means application collusion attack is performed effortlessly without user

knowing anything. Likewise, such apps can be delivered through third party sources as well.

There are number of sites where applications are distributed providing services that are

interesting for user but in the backend have malicious purpose to gain deep level access of

user’s device. Even user can be asked to download both apps at once by conditioning that

functionality of app1 depends on app2.

37

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

The use of smartphones has become a necessity today. The number of its users has grown to

an indefinite level. People have started switching towards smart phones for their financial

businesses as well as educational and social matters. Therefore, smartphones are comprised of

most of user’s private data and sensitive information and for this reason, smartphones are the

primary target for attackers these days. Even though smartphone manufacturers are trying

their best to design an effective security model that prevents from all possible threats and

overcomes its vulnerabilities, but it seems like attackers are always one step ahead of what

has been presented. Same is the case in application collusion. Every application that requires

to access some level of user’s private data to function has to request a permission from user to

access it. If permission is rejected, the application is not allowed to access user’s data. This

permission mechanism is provided for making users aware that their applications are

accessing sensitive information. Moreover, this mechanism gives a choice for users to deny

applications from accessing their personal data. However, in application collusion attack,

malicious applications can take benefit of other application’s vulnerabilities and use it as a

tool to access user’s private data without user’s knowledge. Quite a lot of research have been

done and many solution tools were presented previously with the aim of detecting colluding

applications in Android though they all had certain limitations or conditions in order to detect

or prevent application collusion efficiently. The foremost issue that is faced while

constructing a solution for such an attack is there are no datasets available of colluding

applications, and as a result there are no exact properties defined of how this attack works. In

addition to this, some applications are comprised of actual legitimate nonthreatening code but

are exploited by attackers to evade authentication. Due to this lack of information, it becomes

challenging for researchers to present a solution for detecting or preventing application

collusion without proper direction.

This study, therefore, starts off first with focus on discovering and analyzing in depth of most

likely vulnerable features supported by Android OS that can be exploited by attackers to

perform this attack and till now no solution has considered to detect such features since they

are supported by Android itself. As a result, it was founded that Android allows developers to

create applications by assigning them same user id. Basically, a user id is a unique identifier

of an application with which they are identified by the OS. However, under a condition of

same developer developing multiple applications with same keystores, Android allows

38

developers to assign these applications same user id. The concept of same user id was created

to assist developers for making their correlated applications communicate once installed in the

device but there are high chances of occurrence of application collusion attack with it. This

study has shown how this same user id attribute in an application’s manifest file can lead to

make other applications collude with it. For this experiment, two applications were created,

one was assigned a permission to read contacts while the other application was assigned no

permission at all. Both of these applications however had sharedUserId in their manifest files.

Once these applications were installed in a device, the OS due to their same user id, treated

them as a single application and hence permissions were shared. In this way it is shown how

an application with no permission assigned can still access to unauthorize sensitive data of

user by misusing permissions of other applications due to having same shareduserid. Next

stage of this attack was to send out the data which is accessed illegally. This was done by

connecting the application to firebase. In this attack we have sent out the data with an

assumption that firebase could be compromised, and user’s sensitive data could be exposed to

attackers. The purpose behind this was just to demonstrate how easily an application could

access data it is not authorized of and how simple it is to send out the sensitive information to

any malicious ip or network etc. Hence with this attack, it was determined that there are

various vulnerabilities present in Android that needs to be addressed before long.

Later, concern was shifted to security, raising a question of how to detect and prevent from

such colluding applications. Thus, this study then presents two defense solutions, first

solution works with a concept of storing each application’s set of permissions on connected

database and whenever any other application tries to access those group of permission, a

warning message of android collusion would pop up. Second solution presented is a

hypothetical probability framework that can assist in future research to provide a guideline on

what android features to look for when designing a solution for detecting these attacks. It can

further provide a direction for researchers of what has and hasn’t been discovered yet. Each

feature in the framework is assigned a value and then different combinations are generated,

after this, sum of each combination is calculated through which value of probability of an

application to be collusive is calculated.

5.2 FUTURE WORK

In future this research can expand and surpass in detecting further properties of android

applications and built-in features that can be exploited and misused by attackers to perform

malicious activities, gain unauthorized access, or invade Android authentication process.

Additionally, this attack can further be enhanced if through performing reverse engineering

we get user id of any famous apps like WhatsApp, Facebook or snapchat. Since these

39

applications are present in almost everyone’s mobile device, it would only require creating

one application with same user id as of those famous applications to perform collusion attack.

Plus, the hypothetical probability framework provided can be implemented practically to

detect application collusion attack.

40

BIBLIOGRAPHY

1. What is android-2 https://www.androidauthority.com/what-is-android-328076/

2. Android OS openness -2 https://en.wikipedia.org/wiki/Android_(operating_system)

3. Android applications and permissions

https://developer.android.com/guide/topics/permissions/overview

4. “Permissions on Android,” Android Developers.

https://developer.android.com/guide/topics/permissions/overview

5. Android malware and attack main objective

https://searchmobilecomputing.techtarget.com/definition/mobile-malware

6. Android Attack types https://www.greycampus.com/opencampus/ethical-hacking/types-

of-android-attacks

7. Android Malware types https://developers.google.com/android/play-

protect/phacategories

8. Wang, S., Chen, Z., Yan, Q., Ji, K., Peng, L., Yang, B. and Conti, M., 2020. Deep and

broad URL feature mining for android malware detection. Information Sciences, 513, pp.600-

613. -2 (deep URL feature mining)

9. Jung, J., Lim, K., Kim, B., Cho, S.J., Han, S. and Suh, K., 2019, June. Detecting

malicious android apps using the popularity and relations of apis. In 2019 IEEE Second

International Conference on Artificial Intelligence and Knowledge Engineering (AIKE) (pp.

309-312). IEEE. (Popularity APIs)

10. Arora, A., Peddoju, S.K. and Conti, M., 2019. Permpair: Android malware detection

using permission pairs. IEEE Transactions on Information Forensics and Security, 15,

pp.1968-1982. (Permission Permpair)

11. Sahay, S.K. and Sharma, A., 2019. A survey on the detection of android malicious apps.

In Advances in Computer Communication and Computational Sciences (pp. 437-446).

Springer, Singapore. (survey)

12. Wang, W., Zhao, M., Gao, Z., Xu, G., Xian, H., Li, Y. and Zhang, X., 2019.

Constructing features for detecting android malicious applications: issues, taxonomy, and

directions. IEEE access, 7, pp.67602-67631. (App collusion Wala)

13. Ribeiro, J., Saghezchi, F.B., Mantas, G., Rodriguez, J., Shepherd, S.J. and Abd-

Alhameed, R.A., 2020. An autonomous host-based intrusion detection system for android

mobile devices. Mobile Networks and Applications, 25(1), pp.164-172. (HIDS Wala)

14. Yuan, H. and Tang, Y., 2020. MADFU: An Improved Malicious Application Detection

Method Based on Features Uncertainty. Entropy, 22(7), p.792. (MADFU)

41

15. Cai, H., Fu, X. and Hamou-Lhadj, A., 2020. A study of run-time behavioral evolution of

benign versus malicious apps in android. Information and Software Technology, 122,

p.106291.

16. Ravitch, T., Creswick, E.R., Tomb, A., Foltzer, A., Elliott, T. and Casburn, L., 2014,

December. Multi-app security analysis with fuse: Statically detecting android app collusion.

In Proceedings of the 4th Program Protection and Reverse Engineering Workshop (pp. 1-10).

17. Elish, K.O., Yao, D. and Ryder, B.G., 2015, May. On the need of precise inter-app ICC

classification for detecting Android malware collusions. In Proceedings of IEEE mobile

security technologies (MoST), in conjunction with the IEEE symposium on security and

privacy.

18. Bhandari, S., Laxmi, V., Zemmari, A. and Gaur, M.S., 2016, March. Intersection

automata-based model for android application collusion. In 2016 IEEE 30th International

Conference on Advanced Information Networking and Applications (AINA) (pp. 901-908).

IEEE.

19. T. Chen, Q. Mao, Y. Yang, M. Lv, and J. Zhu, “TinyDroid: A Lightweight and Efficient

Model for Android Malware Detection and Classification,” Mob. Inf. Syst., vol. 2018, pp. 1–

9, Oct. 2018, doi: 10.1155/2018/4157156.

20. “Dynalog: an automated dynamic analysis framework for characterizing android

applications,” in 2016 International Conference On Cyber Security And Protection Of Digital

Services (Cyber Security), London, United Kingdom, Jun. 2016, pp. 1–8, doi:

10.1109/CyberSecPODS.2016.7502337.

21. K. Xu, Y. Li, and R. H. Deng, “ICCDetector: ICC-Based Malware Detection on

Android,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 6, pp. 1252–1264, Jun. 2016, doi:

10.1109/TIFS.2016.2523912.

22. K. A. Talha, D. I. Alper, and C. Aydin, “APK Auditor: Permission-based Android

malware detection system,” Digit. Investig., vol. 13, pp. 1–14, Jun. 2015, doi:

10.1016/j.diin.2015.01.001.

23. E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer: Automatic

framework for android malware detection using deep learning,” Digit. Investig., vol. 24, pp.

S48–S59, Mar. 2018, doi: 10.1016/j.diin.2018.01.007.

24. S. Hassan, C. Tantithamthavorn, C.-P. Bezemer, and A. E. Hassan, “Studying the

dialogue between users and developers of free apps in the google play store,” in Proceedings

of the 40th International Conference on Software Engineering, Gothenburg Sweden, May

2018, pp. 164–164, doi: 10.1145/3180155.3182523.

25. W. Y. Lee, J. Saxe, and R. Harang, “SeqDroid: Obfuscated Android Malware Detection

Using Stacked Convolutional and Recurrent Neural Networks,” in Deep Learning

42

Applications for Cyber Security, M. Alazab and M. Tang, Eds. Cham: Springer International

Publishing, 2019, pp. 197–210.

26. K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “DroidEvolver: Self-Evolving Android

Malware Detection System,” in 2019 IEEE European Symposium on Security and Privacy

(EuroS&P), Stockholm, Sweden, Jun. 2019, pp. 47–62, doi: 10.1109/EuroSP.2019.00014.

27. J. Xu, Y. Li, R. Deng, and K. Xu, “SDAC: A Slow-Aging Solution for Android Malware

Detection Using Semantic Distance Based API Clustering,” IEEE Trans. Dependable Secure

Comput., pp. 1–1, 2020, doi: 10.1109/TDSC.2020.3005088.

28. M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning based android

malware detection using real devices,” Comput. Secur., vol. 89, p. 101663, Feb. 2020, doi:

10.1016/j.cose.2019.101663.

29. “Firebase.” https://firebase.google.com/ (accessed Feb. 11, 2022).

30. “Developer Policy Center.” https://play.google.com/about/developer-content-policy/

(accessed July 20, 2022).

