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ABSTRACT 

The project aims at developing a Pipe Inline Inspection Robot capable of traversing 

through complex pipe layouts while performing non-destructive testing. This project 

focuses on a novel mechanism that allows the robot to turn through elbows and fit 

through a larger diameter range of pipe compared to its previous version, ATOM. 

Furthermore, the report includes detail of the active diametrical change control module 

employed and the redesigned passive system conjoined to the mechanism. Finally, AIOM 

is equipped with a visual inspection module that enables it to process and detect cracks 

onboard creating a standalone unit that can be used in a variety of scenarios.  
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PREFACE 

This thesis is presented to the NUST School of Mechanical and Manufacturing 

Engineering (SMME), Islamabad in partial fulfillment of the requirement of the degree 

BE Mechanical Engineering for the student authors and describes in detail all the efforts 

that led to completion of their Final Year Project titled “Autonomous Inline Pipe 

Inspection Robot”. This thesis elaborates extensively all the stages that this project went 

through from conception phase all the way to the finalization phase and also sheds some 

light on the methodology and calculations that were adopted in order to design the 

driving vehicle and the inspection module. While organizing this thesis, care has been 

taken to strictly keep it in accordance with the recommended format provided by SMME. 

The authors have made a conscious method to use simple and lucid diction and explain 

the major concepts of Non-Destructive testing and in pipe locomotion to the readers in a 

simple yet comprehensive manner. Visual aids like pictures, drawings, tables and graphs 

etc. have been used wherever necessary to add to the overall clarity of the report. 

Furthermore, design calculations and formulae have also been written. A dedicated 

chapter at the end identifies certain areas in which there is some room for improvement to 

make this machine even better and more useful. This chapter also points out the aspects 

on which our juniors can work to get better results from this machine. 
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CHAPTER 1 

 

INTRODUCTION 

Millions of kilometers of pipelines run across the world. These transfer a wide variety of 

fluids, most commonly, oil, gas and water. If defects in these pipes are not identified and 

rectified in a timely manner, vastly disastrous consequences are seen. Two such recent 

incidents include: 

• Dhabeji pipeline burst stopped water to Karachi last month 

• Sui gas pipe leak in Mahmoodabad, Karachi 

To prevent such disaster and prevent loss to property and life it is necessary to conduct 

regular inspection. One such mechanism is inline pipe inspection via robot vehicles.  

Our project comprises 2 major parts.  

 Design, development and control of a robot vehicle that capable of traversing long 

pipeline structures. 

 Study and evaluation of NDT techniques used inside pipelines and then selecting 

one suited to our needs. 

Following are the most widely used inspection methods for detecting surface and sub 

surfaces defects in pipelines. 



 

2 

 

1.1.1 Magnetic flux Leakage method: 

This method employs a strong magnetic field which is established in the pipe 

circumference using either magnets or by feeding electrical current to the steel. Defected 

and cracked regions of the pipe cannot support as much magnetic flux as undamaged 

areas so magnetic flux leaks out of the pipe wall at the damaged areas. Area of damage is 

then detected by an array of sensors which then intercepts the magnetic flux. 

This method requires an array of large number of sensors around the circumference of the 

measuring tool to catch leakage from all the sides and accurately measure the defects. 

Since or designed robot has three legs and is not in contact with the pipe all around, this 

method cannot be utilized in it. Furthermore, the flux will cause interference with the 

motor EMF causing mobility problems. 

 

1.1.2 Ultrasonic Testing: 

This method is used to accurately measure distance to a surface or thickness of a material. 

High frequency sound waves are emitted from a transducer into the material and echo 

signals reflected from inner outer surfaces and cracks of material are received. Time 

interval between the arrivals of different signals enables the tool to measure width of 

either crack or whole material. 

This method is has very advantages such as 

 High penetrating power and sensitivity, allows even very small cracks to be 

detected. 

 Greater accuracy than other NDTs. 

 Non-hazardous, portable and highly automated process. 

 Quick and easy implementation and results. 
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This method also requires series of transducers to be fixed all around the circumference 

of measuring tool (robot) and our design is limited in that sense. 

1.1.3 Visual Inspection: 

Non-Destructive visual inspection includes using different cameras for video inspection. 

Some provide specific views of the pipeline while others are used to take high quality 

images of inside to investigate. Some camera systems allow complete control to aim and 

zoom thus enhancing field of view and quality.  

Inspection camera used can pan and rotate in all direction and is fixed with lights to 

enhance the visibility. Camera mounted on a tethered or untethered robotic crawler will 

be sent inside the pipe and inspection can be performed. Such a method is very practical 

and cost effective for a design such as ours. 

 

A wide range of defects and hindrances can occur in pipes which include: 

 Corrosion 

 Cracks 

 Leakage 

 Pin holes 

 Algae 

 Blockage 

High resolution Visual inspection will allow many major defects to be detected with ease 

such as Corrosion, leakage, algae and blockage. These defects are critical to the pipe 

systems and need to be detected to avoid damage and loss. Furthermore coupling it with 

image processing unit results in a quicker and more intelligent process.   
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CHAPTER 2 

LITERATURE REVIEW 

Roslin et al. [1] in their work have discussed multiple different systems of locomotion 

for inline pipe robots including hybrid systems incorporating multiple sub systems. These 

include caterpillar, wheeled and wall press types vehicles. The combination of different 

forms of locomotion allows more flexible applications. Their work discusses the 

importance of flexibility in robot vehicles necessary to achieve turning and identifies wall 

press type robots as ideal for vertical or inclined applications. Within wall press types 

they discuss different vehicles and conclude that different hybrid systems offer different 

advantages. The wall press caterpillar robot allows easier navigation through branches 

while the wall press wheel type gives greater mobility and the wall press screw type 

performs best in curved pipes. Since our work revolves around the use of a wall press 

type robot, knowing its implications and advantages becomes important to enhancing its 

use and utility. None of the models discussed in their work however shows the ability to 

navigate from bigger pipes to smaller branches. 

 

Nayak et al. [2] have presented their design of a new wall press locomotive systems. 

Their proposed model is a screw driver adaptable wheeled wall press type robot. The 

functioning of such a model is fairly different from our standard driven wheeled wall 

press type but the paper discusses in depth design of such a robot vehicle. They have 

discussed the main parameters necessary for design and functionality of a wall press 

robot. These primarily include mass of robot, wheel radius, and static friction and drag 

forces. The work also studies and presents the minimum torque required to prevent 

slippage for inclined climb for different coefficients of frictions.  
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These details help us identify the parameters that need to be taken in to account in 

designing and re designing a robot vehicle. Before we can move to determining and 

stabilizing traction forces frictional coefficient between wheel and pipe must be 

determined from prior data or experimentally. 

 

Choi et al. [3] have worked on the design and implementation of active steering 

capabilities of in inline pipe robots. They discuss the ability of robots to navigate 

complex pipe networks that include L and T bends. The set of forces that need to be taken 

into account while designing the legs of a robot have been described as well as the 

methods to evaluate the minimum radius an in pipe vehicle is capable of turning given its 

dimensions and the flexibility of its legs. The model on which they base their analysis is 

the MRINSPECT IV, a robot capable of passively adapting to the shape and dimensions 

of a pipe due to a system of links and springs that push the wheels against the wall while 

at the same time allowing a great degree of flexibility. Their work also demonstrates the 

capability of the robot vehicle to traverse through bends and pipe fittings while also 

discussing methods for predicting robot behavior in complex pipe structures.  

The MRINSPECT IV provides great insight for developing the passive adaptive module 

of our own robot vehicle while the methods discussed in the paper help us determine the 

dimensions of the pipe layout that our existing or modified vehicle will be able to safely 

traverse. 

 

Roh et al. [9] like Choi [3] base their work upon the MRINSPECT series of inline pipe 

robots. They discuss both the IV and the III model which are seen to not have very 

significant differences. They have performed further tests on the model by driving it 

through a variety of pipe layouts. They further analyze the forces on the moving robot 

vehicle and discuss its utility in urban pipelines thanks to its 3 dimensional steering 



 

6 

 

capabilities and outstanding mobility in navigation. Results of preliminary experiments 

have been used to verify these results. 

Further study of the MRINSPECT model allows us to better develop our own vehicle, 

parts of which are loosely based on the MRINSPECT. The tests performed here display 

proper techniques of verifying models that we will need to fully or partly incorporate into 

our work. 

 

Zhang et al. [8] in their work describe active diameter changing of the robot vehicle for 

it to allow travel in pipe systems of varying diameter. They discuss the parameters 

including robot geometry, frictional coefficients and inclination angles that must be 

determined or taken into account to be able to accurately develop a control strategy.  

Their mechanism involves the use of force detection on the legs to determine when 

diametric change is necessary. This method also allows the maintaining of a constant 

traction force between the wheels and walls since traction is a function of the contact 

force between the wall and the wheel. A constant tractive force ensures that the robot 

moves smoothly and without slippage. 

This study allows us to develop a control system taking sensory information regarding 

the contact force on the legs of the robot and outputting a signal that either retracts or 

expands the leg. We thus develop a system capable of maintaining a constant traction 

force and also therefore of altering diameter as necessary. 

 

Song et al. [11] in their work discuss the kinematic properties of a wheeled mobile robot 

in a cylindrical workspace, that is, a pipe. They start with discussing the kinematic 

properties of a single wheel and then analyze the geometric constraints of a wheeled 

robot in pipe with analytical geometry. Based on these analyses they discuss kinematic 
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properties and then simulate the rolling of a single wheel to verify results. While they 

primarily focus on car type robots which would have different geometric constraints and 

wheel orientation as compared to our wall press type robot, we can draw upon their 

analyses and results to develop our own kinematic model. 

 

Zhao et al. [12] have developed a kinematic model of a wall press type robot and 

simulated its motion in a straight round pipe using MSC ADAMS. Their model resembles 

the MRINSPECT IV we have previously seen adopting a similar mechanism. In their 

work they discuss the theoretical background of the modeling and provide in depth detail 

of the modeling process and their results. As we work on modifying our existing robot to 

be able to navigate an elbow it would be constructive to simulate its potential motion in a 

similar manner. Where Zhao et al. have used a straight pipe we can develop a curved one. 

 

Alexander Reiss [4] has presented the numerous forms of NDT that may be used in pipe 

inspection, the most prominent of which are Ultrasonic, Laser profilometry, radiography 

and visual inspection. Ultrasonic inspection is generally reserved for flooded or partially 

flooded pipes as ultrasound waves require a medium of travel. In unflooded pipes a 

modified probe may be used but that requires constant contact with the pipe surface. 

Laser profilometry coupled with a CCD camera, while extremely suitable for detection of 

surface defects is a highly expensive form of NDT primarily because of the stringent 

accuracies involved. Film based radiography is an effective technique for locating and 

evaluating discontinuities. However due to the limitations of the amount of area that can 

be inspected in a single go, radiography is generally reserved for weld inspection which 

is a well-defined specific region. Visual inspection remains the preferred mode of inline 

pipe inspection throughout the world. It generally involves an operator viewing the video 

feed in real time which can take up to several hours for longer pipes. 
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For an operator to view possibly hundreds hours of video makes the process time and 

labor intensive as well as opens the door for human error. One way around this is on 

board or remote image processing for defect identification. Safizadeh et al. [5] study the 

utility and methods of image processing in their work. It should be noted that image 

processing here includes both laser profile images on a CCD camera and standard RGB 

video from a CCTV camera. In their work Safizadeh et al. focus mostly on processing 

images obtained from a circular ring shaped pattern projected by a laser diode. They 

describe a novel method for extracting and analyzing intensity variations in the obtained 

images and consequently producing an accurate representative image of the pipe wall. 

While we are not inclined to use laser profilometry in our work, it can be observed from 

their work that image processing can come in extremely handy in defect analysis greatly 

reducing required time and effort.  

 

Halfawy et al. [6] and Rzhanov [7] in their respective works discuss 2 alternative ways 

of processing CCTV images to achieve the desired results. Rzhanov suggests a photo-

mosaicking approach to combining images to create a single 2D picture easier to view, 

store and analyze. This method, while it reduces the chance for error and allows more 

intricate observation maintains the disadvantage of being labor intensive and time 

consuming. Halfawy however suggests an efficient algorithm for computing the presence 

of a crack in an image, thereby allowing the machine itself to determine and record the 

presence of a defect.    

 

Halfawy et al. [6] first identify the visible features that are generally common to cracks 

and exploit these visual characteristics to efficiently identify actual cracks and filter out 
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background noise. Their algorithm consists of three main steps. The first is the 

preparation of the CCTV image for crack detection by identifying a set of candidate crack 

fragments using the Sobel method to detect horizontal and vertical edges separately. The 

second step enhances candidate crack segments by filling the gaps between closely 

adjacent and aligned edges and merges fragments that potentially represent the same 

crack. In the third step two filters are defined and applied based on prior knowledge of 

visual characteristics of cracks to remove noise. Extensive testing is performed to prove 

the robustness of the algorithm. 

We base our own work loosely upon that of Halfawy, using similar criteria for crack 

identification and adopting many of the tools that they have used in their work. Their 

algorithm while exceptionally accurate as shown by their test results has the limitation of 

being computationally demanding which is why they limited their work to analyzing 

existing CCTV footage as opposed to conducting a real time analysis. We will need to 

enhance algorithm speed before we can effectively process images in real time. 

 

Similar to Halfawy, Iyer et al. [10] present another algorithm for detecting cracks inside 

pipes. They however use slightly different visual criteria for identifying a crack. They 

define cracks in pipe images as clearly visible patterns (darkest in the image), locally 

linear and branching in a piece-wise fashion. Like the previous work, here cracks are first 

enhanced by mathematical morphology with respect to their spatial properties. In order to 

differentiate cracks from analogous background patterns, cross curvature evaluation 

followed by linear filtering is performed. Extensive testing is performed to check the 

robustness of the algorithm. 

The contrasting yet reasonably accurate approaches used in this work and the previous 

show that different method may be used to identify and isolate cracks. The first steps 

however are properly defining what features comprise a crack. In both cases however the 
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analysis was limited to still images or previously recorded video. To process images in 

real time a faster approach would be needed. 
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CHAPTER 3 

METHODOLOGY 

3.1.1    Initial Design: 

The basic design of our inline inspection (ILI) robot consists of three legs 120o apart 

which can adjust their length according to pipe diameter within certain limit. At their 

roots, these legs are collectively jointed to a screw which is rotated by a stepper motor 

allowing adjustments. The scissor mechanism implemented allows variation in leg length 

which is the most significant advantage of this ILI robot over other such as pigs. 

Components of design are as follows: 

1. Servo Motor: It controls the motion of wheels making the robot move forward 

and backward. 

 

Figure 1 Servo motor attached to one wheel 

2. Stepper Motor: It controls the length of legs making the robot to adjust to 

different diameters with the help of screw action.  
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Figure 2 Stepper Motor placed on Lead Screw 

3. Main Lead Screw: At the center of whole body, connects legs to stepper motor 

and allows diameter variation. 

 

Figure 3 Centrally Placed Lead Screw 

4. Scissor Mechanism: Scissor mechanism is fitted on screw which when rotates, 

causes extension and compression of scissors. 
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Figure 4 Scissor Link Mechanism Employed 

 

3.1.2 New Design: 

The previous design of AIOM had many limitations owing to certain constraints that 

rendered the robot’s mobility difficult in complex pipe structures such as bends and 

elbows. Moreover, the system was unable to provide adequate tractive force for smooth 

movement through the pipe while movement through a vertical pipe structure was not 

possible.  

 

Figure 5 SolidWorks Model of New Design 
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To overcome all these problems and to make a design that gave enough tractive force for 

vertical climb alongside flexibility for movement through an elbow, pantograph linkage 

system was employed. Key features of this system are as follows: 

 

Clearance: 

Redesigned legs have ample amount of clearance in comparison with the old one which 

enable the robot to move through bends and elbows. It also increased the passive 

flexibility of robot so it can adjust to small bumps on the inner pipe surface. Furthermore, 

the new design places the two wheels at a greater distance which increases the grip area. 

This in turn ensures that the robot’s motion is more stable. 

 

Figure 6: Passive Diametrical Module 
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Slider Roller Bearing: 

New system has slider roller bearing for flexible spring action offering almost no 

resistance to passive adjustment. This eliminates the possibility of robot being stuck in 

the pipe due to excessive resistance that previously caused problems.  The straight 

cylinder on which slider bearing is mounted made it feasible to measure normal force on 

each of the leg. A slider potentiometer moving along the linear motion of bearing gave 

corresponding voltage depending upon its position to measure how much force is being 

imparted on to the wheels. 

 

Figure 7: Slider Roller Bearing 

Supported springs: 

Springs in this mechanism are mounted on a cylinder which prevents them from buckling 

when compressed under the action of normal force; this ensures a fluid compression 

throughout the spring range without resistance. The spring stiffness is calculated based on 

normal force that is required for normal and as well as vertical movement. 
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3.2 Navigating In Elbow: 

AIOM was designed to be able to navigate through pipe elbows. The robot for now 

however is incapable of detecting bends ahead of it. This may be achieved in the future 

using multiple ultrasound sensors to determine both the distance and direction of the 

bend. For our purposes however we use the curvature of the bend and the orientation of 

the wheels to determine the velocities that need be applied to each driven wheel to 

achieve smooth turning. We then experimentally validate the results by turning the robot 

through the bend. 

 

Figure 8  Distribution of Legs in Robot 

  

Figure 9 Pipe Layout & Dimensions 

The outer and inner arc lengths of the pipe are measured as 34.25’’ and 19.625’’ 

respectively. We evaluate the actual distance travelled by each of the 2 legs at 30o to the 

horizontal. We assume the change in length from the shorter to the longer as uniform 

along the circumference. That is the change in length per degree is: 
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34.25 − 19.625

180
 

For 30o actual travel length becomes 22” for the shorter arc and 32” for the longer arc. 

The ratio of speeds that must be assigned to each of the two legs is therefore 1:1.6. The 

top leg lies effectively midway between the left and right leg and may therefore be 

assigned a speed that is the average of the 2 speeds. 

 

3.3.1 Tractive Force 

 

Figure 10 Free Body Diagram of Wheel 

The above figure shows the forces acting on a single wheel. Depending on the orientation 

of the wheel W may act towards or away from the pipe wall. In case W acts away from 

the pipe wall, 𝑁 = 𝐹 − 𝑊, where N is the normal contact force and F is the pressing 

force generated by the pressing of the wheel against the wall due to the diameter adaptive 
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mechanism. The tractive force generated along the wall largely depends on the frictional 

force between the wheel and the wall and may be determined by: 

1. Normal Contact Force 

2. Coefficient of friction 

𝑁 = 𝐹 + 𝑊 

OR  𝑁 = 𝐹 − 𝑊 (for top wheel) 

𝐹𝑓𝑟 = 𝜇𝑁 

 

 

Figure 11 Contact Forces on Robot 

It must be noted that the speed of the robot is not merely a function of motor speed but a 

function of tractive force. It is thereby necessary to determine said force to ensure a 

constant speed as necessary. The tractive force in each wheel is dependent on the contact 

force on the wheel and the coefficient of friction between the wheel and the pipe wall. 

The total tractive force is the sum total of the forces on the 3 wheels. 
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We do a static analysis of the above body to determine relation between the above forces 

for optimal tractive force. It should be noted that the our diameter adaptive mecanism 

allows control over the 3 contact forces by means of extension or retraction of the leg. 

This contact force is measured by means of a force sensitive rensistor mounted below the 

wheel.  

It should be noted that while 𝑁3 may appear to be 0 that is an undesirable case. To ensure 

tractive force is produced in each of the wheels and to maintain a certain degree of 

stability it is necessary that the top wheel be pressed against the wall thereby producing a 

certain contact force. The relation between the top and bottom contact forces for optimal 

running needs to be determined. This relation will allow us to control the adaptive 

mechanism via a single force sensor as the other legs may be adjusted before hand to 

ensure a certain force ratio. 

 

Σ𝐹𝑥 = 𝑁1𝑐𝑜𝑠60 − 𝑁2𝑐𝑜𝑠60 = 0 

𝑁1𝑐𝑜𝑠60 = 𝑁2𝑐𝑜𝑠60 

𝑁1 = 𝑁2 

Σ𝐹𝑦 = 𝑁1𝑠𝑖𝑛60 + 𝑁2𝑠𝑖𝑛60 − 𝑊 − 𝑁3 = 0 

2𝑁1𝑠𝑖𝑛60 − 𝑊 − 𝑁3 = 0 

𝟏. 𝟕𝟑𝑵𝟏 = 𝑵𝟑 + 𝑾 

This final equation gives us the relation between the 2 forces that needs to be maintained. 

Since the Weight, W of the robot remains constant for a given specification, the desired 

ratio may be maintained between the three contact forces by adjusting default leg length 

or the spring constant in use. This therefore allows the control of all 3 legs by a single 
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mechanism. The current weight of the complete vehicle is approximately 60 N, but that 

may vary as additional components such as sensors are installed. 

3.3.2 Importance of tractive forces: 

As a wall pressed type robot, tractive force plays a crucial part in the motion of AIOM. 

Tractive force is the force required to produce smooth motion between a body (wheels) 

and a tangential surface (pipe inline) through the use of dry friction. It decides the 

maximum speed of the robot for a particular power input. 

As the robot relies on the constant contact between its wheels and the pipe to travel 

through pipes and complex layouts such as elbows, it is necessary for this tractive force 

to remain at an optimum value that ensures that the robot is able to move within varying 

sized pipes, while maintaining a constant servo motor output. 

The tractive force present decides the power required by the servo motor to drive the 

wheels such that the robot travels at an optimum speed that allows it to efficiently 

visually inspect the pipe inline and detect cracks. This power requirement furthermore 

also decides the battery capacity needed for the robot to travel a particular distance. A 

larger tractive force subsequently means a bigger battery needs to be placed on the robot 

which increases the weight of the robot and additionally hinders smooth motion of the 

robot. 

Thus, it is in our best interest to ensure that tractive forces felt by robot stay constant. As 

will be seen in the following text, a major portion of our project was dedicated to 

devising a self-actuating mechanism solely aimed at maintaining previously mentioned 

tractive forces constant. 

3.3.3 Traction force optimization: 

The optimum traction force available is dependent on motor torque and the wheel radius: 



 

21 

 

𝐹𝑡𝑟 =
𝜏

𝑟
 

Based on our servo motor data sheet [13] the maximum torque produced by the motor is 

38 oz-in or 0.27 Nm. The design radius of the wheel is 1.5 cm. Optimum tractive effort is 

therefore: 

𝐹𝑡𝑟 =
0.27

0.015
= 18 𝑁 

The optimum tractive effort that we have evaluated is equivalent to the maximum tractive 

effort that may be produced by the motor. By maximising the tractive effort we 

significantly reduce wheel slippage. Since our primary method of localization is wheel 

odometry; to achieve reasonably accurate results it is necessary that slippage be kept as 

minimal as possible.  

Tractive effort like friction is a function of the frictional coefficient and contact force 

acting on the wheels. 

𝐹𝑡𝑟 = 𝑐𝑓𝑟 × 𝑁 

 While the coefficient for any particular pipe material would remain constant we are able 

to control the tractive effort based on the compression of the spring in each of the driven 

wheels. The spring when compressed exerts a force on the wheel pushing it against the 

wall thereby increasing the contact force. To determine the optimal level of compression 

we first conduct an external static analysis of the robot. (see fig. 3.2) 

For Nylon on PVC we obtain the frictional coefficient from [14] as 0.3. 

Required contact force is therefore: 

𝑁 =
18

0.3
= 60𝑁 

Robot weight = 5.1𝑘𝑔 × 𝑔 = 50𝑁  
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Angle between weight and leg = 60o 

𝑁𝑤 = 25 cos(60) = 12.5𝑁 

𝑁 = 𝑁𝑤 + 𝑁𝑠 

𝑁𝑠 = 47.5 𝑁 

Spring constant, k = 35 N/cm as determined experimentally. 

𝑁𝑠 = 𝑘𝑥 

𝑥 = 1.36 𝑐𝑚 

The compression of the spring needed to achieve optimal tractive force is therefore 1.36 

cm. A higher compression would drain excess power from the motor and reduce mobility 

while a lower compression would enhance the chances of wheel slippage.  

To maintain this specific level of compression we design a proportional controller using a 

linear potentiometer that takes the input as the current spring compression and outputs a 

signal to the central stepper to either expand or retract the robot legs till optimum 

compression is achieved. 

 

While we would ideally like to measure the actual force acting on the wheel, it is much 

easier to measure the compression of a spring, the ideal value of which we calculated 

above. This measurement is achived simply by connecting a linear potentiometer to the 

collar dirving the spring. The adaptive mechanism consists of a single lead screw 

conncected to a stepper motor which when turned causes extension or contraction of the 

legs thereby altering the diameter of the machine and varying the normal and therefore 

tractive force. We have designed our controller based on [8] albeit a simpler version. 
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The reference displacement mentioned above represents the contact force needed to 

achieve the desired traction as calculated in the previous section. We use a P controller as 

opposed to a PID controller since the computational cost outweighs the small increase in 

accuracy and signal smoothing. It should be noted that diametral change that occurs in a 

nozzle or reducer is in itself a gradual process and therfore renders the need of a higher 

level of control that is PID extremely unnecessary. The controller then drives the motor 

that turns the screw to produce the change necessary to achieve the desired traction force 

or diameter change. The potentiometer then provides a new force reading. 

 

The various forms of NDT commonly used were discussed earlier. The 3 possible 

methods that we shortlisted and believe capable of properly conducting internal pipe 

NDT: 

1. Ultra sound 

2. Laser Profilometry 

3. Visual 

We were forced to discard Ultrasaound due to the limitation of its ability to only function 

inside flooded pipelines, while our robot primarily functions in drained pipes. It was 

observed in [5] that laser profilometry carries the greatest potential for detecting surface 
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defects, the costs associated do not allow us to use this method. We are therefore left with 

visual inspection. 

Most visual NDT techniques in use today involve an operator guiding a robot vehicle 

while viewing the video feed. This can possibly take 10s of hours for several km in 

length of pipes. We therefore intend to incorporate a computer vision technique that will 

be able to detect the presence of defects and record their existing locations. This 

information may then be processed to create a layout of the entire pipe network including 

the location and orientation of the defects. Since the operator now has to review a 

significantly smaller amount of information, the chance for human error is significantly 

reduced. 

3.5.1 Crack Characteristics:  

Before we discuss techniques capable of identifying cracks in an image it is important to 

classify what may be qualified as a crack. We therefore list individualities generally 

unique to cracks. Cracks may be characterized as: 

1. Darker than most other features 

2. Long 

3. Irregularly linear (some deviation from a straight line) 

It should be noted that all cracks may not conform to this generalization, but these 

underlying assumptions let us take the first steps to developing a robust algorithm. 

3.5.2 Canny Edge Detector: 

Our proposed crack detection algorithm is based on the Canny Edge Detector developed 

by John F. Canny in 1986. The Canny operator was designed to be an optimal edge 

detector taking a monochrome image as input and producing a binary output image 

showing the positions of tracked image discontinuities. While in our work we do not alter 

the internal code of the Canny Edge Detector available with OpenCV packages, an 
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appreciation and understanding of its working is necessary for the additional steps to be 

taken. The edge detector is a multi-stage algorithm. The first step is smoothing the 

monochrome image by applying a Gaussian filter thus reducing noise. This is followed 

by evaluating intensity gradient of the image by a Sobel filter. The intensity gradient is 

basically the difference in intensity of 2 neighboring pixels. The gradient of each pixel is 

evaluated in both the horizontal(x) and vertical(y) directions and the edge gradient and 

orientation evaluated as: 

𝐸𝑑𝑔𝑒 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = √𝐺𝑥
2+𝐺𝑦

2
 

𝐴𝑛𝑔𝑙𝑒 = 𝑡𝑎𝑛−1(
𝐺𝑦

𝐺𝑥
) 

This is followed by a non-maximum suppression that reduces all pixels that may not be 

an edge to zero. This is achieved by scanning the image pixel by pixel and identifying the 

local maxima. The last step, hysteresis thresholding is of particular importance in our 

work because it is elements of this step that we will control for our own algorithm. For 

this final step Canny uses an upper and a lower threshold. The intensity gradient of all 

pixels that were previously identified as potential edges is checked against the thresholds. 

All pixels with an intensity gradient above the Upper Threshold are identified as an edge 

while all pixels below the Lower threshold are suppressed to zero. A pixel with an 

intensity gradient between these two values is identified as an edge only if it is connected 

to a pixel that lies above the Upper threshold; otherwise it is suppressed to zero. 

3.5.3 Setting Canny Thresholds: 

In most applications a certain set value may be used for the upper and lower thresholds of 

the Canny operator. However, where images are expected to vary as is in our case, fixed 

thresholds would not yield sufficiently accurate results. The inside visual environment of 

a pipe may vary significantly due to rusting, sedimentation, algae formation and pipe 
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material. The identification of cracks on such varied backgrounds requires that a dynamic 

threshold be used for edge detection. Here we propose two image parameters that may be 

used in setting the upper and lower thresholds. 

1. Mean pixel intensity: The mean pixel intensity of an image is a single integer that 

is the average intensity of all the pixels in the image. For an 8-bit monochrome 

image this number would range from 0-255. Assuming that the crack in the image 

covers only a minor portion of the entire image, the MPI is essentially a 

representation of the background on which the crack (if present) forms. A larger 

MPI therefore denotes a lighter (whiter) background and thus a more pronounced 

crack (essentially a collection of black pixels). For a higher MPI we can therefore 

safely set a higher upper threshold for the Canny operator and still expect to 

sufficiently capture the crack as an edge. This allows us to filter out a number of 

other features that may otherwise be wrongly identified as cracks. 

2. Standard Intensity Deviation: The Standard deviation of pixel intensity in 

monochrome image denotes the average deviation of pixel intensity from the 

mean intensity. Depending on the image this value may be as small as 2 or as high 

as 100, but in most of the cases we have dealt with, the SID was observed to lie 

between 10 and 60. Again assuming that the crack itself would form a minority of 

the image, the SID would be a representation of the variations in the background. 

A higher SID and therefore a higher degree of variation would thus mean that 

there are a greater number of features that may falsely be identified as cracks. It 

should be noted that cracks tend to form the darkest parts of an image. Other 

features such as patches of rust or scratches are generally lighter. Therefore as the 

lower threshold of the Canny operator is increased, the ‘extras’ get filtered out 

first. The SID therefore assists in setting the lower threshold. 

Based on the 2 parameters (MPI and SID) defined above we can now set dynamic 

thresholds for the Canny operator depending on the image obtained. As mentioned earlier 
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the MPI may vary from 0-255 while the SID in general varies from 10-60. These values 

differ from the range of the Canny operator threshold that is 0-1000. A scaling factor is 

therefore necessary to determine the actual threshold values to be given to the Canny 

operator. 

3.5.4 Determining Scaling factor: 

The scaling factors for the MPI, to set Upper Threshold, and for the SID, to set Lower 

Threshold, were determined empirically using a library of 40 images (20 cracked, 20 un-

cracked). The scaling factor providing the most accurate results was deemed appropriate. 

Accuracy is defined as the percentage of images correctly identified as positives for 

cracks. A coarse iterative approach (increments of 1) was used to obtain a rough value for 

each of the scaling factors. This was then followed by 2 further finer iterative methods 

(increments of 0.1 and 0.01 respectively) each time narrowing the range of the SF. The 

final values for the scaling factors were determined as 3.82 for MPI and 14.4 for SID 

which presented an accuracy of 95% (after incorporating other steps of the algorithm). 

3.5.5 Extracting Cracks from Detected Edges:     

The steps described above lead up to the Canny Edge Detector that outputs a binary 

image where each pixel is identified as part of an edge or zero. Dynamic thresholding of 

the Canny operator does not filter out all of the edges that may wrongly be identified as 

cracks. We therefore rely on other predominant characteristics of cracks to segregate 

identified edges into cracks and non-cracks. As mentioned earlier cracks are long and 

irregularly linear. Based on these 2 underlying assumptions we shall conduct further 

analysis. 

As mentioned beforehand, the Canny Edge Detector outputs a binary image identifying 

the detected edges. This image however forms no correlation between the pixels 

identified as edges. We therefore introduce another function from the OpenCV library, 
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Find Contours. This function takes as input a binary image and outputs an array of 

contours where a contour is a collection of pixels directly connected to each other. Each 

contour represents a separate edge. Said edges include cracks as well as other features. It 

should be noted that this method may not take single cracks as whole. Discontinuities 

may arise in edge formation due to lighting or texture and single cracks may appear 

broken up into many. This however does not interfere significantly with our next steps. 

To isolate cracks we first determine the length. The length of each contour may simply be 

approximated as the number of pixels in the contour. For our purposes we have set 30 as 

the minimum number of pixels that a contour must contain for it to be considered a 

potential crack. This limit does impose a certain restriction on our method rendering it 

incapable of identifying smaller cracks. 

The previous steps give us a list of potential contours positive for cracks. Each contour is 

then approximated as a 1st degree polynomial that is, a straight line. The error about this 

linear approximation gives an estimate of the contour’s deviation from a perfectly straight 

line. The total error is normalized by dividing by the length of the contour to obtain the 

error per unit length or error per pixel. Cracks tend to be less linear then scratches or 

joints but more linear then patches of corrosion or algae. An upper and lower bound for 

normalized error may thus be set to identify cracks. These bounds were determined 

empirically using our library of images. Suitable values for the upper and lower bound 

were found to be 0.05 and 0.4 respectively. 
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Figure 12 Actual Grayscale Image 

 

Figure 13: Binary picture after Canny Operator. A large number of ‘extra’ edges are 

visible 
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Figure 14 Image after checking for crack parameters. The parts identified as cracks are 

highlighted in green while the edges not identified as cracks are highlighted in red. 

 

3.5.6 Sensing Hardware: 

The hardware used is a Raspberry Pi 2.0 board and a Raspberry Pi Camera Module V2 

which has a Sony IMX219 8 Megapixel RGB sensor. The camera module is mounted 

with a wide angle lens providing a 120o field of vision. The frame rate is set to 3 frames 

per second. While this may seem low, it is sufficient to capture full cracks without 

interruption although it does limit the maximum speed the robot may travel at. It should 

also be noted that the Raspberry Pi 2.0 is a mid-range board and higher powered 

processors may allow for sufficiently improved functionality. 

 

3.5.7 In pipe crack identification: 

For detection and analysis of cracks inside pipes we modify, or rather extend the method 

proposed earlier. As mentioned above the camera module obtains a series of images (at a 
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rate of 3 frames per second). Each image undergoes the steps detailed in the previous 

sections and edges identified as cracks are obtained. A camera inside a pipe is able to 

obtain an image several feet into the pipe with decreasing view of the wall the further into 

the pipe the image goes. For our purpose we require only a certain region that is visible 

with adequate clarity. We therefore define a region of interest bounded between two 

concentric circles. Cracks that fall within this region are recorded while the remainder of 

the image is ignored. 

 

3.5.7.1 Defining the region of interest: 

We define the region of interest with two concentric rings that enclose a part of an image 

a set distance from the camera. This distance (d) is calculated using the pipe radius and 

the angle of view (𝜑) which is 120o in our case: 

𝑑 =
𝑅𝑝𝑖𝑝𝑒

tan (
1
2

𝜑)
 

 

 

Given the resolution of the image we set the diameter of 

the outer ring equivalent to the height (or width if that is 

the smaller dimension). The inner ring we have set to be 

0.85 times the height. This value has been set taking into 

account the frame rate and the speed of the robot vehicle. 

The closer this ratio is to 1 the finer our region of interest 

would be and the more accurate our analysis. However this would require either the robot 

to travel at a slower speed or a higher frame rate and therefore greater processing 

capabilities. 
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Figure 15 Region of Interest of the robot is captured between two circular rings 

3.5.8 Attaining relevant data: 

Now that we have processed the image and defined the region of interest within the 

image, we move to extract information that will be used for further analysis. Our main 

goal here is to be able to identify the location and orientation of a crack in a pipe. For this 

we record two parameters whenever a partial crack is identified in the defined region of 

interest. The first is the distance(s) that is the sum of the distance the robot has travelled 

since the start of its journey and the constant distance (d) between the camera and the 

ROI that we calculated earlier (See fig.). We employ wheel odometry using motor 
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encoders built into the driving motors to determine the total travelled distance. 

 

Figure 16 Length parameter used in localization 

Admittedly this is a crude method of localization of the robot and could significantly be 

improved if used in conjunction with other methods like the particle filter.  

The second parameter of significance is the orientation of the partial crack within the 

region of interest (see fig.). This is 

determined by calculating the angle (Ѳ) of 

the crack with respect to the horizontal axis. 

For this we first determine the center point of 

the contour(s) that form the crack. This point 

will be considered representative of the entire 

crack. Using the x and y coordinates of the 

center we evaluate the angle simply by taking 

the arc tan of the ratio of the y and x 

distances from the origin that is the center of 

the image.  

3.5.9 Visualization of results: 

In this way the robot processes images on board and records a minimal amount of 

information. This information is stored as a list of coordinates (𝑠, Ѳ) that is processed 

Figure 17 Angle parameter used in 

localization 
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upon completion of the robot’s journey. Another parameter that is recorded although not 

by the inspection module is the radius of the pipe. In the previous sections we discussed 

the robot’s ability to adapt to changes in pipe diameter based on the compression of the 

wheel. The sensory information regarding the wheel’s compression and the state of the 

scissor mechanism (and therefore the stepper motor) provides sufficient information as to 

the radius of the pipe. With these 3 parameters, the post processor is able to recreate a 3D 

image of the pipe identifying the regions of defect along its length. See fig. 

 

Figure 18 Final Results Obtained For Visualization 
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CHAPTER 4 

RESULTS 

AIOM is a mechanically manufactured inline inspection robot fully capable of: 

1. Linear motion in pipes ranging from 12-18 inches. 

2. Smoothly turning in elbow configurations 

3. Performing Visual Inspection and crack detection in real-time. 

By redesigning the passive diametrical module of the robot, we have successfully 

managed to increase the flexibility and maneuverability of the robot that allows it turn 

through curves and bends in addition to travelling linearly with minimum vibrations, an 

important criterion for visual inspection to be carried out well. 

 

Figure 19 AIOM maneuvering a bend 

Furthermore, by successfully incorporating a slider potentiometer as a feedback device, 

we have enabled the robot to actively resize itself to an optimum size to maintain a 

constant tractive force irrespective of the pipe diameter. This has rendered the robot 

capable of vertical motion inside pipes.  
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Figure 20 Robot moving vertically in pipe 

Finally, AIOM can effectively carry our real-time crack detection using the Raspberry Pi 

2 and its camera. The algorithm employed detects cracks with an accuracy of 95%. 

The visual inspection module placed at AIOM’s front end enables it to constantly 

monitor the pipe inline throughout the duration of the travel and record the location of 

each crack detected. This data can then be translated into a plot that pinpoint the cracks 

position and eliminates the need of an operator to monitor the video feed. 

Finally, to validate our results a model was created on ADAMS (Automated Dynamic Analysis 

of Mechanical Systems) to perform a multibody dynamics simulation. The aim of the 

analysis was to support the new relationship generated between the wheel and the 

https://en.wikipedia.org/wiki/Multibody_system
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subsequent motion of the spring. 

 

Figure 21 ADAMS Simulation displaying frames 

Thus, we can conclusively say that the new design implemented is far superior as it 

allows greater flexibility, higher maneuverability while maintaining excellent grip/ 

tractive force with the wall allowing the robot to move smoothly through complex pipe 

layout. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS  

 

As per our initial aims and objectives, we were successfully able to upgrade the previous 

version of the Inline Pipe Inspection Robot developed at SMME NUST. The first of our 3 

main objectives was modifying the link structure of the robot to be enhance stability and 

functionality. Our final design, we validated by conducting a kinematic simulation on 

MSC ADAMS where we were able to judge the motion of the individual links based on 

an applied force and thereby ascertain whether such a structure could allow the robot to 

turn through a bend. After the manufacturing of the new mechanism, we tested the 

motion of the robot through a 12” elbow. We observed that it was needed to modify the 

speed of each of the three driven wheels based on their respective distances to allow the 

robot to turn smoothly. While the robot was successfully able to navigate through pipe 

elbows, for now it is incapable of detecting bends ahead of it. This may be achieved in 

the future using multiple ultrasound sensors to determine both the distance and direction 

of the bend.  

 

Our next objective was developing a feedback control system for the robot to allow active 

diameter adaptability based on the force acting on the wheels. While we had initially 

planned to use Force Sensitive Resistors, we later observed that measuring the spring 

compression instead of the actual force was just an effective a sensory tool while being 

more convenient and robust. This was done by using a linear potentiometer to determine 

the lateral displacement of the collar connected to the spring. The resultant reading would 

result in actuation of the stepper in either direction. While the control system functioned  

seamlessly it was observed that the stepper would often stall when required to push the 

wheels against the wall. In the future to achieve better functionality it would be more 

appropriate to use a more powerful or multiple steppers. 
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Lastly, was incorporating an effective NDT technique. The robot was fitted with a visual 

inspection module and we tested out a computer vision algorithm aimed at being able to 

detect, and record cracks on the inside of a pipe. While we observed that there were 

limitations of using a standard RGB camera for instance the inability to detect sub-

surface cracks, the use of image processing techniques allowed us to enhance its utility to 

some degree. By processing images on-board, the amount of information needed to be 

stored was significantly reduced while post processing of said information allowed 

detailed maps of pipe and defects to be generated thus reducing the need for an operator. 

Due to lack of availability of testing pipes, we were not able to perform as extensive 

testing as we would have liked. In the future, the computer vision technique could be 

extended to detect defects other than just cracks such as patches of corrosion or algae 

deposits. 

 

The project possesses still a great potential for improvements. One of the biggest 

drawbacks of AIOM is its inability to operate in a live pipe. To be able to function 

properly, any pipe about to be inspected would have to be drained before AIOM could be 

deployed in it. Future work on the robot would deal with creating a waterproof design to 

allow AIOM to function properly in live pipes. 
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import cv2 

import numpy as np 

import math 

  

sdfactor=10 

meanfactor=2.6 

def thresholds(bwimage): 

    mean=int(np.mean(bwimage)) 

    sd=int(np.std(bwimage)) 

    lowth=sd*sdfactor 

    highth=mean*meanfactor 

    return lowth, highth 

  

def gettheta(points,center): 

    angles=[] 

    for p in points: 

        angles.append((int(math.atan2((p[1]-center[1]),(p[0]-

center[0]))*57.3))) 

    return angles 

     

def distance(point1,point2): 

    return math.sqrt((point1[0]-point2[0])**2 + (point1[1]-

point2[1])**2) 

     

def cracksinregion(radius, allcracks, Xcentre, Ycentre): 

    i=0 

    while i < len(allcracks): 

        j=0 

        while j<len(allcracks[i]): 

            rsquare=((allcracks[i][j][0][0]-

Xcentre)**2)+((allcracks[i][j][0][1]-Ycentre)**2) 

            if rsquare<(0.5*radius)**2: 

                allcracks[i]=np.delete(allcracks[i],j,0) 
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            else: 

                j=j+1 

        if j==0: 

            allcracks=np.delete(allcracks,i,0) 

        else: 

            i=i+1 

    return allcracks 

  

def snip(image, cracks, indices): 

    x_max=0 

    y_max=0 

    x_min=10000 

    y_min=10000 

    for i in indices: 

        temp_x_max=max([a[0][0] for a in cracks[i]]) 

        if x_max<temp_x_max: 

            x_max=temp_x_max 

        temp_x_min=min([a[0][0] for a in cracks[i]]) 

        if x_min>temp_x_min: 

            x_min=temp_x_min 

        temp_y_max=max([a[0][1] for a in cracks[i]]) 

        if y_max<temp_y_max: 

            y_max=temp_y_max 

        temp_y_min=min([a[0][1] for a in cracks[i]]) 

        if y_min>temp_x_min: 

            y_min=temp_y_min 

    snipet=image[y_min:y_max, x_min:x_max] 

    return snipet 

  

for pic in range(1,2): 

     

    img = cv2.imread('C:\\Users\\Furqan\\Desktop\\Capture2.png') 

    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 

    low,high=thresholds(gray) 
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    edges = cv2.Canny(gray,low,high,apertureSize = 3) 

    cracks=[] 

    centre=len(img[0])/2, len(img)/2 

    Radius=len(img)/2 

    

contours,hierarchy=cv2.findContours(edges,cv2.RETR_TREE,cv2.CHAIN_APPRO

X_SIMPLE) 

    for i in range(0,len(contours)): 

        listx=[] 

        listy=[] 

        for j in range(0,len(contours[i])): 

            listx.append(contours[i][j][0][0]) 

            listy.append(contours[i][j][0][1]) 

        out=np.polyfit(listx,listy,1,full=True) 

        if not out[1]: 

            ratio=0 

        else:    

            ratio=math.sqrt(out[1])/(len(contours[i])**1.4) 

        if ratio<0.2 and ratio>0.05 and len(contours[i])>15: 

            cracks.append(contours[i])  

    cracksofinterest=cracksinregion(Radius,cracks,centre[0],centre[1]) 

    print len(cracksofinterest)        

     

    mids=[] 

    lengths=[] 

    for i in range(0,len(cracksofinterest)):      

        x=0 

        y=0 

        l=len(cracksofinterest[i]) 

        lengths.append(l) 

        for j in range(0,l): 

            x=cracksofinterest[i][j][0][0]+x 

            y=cracksofinterest[i][j][0][1]+y 

        mids.append((x/l, y/l))  

    i=0 
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    sets=[] 

    setstemp=[0] 

    cracknum=0    

    print mids 

    while i <len(mids)-1: 

        if cracknum not in setstemp: 

            setstemp.append(cracknum) 

        if distance(mids[i],mids[i+1])<12: 

            

mids[i]=((mids[i][0]*lengths[i]+mids[i+1][0]*lengths[i+1])/(lengths[i]+

lengths[i+1]) 

                    

,(mids[i][1]*lengths[i]+mids[i+1][1]*lengths[i+1])/(lengths[i]+lengths[

i+1])) 

            mids=np.delete(mids,i+1,0) 

            lengths=np.delete(lengths,i+1,0) 

            cracknum=cracknum+1 

            setstemp.append(cracknum) 

        else: 

            i=i+1 

            sets.append(setstemp) 

            setstemp=[] 

            cracknum=cracknum+1 

            setstemp.append(cracknum) 

    sets.append(setstemp) 

     

    print mids 

    print gettheta(mids,centre) 

    print sets 

    print max([a[0][0] for a in cracksofinterest[2]]) 

    #cv2.circle(img, centre, Radius, (200,200,200)) 

    cv2.circle(img, centre, int(Radius*0.5), (200,200,200)) 

    #img = img[0:550, 0:727] 

    snippet=snip(img, cracksofinterest, sets[0]) 

    cv2.imwrite('C:\\Users\\Furqan\\Desktop\\snip.jpg', snippet) 

    cv2.drawContours(img, cracksofinterest, -1, (0,255,0), 1) 
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    #for i in range(0,len(mids)): 

        #cv2.circle(img ,tuple(mids[i]),3,(0,0,255)) 

    cv2.imshow('rect', img) 

    cv2.waitKey(0)       
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import matplotlib.pyplot as plt 

import numpy as np 

from mpl_toolkits.mplot3d import Axes3D 

import math  

fig = plt.figure() 

ax = fig.add_subplot(111, projection='3d') 

cracks=[(33,177),(34,179),(34.5,180),(35,180),(35.5,178),(36,177),(36.5

,179),(37,180),(37.5,181),(38.5,180),(39,182),(40,179)] 

  

R=14 

L=54 

for crack in cracks: 

    

ax.scatter(R*math.cos(crack[1]/57.3),crack[0],(R+2)*math.sin(crack[1]/5

7.3),c='#ff0000') 

# Pipe 

x=np.linspace(-1*R, R, 100) 

y=np.linspace(0, L, 100) 

Xc, Yc=np.meshgrid(x, y) 

Zc = np.sqrt(R**2-Xc**2) 

  

# Draw parameters 

rstride = 4 

cstride = 4 

ax.plot_surface(Xc, Yc, Zc, alpha=0.3, rstride=rstride, 

cstride=cstride) 

ax.plot_surface(Xc, Yc, -Zc, alpha=0.3, rstride=rstride, 

cstride=cstride) 

 

ax.set_xlabel("X") 

ax.set_ylabel("Y") 

ax.set_zlabel("Z") 

ax.auto_scale_xyz([-L/2, L/2], [0, L], [-L/2, L/2]) 

plt.show() 


