

A Standard for Static Code Analysis of

Critical Systems

By

Rida Shaukat

00000275226

Supervisor

Dr. Tauseef Ahmed Rana

A thesis submitted to the faculty of Software Engineering Department,

Military College of Signals, National University of Science and Technology,

Islamabad, Pakistan, in partial fulfilment of the requirements for the degree for the MS

in Software Engineering

September 2022

2

ABSTRACT

The worth and precision of a software system is determined by the quality of source code and the

degree to which the source code under consideration, satisfies the software quality parameters. As

a matter of fact, until recent years, this aspect of software quality was not given due significance

and the core focus of the underlying software system was on the feature implementation and the

extent to which the system fulfills the functionality for which it was developed. It is worth-noting

that as a consequence of the legacy approach, the IT industry and the giants of this industry faced

significant losses only because the software system was not tested fairly to figure out potential and

hidden defect in the source code, which ultimately led the system towards complete failure. We

have a number of instances where the companies faced unbearable losses due to the hidden flaws

in the source code. If these hidden defects would have been pointed out during system testing

phase, those systems wouldn’t have collapsed during production phase. The approach we are

suggesting here is Static Code Analysis. This approach aims to test the source code against a set

of guidelines based upon software quality indicators, are pre-defined and developed. Analysis of

source code is conducted against these rules. Now, it is worth noting that we have multiple static

code analysis tools available in the market, our primary concern here is that none of the tools

available provides a go-to solution. Our aim is the research and development of such a static code

analysis tool which checks the source code against critical rules pertaining to code quality. We

will accumulate all rules for some specified quality parameters related to software quality from

multiple coding standards and widely used tools and devise a comprehensive ruleset which would

be an all-in-one solution for the system testers who want to test the software system for critical

violations. Our aim behind this research and specifically targeting critical systems is that these

type of signals are developed with high development costs and efforts and can risk human lives,

or cause heavy financial damages if led towards failure. Therefore we aim to devise a

comprehensive rule-set based upon a few quality parameters to make sure that it provides a go-to

solution for the underlying software quality aspects and critical systems can be tested for those

quality parameters making sure that no aspect is missed out and the violations detected by the tools

developed based upon the underlying standard are capable enough of pointing out all potential

issues and shortcomings in the source code.

3

ACKNOWLEDGEMENT

I am thankful to Allah Almighty for his countless blessings and bestowing me with the courage

strength in my work through out the research phase. Words cannot express my gratitude towards

my Supervisor Dr. Tauseef Ahmed Rana for his valuable support and feedback. I would like to

acknowledge my respected GEC Members Dr. Nauman Ali Khan and Dr. Imran Qureshi for their

help and assistance throughout my research phase. I express my deepest thanks to my parents and

family for their support and prayers. Their guidance and encouragement gave me immense support

throughout the project.

4

DEDICATION

To the Allah Almighty

&

My parents and faculty

5

TABLE OF CONTENTS

 1 INTRODUCTION…………………………………………………........ 8

 1.1 Code Analysis…………………………………………………………... 8

 1.2 Difference between code analysis techniques………………………….. 8

 1.3 Incidents signifying the importance of Static code analysis……………. 9

 1.4 Research Questions…………………………………………………….. 10

 1.5 Research Objectives…………………………………………………….. 10

 1.5 Research Outline………………………………………………………. 10

 2 PRELIMINARY STUDY………………………………………………. 11

 2.1 Level of research already carried out in the underlying domain……….. 12

 2.2 Literature Review………………………………………………………. 12

 3 SCOPE OF RESEARCH……………………………………………….. 15

 3.1 Software Quality Parameters…………………………………………… 15

 3.2 Our scope of research…………………………………………………... 16

 4 ANALYSIS OF TECHNIQUES FOR STATIC CODE ANALYSIS IN

EXISTING TOOLS……………………………………………………..

18

 4.1 FxCop………………………………………………………………….... 18

 4.2 NDepend………………………………………………………………... 24

 4.3 .Net Analyzer…………………………………………………………… 29

 5 RESEARCH RESULTS………………………………………………... 36

 5.1 Analysis findings……………………………………………………….. 36

 5.2 Proposed list of rules…………………………………………………… 36

 6 RESULTS AND TECHNICAL DISCUSSION……………………… 60

 7 PROTOTYPE OF STATIC CODE ANALYZER IMPLEMENTING

FEW RULES FROM OUR PROPOSED RULE SET………………….

61

 8 CONCLUSION AND FUTURE WORK………………………………. 63

 9 REFERENCES…………………………………………………………. 64

6

LIST OF FIGURES

1 Main layout……………………………………………………………… 61

2 File selection…………………………………………………………….. 61

3 File loaded for analysis………………………………………………….. 62

4 Analyzing code………………………………………………………….. 62

5 Analysis results………………………………………………………….. 63

6 Analysis summary……………………………………………………….. 63

7

LIST OF TABLES

1 Rule-set of FxCop with parameters: Design, Usage, Maintainability…............. 19

2 Rule-set of NDepend with parameters: Design, Usage, Maintainability………. 26

3 Rule-set of .NetAnalyzer with parameters: Design, Usage,

Maintainability………………………………………………………………….

29

4 Proposed set of rules – Maintainability Rules…………………………………. 36

5 Proposed set of rules – Usage Rules…………………………………………… 40

6 Proposed set of rules – Design Rules………………………………………….. 49

8

Chapter 1

1. INTRODUCTION

This section provides a brief introduction regarding the necessity, significance of code

analysis. It also highlights the difference between two major techniques of code analysis. Critical

events signifying the importance of code analysis are presented and the research objectives for the

research study are identified. Finally, the research methodology adopted has been presented.

1.1 Code Analysis:

The determination of the quality of a software or the source code is a debatable issue. As a

matter of fact, it has been observed that until recently, code quality and the necessity to determine

it’s eminence, was not given due importance, as long as the system delivered correct results,

consequently we have witnessed a number of critical systems going into heavy losses due to system

failure when it was put into production. One of the core reason of systems going into losses was

due to the potential defects in the source code. Now, the discussion was that when source code is

compiled, even after all of the compile time and run time errors were fixed; even then during

execution some software systems crashes. So, after deep research and study, the software

developers and system testers reached the conclusion that apart from syntax errors and logical

errors there is some factor which needs to be looked into and then software system should be tested

against it. Hence, the term code analysis was introduced. It aims to test the software system based

upon certain software quality parameters. The foundation of this assessment is a rule-set; it

contains a set of best practices which must be followed during development phase and source code

should then be tested against these practices to find out the hidden potential defects and short-

comings in the code. The hidden defects in the source code caused system failure in multiple cases

since these defects were neither pointed out nor addressed in the system testing phase.

1.2 Difference between Code Analysis Techniques:

Static code analysis targets to detect the potential imperfections in the software / source

code before it is sent into production. It tests the source code for defects without actually executing

the source code. Static code analysis is basically an assessment of source code before sending the

software system into production. Static analysis is executed upon the source code against a static

9

set of pre-defined guidelines / rules, before the system is executed. The source code under

consideration is provided as an input the static code analysis system and then the tool compares

the provided source code against a pre-defined set of rules, and after analysis provides the

violations in the source code which have been found during the analysis.

On the other hand, dynamic code analysis implies to the examination of source code against

a standard/ set of rules during the actual execution of source code. The technique which we will

be taking into account during research phase is static code analysis.

1.3 Incidents signifying the importance of Static code analysis:

Let’s take a look at a few cases where the absence of an appropriate testing phase for critical

systems was missed out and as a result the entire world saw huge systems going into failure.

As evident, static code analysis tools are of critical significance; it is worth-noting that

threats increase exponentially is the underlying system is a critical system, due to the associated

losses which are unbearable. Critical cases from past, highlight its significance and eminence.

ARIANE 5, was a heavy-lift rocket, and was projected in order to take the satellites into

geostationary orbit or low Earth orbit. This system unfortunately exploded right after 40 seconds

of it’s execution / launch. These associated development costs mounted upto $7 billion. After

rigorous analysis and testing, it was surprising to discover that failure occurred due to a minor

software error in the system. During system execution, a 64-bit floating point number converted

into a 16-bit signed integer. Therefore, this numerical value being greater than the highest value

storable in this data-type, made the conversion to fail, resulting into a series of wrong executions,

which led to system explosion.

We have another case, where appropriate application of static code analysis could have saved a

massive destruction i.e. Mars Climate Orbiter. The associated costs were around $125 million. The

system failure occurred due to difference in units being used by different teams. One engineering

team used the English units while the metric was used by the other team. Hence, the information

failed to transfer between the spacecraft team and mission navigation team and led to failure.

Consequently, now developers have started applying static code analyzers in testing phase, to

evaluate the value of source code in terms of quality and productivity, before the system is sent

into production.

10

1.4 Research Questions:

Keeping in view, a few of many incidents that occurred and resulted in heavy losses

financially as well as costing human lives, we will identify the gap between the ideal case of

detecting potential defects and the current approaches. It is worth-noting that a number of standards

are available and we have seen some tools as well which provide static code analysis feature, but

it is worth taking into account that we don’t have a single comprehensive coding standard for static

analysis which can be used as go-to-solution. Each standard, or tool implementing rules are

providing different rule set with rules of different complexity levels and criticalities.

RQ1: Do all static code analysis basis for existing tools are similar?

RQ2: Do all existing rule-sets provide insight regarding similar software quality dimensions?

RQ3: Is the taxonomy of current analysis techniques similar or same?

RQ4: Does any existing rule-set provide a comprehensive list of checks/rules for any software

quality parameter/dimension?

1.5 Research Objectives:

Our aim is to devise a comprehensive set of rules which can be used for conducting analysis

of source code. Our aim is to develop a Rule-set in which we will research and integrate the

existing rules of critical nature to provide a comprehensive rule-set to be used for assessing code

quality and ruling out the hidden discrepancies in source code, which may ultimately lead to failure

during system execution. We have identified our research objectives as follows:

 Research the existing major standards of static code analysis.

 Research the foundation of widely known tools for static code analysis.

 Identify the quality parameters for developing standard / rule-set.

 Develop a comprehensive rule-set / standard for static code analysis.

 Develop a prototype for reflecting the usage of developed rule-set / standard.

1.6 Research Outline:

This research work / thesis consists of the following chapters:

11

Chapter 1: This chapter briefly introduces the significance of code analysis. Further the major

techniques for conducting analysis are also presented. Major incidents highlighting the losses

occurred due to absence of proposed technique are presented. Finally we have collected research

questions and presented our research work objectives.

Chapter 2: This chapter presents the level of study and research already carried out in the

concerned area, research work of scholars and researchers has also been presented as research

work.

Chapter 3: This chapter presents the scope of our research. Software quality is a vast term,

therefore we’ve selected and presented a few software quality parameters for carrying out our

research.

Chapter 4: This chapter presents an analysis of the existing technique for static code analysis.

This phase has majorly provided us with gaps between present researches, thereofore we have

covered the gap as a research in next chapter.

Chapter 5: In this chapter, we have presented an analysis of existing researches, and finally

concluded our research in the form of tabular presentation of rule-sets. Each rule-set has been

presented separately based upon the underlying software quality parameter.

Chapter 6: In this chapter, we have provided results and technical discussion for the obtained

results.

Chapter 7: In this chapter, we have presented a part of our research work as a prototype,

presenting how it will be implemented as a tool.

Chapter 8: In this chapter, conclusion of findings and research work directions have been

identified and presented.

Chapter 9: This chapter contains the references of the existing research work which provided as

a basis for our research and study.

12

Chapter 2

2. PRELIMINARY STUDY

2.1 Level of research already carries out in the underlying domain:

Researchers have rigorously worked in the domain of static code analysis and have

developed coding standard to meet the testing criteria to some extent. It is worth-noting that no

single coding standard exists which claims to be an all-in-one solution for testing coding quality

and coding discrepancies, before sending the software system into production. Some standards

which already exist our JPL, Misra, Microsoft Guidelines. Different domains of coding standards

are covered by each of these standards, but none of them presents a comprehensive go-to solution

in the form of rule-set. It is worth-noting that all the tools available conduct static code analysis

upon source code based upon all levels of rule criticality; but, this is to be taken into account that

in this case, the cost of conducting analysis would be higher for generic systems, whereas in critical

systems we need a comprehensively established rule-set only which ensures that the underlying

standard / rule-set will test the source code in all aspects for particular software quality aspects.

Besides, our research will be based upon the formation of a coding standard in which we will

comprehensively establish a rule-set. The static code analysis after code compilation will then be

conducted upon source code against the proposed standard (rule-set).

2.2 Literature Review:

The author [1] here mentions that code quality static code analysis tools are being

employed for testing code quality and discrepancies in code, likewise a number of such tools exist

in market with each tool providing basis for a different or programming language, but still there

are quite few tools that provide support for domain specific languages. Another issue highlighted

by the author is that no tool clearly states the rule set it is applying for static analysis, neither do

they mention the type of defects which will be detected by the tool. Secondly, another major

challenge is that almost all tools make use of different taxonomies.

The researchers [2] have signified the importance of static code analysis tools and re-

enforced that appropriate utilization of static code analysis tools during early development phases

could significantly reduce the work to be redone. The researchers have further conducted an

13

analysis upon static code analysis tools of Java, the aim behind this research was to conduct a

comparative analysis of tools to against a set of parameters i.e. Input type, Availability, Rule-set,

extensibility, report type, error type, violations. The analysis was mostly based upon the rule-set

of 2 coding standards for Java i.e. JPL and Rule of Ten.

The paper [3] signifies the importance of the application of static code analysis tools during

initial phases of software development unlike the dynamic code analysis technique which implies

to detect code quality issue during source code execution. The paper also presents a comparative

analysis of multiple code analysis (static) tools available for Java, C, C++. It is found that for

C/C++, CPPCheck detected the maximum number of violations, and for Java, Find bugs analysis

tool reported the maximum number of violations, which were not detected by other tools present

in study.

The authors [4] have presented an analysis after conducting research upon multiple static

code analysis tools. Further they’ve identified and presented some of the techniques and presented

them as: Starting the code analysis once all defects are fixed, running the analysis after correcting

any of the previously detected defect, executing analysis tools by external tool calling procedure

during software project development, executing analysis tools by embedding tools in the

development IDE where the software project is developed.

The authors [5] have signified the importance of static analysis tools. The major focus

regaring the underlying research presented in the paper is to conduct an in-depth analysis of a

trending code analysis tool i.e. Coverity Scan. It conducts dynamic code analysis as well as static

code analysis. The focus during this research was on static code analysis conducted by the tool.

The research presents the types of defects covered by the tool. The process includes majorly 2

phases: Analysis of data flow between procedures, Statistical investigation of data. The major

defect checkers implemented in the tool are: Null returns, forward null, reverse null, unused value,

reverse negative, return local, reverse null, unused value, stack use, resource leak, checked return,

deadcode, UNINIT.

This paper [6] high-lightens the importance of static code analysis tools especially when

the underlying software project is to be deployed or to be used in the domains of mission-critical

or safety critical systems. The aim of the research is based upon the checking of software quality

14

constraint of ‘maintenance’ by the static code analysis tools. Maintenance of software project is a

critical factor in updating, extending or defect handling in the source project.

This research [7] has been based upon the theme of software assurance. As we all know

that software security is a critical step in the software systems. Recently, there has been a rapid

growth in cyber attacks. It is worth noting that despite the use of IDS - Intrusion Detection Systems

as well as IPS - Intrusion Prevention Systems, the firewalls and many other such mechanisms to

prevent the software system against security breach, still the cyber attacks are not completely

controlled, this due to the fact that mentioned systems only assist in minimizing the security threats

but do not control the base from which the software vulnerabilities are exploited. The cyber attacks

and the associated losses can only be controlled if appropriate software security checks are applied

in the underlying software systems. A Security Code Analysis (SCA) is the solution and step-

ahead towards the cyber security issues. A few tools have also been analyzed and compared in the

study.

15

Chapter 3

3. SCOPE OF RESEARCH

3.1 Software Quality Parameters:

Software quality is a vast term and it would be impractical to achieve software quality fully.

As our focus is upon software systems of critical nature, therefore we aim to research and pick out

all of the software quality aspects and their respective checks in order to be assure that the

underlying software system which is to be sent into production is bug-free and there lies no such

code construct or potential defect in the source code which might lead the system towards complete

failure. Rule-set of software quality is based upon multiple factors and categories of checks

including:

 Design Rules

 Naming Rules

 Globalization Rules

 Performance Rules

 Security Rules

 Usage Rules

 Maintainability Rules

 Portability Rules

 Interoperability Rules

 Reliability Rules

 Architecture Rules

 API breaking changes

 Code Coverage

 Dead code

16

 Code Smells

 Code smells regression

 Visibility

 Source Files Organization

 Naming Conventions

 Object Oriented Design

 API usage

 .NET Framework usage

 Performance Rules

 Immutability

 Single-file Rules

 Reliability Rules

 Style Rules

3.2 Our Scope of Research:

For research purpose, we have narrowed the scope of rule-set used in the static code

analysis. Since our aim is to identify rules for static code analysis of critical systems, therefore we

have taken into consideration 3 parameters of quality. For being sure that we don’t miss out any

aspect or dimension within a quality parameter, we’ve narrowed down our research to 3 quality

parameters. We will conduct research on the rules for the selected categories so that no rule is

missed out for those categories and the proposed standard can be used as a go-to-solution for the

underlying quality parameters in the code quality assessment for critical systems. The category of

rules we’ve chosen for research purpose are as follows:

 Design Rules

17

Such rules that detect potential design flaws in the code of software system, these

coding errors usually do not affect the execution of your code, but may become a

cause of failure in an unprecedented scenario of events.

 Maintainability Rules

Rules which detect issues pertinent to software maintenance or scalability.

 Usage Rules

Rules that detect potential flaws in code assemblies which can affect code execution.

18

Chapter 4

4. ANALYSIS OF TECHNIQUES FOR STATIC CODE

ANALYSIS USED IN EXISTING TOOLS:

We have chosen a few widely known static code analyzers present in market, we have

researched the foundation of these based upon which these tools conduct analysis. We have

been able to find out the rule-set implemented in these tools based on which these tools conduct

static code analysis upon software system and as an output present the shortcomings in the

source code with respect to the underlying rule-set. The violations presented by these tools are

of different categories based upon the underlying rules, but since our research caters three

quality parameters i.e. Design, Maintainability, Usage; therefore we’ve researched these tools

majorly sorted out rules pertinent to the code quality parameters which are an inherent part of

our research.

4.1 FxCop:

FxCop is a .net framework’s development tool. It’s core feature is to perform assessment of

managed code. The core task is to keep check on any indiscretion or incongruity with the rules put

out by the standard Design Guidelines.

The Microsoft guidelines assist in preparing manageable and flexible programming, by making

use of the .net framework. The tool Fxcop is developed for analysis and to be used as a desktop

application with a user-friendly and detailed GUI as well as a CLI in case the scope of execution

lies beyond the range of visual studio.

 Contrasting with the other tools that scan source codes, Fxcop analyses the compiled object

code. Fxcop static code analyser analyses the source code for any of the 200 probable violations of

the coding standards in the fields mentioned below:

 COM (Interoperability) Rules

 Design Rules

 Usage Rules

 Globalization Rules

19

 Performance Rules

 Maintainability Rules

 Portability Rules

 Reliability Rules

 Security Rules

 Naming Rules

S.

No.

Rules/Metrics Category Standard / Tool

1. Static members should not be

declared on generic types

Design FxCop

2. Do not expose generic lists Design FxCop

3. Use generic event handler instances Design FxCop

4. Generic methods should provide

type parameter

Design FxCop

5. Avoid excessive parameters on

generic types

Design FxCop

6. Do not nest generic types in member

signatures

Design FxCop

7. Use generics where appropriate Design FxCop

8. Enums should have zero value Design FxCop

9. Collections should implement

generic interface

Design FxCop

10. Passing of the base types as

parameters should be considered

Design FxCop

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182139(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182142(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182178(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182150(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182150(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182129(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182129(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182144(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182144(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182179(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182149(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182132(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182132(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/3hk32yyz(v=vs.100)

20

11. Constructors should not be used by

abstract types

Design FxCop

12. Overload operator equals on

overloading add and subtract

Design FxCop

13. Indexers should not be

multidimensional

Design FxCop

14. Params array is better than repetitive

arguments

Design FxCop

15. Default parameters should not be

used

Design FxCop

16. Use events where appropriate Design FxCop

17. Do not catch general exception types Design FxCop

18. Implement standard exception

constructors

Design FxCop

19. Nested types should not be visible Design FxCop

20. ICollection implementations have

strongly typed members

Design FxCop

21. Override methods on comparable

types

Design FxCop

22. Lists are strongly typed Design FxCop

23. Use integral or string argument for

indexers

Design FxCop

24. Properties should not be write only Design FxCop

25. Equals operator should not be

overloaded on reference types

Design FxCop

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182126(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182164(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182164(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182152(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182152(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182167(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182135(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182135(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182177(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182137(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182151(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182151(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182162(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/49stb304(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/49stb304(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182163(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182163(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182154(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182180(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182180(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182165(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182145(v=vs.100)

21

26. Protected members should not be

declared in sealed types

Design FxCop

27. Virtual members should not be

declared in sealed types

Design FxCop

28. Static holder types are preferable to

be sealed

Design FxCop

29. Constructors should not be used by

static holder types

Design FxCop

30. URI return values are not preferable

in the form of strings

Design FxCop

31. Certain base types should not be

extended by Types

Design FxCop

32. Members should not expose certain

concrete types

Design FxCop

33. Exceptions should be public Design FxCop

34. Avoid excessive complexity Design FxCop

35. Differentiation between identifiers

should be by more than one case

Maintainability FxCop

36. Types that own disposable fields

should be disposable

Design FxCop

38. Mark assemblies with

AssemblyVersionAttribute

Design FxCop

39. Child types should be able to call

Interface methods

Design FxCop

40. Types that own native resources

should be disposable

Design FxCop

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182138(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182138(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182138(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182138(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182168(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182168(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182169(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182176(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182176(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182171(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182160(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182160(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264484(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182212(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182242(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182172(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182172(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182155(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182155(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182153(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182173(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182173(v=vs.100)

22

41. Base class methods should not be

hidden

Design FxCop

42. Exceptions should not be raised in

unexpected locations

Design FxCop

43. P/Invoke entry points should exist Design FxCop

44. Dispose objects before losing scope Design FxCop

45. Do not indirectly expose methods

with link demands

Design FxCop

46. Override link demands should be

identical to base

Design FxCop

47. Types must be at least as critical as

their base types and interfaces

Design FxCop

48. Do not dispose objects multiple

times

Design FxCop

49. Disposable fields should be disposed Design FxCop

50. Mark all non-serializable fields Design FxCop

51. Implement IDisposable correctly Usage FxCop

52. Avoid duplicate accelerators Usage FxCop

53. Wrap vulnerable finally clauses in

outer try

Usage FxCop

54. Default constructors must be at least

as critical as base type default

constructors

Usage FxCop

55. Objects with weak identity should

not be locked

Usage FxCop

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182143(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb386039(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb386039(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182208(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182289(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182303(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182303(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182305(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182305(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd997443(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd997443(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182334(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182334(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182328(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182349(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms244737(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182185(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182322(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182322(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd983956(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd983956(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd983956(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182290(v=vs.100)

23

56. Pointers should not be visible Usage FxCop

57. Methods must keep consistent

transparency when overriding base

methods

Usage FxCop

58. Rethrow to preserve stack details Usage FxCop

59. Value type static fields should be

initialized inline

Usage FxCop

60. Overridable methods should not be

called in constructors

Usage FxCop

61. Finalizers should call base class

finalizer

Usage FxCop

62. Declare event handlers correctly Usage FxCop

63. Avoid namespaces with few types Usage FxCop

64. Avoid out parameters Maintainability FxCop

65. Avoid empty interfaces Maintainability FxCop

66. Do not pass types by reference Maintainability FxCop

67. Avoid excessive inheritance Maintainability FxCop

68. Review misleading field names Maintainability FxCop

69. Avoid unmaintainable code Maintainability FxCop

70. Avoid excessive class coupling Maintainability FxCop

71. Resource string compound words

should be cased correctly

Maintainability FxCop

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182306(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd997447(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd997447(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd997447(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182363(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182346(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182346(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182331(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182331(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182341(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182341(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182133(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182130(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182131(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182128(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182146(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182213(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb164506(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb386043(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb397994(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264481(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264481(v=vs.100)

24

72. Casing is very important especially

in compound words

Maintainability FxCop

73. Resource strings should be spelled

correctly

Maintainability FxCop

74. Identifiers should be spelled

correctly

Maintainability FxCop

75. Identifiers should not contain

underscores

Maintainability FxCop

76. Identifiers should be cased correctly Maintainability FxCop

77. Identifiers should have correct suffix Maintainability FxCop

78. Identifiers should not have improper

suffix

Maintainability FxCop

79. Enum values with type name should

not be prefixed

Maintainability FxCop

80. Parameter names should not match

member names

Maintainability FxCop

81. Get methods should not match

property names

Maintainability FxCop

82. Type Names Should Not Match

Namespaces

Maintainability FxCop

83 Base declaration should not match

parameter names

Maintainability FxCop

Table 1. Rule-set of FxCop with quality parameters: Design, Usage, Maintainability

4.2 NDepend:

NDepend static code analysis tool can be incorporated as an add-on to the Visual Studio. Uptil

now NDepend is the only tool to keep check on the accumulating debt even within the last hour of

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264474(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264483(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264483(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264492(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264492(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182245(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182245(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182240(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182244(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182247(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182247(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182237(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182252(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182252(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182253(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182257(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182257(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182251(v=vs.100)

25

its implementation. With the detailed amount of accumulated debt the user is given the chance to

lay it off before integrating it within the whole system by making it addition to the source code. It

is of critical importance that NDepend assesses the concrete quality of the source code in

comparison with the parameters of well-defined standards.

NDepend offers usage in 2 ways: either it can be integrated intto Visual Studio or it can also be

used as a standalone tool. The feasibility of the system lies also on the Csharp LINQ queries that

the code makes use of. These can also be custom-developed in a short time. The C# formulae

provide the client with the chance to calculate the gathering procedural debt with high accuracy.

The default rule-set which is the basis if analysis in this tool, offers the client with a range of rules

accumulating to over a hundred.

These rules / guidelines assist to detect potential code structures in source code which contradicts

with any of the precise standard. Code deads are also detected with modifications that affect the

API (Application Program Interface) or the OOP (Object Oriented Programming) usage. NDepend

successfully has approval of around 6000 companies in total, who have confirmed the critical

involvement of this tool for improved .NET code. However it is slightly financially burdensome as

compared to some other static code analysis tools in practice.

The technique based upon which NDepend conducts analysis on source code is mentioned

below. The tool run analysis based upon following rule categories:

 Object Oriented Design

 Design

 Architecture

 Security

 Immutability

 Visibility

 .NET Framework usage

 API breaking changes

 API usage

 Code Coverage

 Code Smells

26

 Code smells regression

 Dead code

 Source Files Organization

 Naming Conventions

S.

No.

Rules/Metrics Category Standard / Tool

1. Avoid custom delegates Design NDepend

2. Disposable input field types with

should be disposable

Design NDepend

3. Finalizer should not be declare by

disposable types with unmanaged

resources

Design NDepend

4. Methods creating disposable objects

should not be used if they don't call

Dispose()

Design NDepend

5. Focus classes that are eligible to be

converted into structures

Design NDepend

6. Namespaces with few types should

be avoided

Design NDepend

7. Visibility should be hidden for

nested types

Design NDepend

8. Types should be declared in

namespaces

Design NDepend

9. Empty static constructor can be

discarded

Design NDepend

10. Size shouldn't be too big for

instances

Design NDepend

11. It is better for attribute classes to be

marked sealed

Design NDepend

12. Obsolete types, fields and methods

should not be used

Design NDepend

27

13. Methods throwing

NotImplementedException should

not be implemented

Design NDepend

14. Override equals and operator equals

on value types

Design NDepend

15. Must avoid boxing and unboxing Usage NDepend

16. ISerializable types should be marked

with SerializableAttribute

Usage NDepend

17. CLSCompliant assemblies should

be marked

Usage NDepend

18. Attributes with

AttributeUsageAttribute should be

marked

Usage NDepend

19. Calls to GC.Collect() should be

removed

Usage NDepend

20. GC.WaitForPendingFinalizers()

should be called before calling

GC.Collect()

Usage NDepend

21. Int32 should be used Enum storage Usage NDepend

22. Too general exception types should

not be raised

Usage NDepend

23. Reserved exception types should not

be raised

Usage NDepend

24. System.Uri should be the type of Uri

fields

Usage NDepend

25. ICloneable shouldn’t be

implemented

Usage NDepend

26. Collection properties should not be

read only

Usage NDepend

27. List.Contains() should be cautioned Usage NDepend

28

28. Return collection abstraction should

be preferred instead of

implementation

Usage NDepend

29. Native methods class should be

static and internal

Usage NDepend

30. Threads shouldn’t be created

explicitly

Usage NDepend

31. Dangerous threading methods

should be avoided

Usage NDepend

32. TryEnter/Exit both must be called

within same method

Usage NDepend

33. Both ReaderWriterLock and

AcquireLock/ReleaseLock must be

called within the same method

Usage NDepend

34. Instance fields shouldn’t be tagged

with ThreadStaticAttribute

Usage NDepend

35. Method non-synchronized that read

mutable states

Usage NDepend

36. Concrete XmlNode shouldn’t be

returned by methods

Usage NDepend

37. System.Xml.XmlDocument

shouldn’t be extended by types

Usage NDepend

38. Float/date parsing be culture aware Usage NDepend

39. Mark Assembles with their

assembly version

Usage NDepend

40. Assemblies should have the same

version

Usage NDepend

Table 2. Rule-set of NDepend with quality parameters: Design, Usage, Maintainability

29

4.3 .Net Analyzer:

.Net framework based applications can be smoothly tested using the .Net Analyzers. The

potential issues are detected by .Net Analyzer and potential fixes are also displayed. This analyzer

covers the following aspects:

 Design Rules

 Usage Rules

 Portability Rules

 Interoperability Rules

 Maintainability Rules

 Naming Rules

 Performance Rules

 Security Rules

 Single-file Rules

 Reliability Rules

 Style Rules

 Documentation Rules

 Globalization Rules

S.

No.

Rules/Metrics Category Standard / Tool

1. Static members should not be

declared on generic types

Design .Net Analyzer

2. Types that own disposable fields

should be disposable

Design .Net Analyzer

3. Do not expose generic lists Design .Net Analyzer

4. Use generic event handler instances Design .Net Analyzer

5. Avoid excessive parameters on

generic types

Design .Net Analyzer

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182139(v=vs.100)
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1001
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1001
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1002
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1003
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1005
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1005

30

6. Enums should have zero value Design .Net Analyzer

7. Collections should implement

generic interface

Design .Net Analyzer

8. Abstract types should not have

constructors

Design .Net Analyzer

9. Mark assemblies with

CLSCompliantAttribute

Design .Net Analyzer

10. Mark assemblies with

AssemblyVersionAttribute

Design .Net Analyzer

11. Mark assemblies with

ComVisibleAttribute

Design .Net Analyzer

12. Mark attributes with

AttributeUsageAttribute

Design .Net Analyzer

13. Define accessors for attribute

arguments

Design .Net Analyzer

14. Avoid out parameters Design .Net Analyzer

15. Use properties where appropriate Design .Net Analyzer

16. Mark enums with FlagsAttribute Design .Net Analyzer

17. Enum storage should be Int32 Design .Net Analyzer

18. Use events where appropriate Design .Net Analyzer

19. General exception types should not

be catched

Design .Net Analyzer

20. Implement standard exception

constructors

Design .Net Analyzer

21. Child types should be able to call

Interface methods

Design .Net Analyzer

22. Nested types should not be visible Design .Net Analyzer

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1008
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1010
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1010
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1012
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1012
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1014
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1014
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1016
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1016
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1017
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1017
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1018
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1018
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1019
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1019
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1021
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1024
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1027
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1028
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1030
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1031
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1032
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1032
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1033
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1034

31

23. Override methods on comparable

types

Design .Net Analyzer

24. Avoid empty interfaces Design .Net Analyzer

25. Provide ObsoleteAttribute message Design .Net Analyzer

26. Indexers should use integral or

string arguments

Design .Net Analyzer

27. Properties should not be write only Design .Net Analyzer

28. Types should not be passed by

reference

Design .Net Analyzer

29. Equal operator should not be

overloaded on reference types

Design .Net Analyzer

30. Do not declare protected members in

sealed types

Design .Net Analyzer

31. Declare types in namespaces Design .Net Analyzer

32. Visible instance fields shouldn’t be

declared

Design .Net Analyzer

33. Static holder types should be sealed Design .Net Analyzer

34. Constructors shouldn’t be used by

static holder types

Design .Net Analyzer

35. URI parameters should not be

strings

Design .Net Analyzer

36. URI return values should not be

strings

Design .Net Analyzer

37. URI properties should not be strings Design .Net Analyzer

38. Certain base types shouldn’t be

extended by Types

Design .Net Analyzer

39. P/Invokes should be moved to

NativeMethods class

Design .Net Analyzer

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1036
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1036
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1040
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1041
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1043
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1044
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1045
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1046
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1047
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1047
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1050
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1051
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1052
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1053
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1054
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1054
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1055
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1055
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1056
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1058
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1060
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1060

32

40. Base class methods shouldn’t be

hidden

Design .Net Analyzer

41. Validate arguments of public

methods

Design .Net Analyzer

42. Implement IDisposable correctly Design .Net Analyzer

43. Exceptions should be public Design .Net Analyzer

44. Do not raise exceptions in

unexpected locations

Design .Net Analyzer

45. Implement IEquatable when

overriding Equals

Design .Net Analyzer

46. Override Equals when

implementing IEquatable

Design .Net Analyzer

47 CancellationToken parameters must

come last

Design .Net Analyzer

48. Duplicate values shouldn’t be used

in Enums

Design .Net Analyzer

49. Event fields shouldn’t be declared

virtual

Design .Net Analyzer

50. Avoid excessive inheritance Maintainability .Net Analyzer

51. Avoid excessive complexity Maintainability .Net Analyzer

52. Avoid unmaintainable code Maintainability .Net Analyzer

53. Avoid excessive class coupling Maintainability .Net Analyzer

54. Use nameof in place of string Maintainability .Net Analyzer

55. Avoid dead conditional code Maintainability .Net Analyzer

56. Invalid entry in code metrics

configuration file

Maintainability .Net Analyzer

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1061
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1062
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1062
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1063
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1064
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1065
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1065
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1066
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1066
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1067
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1067
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1068
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1068
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1069
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1070
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1070
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1501
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1502
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1505
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1506
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1507
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1508
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1509
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1509

33

57. Review unused parameters Usage .Net Analyzer

58. Call GC.SuppressFinalize correctly Usage .Net Analyzer

59. Rethrow to preserve stack details Usage .Net Analyzer

60. Reserved exception types should not

be raised

Usage .Net Analyzer

61. Value type static fields should be

initialized inline

Usage .Net Analyzer

62. Instantiate argument exceptions

correctly

Usage .Net Analyzer

63. Non-constant fields should not be

visible

Usage .Net Analyzer

64. Disposable fields should be disposed Usage .Net Analyzer

65. Overridable methods should not be

called in constructor

Usage .Net Analyzer

66. Base class dispose should be called

by dispose methods

Usage .Net Analyzer

67. Disposable types should declare

finalizer

Usage .Net Analyzer

68. Enums should not be marked with

with FlagsAttribute

Usage .Net Analyzer

69. Override GetHashCode on

overriding Equals

Usage .Net Analyzer

70. Exceptions should not be raised in

exception clauses

Usage .Net Analyzer

71. Override equals on overloading

operator equals

Usage .Net Analyzer

72. Operator overloads have named

alternates

Usage .Net Analyzer

73. Operators should have symmetrical

overloads

Usage .Net Analyzer

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1801
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1816
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2200
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2201
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2207
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2207
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2208
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2208
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2211
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2211
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2213
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2214
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2215
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2216
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2216
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2217
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2217
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2218
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2218
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2219
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2219
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2224
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2224
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2225
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2225
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2226
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2226

34

74. Collection properties should always

be declared read only

Usage .Net Analyzer

75. Implement serialization constructors Usage .Net Analyzer

76. Overload operator equals on

overriding ValueType.Equals

Usage .Net Analyzer

77. Instead of strings, System.Uri

objects should be passed

Usage .Net Analyzer

78. Mark all non-serializable fields Usage .Net Analyzer

79. Mark ISerializable types with

SerializableAttribute

Usage .Net Analyzer

80. Correct arguments should be

provided to formatting methods

Usage .Net Analyzer

81. Test for NaN correctly Usage .Net Analyzer

82. Attribute string literals should parse

correctly

Usage .Net Analyzer

83. Indexed element initializations

shouldn’t be duplicated

Usage .Net Analyzer

84. Do not assign a property to itself Usage .Net Analyzer

85. Symbol and its member shouldn’t be

assigned in the same statement

Usage .Net Analyzer

86. Argument passed to

TaskCompletionSource constructor

should be TaskCreationOptions

enum instead of

TaskContinuationOptions enum

Usage .Net Analyzer

87. Correct 'enum' argument should be

provided to 'Enum.HasFlag'

Usage .Net Analyzer

88. String.Contains should be used

instead of String.IndexOf

Usage .Net Analyzer

89. Use ThrowIfCancellationRequested Usage .Net Analyzer

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2227
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2227
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2229
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2231
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2231
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2234
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2235
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2237
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2237
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2241
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2241
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2242
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2243
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2243
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2244
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2245
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2246
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2246
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2247
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2247
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2247
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2247
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2247
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2248
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2248
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2249
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2249
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2250

35

90. Use String.Equals over String.Com

pare

Usage .Net Analyzer

91. Opt in to preview features Usage .Net Analyzer

92. Named placeholders should not be

numeric values

Usage .Net Analyzer

93. Template should be a static

expression

Usage .Net Analyzer

94. The ModuleInitializer attribute

should not be used in libraries

Usage .Net Analyzer

95. All members declared in parent

interfaces must have an

implementation in a

DynamicInterfaceCastableImpleme

ntation-attributed interface

Usage .Net Analyzer

96. Members defined on an interface

with

'DynamicInterfaceCastableImpleme

ntationAttribute' should be 'static'

Usage .Net Analyzer

97. Providing a

'DynamicInterfaceCastableImpleme

ntation' interface in Visual Basic is

unsupported

Usage .Net Analyzer

Table 3. Rule-set of .Net Analyzer with quality parameters: Design, Usage, Maintainability

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2251
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2251
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2252
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2253
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2253
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2254
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2254
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2255
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2255
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2256
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2256
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2256
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2256
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2256
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2257
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2257
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2257
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2257
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2258
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2258
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2258
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2258

36

Chapter 5

5. RESEARCH RESULTS

5.1 Analysis Findings:

After conducting a detailed analysis on the existing standards and the techniques applies

for static code analysis by widely known and renowned tools, we’ve collected a comprehensive

rule-set based upon our research criteria i.e. the software quality parameters we’ve chosen for

analysis i.e. Design, Usage, Maintainability. We’ve finally come-up with a comprehensive list of

rules as a standard which would be immensely useful especially for the critical systems which

require an extensive analysis of source code before it is sent into production.

5.2 Proposed list of Rules:

Maintainability Rules:

S.

No.

Rules/Metrics Category Standard

1. Avoid excessive inheritance Maintainability .Net Analyzer / C# coding

standard by Lance Hunt

2. Avoid excessive complexity Maintainability .Net Analyzer

3. Avoid unmaintainable code Maintainability .Net Analyzer / FxCop

4. Avoid excessive class coupling Maintainability .Net Analyzer

5. Nameof should be used instead of

string

Maintainability .Net Analyzer

6. Avoid dead conditional code Maintainability .Net Analyzer

7. Invalid entry in code metrics

configuration file

Maintainability .Net Analyzer

8. Differentiation between identifiers Maintainability FxCop

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1501
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1502
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1505
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1506
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1507
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1507
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1508
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1509
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1509
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182242(v=vs.100)

37

should be by more than one case

9. Avoid out parameters Maintainability FxCop

10. Avoid empty interfaces Maintainability FxCop

11. Types should not be passed by

reference

Maintainability FxCop

12. Avoid excessive inheritance Maintainability FxCop

13. Review misleading field names Maintainability FxCop

14. Avoid excessive class coupling Maintainability FxCop

15. Resource string compound words’

casing should be done correctly

Maintainability FxCop

16. Compound words should be cased

correctly

Maintainability FxCop

17. Resource strings should be spelled

correctly

Maintainability FxCop

18. Identifiers should be spelled

correctly

Maintainability FxCop

19. Identifiers should not contain

underscores

Maintainability FxCop

20. Identifiers should be cased correctly Maintainability FxCop

21. Identifiers should have correct suffix Maintainability FxCop

22. Enum values with type name should

not be prefixed

Maintainability FxCop

23. Parameter names should not match

member names

Maintainability FxCop

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182131(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182128(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182146(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182146(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182213(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb164506(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb397994(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264481(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264481(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264474(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264474(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264483(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264483(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264492(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264492(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182245(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182245(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182240(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182247(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182237(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182252(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182252(v=vs.100)

38

24. Property names should not match

get methods

Maintainability FxCop

25. Namespaces should not match type

names

Maintainability FxCop

26. Base declaration should not match

parameter names

Maintainability FxCop

27. "abstract" classes should not have

"public" constructors

Maintainability C# coding standard by

Lance Hunt

28. "out" and "ref" parameters should

not be used

Maintainability C# coding standard by

Lance Hunt

29. Attribute constructor must not use

unnecessary parenthesis

Maintainability C# coding standard by

Lance Hunt

30. Files should contain an empty

newline at the end

Maintainability JPL

31. Collapsible "if" statements should

be merged

Maintainability C# coding standard by

Lance Hunt

32. In source files, per file, one

namespace and one class

Maintainability CERT

33. Variables: One variable per

declaration.

Maintainability C# coding standard by

Lance Hunt

34. Mark members as static. Maintainability C# coding standard by

Lance Hunt

35. Multiple classes should not be added

in one class

Maintainability C# coding standard by

Lance Hunt

36. 'TODO' or 'FIXME' should be

resolved

Maintainability JPL

37. Methods should not have excessive Maintainability JPL

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182253(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182253(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182257(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182251(v=vs.100)

39

lines of code

38. More than one Class, Enum (global),

or Delegate (global) per file should

be avoided. Descriptive file names

should be used when having

multiple Class, Enum, or Delegates.

Maintainability C# coding standard by

Lance Hunt

39. No unused variable should be

present in any file

Maintainability C# coding standard by

Lance Hunt

40. Dispose From Dispose Maintainability C# coding standard by

Lance Hunt

41. Don’t test modulus for equality Maintainability CERT

42. No exceptions used be used in

finally block.

Maintainability CERT

43. Index Of Check Against Zero. Maintainability C# coding standard by

Lance Hunt

44. Parameters Correct Order Maintainability C# coding standard by

Lance Hunt

45. Optimize the number of fields in

classes

Maintainability JPL

46. Avoid creating files that contain

many lines of code

Maintainability JPL

47 Don’t leave nested blocks f code

empty

Maintainability JPL

48. Remove empty finalizer Maintainability JPL

Table 4. Proposed set of Rules - Maintainability

40

Usage Rules:

S.

No.

Rules/Metrics Category Standard

1. Result of integer multiplication

shouldn’t be casted to type 'long'

Usage JPL

2. Overridable methods should not be

called in constructors

Usage C# coding standard by

Lance Hunt, CERT, .Net

Analyzer, FxCop

3. Review unused parameters Usage .Net Analyzer

4. Call GC.SuppressFinalize correctly Usage .Net Analyzer

5. Rethrow to preserve stack details Usage .Net Analyzer

6. Reserved exception types should not

be raised

Usage .Net Analyzer / NDepend

7. Value type static fields should be

initialized inline

Usage .Net Analyzer, FxCop,

.Net Analyzer

8. Instantiate argument exceptions

correctly

Usage .Net Analyzer

9. Non-constant fields should not be

visible

Usage .Net Analyzer

10. Disposable fields should be disposed Usage .Net Analyzer

12. Base class dispose should be called

by dispose methods

Usage .Net Analyzer

13. Disposable types should declare

finalizer

Usage .Net Analyzer

14. Enums should not be marked with

FlagsAttribute

Usage .Net Analyzer

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1801
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1816
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2200
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2201
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2207
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2207
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2208
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2208
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2211
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2211
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2213
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2215
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2216
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2216
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2217
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2217

41

15. Override GetHashCode on

overriding Equals

Usage .Net Analyzer

16. Exceptions shouldn’t be raised in

exception clauses

Usage .Net Analyzer

17. Override equals on overloading

operator equals

Usage .Net Analyzer

18. Operator overloads have named

alternates

Usage .Net Analyzer

19. Operators should have symmetrical

overloads

Usage .Net Analyzer

20. Collection properties should be read

only

Usage .Net Analyzer

21. Implement serialization constructors Usage .Net Analyzer

22. Overload operator equals on

overriding ValueType.Equals

Usage .Net Analyzer

23. System.Uri objects should be passed

instead of strings

Usage .Net Analyzer

24. Mark all non-serializable fields Usage .Net Analyzer

25. Mark ISerializable types with

SerializableAttribute

Usage .Net Analyzer

26. Correct arguments should be

provided to formatting methods

Usage .Net Analyzer

27. Test for NaN correctly Usage .Net Analyzer

28. Parsing of attribute string literals

should be correct

Usage .Net Analyzer

29. Indexed element initializations

should not be duplicated

Usage .Net Analyzer

30. Do not assign a property to itself Usage .Net Analyzer

31. Symbol and its member shouldn’t be

assigned in the same statement

Usage .Net Analyzer

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2218
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2218
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2219
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2219
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2224
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2224
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2225
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2225
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2226
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2226
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2227
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2227
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2229
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2231
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2231
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2234
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2234
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2235
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2237
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2237
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2241
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2241
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2242
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2243
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2243
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2244
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2245
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2246
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2246

42

32. Argument passed to

TaskCompletionSource constructor

should be TaskCreationOptions

enum instead of

TaskContinuationOptions enum

Usage .Net Analyzer

33. Correct 'enum' argument should be

provided to 'Enum.HasFlag'

Usage .Net Analyzer

34. String.Contains should be used

instead of String.IndexOf

Usage .Net Analyzer

35. Use ThrowIfCancellationRequested Usage .Net Analyzer

36. Use String.Equals over String.Com

pare

Usage .Net Analyzer

37. Opt in to preview features Usage .Net Analyzer

38. Implement IDisposable correctly Usage FxCop

39. Avoid duplicate accelerators Usage FxCop

40. Wrap vulnerable finally clauses in

outer try

Usage FxCop

41. Default constructors must be at least

as critical as base type default

constructors

Usage FxCop

42. Objects with weak identity should

not be locked

Usage FxCop

43. Pointers should not be visible Usage FxCop

44. Methods must keep consistent

transparency when overriding base

methods

Usage FxCop

45. Rethrow to preserve stack details Usage FxCop

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2247
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2247
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2247
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2247
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2247
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2248
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2248
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2249
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2249
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2250
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2251
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2251
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca2252
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms244737(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182185(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182322(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182322(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd983956(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd983956(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd983956(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182290(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182306(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd997447(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd997447(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd997447(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182363(v=vs.100)

43

46. Finalizers should call base class

finalizer

Usage FxCop

47. Declare event handlers correctly Usage FxCop

48. Avoid namespaces with few types Usage FxCop

49. Boxing/unboxing should be avoided Usage NDepend

50. ISerializable types should be marked

with SerializableAttribute

Usage NDepend

51. CLSCompliant assemblies should

be marked

Usage NDepend

52. Attributes with

AttributeUsageAttribute should be

marked

Usage NDepend

53. Calls to GC.Collect() should be

removed

Usage NDepend

54. GC.WaitForPendingFinalizers()

should be called before calling

GC.Collect()

Usage NDepend

55. Int32 should be used Enum storage Usage NDepend

56. Too general exception types should

not be raised

Usage NDepend

57. Reserved exception types should not

be raised

Usage NDepend

58. System.Uri should be the type of Uri

fields

Usage NDepend

59. ICloneable shouldn’t be

implemented

Usage NDepend

60. Collection properties should not be

read only

Usage NDepend

61. List.Contains() should be cautioned Usage NDepend

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182341(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182341(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182133(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182130(v=vs.100)

44

62. Return collection abstraction should

be preferred instead of

implementation

Usage NDepend

63. Native methods class should be

static and internal

Usage NDepend

64. Threads shouldn’t be created

explicitly

Usage NDepend

65. Dangerous threading methods

should be avoided

Usage NDepend

66. TryEnter/Exit both must be called

within same method

Usage NDepend

67. Both ReaderWriterLock and

AcquireLock/ReleaseLock must be

called within the same method

Usage NDepend

68. Instance fields shouldn’t be tagged

with ThreadStaticAttribute

Usage NDepend

69. Method non-synchronized that read

mutable states

Usage NDepend

70. Concrete XmlNode shouldn’t be

returned by methods

Usage NDepend

71. System.Xml.XmlDocument

shouldn’t be extended by types

Usage NDepend

72. Float/date parsing be culture aware Usage NDepend

73. Mark Assembles with their

assembly version

Usage NDepend

74. Assemblies should have the same

version

Usage NDepend

75. Property assignments for "readonly"

fields shouldn’t be done which are

not constrained to reference types

Usage JPL

76. Hardcoded IP addresses should be

avoided

Usage JPL

45

77. Literals should not be passed as

localized parameters

Usage C# coding standard by

Lance Hunt

78. In-source issue suppression should

be avoided.

Usage JPL

79. Method's return value should not be

ignored

Usage JPL

80. Maximum 7 parameters should be

used in a method.

Usage C# coding standard by

Lance Hunt

81. base and this should only be used in

constructors or within an override.

Usage C# coding standard by

Lance Hunt

82. Avoid embedded assignment.

Usage Misra

83. Embedded method invocation

should be avoided.

Usage Misra

84. Always invoke Dispose() &

Close()if offered, declare where

needed.

Usage JPL

85. Include braces for control structures

Usage JPL

86. Redundant types should be avoided

Usage JPL

87. Access modifiers should always be

explicitly declared

Usage C# coding standard by

Lance Hunt

88. Member variables should be

declared private. Properties should

be used to provide them access with

Usage C# coding standard by

Lance Hunt

46

public, protected, or internal access

modifiers.

89. Avoid specifying type for enum -

unless you have an explicit need for

long instead of default int.

Usage C# coding standard by

Lance Hunt

90. Hidden string allocations should be

avoided within a loop. Use

String.Compare() for case-sensitive

Usage C# coding standard by

Lance Hunt, JPL

91. Use preferably loops or nested loops

instead pf recursive methods.

Usage JPL

92. Enumerated items within should not

be modified within a foreach

statement.

Usage Misra

93. Avoid assignment within

conditional statements.

Usage C# coding standard by

Lance Hunt

94. Nested if/else is preferred over

switch/case for short and complex

conditions.

Usage C# coding standard by

Lance Hunt

95. Never declare an empty catch block. Usage JPL

96. Nesting a try/catch within a catch

block should be avoided.

Usage JPL

97. Avoid re-throwing an exception..

Usage C# coding standard by

Lance Hunt

98. If re-throwing an exception,

preserve the original call stack by

Usage Misra

47

omitting the exception argument

from the throw statement.

99. Locking a Type should be avoided.

Example: lock(typeof(MyClass));

Usage C# coding standard by

Lance Hunt

100. Don’t lock the current object

instance. Example: lock(this);

Usage C# coding standard by

Lance Hunt

101. Don’t invoke methods within a

conditional expression.

Usage C# coding standard by

Lance Hunt

102. Initialize variables where declared.

Usage C# coding standard by

Lance Hunt

103. Avoid calling 'toString' on a string Usage JPL

104. Test Event & Delegate instances for

null

Usage C# coding standard by

Lance Hunt

105. Disposable member in non-

disposable class.

Usage CWE

106. Loss Of Fraction In Division.

Usage C# coding standard by

Lance Hunt

107. Empty statements should be avoided Usage JPL

108. 'break' must be included in a 'case'

statement

Usage JPL

109. Do not compare identical

expressions

Usage JPL

110. Do not test floating point equality

Usage JPL

48

111. Methods calling many other

methods should be avoided

Usage JPL

112. Do not perform self-assignment Usage JPL

113. Non-static nested classes are not

preferable unless necessary

Usage JPL

114. Loop counter should not be updated

within the loop body

Usage C# coding standard by

Lance Hunt

115. Static constructors should be

removed

Usage C# coding standard by

Lance Hunt

116. Useless object instantiation should

either be removed or utlilized

Usage JPL

117. Pass the missing user - supplied

value to the base

Usage C# coding standard by

Lance Hunt

118. Avoid overriding only one of

'equals' and 'hashCode

Usage C# coding standard by

Lance Hunt, JPL

119. Avoid unused fields Usage JPL

120. Ensure that the fields are explicitly

initialized

Usage JPL

Table 5. Proposed set of Rules - Usage

49

Design Rules:

S.

No.

Rules/Metrics Category Standard

1. Cast concrete type to interface. Design C# coding standard by

Lance Hunt

2. class with equality should

implement IEquatable

Design C# coding standard by

Lance Hunt

3. Interfaces should not be empty Design C# coding standard by

Lance Hunt

4. Conditional expressions should

avoid type mismatch

Design JPL

5. Object identity of strings should not

be compared

Design JPL

6. Don’t check if a string is equal to an

empty string

Design C# coding standard by

Lance Hunt, JPL

7. Avoid assignments in Boolean

expressions

Design JPL

8. Curly braces ({ and }) should be

placed on a new line.

Design C# coding standard by

Lance Hunt

9. Related attribute declarations should

be on a single line, else make each

attribute be a separate declaration.

Design C# coding standard by

Lance Hunt

10. Assembly scope attribute

declarations should be on a separate

line.

Design C# coding standard by

Lance Hunt

11. Type scope attribute declarations

should be on a separate line.

Design C# coding standard by

Lance Hunt

50

12. Method scope attribute declarations

should be on a separate line.

Design C# coding standard by

Lance Hunt

13. Member scope attribute declarations

should be on a separate line.

Design C# coding standard by

Lance Hunt

14. Direct casting should be avoided.

Instead use “as”, check null.

Design C# coding standard by

Lance Hunt

15. String.Format() or StringBuilder

should be preferred over string

concatenation.

Design C# coding standard by

Lance Hunt

16. Never concatenate strings inside a

loop.

Design C# coding standard by

Lance Hunt

17. Ternary conditional operator should

be used only for trivial conditions.

Design C# coding standard by

Lance Hunt

18. Compound conditional expressions

should be avoided instead boolean

variables should be used to split

parts into multiple manageable

expressions.

Design C# coding standard by

Lance Hunt

19. Multiple levels of nesting should be

avoided in methods

Design JPL

20. Declaring of array constants should

be avoided

Design JPL

21. Comparing arrays by using

'Object.equals' should be avoided

Design JPL

22. Avoid assigning to a local variable

in a 'return' statement

Design JPL

23. 'switch' must include the cases for all

'enum' constants

Design JPL

51

24. Avoid assigning to parameters in a

method or constructor

Design JPL

25. Only to hold constants, defining

abstract class or interface should be

avoided

Design JPL

26. Avoid overriding only one of

'equals' and 'hashCode

Design JPL, C# coding standard

by Lance Hunt

27. Use string or intergal type or refactor

index into method

Design C# coding standard by

Lance Hunt

28. Static members should not be

declared on generic types

Design FxCop, .Net Analyzer

29. Generic lists should not be exposed Design FxCop

30. Generic event handler instances

should be used

Design FxCop

31. Generic methods should provide

type parameter

Design FxCop

32. Avoid excessive parameters on

generic types

Design FxCop

33. Do not nest generic types in member

signatures

Design FxCop

34. Use generics where appropriate Design FxCop

35. Enums should have zero value Design FxCop

36. Collections should implement

generic interface

Design FxCop

37. Base types should be passed as

parameters

Design FxCop

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182139(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182139(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182142(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182178(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182150(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182150(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182129(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182129(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182144(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182144(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182179(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182149(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182132(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182132(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/3hk32yyz(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/3hk32yyz(v=vs.100)

52

38. Abstract types should not have

constructors

Design FxCop

39. Overload operator equals on

overloading add and subtract

Design FxCop

40. Indexers should not be

multidimensional

Design FxCop

41. Params array should be used instead

of repetitive arguments

Design FxCop

42. Default parameters should not be

used

Design FxCop

43. Use events where appropriate Design FxCop

44. Do not catch general exception types Design FxCop

45. Implement standard exception

constructors

Design FxCop

46. Nested types should not be visible Design FxCop

47. Strongly typed members should be

used in ICollection implementations

Design FxCop

48. Override methods on comparable

types

Design FxCop

49. Lists are strongly typed Design FxCop

50. Integral / string argument should be

used for indexers

Design FxCop, .Net Analyzer

51. Properties should not be write only Design FxCop

52. Do not overload operator equals on

reference types

Design FxCop

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182126(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182126(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182164(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182164(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182152(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182152(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182167(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182135(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182135(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182177(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182137(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182151(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182151(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182162(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/49stb304(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182163(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182163(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182154(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182180(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182180(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182165(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182145(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182145(v=vs.100)

53

53. Protected members should not be

declared in sealed types

Design FxCop

54. Virtual members should not be

declared in sealed types

Design FxCop

55. Assure that Static holder types are

sealed

Design FxCop

56. Constructors should not be there in

static holder types

Design FxCop

57. Avoid URI return values being

strings

Design FxCop

58. Certain base types should not be

extended by Types

Design FxCop, .Net Analyzer

59. Members should not expose certain

concrete types

Design FxCop

60. Exceptions should be public Design FxCop

61. Avoid excessive complexity Design FxCop

62. Differentiation between identifiers

should be by more than one case

Design FxCop

63. Types that own disposable fields

should be disposable

Design FxCop

64. Mark assemblies with

AssemblyVersionAttribute

Design FxCop

65. Child types should be able to call

Interface methods

Design FxCop, .Net Analyzer

66. Types that own native resources

should be disposable

Design FxCop

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182138(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182138(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182140(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182140(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182168(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182168(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182169(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182176(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182176(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182171(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182160(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182160(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb264484(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182212(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182242(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182172(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182172(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182155(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182155(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182153(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182173(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182173(v=vs.100)

54

67. Base class methods should not be

hidden

Design FxCop

68. Exceptions should not be raised in

unexpected locations

Design FxCop

69. P/Invoke entry points should exist Design FxCop

70. Dispose objects before losing scope Design FxCop

71. Methods with link demands should

not be indirectly exposed

Design FxCop

72. Override link demands should be

identical to base

Design FxCop

73. Types must be at least as critical as

their base types and interfaces

Design FxCop

74. Do not dispose objects multiple

times

Design FxCop

75. Disposable fields should be disposed Design FxCop

76. Mark all non-serializable fields Design FxCop

77. Disposable fields should be disposed Design FxCop

78. Avoid custom delegates Design NDepend

79. Types with disposable input fields

must be disposable

Design NDepend

80. Finalizer should be declared by

Disposable types with unmanaged

resources

Design NDepend

81. Dispose() cannot be called by

methods creating disposable objects

Design NDepend

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182143(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb386039(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/bb386039(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182208(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182289(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182303(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182305(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182305(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd997443(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/dd997443(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182334(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182334(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182328(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182349(v=vs.100)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182328(v=vs.100)

55

82. Classes that are candidate to be

turned into structures

Design NDepend

83. Namespaces with few types should

be avoided

Design NDepend

84. Do not make nested types visible Design NDepend, .Net Analyzer

85. Types should be declared in

namespaces

Design NDepend

86. Discard empty static constructor Design NDepend

87. Keep a check on instance’s size Design NDepend

88. Mark the attribute classes as sealed Design NDepend

89. Obsolete types, fields and methods

should not be used

Design NDepend

90. Methods throwing throw

NotImplementedException should

be implemented

Design NDepend

91. Override equals and operator equals

on value types

Design NDepend

92. Types that own disposable fields

should be disposable

Design .Net Analyzer

93. Do not expose generic lists Design .Net Analyzer

94. Use generic event handler instances Design .Net Analyzer

95. Excessive parameters on generic

types should be avoided

Design .Net Analyzer

96. Enums should have zero value Design .Net Analyzer

97. Collections should implement

generic interface

Design .Net Analyzer

98. Abstract types should not have

constructors

Design .Net Analyzer

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1001
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1001
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1002
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1003
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1005
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1005
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1008
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1010
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1010
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1012
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1012

56

99. Mark assemblies with

CLSCompliantAttribute

Design .Net Analyzer

100. Mark assemblies with

AssemblyVersionAttribute

Design .Net Analyzer

101. Mark assemblies with

ComVisibleAttribute

Design .Net Analyzer

102. Mark attributes with

AttributeUsageAttribute

Design .Net Analyzer

103. Define accessors for attribute

arguments

Design .Net Analyzer

104. Avoid out parameters Design .Net Analyzer

105. Use properties where appropriate Design .Net Analyzer

106. Mark enums with FlagsAttribute Design .Net Analyzer

107. Enum storage should be Int32 Design .Net Analyzer

108. Use events where appropriate Design .Net Analyzer

109. General exception types should not

be catched

Design .Net Analyzer

110. Implement standard exception

constructors

Design .Net Analyzer

111. Override methods on comparable

types

Design .Net Analyzer

112. Avoid empty interfaces Design .Net Analyzer

113. Provide ObsoleteAttribute message Design .Net Analyzer

114. Properties should not be write only Design .Net Analyzer

115. Types shouldn’t be passed by

reference

Design .Net Analyzer

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1014
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1014
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1016
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1016
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1017
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1017
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1018
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1018
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1019
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1019
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1021
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1024
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1027
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1028
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1030
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1031
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1032
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1032
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1036
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1036
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1040
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1041
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1044
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1045
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1045

57

116. Do not overload operator equals on

reference types

Design .Net Analyzer

117. Protected members should not be

declared in sealed types

Design .Net Analyzer

118. Declare types in namespaces Design .Net Analyzer

119. Do not declare visible instance fields Design .Net Analyzer

120. Mark static holder types as sealed Design .Net Analyzer

121. There shouldn’t be constructors in

static holder types

Design .Net Analyzer

122. URI params shouldn’t be in the form

of strings

Design .Net Analyzer

123. URI return values shouldn’t be in the

form of strings

Design .Net Analyzer

124. URI properties shouldn’t be of type

strings

Design .Net Analyzer

125. P/Invokes should be moved to

NativeMethods class

Design .Net Analyzer

126. Base class methods should not be

hidden

Design .Net Analyzer

127. Validate arguments of public

methods

Design .Net Analyzer

128. Implement IDisposable correctly Design .Net Analyzer

129. Exceptions should be public Design .Net Analyzer

130. Do not raise exceptions in

unexpected locations

Design .Net Analyzer

131. Implement IEquatable when

overriding Equals

Design .Net Analyzer

132. Override Equals when

implementing IEquatable

Design .Net Analyzer

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1046
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1046
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1047
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1047
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1050
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1051
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1052
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1053
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1053
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1054
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1054
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1055
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1055
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1056
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1056
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1060
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1060
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1061
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1062
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1062
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1063
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1064
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1065
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1065
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1066
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1066
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1067
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1067

58

133. CancellationToken parameters must

come last

Design .Net Analyzer

134. Duplicate values shouldn’t be

present in Enums

Design .Net Analyzer

135. Event fields should not be declared

as virtual

Design .Net Analyzer

Table 6. Proposed set of Rules - Design

https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1068
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1068
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1069
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1070
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1070

59

Chapter 6

6. RESULTS AND TECHNICAL DISCUSSION

We have finally proposed a rule-set which ensures that all quality factors pertaining to the 3

factors we’ve chosen for research purpose i.e. Design, Usage, Maintainability are completely

researched. We’ve come up with a comprehensive rule-set of 303 rules. We suggest to keep the

proposed rule-set as a basis for conducting research on software systems especially critical systems

in order to make sure that no rule is missed out.

We have proposed a comprehensive Rule-set for static code analysis of critical systems based

upon 3 quality parameters i.e. Design, Usage, Maintenance. The proposed rule-set is of significant

importance for the software industry, especially for the domain experts of critical systems. The

idea behind proposing the researched study for critical systems is that critical systems are of

significant importance and in the worst case, the failure of such systems cause huge sum of loss

either it be a financial loss or loss of lives. Therefore, while conducting testing of critical systems,

we need to take into account very minute details as well, because we never know, even an ignorable

aspect can also become a loophole in the system, leading to such scenarios which may involve a

chain of executions pushing the entire system towards failure, as also discussed in section 1.3.

 As software quality is a vast term, it is an ideal case for a software system to fulfill and

cover all aspects of software quality which is nearly impossible, therefore in order to get closer to

the ideal case of software quality, we selected 3 quality parameters of: Maintainability, Usage,

Design. Then, we studied popular and widely known standards for assessing code quality, and

researched the rule-set / foundation based upon which top-notch static code analysis tools conduct

testing. And we found that the rule-sets varied alot. Therefore after conducting an in-depth analysis

and research we proposed a cumulative rule-set of 303 rules which we’ve split into 3 parts i.e.

underlying software quality parameters for research.

60

Chapter 7

7. PROTOTYPE OF STATIC CODE ANALYZER

REFLECTING IMPLEMENTATION OF A SMALL SET OF

RULES FROM OUR PROPOSED RULE SET

Fig 1. Main Layout

Fig 2. File Selection

61

Fig 3. File loaded for analysis

Fig 4. Analyzing code

62

Fig 5. Analysis Result

Fig 6. Analysis Summary

63

Chapter 8

8. Conclusion and Future work

We have finally devised a rule-set / standard for static code analysis of critical systems. We’ve

researched multiple coding standards, studied and sorted out the basis upon based upon which,

world-renowned tools conduct static code analysis. Finally we devised a rule of almost 303 rules

which contains strategies to figure out potential defects and shortcomings in the source code

pertaining to all aspects of the chosen software quality parameters i.e. Design, Usage,

Maintainability. The project can be extended in multiple dimensions. The domain of static code

analysis is wide, the proposed research and can be extended in multiple manners as follows:

 Rule-set can be extended by designing and adding more rules for analysis

 Severity of violations could be specified as: Minor, Major, Critical

 The rule-set can be extended to accommodate more dimensions of software design and

development, likewise integrate best practices for each.

 Rule-set can be extended and can be categorized into multiple categories such as:

 Code Smells

 Code smells regression

 Object Oriented Design

 Design

 Architecture

 API breaking changes

 Code Coverage

 Dead code

 Security

 Visibility

 Immutability

 Naming Conventions

 Source Files Organization

 .NET Framework usage

 API usage

64

Chapter 9

9. REFERENCES

1. Stefanović, Darko & Nikolić, Danilo & Dakic, Dusanka & Spasojević, Ivana & Ristic,

Sonja. (2020). Static Code Analysis Tools: A Systematic Literature Review.

10.2507/31st.daaam.proceedings.078.

2. Ashfaq, Qirat & Khan, Rimsha & Farooq, Sehrish. (2019). A Comparative Analysis of

Static Code Analysis Tools that check Java Code Adherence to Java Coding Standards. 98-

103. 10.1109/C-CODE.2019.8681007.

3. Kaur, A. and Nayyar, R., 2022. A Comparative Study of Static Code Analysis tools for

Vulnerability Detection in C/C++ and JAVA Source Code.

4. Stefanović, Darko & Nikolić, Danilo & Havzi, Sara & Lolić, Teodora & Dakic, Dusanka.

(2021). Identification of strategies over tools for static code analysis. IOP Conference

Series: Materials Science and Engineering. 1163. 012012. 10.1088/1757-

899X/1163/1/012012.

5. Saha, A. and Prasad, R., 2022. [online] Ijarcce.com. Available at: https://ijarcce.com/wp-

content/uploads/2022/07/IJARCCE.2022.11764.pdf

6. Lenarduzzi, Valentina & Sillitti, Alberto & Taibi, Davide. (2018). A Survey on Code

Analysis Tools for Software Maintenance Prediction. 10.1007/978-3-030-14687-0_15.

7. Rawat, Sanjay & Saxena, Ashutosh. (2009). Application Security Code Analysis: A Step

towards Software Assurance. International Journal of Information and Computer Security

(IJICS). 3. 86-110. 10.1504/IJICS.2009.026622.

8. Docs.microsoft.com. 2022. C# Coding Conventions. [online] Available at:

<https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-

conventions>

9. Hunt, L., n.d. What Is Static Analysis? Static Code Analysis Overview | Perforce Software.

[online] Perforce Software. Available at: <https://www.perforce.com/blog/sca/what-static-

analysis>

10. Docs.microsoft.com. 2022. The .NET Compiler Platform SDK (Roslyn APIs). [online]

Available at: <https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/> [Accessed 25

August 2022].

https://ijarcce.com/wp-content/uploads/2022/07/IJARCCE.2022.11764.pdf
https://ijarcce.com/wp-content/uploads/2022/07/IJARCCE.2022.11764.pdf

65

11. NDepend. n.d. Improve your .NET code quality with NDepend. [online] Available at:

<https://www.ndepend.com/>

12. Ndepend.com. n.d. NDepend Rules Explorer. [online] Available at:

<https://www.ndepend.com/default-rules/NDepend-Rules-

Explorer.html?ruleid=ND1600#!>

13. Docs.microsoft.com. 2022. Code analysis rule categories - .NET. [online] Available at:

<https://docs.microsoft.com/en-us/dotnet/fundamentals/code-

analysis/categories?source=recommendations>

14. Docs.microsoft.com. 2022. Design rules (code analysis) - .NET. [online] Available at:

<https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-

rules/design-warnings>

15. Docs.microsoft.com. 2022. Maintainability rules (code analysis) - .NET. [online]

Available at: <https://docs.microsoft.com/en-us/dotnet/fundamentals/code-

analysis/quality-rules/maintainability-warnings>

16. Docs.microsoft.com. 2022. Usage rules (code analysis) - .NET. [online] Available at:

<https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-

rules/usage-warnings>

17. A. Mandal, D. Mohan, R. Jetley, S. Nair and . M. D'Souza, "A Generic Static Analysis

Framework for Domainspecific Languages," in IEEE International Conference on

Emerging Technologies and Factory Automation, ETFA, 2018.

18. G. Chatzieleftheriou, A. Chatzopoulos and P. Katsaros, "Test-Driving Static Analysis

Tools in Search of C Code Vulnerabilities," in LECTURE NOTES IN COMPUTER

SCIENCE. (8803), Heidelberg, 2011.

19. A. Arusoaie, S. Ciobâca, V. Craciun, D. Gavrilut and D. Lucanu, "A Comparison of Open-

Source Static Analysis Tools for Vulnerability Detection in C/C++ Code," in 2017 19th

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC), 2017.

20. "Domain specific infrastructure for code smell detection in large-scale software systems,"

in International Research Symposium on Engineering Advancements 2016 (IRSEA 2016),

2016.

66

21. Z. Fiorella, S. Simone, O. Rocco, C. Gerardo and D. P. Massimiliano, "How Open Source

Projects Use Static Code Analysis Tools in Continuous Integration Pipelines," in 2017

IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), 2017.

22. K. Tuma, G. Calikli and R. Scandariato, "Threat analysis of software systems: A systematic

literature review," Journal of Systems and Software, vol. 144, pp. 275-294, 2018. [16] A.

Kaur and R. Nayyar, "A Comparative Study of Static Code Analysis tools for Vulnerability

Detection in C/C++ and JAVA Source Code," Procedia Computer Science, vol. 171, no.

2019, pp. 2023-2029, 2020.

23. D. Marcilio, C. Furia, R. Bonifacio and P. Gustavo, "SpongeBugs: Automatically

generating fix suggestions in response to static code analysis warnings," The Journal of

Systems & Software, vol. 168, 2020.

24. P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia and M. Vieira, "An empirical

study on combining diverse static analysis tools for web security vulnerabilities based on

development scenarios," Computing, vol. 101, no. 2, pp. 161-185, 2019.

25. I. Ruiz-Rube, T. Person, J. M. Dodero, J. M. Mota and J. M. Sánchez-Jara, "Applying static

code analysis for domain-specific languages," Software & Systems Modeling, vol. 19, no.

1, pp. 95-110, 2020.

26. M. Beller, R. Bholanath and M. S., "Analyzing the state of static analysis: A large-scale

evaluation in open source software," 2016.

27. Flawfinder [online] available:” https://www.dwheeler.com/flawfinder/”, 2019

28. RATS [online] available:

“https://security.web.cern.ch/security/recommendations/en/codetools/rats.shtml,”, 2019

29. CPPCHECK [online] available: “: http://cppcheck.sourceforge.net/, 2019 [14]

SPOTBUGS [online] available: “https://spotbugs.readthedocs.io/en/stable/”, 2019

30. PMD [online] available: “https://pmd.github.io/latest/index.html”, 2019

31. R.Mahmood, and Q.H. Mahmoud, “Evaluation of static analysis tools for finding

vulnerabilities in JAVA nad C/C++ source code”, arXiv e-prints, abs/1805.09040,August

2018

32. R.Amankwah, and P.K.Kudjo, “Evaluation of software vulnerability detection methods

and tools: A Review”, vol 169, issue 8, pp. 22-27, July 2017

33. A. Moller and I. Schwartzbach, "Static program analysis," 2019.

67

34. I. Ruiz-Rube, T. Person, J. M. Dodero, J. M. Mota and J. M. Sánchez-Jara, "Applying static

code analysis for domain-specific languages," Software & Systems Modeling, vol. 19, no.

1, pp. 95-110, 2020.

35. D. Marcilio, C. Furia, R. Bonifacio and P. Gustavo, "SpongeBugs: Automatically

generating fix suggestions in response to static code analysis warnings," The Journal of

Systems & Software, vol. 168, 2020.

36. P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia and M. Vieira, "An empirical

study on combining diverse static analysis tools for web security vulnerabilities based on

development scenarios," Computing, vol. 101, no. 2, pp. 161-185, 2019.

37. N. Imtiaz, B. Murphy and L. Williams, "How Do Developers Act on Static Analysis Alerts?

An Empirical Study of Coverity Usage," 2019 IEEE 30th International Symposium on

Software Reliability Engineering (ISSRE), 2019, pp. 323-333, doi:

10.1109/ISSRE.2019.00040.

38. A. Janes, V. Lenarduzzi, and A. C. Stan. “A continuous software quality monitoring

approach for small & medium enterprises” 8th ACM/SPEC on International Conference

on Performance Engineering Companion (ICPE '17 Companion) 2017

39. V. Lenarduzzi, A. C. Stan, D. Taibi, D. Tosi and G. Venters “A dynamical quality model

to continuously monitor software maintenance.” 11th European Conference on Information

Systems Management (ECISM2017), 2017

40. Owasp.org. n.d. Source Code Analysis Tools | OWASP Foundation. [online] Available at:

<https://owasp.org/www-community/Source_Code_Analysis_Tools>

