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Abstract 

 

Accurate and early diagnosis of coronavirus disease is essential for quick decision-

making and patient management. Polymerase chain reactions (PCR) confirm Covid-19 

but are limited due to prolonged execution time for analysis. Early disease detection is 

possible using High Resonance Computerized Tomography (HRCT) images as input in 

an automated disease prediction model. This is helpful for patients to take early 

precautionary measures even before consulting a radiologist. Different pre-trained deep 

neural networks have been used and higher accuracy has been achieved in this model. 

This study aims to detect disease more accurately and rapidly by differentiating between 

normal and infected images. The dataset available on Kaggle is divided into 70:15:15 

ratios in which training, validation, and test dataset contain 18676, 4000, and 4000 images, 

respectively. Five different pre-trained deep neural networks ResNet50V2, 

MobileNetV2, EffecientNetB0, InceptionV3, and Xception Net are compared using an 

open-source data set to train and validate our proposed model.  The proposed model 

achieves an overall accuracy of 99.9% on ResNet50V2 followed by 99.1% on 

MobileNetV2, 98.5% on Xception, 98.4% on Inception, and 94.1% on Efficient NetB0. 

Mobile NetV2 achieves the highest covid-19 sensitivity of 99.5% and ResNet50V2 

gives 99.9% covid specificity among all other networks. In future, such prediction 

models can be used in clinical settings to develop computer-aided diagnosis (CAD) 

models for clinicians. 

 

Keywords: Convolution Neural Network (CNN), Coronavirus, Covid-19, Deep Neural 

Network (DNN), HRCT Images 
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INTRODUCTION  

1.1 COVID-19 

The novel coronavirus a global pandemic also known as COVID-19, caused by severe acute 

respiratory syndrome (SARS) coronavirus 2 (CoV-2), which belongs to SARS family 

(SARS-Cov-2). Tin December 2019, this disease initially occurred in Hubei province of 

Wuhan, China (Huang et al., 2020; Li et al., 2020). Covid-19 has high homology to SARS-

CoV, approximately 80%, and caused acute respiratory distress syndrome (ARDS) in 2002-

2003, with a high mortality rate (Ksiazek et al., 2003). China’s seafood market in Wuhan 

is associated with zoonotic transmission of SARS-Coronavirus-2 outbreak. Studies 

recognized human-to-human transmission, as a major part of this subsequent outbreak 

(Tian et al., 2020).  This virus caused a disease called Coronavirus disease in 2019 referred 

to as COVID-19, which by World Health Organization (WHO) was declared a global 

pandemic on 30th January 2020 (Sohrabi et al., 2020).  

Studies reported impact of COVID-19 on a large population, in more than 200 countries 

and territories worldwide (Zhang et al., 2020). An estimated death rate due to this pandemic 

is between 1% to 5% (Ruan et al., 2020).  Confirmed Covid cases have been reported 

around 526 million with 6.28 million total deaths as of 23rd May 2022 (Kurihara, 2022). 

About 80% of confirmed cases present mild symptoms such as headache, fever, breathing 

difficulties, cough, vomiting, generalized weakness, and diarrhea (Ruan et al., 2020).  

Severe cases presented with pneumonia, multiple organ failure, and ultimately death 

(Mahase, 2020). In Covid-19, majority of deaths occurred in immunocompromised patients 

above 60 years, or those with some preexisting conditions like heart diseases, and 

hypertension (Wu & McGoogan, 2020).  

1.2 Lungs and Coronavirus Disease 

Lungs are a pair spongy air-filled, primary organs of respiratory system that are located on 

either side of thorax. Right and left lung are separated from each other by mediastinum and 

are suspended by lung root. Depending upon their location in thorax, each lung has three 

surfaces. The costal surface, diaphragmatic surface, and mediastinal surface. A thin layer 
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of tissue known as pleura, provides cushion and protects the lungs. The windpipe known 

as trachea inhaled air through tubular branches (bronchi) into the lungs.  

Bronchi divided into bronchioles which eventually ends in microscopic cluster of air sacs 

called as alveoli. The gaseous exchange (oxygen and carbon dioxide) takes place with the 

help of alveoli. SARS-CoV-2 filled the interstitial spaces with fluid that can lead to 

pneumonia, thus affects one or both lungs (Ruan et al., 2020).  Lung is the main affected 

organ and its damage cause death in majority of covid-infected patients (Mahase, 2020). 

1.2.1 Lungs Lobes 

The two lungs right and left in body, are of different sizes. Right lung (RL) is greater than 

left one. Lung on each side of chest cavity is further divided into lobes and lobes are 

separated by fissures.  

• Right Lung (RL) → 3 Lobes 

• Left Lung (LL) → 2 Lobes  

 

Figure 1: Lungs and their lobes. RL with three lobes and LL with two lobes 
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1.3 Pulmonary Pathology of Coronavirus  

In most severe cases of coronavirus disease, one of the dominant features is pulmonary 

damage. Acute Lung injury (ALI) develop in patients frequently accompanied by 

coagulopathy which is also called pneumonia.  In autopsy cohorts, elderly males with 

severe Covid-19 ranges from 31-96 years with a mean age of 73-81.5 years (Maiese et al., 

2020; Omori et al., 2020). Most of individuals showed several comorbidities such as, 

diabetes, amyloidosis, hypertension, chronic obstructive pulmonary disease (COPD), and 

coronary heart diseases (Guan et al., 2020; Magadum & Kishore, 2020).  

1.3.1 Pulmonary Morphological Stages of Coronavirus Disease 

The pulmonary stage of Coronavirus disease is divided, into four morphological stages.  

• Early stage (day 0-1) 

• Exudative stage of diffuse alveolar damage (DAD) (day 1-7) 

• Organizing stage (1-several weeks) 

• Fibrotic stage of DAD (weeks-months)  
  

1.4 Diagnosis of CoV-19 

Covid-19 can be investigated by performing various tests. PCR is considered a gold 

standard technique to diagnose Covid-19 infections (Falzone et al., 2021).  Low sensitivity 

is one of the major reasons that limits real-time PCR (RT-PCR), and incorrectly diagnosed 

samples with minimal viral load (Pan et al., 2020). However, false-positive, or false-

negative results lead to several limitations and criticisms, thus affecting prompt diagnosis 

and correct patient management (Fang et al., 2020). Other limitations include sample 

contamination and prolonged execution time for analysis. The first imaging technique for 

diagnosis of coronavirus is a chest X-ray. It is represented as ground-glass opacities (GGO), 

with basal, peripheral, and bilateral distribution (Abbas et al., 2020). The sensitivity of chest 

radiography has been limited for Covid-19, during an early stage of infection therefore, it 

is not recommended as a first-line imaging modality however, it is cheap and easily 

available (Zu et al., 2020). Covid-19 patients at early 2-4 days showed no image 

abnormalities on chest x-ray (Wong et al., 2020).  
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Prompt decision-making to isolate and treat Covid-19 infected patients can be supported 

by non-contrast thoracic computerized tomography (CT) scans. CT images represent 

infected lung as Ground Glass Opacity (GGO), crazy paving, and consolidation (Li et al., 

2020). Multiple CT slices give detailed information about the damaged lung. The 

equipment is not easily available in various hospitals and is also not cost-effective.  High-

resolution computerized tomography (HRCT) is considered a preferred method of 

diagnosis because it provides a clear image of the tiny structure of lung tissues (Shah et al., 

2021). The overall sensitivity of HRCT is higher and is proven as a standard imaging 

method that can access the progression and severity of disease (Shah et al., 2021).   

However, it is important to identify patient’s timely who may become critically ill, for 

subsequent active interventions. It is necessary to consider patient triage, and designing the 

treatment protocols, and performing follow-up evaluations for the improvement of clinical 

outcomes.  

1.5 Role of Deep Learning (DL) in the Diagnosis of Coronavirus 

In recent years, DL one of the major sub-filed of Artificial Intelligence (AI), has played a 

central role in medical image analysis (Shin et al., 2016). DL has proposed a potential 

method that used CT images for identification of diffused lung diseases. In contrast to a 

traditional visual evaluation of CT scans, DL is more effective in automatic image 

classification tasks. In DL, one of the most prominent and important models is CNN which 

in many application areas has shown its advantages, such as in medical diagnosis, speech 

recognition, and computer vision (Shin et al., 2016). LeCun proposed a special neural 

network called convolution neural network (CNN) used for image recognition that made a 

great breakthrough in target detection (Girshick et al., 2016), images retrieval and 

classification (Krizhevsky et al., 2017).  

There is an increase in number of hidden layers (convolution and sampling layer) in deep 

CNN, and the image dimension has been reduced which in low dimensional space extracts 

sparse image features. It is easier to train because weight-sharing CNN has few parameters 

and neurons. CNN have been proposed as potential solutions to identify damaged lung of 

a person with pulmonary disease, by distinguishing lung tissues from surrounding 

structures (Soni et al., 2022). A wide range of training skills and network settings have been 
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developed by Alex et al. including local response normalization, pooling, ReLU, and 

dropout. This is helpful for more effective training of deep CNN and gives better results 

(Rawat & Wang, 2017).    

1.6 HRCT Dataset and Covid-19 Classification  

This study uses five different pre-trained networks ResNet50V2, InceptionV3, Xception 

Net, EfficientNetB0, and MobileNetV2 on publicly available dataset, which is 

preprocessed (Rahimzadeh et al., 2021).  The data augmentation technique is applied to 

attain diversity. The image classification performance of small data sets using CNN-based 

methods can be improved by adopting data augmentation. The data set has been loaded in 

batches and pre-trained weights of the ImageNet dataset have been used. The transfer 

learning technique has been applied, for achieving the best accuracy (Shin et al., 2016). 

After concatenating the last connection layer, the output comes as 0 for a normal image and 

1 for a covid-19 infected image. Best checkpoints for each model are saved after training, 

which are then used for the evaluation of the proposed model. The accuracy, sensitivity, 

specificity, and precision values for all five models have been calculated.  Furthermore, 

feature visualization algorithm investigated covid-19 infected and normal images by 

generating heat maps.  

1.7 Research Aim and Objective 

The basic aim of the study is to propose a fully automated model for an accurate and rapid 

detection of Covid-19 from HRCT images using deep learning.  The implementation of 

deep learning frameworks in medical image classification is an important task. The basic 

objectives of the study are as under:  

• Propose a light weight more accurate model that out-performs previously proposed 

models  

• Compare different pre-trained DNN models in order to find the best optimized 

architecture 

• Reduce the burden on radiologist by automatic and accurate detection of disease 

• Objective diagnostic  
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RELATED WORK 

2.1 SARS-CoV-2 

From the past 2 years, novel coronavirus SARS-CoV-2 greatly affected billions of people, 

globally. In December 2019, city of China, Wuhan 41 atypical pneumonia cases with 

unknown etiology (Huang et al., 2020). In early January 2020, there was rapid increase in 

number of atypical pneumonia in Wuhan which began spreading across China and other 

countries (Nishiura et al., 2020).  

Iranian Health Authorities from February 19 up to March 9, 2022, officially reported 

surveillance cases data to estimate incidence rate of confirmed infections (Arab-Mazar et 

al., 2020). It affected 1.2 billion people globally and up to March 2021 causing >2.7 million 

deaths (2020). Patients aged >65 years with Covid-19 to be found 6 times higher mortality 

as compared to younger (Wu et al., 2020).  

2.2 Mechanism of Invasion of SARS-CoV-2 into Host Cell 

Coronaviruses are single-stranded RNA viruses, of approximately 30kb which are 

enveloped and can infect a variety of host species (Channappanavar et al., 2014). Based on 

the genomic structure, they are further divided into four genera:  α, β, γ, and δ, of which 

only two of them α, β can infect mammals (Rabi et al., 2020).  Common cold and croup 

caused by 229E and NL63 human coronavirus. However, β coronaviruses are responsible 

for Severe acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East 

Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory 

Syndrome Corona Virus-2 (SARS-CoV-2) which causes COVID-19.  

There are 5 steps involved in life cycle of virus: initial attachment with host, penetration, 

after that biosynthesis, then maturation and finally release. Viral attachment occurs when 

it binds to the host receptors. In penetration, by process of membrane fusion or endocytosis 

viruses enter the host cells. Viral RNA for replication entered nucleus, and inside host cells 

releasing viral contents. In the third step biosynthesis, new viral proteins are made up of 

viral mRNA. Finally, new viral particles are synthesized, matured, and then released.  
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2.2.1 Structure of Coronavirus 

Four structural proteins are involved in the composition of coronavirus: (i) Spike (S), (ii) 

Membrane (M), (iii) Envelop (E), and nucleocapsid (N) (Bosch et al., 2003). Diversity of 

host tropism with coronaviruses is determined by spike. Trimetric transmembrane 

glycoprotein is involved in the composition of spike which protrudes from surface of virus. 

Two functional subunits S1 and S2 co spike, and S1 unit is for viral binding to host cell 

receptor and S2 subunit is responsible for cellular membrane fusion with viruses. For SARS-

CoV, Angiotensin-converting enzyme-2 are considered as functional receptors (ACE2) (Li 

et al., 2003).     

ACE2 and SARS-CoV spike bound have been reported through functional and structural 

analysis (Letko et al., 2020; Chen et al., 2020). In lungs, kidney, heart, bladder, and ileum 

ACE2 expression is remarkably high (Shu et al., 2020). Lungs epithelial cells highly 

expressed ACE2. However, further investigation is still needed whether SARS-CoV binds 

to an additional target or not. Protease cleavage occurs in spike protein, when SARS-CoV-

2 binds with host protein. To activate protein spike of MERS-CoV and SARS-CoV two 

sequential protease cleavage was proposed as a model. It consists of cleavage at S1 and S2 

sites for priming, and cleavage at S2 site for activation, within S2 subunit an adjacent 

position to fusion peptide (Ou et al., 2020; Belouzard et al., 2009; Millet & Whittaker, 

2014).  

Non-covalent binding remains in S1 and S2 subunits after cleavage at S1/S2 cleavage site, 

while to stabilize the membrane-anchored and pre-fusion state the distal S1 subunit and S2 

subunit contributes, respectively (Walls et al., 2020). Spike for membrane fusion activates 

due to subsequent cleavage at S2 site, through some irreversible conformational changes. 

As different proteases cleave and activate it so, spike of coronavirus is unusual (Belouzard 

et al., 2012).  The existence of “RPPA” sequence (furin cleavage site) at S1/S2 site, 

characterized SARS-CoV-2 as unique among other coronaviruses. However, furin 

existence makes this virus more pathogenic.  
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Figure 2: 3-Dimensional (3-D) Structure of SARS-CoV-2 showing: M (Membrane), S 

(Spike), E (Envelop), and N (Nucleocapsid) structural proteins (Saville et al., 2022)  
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2.3 Coronavirus Disease 2019 and Patient Classification 

The coronavirus disease hits the patients differently and classified them as symptomatic 

and asymptomatic. In symptomatic patients, clinical presentations may vary from patient 

to patient and are sub-divided in to mild, moderate, and severe cases (Ruan et al., 2020; 

Mahase, 2020; Wu & McGoogan, 2020). However, asymptomatic patients usually do not 

show any sign and symptoms. The classification of symptomatic and asymptomatic patients 

is described in Table 1.  

 

Table 1: Symptomatic and Asymptomatic Classification of Patients with Coronavirus 

Disease    

 

Classification 

 

Clinical Presentations 

 

Asymptomatic 

 

No clinical sign and symptoms, but COVID test positive and 

normal chest imaging  

 

Symptomatic 

Mild 

 

Acute upper RTI (respiratory tract infection) symptoms such as 

cough, fever, sneezing, sore throat, myalgia, fatigue, or digestive 

symptoms like abdominal pain, diarrhea, nausea, and vomiting 

 

Symptomatic 

Moderate 

 

Frequent fever and cough, pneumonia-like symptoms chest CT with 

lesions but no obvious hypoxemia 

 

Symptomatic 

Severe 

 

Pneumonia along with hypoxemia, SPO2 is less than 92% 

 

Symptomatic 

Critical 

 

ARDS, heart failure, myocardial injury, may have shock, 

coagulation dysfunction, acute kidney failure, or encephalopathy 
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2.4 Medical Image Classification 

Medical image classification plays an important role in teaching tasks and clinical 

treatments. To label and collect medical image datasets, a lot of professional expertise is 

required. For different classification tasks, Machine Learning (ML) methods are available. 

The deep neural network (DNN) is one of the emerging ML methods. The best results of 

image classification tasks can be achieved by CNN (Chaudhary et al., 2021; Rahimzadeh 

et al., 2021). 

2.5 Machine Learning and Image Classification 

Martinez et al., (2021) used machine learning approach for an early detection of 

coronavirus disease exclusively based on self-reported symptoms. The area under the curve 

for receiver operating characteristic (AUC), specificity, and sensitivity showed 72.8%, 

60.9%, and 75.2%, respectively (Martinez-Velazquez et al., 2021).  

Han et al., (2021) used symptoms and voice signals combination of covid-19 infected 

patients while recording coughing audios. Author processed data training using Support 

Vector machine (SVM) and reported specificity and sensitivity of 82% and 68%, 

respectively (Han et al., 2021).  

Federico et al., (2020) develop, evaluate, and validate ML models using routine blood tests 

for the detection of coronavirus disease. Study used three different datasets and developed 

five ML models and achieved AUC from 75% to 78% and specificity ranges from 92%-

96% (Federico et al., 2020).  

Arpaci et al., (2021) considered fourteen different clinical features to predict coronavirus 

infection by implementation of ML classification algorithms. Author used six different 

classifiers for the development of six predictive models to diagnose corona virus disease. 

Results showed that CR-meta classifier is 84.21% accurate and could be helpful for the 

diagnosis of disease (Arpaci et al., 2021).  
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2.6 Deep Learning and Image Classification 

The reliable and efficient medical imaging diagnosis can be achieved by the 

implementation of deep learning-based algorithms. In recent years, for the prognosis of 

pneumonia competitive sensitivity has been demonstrated by deep learning-based analysis 

using CT-scan.   

Xue et al., used transfer learning technique for the classification of chest CT-scans to 

diagnose Covid-19.  A novel pre-processing method have been used to classify volumetric 

CT scans by exploiting 3D Network-based transfer learning technique. The backbone 

network used in study was a pre-trained 3D ResNet50, trained on pneumonia, covid-19 

infected and normal images. The results showed 82.86% covid-19 sensitivity and 85.56% 

overall accuracy (Xue & Abhayaratne, 2021).   

Rahimzadeh et al., (2021) proposed highly accurate and rapid model for detection of Covid-

19, from HRCT images. Image pre-processing algorithm was implemented to discard close 

lung images and then novel CNN architecture was designed to improve image 

classification. ResNet50V2 used as a backbone with feature pyramid network and achieved 

an overall accuracy of 98.49%. the overall accuracy on Xception Net was 96.55% with 

98.02% covid-19 sensitivity (Rahimzadeh et al., 2021).  

Anwar & Zakir (2020) used CT-scan images for the diagnosis of coronavirus disease 2019, 

by implementation of deep learning techniques. Efficient Net DL architecture has been used 

for rapid and accurate detection of disease. This study used three different learning 

strategies such as constant learning rate, cyclic learning rate, and reducing learning rate. 

The results showed an overall accuracy of 89.7%, F1 score 89.6%, an AUC 89.5% (Anwar 

& Zakir, 2020).  

Chaudhary et al., (2021) proposed a CNN based classification architecture, for the detection 

of pneumonia and Covid-19 using CT-scan images. Initially, pre-trained Dense Net 

architecture has been used then applied Efficient Net for a fine-grained three-way 

classification. The results showed an overall accuracy of 90%, with 85.7% and 94.2% 

sensitivity for Covid-19 and pneumonia, respectively (Chaudhary et al., 2021).  
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Shamsi et al., (2021) motivated by medical diagnostics shortcomings and presented a 

framework for early and rapid detection of coronavirus disease 2019. Author used four 

different pre-trained networks such as ResNet50, InceptionResNetV2, DenseNet121, and 

VGG16 to extract deep features from CT-scan and chest X-ray images. The best results 

achieved which showed that estimated predictivity is much higher in CT-scans as compared 

to chest X-ray images (Shamsi et al., 2021).  

2.7 Five Pre-trained Models  

Literature showed that many authors used different models for medical image 

classification. Studies revealed that using DL for diagnosis of Covid-19 in image 

classification tasks, residual neural network (Res Net) (2D or 3D) has often been used, as 

a novel CNN architecture (Loey et al., 2020). ResNet was proposed as a novel CNN 

architecture in 2015 (He et al., 2016). ResNet inserts shortcut connections between layers 

after realizing identity mapping, which improves the CNN classification performance by 

adding new residual blocks after defining the function complexity.  

The modified version of Res Net 50 is ResNet50V2, which on the ImageNet dataset 

performs better than ResNet101 and ResNet50 (Kondu et al., 2022; Rahimzadeh & Attar, 

2020). A modification was made in ResNet50V2 between blocks, in the propagation 

formulation of connections. In 2017, the first version of Mobile Net was proposed that 

improves training efficiency of CNNs by reducing computational budget without 

compromising accuracy. It uses depth-wise separable convolutions, and builds lightweight 

deep neural networks (Howard et al., 2017).  

Inception V3, third edition of Google’s Inception CNN has been used for assisting object 

detection and image analysis (Szegedy et al., 2016). Initially, it was introduced during the 

ImageNet Recognition Challenge. Chollet was inspired by Inception and proposed a novel 

CNN architecture called Xception that contains depth-wise separable convolutions instead 

of inception modules (Chollet, 2017). In 2019, the most powerful CNN model proposed by 

Tan and Le named Efficient Net achieved 98.8% accuracy (Tan et al., 2019). The Res Net 

(Rahimzadeh et al., 2021), Mobile Net (Ahsan et al., 2021), Inception (Yamin et al., 2021), 

and Efficient Net (Shamila Ebenezer et al., 2022) showed effectiveness in detection of 

Covid-19 with an accuracy of 98.4%, 95%, 99%, and 94.5% respectively.  
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This study classifies the normal and covid-19 infected person as 0 and 1, by the 

implementation of CNN on the HRCT data set.  In this work, the method involved is based 

on image classification that can detect the disease more accurately and rapidly, leading to 

better therapeutic interventions and management. 
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 MATERIALS and METHODS 

3.1 Data Set 

This study uses an open-source data set for training, validation, and to evaluate the proposed 

networks (Rahimzadeh et al., 2021). This three-dimensional (3-D) High Resonance 

Computerized Tomography (HRCT) image data set was acquired from the Negin radiology 

center, at Sari in Iran. To capture and visualize lung HRCT images from patients, the Negin 

center uses the syngo CT VG30-easyIQ software version along with the SOMATOM Scope 

Model. All 3-D images were converted into 2-dimensional images. It contains 48,260 CT 

images from 282 normal persons, and 15,589 images from 95 corona positive patients. Each 

CT scan has a volume of 512*512-pixel resolution in a grayscale 16-bit DICOM format. 

The patient’s confidential information was excluded by converting DICOM format into 

TIFF, while maintaining the same 16-bit grayscale image.  

Good predictive models divided the data set into three parts: for model fitting into the 

training set, the selection of the model into validation set, and for final assessment of model 

into the test set. In this study, dataset used in training contains 18676 images and 4000 

images in validation set. To triangulate the proposed model, separate 4000 images in the 

test set were used. The data set has been divided into a 70:15:15 ratio with 18676, 4000, 

and 4000 images in training, validation, and testing folders, respectively. Pre-processing of 

a dataset has been done to make it amenable for training and model validation. The 16-bit 

image format improves our classification results as compared to 8-bit format that may cause 

to lose some data, particularly when there is a minimal lung infection.  

The 16-bit CT scan image information is not visible to the naked eye; however, a computer 

can easily distinguish those images during processing. By considering maximum pixel 

value, scaling of each image can make covid-19 infectious image clearer. Standardized 

monitors can visualize 32-bit float-type, pixel values. It can be obtained as an output while 

dividing each image’s pixel value, by the maximum pixel value of that image and then 

converting them into float. The output image for analysis is of good quality. In the 

experiments, the data set other than the above-mentioned is not used in our research because 
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we don’t have many computational resources for such a large CT-scan data set. This section 

describes the datasets used in this research for training and testing.  

3.2 Methodology 

The generalized classification framework research is described below in this section. Five 

different pre-trained classification networks ResNet50V2, MobileNetV2, EffecientNetB0, 

InceptionV3, and XceptionNet have been used to achieve better performance by adjusting 

trainable parameters. A 2-Dimensional CT scan lung image with Ground Glass Opacity 

(GGO), crazy paving, or consolidation is considered as an input to investigate presence of 

suspicious patches by using proposed algorithm. Output classified the image and calculated 

the accuracy of the proposed model. This section includes a pipeline for an accurate image 

classification along with the details of network architecture.  The schematic approach to 

image classification is shown in Figure 3.   

 

 
 

Figure 3:  Schematic of image classification model trained on input CT scan images 

classifying normal and Covid-19 infected images 
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3.2.1 Pre-processing 

The good generalization ability of the model can be achieved by splitting data sets into 

training, validation, and test set that significantly affects the model performance. Healthy 

CT images were more as compared to Covid-19 affected images. Here, at this point data 

set was split and training data set was divided with an equal number of infected vis-a-vis 

normal images.   

3.2.1.1 CT -Scan Image Selection Algorithm 

The consecutive sequence of images as taken by HRCT device contains multiple images in 

which the lung is not clear as shown in Figure 4. It would be difficult for a machine to 

evaluate Covid-19 infectious patients from a closed lung image. Moreover, these images 

become a burden on computational resources and slow down training process. Hence, 

unclear lung images were discarded using image selection algorithm.  

 
Figure 4: Open lung image (left) close lung image (right) 
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Each CT scan image sequence contained a close lung image at its beginning and end as 

shown in Figure 5. Open and closed lung has a clear difference in this centralized area.  

Algorithm discarded close lung images and considered only middle sequence of lung 

images, with lower pixel values (near to black).  

 

Figure 5: First, middle, and last sequence of CT-scan image of lungs. First and last sequence 

shows closed lung image 
 

In an image of 512*512*1--pixel resolution specific region was selected because patient’s 

position was different from one another while performing HRCT scan. This central area 

covers 120-370 pixels on x-axis and 240-340 pixels on y-axis. In all images, the middle 

area of the lung between these pixel values, 120,240 and 370,340, will justify whether it is 

an open or close lung image, by calculating lower or higher pixel values. Maximum pixel 

values in all images are almost approximately equal to 5000 but may differ in some cases. 

Any image with a value less than 300 is considered a dark pixel and discarded.  

3.2.2 Data Augmentation 

To make it more heterogeneous and diverse, data augmentation was applied to training 

dataset. Before applying different augmentation options, it is necessary to make the model 
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more generalized with respect to images. Horizontal and vertical shift and zoom ranges 

with a 20% probability were added. Similarly, if an image in the test set is rotated at a 

certain angle, the model will struggle to give desired prediction. A rotation range of 360 

degrees can be useful to overcome this problem. It was observed that at certain times, 

images changed their height and width during the process. This                                                                                                                                                                              

problem was addressed by adding height and width shifts with a 20% probability. To 

capture shear features shear range was added in the images, applied with 3% probability.  

Augmentation of randomized normal and infected images shown in Figure 6 and data 

augmentation parameters are illustrated in Table 2.     

 
Figure 6: Randomized augmented and non-augmented infected and normal images   

 

Table 2: Data Augmentation Parameters 

Data Augmentation options Value 

Horizontal Flip True 

Vertical Flip True 

Rotation Range 360o 

Zoom Range 0.2 

Shear Range 0.03 

Height Shift Range 0.2 

Width Shift Range 0.2 
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 3.2.3 Network Architecture 

Since 2012, a significant performance in image classification tasks has been achieved by 

using DNN, more specifically CNN (Rawat et al., 2017). The proposed algorithms take CT 

scan images as input while extracting the important features and relevant information 

resulting in binary classification. Figure 2 Illustrates overall framework of design. and 

relevant information resulting in binary classification. Figure 7 Illustrates overall 

framework of design.   

 
Figure 7: Network Architecture of the Proposed CNN Model 

 

The first layer is convolution layer, number of parameters to be learned is reduced in simple 

network architecture that helps to avoid model over-fitting. In model learning, CNN 

combines weights into smaller kernel filters. The second layer is pooling layer followed by 

flattened layer and fully connected layer. Pooling layer plays a significant role for feature 

dimension reduction in CNN. Output neurons are reduced in convolution layers, while 

neighboring elements in convolution output matrices can be reduced by max-pooling. The 

pooling layer selects highest values from neighboring elements of input matrix and 

generates one element output matrix. This research uses transfer learning technique (Shin 
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et al., 2016). In each layer drop-out algorithm randomly disables neurons and improves 

model performance during training.  The flatted layer, 0.2 drop value was added and 

concatenated last layer with an output of 0 and 1. After evaluating the proposed networks, 

the overall accuracy gives the authenticity of the model.   

3.2.4 Training  

The data was loaded into batches for training, data generators were applied for training, 

validation, and test sets. Five different deep learning pre-trained models, ResNet50V2, 

InceptionV3, Xception Net, EfficientNetB0, and MobileNetV2 were selected. For each 

model pre-trained weights on ImageNet dataset were used, that had been trained on 1.2 

million images of 1000 classes.  Since images in our dataset have (512, 512, 1) shape, 

however, models have been trained on ImageNet dataset with three channels. Here, any 

mismatch can be skipped in first layer. The hyper parameters are demonstrated below in 

Table 3.   

  Table 3: Training Hyperparameters 

Hyper-parameters Name Value 

Learning Rate 1e-4 

Number of Epochs 15 

Dropout 0.2 

Batch size 16 

 

Each model adds a dropout value of 0.2 that switched off 20% of neurons in second last 

layer in the network. Furthermore, last classification layer was customized there are only 

two outputs 0 and 1 for normal and covid infected classification. Since the dataset was 

large, it was necessary to fine-tune each model to update parameters. During the training 

of each model, categorical cross-entropy loss and Adam optimizer were used.  

Our model training selected a batch size of 16 for 15 epochs. EfficientNetB0 outperformed 

all other models with a training accuracy of 99.6%. For each iteration different data has 

been introduced to the network because several data augmentation schemes are already 

applied to dataset during runtime. This increases overall accuracy of the model by 

preventing overfitting.  



 
 

24 

3.2.5 Evaluation 

After training, best checkpoints for each model were obtained, the evaluation of the model 

can be performed by loading the best checkpoints. The evaluation data set had 4000 mixed 

images of covid-19 infected as well as from normal subjects. In this stage, COVID 

sensitivity and specificity, normal sensitivity and specificity, accuracies and precision of 

infected and normal cases had been calculated for each model.  

3.2.5.1 Evaluation Parameters 

Certain parameters are used to measure model performance and accuracy however, the 

following matrixes are very important for evaluation. Evaluation parameters as 

demonstrated in Table 4.  

Table 4: Evaluation Parameters 

 

3.2.5.1.1 Accuracy 

The classification models can be evaluated by using an accuracy metric. To confirm that 

our model got right, accuracy is considered as the fraction of predictions. The accuracy can 

be calculated by considering some correct predictions and dividing them by a total number 

of predictions (Jin Huang & Ling, 2005). In binary classification networks, we can calculate 

the accuracy of the proposed model in terms of positives and negatives as follows:  

  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

Evaluation Parameters Description 

True Positive (TP) Infected and results identified it correctly as an infected image 

True Negative (TN) Normal and results showed it normal image 

False Positive (FP) Normal but results indicated it as diseased one 

False Negative (FN) Infected but result showed it as normal 
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3.2.5.1.2 Sensitivity  

Sensitivity refers to a condition that has the ability, to correctly identify diseased patients. 

This test is useful for the identification of serious but treatable diseases with higher 

sensitivity values. It is the probability of a positive test, truly being a positive condition.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The sensitivity of the model can be calculated by considering the number of true positive 

images, which is then divided by number of false negatives and true positives.  The disease 

can be ruled out with high sensitivity if false-negative results are low (Altman & Bland, 

1994; Parikh et al., 2008).  

3.2.5.1.3 Specificity  

The specificity has the ability, to correctly identified normal persons. It is the probability 

of being negative when the disease is absent.  Test specificity can be obtained by 

considering the TN value, and then dividing by TN and FP values.   

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Specificity does not consider false negative values. High specificity with a positive result 

in a test is useful for ruling in disease. In healthy persons, specificity rarely gives a positive 

result. If the result is positive, it signifies the disease probability with a higher probability 

(Parikh et al., 2008).  

3.2.5.1.4 Precision 

Precision is the value that conveyed an amount of information. It can be calculated by 

taking true positive values, which are then divided by true positive and false positive values.      

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Precision indicates the relevant percentage of results (Scott 1999). 
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3.2.6 Inference 

The test set evaluation can be accomplished by using inference, which was measured by 

calculating the total time taken by the model on test set. Calculate the total time in minutes 

and then convert it into seconds and then divided it by the total number of test images. The 

model training is patch-based and to dataset size, we applied data augmentation techniques 

during training, thus increasing the network accuracy and robustness.  Additionally, an 

independent test set was used to evaluate our model and a confusion matrix was generated 

of all five networks.   

3.3 Study Framework  

 

Figure 8: Overall study framework   
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RESULTS 

The network and algorithms were implemented by using Google Colaboratory (Google 

Colab) Notebooks. This research included five different deep learning models to classify 

the CT scan images and used Keras library to develop and run deep networks. The result 

section is further divided into two sub-sections. The first part involves the image 

classification results and second part covers patient condition that can be identified by 

adjusting the threshold 0.  

4.1 Image Classification Results 

The proposed network can differentiate between infected and non-infected classes as seen 

in Figure 8. The results of all five trained networks ResNet50V2, Inception V3, Xception, 

Efficient Net, and Mobile Net V2 on training and validation sets are represented in Figures 

9, 10, 11, and 12. The comparison of all five algorithms and their respective accuracy and 

loss can be observed in Table 5 and 6. Loss curves are plotted for all five models, training 

procedure uses 15 epochs to show training and validation accuracy. Out of five networks 

EffecientNetB0 achieved the higher accuracy.  

 

 

 

Figure 9: Classification of Normal (left) and infected (right) HRCT Image detected by 

the developed algorithm   
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Figure 10: Training accuracy plot showing 15 epochs on x-axis and accuracy on y-axis  
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Figure 11: Validation accuracy plot showing 15 epochs on x-axis and accuracy on y-axis 
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Figure 12: Training loss plots showing 15 epochs on x-axis and loss on y-axis 
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Figure 13: Validation loss plots showing 15 epochs on x-axis and loss on y-axis  
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Table 5: Training accuracy for 15 epochs  

 

 

 

 

 

 

 

  

 

 

 

 

ResNet50V2 Inception V3 EffecientNetB0 XceptionNet Mobile Net V2 

0.9412 0.8673 0.9008 0.8050 0.9261 

0.9752 0.9510 0.9676 0.8964 0.9770 

0.9786 0.9642 0.9789 0.9374 0.9837 

0.9824 0.9712 0.9839 0.9556 0.9886 

0.9835 0.9753 0.9881 0.9640 0.9891 

0.9850 0.9757 0.9896 0.9708 0.9909 

0.9851 0.9783 0.9910 0.9745 0.9917 

0.9882 0.9813 0.9914 0.9754 0.9932 

0.9884 0.9826 0.9936 0.9793 0.9936 

0.9881 0.9838 0.9929 0.9807 0.9939 

0.9902 0.9829 0.9943 0.9827 0.9931 

0.9908 0.9847 0.9934 0.9835 0.9955 

0.9897 0.9861 0.9958 0.9839 0.9943 

0.9896 0.9866 0.9949 0.9862 0.9955 

0.9928 0.9886 0.9964 0.9875 0.9952 
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Table 6: Validation Accuracy for 15 Epochs 

ResNet50V2 Inception V3 Efficient Net B0 Xception MobileNetV2 

0.9370 0.9415 0.9605 0.7660 0.9548 

0.9805 0.9530 0.9553 0.9043 0.9870 

0.9640 0.9790 0.9825 0.9218 0.9705 

0.9877 0.9402 0.9837 0.9330 0.9880 

0.9820 0.9805 0.9705 0.9517 0.9013 

0.9690 0.9772 0.9923 0.9380 0.9370 

0.9847 0.9887 0.9942 0.9690 0.9858 

0.7780 0.9898 0.9815 0.9732 0.9488 

0.9712 0.9827 0.9818 0.9682 0.9410 

0.9885 0.9902 0.9952 0.9860 0.9865 

0.9645 0.9918 0.9935 0.9578 0.9768 

0.8652 0.9758 0.9885 0.9333 0.9595 

0.9885 0.9923 0.9975 0.9868 0.9653 

0.9948 0.9595 0.9873 0.9768 0.9115 

0.9933 0.9632 0.9937 0.9762 0.9920 
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4.1.1 Model Evaluation 

The accuracy metric has been used to find out the best training network to monitor 

validation results. To evaluate overall accuracy of all five networks four different matrices 

were used that classify infected and non-infected cases.  Confusion matrices (CM) 

containing accuracy, specificity, sensitivity, and precision values for evaluation of each 

model is shown in Figures 13, 14, 15, 16, and 17.  

 

 

Figure 14:  Confusion Matrix showing ResNet50V2 test evaluation 
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Figure 15: Confusion Matrix showing InceptionV3 test evaluation 

 

 

 



 
 

37 

 

 

    

Figure 16: Confusion Matrix showing EffecientNetB0 test evaluation 
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Figure 17: Confusion Matrix showing MobileNetV2 test evaluation 
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Figure 18: Confusion Matrix showing Xception Net test evaluation 
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4.2 Identification of Patient Condition 

The proposed model for automated detection of coronavirus cases from HRCT images 

using five different algorithms that takes multiple images as input, processing only those 

CT images with visible lungs. A deep neural network saves selected images and classifies 

them as normal or Covid-19 infected. After the selection of threshold, subject’s condition 

can be easily indicated.  

Threshold value depends upon model's precision, CT scan images below the threshold are 

normal, and more than a threshold are taken to be affected by covid-19. A threshold can be 

set to zero if the trained model is highly accurate. The accuracy of proposed model set the 

threshold as zero. After image selection if the model detects even only one image as 

infected, it indicates that the subject is Covid positive. Speed of this fully automated system 

is represented in Table 7 in terms of training time vis inference time.  

 

   Table 7: Training and Inference time of all five models 

Model Training 

Time/Epoch 

(ms) 

Inference 

Time/image 

(ms) 

ResNet50V2 2.9 58 

Inception V3 4.2 74 

Efficient Net B0 2.4 50 

Xception 2.5 55 

MobileNetV2 3.4 60 

 

4.3 Feature Visualization  

CT scan images were classified into normal and infected by using the Grad-CAM 

algorithm. The model performance was investigated by high lighting infectious areas, while 

normal images were identified by the network as non-infected and confirming them as non-

covid. In Figure 18 the difference between normal and covid images can be seen easily.   
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Figure 19: Grad-CAM visualization centrally marked left 2-colums showing 3 normal 

images while middle 2-columns showing 3 unilateral and right 2-columns showing bilateral 

infectious area 

 

 

 

 

 

 

 

 

 



 
 

42 

 

                                                                                    CHAPTER 5  

 

 

 

 

 

 

DISCUSSION 

 

 

 

 

 

 

 



 
 

43 

DISCUSSION 

Covid-19 image classification used a transfer learning approach, in which five different 

pre-trained CNN networks, ResNet50V2, Inception V3, Efficient Net B0, Xception, and 

Mobile NetV2 were used. The proposed model uses 4000 test images with an overall 

accuracy of 99.9% on ResNet50V2, which is then followed by MobileNetV2, Xception 

Net, InceptionNetV3, and EfficientNetB0 as 99.1%, 98.5%, 98.4%, and 94.1%, 

respectively. The achieved accuracy on this open-source data set was 98.49% in a previous 

study using ResNet50V2 in addition to feature pyramid network on more than 7996 test 

images, to classify corona infected and normal CT-scan images (Rahimzadeh et al., 2021).  

Ahsan, et al., modified MobileNetV2 that upholds best performance with an accuracy of 

more than 95% on Covid-19 CT images (Ahsan et al., 2021). Advanced inception-based 

CNN models, classifies CT-scan images using machine learning techniques and 

demonstrated an accuracy of about 99% (Yamin et al., 2021). Three models out of five 

achieve higher accuracy than previous results using the same dataset for training and 

validation. MobileNetV2 gives the highest covid-19 sensitivity values 99.5%, while 

ResNet50V2 achieves 99.9% for covid-19 specificity and 99% covid-19 precision values. 

The overall accuracy of all five models is shown in Table 8 and further details can be 

obtained from Appendix A.  

Table 8: Training and Validation Accuracy of five models 

Models Accuracy (%) 

ResNet50V2 99.9 

InceptionV3 98.4 

Efficient Net B0 94.1 

Xception 98.5 

MobileNetV2 99.1 

ResNet50V2 false detections are very low as compared to others. The model used in this 

study, ResNet50V2 performs patient identification more precisely even when there is a very 

low Covid threshold. This confirms that model used in this research was able to learn covid 

infection better than model used in previously studies. The specificity of proposed 
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technique suggested that it can also be applied to other medical image classification tasks. 

This network achieves more accurate results with faster execution time and lesser memory 

requirements. However, parameter tuning was required incorporating hyperparameter 

searching techniques. To avoid overfitting, substantial training instances were given to the 

network. Training data, exclusively learn essential features and is applicable when suitable 

data is available on various 2-D types of pathological classes.  

Grad-CAM algorithm was implemented to process binary classification for visualizing 

sensitive extracted features. In Figure 6, it can be easily observed that non infected normal 

images have been marked in the center whereas Covid-19 infected cases have been heat-

mapped in the infected areas.   Hence, the proposed model not only validates classification 

of infected and/or normal cases but also suggests the extent of infection by highlighting 

affected areas. If both lobes of the lungs are infected, both sides of lungs are highlighted 

thus significantly defining the spread of disease.   

Moreover, as it can be seen in Table 3, processing speed of proposed model is adequately 

high. ResNet50V2 being most time cost effective exhibiting 2.5 ms training per epoch and 

inference time of 58 ms and MobileNetV2 being highest in terms of processing time, 

consuming 3.4 ms for training per epoch and 66 ms as inference time. In some cases, the 

Covid-19 precision is not high as its accuracy, e.g precision value of EffecientNetB0 and 

InceptionV3 is 46.1% and 79%, respectively for the covid-class whereas their accuracy is 

94.1% and 98.4%, respectively. Details of precision values can be found in Appendix A. 

The probable cause of this void can be unbalanced distribution of test data set.  

Certain limitations still exist in this work as the proposed classification model is not 

evaluated on some other validation sets. Further research is needed to evaluate proposed 

model by using other medical image classification tasks independent of this data set. This 

research does not make any prior assumptions about image classification.  Test data set 

need to be equally divided for better precision values. Furthermore, by extending hyper 

parameter tuning and further training epochs, it would be possible to improve the model's 

generalization ability. This will lead to address challenges in computer-aided diagnosis 

(CAD) system implementation. In the future, proposed architecture can be modified into a 

3-Dimensional CNN model to evaluate its performance in other medical imaging tasks. 
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Further research to develop CAD models of proposed networks is required to achieve 

greater optimization.  
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CONCLUSION 

A CNN-based architecture to classify normal and Covid-19 infected images by using the 

HRCT dataset is proposed. Five different pre-trained models were used to evaluate best 

optimized performance. Accuracy of three out of these five models was improved. 

ResNet50V2 with an accuracy of 99.9% proved to be the best option for detection of Covid-

19 infections. The accuracy of other two models MobileNetV2 and XceptionNet was 

achieved to be 99.1% and 98.5% respectively that is also higher than previously reported 

values using same dataset. Inception achieved 98.4% accuracy that is equal to previously 

reported results. However, EfficientNetB0 proved to be last choice with an accuracy of 

94.1%. Further research to develop CAD models of proposed networks is required to 

achieve greater optimization. The same models can also be implemented for automatic and 

accurate detection of other diseases, using images from different diagnostic modalities.   
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APPENDIX A 

  

 Test Evaluation with overall accuracy, sensitivity, specificity, and precision values 
Models tp fp ctp cfn cfp ntp nfn nfp Overall 

accuracy 

%  

Covid 

accuracy 

   % 

Normal 

accuracy  

% 

Covid 

sensitivity 

% 

Normal 

sensitivity 

% 

Covid 

specificity 

% 

Normal 

specificity  

% 

Covid 

precision 

% 

Normal 

precision 

% 

ResNet50V2 

 

3996 4 217 2 2 3779 2 2 99.9 99.9   99.9 99.0  99.9 99.9 99.0 99.0 99.9 

Inception 

V3 

3939 61 207 6 55 3732 55 6 98.4 98.4 98.4 97.1 98.5 98.5 97.1 79.0 99.8 

Efficient Net 

B0 

3765 235 193 10 225 3572 225 10 94.1 94.1 94.1 95.0 94.0 94.0 95.0 46.1 99.7 

Xception 

Net 

3943 57 221 30 27 3722 27 30 98.5 98.5 98.5 88.0   99.2 99.2 88.0 89.1  99.2 

Mobile Net 

V2 

3965 35 213  1  34 3752 34 1 99.1 99.1 99.1  99.5 99.1 99.1 99.5 86.2 99.9 

 


