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Abstract 

In a country's economy, agriculture plays a very vital role. Agriculture's yield and production are 

reduced by plant diseases, resulting in significant economic losses and instability in the food 

market. In plants, the citrus fruit crop is one of the most important agricultural products in the 

world, produced and grown in around 140 countries. It has a lot of nutrients, such as vitamin C. 

However, due to pests and diseases, citrus cultivation is widely affected and suffers significant 

losses in both yield and quality. The majority of plant diseases exhibit visible symptoms, and the 

accepted method used today is for a skilled plant pathologist to detect the diseases by examining 

affected plant leaves under a microscope, which is a costly and time-consuming method. During 

the last decade, computer vision and machine learning have been widely adopted to detect and 

classify plant diseases, providing opportunities for early disease detection and bringing 

improvements to agricultural production. The early detection and accurate diagnosis of plant 

diseases are essential for reducing their spread and damage to crops. In this work, we presented an 

automatic system for early detection and recognition of citrus plant diseases based on a deep 

learning (DL)   model to improve accuracy and reduce computational complexity. The most recent 

transfer learning-based models were applied to our dataset in order to increase classification 

accuracy. In this work, we successfully proposed a CNN-based pre-trained model (EfficientNetB3, 

ResNet50, MobiNetV2, (InceptionV3) for the identification and classification of citrus plant 

diseases using transfer learning. In order to assess the performance of the model, we found that the 

transfer of an EfficientNetb3 model led to the highest training, validating, and testing accuracies, 

which were 99.43%, 99.48%, and 99.58%, respectively. The proposed CNN model exceeds other 

cutting-edge CNN network architectures developed in earlier literature in the identification and 

categorization of citrus plant diseases. 

 

Key Words: Citrus Diseases Classification, Deep Learning, Convolutional Neural Network , 

Transfer Learning, EfficientNetB3, MobiNetV2, ResNet50, Inception
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CHAPTER 1: INTRODUCTION 

1.1. Background and Motivation  

A nation's economy's growth and improvement are greatly influenced by agriculture. It is the main 

source of the world economy. The goal of agricultural research is to rise food quality and 

production while decreasing costs and improving profitability[1]. Any state's economic 

development depends on its fruit trees. The citrus tree is one of the most identifiable fruit species 

of plants. It is rich in vitamin C and popular throughout the Middle East, Africa, and the Indian 

subcontinent [2]. Citrus plants provide a number of health advantages, and the agricultural industry 

uses them as a raw goods to create a variety of other agro-based products, such as sweets, jams, 

ice cream, and confectionary, among others.[2], [3]. The most significant fruit plant in Pakistan is 

citrus, which contributes significantly to the nation's horticultural exports. In 2018, Pakistan 

produced an estimated 2.5 million tons of citrus annually1. Conversely, citrus plants are prone to 

a number of diseases, including melanose, black spots, cankers, scabs, and greening. Citrus trees 

can get the canker, which is primarily located on the leaves or fruit and is extremely contagious. 

According to statistics, crop losses in Kinnow were about 22%, in sweet oranges 25–40%, in grease 

15%, in sweet limes 10%, and in lemons 2%. Every year, a large chunk of strong export citrus is 

discarded due to signs of citrus fruit illnesses. Therefore, early detection of citrus illnesses has the 

ability to save costs and losses while also raising the quality of the final product. 

 

1.2.  Problem Statement 

For many years, humans have been the main source of disease identification. The diagnostic and 

recognition processes are prejudicial, expensive, time-consuming, and prone to mistakes. 

Additionally, previously unknown regions where there is, by necessity, no local expert experience 

to treat them may see the emergence of new diseases[4]. Consequently, there is a critical need for 

an automated approach to identifying citrus plant diseases. It is now simpler to scan and 

automatically identify abnormalities in a plant in actual time because of the advancement of 

contemporary instruments and fast computer-based assisted processes. [4]. Traditional machine 

learning approaches have been quite effective at detecting and diagnosing plant diseases, however 

they can only handle the sequential image processing tasks: segmenting images with clustering 

and other approaches [5], [6], feature extraction [7], Support Vector Machine (SVM) [8], K-
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Nearest Neighbor (KNN) method [9], and Artificial Neural Network (ANN) [10].  It is difficult to 

choose and extract the finest visible pathogenic features, demanding the use of highly skilled 

experts and professionals, which is not only random but also inefficient in terms of manpower and 

economic support. Instead of having to manually create the structural processes of extracting 

features and classifications, deep learning can automatically recognize the hierarchical 

characteristics of diseases. Signal processing [10], pedestrian identification [11], facial recognition 

[12], road fracture detection [13], biological image analysis [14], and many more areas benefit 

greatly from the use of deep learning techniques. Additionally, deep learning techniques have 

shown promise in the agricultural sector, assisting more farmers and workers in the food industry, 

For example, dealing with image analysis has become necessary in the diagnosis of plant diseases 

[15], analysis of weeds [16], finding of important seeds [17], insect detection [18], fruit processing 

[15], and other areas. One of the most effective deep learning techniques is convolutional neural 

networks (CNN)  [19]. To recognize and categorize plant diseases, a number of CNN architectures 

are used, including AlexNet [20], GoogLeNet [21], and others. In addition, numerous researchers 

have employed deep learning models to recognize and categorize citrus plant diseases (Pourreza 

et al. [22], Barman and Ridip et al. [23], Xiaoling et al. [24], and Zia Ur Rehman et al. [25]). A 

few implementations also seek to predict future characteristics, including yield production [26], 

weather conditions [27], and field soil water contented [28]. 

 

The performance of deep learning models is greatly influenced by the dataset that is available for 

training. These models provide enhanced results and great generalizability on the appropriately 

large dataset. The datasets for citrus plant diseases that are currently publicly accessible typically 

don't have enough pictures in a range of conditions that are essential to build high precision models. 

The models can over-fit because of the small dataset and badly perform on the test dataset derived 

from real-world data. To overcome this problem, various data augmentation techniques, including 

rotation, translation, shifting, flipping, and zooming, are used to enhance the dataset.  

 

1.3.  Objective 

The primary objective of this research is to use deep learning techniques to classify citrus plant 

diseases at a reduced cost with higher prediction accuracy. The most prominent Machine Learning 

(ML) method currently used in Deep Learning (DL) models is Transfer Learning (TL), which 
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transfers pre-trained model weights to a new classification problem to optimize computer 

resources and model building. As a consequence, training becomes simpler and more effective. 

With a limited number of training datasets, the goal of this work is to apply the concept of transfer 

learning to the problem of image classification.  

The significant contributions of this work bring to the field of research are the following: 

1. Different pre-trained models are used to train various models with data-augmentation and 

without data-augmentation. 

2. With the use of Proposed DL model, significant production loss and financial loss can be 

reduced by early detection of citrus plant diseases. 

3. The effectiveness of various models is evaluated using multiperformance metrics for 

identifying and classifying diseases on citrus plants. 

 

1.4.  Thesis Overview  

Following is a chronological breakdown of the article: Chapter 2 is the body of relevant work. 

Chapter 3 describes the suggested methodology and implementation. Chapter 4 explained the 

experimental results, and Chapter 5 presented the conclusion of the work. In the last, Chapter 6 

described future work. 
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CHAPTER 2: LITERATURE REVIEW 

For many years, researchers have been trying to diagnose leaf and fruit diseases. Numerous 

approaches for identifying and classifying plant diseases have been suggested by researchers in 

the domain of computer vision and machine learning. Due to its enormous production, the citrus 

plant is given significant importance in agriculture. To protect citrus from diseases, a number of 

techniques for the identification and categorization of citrus diseases have been presented.  

 

Many innovative techniques are applied to many other types of crops, such as wheat [29], rice 

[30], maize [31], and corn [32]. Golhani et al. [33] have reported various studies on neural network 

methods used for the recognition and categorization of plant diseases.  

 

Citrus canker and Huanglongbing (HLB) were detected using SVM and a fluorescent imaging 

system by Wetterich et al. [34]. This method had a classification accuracy of 97.8% for citrus 

canker and scab and a 95% detection accuracy for HLB and zinc deficiency. 

 

Infected portions in pre-processed orange photos have been identified using K-Means 

segmentation, According to Patel et al. [35], The SVM classifier was used to classify the damaged 

area's colour, texture, and shape based on information from the training dataset. The accuracy 

achieved by GLCA models was 67.74 %.  

 

Singh et al. [36] applied SVM, K-Nearest Neighbors, Multi-Layer Perceptron and Linear 

Discriminant Analysis methods for citrus disease classification. The accuracy achieved for MLP, 

KNN, SVM and LDA was 81.36 %, 77.12 %, 80.93 %, 84.32 %, respectively. 

 

A conventional image processing method for identifying and classifying citrus plant diseases is 

suggested by M. Sharif et al. [1]. Features are extracted for segmentation using an optimized 

weighted segmentation approach. Features are selected using entropy and a PCA score-based 

vector after combining texture, shape, and color features. A multi-class SVM takes the final 

features and classify them. On plant village dataset, the suggested method achieved an accuracy 

of 90.4%.  
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There is much space for improvement in regards to classification accuracy. Deep learning has 

recently acquired prominence in a range of fields, including image processing, image recognition, 

and classification, as well as agriculture. Deep learning is a worthy competitor for classifying citrus 

diseases because it eliminates time-consuming extraction of features and segmentation based on 

thresholds. 

 

Xing et al. [37] proposed a detection model for citrus illness and pests using weakly thick 

connected convolutional network. They applied different CNN models on a citrus self-dataset. The 

NIN-16 model scored a test accuracy of 91.66% compared to the SENet-16 model's 88.36%. 

 

A strong CNN algorithm was proposed by P. Dhiman [38] as a technique for identifying citrus 

illnesses. The proposed approach is evaluated with a dense model without data-augmentation or 

pre-processing techniques. The proposed model's prediction accuracy is 89.1%. Results indicate 

that data-augmentation and pre-processing approaches had effectively reduced estimates of citrus 

crop losses. 

 

Citrus Leaf miner, Sooty Mold, and Pulvinaria were identified by M. Khanramaki et al. [39] in 

order to stop these three pests from spreading. Proposed method was evaluated using 1774 images 

of citrus leaves. In a test study, The 10-fold cross-validation method was employed to assess CNN 

accuracy. The results of the studies demonstrated that the suggested model outperformed current 

CNN methods with an accuracy of 99.04%. 

 

According to Hari et al. [40],  convolutional neural network is a useful tool for recognizing diseases 

in plant species like grapes, maize, tomatoes, and apples. The dataset, which was used to build and 

evaluate the model, contains a total of 15,210 photos of leaves, separated into 10 groups. The 

proposed convolutional neural network's accuracy was 86%.  

 

A. Khattak, et al. [41] proposed two convolutional layers of a CNN-based leaf disease 

identification method. Citrus fruit and leaves are classified according to their vulnerability to 

disease based on the 1st CNN layer, which extracts minimal-level characteristics from the image, 
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and the 2nd CNN layer, which gathers strong-level characteristics. By classifying citrus fruit and 

leaf diseases with an accuracy of 95.65%, the proposed CNN model beats comparable models. 

 

MobileNetV2 was trained by Liu et al. [42] to classify and detect six common citrus illnesses. 

Comparing MobiNetV2 to earlier network models in terms of model accuracy, model validation 

speed, and model size reveals that it is superior in categorizing and identifying citrus diseases. 

 

Barman et al. [43] evaluated the MobiNetV2 and Self Structured (SSCNN) models of two different 

CNN architectures to identify diseases in citrus leaves. The best training model precision for 

MobileNetV2 CNN at epoch 10 was 90%, and the validation accuracy was 92%. However, the 

SSCNN maximum training model accuracy and maximum cross-validation model accuracy at 

epoch 12 were 98% and 99%, respectively. 

 

A deep CNN-based method described by Pan et al. [3]. The 2,097 photographs in the collection 

show diseases like black spot, canker, anthracnose, scab, sand rust, and greening (HLB). Data 

augmentation techniques were employed to increase the number of datasets that were available for 

training. For training, cross-validation, and testing purposes, the dataset is divided into three parts 

in a proportion of (6,2,2). The DenseNet is used to extract and categorize features. In this study, 

the final dense block has been modified to simplify the DenseNet model. The suggested solutions 

obtained accuracy of 88 percent. 

 

Zhang et al. [44] suggested a technique for identifying canker illness. The 2nd stage, that is 

dependent on AlexNet, the optimization objective is modified, and the parameters are updated 

using Siamese training. The proposed model had a recall of 86.5% and an accuracy of 90.9%.  

 

A deep learning method was used by C. Soini et al. [45] for the detection of citrus HLB disease. 

The suggested method was capable of identifying HLB positive from HLB negative. The final 

layer of  deep learning inception technique is trained rather than the entire model to reduce training 

time. With an accuracy of 93.3%, the model can distinguish between HLB negative and HLB 

positive after 4000 iterations, and in the worst instances, it can do so with an accuracy of around 

80%.  
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V. Kukreja et al. [46] presented a deep learning approach that employs preprocessing and data-

augmentation to automatically identify and classify citrus illnesses. In this work, 150 original 

photos were used, and through data augmentation, these 150 images were extended to 1200 with 

nine features. Their findings showed that the data preprocessing and augmentation techniques 

increased the dataset's size and quality, which in turn improved classification accuracy. On the 

fruits dataset, the proposed approach had an overall accuracy of 89.1%. 

 

By using TL and feature fusion, M. Zia Ur Rehman1 et al. [25] suggested a novel method to 

classify citrus fruit diseases. The visual quality of input photos was improved using a pre-

processing method called hybrid contrast stretching. Two different pre-trained algorithms, the 

MobileNetv2 and DenseNet201 models, were retrained to produce relevant features using transfer 

learning. Following the fusion of the relevant features array obtained from the retrained network, 

and the Whale Optimization Algorithm was employed to obtain a smaller set of optimized features. 

According to the findings, the individual characteristics derived from MobileNetv2 and 

DenseNet201 are less accurate at classifying data than the fusion and optimum set of features 

produced by the two retrained classifiers. The suggested model performs better than current 

methodologies, with accuracy of 95.7%. 

 

A. Elaraby et al. [47] analyzed and compared the effectiveness of SGDM optimization techniques 

for transfer learning-based automated citrus disease  recognition . Two common models, AlexNet 

and VGG19, were investigated for extracting characteristics from the photos. The datasets for 

citrus fruit and leaf disease were utilized to achieve the highest classification accuracy, which was 

94.3%, which was used to evaluate network performance. In light of the results, they concluded 

that deep learning was a more developed methodology than other approaches. 

 

This section discusses different methods for classifying a number of citrus diseases. The 

classification and detection approaches are based on deep learning and conventional image 

processing. Deep learning approaches have gained popularity in recent years since they are less 

complicated than image processing methods and produced better results in terms of accuracy.  
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CHAPTER 3: METHODOLOGY AND IMPLEMENTATION 

Deep neural networks have been increasingly popular in recent years for autonomous disease 

detection on citrus fruits. We provide a brief overview of the suggested framework for the usage 

of DL and image processing in the detection and categorization of diseases in citrus plants. Figure 

3.1 shows the general scheme of our proposed deep learning models, which includes the input 

dataset stage, preprocessing stage, the DL model stage, TL stage, diseases classification stage, and 

model performance assessment stage.  

The proposed methodology consists of four main modules:  

• Dataset Collection  

• Data Augmentation and Image pre-processing  

• Data Splitting  

• Proposed Architecture. 

 

Figure 3.1: General Schematic of Proposed System   
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3.1. Dataset Collection  

For deep learning algorithms to effectively learn, a lot of data is needed. In this work, a sample of 

photos from the Citrus Plant Dataset was utilized [48]. The set of data includes 759 pictures of 

citrus fruits and leaves, both healthy and unhealthy. With the assistance of a citrus disease domain 

expert, each image was manually captured using a DSLR from the Sargodha region of Pakistan. 

All photos had a resolution of 72 dpi, with 256 pixels for width and 256 pixels for height. Four 

different citrus fruit and leaf diseases were identified from the affected photos. We focused on the 

diseases Black spot, Scab, Canker, Melanose, and Greening in data sets. Table 3.1 lists the details 

of the dataset for each type of disease. The samples of Citrus Leaves Diseases and the samples of 

Citrus Fruits Diseases are presented in Figure 3.2 and Figure 3.3. 

Citrus Leaves 

Diseases 

  

Images 

Citrus Fruits 

Diseases 

 

Images 

Black Spot 171 Black Spot 19 

Greening  204 Greening  16 

Canker 163 Canker 78 

Melanose 19 Scab 15 

Healthy 58 Healthy 22 

Total 609 Total 150 

Table 3.1: Citrus Plant Dataset 
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Figure 3.2: Citrus Leaf Diseases 

 

Figure 3.3: Citrus Fruit Diseases 

3.2. Dataset Augmentation and Resizing  

For effective training of DL networks, a huge volume of training data is necessary. Regrettably, 

the availability of accurate annotated ground truths, the quantity and rarity of currently available 

citrus disease image collections, and other factors still make it difficult for citrus diseases to be 

automatically diagnosed. The over-fitting problem that might happen when using a little 

quantity of training data during the training stage was eliminated by executing augmentation 

operations on the training set to increase the training photos. Various data augmentation techniques 

have been used for a variety of effects, including translating, flipping, rotating at various angles, 

shifting vertically and horizontally, and zooming. Data augmentation can also be used to generate 

multiple variations of a single photo, as shown in Figure 3.4. There are initially 759 original images 

but after data augmentation, we acquire 3,383 images, as shown in Table 3.2. 
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Figure 3.4: Data Augmentation 

Categories Diseases Original images After Data Augmentation 

Leaves  Black Spot 171 740 

 Greening 204 504 

 Canker 163 368 

 Melanose 19 210 

 Healthy 58 369 

    

Fruits Black spot 19 168 

 Greening 16 255 

 Canker 78 323 

 Scab 15 255 

 Healthy 22 191 

Total Images  759 3383 

Table 3.2: Augmented Citrus Plant Dataset 
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3.3. Dataset Distribution 

The dataset is split into three sections, as shown in Figure 3.5: (i) Training Data, (ii) Validation 

Data, and (iii) Testing Data. Training, Validation, and Testing are done in batch sizes of 32 and 

data split (80, 10, 10) respectively. 

 

Figure 3.5: Data Distribution 

3.3.1. Training Data 

A different deep learning model based on CNN is built utilizing 80% of the training data, although 

this ratio may alter according to the requirements of the project. The multiple models, which 

attempts to learn from the training sample, is trained using this data. The training dataset consists 

both the input and the desired output. 

3.3.2. Validation Data 

The validation data is 10% of the original dataset and it is used to validate different CNN based 

models performance during training. The information obtained from this validation approach can 

be used to modify the model's hyperparameters and configurations. It works similarly to a critic 

informing us of the direction our training is heading towards. To avoid overfitting, we split the 

dataset into a validation dataset. Additionally ranking the model's accuracy and help towards 

model selection. 
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3.3.3 Testing Data 

The CNN based different models are tested on new data using a test set that represents 10% of 

the original data. Once the model has received the necessary training, it is used for the evaluation 

process. It offers a concluding model performance evaluation metric in terms of accuracy 

precision, recall and F1-Score. Simply put, it offers a response to the question “How effectively 

does the model work with unseen data?" 

3.4.  Proposed Architecture  

This study proposes a unique approach for identifying and classifying citrus fruit diseases. The 

fundamental architecture consists of four main steps: (a) data acquisition (b) data-augmentation 

and preprocessing (c) deep CNN feature extraction (d) final classification with a cutting-edge 

classifier. Figure 3.6 shows a detailed flow of the suggested framework. 

 

     Figure 3.6: Detailed architecture of Transfer Learning based citrus plant disease classification. 
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3.4.1 Feature Extraction Using CNN based Deep Transfer Learning 

Four pre-trained CNN architectures (EfficientNetB3, ResNet50, MobiNetV2 and InceptionV3) are 

used in this work after applying transfer learning, as shown in Figure 3.7. 

 

Figure 3.7: Representation of DCNN feature extraction using Transfer Learning 

3.4.1.2 Transfer Learning 

TL, which transfers pre-trained model weights to a new classification problem, is a popular deep 

learning technique. Training consequently becomes easier and more effective. The main benefit of 

transfer learning is the detection and classification of citrus diseases using pre-trained models like 

EfficientNetb3, MobiNetV2, ResNet50, and InceptionV3. 

3.4.1.2. InceptionV3: 

InceptionV3 main objective is to use less computational resources by changing the Inception 

architectures that were first introduced in GoogLeNet/InceptionV1 [49]. The Inception V3 model 

has 48 layers. The network is made up of 11 Inception modules in total, covering five different 

types. Each module has a convolutional layer, an activation layer, a pooling layer, and a batch 
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normalization layer that are all developed by experts. These modules are combined in the 

Inception-v3 model to extract the most features possible. The concept of multi-scale is used by 

inception modules. Each module contains several branches with various kernel sizes (1 x 1, 3 x 3, 

5 x 5 and 7 x 7). These filters take different scales of feature maps, extract them, and combine 

them before sending the result to the following step; before using the computationally complex 

3 x 3 and 5 x 5 convolutions, each inception module uses 1 x 1 convolutions to decrease 

dimensionality. By factoring the (5 x 5), (7 x 7) or asymmetric (1 x 7, 7 x 1) convolutions into 

smaller (3 x 3) or asymmetric (1 x 7, 7 x 1) convolutions, many DNN parameters are decreased. 

The general network architecture of InceptionV3 model is shown in Figure: 3.8 

 

Figure 3.8: InceptionV3 Model Network Architecture  

3.4.1.3. ResNet50: 

A novel architecture known as ResNet [50] was presented in 2015 by scientists at Microsoft 

Research. To solve the gradient vanishing/exploding problem, this architecture includes the idea 

of residual blocks. They employ the skip connections method in this network. The skip connection 

connects layer activations to those of next layers by skipping a few layers in between. This results 

in a residual block. ResNets are built by stacking these residue blocks. The strategy behind this 
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network is to let the network fit the residual mapping rather than have layers learning the 

underlying mapping. The ResNet-50 is a 50-layer ResNet variation as shown in Figure 3.9, that 

was trained using at least one million photos from the ImageNet dataset. 

 

Figure 3.9: ResNet50 Model Network Architecture  

3.4.1.4. MobiNetV2: 

Google researchers initially presented MobileNet [51]. A convolutional neural network design 

called MobileNetV2 aims to function well on mobile devices. The ImageNet dataset, a sizable 

classification dataset, served as the first training ground for the MobileNetv2 model. The 

bottleneck layers are linked by residual connections, and it is constructed on an inverted residual 

structure. The middle expansion layer uses simple point-wise and depth-wise convolutions as a 

source of non-linearity to select characteristics. The MobileNetV2 architecture consists of 19 extra 

bottleneck layers in addition to the 32-filter initial fully convolution layer. MobileNetv2 is 

retrained on the citrus plant dataset using the pre-trained weights from ImageNet to hasten feature 

learning. The general archeticture of MobileNetV2 is illustrated in Figure 3.10. 
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Figure 3.10: MobiNetV2 Network General Architecture. 

3.4.1.5. EfficientB3: 

Tan and Lee originally suggested EfficienNet in 2019 [52], and it is an architecture for enhancing 

classification networks. The majority of networks typically use three indicators: network 

expansion, network depth, and improvement in resolution quality. In order to increase the 

accuracy, the network's width, depth, and resolution are tuned using the combined scaling model 

as shown in Figure 3.11. By contrasting EfficientNets with other CNNs models that are trained on 

ImageNet dataset. The EfficientNets model can typically outperform previous CNNs models in 

terms of accuracy and efficiency.  

 

Figure 3.11: Compound Scaling Method used in Network Architecture of EfficientB3 Model. 
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The pre-trained models utilized in this study was previously trained using an ImageNet dataset. 

By default, each pre-trained network on the CNN building have thousand fully connected (FC) 

layer output nodes. The output FC layer was replaced with five nodes based on the number of 

classes in the dataset for citrus plant diseases and added with softmax activation as shown in Figure 

3.7. The flowchart of the entire implementation with algorithm is shown in Figure 3.12-3.13. 

 

Figure 3.12: Flowchart of our proposed model.  
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START 

1. Input: Citrus Plant Dataset (Image Files, Class Names) 

2. Output: Disease Classification with high prediction accuracy.  
3. BATCH_SIZE = 32, IMAGE_SHAPE = 256, num_classes = 5; 

4. dataset = dataset_from_directory("Path of directory ") 
5. Apply Image Pre-Processing and Data Augmentation  
6. Def get_dataset_partitions_tf(ds, train_split=0.8, val_split=0.1, test_split=0.1) 

7. Load Pre-Trained Model 
8. Freeze features learning layers and add new classifier layer 

9. FOR All training examples DO 
10.          Re-Trained the model with a new classifier on training data and validation data 
11.          Test the model with Test Data 

12.           IF the desired accuracy achieved THEN 
13.                Show citrus plant diseases classification results. 

14.                Show Accuracy, Loss, Precision, Recall, F1-Score 
15.           ELSE 
16.                 Go back to step number 5. 

17.           END 
18. END 

END 

Figure 3.13: Algorithm of our proposed model.  
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CHAPTER 4: EXPEREMENTAL RESULTS AND DISCUSSION 

Each experiment's findings are discussed in this section. The CNN based InceptionV3, ResNet50, 

MobileNetV2, and EfficientNetB3 architectural models were used in experiments using training 

and validation data. This experimental result aims to measure the accuracy, loss, and computation 

time needed for each architecture classifier throughout the data training phase. For each CNN 

based model, Table 4.1 shows the accuracy, loss, and training computational time. 

Pre-Train 

Model 

Data Augmentation Training 

Accuracy 

 (% ) 

Validation 

Accuracy 

(% ) 

Testing 

Accuracy 

(% ) 

 

Training 

Loss 

(% ) 

Validation 

Loss 

(% ) 

Testing 

Loss 

(% ) 

ETA 

EfficientNetB3 Un-Augmented Dataset 97.14 96.88 92.78 0.13 0.14 0.237 19 sec 

Augmented Dataset 99.43 99.48 99.58 0.021 0.019 0.015 47 sec 

MobiNetV2 Un-Augmented Dataset 95.83 92.19 93.81 0.15 0.24 0.191 6 sec 

Augmented Dataset 97.93 98.44 97.91 0.060 0.049 0.057 10 sec 

ResNet50 Un-Augmented Dataset 96.35 96.88 89.69 0.15 0.14 0.39 19 sec 

Augmented Dataset 98.39 98.44 98.74 0.048 0.040 0.044 47 sec 

GoogleNet 

(InceptionV3) 

Un-Augmented Dataset 90.10 87.50 92.97 0.32 0.36 0.23 19 sec 

Augmented Dataset 96.39 97.40 96.23 0.109 0.104 0.092 48 sec 

Table 4.1. Accuracy, Loss and time computing of CNN based models. 
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4.1.  Models Result Comparison  

Experiments show that EfficientNetB3 outperforms all CNN based models in terms of 

performance, with a training accuracy of 99.43%. ResNet50 model ranked second with accuracy 

of 98.39%, followed by MobileNetV2 with accuracy of 97.93%, and InceptionV3 with accuracy 

of 96.39%.  

Table 4.1 also shows the training loss for every learned CNN model. With a value of 0.021, 

EfficientNetB3 is the architecture with the lowest training loss, followed by 

ResNet50, MobileNetV2, and InceptionV3 with values of 0.048, 0.060, and 0.109, respectively. 

The accuracy and loss curves achieved during learning phase are shown in Figures 4.1–4.4. 

 

Figure 4.1: Training and Validation Accuracy and Loss graph of the EfficientNetB3 model 
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Figure 4.2: Training and Validation Accuracy and Loss graph of the ResNet50 model 

 

Figure 4.3: Training and Validation Accuracy and Loss graph of the MobiNetV2 model 
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Figure 4.4: Training and Validation Accuracy and Loss graph of the InceptionV3 model 

 

4.2. Models Performance Evaluation:  

Table 4.2 displays the performance evaluation matrix between the trained network and the test 

dataset, including each model's accuracy, precision, recall, and F1-Score.  

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝑻𝑷 + 𝑻𝑵/(𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵 ) − − − −(𝒊) 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝑻𝑷/(𝑻𝑷 + 𝑭𝑷) − − − −(𝒊𝒊)  

𝑹𝒆𝒄𝒂𝒍𝒍 = 𝑻𝑷/(𝑻𝑷 + 𝑭𝑵) − − − −(𝒊𝒊𝒊)  

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 = (𝟐 ∗ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍)/(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍) − − − −(𝒊𝒗) 

Where TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative.  

The test results showed that EfficientNetB3 performed better than all CNN architecture models in 

regards to accuracy (99.58%), precision (100%), recall (100%), and F1-Score (100%). The 

ResNet50 architecture came in second with accuracy values of 98.74, precision of 96.00%, recall 

of 95.00%, and F1-score of 96.00%. Accuracy, precision, recall, and F1-Score for InceptionV2 are 

all 96.23%, 97.00%, and 97.00%, respectively, whereas MobileNet receives accuracy values of 

97.91%, precision 97.00%, recall 98.00%, and F1-Score 99.00%. Figure 4.5 shows the 

performance evaluation of each model.  
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Pre-Trained 

Model 

Data Augmentation Precision Recall  F1- Score Accuracy (% ) 

  

EfficientNetB3 Un-Augmented Dataset 0.91 0.94 0.91 92.78 

Augmented Dataset 1.00 1.00 1.00 99.58 

MobiNetV2 Un-Augmented Dataset 0.93 0.91 0.91 93.81 

Augmented Dataset 0.97 0.99 0.98 97.91 

ResNet50 Un-Augmented Dataset 0.85 0.88 0.86 89.69 

Augmented Dataset 0.96 0.95 0.95 98.74 

GoogleNet 

(InceptionV3) 

Un-Augmented Dataset 0.91 0.91 0.91 92.97 

Augmented Dataset 0.97 0.97 0.97 96.23 

Table 4.2: Performance Evaluation of trained models with testing data 

 

Figure 4.5: Models Performance Evaluation  
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4.3. Confusion Matrix of Models 

The confusion matrix with data testing for the EfficientNetB3 architectural model is shown in 

Figure 4.6. No data from the sample tested were incorrectly categorized as shown in Figure 4.6, 

all data were correctly categorized. Table 4.2 illustrates the accuracy, precision, recall, and F1 

Score values. 

 

Figure 4.6: Confusion matrix of EfficientNetB3 

Figure 4.7 shows the confusion matrix on testing data for the ResNet50 architecture. There are 2 

sample data that are incorrectly classified out of the 32 sample data tested. As seen in Figure 4.7, 

a sample of two Greening class data points were incorrectly classified.  
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Figure 4.7: Confusion matrix of ResNet50 

Figure 4.8 displays the confusion matrix for the MobileNet architecture model on testing data. One 

sample of the 32 tested data were incorrectly categorized. As shown in Figure 4.8, one sample of 

incorrectly classified Greening class data.  
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Figure 4.8: Confusion matrix of MobiNetV2  

As for the InceptionV3 architectural model, Figure 4.9 presents the confusion matrix with data 

testing. One sample data is incorrectly categorized out of the 32 sample data analyzed.   Figure 4.9 

shows 1 sample of incorrectly classified Greening class data.  
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Figure 4.9: Confusion matrix of InceptionV3 

4.4.  Models Testing Accuracy and Loss Comparison 

Figure 4.10-4.11 compares the testing accuracy and loss of the EfficientNetB3, MobiNetV3, 

ResNet50, and InceptionV3 models on augmented and non-augmented dataset. Figure 4.10-4.11 

shows that EfficientNetB3 gives the highest performance, with 99.58% testing accuracy and 

0.021% loss, which is maximal compared to other models. 
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Figure 4.10: Models Testing Accuracy Comparison on Test Data 

 

Figure 4.11: Models Testing Loss Comparison on Test Data 
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With an accuracy of 99.58%, Figure 4.11 demonstrates that the model created using 

EfficientNetB3 is the most accurate for identifying and classifying citrus plant diseases. 

The trained models are also tested on single image and the batch size of 32. Figure 4.12 illustrates 

the real-time results of the proposed system. 

 

Figure 4.12: Models Test Results 

4.5.  Proposed Model Comparison 

Additionally, the proposed approach is compared with current methods for the classification and 

diagnosis of diseases affecting citrus plants, according to Table 4.3 and Figure 4.12. Based on 

classification accuracy, the suggested technique outperforms the existing techniques.  
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References Year Accuracy (% ) 

V. Kukreja et al. [46] 2020 89.1 

A. Khattak et al. [41] 2021 95.65 

A. Elaraby et al. [47] 2022 94.3 

Proposed Model 2022 99.58 

Table 4.3: Proposed Model Comparison with other studies 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Proposed Model Comparison with other studies 
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CHAPTER 5: CONCLUSION 

To improve citrus plant productivity, it is critically crucial to recognize and classify citrus 

plant diseases using timely, effective, speedy, automated, less expensive, and precise approaches. 

Many of the fundamental issues related to the categorization of plant diseases have been 

successfully addressed by deep learning and CNNs. Transfer learning techniques have proven to 

be quite useful for identifying and classifying plant diseases. To improve classification accuracy, 

we have used the most recent transfer learning-based models on our dataset. In this study, we 

successfully suggested a deep transfer learning based pre-trained CNN model (EfficientNetB3, 

ResNet50, MobiNetV2, GoogleNet (InceptionV3)) for the recognition and classification of citrus 

plant diseases. The established model makes a distinction between healthy and unhealthy 

citrus plant diseases. In order to evaluate network performance, we found that one effective way 

to create a deep neural network model for the early diagnosis and classification of citrus plant 

diseases is by transferring an EfficientNetb3 model that has been previously trained on an 

ImageNet database. With the transfer of an EfficientNetb3 model, we obtained the highest training, 

validating, and testing accuracies, which were 99.43%, 99.48%, and 99.58%, respectively. 

Furthermore, the suggested model is contrasted with the other methods for the automated diagnosis 

and classification of citrus plant diseases. The outcome demonstrates that the recommended CNN 

model outperforms other state-of-the-art CNN models developed in earlier research in the 

detection and recognition of citrus plant disease. 
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CHAPTER 6: FUTURE WORK 

The lack of data is the primary challenge for this study, which is somewhat reduced by the 

inclusion of the data-augmentation phase. In future studies for this dataset, other data augmentation 

methods, more training, and other pre-trained models could help to achieve higher accuracy and 

lower loss. The proposed approach is created using a dataset of five citrus diseases. For more 

research, different citrus datasets might be investigated for the analysis of other disease classes. In 

addition, other deep learning models can be used to increase accuracy and computational 

efficiency. 
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APPENDIX I 

#Data Augmentation and Resizing 

from keras.preprocessing.image import ImageDataGenerator 

from skimage import io 

import numpy as np 

import os 

from PIL import Image 

# Construct an instance of the ImageDataGenerator class 

# Pass the augmentation parameters through the constructor.  

datagen = ImageDataGenerator( 

        rotation_range=45,     #Random rotation between 0 and 45 

        width_shift_range=0.2,  height_shift_range=0.2, shear_range=0.2, 

        zoom_range=0.2,horizontal_flip=True, vertical_flip=True, fill_mode='reflect', cval=125 

)    #Also try nearest, constant, reflect, wrap 

image_directory = 'Citrus\Fruits\scab/' 

SIZE = 256, dataset= [] 

my_images = os.listdir(image_directory) 

for i, image_name in enumerate(my_images): 

    if (image_name.split('.')[1] == 'jpg'): 

        image = io.imread(image_directory + image_name) 

        image = Image.fromarray(image, 'RGB') 

        image = image.resize((SIZE,SIZE)) 

        dataset.append(np.array(image)) 

for batch in datagen.flow (x, batch_size=16,   

                          save_to_dir='Augmented_Dataset\Fruits\Scab',  

                          save_prefix='aug_scab',  

                          save_format='jpg'): 

    i += 1 

    if i > 16: 

        break  # otherwise the generator would loop indefinitely 
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APPENDIX II 

#Importing Library and Loading data from disk. 

import numpy as np 

import PIL.Image as Image 

import os 

import matplotlib.pylab as plt 

import tensorflow as tf 

import tensorflow_hub as hub 

 

from tensorflow import keras 

from tensorflow.keras import layers 

from tensorflow.keras.models import Sequential 

 

BATCH_SIZE = 32 

IMAGE_SHAPE = 256 

CHANNELS=3 

EPOCHS=8 

 

dataset = tf.keras.preprocessing.image_dataset_from_directory( 

"Citrus/Leaves", 

seed=123, 

shuffle=True, 

image_size=(IMAGE_SHAPE,IMAGE_SHAPE), 

batch_size=BATCH_SIZE 

) 

class_names = dataset.class_names 

class_names 

 

 

 



36 
 

APPENDIX III 

#Data Splitting  

def get_dataset_partitions_tf(ds, train_split=0.6, val_split=0.2, test_split=0.2, shuffle=True, 

shuffle_size=10000): 

    assert (train_split + test_split + val_split) == 1 

    ds_size = len(ds) 

    if shuffle: 

        ds = ds.shuffle(shuffle_size, seed=12) 

    train_size = int(train_split * ds_size) 

    val_size = int(val_split * ds_size) 

    train_ds = ds.take(train_size) 

    val_ds = ds.skip(train_size).take(val_size) 

    test_ds = ds.skip(train_size).skip(val_size) 

    return train_ds, val_ds, test_ds 

train_ds, val_ds, test_ds = get_dataset_partitions_tf(dataset) 

print("Total Length of dataset: ",len(dataset)) 

print("After dataset partitions") 

print("Length of Training dataset: ",len(train_ds)) 

print("Length of Validation dataset: ",len(val_ds)) 

print("Length of Testing dataset: ",len(test_ds)) 

 

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE) 

val_ds = val_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE) 

test_ds = test_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE) 

 

resize_and_rescale = tf.keras.Sequential([ 

layers.experimental.preprocessing.Resizing(IMAGE_SHAPE, IMAGE_SHAPE), 

layers.experimental.preprocessing.Rescaling(1./255),]) 
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APPENDIX IV 

#Loading Pre-trained model and change classifier and add dense layers 

num_classes = 5 

EffNet_model = tf.keras.Sequential([ 

    resize_and_rescale,                          

    hub.KerasLayer("https://tfhub.dev/tensorflow/efficientnet/b3/feature-vector/1", 

                   trainable=False),  # Can be True, see below. 

    layers.Dense(64, activation='relu'), 

    layers.Dense(32, activation='relu'), 

    layers.Dropout(rate=0.1),  

    tf.keras.layers.Dense(num_classes, activation='softmax') 

]) 

EffNet_model.build([None, 256, 256, 3]) 

EffNet_model.summary() 

EffNet_model.compile( 

    optimizer='adam', 

    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), 

    metrics=['acc'] 

) 

 

#Re-Trained the Model 

history = EffNet_model.fit(train_ds, 

    validation_data=val_ds, 

    batch_size=BATCH_SIZE, 

    verbose=1, 

    epochs=8) 

scores = EffNet_model.evaluate(test_ds) 
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APPENDIX V 

#Plotting Accuracy and Loss graph 

acc = history.history['acc'] 

val_acc = history.history['val_acc'] 

 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

EPOCHS = 8 

plt.figure(figsize=(20, 8)) 

plt.subplot(1, 2, 1) 

plt.plot(range(EPOCHS), acc, label='Training Accuracy') 

plt.plot(range(EPOCHS), val_acc, label='Validation Accuracy') 

plt.legend(loc='lower right') 

plt.ylim([min(plt.ylim()),1]) 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.title('Training and Validation Accuracy') 

 

plt.subplot(1, 2, 2) 

plt.plot(range(EPOCHS), loss, label='Training Loss') 

plt.plot(range(EPOCHS), val_loss, label='Validation Loss') 

plt.legend(loc='upper right') 

plt.ylim([0,1.0]) 

plt.title('Training and Validation Loss') 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.show() 
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APPENDIX VI 

#Testing Result 

def predict(model, img): 

    img_array = tf.keras.preprocessing.image.img_to_array(images[i].numpy()) 

    img_array = tf.expand_dims(img_array, 0) 

    predictions = EffNet_model.predict(img_array) 

    predicted_class = class_names[np.argmax(predictions[0])] 

    confidence = round(100 * (np.max(predictions[0])), 2) 

    return predicted_class, confidence 

plt.figure(figsize=(15, 15)) 

for images, labels in test_ds.take(1): 

    for i in range(9): 

        ax = plt.subplot(3, 3, i + 1) 

        plt.imshow(images[i].numpy().astype("uint8")) 

         

        predicted_class, confidence = predict(EffNet_model, images[i].numpy()) 

        actual_class = class_names[labels[i]]  

         

        plt.title(f"Actual: {actual_class},\n Predicted: {predicted_class}.\n Confidence: 

{confidence}%") 

         

        plt.axis("off") 
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APPENDIX VII 

#Getting Confusion Metrix and Classification Report 

from mlxtend.plotting import plot_confusion_matrix 

from sklearn.metrics import confusion_matrix , classification_report 

 

for images, labels in test_ds: 

         

    predictions = EffNet_model.predict(images) 

    predicted_class = np.argmax(predictions, axis = 1) 

    actual_class = labels.numpy() 

    math = tf.math.confusion_matrix(labels=actual_class,predictions= predicted_class) 

    mat = math.numpy() 

print() 

print(classification_report(actual_class,predicted_class)) 

 

plot_confusion_matrix(conf_mat=mat, figsize=(10,7), class_names = class_names, show_normed 

= True) 
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