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ABSTRACT 

 

This experimental study explores the feasibility of reconcentration and reuse of denim 

and polyester dyebath effluents using a forward osmosis (FO) system to achieve zero 

liquid and hazardous material discharge. The maximum flux achieved using sodium 

dodecyl sulphate (SDS) as DS was 6.3 LMH with RSF of 0.035 gMH while tetra ethyl 

ammonium bromide (TEAB) generated 18 LMH of flux and 0.4 gMH RSF with 100% 

dye rejection. This flux stability comes from the property of surfactants to form micelles 

and exert a stable osmotic pressure above their critical micelle concentration. The low 

RSF is due to the greater micelle size. A colored fouling layer was formed on the 

membrane active layer (AL), which was easily removed using Sodium Hydroxide and 

Citric Acid. According to fourier transform infrared spectra and atomic forces 

microscopy images of the AL, the interaction between foulants and membrane active 

groups did not significantly affect the physiochemical properties of the membrane. The 

stacked 1D HNMR (Proton Nuclear Magnetic Resonance) spectra of both original and 

recovered disperse dyes showed >90% similarity, which validates the concept that the 

recovered dyes maintained their integrity during reconcentration and can be reused in 

the next batch dyeing process. Importantly, the diluted DS concentration can be directly 

reused within the same textile industry in scouring and/or finishing processes. The 

processes of reconcentration and reuse developed in this study do not produce any waste 

or hazardous by-products and are suitable for scale-up and onsite industrial 

applications.  
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Chapter 1  

INTRODUCTION 

1.1 Background 

Global demand for freshwater has increased mainly due to rapid population growth, so 

protecting available freshwater resources is critical for ensuring a sustainable water 

supply (Giagnorio et al., 2019). Also, there is a dire need to investigate the reuse 

potential of treated wastewater for various industrial and potable water reuse 

applications (Manikandan et al., 2022). The textile industry is one of the largest water 

consumers, with approximately 230 to 270 tons of water used per ton of fabric, 

contributing to 20% of industrial wastewater production (Al-Mamun et al., 2019; He et 

al., 2020; Tavangar et al., 2019). The textile wastewater has a high pH, chemical oxygen 

demand (COD), and intense color, and it can deteriorate the water quality of receiving 

drains as well as the groundwater due to infiltration (Han et al., 2016; Khalid et al., 

2021; Nawaz and Khan, 2013). The untreated disposal of textile wastewater in water 

receiving bodies can also negatively impact flora and fauna (Lellis et al., 2019; Saini, 

2017).  

The primary dyes released from the textile industry are disperse, vat, and reactive, 

among which 70% are sparingly soluble (Disperse and Vat dyes) (Arslan-Alaton and 

Turkoglu, 2008; Berradi et al., 2019). The disperse and vat dyes are first adsorbed and 

then diffuse monomolecularly into the fiber. They do not undergo any chemical change 

during the dyeing process, and their reuse is possible after recovery (Ketema and 

Worku, 2020). Immense concentrations (around 10 to 20%) of the disperse and vat dyes 

are lost during spent dyebath disposal (Ammayappan et al., 2016). Furthermore, a 

textile industry with a production capacity of 8000 kg per day spends US$ 480-1200  

on dyestuff (Badani et al., 2009). Hence, to improve the profitability of the textile 

industry, some method or technique is required which can not only remove the dyes 

from the dyebath effluent but can also reconcentrate them for reuse in subsequent 

coloring batches. The textile industrial zones are now leading towards minimum liquid 

and hazardous chemicals discharge solutions (Moreira et al., 2022).  

1.2 Problem Statement 

The  minimum liquid discharge (MLD) is not possible with conventional biological or 

physico-chemical processes, which are dye destructive and generate hazardous sludge 
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by-products, and which are not safe for environmental discharge (Petrinić et al., 2015). 

Also, some dyes become carcinogenic on breaking down into small fragments during 

biodegradation (Pereira and Alves, 2012; Pinheiro et al., 2022). Hence, MLD is not 

achievable when mixing different process streams originating from the same textile 

industry.  

By reconcentrating and reusing the dyebath effluent, the remaining streams can be 

easily treated biologically in less time, with less energy and no hazardous sludge 

generation. A feasible option for the reconcentration of dyebath effluent is to apply a 

membrane filtration based non-destructive technique that involves no hydraulic 

pressure. In this context, forward osmosis (FO), an osmotic-driven membrane process, 

can be used to concentrate valuable products from process wastewater (Im et al., 2021; 

Malik et al., 2021). No hydraulic pressure is needed in FO and the concentration 

difference between the two streams serves as the driving force (Son et al., 2020; Wang 

et al., 2021). Some previous studies explored dye recovery using FO, but either the dye 

type was not reusable (e.g., azo dyes) or the regeneration of diluted draw solution (DS) 

was required, which is an energy-intensive process (Li et al., 2020; Li et al., 2019). 

Also, the DS used in these studies (e.g., fertilizers) can reverse transport and impede 

the quality of reconcentrated dyebath effluent for further reuse (Mendoza et al., 2022). 

So, an ideal DS for dye recovery should depict lower reverse solute flux (RSF) and 

should be directly reused without any need for regeneration.  

1.3 Significance and Novelty 

Surfactants as a DS can produce a stable osmotic pressure above critical micelle 

concentration (CMC), and their RSF is 100 times less than NaCl, primarily due to their 

large molecular size (Nawaz et al., 2016; Roach et al., 2014). Based on the research 

gaps, there is a need to investigate the potential of surfactants as a DS for 

reconcentrating vat and disperse dyebath effluents for direct reuse in coloring the next 

batches. This will partially save fresh water and new dyes requirement for preparing 

the dyebath for the next batches. It can also contribute to the reduction of the per-item 

cost of production. In addition, being a non-destructive method, it will prevent the 

generation of intermittent harmful by-products and their discharge into the 

environment.  
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This study evaluated the surfactant driven forward osmosis (SDFO) process by 

measuring the dye rejection through the FO membrane, flux generation capability, and 

RSF of SDS and TEAB against the simulated dyebath wastewater as feed solution (FS). 

The impact of critical operational factors like temperature and crossflow velocity (CFV) 

was evaluated. The key foulants were identified, and the impact of their interaction with 

the active groups on the membrane AL were investigated. Lastly, the structural 

properties of recovered dyes were compared to the unused dyes to evaluate their 

chemical integrity and reuse potential. It is the first comprehensive and practical study 

in this area and can serve a pivotal role in the recovery and reuse of dyes from dyebath 

effluents.  

1.4 Research Objectives 

The key objectives of study are as follows: 

1. Optimization of flux in surfactant driven forward osmosis at different cross flow 

velocities, temperatures and concentrations of feed and draw solutions 

2. Investigation of reverse solute flux (RSF), dye reconcentration, diluted 

surfactant concentration and mass transfer across FO membrane 

3. Characterization of fouling /scaling on membrane surface  

4. Investigation of dye structural properties after reconcentration 
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Chapter 2  

LITERATURE REVIEW 

2.1 Water Scarcity as a Global Issue 

Water covers around 70% of earth among which only 3 percent is considered as fresh 

water. From this three percent only one third is accessible as rest is in frozen form. 

Every passing year lowers the global freshwater percentage due to industrial and urban 

development. According to statistics around 2.1 billion people do not have access to 

safe drinking water, the percentage of people suffering from water scarcity is shown in 

Figure 2.1  (Unicef, 2019) and by 2050, 4 billion people will suffer from water scarcity 

(Orimoloye et al., 2021).Water availability also controls agriculture development and 

food security. The freshwater extraction resource is overpassing the boundary by 10% 

(Giordano et al., 2019).  

 

Figure 2.1: Global water scarcity faced by population at least one month per year 

 (Water footprint network) 

Currently one of the main reasons for water scarcity is the overconsumption of water 

for domestic, industrial and agricultural purposes (AghaKouchak et al., 2021). Climate 

change and global warming is another factor affecting water scarcity. It not only 

contributes to rise in sea level by melting glaciers but it also increases the evaporation 

rate from surfaces of water bodies. According to Clausius–Clapeyron-relation, this 

evapotranspiration phenomenon also causes extreme weather events to occur with 

increased intensity and frequency (Skliris et al., 2016). Considering all these factors, 
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water crisis is enlisted as the largest future risk worldwide (Sharma and Soederberg, 

2020). Due to alarming situation of water shortage, “clean water and sanitation” is 

indicated as the sixth sustainable development goal (SDG 6) which aims to improve 

water quality, capacity building and water use efficiency (Northey et al., 2019).  

In order to mitigate the water scarcity, various options are available including 

conservation of fresh water, infrastructure projects and reuse/reclamation of wastewater 

for non-potable utilization (Capodaglio, 2021). Industrial sectors consume 21% of 

available total fresh water, so to cope with the water scarcity issues and environmental 

concerns, its treatment is hot topic for researchers and scientists. Basically, wastewater 

treatment has two main purposes. Firstly it is treated to fulfill the environmental 

compliance and secondly for water reuse which is a modern concept for overcoming 

water scarcity (Kharraz et al., 2022; Salgot and Folch, 2018). 

2.2 Need for Wastewater Reuse 

With the rising demand for water, reclamation and reuse of wastewater is becoming an 

ever-increasing trend over the last decade (Grant et al., 2012). The reuse of wastewater 

lowers the volume as well as the risk of wastewater discharged to the environment and 

also reduces the ecosystem pressure imposed by the withdrawal of fresh water, So 

reclaimed water is not considered a pure form of waste that can pollute the ecosystem, 

but it is actually a resource that can improve water sustainability on the planet (Tong 

and Elimelech, 2016).  

2.3 Textile Industry as a Major Consumer of Water 

On global level textile sector has a key reputation in the world’s economy and 

satisfaction of individual needs. Textile industries are water demanding comprising of 

various processes involving considerable water consumption (Niinimäki et al., 2020). 

An average size textile mill having 8000 kg production per day utilizes 1600 metric 

cubes of fresh water daily. While among these statistics major portion of water is 

consumed by the dyeing and printing section (Kant, 2012; Khan and Malik, 2014). 

According to the World Bank assessments almost 17 to 20% of worldwide industrial 

wastewater is produced by dyeing and finishing units of textile sector (Holkar et al., 

2016). Textile effluent contains recalcitrant compounds like dyes, fixing agents. oils, 

latex and glues, so its handling and treatment with conventional treatment systems is 

very difficult (Yukseler et al., 2017). From the above discussion it can be inferred that 
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textile wastewater treatment and reuse can save a noticeable amount of water to 

overcome issues of water scarcity and protection of ecosystem. 

2.4 Processes Involved in the Textile Industry 

Textile industry involves different processes to convert raw fabric into a final product. 

Figure 2.2 shows the major processes for wet processing in textile industry. 

 

Figure 2.2: Flow chart for wet processing of fabric (Sahoo et al., 2012) 

Sizing of fabric is done to enhance the stiffness by adding sizing agents including 

cellulose and starch. While desizing process is actually done to remove the excess 

amount of cellulose with the help of enzymes and alkalies. After that oil and grease is 

removed from fabric with the addition of surfactants. Hydrogen peroxide and sodium 

hypochlorite are added as bleaching agents to remove the natural color of fabric. After 

that strength and brightness of fabric are improved by the process of mercerizing. Acid 

washing is done to remove excess alkali. After that coloring and finishing of fabric are 

done (Sahoo et al., 2012). 

Textile industry consumes a considerable amount of water at different stages, as a result 

waste effluent is generated from every process as shown in the above flow chart. But 
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the main consumers of water are manufacturing processes including dyeing and 

finishing. On the basis of toxic wastewater generation, it is a dominant cause of 

environmental and aquatic pollution in different industrial zones or settlements (Mia et 

al., 2019). 

2.5 Nature and Type of Textile Dyes 

The most significant constituent of textile industry are textile dyes and approximately 

0.1 million dye types are available commercially. The worldwide production of textile 

dyes is around 1 million tons/year from which 0.28 million are disposed into water 

bodies due to process inefficiencies hence polluting both surface and groundwater. 

Dyes mostly consist of chromophores and auxochromes; Chromophores are responsible 

for the color of dye while auxochromes maintain and strengthen that color. The six 

major types of textile dyes are shown in Figure 2.3. 

 

Figure 2.3: Main dye classes used in textile industry 

Reactive dyes are commonly used for cotton and viscose fabric. They form new 

chemical compounds while coming in contact with the fabric. 95% of reactive dyes 

belong to azo class and contain recalcitrant compounds (Pal, 2017). Basic dyes contain 

amino groups and are cationic in nature which are mainly applied to silk and wool 

fabric. They are water- soluble and acetic acid is mostly used in dyebath to enhance the 

coloring efficiency (Bartczak et al., 2022). Acidic dyes are suitable for nylon, silk and 

wool having anionic nature and water solubility in acidic dyebath. The phenomenon of 

dye absorption is by forming ionic bonds with fabric (Ujiie, 2015). Sulphur dyes are 

non-ionic and water insoluble in nature. They are applied to fabric with the help of 
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reduction /oxidation process resulting in the formation of sulphonic bonds with 

cellulosic fibers (Periyasamy and Militky, 2020). 

Disperse dyes are used for dyeing acrylics, triacetates, and mainly polyester fibers. 

Disperse dyeing does not require any fixing agents as it is done by the phase change 

phenomena depending upon temperature. They are not readily water soluble and around 

50% of disperse dyes belong to the azo class while 25% are from anthraquinones, nitro 

and methine. Disperse dyeing is done in acidic medium and most suitable for fibers 

with hydrophobic nature due to good fastness properties of these dyes (Koh, 2011; Song 

et al., 2020). Vat dyes are sparingly water soluble and applied particularly on cellulosic 

fibers. These dyes are most widely used because of their excellent water and light 

fastening capability (Khatri et al., 2017). 

2.6 Potential of Resource Recovery in Textile Dyebath 

One of the important points in textile effluent pollution is the low fixation of dyes due 

to inefficiencies in textile processes. It has been found that mainly reactive, vat and 

disperse dyes are present in textile wastewater among which 70% are recoverable 

(Arslan-Alaton and Turkoglu, 2008; Berradi et al., 2019). The disperse and vat dyes are 

first adsorbed and then diffuse monomolecularly into the fiber. They do not undergo 

any chemical change during the dyeing process, and their reuse is possible after 

recovery (Ketema and Worku, 2020). Furthermore, a huge amount of water is lost as a 

treated effluent in conventional processes and became a part of water bodies that further 

need polishing for reuse. It is possible to recover and reuse the water on source for non-

potable purposes (Yaqub and Lee, 2019). Studies are also conducted to recover salts 

and heavy metals like chromium and nickel from textile effluent (Chaouqi et al., 2019).  

2.7 Recent Progress in Textile Dyebath Effluent Treatment and 

Reuse 

2.7.1 Physico-Chemical Techniques 

Different physico chemical methods were developed previously for the treatment of 

textile wastewater including coagulation flocculation, adsorption, and ion-exchange 

Coagulation and flocculation methods are well suitable for the removal of disperse dyes 

while having low efficiency in case of vat and reactive dyes (Holkar et al., 2016). This 
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technology has limitations like high chemical cost, low dye removal performance and 

sludge production (Liang et al., 2014). 

Adsorption technology gives significant dye removal results in the case of textile 

effluent treatment. The selection parameters for adsorption includes high affinity, 

surface area and desorption properties. While limitations include high cost and 

difficulty in the recycling of adsorption media (Jadhav and Srivastava, 2013). Another 

main point is the pollutants i.e., dyes cannot be reused and pollutants ultimately remain 

in the environment (Galán et al., 2013). 

Ion exchange method can be used to remove cationic and anionic pollutants from 

wastewater. This technology involves the use of synthetic resins. This technology has 

found good results in water softening but is not efficient in dye removal. There is no 

loss of adsorbents by this technology, it is found workable in case of water-soluble dyes 

like reactive dyes but not in the case of water insoluble dyes (Hassan and Carr, 2018). 

2.7.2 Biological Techniques 

Biological processes are conventionally used for the treatment of textile wastewater. 

Mostly the aerobic processes like activated sludge process and sequencing batch reactor 

are applied commonly but they have various disadvantages like toxicity towards the 

microorganisms, high energy demand, land requirements and high hydraulic retention 

times (Sarayu and Sandhya, 2012). While in the case of anaerobic treatment of textile 

effluent, production of aromatic amines affects the process. So in the long run pollution 

is only converted from one form to another (Haider et al., 2018). 

2.7.3 Chemical Techniques 

Chemical techniques are applied on industrial effluents mainly for the removal of toxic 

metals, dyes, pollutants, and odor. Chemical oxidation using ultraviolet light and 

oxidant is proven for dye removal. Studies have been done and it is analyzed that 

hydrogen peroxide (H2O2) in combination with UV light is the most commonly used 

oxidant for textile effluent treatment. The oxidant properties of chlorine dioxide (ClO2) 

are also found effective for dye removal (Asghar et al., 2015).  Fenton process solution 

of hydrogen peroxide and ferrous ion is used as a catalyst to oxidize the contaminants 

from wastewater. It shows maximum color removal efficiency of 98% and COD 

removal of 85% at pH=3 in textile effluent stream. The limitation of fenton process is 

the production of byproducts i.e., iron sludge due to the combined flocculation process 
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of fenton reagents and molecules of dyes (Ayyaru and Dharmalingam, 2014). 

Furthermore, the inhibition effect of dyes and emulsification effect of surfactants found 

in textile wastewater can affect the dye removal efficiency to some extent (Ledakowicz 

et al., 2012). Textile wastewater can also be treated by ozonation which involves 

breaking of dyes conjugate bonds utilizing ozone gas. The major advantages include 

the use of ozone in gaseous form, no reduction in the volume of wastewater and zero 

solid waste sludge generation (Miralles-Cuevas et al., 2017). While the main limitation 

includes production of toxicants in effluent, short half-life, and high cost. Furthermore, 

it has been noticed that ozonation is fast at alkaline conditions (approximately 8.5 pH) 

(Gosavi and Sharma, 2014). Photo catalysis is another simple technique that can 

degrade organic pollutant from wastewater into carbon dioxide, and smaller molecules 

and inorganic pollutants into harmless substances. In solar photo fenton process at 60 

mg loading of catalyst up to 95% decolorization and 82% mineralization was achieved 

(Shindhal et al., 2021). Mostly TiO2 catalyst are used in dye effluent treatment, but they 

also have some limitations like poor thermal stability, difficult aggregation and 

recovery of nano particles (Soares et al., 2014).  

2.7.4 Membrane Techniques 

The common membrane processes used for the treatment of textile wastewater are 

shown in Table 2.1 along with membrane characteristics and permeate flux potential. 

Microfiltration (MF) is mostly used in textile industry as a pre-treatment process before 

the application of tertiary treatment. Basically the pore size of MF is larger which 

allows total dissolved solid (TDS) to pass through it while suspended solids can be 

retained with the help of this separation technique (Ellouze et al., 2012). The flux of 

150 LMH was previously studied by using these membranes. It was mostly used as a 

pre-treatment for nanofiltration. 50% COD while 28% salinity removal was observed 

using MF (Ayadi et al., 2016).  

Ultrafiltration (UF) membranes have smaller pore size as compared to MF. UF is 

mostly applied as a pre-treatment to reverse osmosis (RO) or nanofiltration (NF). While 

now a days it is has also applied in the domain of salts and dyes fractionation from 

textile wastewater to achieve the benefits of resource recovery (Jiang et al., 2018). It 

was found that the UF technology allows the passage of NaCl and Na2SO4 and can 

reject reactive and direct dyes.  Past studies show 99% desalination and 97% dye 
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rejection efficiencies. So, it proves the promising nature of UF in salts and dye 

fractionation during textile wastewater treatment (Jiang et al., 2018). A tight UF 

ceramic membrane has the potential of recovering reactive dyes and salt sources 

separately from the discharged textile wastewater but it is more compatible with 

negative ions as compared to positive ion dyes due to electrostatic interactions with 

ceramic membranes  (Ma et al., 2017) 

NF is a membrane separation technique that shows higher efficiency as compared to 

UF in terms of rejection and also shows higher performance when compared to reverse 

osmosis (RO) membrane. NF membrane is suitable for charged dyes and metals present 

in textile effluent due to electrostatic repulsion (Ong et al., 2014). The color and COD 

removal at 15 bars was found to be 95% and 98%, respectively by using NF membrane. 

NF can be used to treat textile wastewater and reuse of process wastewater is also 

possible (Cebeci and Torun, 2017). Hybrid NF and bipolar membrane electrodialysis 

were examined to reconcentrate direct and reactive dyes along with acid and base 

recovery. They have achieved 99% dye rejection (Lin et al., 2015) but NF applies 

mechanical strength in terms of hydraulic pressure and due to shear force dyes integrity 

can be affected (Samhaber and Nguyen, 2014). 

RO is used for the rejection of monovalent salts, chemical auxiliaries, and hydrolyzed 

dyes (Kumar et al., 2013). Almost 99.9% color and COD rejection is achieved by using 

reverse osmosis on biologically treated textile effluent, however direct filtration 

through RO cause reversible fouling. It has been noticed that almost 80% of water 

recovery can be achieved by using RO at 45 to 60 LMH flux which can be reused in 

the next batch of dyeing (Balcik-Canbolat et al., 2017). The limitation of RO includes 

that at higher concentrations the osmotic pressure is important, and it increases the 

energy requirement which in turn rises the operational cost (Kumar et al., 2013). 

Membrane Distillation (MD) is a temperature driven process which is best suitable to 

textile wastewater as textile effluent is released at a high temperature of 60-80°C which 

results in low energy requirements (Keskin et al., 2021). Studies have been done earlier 

on the application of MD in textile wastewater treatment and it has been found that 12 

to 15 LMH flux and 100% dye rejection can be achieved that can be further improved 

by using hybrid systems. The major concerns in this technique are membrane fouling 

and wetting encountered during the operation (Reddy et al., 2022). 



12 
 

Membrane bioreactor (MBR) is basically a hybrid process consisting of biological 

process (aerobic or anaerobic) and membrane filtration. The land space and sludge 

production can be reduced by using MBR with high concentrations of biomass in the 

system and can cope with fluctuations in the effluent quality. It has been reported that 

MBR at 1.3 h hydraulic retention time (HRT) can remove COD, color and TSS by 91, 

99 and 80%, respectively (Yang et al., 2020). Anaerobic MBRs are more efficient in 

term of methane production and less energy requirements but in the case of dyes 

anaerobic processes can convert pollutants into toxic by-products (Jegatheesan et al., 

2016).
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Table 2.1: Common membrane processes used for the treatment of textile wastewater 

Membrane Type Size Driving Force Flux (LMH) Reference 

Microfiltration 

Ultrafiltration 

Nanofiltration 

Reverse Osmosis 

0.1-10 μm 

0.005–0.1 μm 

0.001-0.01 μm 

0.0001 μm 

Hydraulic pressure 

Hydraulic pressure 

Hydraulic pressure 

Hydraulic pressure 

150 

70-120 

50-60 

45-50 

(Ayadi et al., 2016). 

(Srivastava et al., 2011) 

(Fersi and Dhahbi, 2008) 

(Balcik-Canbolat et al., 

2017) 

Membrane Distillation 

Membrane Bioreactor 

100 nm -1 μm 

Depends on membrane 

type 

Temperature Difference 

Hydraulic pressure/ Temperature Difference/ 

Hydraulic osmotic pressure 

12-15 

7-10 

(Reddy et al., 2022) 

(Jegatheesan et al., 2016) 

Forward Osmosis 0.4-1 nm           Osmotic Pressure 13-14 (Korenak et al., 2019) 
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2.8 Forward Osmosis for Reconcentration of Textile Dyebath 

2.8.1 Forward Osmosis (FO) 

Osmosis is a process by which water moves from one solution to another due to 

concentration difference. FO follows the same phenomena with the help of semi-

permeable membrane. Flux in FO depends upon the concentration difference between 

draw solution and feed concentration. 

2.8.2 Advantages of FO 

FO has many advantages over other membrane technologies such as no hydraulic 

pressure (Kook et al., 2018), higher contaminants rejection (Amin et al., 2016), lower 

membrane fouling because flow resistance is only responsible for the drop in hydraulic 

pressure within the membrane module. The fouling in FO is mostly reversible and 

osmotic backwashing can recover the membrane efficiency (Liu and Mi, 2012).  

2.8.3 Disadvantages of FO 

Attaining high flux in case of large-scale FO systems is difficult while use of thin film 

composite TFC membranes and some new draw solutions seems effective (Chekli et 

al., 2017). Fouling is a major problem in membrane-based processes, while in FO it is 

very low but still exists in the form of internal concentration polarization (ICP) on the 

support layer and external concentration polarization (ECP) on the active layer (Lay et 

al., 2012). 

2.9 Forward Osmosis: Basic Principles and Terminologies 

2.9.1 Flux 

Flux is the measure of solvent permeability through the membrane, and it can be 

expressed as: 

Jw = A(Δπ-ΔP) …. (1) 

Where Jw is Permeate flux, water permeability coefficient is denoted by A, Δπ is 

difference in osmotic pressure between feed and draw solution, and ΔP is difference in 

hydraulic pressure across the membrane. 

2.9.2 Difference between FO, PEO, PRO and RO 

In equation (1) when hydraulic pressure difference is zero the process is referred as 

forward osmosis, when draw solution is subjected to hydraulic pressure it is known as 

pressure enhanced osmosis (PEO), when Δπ is greater than ΔP, the phenomena is called 

pressure retarded osmosis (PRO) and when ΔP is greater than Δπ. reverse osmosis (RO) 
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takes place. It is assumed that FO is applied for water treatment purposes while PRO 

for osmotic pressure applications. In PRO membrane, the active layer is faced towards 

draw solution side as shown in Figure 2.4 (Albergamo et al., 2019; Han et al., 2015).  

 

Figure 2.4: Osmotic processes for semi permeable membrane (Nicoll, 2013) 

2.9.3 Solute Flux 

The solute flux is presented by Js and can be presented by Fick’s law. 

Js = BΔc …. (2) 

In equation (2), B is the coefficient of solute permeability while transmembrane 

concentration is presented by Δc. It is depicted from the above equation that solute 

diffuses from the higher concentration side to the lower concentration. It is mostly 

observed in RO where solute from feed water diffuses toward the product water 

whereas in FO diffusion takes place in forward as well as backward direction depending 

upon feed and draw solution concentrations. This phenomenon can affect the microbes 

present in feed solution in the case of osmotic membrane bioreactor and may cause 

scaling when draw solution is recycled (Cornelissen et al., 2008; Hancock and Cath, 

2009).  

2.9.4 Concentration Polarization 

The permeate flux as described in equation (1) depends upon the osmotic pressure 

across the active layer of the membrane rather than the bulk osmotic pressure of feed 

and draw solution. It has been observed that actual permeate flux is always less than 

the theoretical it is due to concentration polarization. Two types of concentration 

polarization are found in FO as shown in Figure 2.5; external concentration 

polarization (ECP) is found on the dense active layer of the membrane while internal 
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concentration polarization (ICP) on the porous support layer. If the support layer is 

towards feed solution side, then concentrative ICP takes place while if its toward draw 

solution side then phenomena of dilutive ICP can be observed (Zhao and Zou, 2011). 

Concentration polarization can be modelled by using equation (3) for FO water fluxes 

without consideration of any hydraulic pressure or membrane flux (Loeb et al., 1997). 

Jw = (1/k) ln (πHi/ πLow) …. (3) 

In equation (3) solute diffusion friction within support layer of membrane is presented 

by K, while πH and πLow are the feed and draw bulk osmotic pressure. 

K is a constant and can be defined as  

K = tτ/εDx = S/Dx …. (4) 

Equation (4) represents thickness of membrane, τ is tortuosity, porosity is denoted by 

ε, Dx is solute diffusion coefficient while S is the structural parameter. It has been 

noticed that structural parameter directly affects the magnitude of ICP as well as flux. 

So thin and open structured membranes are more suitable for FO than thick and torus 

(Zhao et al., 2012) 

    

 

 

 

 

 

 

 

2.9.5 Membrane Fouling 

One of the major problem in membrane based treatment systems is membrane fouling 

(Hu et al., 2005). It might result due to variety of particles present in contaminated feed 

solution like inorganic compounds, colloidal particles, organics in dissolved form or 

Figure 2.5: Internal Concentration Polarization in Forward osmosis 
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microorganisms (Herzberg and Elimelech, 2007; Schneider et al., 2005).  Fouling of 

membrane results in membrane cleaning requirements which as a result increases the 

operational cost. Therefore, for efficient membrane process, fouling should be 

minimized.  It has been previously studied that fouling in case of FO is much less than 

RO processes and most often it is reversible (Lee et al., 2010). Furthermore, in case of 

FO organic fouling can be controlled by increasing the cross flow velocity. The reasons 

for low fouling in FO were found to be due to low water flux, application of smooth 

and hydrophilic membranes and no or very low hydraulic pressure (Lay et al., 2010). 

2.10 Application of Forward Osmosis in Textile Effluent 

Reconcentration Using Various Draw Solutions 

Many previous studies have discussed on forward osmosis for the treatment of textile 

wastewater. The potential application of the symmetric forward osmosis membranes 

was examined for sustainable concentration and recovery of valuable dyes from textile 

wastewater using a 1.5 M Na2SO4 draw solution and a concentration factor of 10 was 

achieved (Li et al., 2019). FO-MD was used to treat textile wastewater with a 

concentration factor of 10 and to regenerate Na2SO4 from the draw solution (Li et al., 

2020). Fertilizer drawn forward osmosis was analyzed for treating textile wastewater 

by using KCl as draw agent with 5 LMH flux and 0.85 RSF (Karunakaran et al., 2021). 

Rejection of antimony from textile wastewater was examined by using forward osmosis 

and up to 99% rejection was achieved by using NaCl as a draw solution. Anaerobic 

fertilizer drawn FO-MBR was assessed for textile wastewater treatment by using Mono 

Ammonium Phosphate (MAP), Ammonium sulfate (SOA) and Mono Potassium 

Phosphate (MKP) blended draw solutions and it showed up to 8 LMH flux and 25 to 

75 Pt-Co color was left in FO permeate but an increase in reverse solute flux adversely 

affected microbial activity (Abbasi et al., 2021). It has been observed that most of the 

studies need draw solution regeneration hence increasing energy cost and when we use 

fertilizers as draw solutions, reverse solute flux can negatively impact the feed 

concentrate quality (Mendoza et al., 2022). Reactive and basic dyes were used as draw 

solutes for textile wastewater treatment, the mixture of dyes and salts produced 

relatively high osmotic pressure and direct use of diluted DS needs further research. So 

based upon the above discussion a different draw solution for textile wastewater 

treatment is needed which should not have limitations of regeneration and have 

minimum reverse solute flux (Sheldon et al., 2018).  
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2.11 Surfactants as Beneficiary Draw Solution for Dye Wastewater 

Surfactants are blends of amphiphilic and organic molecules presenting both 

hydrophilic and hydrophobic group having dual structural units. Surfactants as a DS 

can produce a stable osmotic pressure above critical micelle concentration (CMC) with 

fluxes of 4-13 LMH and 100 times less RSF than NaCl, primarily due to their large 

molecular size (Nawaz et al., 2016; Roach et al., 2014). Above CMC, due to constant 

osmotic pressure, surfactants can produce stable FO fluxes even with declining DS 

concentration, however, below CMC they behave like inorganic DS (Cai, 2016; 

Gadelha et al., 2014). Surfactants are used as antistatic, untangling, and softening agents 

in different textile processes like scouring, lubrication, dyeing, and finishing. 

Therefore, the diluted surfactant DS can be directly reused without regeneration in some 

other unit process within the same textile industry (Sivaramakrishnan, 2013).  
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Chapter 3  

METHODOLOGY 

3.1 Composition and Characterization of Synthetic Wastewater 

In this study, high-strength textile dyebath effluent was simulated as FS with recipes 

described in Table 3.1. The dyes and dyebath effluent recipe used in the study were 

provided by two industrial partners, Dilltex Pvt. Ltd., Pakistan, and DyStar Pvt. Ltd., 

Pakistan; therefore, either the chemical formula or trade names are stated in the study. 

The average characteristics of synthetic dyebath effluents (denim + polyester) prepared 

in this study and their justification from the literature are also added in Table 3.1. Two 

classes of dyes were targeted i.e., vat and disperse. Firstly, operational conditions were 

optimized using vat dye (denim dyebath effluent), and then the optimized conditions 

were applied to different concentrations of disperse dye (polyester dyebath effluent). 

These two dyes were used because, unlike other dye classes, these dyes do not 

chemically react with fiber during the dyeing process, hence increasing the possibility 

of reuse after recovery. All other chemicals were purchased from Sigma-Aldrich, UK, 

with lab-grade quality.  
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Table 3.1: Composition and characteristics of synthetic textile dyebath effluents 

Sr. 

no. 

                   Constituents Formula           Concentration 

Denim dyebath effluent 

1 Sodium dithionite 

Sodium hydroxide (50%) 

C1 vat blue 

            Na2S2O4 1.31 g/L 

2 NaOH 1.22 mL/L 

3 C16H10N2O2 1.5 g/L 

Polyester dyebath effluent 

1 Trisodic phosphate 

Sera gal PLP 

Ammonium sulphate 

Acetic acid 

Disperse orange 30 

Sodium hydroxide (32%) 

Sodium hydrosulphite 

Na3PO4 1 g/L 

2 ------- 0.5 mL/L 

3 (NH4)2 SO4 2 g/L 

4 CH3COOH 0.5 g/L 

5 C19H17Cl2N5O4 1 g/L 

6 NaOH 3 mL/L 

7 Na2S2O4 3 g/L 

 

Sr. 

no. 

Parameter Denim 

dyebath 

effluent 

Polyester 

dyebath effluent 

References 

1 pH 9.8 ± 0.8 3.8 ± 0.2 (Aygun et al., 2021) 

2 COD (mg/L) 16,465 ± 1000 4,200 ± 700 (Miled et al., 2010) 

3 Color (Pt-Co) 7,150 ± 200 16,000 ± 2,000 (Ünlü, 2008) 

4 Conductivity (mS/cm) 4.2 ± 0.5 8.9 ± 0.6 (Ünlü, 2008) 

5 TDS (mg/L) 2,390 ± 200 2,500 ± 200 (Hussein, 2013) 

6 Turbidity (NTU) 50 ± 15 60 ± 10 (Cerqueira et al., 

2009) 

Note: The characteristics of synthetic dyebath effluents are an average of three batches 

3.2 Draw Solutions 

In this research, surfactants (SDS and TEAB) were used as DS owing to their stable 

flux and lower RSF. Both surfactants were purchased from Sigma-Aldrich, UK with 

lab grade quality. Given below are the details of surfactants targeted as DS.  

3.2.1 L Sodium Dodecyl Sulphate (SDS) 

SDS also known as sodium lauryl sulphate is an organic compound having formula 

CH3(CH2)11OSO3Na and its molar mass is 288.38 g/mol. It is an orgo sulphate salt with 

density of 1.01g/cm3 and CMC of 0.008mol/L. The permeate flux of 5-6 LMH was 

previously achieved using 0.5 M SDS as draw solution with RSF of 5.24 × 10−4 

mol/m2/h (Gadelha et al., 2014). SDS is a surfactant widely used in textile processing 
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as a detergent depending upon its properties like low cost, high water solubility, and 

dirt removal (Niraula et al., 2014).  

3.2.2 Tetraethyl Ammonium Bromide (TEAB) 

TEAB is a quarterly compound of ammonium having chemical formula C₈H₂₀N⁺Br⁻ and 

molar mass of 210.16 g/mol. It is water soluble having CMC of 0.16 mol/L and has 

density of 1.4 g/cm3. As studied earlier, TEAB is a cationic surfactant and can generate 

flux up to 9 LMH at 1 M concentration using CTA membrane, while the FS used was 

5 g/L NaCl solution with low RSF of 7.87× 10−5 gMH (Gadelha et al., 2014). 

Furthermore it is applied as surfactant and fabric softener in textile industry (Bajpai and 

Tyagi, 2006).  

3.3 Description of Experimental Setup 

3.3.1 Membrane Specifications 

In all experiments, Polyamide-TFC flat sheet FO membrane was used from Toray 

Chemicals, Korea. The membrane was hydrophilic in nature with a contact angle of 

90°. The coefficient for water permeability is 6.4 LMH/bar. The structural parameter 

of the support layer is 409 μm. Membranes were stored at laboratory temperature 24±1 

°C in ultrapure DI water which was replaced weekly. AL-FS orientation was used in all 

experimental runs. The detailed characterization of these membranes are stated in 

previous studies (Abbasi et al., 2021; Manzoor et al., 2022). 

3.3.2 Batch Study 

In this study, two types of experiments were performed, batch and semi-continuous. 

The batch experimental setup photo is shown in Figure 3.2. It comprised of two 

variable speed peristaltic pumps (BT300-2J, Longer Pump, China), a standard 

membrane cell having two symmetric channels with dimensions (10.5 x 4 x 0.1 cm), a 

weighing balance (UX6200H, Shimadzu, Japan), temperature controller (TPM-900, 

Sanhng, China), hot plate (PC-420D, Corning, USA), two EC meters attached with FS 

and DS (HI2003 edge, HANNA instruments, USA) and a chiller. The FS and DS (1 L 

each) were pumped in a closed-loop channel in a counter-current flow direction. All the 

experiments were run in batch mode for 24 h with an active layer facing feed solution 

(AL-FS) configuration. Different CFV, temperatures, and DS concentrations were 

systematically optimized. A new membrane coupon was used from the same membrane 

sheet for each experiment.  
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3.3.3 Semi Continuous study 

The optimized operational conditions from the batch experiments were used to operate 

a semi-continuous setup for 48 h. The initial volume of FS and DS was 1 L, and the 

surfactant concentration was maintained at 0.75 M by continuous dosing of 

concentrated DS (2 M SDS) at the rate of 1.25 mL/min with the help of a timer (DH48S, 

Omron, China). Furthermore, the level of FS was maintained constant by supplying DI 

water using a level sensor every time the remaining volume of FS reached 500 mL 

mark. The schematic diagram of semi-continuous setup is shown in Figure 3.1, and the 

actual setup is shown in Figure 3.3.  
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Figure 3.1: Schematic diagram of semi-continuous FO setup 
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Figure 3.2: Batch Mode  FO Setup(1) Feed Solution Tank (2)  Draw Solution Tank (3) Membrane Module(47cm2) (4) Hot Plate Stirrer (5) 

Weighing Balance (6) Conductivity Meter (7) Peristaltic Pump (8) Data Logger (9) Water Chiller (10) Temperature Controller 
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Figure 3.3: Semi-continuous FO setup (1) level sensor (2) time relay (3) concentrated DS (2M SDS) tank. 
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3.4 Analytical Methods 

3.4.1  Calculation of Water Flux and Reverse Solute Flux 

Water flux across the membrane was calculated by measuring the change in volume of 

the DS after each minute and the reverse solute flux was estimated by measuring the 

actual conductivity of feed and DS after every minute. Calculated values were obtained 

at each minute by dividing actual conductivity by the cumulative volume of FS and DS 

at the end of experiment. To estimate the amount of salt transfer, calculated 

conductivity values were subtracted from the original conductivity values (Nawaz et 

al., 2021). 

3.4.2  Monitoring of pH, Color, COD, and Surfactant Concentration 

After every run 200 ml of samples were taken from both FS and DS and stored at 4°C 

for analysis. The pH and COD of both FS and DS samples were measured before and 

after experiments to observe the mass transfer across the membrane. pH was measured 

by using a pH meter (Eutech Instruments Pte Ltd., pH 700, Singapore) while COD was 

measured using COD vials reactor (Hach -COD reactor, model 45600, UK). The color 

of the FS was measured before and after experiments by using the multiwavelength 

method (APHA, 2017) through spectrophotometer (SPECORD 200 PLUS UV/VIS 

Spectrophotometer, Germany) to measure the % dye reconcentration. To find the 

dilution factor and estimation of DS reuse in the textile industry, concentration of 

surfactant was measured by two phase titrimetric method using dimidium disulphine 

blue indicator and 0.004 M hyamine solution as titrant for SDS, while in case of TEAB 

, a similar methodology was adopted with the replacement of hyamine with 0.004 M 

SDS solution (Gadelha et al., 2014).  

3.5 Membrane Characterization 

Membrane characterization provides information about characteristics of fouling layer 

built across the membrane surface which helps in developing control strategies. 

Secondly membrane characterization is used to verify the membrane structural 

properties after cleaning (Gao et al., 2018). In cross flow FO systems for textile 

wastewater, mostly physical or chemical characterization methods are considered, 

among which some common techniques are used in this research as described below. 

After each experiment, the used membrane was dried and stored as shown in Figure 
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3.4. Each sample was cut into two parts; one was rinsed with DI water, and the other 

was left as such. Both parts were slowly air dried and stored for characterization. 

 

 

3.5.1  SEM-EDX Analysis 

Scanning electron microscope (SEM) is a kind of electron microscope, having 

magnification greater than optical microscope. It captures images by scanning surfaces 

through electron beam. These electrons when interact with the surface atoms produce 

signals carrying information about surface topology and chemical composition of 

membrane surface, the schematic illustration of principle is shown in Figure 3.5 

(Ghorbanpour and Wani, 2019). For more detailed analysis, energy dispersive x-ray 

spectrophotometer (EDX) is attached with SEM. It gives elemental composition of area 

imaged by SEM. Thus SEM-EDX provides structure, shape, and chemical composition 

of foulants present on the surface of fouled membrane which helps in identification of 

suitable cleaning techniques (Cardell and Guerra, 2016). 

Figure 3.4: Fouled membranes stored for characterization 
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    Figure 3.5: Principle of scanning electron microscopy analysis (Peiris, 2014) 

The scanning electron microscopy-energy dispersive X-ray (SEM-EDX) imaging of 

fouled membranes (without rinsing) was done at 20 kV accelerating voltage using the 

microscope (JSM-6490LV, JOEL USA) to identify the key foulants on the membrane 

AL. 

3.5.2 FTIR Analysis 

Fourier transform infrared spectroscopy (FTIR) is used for determination of functional 

group on membranes to analyze the structural properties. Examples of functional group 

includes OH- (hydroxyl)and C=O (Carboxyl). It works by targeting infrared radiations 

to samples by using reference solvent (Wypych, 2019). Some of the radiations are 

absorbed while another pass through the sample which are detected by a detector and 

spectrum is produced. Another method is attenuated total reflection (ATR) for FTIR 

analysis without using reference solvent. In this method, a spectrum of FTIR is 

generated through ATR crystal made from diamond. It will result in production of 

evanescent waves. Then reflected beam is perceived and analyzed to produce FTIR 

spectra as shown in Figure 3.6.(Sun, 2008).  
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In this research, the membrane samples after rinsing with DI water were subjected to 

Fourier transform infrared spectroscopy (FTIR) using spectrometer (Alpha-P Bruker, 

USA) fitted with a diamond Attenuated Total Reflection (ATR) crystal to determine 

ionic peaks of the rinsed AL. 

3.5.3 AFM Analysis 

Atomic Force spectroscopy (AFM) is a high resolution technique used for surface 

examination of membrane. As compared to other spectroscopy techniques, it has 

advantages to provide both surface topology as well as surface roughness by producing 

3D images (Erinosho et al., 2018). AFM works on principle of measuring force between 

probe and the sample, where probe is composed of cantilever having sharp tip which 

tries to touch sample but will be deflected in case of forces of attraction between probe 

and the sample (Giordano, 2012). Laser beam is used to detect the deflection which 

when reflected forms image by passing through the photo detector as shown in Figure 

3.7. AFM can help to identify the changes in fouled membrane surface or thickness 

after cleaning as compared to pristine membrane (Grant et al., 2008). 

Figure 3.6: Principle of Fourier Transform Infrared Spectroscopy (Mohamed et al., 2017) 
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The atomic force microscopy (AFM) was performed by scanning probe microscope 

(JSPM 5200, JOEL, USA) for analyzing the rinsed AL surface roughness used in 

different experiments. The area of 5.18 μm × 5.18 μm was scanned in each image. 

3.6 Dye Characterization 

Structural determination of newly synthesized or recovered substances is very 

important in textile industry to maintain the quality of fabric. Dyes are the main 

component of fabric manufacturing so its characterization before utilization is 

necessary. Different chromatographic and spectroscopic techniques can be used for this 

purpose. According to previous studies, NMR analysis is the most efficient method to 

identify the structure of dyes (Gao et al., 2016; Guha, 2020; Otutu and Asiagwu, 2019). 

3.6.1 NMR Analysis 

Nuclear magnetic resonance (NMR) analysis is a technique used for structure 

identifications of different materials. It provides quantitative analysis of chemical 

shifts, coupling constants, spin multiplication and atomic ratios which can determine 

structure of any compound (Chen et al., 2020). According to principle of NMR, a 

spectroscopy all nuclei are electrically charged so on the application of external 

magnetic field, energy transfer from lower energy level to higher can be achieved at a 

specific wavelength which coincides with radiofrequency waves produced by 

transmitter. The unabsorbed frequencies are detected by radio frequency detectors and 

Figure 3.7: Principle of atomic force spectroscopy (De Oliveira et al., 2012) 
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processed in the form of NMR spectra by a data processor as shown in Figure 3.8   

(Thomas et al., 2017). 

 

Figure 3.8: Principle of NMR spectrophotometry (Chen et al., 2020) 

For selective experiments, 50 mL of reconcentrated feed sample was kept in a petri dish 

and oven-dried to get the powdered dye samples, as shown in Figure 3.9. The recovered 

dye was investigated for structural variation using nuclear magnetic resonance (NMR) 

spectrometric (Vance series Bruker, Switzerland (300 MHz)). The solvent used in the 

NMR analysis was Dimethyl Sulfoxide (DMSO) which is ideal for dissolving the dyes 

and not dissolving other chemicals present in the synthetic dyebath effluent. However, 

some impurities are expected to co-dissolve in the DMSO and affect the NMR peaks 

of recovered dyes compared to the original dye. NMR spectra were processed and 

analyzed using Bruker Topspin 4.1.1 software 
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3.7 Membrane Cleaning 

Every membrane coupon was used for two runs so after completion of the first-run, the 

membrane was cleaned chemically. In the first step, membrane was rinsed with 0.5% 

sodium hydrooxide solution after that acidic cleaning was done using 2% Citric acid 

(Wang et al., 2015). The 95% flux recovery was achieved after cleaning. The membrane 

coupon after cleaning is shown in Figure 3.10 

Figure 3.9: Oven dried Disperse and vat Dyes recovered from reconcentrated feed 

solution 
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Figure 3.10: Fouled vs chemically cleaned FO membranes 
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Chapter 4  

RESULTS AND DISCUSSION 

4.1 Phase 1: Performance Optimization of SDS as Draw Solution 

4.1.1 Effect of CFV and Temperature 

For experimental validation of the concept, different cross-flow velocities (CFVs) and 

temperatures were optimized for both FS and DS. In Figure 4.1, the dots denote the 

average hourly flux, and the trend line is fit to show the overall flux behavior in that 

particular experiment. The flux decline is due to the combined effect of the loss in 

osmotic pressure with the dilution of DS and concentrative external concentration 

polarization (ECP) on AL (Tayel et al., 2019). The flux increased with CFV from 8-16 

cm/s but slightly reduced by further increase up to 24 cm/s. The rise in flux with 

increasing CFV is probably due to a reduction in ECP on AL by scouring effect (Ryu 

et al., 2020). Contrary to that, at a very high CFV, the FS stream gets lesser time to 

diffuse through the membrane (Regupathi et al., 2016; Zhang et al., 2021), and a higher 

shear force breaks down the FS particles to cause pore blocking (Nawaz et al., 2019). 

Due to these reasons, the flux at CFV of 24 cm/s was lower as compared to 16 cm/s. 

 

Using the optimized FS CFV of 16 cm/s, the DS CFV was optimized, as shown in 

Figure 4.2. The maximum flux was obtained at 8 cm/s because on the DS side only 

0 5 10 15 20 25
0

1

2

3

4

5

6

Fluxavg= 2.32LMH 

Fluxavg= 2.11LMH F
lu

x
 (

L
M

H
)

Time (Hours)

 8cm/s

 16cm/s

 24cm/s

Fluxavg= 1.28LMH 

Figure 4.1: Flux values using different FS CFV at a fixed DS CFV of 8cm/s.                                                        

Operating conditions: FS temperature=40°C, DS temperature=25°C; FS 

concentration=1.5g vat dye, DS concentration = 0.5 M SDS 
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dilutive ECP happens, which is not the main flux limiting factor (Li et al., 2021; Pal et 

al., 2016). The low RSF of only 0.004 g/m2/h (gMH) also suggests 8 cm/s as the 

optimum CFV of the DS.  

 

Figure 4.2: Flux at different DS CFV and fixed FS CFV = 16 cm/s.                                                       

Operating Conditions: FS Temp. =40°C, DS Temp. =25°C; FS Conc.= 1.5g Vat dye, 

DS Conc. = 0.5M SDS 

After CFV optimization, the FS and DS temperature were optimized, as shown in Table 

4.1. The FS temperature was changed from 40 to 60°C as the temperature of denim 

dyebath effluent is generally between 60 to 80°C at the point of generation (Epolito et 

al., 2008). As shown in Figure 4.3, with increasing FS temperature from 40 to 60 °C, 

the flux increased by 43%, primarily due to decreased FS viscosity (Nawaz et al., 2022). 

The dynamic viscosity of water, which is the solvent in FS, is 0. 653mPa.s at 60°C and 

0.4658 mPa.s at 40°C. The reduced viscosity positively affects the solution transport 

through the FO membrane resulting in a flux increase (Phuntsho et al., 2012). However, 

it is interesting to note that the RSF also slightly increased with increasing FS 

temperature. It could be because with increasing FS temperature, a more pronounced 

negatively charged fouling layer develops at the AL, attracting positively charged ions 

(Na+) from the DS and resulting in RSF increase (Bell et al., 2017).  
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Figure 4.3: Flux at different FS temperature and fixed DS Temp.= 25°C.                                                          

Operating Conditions: FS CFV = 16 cm/s, DS CFV = 8 cm/s; FS Conc.= 1.5g Vat 

dye, DS Conc.= 0.5M SDS. 

Table 4.1: Summary of 24 h batch experiments to evaluate the system efficiency at 

different FS and DS CFV and temperatures using SDS as DS 

Experimental conditions Average 

flux 

RSF Dye 

Reconcentration 

SDS 

Conc. in 

DS 

CFV (cm/s) Temp.(°C) (LMH) (gMH) (%) (g/L) 

FS DS FS DS 

8 8 40 25 1.28 0.017 30 36.24 

16 8 40 25 2.32 0.004 51 35.22 

24 8 40 25 2.11 0.019 45 35.40 

16 16 40 25 1.75 0.007 36 31.26 

16 24 40 25 1.50 0.009 39 29.44 

16 8 50 25 2.85 0.022 55 24.34 

16 8 60 25 3.33 0.020 58 30.33 

16 8 60 35 3.50 0.012 66 30.02 

16 8 60 45 3.24 0.013 57 29.22 

 

The effect of DS temperature on permeate flux was negligible as shown in Figure 4.4. 

Ideally with increasing DS temperature the osmotic pressure should increase due to 

increase in solubility of ionic draw solutes. However, for surfactants, this is not the 

case. It is proven that the CMC of SDS varies between 8-10 mM when temperature is 

varied between 25-45°C (Chatterjee et al., 2001). Since the DS concentration in this 

study is 0.5 M, so it is way above the CMC (8 mM). At constant CMC, SDS shows a 
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constant osmotic pressure; that is why flux remained unchanged with DS temperature 

variation. While trends agree with previous prediction that at high temperature, flux 

suddenly drops at initial stages with viscosity variation when temperature is maintained 

at 45°C. 

The flux of 3.5 LMH and RSF of only 0.012 gMH at 0.5 M SDS is comparable with 

other studies. RSF using 1 M KCl as DS for textile effluent reconcentration was found 

to be 6-7 gMH at 5 LMH flux (Karunakaran et al., 2021) while at 1 M mono-potassium 

phosphate as DS, RSF ranges between 2-3 gMH at 10 LMH flux (Chekli et al., 2017). 

Hence, the idea of utilizing SDS to generate stable and reasonable fluxes with dyebath 

effluent is validated. 

 

Figure 4.4: Flux at different DS temperature and fixed FS Temp.= 60°C.                                                      

Operating Conditions: FS CFV = 16cm/s, DS CFV = 8cm/s; FS Conc.= 1.5g Vat dye, 

DS Conc.= 0.5M SDS. 

a. COD Rejection 

Up to 96% COD removal was found in all discussed runs regardless of the FS 

temperature and CFV. It proves that COD is primarily removed due to size exclusion 

here, which is independent of both temperature and CFV. 

b. Dye Rejection and Recovery 

As mentioned in Section 3.3 color measurement was performed for estimating the dye 

reconcentration after each experiment. Table 4.1 shows adapted experimental 

conditions for optimization of average flux and dye recovery rate. It is evident from the 

data that along with higher flux, lower RSF and higher dye recovery were observed, 
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endorsing the selection of optimized parameters. In all experiments, 100% dye rejection 

took place showing no color in the DS. It can also be obvious from the direct 

relationship between percent dye reconcentration and flux data in Table 4.1.  

c. pH Variation 

An increase in pH of FS is noted after reconcentration. It might be due to fact that SDS 

is an anionic DS, so it attracts H+ ions towards itself. It has been reported earlier that 

SDS has a stronger interaction activity with hydrogen ions of solvent molecules (Sachin 

et al., 2018).  Another study observed pH of FS increases because of a decrease in the 

dissolution of CO2 due to the increase in the salt concentration (Li et al., 2019). Later 

pH of the DS decreases with time as the overall pH of the system should be constant 

unless acid or base is added (Jegatheesan et al., 2016). 

d.  Diluted SDS Concentration 

After every experiment, SDS concentration was analyzed, and the results are shown in 

Table 4.1. The SDS concentration was inversely related to the flux, and average 

concentration in DS was found to be at 31 g/L. SDS is basically a surfactant and 

emulsifier primarily used as a wetting agent and detergent in the textile industry to clean 

and prepare fabric for dyeing. It is mainly employed in desizing, scouring, and 

bleaching processes in concentrations around 2 g/L (Basit et al., 2018). Thus, the diluted 

SDS solution can be further diluted with fresh water to reuse in some of the mentioned 

unit operations or processes. 

4.1.2 Impact of Dye Type, Concentration and SDS Concentration on System 

Performance 

In the next stage the impacts of dye type and concentrations and DS concentrations 

were examined on the process performance. The recipes of denim and polyester dyebath 

effluents were used as described in Table 3.1, with different concentrations of vat and 

disperse dyes, as mentioned in Table 4.2. In this way the efficiency of the process was 

evaluated for a different dye type (disperse) and concentrations. As shown in Table 4.2, 

the flux was inversely proportional to the vat dye concentration, as dyes increase the 

potential of CECP on the AL and reduce the flux. Flux also depends upon DS 

concentration, in this case when concentration of DS is increased from 0.5 M to 0.75 

M flux is increased due to rise in osmotic pressure difference but then decreased at a 

1.0 M concentration. This happens due to an excessive osmotic gradient at the 
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beginning of the experiment, which swiftly attracts feed solutes to cause CECP on the 

AL. So, for vat dyes, 0.75 M SDS concentration was optimized and later subjected to 

different concentrations of disperse dyes. The flux, RSF and dye rejection results were 

found equally promising for the dispersed dyes (polyester dyebath) as well. It shows 

the stability of the proposed process for the dye reconcentration regardless of the dye 

type and concentration.  

Table 4.2: Summary of 24 h batch experiments to evaluate the system efficiency at 

different FS type, dye, and SDS concentrations. 

Experimental Conditions Avg. 

Flux 

RSF Dye 

Reconcentration 

SDS 

Conc. 

in DS 

Dye 

conc. 

(g/L) 

Dye 

Type 

DS 

Conc. 

(M) 

(LMH) (gMH) (%) (g/L) 

1.5 Vat 0.5 3.50 0.012 66 30.02 

1.0 Vat 0.5 3.63 0.035 70 28.31 

0.75 Vat 0.5 3.78 0.012 74 27.22 

0.75 Vat 0.75 6.38 0.032 80 33.76 

0.75 Vat 1.0 4.26 0.035 38 52.02 

1.0 Disperse 0.75 3.62 0.019 60 41.36 

0.75 Disperse 0.75 4.31 0.023 63 40.12 

0.5 Disperse 0.75 4.61 0.015 67 32.88 
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Figure 4.5: Impact of dye and SDS concentration on permeate flux 
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4.1.3 Impact of Dyebath Effluent on Membrane Chemistry 

It is important to understand the dyebath effluent foulants interaction with the AL of 

FO membrane for the proposed process sustenance. If the foulants chemically interact 

with the FO membrane and impede its selectivity, the concept developed in this study 

could not be applied for dye reconcentration. For this, the fouled and cleaned 

membranes were subjected to a detailed characterization.  

a.    SEM-EDX Analysis 

In Figure 4.6, SEM-EDX analysis of pristine and fouled membranes are shown. The 

main elements that appear in pristine membranes are carbon, oxygen, nitrogen, and 

sulfur as they are the building blocks of polyamide active layer and polyether sulfone 

support layer. On the fouled membranes, a thick fouling layer was observed, which was 

covering the membranes and was different in appearance under each operating 

condition. The leading elements found on the fouled membranes were carbon, oxygen, 

nitrogen, sulfur, and sodium. The carbon, nitrogen, and oxygen primarily came from 

the C1 vat blue dye and acetic acid. The sodium and sulfur came from sodium 

dithionite, sodium hydrosulphite, sodium hydroxide and ammonium sulfate. 

Furthermore, it is observed that at higher flux the fouling is comparatively high due to 

the deposition of dyes. The membrane can be chemically cleaned using 0.5 M sodium 

hydrooxide followed by 2% citric acid (Wang et al., 2015). The flux recovery of up to 

95% was achieved by adapting this cleaning protocol. Detailed membrane 

characterization was performed to assess the impact of dye type and concentration on 

the AL. Figure 4.7 shows the SEM-EDX images for fouled membranes on varying FS 

and DS concentrations. The key foulants were the same as for optimization of CFV and 

temperature experiments. Interestingly, the peaks of chlorine and phosphorus appeared 

when polyester dyebath effluent was used as FS Figure 4.7 (e and f). Disperse dye 30, 

and trisodic phosphate might be the sources of chlorine and phosphorus. The spherical 

shape particles in SEM images refer to presence of chlorine and phosphorus. As 

mentioned earlier this type of fouling can be easily removed by chemical cleaning with 

sodium hydrooxide and citric acid. 

b. FTIR Analysis 

The FTIR analysis was done for both the pristine membrane and fouled membranes 

(after rinsing with DI water), to find any changes in the active group’s chemistry 

because of interaction with foulants. In Figure 4.8 and 4.9, the major peaks are 
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observed at wave numbers 3400, 1585, 1490, 1243, 1151, and 1105 cm-1 representing 

0-H, N-H, C-C, C-N, O=S=O, and C-O bond respectively. These peaks are similar 

which shows that overall, there were no changes in the membrane active layer (Sark et 

al., 2021). There were minor changes in O-H weak peaks in a few experiments probably 

due to the remaining moisture content on the AL. However, there was no change in 

sharp peaks. Hence, the FO membrane is stable when used for dyebath wastewater 

reconcentration purpose and can be repeatedly reused after cleaning and there is no 

major chemical interaction between membrane active groups and foulants. 
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Figure 4.7: SEM-EDX analysis of AL of (a) pristine membrane. Fouled 

membranes after CFV and temperature optimization experiments (b) CFV 

(FS = 16 cm/s, DS = 8 cm/s) and temperature (FS = 40 °C, DS = 25 °C) 

(c) CFV (FS = 16cm/s, DS = 16cm/s) and temperature (FS = 40 DS = 25 

°C) (d) CFV (FS = 16cm/s, DS = 8 cm/s) and temperature (FS = 50 °C, 

DS = 25 °C) (e) CFV (FS = 16 cm/s, DS = 8 cm/s) and temperature (FS 

= 60 °C, DS = 35 °C) (f) CFV (FS = 16cm/s, DS = 8cm/s) and temperature 

(FS = 60 °C, DS = 45 °C). 

Figure 4.6: SEM-EDX analysis of AL of (a) pristine membrane (b) 

FS concentration = 0.75 g vat dye and DS = 0.5 M SDS (c) FS 

concentration = 0.75 g vat dye and DS = 1 M SDS (d) FS 

concentration = 0.75 g vat dye and DS = 0.75 M SDS (e) FS 

concentration = 1.0 g disperse dye and DS = 0.75 M SDS (f) FS 

concentration = 0.5 g disperse dye and DS = 0.75 M SDS 
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 Figure 4.8: FTIR analysis of AL of pristine and fouled membranes after 

CFV and temperature optimization experiments. (a) CFV (FS = 16cm/s, 

DS = 8cm/s) and temperature (FS = 40 °C, DS = 25 °C) (b) CFV (FS = 

16cm/s, DS = 16cm/s) and temperature (FS = 40 °C, DS = 25 °C) (c) CFV 

(FS = 16cm/s, DS = 8 cm/s) and temperature (FS = 50 °C, DS = 25 °C) (d) 

CFV (FS = 16 cm/s, DS = 8 cm/s) and temperature (FS = 60 °C, DS = 35 

°C) (e) CFV (FS = 16cm/s, DS = 8cm/s) and temperature (FS = 60 °C, DS 

= 45 °C). 

Figure 4.9: FTIR analysis of AL of pristine membrane. Fouled 

membranes after dye and SDS concentration optimization 

experiments (a) FS concentration = 0.75 g vat dye and DS = 0.5 M 

SDS (b) FS concentration = 0.75 g vat dye and DS = 1 M SDS (c) 

FS concentration = 0.75 g vat dye and DS = 0.75 M SDS (d) FS 

concentration = 1.0 g disperse dye and DS = 0.75 M SDS (e) FS 

concentration = 0.5 g disperse dye and DS = 0.75 M SDS. 
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b. AFM Analysis 

The AFM imaging was done on pristine membrane and fouled membranes (after rinsing 

with DI water), to find any changes in the mean square roughness of the AL. The AFM 

images with mean square roughness values are shown in Figure 4.10. The surface 

morphology of TFC polyamide membranes shows ridge and valley-like structures 

(Zhou et al., 2020). It is observed that the mean square roughness remained roughly the 

same before and after the use of membranes. Thus, from the SEM-EDX, FTIR and 

AFM imaging, it is proved that the FO membranes have excellent capability to remove 

the key contaminants present in the denim dyebath effluent. Also, the AL showed a 

good chemical stability against these foulants and did not react with them.  

 

 

The AFM analysis results are shown in Figure 4.11 describing unchanged surface 

roughness after different dye types and concentrations. It shows that the FO membrane 

was chemically stable regardless of dye type and concentration 

Figure 4.10: AFM analysis (a) Pristine membrane. Fouled membranes at (b) CFV 

(FS=16cm/s, DS=8cm/s) and temperature (FS=40°C, DS=25°C) (c) CFV (FS=16cm/s, 

DS=16cm/s) and temperature (FS=40°C, DS=25°C) (d)  CFV (FS=16cm/s, DS=8cm/s) 

and temperature (FS=50°C, DS=25°C) (e) CFV (FS=16cm/s, DS=8cm/s) and 

temperature (FS=60°C, DS=35°C) (f) CFV (FS=16cm/s, DS=8cm/s) and temperature 

(FS=60°C, DS=45°C). 



46 
 

 

 

4.2 Phase 2: Performance Optimization of TEAB as Draw solution 

4.2.1 Effect of Temperature Variation 

a. Water Flux and RSF 

The temperature of TEAB was varied from 25 to 45°C while using 60°C preoptimized 

temperature for FS. It was found that on increasing temperature, the flux starts slightly 

increasing as shown in Figure 4.12. It might be due to decrease in viscosity with 

increasing temperature which enhances the diffusion of water molecules through 

membrane. Similar results are reported earlier while variation of DS temperature from 

20 to 40°C (Xie et al., 2013).  Furthermore, flux at 45°C i.e., 11.06 LMH is taken 

optimum because at 60°C maintained feed temperature, the average temperature 

noticed on draw solution side without using chiller was 45 ± 2°C so it can save energy 

as well in long run. The trends at 25°C and 45°C observed in Figure 4.12 shows that 

flux initially decrease till 8 hours after that it becomes stable while at 45°C, the trend 

was comparatively steeper so this was another reason for optimization of flux at 45°C.  

Figure 4.11: AFM analysis (a) Pristine membrane (b) FS concentration = 0.75 g vat dye 

and DS = 0.5 M SDS (c) FS concentration = 0.75 g vat dye and DS = 1 M SDS (d) FS 

concentration = 0.75 g vat dye and DS = 0.75 M SDS (e) FS concentration = 1.0 g disperse 

dye and DS = 0.75 M SDS (f) FS concentration = 0.5 g disperse dye and DS = 0.75 M SDS. 
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Figure 4.12: Flux values using different DS Temperature at a fixed FS temperature of 

60°C, Operating conditions: FS concentration=1.5g vat dye, DS concentration = 0.5 

M TEAB 

The mass transfer was observed for Phase 2 and is shown in Table 4.3. The RSF found 

was 0.3-0.4 gMH at optimized conditions using TEAB as draw solution, which is 

almost 95% less than RSF using NaCl as draw solution (Chekli et al., 2017). 

Furthermore, the COD removal of greater than 95% is achieved as it is dependent on 

pore size.  
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Table 4.3: Summary of 24 h batch experiments to evaluate the system efficiency at different FS and DS temperatures and concentration using 

TEAB as DS 

Experimental Conditions Avg. Flux RSF Dye Reconcentration TEAB 

Conc. in DS 

DS Temp. Dye conc. 

(g/L) 

 

Dye Type TEAB 

Conc. (M) 

(LMH) (gMH) (%) (g/L) 

25°C 1.5 Vat 0.5 6.92 0.19 95 66.56 

35°C 1.5 Vat 0.5 8.26 0.34 97 50.42 

45°C 1.5 Vat 0.5 11.05 0.40 97 45.06 

45°C 1.5 Vat 0.5 11.05 0.40 97 45.06 

45°C 1 Vat 0.5 11.81 0.42 96 50.18 

45°C 0.75 Vat 0.5 13.04 0.44 97 47.19 

45°C 0.75 Vat 0.5 13.04 0.41 97 47.19 

45°C 0.75 Vat 0.75 18.06 0.43 98 63.75 

45°C 0.75 Vat 1 25.30 0.47 98 89.78 

45°C 0.75 Vat 0.25 8.68 0.28 95 29.9 

45°C 1 Disperse 0.75 7.19 0.23 82 79.83 

45°C 0.75 Disperse 0.75 9.95 0.25 87 76.30 

45°C 0.5 Disperse 0.75 12.29 0.31 88 74.86 
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4.2.2 Impact of Dye Type, Concentration and TEAB Concentration on System 

Performance 

Similar types of dyes as described in Phase 1 were applied in different concentrations 

to find the maximum gained flux in the scenario of TEAB. Flux has an inverse relation 

with the FS concentration as shown in Figure 4.13. It might be related to fact that an 

increase in FS concentration enhances external concentration polarization on active 

layer of membrane. While in case of draw solution as shown in Figure 4.13, when the 

concentration of TEAB was increased, the flux increased with an increase in osmotic 

pressure but at higher concentration, viscosity increases, and particles starts 

concentrating/fouling on membrane layer due to which flux was although high but not 

stable. So, 0.75 M was observed as optimized draw solution concentration. 
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Figure 4.13: Effect of dyes and TEAB concentration on permeate flux  
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4.2.3 Mass Transfer Across Membrane  

It has been observed that flux is comparatively higher for TEAB as DS i.e., 18 LMH. 

So, it is a phenomenon when forward flux increases as a result there is a rise in 

backward flux, but RSF is still less than other inorganic draw solutions like NaCl. The 

COD rejection was above 90% while dye recovery of 95 to 97% was achieved. 

Furthermore, 55-60 g/L of TEAB from diluted draw stream can be reused in different 

textile processes with dilution factor. 

4.2.4 Membrane Characterization 

Figure 4.14 shows SEM-EDX analysis for Phase 2 and similar foulants were detected 

as found in Phase 1 but as flux is higher, their concentration is somehow increased. But 

as discussed in Section 4.1, fouling is reversible by Basic-Acidic cleaning and up to 95 

% flux can be recovered. Furthermore, Figure 4.15 shows FTIR Analysis and almost 

same peaks were observed in selected optimized runs so the structure of membranes 

remained undisturbed. The surface morphology of TFC FO membrane is analyzed by 

AFM analysis as shown in Figure 4.16 and it is found that average roughness remains 

almost same. 
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Figure 4.14: SEM-EDX analysis of AL of (a) pristine membrane. Fouled 

membranes (b) FS concentration = 0.50 g vat dye and DS = 0.5 M TEAB (c) FS 

concentration = 0.75 g vat dye and DS = 0.5 M TEAB (d) FS concentration = 0.75 

g vat dye and DS = 0.75 M TEAB (e) FS concentration = 1.0 g disperse dye and 

DS = 0.75 M TEAB (f) FS concentration = 0.5 g disperse dye and DS = 0.75 M 

TEAB. 
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Figure 4.15: FTIR analysis of AL of (a) pristine membrane. Fouled membranes (b) FS 

concentration = 0.50 g vat dye and DS = 0.5 M TEAB (c) FS concentration = 0.75 g 

vat dye and DS = 0.5 M TEAB (d) FS concentration = 0.75 g vat dye and DS = 0.75 M 

TEAB (e) FS concentration = 1.0 g disperse dye and DS = 0.75 M TEAB (f) FS 

concentration = 0.5 g disperse dye and DS = 0.75 M TEAB. 

 

Figure 4.16: AFM analysis of AL of (a) pristine membrane. Fouled membranes (b) FS 

concentration = 0.50 g vat dye and DS = 0.5 M TEAB (c) FS concentration = 0.75 g 

vat dye and DS = 0.5 M TEAB (d) FS concentration = 0.75 g vat dye and DS = 0.75 M 

TEAB (e) FS concentration = 1.0 g disperse dye and DS = 0.75 M TEAB (f) FS 

concentration = 0.5 g disperse dye and DS = 0.75 M TEAB 
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4.3 Phase 3: Semi-Continuous Study Using Optimized SDS and TEAB 

Concentrations 

The semi continuous study of 48 hours on pre optimized conditions shows that the flux 

in both cases is relatively stable and TEAB has higher value of flux as well as RSF but 

still remains less than other inorganic salts. 

 

 

Figure 4.17: Semi continuous study using SDS as DS  

 

 
Figure 4.18: Semi continuous study using TEAB as DS 
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4.4 NMR Analysis for Recovered Dyes 

Finally, the most critical aspect of this study was to identify the reuse potential of 

recovered dyes as shown in Figure 3.9. For this, proton nuclear magnetic resonance 

(1HNMR) spectroscopic analysis was performed on the disperse orange dye (polyester 

dyebath) for the investigation of recovered dye structures as shown in Figure 4.19. The 

eight unique hydrogens were found in the spectra. The singlet formed at δ1.14 ppm 

belongs to the methyl group (CH3) attached to the ester group. The peaks detected at 

δ2.50 ppm refer to CH2-CN stretching while peaks at δ2.82 ppm and δ3.49 ppm 

corresponds to 2H atoms of CH2-N having different neighbors. Signal at δ3.76 ppm 

commensurate with CH2-O. Furthermore, it had been observed that all proton peaks of 

aromatic rings deshielded towards left due to their strong electronegative nature and 

formed at δ6 -8.5 ppm range. These peaks consist of three types of protons, depending 

upon their unique environment showing signals at δ6.96 ppm, δ7.83 ppm and δ8.32 

ppm depicting hydrogen on benzene ring attached with N terminal of CN, hydrogen 

affiliated with carbon atoms attached with N-N and hydrogen atoms on benzene ring 

having Chlorine, respectively.  

The stacked 1D 1HNMR spectra of both original and recovered disperse dyes are shown 

in Figure 4.19. The characteristic signal of various protons confirms the structure of 

the recovered dye is analogous to the original one (>90%), which technically validates 

the concept that the recovered dye maintains its integrity during reconcentration and 

can be reused in the next batch of fabric dyeing. 
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Figure 4.19: HNMR analysis of actual vs recovered dyes 
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Chapter 5  

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This study experimentally proved the feasibility of dyebath effluent reconcentration and 

reuse potential with surfactant driven FO process. The proposed scheme achieves zero 

liquid and hazardous materials discharge. In both batch (24 h) and semi-continuous (48 

h) experiments, the dye rejection was always 100% and no color was observed in the 

DS. Extremely stable water fluxes of around 7.5 LMH in case of SDS and 18 LMH of 

flux while using TEAB was achieved with negligible RSF of 0.03-0.1 gMH proving 

the potential of surfactants as ideal DS for this process. No regeneration is required for 

diluted surfactant with 30-35 g/L and 55-60 g/L of SDS and TEAB concentrations, 

respectively, and they can easily be reused in desizing, scouring, and bleaching after 

further dilution. The FS temperature was found to positively impact the flux which is 

ideal for the future onsite applications of the process as dyebath effluent is generated 

with >60°C temperature. The RSF of surfactants is 100 times less than NaCl due to the 

property of micelle formation. The FO membrane was found chemically stable after 

interacting with the dyebath effluent and no major change in AL groups or surface 

roughness was observed. The recovered dye shows great structural resemblance 

(>90%) to the original dye, which proves its reuse potential in the dyeing of the next 

batches. Hence, the proposed scheme has an excellent potential for dyebath effluent 

reconcentration and reuse, and it can be further explored in onsite applications.  

5.2 Recommendations 

Described below are the recommendations for future research. 

1. Fabric fastening analysis of recovered dyes can be investigated for full scale  

implementation. 

2. Dye reconcentration using acidic and basic dyes can be analyzed. 

3. Potential of other surfactants can be studied for more economical benefits. 
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