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ABSTRACT 

Recently, micro- and Nanoplastic have attracted a substantial research interest due to 

ubiquitous presence in environment and even in human blood. It is critical to understand their 

fate, behavior, and transport in the environment. The chemicals that are added in plastic during 

their manufacturing are referred to as native chemicals. Once released in the environment, these 

plastic materials accumulate environmental pollutants, which are referred to as non-native 

chemicals. Understanding the leaching potential of these native and non-native pollutants is of 

fundamental importance for their environmental and human health risk assessment. The way 

these native and non-native chemicals interact with the environment is dictated by the basic 

principles of chemodynamics. However, this requires the information on the diffusivities of 

contaminants within the plastic material. The experimental database of diffusion coefficients is 

very limited. In this study, I introduced an easy and reliable method to estimate the diffusivity 

of organic pollutants in two widely used plastic materials: polydimethylsiloxanes 

(PDMS) and low-density polyethylene (LDPE). The estimation approach is based on a linear 

combination of logKow (octanol to water partition coefficient) and logKaw (air to water partition 

coefficient). The new models successfully described the variance in the data of diffusivity of 

organic pollutants in PDMS and LDPE. The regression statistics for PDMS phase and LDPE 

phase depicted R2 = 0.70, RMSE = 0.57  and R2 = 0.89, RMSE = 0.15, respectively. The 

predictive performance of my models was in good agreement with the widely used Abraham 

Solvation Model (ASM). I extensively evaluated my models by applying a suite of machine 

learning techniques such as leave-one-out cross-validation, hold-out, k-fold, bootstrap, 

principal component analysis, and Pearson correlation analysis. The results of these analyses 

supported the theoretical footings taken to build these models. Moreover, good agreement was 

found between the train sets and test sets sampled using resampling techniques. Finally, I 

applied a mass transfer model to evaluate the leaching potential of diverse organic pollutants 

from the plastic materials as a function of their sizes and types. In summary, my models help 

better understand the chemodynamics of native and non-native chemicals present in the plastic 

phases. This insight is useful to carry out environmental and human health risk assessment.  

Keywords:  Microplastic; Nanoplastic; Plastic additives; Diffusion coefficients; Linear free 

energy relationship; Leaching potential; Polyethylene; Silicone
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CHAPTER 1 

1. INTRODUCTION 

1.1 Background   

Oceanographers estimate that in 2015 approximately 15 trillion to 51 trillion 

microplastic shreds (< 5mm in size) floated freely in surface waters across the globe 

(Lim, 2021). Microplastics are everywhere, and their presence in diverse ecosystems 

can prove lethal for ecological systems and human health (Vivekanand et al., 2021). 

These are synthetic particles with a size of less than 5mm in length and are categorized 

into two types according to their production. Plastics manufactured for specific 

purposes, such as microbeads for their use in cosmetics and other beauty products, are 

called primary microplastics. Similarly, the plastics formed after the degradation and 

fragmentation of larger plastics are called secondary plastics, including the formation 

of fibres from the degradation of synthetic fibres (Vivekanand et al., 2021). The plastics 

either from primary or secondary sources are ultimately released into the environment, 

and approximately 5000 to 80000 tons of primary microplastics are discharged into the 

environmental compartments from households, as in cosmetics and cleaning products, 

from feedstocks that are used to produce these beauty products, and from pellets and 

powder that are used in air blasting (Jiang, 2018). Moreover, these plastics now enter 

into either natural or anthropogenic water cycles. Microfibers discharged from 

households accumulate in the inlet of WWTP, and because of their smaller size, these 

fibres pass through the screening phases and accumulate in outlets that are ultimately 

discharged into larger water bodies, rivers, and oceans (Carr et al., 2016).  

These polymers have more comprehensive applications, such as PDMS, which 

is a rubber polymer used in medical sciences for its biocompatibility characteristics and 

in material sciences for its mechanical properties and in analytical chemistry for its high 

affinity with the wide range of hydrophobic chemicals (Narváez Valderrama et al., 

2016). Similarly, polyethene has broader applications, such as packaging film, trash, 

and shopping bags, used in farming mulch, wire and insulation toys and various 

housewares. Passive sampling is a powerful tool for detecting environmental 

contaminants from water, sediments, soil, and air (Narváez Valderrama et al., 2016). In 

this context, Polydimethylsiloxanes and Polyethylene are polymers that are widely used 
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as passive samplers for the uptake of contaminants from the water bodies to know their 

concentrations. Because of their wider usage, they are produced in large quantities and 

ultimately disposed of in the environmental spheres.  

Additionally, because of the ubiquitous and persistent nature of microplastics 

has become a growing concern worldwide, and their presence has adverse impacts on 

the ecosystem and human health (Vivekanand et al., 2021). Furthermore, their 

interactions with other organic pollutants, especially in marine environments, increase 

their toxicity by 10 (Alberts, 2022). Microplastics have detrimental effects on the 

environment because of their small size, persistence, and chemical nature. The chemical 

nature of microplastics aggravates their deleterious impacts other than their ubiquitous 

presence and small sizes.  

Microplastics are also used as native plasticizers, acting as additives, and 

loosely bonded to other microplastics. Whenever they enter into any environment, these 

chemicals leach out of the native plastics and are released into the environment. For 

instance, Phthalate esters are added to the microplastics for flexibility, but these are not 

chemically bonded, and upon disposal, they leach out into the environment (Gigault et 

al., 2018). In contrast, non-native chemicals are those that are absorbed into the 

microplastics from surroundings, such as persistent organic pollutants. The movement 

of organic pollutants into the polymers depends on various factors, such as the 

availability of free volume in the polymer and the partial movement of the polymer 

chains. These properties of polymers are defined by the glass transition temperature 

(Tg) (Rusina et al., 2010). The polymers with low Tg values have higher diffusivity, 

which means that more chemicals enter into the polymer; for instance, siloxane 

polymers have lower Tg values and therefore have the highest permeability for the 

organic substances. For instance, Polybrominated Diphenyl Ethers (PBDEs), flame 

retardents have higher diffusivity in PDMS than LDPE; therefore, the silicon-based 

polymer is used for sampling organic pollutants (Narváez Valderrama et al., 2016). The 

risk assessment of passive samplers and the microplastics released into the environment 

requires a comprehensive understanding and calibration of the transport and interaction 

of organic pollutants and polymers. The diffusion process dominant the rate at which 

pollutants can cross biotic and polymer boundaries; hence, diffusion coefficients are a 

good measure of the uptake and release of contaminants from microplastics (Nabi & 

Arey, 2017). 
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Many researchers reported that the diffusivity decreases with an increase in 

molecular weight and size (Pintado-Herrera et al., 2016). Moreover, the molecule's 

shape also significantly influences the penetration ability of the diffusant. Generally, 

rigid molecules have less penetration power, whereas linear, flexible, and symmetrical 

compounds have higher mobility and, thus, higher diffusion rates (Rusina et al., 2010).  

1.2 Diffusion Coefficient  

Diffusion is the random movement of molecules from higher concentration to 

low concentration along the concentration gradient. Fick’s first law describes 

diffusion as:  

                                J = −𝐷
−ð𝐶

ð𝑥
                                     Eq. 1.1 

J = diffusion flux, D = Diffusion Coefficient, C = Concentration, x = Change in 

position 

D is measured in m2s-1   

The diffusion coefficients ‘D’ is proportional to the mass transfer coefficients; 

then, the high value of D in polymer means that the higher the chemical transfer into 

polymers will occur.  

 

Figure 1.1 Free volume in polymers and its relation with diffusion coefficients (Swapna et 

al., 2020) 

 

The free volume of a polymer can be described as the “empty internal space” 

This extra free volume tends to larger diffusion coefficients than would be expected if 

the polymer were in an equilibrium state. As the diffusion behaviour of chemicals 

depends on many factors, such as the free volume among polymer chains and segmental 

mobility, the measurement of the diffusivity of diverse organic compounds using 

experimental methods is arduous and time-consuming (Naseem et al. 2021). 
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Computational prediction models are developed based on the physicochemical 

properties of the compounds using already experimentally determined diffusivity 

values (Zhu et al., 2020). Additionally, various regulatory bodies such as Organization 

for Economic Cooperation and Development (OECD), World Health Organization 

(WHO) and the US Environmental Protection Agency (EPA) recommend the 

development of simulatio models for the estimation of chemical risk assessment in 

various environmental fields (Aakash, 2022; OECD, 2021). Consequently, numerous 

research across the world employed numerous in silico methods to determine the 

diffusivity of organic pollutants into various microplastics such as polyoxymethylene 

(POM), Polydimethylsiloxanes (PDMS), and Low-Density Polyethylene (LDPE).  

Therefore, it is necessary to predict and evaluate the diffusivity potential of 

these polymers to know about their destructive potential to human beings and other 

aquatic organisms when they are released into the environment. Consequently, in this 

study, I have developed a model using polymers PDMS and LDPE because of the wide 

availability of data regarding the diffusion coefficients of these polymers. Because of 

the low glass transition temperature, these compounds are used in numerous 

experimental studies to determine the diffusivity of organic compounds in these 

polymers. This study is separated into two parts: the development of models for PDMS 

and PE and the development of a Mass Transfer Model (MTM) for polymers PDMS 

and PE using various thicknesses of macro, micro, and Nano plastic.  

1. 3 Problem Statement  

The Chemodynamics of native and non-native organic pollutants in 

microplastics has not been well-studied using the first principles of thermodynamics.  

Given millions of compounds, there is a need for easy estimation approaches available 

as of now.  

1.4 Objectives 

In accordance with the problem statement, the study was designed based on the 

following objectives.  

• To investigate the role of intermolecular interaction parameters in describing 

the diffusivity of organic pollutants in the PDMS and PE.  

• To come up with the best model for predicting the diffusivity of PDMS and PE 

using supervised and unsupervised machine learning techniques.   

• To parameterize a mass transfer model for the estimation of organic pollutants 

from microplastics as a function of the size and nature of polymers. 
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CHAPTER 2 

2. LITERATURE REVIEW 

Researchers use various approaches to determine the diffusion coefficients 

of various organic compounds. These include experimentation, molecular 

simulations and the development of quantitative structure-property relationships 

QSPRs (Lampic et al., 2019) (Lampic et al., 2019). Experimental methods are 

costly and time-consuming and need extensive data about emerging contaminants. 

Furthermore, molecular simulations are practical and faster methods to estimate 

diffusion coefficients of more minor compounds in polymers using molecular 

dynamics and Monte Carlo (MC) methods (Lampic et al., 2019; Gautieri et al., 

2010; Sudibjo & Spearot, 2011). However, atomistic level simulation of large 

organic compounds is time taking, especially for the chemical to reach the 

equilibrium with a polymer. To solve this problem, multiple grouping atoms is done 

through the Coarse-grained simulation technique (Lampic et al., 2019; Gautieri et 

al., 2010), but these techniques are relatively complex and much less work is done 

on estimating the diffusion coefficients of organic compounds. In this regard, for 

the first time, Lampic developed molecular simulation models to predict the 

diffusivity of emerging pollutants (Lampic et al., 2019). Many researchers have 

developed Poly parameter Linear Free Energy Relationship (pp-LFER) (Abraham, 

1993; Abraham et al., 2004; Abraham & Mcgowan, 1987) and QSPR models using 

various descriptors, but Abraham Solvation Models are accurate and used more 

frequently. However, few works have been done on the development of linear free 

energy relationship models regarding the diffusivity of organic compounds into 

PDMS and PE. For the development of models, different parameters are required 

to determine the rate-limiting step and the Abraham Solvation parameters. The 

Abraham descriptors are used to develop a model and are considered accurate to 

explain the information, but the values for these descriptors are available for limited 

compounds, approximately 8000 chemicals (Nabi & Arey, 2017). 

Nevertheless, according to Kieran Mulvaney at Seeker reports, 

approximately 10 million new compounds are manufactured in a year. Therefore, 

the release of chemicals into the environment is more, and it is difficult to study 

every chemical, and it takes a lot of time, money, and resources.  
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 In general, Abraham Solvation models are present in the following forms 

(Michael H. Abraham et al., 2004). 

 

1. 𝑙𝑜𝑔𝑆𝑃 = 𝑐 + 𝑠𝑆 + 𝑎𝐴 + 𝑏𝐵 + 𝑣𝑉 + 𝑙𝐿        Eq. 2.1 

2. 𝑙𝑜𝑔𝑆𝑃 = 𝑐 + 𝑒𝐸 + 𝑠𝑆 + 𝑎𝐴 + 𝑏𝐵 + 𝑣𝑉      Eq. 2.2 

3. 𝑙𝑜𝑔𝑆𝑃 = 𝑐 + 𝑒𝐸 + 𝑠𝑆 + 𝑎𝐴 + 𝑏𝐵 + 𝑙𝐿        Eq. 2.3 

4. 𝑙𝑜𝑔𝑆𝑃 = 𝑐 + 𝑠𝑆 + 𝑎𝐴 + 𝑏𝐵 + 𝑙𝐿                  Eq. 2.4 

 

The lowercase letter c is the y-intercept, and the other lowercase letters are 

regression coefficients referred to as system parameters. Different variations of 

Abraham parameters are based on the information covered in different phases. For 

instance, Eq. 2.1 is used for diffusion between two condensed phases; while Eq. 2.2 

is used for determination of diffusion between the two different phases condensed 

and gas phases, and Eq. 2.3 processed condensed and gas-condensed phase transfers 

(Michael H. Abraham et al., 2004). 

 

Table 2.1 Significance of Abraham Descriptors (Michael H. Abraham et al., 2004) 

               

 

The response variable or dependent variable is logSP, which can be any specific 

dependent property; in my case, the dependent property is logDPDMS and logDPE. 

The other variables, such as E, S, A, B, V, and L, are predictor variables or independent 

variables that influence the value of logSP. These are also called Abraham Solvation 

descriptors, and their significance is demonstrated in table 2.1.  

Symbol Descriptor 

E Excess Molar Fraction 

S Polarizability/Di polarity 

A Acidity 

B Basicity 

V McGowen Volume/ Cavity formation 

L Gas-Hexadecane Partition Coefficient 
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Since organic compounds penetrate into polymers when they come into contact with 

them, their interactions are prominently defined through dipole moment, molecular 

size, and the flexibility of compounds (Belles et al., 2018). Numerous studies have 

reported a positive correlation with the Octanol-water partition coefficient (logP), 

which is used as a proxy to determine the diffusivity in organic compounds (Narváez 

Valderrama et al., 2016) (Pintado-Herrera et al., 2016).  

Belles et al. (2018) determined the diffusion coefficient of 145 organic 

compounds in Polydimethylsiloxanes (PDMS). As a result of their experiment, dipole 

moment, molecular size, and the flexibility of compounds are the prominent factors in 

defining the diffusion behaviour of organic substances. Furthermore, to improve 

interpretations derived from the developed experimental methods, the non-linear 

quantitative structure-property relationship (QSPR) model combined data with the 

available literature, making the total dataset of 198 compounds. The average value was 

calculated to avoid overlapping compounds collected experimentally or from literature. 

For developing the QSPR model, molecular volume, rotatable bonds, topological polar 

surface area, and the number of Oxygen (O) and Nitrogen (N) atoms are used as 

independent descriptors for the first time. A correlation coefficient (R2) of 0.81 and a 

mean absolute error of 0.26 log units were obtained, which implies that the mentioned 

descriptors explain 81 per cent of information on diffusion coefficients of organic 

compounds (Lampic et al. 2019).  

logDPDMS = -4.1×10−4 𝑉𝑚
1.48 + 0.028𝑅0

1.45 + 7.49 × 10-5 𝑇𝑃𝑆𝐴2.34 – 0.041𝑁0
2.63- 1.094 

𝑁𝑁
0.73- 9.417                                                                             Eq. 2.5 

where Vm = Molecular Volume, R0 = Rotatable Bonds, TPSA =  topological polar 

surface area, No = Number of Oxygen atoms, NN = Number of Nitrogen atoms 

Another model was developed by Lampic et al. (2019) to examine the abilities 

of different independent descriptors that can explain the diffusivity of organic pollutants 

in polymers, especially PDMS and Low-Density Polyethylene (LDPE). COSMO-RS 

sigma moment and simple molecular descriptors were used. The selection of descriptors 

was made meticulously, encompassing the diffusion behaviour of organic compounds. 

For those reasons, selected molecular descriptors demonstrate the main molecular 

properties that play an essential role in defining the diffusion rate in polymers such as 

polyethene and polydimethylsiloxanes. Similarly, sigma moment descriptors reflect the 

electron density distribution that includes the size of the molecule, charge, 
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polarizability, high-order variants, and dipole moment. Sigma moment descriptors are 

derived from quantum mechanical structure. With these descriptors, Lampic found that 

the sigma moment descriptors have the best predictive capability with a value of R2 = 

0.85 with Root Mean Square Error (RMSE) of 0.36, whereas for the molecular 

descriptors QSPR model developed gave the value of correlation coefficient R2 = 0.78 

and RMSE = 0.45. 

On the other hand, for Low-density polyethene, the molecular descriptors gave 

the best results with a correlation coefficient of 0.86, and the root means a square error 

of 0.21. In contrast, sigma moment descriptors explained only 66 per cent of 

information with an error of 0.33. Molecular descriptors explain the size, polarity, 

flexibility, and capacity to form hydrogen. However, molecular descriptors did not 

describe the diffusivity of organic compounds in PDMS well. Therefore, sigma moment 

descriptors are reliable options for finding the diffusivity in PDMS. QSPR models 

developed (Lampic et al., 2019; Belles et al., 2018) gave the best results for 

determining diffusivity properties, but these determiners are challenging to obtain and 

computationally expensive. The molecular and sigma moment descriptors are difficult 

to obtain and are not readily available; therefore, computationally inexpensive and 

limited descriptors are required to explain complete information.  

Furthermore, another computational approach is used by Zhu et al. (2020), 

where they developed poly-parameter Linear Free Energy Relationships (pp-LFER) 

model and a quantitative Structure-Property Relationships model for LDPE to predict 

the diffusivity of organic substances. (Zhu et al., 2020). The pp-LFER model using 

Abraham descriptors was developed with two descriptors of Abraham V and E, and it 

shows the best results. On further exploration of the diffusion coefficients of organic 

chemicals, a QSPR model with five descriptors was developed, and its R2 value was 

0.949, and upon cross-validation using leave one out, the R2 value was 0.941 showing 

a good agreement between the training set and test set. However, the five descriptors 

used in this model are computationally expensive and are not readily available to the 

broader public. The equations for the LFER model with V and E descriptors Eq.1 of 

Abraham and five descriptors Eq.2 are shown here:      

  

     log Dp= − 0.881V − 0.262E − 10.79                          Eq. 2.6 

 

                n=96, R2
Adj = 0.815, RMSE = 0.059 
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Another QSPR model was also developed  using the five descriptors 

ETA_Alpha, ASP-6, IC1, TDB6r and ATSC2v. These descriptors are described as 

‘Alpha values sum of all non-hydrogen vertices of a chemical (Zhu et al., 2020), 

Average simple path of order 6 , Information content index, topological distance-based 

autocorrelation - lag 6/weighted by covalent radius, Centered Broto-Moreau 

autocorrelation - lag 2/weighted by van der Waals volumes (Zhu et al., 2020). The 

results of these models presented high goodness of fit with R2 = 0.941.  

 

Log Dp = - 0.303 ETA_Alpha + 12.057ASP-6 + 0.111IC1 + 0.093 TDB6r + 0.000222 

ATSC2v - 11.243                                                                      Eq. 2.7 

  

n= 96,  R2
Adj = 0.941, RMSE = 0.016 

Although these five descriptors have high predictive ability, it is a parameter 

intensive, and these parameters are not readily available to everyone. Therefore, we 

look into the parameters that explain maximum variability in fewer dimensions and 

whose experimental values are readily available. The molecular descriptors octanol to 

water partition coefficients (log Kow) and the air to water (log Kow) partition 

coefficients are widely used and readily available for an extensive range of organic 

compounds. However, mainly these descriptors are used to develop models based on 

partition coefficients. Belle et al. (2018) stated that the logP descriptor provides a 

positive correlation within the same compound class, though it has the opposite effect 

for the different compound families. It emphasizes that it explains the partial transport 

mechanism and does not cover the specific interactions. Therefore, I took another 

parameter log Kaw to describe the unexplained information and cover specific 

interactions.  
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CHAPTER 3 

3. METHODOLOGY 

3.1 Data Acquisition 

Experimental values for the diffusivity of logDPDMS and logDPE are acquired 

from the literature ( Belles et al., 2018; Rusina et al., 2010). The data covered broader  

range of compounds such as Polybrominated diphenyl, Polychlorinated biphenyls 

(PCB), Poly Aromatic Hydrocarbons (PAHs), pesticides, and large chain Aliphatic 

hydrocarbons whose detail is given in table 3.2. After carefully curating and organising 

data from different literature, I collected the Simplified Molecular-Input Line-Entry 

System (SMILES) code and Chemical Abstracts Service (CAS) of each chemical from 

Chem Spider and PubChem databases. Later, I took values of Abraham descriptors of 

organic compounds from an online database source Helmholtz Centre for 

Environmental Research-Linear Solvation Energy Relationships (UFZ-LSER), which 

is free and easy to use. The values of Abraham Solvation Descriptors (ASDs), logKaw, 

and log Kow collected after careful examination are spread over several orders of 

magnitude, as displayed in table 3.1.  

Table 3.1. Presenting the Range of ASDs, logKaw and logKow (Aakash, 2022) 

 

  

Descriptor Minimum value Maximum value 

E -1.04 2.94 

S -0.52 1.98 

A 0 1.12 

B 0 2.04 

V 0.068 3.14 

L -1.741 13.3 

logKow -2.11 9.87 

logKaw -13.45 3.13 
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Table 3.2  Classes of compounds and the number of chemicals present in the PDMS and 

LDPE datasets (Lampic et al., 2019; Belles et al., 2018; Rusina et al., 2010) 

 

The experimental data was collected from various sources although less 

experimental data is present but available for diverse set of classes. Therefore, the 

diversity in data set was ensured to include the chemicals from different classes of 

compounds. Below in a figure 3.1 a strip plot is given which depicts the diversity of 

dataset. The strip plot represents that almost fifty percent of the data lies in middle 

ranges near mean and median values. The lower end of the plot represents the first 

quartile and upper end elaborates the third quartile. In the plot the plus sign depicts the 

mean value, and the straight line depicts the median value. The points that are farther 

away from the mean value are outliers.  

 

 

 

 

 

Chemicals PDMS LDPE 

Polycyclic Aromatic Hydrocarbons (PAHs) 15 12 

Polychlorinated Biphenyls  33 39 

Volatile organic compounds (VOCs) 33 0 

Polybrominated Diphenyl Ethers (PBDEs) 7 0 

Alkanes 28 0 

Pesticides compounds  43 2 

Nitro-PAH 8 0 

Flame Retardants 8 4 

Fragrances 9 11 

Miscellaneous compounds  13 11 
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Figure 3.1  Diversity of dataset is represented in the form of strip plots. 

Positive sign  represents mean value 

Straight line represents median value 
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3.2 Selection of Intermolecular descriptors 

3.2.1 Intermolecular Forces  

 

The attractive and repulsive forces that exist between the molecules of a 

compound or substance and within the molecules themselves are collectively called 

intermolecular forces. These forces define the physical and chemical properties of a 

compound for example, melting and boiling point of a substance depends on the 

intermolecular interactions. Similarly, there are different types of interactions that 

affect the behavior of molecular in different phases such as when the molecules are 

released into the marine environment, they interact in certain way according to their 

properties. When toxic chemicals are discharged into the environment most of the time 

they diffuse or partition in water phases. There are two governing processes 

hydrophobic and electrostatic interactions. Hydrophobic interactions where molecules 

have less compatibility with water. On the other hand, the molecules attract or repel the 

molecules on the basis of charges. Diffusivity of a substance depends on these 

intermolecular interactions and thermally activated motions. All molecules are in 

constant state of motion which leads to the collision between molecules and that 

produces kinetic energy. Sometimes enough kinetic energy is produced that molecules 

become able to break these intermolecular forces  and molecules diffuse out of the 

system.  

3.2.2 Octanol-Water Partition Coefficient (logP) 

Numerous proxy methods are used to explain these intermolecular interactions 

so instead of experimental measures these proxies are used to model the diffusivity and 

partitioning of organic compounds. Octanol to water partition coefficient (Kow and 

logP)  frequently used to estimate the partitioning behavior and risk assessment of 

environmental contaminants. Octanol/water partition coefficient give information 

about hydrophobic interactions and can be used to estimate the fate of chemicals when 

these come into contact with different phases. Octanol to water partition coefficient 

consists of two phases where one phase is taken as hydrophobic phase such as octanol 

(proxy for lipids and fats in living organisms) while other phase is water (hydrophilic).  

   Kow = 
𝐶𝑜 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 

𝐶𝑤 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 
                                      Eq. 3.1 
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Primarily, Kow is significant in determining the fate of chemicals in the 

environment and the organism. For instance, the Kow values determine the 

bioaccumulation capacity and the toxicity of emerging pollutants. For this reason, the 

European Union’s chemicals legislation REACH (Cumming & Rucker 2017) has made 

it compulsory to determine the value of Kow for every compound whose annual 

manufactured or imported weight is one ton or more. Therefore, experimental data is 

available for a large set of compounds, so this Octanol/Water partitioning coefficient is 

used to develop models. It is one of the reasons I selected the log Kow parameter to 

develop a model to examine the diffusivity values of organic compounds in PDMS and      

LDPE. PDMS is a mineral organic polymer partially ionic in nature because of its 

silicone oxygen bond, which makes it partially hydrophilic and hydrophobic at the same 

time. However, it depends on the repetition of monomers which transform it into the 

elastomer, and when it enters into an aquatic environment, water passes over PDMS 

and helps with the absorption of hydrophobic organic contaminants on the surface of 

polymers. The octanol-water partition coefficient is a defining parameter to deal with 

these hydrophobic interactions. For example, the chemical’s ability to diffuse into the 

polymers PDMS and Polyethylene is governed by Kow.  

The microplastics when released into the environment they have the absorption 

capacity and other persistent pollutants can get absorbed into these microplastics 

which make situation even worse therefore, it is necessary to have a model to know 

the diffusive nature of chemicals so that its risk potential could be measured, and the 

manufacturing of these chemicals could be stopped or improved.   

(a) (b) 

Figure 3.2 (a) Structure of PDMS having siloxanes bond depicting its 

partial polar nature and (b) structure of polyethylene depicting its 

hydrophobic nature (Sharada et al., 2022; Hamouni et al., 2019) 
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3.2.3 Air-Water Partition Coefficient (logKaw) 

Comprehensive information of the physical and chemical properties of 

emerging pollutants is required for the prediction and estimation of the fate of 

environmental contaminants. In this context, a strong chemo dynamic property 

solubility is requisite for determining pollutants' concentration and their minimization 

from environmental media. Similarly, the air-to-water partitioning is the ratio of a 

concentration of a  in the air to the water phase, given that the temperature is constant; 

this is related to the Henry's Law constant (HLC) when it is related to vapour pressure 

data. Therefore, Henry's Law constant is the same as air water partition coefficient and 

is measured using compounds' solubility. The HLC data is required for various 

purposes, and one of them is its use for the development of transport models that 

elaborate on the movement of contaminants in the different phases of the environment. 

Like octanol-water partition coefficients, the data for air-water partition coefficients are 

available for a large set of compounds as their values are easy to determine 

experimentally. Kaw explains specific interactions such as hydrogen bonding, and 

when various organic pollutants diffuse into the polymers, this parameter governs the 

distribution of chemicals covering their hydrogen interactions. 

3.3 EPI SuiteTM Software 

The Estimation Program Interface Suite™ (EPI Suite™) is a window-based 

program developed for the estimation of properties (physical/chemical) and the fate of 

organic compounds by EPA and Syracuse Research Corp. (SRC). This program helps 

determine the chemical's properties, such as vapor pressure, melting and  boiling point,  

and bioaccumulation capacity. Moreover, the fate of the chemicals across different 

environmental parts can also be evaluated using this program. For instance, the 

movement of chemicals from the atmosphere into the water or soil or vice versa.  

EPI Suite™ has different input modules such as AOPWIN™, KOWWIN™, 

BIOWIN™, HYDROWIN™, HENRYWIN™, AEROWIN™, and ECOSAR™, etc.  

I used EPI Suite™ to collect data on chemicals regarding Kow and Kaw using 

modules KOWWIN and HENRYWIN, respectively. This program utilizes the constant 

fragment technique for Kow, where the particle is divided into fragments, and then the 

coefficient values for each fragment are added to give the estimated value of Kow.  

One hundred ninety-eight chemicals for which experimental values for 

diffusivity were available in the literature, and among them, 124 ASDs were available 

from the database. Therefore, my data shrink to 124 chemicals from 198. On the other 
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hand, some experiment values were missing for log Kow and logKaw. Therefore, I used 

the ASM model (Poole et al., 2013), (Zhao & Abraham, 2005) to calculate the log Kow 

values for the remaining chemicals.  

 

               𝑙𝑜𝑔 𝐾𝑜𝑤 =  0.088 +  0.562𝐸 −  1.054𝑆 +  0.034𝐴 −  3.460𝐵 +

                                         3.814𝑉       

                                                                                                                                𝐸𝑞. 3.2                                           

𝑙𝑜𝑔 𝐾𝑎𝑤 =  −0.994 +  0.577𝐸 +  2.549𝑆 +  3.813𝐴 +  4.841𝐵 

−  0.869𝑉                                                                 𝐸𝑞. 3.3 

The experimental value for Henry Law Constant is taken from HENRYWIN which is 

then divided by the value of gas constant and Temperature to convert in to air-water 

partition coefficients.  

                                  Kaw = 
𝐻𝐿𝐶 

𝑅𝑇
                                                        Eq. 3.4 

Where R = gas constant and T = Temperature    

3.4 Statistical Analysis  

 

Various statistical analysis was performed, including Pearson Correlation (PC), 

Principal Component Analysis (PCA), and multiple linear regression (MLR) using 

RStudio (version 1.4.1106) and XLSTAT (XLSTAT, 2020). MLR was used to develop 

pp-LFER and a two-parameter LFER model. MLR was performed to examine the 

optimum number of parameters required to build the model using dependent and 

independent descriptors. In this case, diffusion coefficients of PDMS (logDPDMS ) and 

LDPE (logDPE) were the dependent property, and LFER variables such as E, S, A, B, 

V, L, log Kow and logKaw were independent. Changes in independent descriptors bring 

changes in dependent property. 

MLR was used to develop a model and statistical analysis such as variance 

Inflation Factor (VIF), and Akaike Information Criterion (AIC) was used to determine 

the significant descriptors that best describe the dependent property. In MLR, the 

variables were picked to develop an optimum predictive model based on the maximum 

R2adj value, and minimum root mean squared error (RMSE) value. Principal 

Component Analysis  was used to analyze the chemical space and to minimize data 



 

 

17 

 

redundancy. It was also run to determine the variance in the data and to know the 

contribution of each variable in explaining information. Pearson correlation was 

performed to determine the relationship and redundancy between each variable. 

3.5. Model Validation 

To assess the performance of developed models and to compare and select the 

best predictive model, the OECD guidelines (OECD, 2007) were followed. Internal and 

external validation methods were employed, such as “leave-one-out cross-validation 

(LOOCV), k-fold validation and bootstrapping” (Liu et al., 2016). Cross-validation 

tests such as leave one out and the bootstrap method (n=1000) were used to evaluate 

the robustness of models. External validation was done by splitting the data set into a 

training set and a test in an 80:20 ratio. All the statistical parameters, such as Mean 

Absolute Error (MAE), RMSE and R2, sometimes called independent indicators, are 

used for the assessment of validation of models.  
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CHAPTER 4 

4. RESULTS AND DISCUSSION 

4.1 Recreation and Validation of Abraham Solvation Model  

The Abraham Solvation Models were created for both microplastics PDMS and 

LDPE. In his paper Zhu et al. (2020) developed six parameter pp-LFER model to 

predict the diffusivity of chemicals into the Low-Density Polyethylene. However, there 

is now work done on the development of pp-LFER model for the PDMS. I developed 

pp-LFER model for the PDMS and recreated solvation model for LDPE.   

4.1.1 Development of ASM for PDMS 

As mentioned earlier in section 3.1 the data was acquired from the Belle (2018) 

paper, overall, the chemicals were 197 but after careful curation and organization the 

chemicals shrank to 124.  

The multiple linear regression was run on the four variants of ASDs as described 

above ESABV, ESABL, SABVL, and SABL. The results of Abraham Solvation 

Models are shown in table 4.1.  

Table 4.1 The four variations of ASMs (logDPDMS) 

 

 

 

 

 

 

The ESABL model for the PDMS polymer performed well and stood out as the 

best fit model with high coefficient correlation (R2) and lower value for RMSE after 

running multiple regression analysis. All the Abraham Parameters are used to explain 

the diffusivity of organic chemicals into PDMS except V. All the parameters of 

Abraham are significant in explaining the variance in response variable.  

 

Model Name R2 RMSE R2
Adj 

ESABV 0.82 0.45 0.81 

ESABL 0.82 0.44 0.816 

SABVL 0.817 0.45 0.81 

SABL 0.817 0.45 0.81 
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In figure 4.1, the y-axis represents the values of root mean squared error and R2, 

and the x-axis shows the variations of ASMs. On the basis of R2 and RMSE value the 

best model is ESABL with least error value of 0.44.  

The equation for ESABL model is presented as: 

logDPDMS =  -9.30(±0.12)+ 0.19(±0.09)E  -0.29 (± 0.16)S -1.42 (±0.43)A -

1.71(±0.14)B - 0.07(±0.01)L                                       Eq. 4.1 

n= 124,        R2 = 0.82,         RMSE =0.44 

A standardized regression coefficient analysis was done to know the 

contribution of each parameter. As each descriptor is measured in different units and 

have different  

 

 

  

Figure 4.1 Bar plot representing the statistics of four variations of 

ASMs. Results for all variants of Abraham are similar but 

ESABL model represents minimum error 

0.82 0.82 0.817 0.817
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 Figure 4.2 A graph represents the results of regression coefficients. As shown 

above B parameter have significant contribution in explaining information 

related to diffusion coefficient.  
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impacts on the property therefore to know the contribution of each descriptor its units 

are neutralized by standardizing the regression coefficients. The B descriptor 

contributes more towards explaining information followed by L and then S and E 

displayed in figure 4.2. y-intercept was made zero to avoid its intervention and to solely 

know solely about the contribution of independent descriptors.  

Sometimes, it happens that similar information is explained by each variable, or 

two variables are highly correlated with each other. To avoid redundancy and 

overlapping of information a correlation analysis was done. A Pearson Correlation was 

done using RStudio.  

 

 

 

 

 

 

 

  

 

 

 

 

4.1.1.1 Best Predictive Model  

To determine the best predictive model among the four variants of Abraham 

Solvation Model developed for the PDMS, Akaike Information Criterion (AIC) 

analysis was done. AIC is a mathematical technique for evaluating that how much a 

model performs well and fits for the dataset from it was generated. Statistically, it 

determines that which model is best for the data by comparing different models 

generated from same dataset. Akaike Information Criterion calculations depend on the 
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Figure 4.3  Pearson Correlation depicting that two parameters are not 
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number of independent variables that are required to build model and maximum 

estimation ability of the model i.e., how well a model reproduces data (Bevans, 2022). 

Therefore, AIC analysis was carried out to select the best model among the four-model 

developed using Abraham descriptors.  

 

The least value of AIC is 159.25 shown in table 4.2 which is for ESABL i.e., 

ESABL model has good predictive power. It was also shown by the regression analysis 

by the high R2 value and low RMSE 0.44 from the other models.  

4.1.2 Recreation of ASM for Polyethylene 

Similarly, the ASM models were recreated for Polyethylene polymer. Pearson 

correlation analysis was done on the data set to assess the correlation of Abraham 

descriptors with each other and with the independent variable, logDPE. If the correlation 

between the two independent parameters is high, it means that both variables explain 

some information. The model created by these variables is not suited for prediction 

because it may happen that variables are explaining the same type of information, which 

inflates results. A perfect model has zero biasness and variance and follows the 

principle of parsimony. Therefore, to analyze the contribution of each variable and their 

correlation with each other, I performed a Pearson correlation analysis. Figure 4.4 

demonstrate the results of Pearson Correlation analysis among the independent 

Model AIC 

E.S.A.B.L 159.25 

S.A.B.L 161.55 

E.S.A.B.V 162.78 

S.A.B.V.L 163.61 

Table 4.2 Akaike Information Criteria analysis was done for Abraham Model. 

Less value of AIC represents the best model. 
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variables. The two independent variables, for instance, V and S, represent the high value 

of r (0.92) demonstrates that both are highly correlated and explain each other very 

well. When these two descriptors are used to make a model, it may inflate the results 

for other reasons, not only by explaining the property under discussion, such as logDPE. 

Moreover, in figure 4.4, dependent property logDPE shows a high correlation with each 

independent descriptor, which explains the property of interest well. Therefore, 

Variance Inflation Factor (VIF) analysis is done to avoid inflation of results and remove 

redundancy. 

For polyethene, the values for the A parameter were '0', and the software considered 

these values as 'NA' and did not count it in the statistical measures; therefore, I removed 

the A parameter and ran a regression analysis on other parameters. The statistical results 

were promising, as shown in table 4.3; almost all models gave good results with a high 

R2 value of 0.95. All models gave the same results with minimum error. It is 

challenging to choose the best model among these four. On further evaluation for 

choosing the best model, Variance Inflation Factor (VIF) values were calculated, and 

the cut-off value was set as 10. The values greater than 10 represent that the particular 

predictor variable overlaps with another variable, and the variables also explain the 

noise, which affects the model's explanatory power. Therefore, on careful analysis 

using VIF criteria, V and E were two significant parameters in explaining information. 

Figure 4.4  Pearson correlation. Figure demonstrates the 

correlation among independent variables and with 

dependent variable. The negative value presents the negative 

correlation among variables. Red portion indicates positive 

correlation higher the value depicts high correlation among 

variables.  
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In the ESBV model, the E and V parameters were significant, whereas the p-value of B 

was greater than 0.05; therefore, we eliminated the non-significant parameters and re-

ran the regression. 

 

                      Table 4.3 Different variations of Abraham Solvation Model for Polyethylene 

 

 

 

 

 

 

 

Regression analysis was performed using different variation of Abraham 

descriptors. The VE model was added after VIF evaluation. The VIF values of these 

two parameters were less than ten and were not overlapping with each other therefore 

these two parameters were selected to develop model.  

logDPE  =  -10.21(±0.09) -0.27(±0.03)E -1.19(±0.06)V             Eq. 4.2 

 n= 54,        R2 = 0.94,        RMSE= 0.10  

 Table 4.4 Variance Inflation Factor (VIF) representing values for different parameters of 

different model 

 

 

 

 

 

 

 

Model Name R2 RMSE R2
Adj 

ESBV 0.95 0.10 0.94 

ESBL 0.95 0.10 0.94 

SBVL 0.95 0.10 0.95 

SBL 0.95 0.10 0.94 

VE 0.94 0.10 0.94 

Model Name E S B V L 

ESBV 15.8 19.7 8.9 14.4  

ESBL 29.6 8.9 9.3  9.3 

SBVL  10.4 4.32 19.8 10.4 

SBL  6.8 1.5  7.5 

VE 1.3   1.3  
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4.2 Justification, Formulation, and Validation of Partition models (PMs) for 

logDPDMS  and logDPE estimation 

 

4.2.1 Justification of Two Parameter Model logKow and logKaw  for PDMS Model  

It was hypothesized that the new two-parameter model would have comparable 

predictive ability to the ASMs. To check our hypothesis that the linear free energy two 

parameters logKow and logKaw would have comparable predictions, I thoroughly 

analyze the information present in the Abraham Solvation descriptors (ASDs) of the 

datasets of the ASMs. In the previous section, it was analyzed that a minimum of five 

dimensions are required to demonstrate the variability in the Abraham Solvation 

Models. Principal Component Analysis was done to further investigate the spread of 

data variability, and results described that where the five dimensions of Abraham 

represent the information, similar information is represented by the two-parameter 

model. The two descriptors logKow and logKaw are used to represent similar 

information in two dimensions. The selection for new variables was made on the basis 

of these considerations the parameter should (i) be easily accessible, (ii) have simple 

chemical interpretation, (iii)  have more extensive databases that could be determined 

experimentally or estimated computationally by simple and cost-effective methods (iv) 

be able to encompass all the intermolecular interactions and the free energy changes 

during the transfer of the solute molecules (v) have ability to explain the mechanism to 

a considerable extent physically as well as thermodynamically.  

The partition coefficients Kow and Kaw fit best on the given selection criteria. 

Hence to prove the suitability of these two parameters, PCA was run, and as a result, a 

Correlation circle, Scree plot and dimensionality plot were obtained. According to the 

Scree plot given in figure 4.5, (a) approximately 78 per cent of the variability is 

explained in the first two dimensions. Further correlation circle represents that most of 

the variation is explained by the log Kaw and less information is covered by the logKow 

parameter; however, collectively, both parameters cover specific and non-specific 

interactions. 
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(a)                                                                         (c )  
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Figure 4.5. Above figures shows the results of the statistical analysis ran on the PDMS dataset. It 

represents the dimensionality analysis of PMs data. Upper panels represent the results of PCA ran 

on 643×4 matrix, [ E, S, A, B, LV] of ASM descriptors used to estimate logDPDMS values. (a) It 

represents the scree plot of eigen values which demonstrate the amount of information explained by 

each component. (b) The PCA correlation circle shows the quality of representation and relationship 

among the variables in first two dimensions. The angle between the arrows shows the correlation 

between the ASDs. The quality of representation of a parameter is proportional to the length of arrow 

lines.  (c) It shows the distribution of data into 8 dimensions obtained by the PCA of 643×8 matrix 

[E, S, A, B, V, logKow, logKaw, logDPDMS]. Size of the circle and color intensity are proportional to 

the quality of representation of a parameter.  (d) represents the correlation matrix correlogram 

obtained from Pearson correlation analysis. Red color is the representation of positive correlation 

while blue color represents the negative correlation between each pair of variables. The values of r 

(correlation coefficient) showing the magnitude of correlation. 
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Additionally, in correlation circle figure 4.5 (b), the logKaw and logKow arrows 

touch the circle, which indicates that these parameters cover maximum intermolecular 

interactions to explain the variation in the dependent property. The Pearson Correlation 

analysis was also carried out using RStudio to determine the relationship between 

variables and their strengths. The correlation analysis for the whole dataset shows that 

Kaw and Kow capture the crucial intermolecular interactions, otherwise captured in the 

ASDs, to express the diffusivity of organic pollutants into PDMS. The correlation 

between logKow and logKaw are separated from each other (r = 0.74), which depicts 

that much of the information will be covered by these two parameters. 

4.2.2 Justification of Two Parameter Model logKow and logKaw  for Polyethylene  

Model  

A similar statistical analysis was done the determination the suitability of a two-

parameter for the polyethene model. These analysis results show that the two-parameter 

model can be developed to explain the diffusivity of organic substances into polymers. 

The Scree plot in figure 4.6 (a) represents that more than 90 per cent of the variance 

is explained in the first two dimensions. The arrow length of two parameters, logKow 

and logKaw, touch the circle, which means they explain maximum intermolecular 

interactions, which ASDs otherwise explain. Similar is endorsed by dimensionality 

analysis representing that complete information is explained in the first two dimensions. 
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(a) (c)    

                                               

(b)                                                                                                                                                  (d)                                                                                                         

Figure 4.6. Above figures shows the results of the statistical analysis ran on the Polyethylene dataset. 

It represents the dimensionality analysis of PMs data. Upper panels represent the results of PCA ran 

on 643×4 matrix, [ E, S, B, L,V] of ASM descriptors used to estimate logDPE values. (a) It represents 

the scree plot of eigen values which demonstrate the amount of information explained by each 

component. (b) The correlation circle shows the quality of representation and relationship among the 

variables in first two dimensions. The angle between the arrows shows the correlation between the 

ASDs. The quality of representation of a parameter is proportional to the length of arrow lines.  (c) It 

shows the distribution of data into 8 dimensions obtained by the PCA of 643×8 matrix [E, S, A, B, 

V, logKow, logKaw, logDPE]. Size of the circle and color intensity are proportional to the quality of 

representation of a parameter.  (d) represents the correlogram of the correlation matrix, obtained from 

Pearson correlation analysis. Red color is the representation of positive correlation while blue color 

represents the negative correlation between each pair of variables. The values of r (correlation 

coefficient) showing the magnitude of correlation. 
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4.3 Formulation of Two-parameter model 

The regression analysis was run to develop two parameter models for both 

polymers Polydimethylsiloxanes and Polyethylene. The MLR results were satisfactory 

and most of the variance is explained by two parameters.  

Two parameter- Linear Free Energy Relationship Model (logDPDMS) 

 

𝑙𝑜𝑔𝐷𝑃𝐷𝑀𝑆 = −9.14(± 0.14) - 0.16 (±0.017)logKow + 0.32(±0.02)logKaw     Eq. 4.3 

   n=  124,  R2= 0.70, RMSE = 0.57,  R2
Adj = 0.69  

Standardized coefficient analysis was taken to determine the contribution of 

each parameter by keeping intercept zero.  

 

Two parameter- Linear Free Energy Relationship Model for low density 

Polyethylene 

 

LogDPE = -10.72 (±0.12) - 0.27(±0.018)logKaw + 0.21(±0.021)logKow  Eq. 4.4  

    R2 = 0.89, RMSE = 0.15, R2
Adj = 0.88 

Standardized coefficient analysis was taken to determine the contribution of 

each parameter by keeping intercept zero.  
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Figure4.7 Standardized Coefficient graph for  logDPDMS 

logKaw explains more intermolecular interactions. 
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Table 4.5 This table represent the regression results in the form of R2, RMSE and R2
Adj 

 

 

 

 

 

 

 

 

The regression analysis was run on both datasets for PDMS and Polyethylene, 

and the results are depicted in table 4.5, which represent that the predictive ability of 

the two-parameter PDMS model is 70 per cent, as represented by the R2 value. The 

RMSE value of the model is way too high, which is 0.57; the high value of prediction 

error means the model is not suitable for the prediction. However, the adjusted R2 value 

is concomitant with the regression coefficient value (R2). 

4.4 Model Validation and Assessment  

The developed models are internally cross-validated to assess the model's 

predictive ability. Cross-validation is a resampling method to evaluate the model's true 

Model Name R2 RMSE R2
Adj 

2p-LFER Model 

(logDPDMS) 

logKow +logKaw 

0.7023 0.57 0.697 

2p-LFER (logDPE) 

logKow + log Kaw 
0.89 0.148 0.884 
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Figure 4.8  Standardized Coefficient for Polyethylene 

representing that logKaw has higher contribution in explaining 

information than logKow 
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prediction error to avoid overfitting (Kohavi, 1995). After the selection of the best 

Abraham solvation model and the development of two-parameter diffusivity models for 

the PDMS and Polyethylene, cross-validation was carried out. Leave-One-Out Cross-

validation (LOOCV), K-fold test, repeated K-fold test (r=3) and Bootstrap validation 

tests were performed on the selected models using RStudio software. Each test dataset 

was randomly split into two training, test sets, and regression. Moreover, regression 

diagnostics were applied to identify the applicability domain of models using influential 

points. 

The model is internally cross-validated using different model assessment 

approaches such as Leave one out, K-fold, and bootstrapping approaches. My model 

depicts good agreement between the training and test set models.  

Leave-One-Out Cross Validation (LOOCV)  

Leave-one-out cross-validation is a process where one observation from the 

whole dataset is excluded, and regression is performed on the remaining data. Likewise, 

the process is repeated with the exclusion of one different observation every time the 

analysis is performed. This process is time taking and is preferred for short datasets. 

The diagnosis indicators are R2, and root means square error and the mean absolute 

error. 

K-fold Validation  

The dataset is divided into k-folds or k groups of equal sizes in K-Fold 

validation. For validation, the model is trained on k-1 folds or groups. This process is 

repeated K times, and a different fold is used each time (Kumar, 2021). In this K-fold 

test, K =3 is selected for the validation and evaluation of models. 

Bootstrapping 

In bootstrapping algorithm, the software randomly resamples the dataset each 

time and analyses are performed on the selected data set (Kumar, 2021). In this work, 

bootstrapping was carried out as n=1000 on the R program. 

This table 4.6 represents that our training sets and datasets statistics are more or 

less the same, which validates that these models could be used for predictive purposes.  
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Table 4.6  The table represents statistical diagnostics for different validation approaches 

where R2represents the regression coefficient, MAE represents the mean absolute error 

and RMSE represents the root mean square error 

 

Cross-validation was performed on all the selected models. The Abraham 

Solvation Model ESABL for predicting the diffusivity of organic chemicals into PDMS 

approximately shows the value of R2 and the RMSE same as the developed model, and 

it shows the robustness of the model. The validation results for the two-parameter 

model for PDMS are almost the same as the diagnostic parameters for the developed 

model, but the value of R2 is low as well as the value of RMSE  and MAE is high.  

The cross-validation results for all the validation tests for the two-parameter 

LDPE model represent the regression coefficient's excellent value and lower values for 

the prediction error RMSE and MAE. 

 

 

 

 

Model  

Model Validation 

Leave one out 

approach  

K-fold Approach  

Rep= 3 times  

Bootstrap Approach  

Rep=1000 

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

ESABL 0.795 0.46 0.31 0.848 0.44 0.31 0.803 0.478 
0.32

0 

2p-LFER 

(PDMS) 
0.688   0.57 0.42 0.723 0.56 0.42 0.704 0.580 0.42 

2p- LFER 

(LDPE) 
0.87 0.15 0.12 0.90 0.15 0.12 0.87 0.16 0.13 
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CHAPTER 5  

5. MASS TRANSFER COEFFICIENT MODEL (MTC) 
 

5.1 Mass Transfer Coefficient Model  

 

Mass Transfer Coefficient models are based on mass solute transfer in distinct 

phases or environment regions. The MTC is also expressed through (k) and is usually 

taken as the velocity of a solute moving through some environment and measured in 

cms-1. The MTC (k) is equal to D/δ, and D represents the diffusivity and δ is an 

adequate thickness of a specific phase (Huckins et al. 2006).  

Mass Transfer Coefficient models are considered as the fluxes through various 

phases and are the proportionality constant between the flux and the effective 

concentration; therefore, also known as the overall conductivity, which is represented 

by k0.  

Similarly, 1/ko is represented as the transport resistance, the sum of the mass 

transfer resistance for the succeeding phases (Iw, Ib, Im) (Huckins et al. 2006). .  

                                            Io =  Iw +Ib +Im                                       Eq. 5.1  

Where I0 = Impedance 

Iw = Impedance for Water Boundary Layer 

Ib = Impedance for biofilm 

Im  = Impedance for the membrane 

Correspondently,  
1

𝑘0
 is also known as transport resistance which is equal to 

impedance. It is written as:  

  
1

𝑘0
=  

1

𝑘𝑤
+ 

1

𝑘𝑏 𝐾𝑏𝑤
+

1

𝑘𝑚𝐾𝑚𝑤
                  Eq. 5.2   

Eq. 5.2  represents that mass transfer resistances are additive property and 

higher the partition coefficients of Kmw and Kbw reduce the transport resistance in the 

respective phases (Huckins et al. 2006). As given above the MTC (k) is also equal to 

D/δ, by incorporating the value of k the final equation becomes as:  
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1

𝑘0
=  

𝛿𝑤

𝐷𝑤
+ 

𝛿𝑏

𝐷𝑏 𝐾𝑏𝑤
+

𝛿𝑤

𝐷𝑚𝐾𝑚𝑤
                     Eq. 5.3   

 

Where,  

𝛿 = thickness of a phase  

Dm = Diffusion Coefficient  

The thickness of each phase is directly related to the resistance to mass transfer. 

Therefore, the greater the thickness of the phase the larger the resistance to solute 

transfer. 

5.2 Leaching Time  

Leaching is a process of transfer of mass that occurs by excerpting a substance 

from a solid substance that has come into touch with a solvent. The desired constituents 

diffuse into the solvent from its natural solid form (“Chapter 2: General Principles for 

the Leaching and Extraction of Materials,” 1997). 

The leaching process occurs when a liquid or solvent from the bulk solution 

comes in contact with the solid phase and diffuses into the solid. The solute from the 

solid leaches into the solvent, and sometimes the solute diffuses from the solvent 

mixture into the solid. However, when a solute is present on the surface of an insoluble 

solid and the solute is precisely washed off by the solvent, it is normally known as 

elution or elutriation. Leaching is the mass transfer of a solute into a solvent when a 

solvent comes in contact with a solid. Millions of chemicals are discharged into the 

environment on a daily basis (“Chapter 2: General Principles for the Leaching and 

Extraction of Materials,” 1997). Among these are widely used microplastics which are 

released into the environmental compartments as microbeads, and sometimes these 

microplastics are released into the environment as a consequence of fragmentation and 

degradation of larger plastics.  

These microplastics are widely available in nature and present in different sizes. 

These microplastics have the potential to sorb organic pollutants and then release them 

into the environment. Therefore, these microplastics are of great concern as they act as 

a transport vector for organic compounds.  
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It is necessary to calculate the leaching potential of organic pollutants from 

these polymers, such as PDMS and Polyethylene when they come into contact with 

them. Polyethene and PDMS have numerous applications; therefore, their broader 

discharge into the environment raises health issues. These polymers act as a carrier, and 

when these reach the body of animals or human beings, these organic pollutants leach 

into the body and cause damage.   

5.2.1 Leaching time as a function of size of polymers 

 

The leaching time of solute particles depends on the mass transfer potential of 

a substance which is affected by the size of the polymers. The leaching time of the 

polymer is affected by the size and nature of the polymers. Different size polymers, 

such as microplastics, standard plastics and Nano plastics, have different capacities to 

leach organic chemicals. Therefore, I have calculated the transport resistance of organic 

chemicals in different plastic media such as microplastics, Nano plastic and normal 

polymer sizes. The resistance for both properties, logDPDMS and logDPE, is calculated 

using the partitioning coefficients and diffusion coefficients of both properties.  For the 

partition coefficients data, I took it form online database UFZ-LSER.  

 

𝟏

𝒌𝟎
=

𝜹𝒎

𝑫𝒎𝑲𝒎𝒘

𝟏

𝒌𝟎
=

𝟎. 𝟎𝟎𝟎𝟎𝟎𝟓

9.33E−11(4.17E+03)

𝟏

𝒌𝟎
= 1.29E+01𝑳𝑻𝑴𝑷 =

1.29E+01(0.000005)
𝑳𝑻𝑴𝑷 = 6.43E-05

(sec)

Figure 5.1 This flow chart represent the process of calculation of leaching time. 1/ko 

represents the resistance and its unit is s/m. To calculate time thickness is multiplied 

with the Resistance. 
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I took the organic chemicals from dataset that I have curated for the model 

development. The thicknesses of various plastic sizes are taken from the literature. The 

value of thickness for micro plastic is taken as the average of range between 1𝜇m -1mm 

(Microplastics in the ocean, GESAMP) given in figure 5.2 whereas the chemical range 

for Nanoplastic is taken from 1nm - 1𝜇m (Gigault et al., 2018). For calculation of 

impedance for plastic polymers I used variation of eq.7 to calculate the mass transfer 

potential. The process for the calculation of leaching time is demonstrated in figure 5.1. 

Figure 5.2 This figure depicts different ranges of polymers. (Microplastics in the 

ocean, GESAMP) 
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1

𝑘0
=

𝛿𝑤

𝐷𝑚𝐾𝑚𝑤
                                     Eq. 5.4 

 The graph for PDMS in figure 5.3 (above) represents that in normal plastics 

naphthalene leaches out 2 orders of magnitude quickly as compared to the leaching 

time in Microplastic and 4 orders of magnitude faster than in Nanoplastic. Organic  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

chemicals leach out slowest in normal plastics and then little quicker in microplastic 

and followed by microplastics and then more in Nanoplastic.  
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Figure 5.3 Leaching time of four organic chemicals is represented as a 

function of size. Above figure represents the leaching time from PDMS. Below 

represents the leaching time from LDPE as a function of size.  
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The leaching time of naphthalene from LDPE represents that it leaches out 4 

degrees faster in microplastic than in normal plastics and 8 orders of magnitude faster 

in nano plastics as compared to normal microplastics. The organic chemicals leach out 

faster in nano plastics, followed by microplastics and normal plastics.  

5.2.2 Leaching time as a function of Nature  

 

 

 

 

 

 

 

 

 

 

The leaching time of naphthalene from LDPE represents that it leaches out 4 

degrees faster in microplastic than in normal plastics and 8 orders of magnitude faster 

in nano plastics as compared to normal microplastics. The organic chemicals leach 

out faster in nano plastics, followed by microplastics and normal plastics. 
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CHAPTER 6 

6. CONCLUSION AND RECOMMENDATIONS 
 

6.1 Conclusion  

Several approaches are used to determine the diffusion coefficients of polymers using 

experimental measures, but fewer simulation methods are developed using QSPR and 

LFER methods. The two-parameter models are developed using descriptors logKaw 

and Kow, which represent a good correlation with the Abraham Solvation model. The 

2p-model for PDMS polymer depicts satisfactory results with an R2 value of 0.70 

which means that the models explain 70 per cent of variations. However, the high value 

of RMSE makes the model unsatisfactory for the predictions. The Abraham model 

ESABL explains 82 per cent of variation with root mean square error less than 0.5. The 

PDMS 2p-LFER model cannot be used for predictive purposes. In contrast, the 

predictive power of the Polyethylene model is high and explains 90% of the 

information. Dimensionality analysis for both polymers demonstrates that most of the 

information is explained in two dimensions, and that is why the Abraham model can be 

reduced to a two-parameter model covering most of the information by two descriptors. 

The statistical diagnostics elaborated in Eq. 4.4  for LDPE demonstrates that it is a good 

alternative for experimental techniques.  

Moreover, these developed models give mechanistic insights into the chemicals, 

which means how they will end up in the environment. The Henry Law Constant and 

octanol-water partition coefficient describe the compounds' volatility or non-volatility, 

hydrophobicity, and hydrophilicity. The model can depict the values of diffusivity of 

PDMS and polyethene for organic pollutants that fall in the domain of applicability for 

the classes of compounds which were used to develop models. The model is not suitable 

for the determination of ionizable species or the chemicals that react through the 

specific mechanism. However, the predictive ability and the application domain of both 

parameters can be improved using large datasets. These models are not suitable for the 

prediction of polar compounds and polar organic compounds. These models can be 

integrated into the EPI SuiteTM software to predict the diffusivity of organic pollutants 

into PDMS and Polyethylene.  

On the other hand, the mass transfer equation is used for calculating the leaching 

time for both polymers, representing that Naphthalene in Polyethylene leaches faster 

than in PDMS. The thickness of the polymers is directly related to the mass resistance; 
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therefore, when thickness increases, the resistance increases, and the organic molecules 

face difficulty diffusing into the polymers. Thus, according to the nature of the 

polymers and size, the leaching time of the organic pollutants differs. On the whole, the 

leaching time of organic pollutants from PDMS is greater than the leaching time from 

Polyethylene, which means that compounds leach out faster in Polyethylene than in 

PDMS polymer.  

6.2 Recommendation 

The estimated Program Interface developed by US Environmental Protection 

Agency and Syracuse Research Cooperation contains various modules for the 

prediction of toxicity and fate of a large number of compounds whose experimental 

data is not available. The two-parameter models are developed on the basis of logKow 

and logKaw values taken from the EPI Suite, and the model gives good statistics for 

the diffusivity of chemicals into LDPE with minimum error. The model can be 

integrated into the EPISuite software for the estimation of the diffusivity of organic 

compounds; however, the logDPDMS statistics were not good enough to integrate the 

model into EPISuite software. 

Furthermore, new descriptors need to be evaluated for modelling the diffusivity 

of organic chemicals into PDMS, as these two parameters cannot describe the diffusion 

coefficients for the diverse set of organic compounds. Moreover, more experimental 

data are required for Polyethylene as very few numbers of chemicals with experimental 

values were available to wider the applicability domain. 
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ANNEXURE 

LIST OF CHEMICALS 

Table 1 Abraham Solvation Descriptors for PDMS 

Name  E S A B V 

Acenaphthene 1.6 1.05 0 0.22 1.2586 

Acenaphthylene 1.75 1.14 0 0.26 1.2156 

Anthracene 2.29 1.34 0 0.28 1.4544 

Benz[a]anthracene 2.99 1.7 0 0.35 1.8234 

Benzo[a]pyrene 3.63 1.98 0 0.44 1.9536 

Benzo[ghi]perylene 4.07 1.9 0 0.45 2.0838 

Chrysene 3.03 1.73 0 0.33 1.8234 

Dibenz[ah]anthracene 4 2.04 0 0.44 2.1924 

Fluoranthene 2.38 1.55 0 0.24 1.5846 

Fluorene 1.59 1.06 0 0.25 1.3565 

Indeno[1,2,3-cd]pyrene 3.61 1.93 0 0.42 2.0838 

Naphthalene 1.34 0.92 0 0.2 1.0854 

Phenanthrene 2.06 1.29 0 0.26 1.4544 

Pyrene 2.81 1.71 0 0.28 1.5846 

Benzene 0.61 0.52 0 0.14 0.7164 

n-Butylbenzene 0.6 0.51 0 0.15 1.28 

Chlorobenzene 0.72 0.65 0 0.07 0.8388 

2-Chlorotoluene 0.76 0.65 0 0.07 0.9797 

1,3-Dichlorobenzene 0.85 0.73 0 0.02 0.9612 

1,2-Dichlorobenzene 0.87 0.78 0 0.04 0.9612 

m-Xylene 0.62 0.52 0 0.16 0.9982 

Isopropylbenzene 0.6 0.49 0 0.16 1.1391 

sec-Butylbenzene 0.6 0.48 0 0.16 1.28 

n-Propylbenzene 0.6 0.5 0 0.15 1.1391 

tert-Butylbenzene 0.62 0.49 0 0.16 1.28 

1,3,5-Trichlorobenzene 0.98 0.73 0 0 1.0836 

1,2,3-Trimethylbenzene 0.73 0.61 0 0.19 1.1391 

1,2,4-Trimethylbenzene 0.68 0.56 0 0.19 1.1391 

hexachloro-1,3-butadiene 1.02 0.44 0 0.15 1.3206 

2-isopropyltoluene 0.67 0.53 0 0.19 1.28 

1,2-Dibromoethane 0.75 0.76 0.1 0.17 0.7404 

1,1,1,2-Tetrachloroethane 0.54 0.63 0.1 0.08 0.88 

1,1,2-Trichloroethane 0.5 0.68 0.13 0.08 0.7576 

Ethylbenzene 0.61 0.51 0 0.15 0.9982 

Bromodichloromethane 0.59 0.69 0.1 0.04 0.6693 

Chlorodibromomethane 0.78 0.68 0.12 0.1 0.7219 
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Tribromomethane 0.97 0.68 0.15 0.06 0.7745 

1,2-Dibromo-3-chloropropane 0.73 0.88 0 0.14 1.0037 

1,2-Dichloropropane 0.37 0.63 0 0.17 0.7761 

1,2,3-Trichloropropane 0.55 0.65 0.03 0.31 0.8985 

trans-1,3-Dichloropropene 0.49 0.86 0 0.06 0.7331 

Styrene 0.85 0.65 0 0.16 0.9552 

Tetrachloroethene 0.64 0.44 0 0 0.837 

Toluene 0.6 0.52 0 0.14 0.8573 

1,2,4-Trichlorobenzene 0.98 0.81 0 0 1.0836 

Trichloroethene 0.52 0.37 0.08 0.03 0.7146 

BDE 153 3.09 1.54 0 0.52 2.4329 

BDE 154 3.09 1.5 0 0.53 2.4329 

n-Decane 0 0 0 0 1.5176 

n-Undecane 0 0 0 0 1.6585 

n-Dodecane 0 0 0 0 1.7994 

n-Tridecane 0 0 0 0 1.9403 

n-Tetradecane 0 0 0 0 2.0812 

n-Pentadecane 0 0 0 0 2.2221 

n-Hexadecane 0 0 0 0 2.363 

n-Heptadecane 0 0 0 0 2.5039 

n-Octadecane 0 0 0 0 2.6448 

n-Nonadecane 0 0 0 0 2.7857 

n-Eicosane 0 0 0 0 2.9266 

n-heinecosane 0 0 0 0 3.0675 

n-Docosane 0 0 0 0 3.2084 

n-Tricosane 0 0 0 0 3.3493 

n-Tetracosane 0 0 0 0 3.4902 

n-Pentacosane 0 0 0 0 3.6311 

n-Hexacosane 0 0 0 0 3.772 

n-Heptacosane 0 0 0 0 3.9129 

n-Octacosane 0 0 0 0 4.0538 

n-Nonacosane 0 0 0 0 4.1947 

Triacontane 0 0 0 0 4.3356 

n-Heinetriacontane 0 0 0 0 4.4765 

n-Dotriacontane 0 0 0 0 4.6174 

Tritriacontane 0 0 0 0 4.7583 

Tetratriacontane 0 0 0 0 4.8992 

n-Pentatriacontane 0 0 0 0 5.0401 

n-Hexatriacontane 0 0 0 0 5.181 

n-Heptatriacontane 0 0 0 0 5.3219 

Atrazine 1.22 1.29 0.17 1.01 1.6196 

Azoxystrobin 2.59 2.01 0 2.3 2.9165 

Bromophos-ethyl 1.51 1.26 0 0.71 2.244 

Bromophos 1.51 1.51 0 0.46 1.9622 

1-naphthyl N-methylcarbamate 1.51 1.67 0.22 0.79 1.5414 



 

 

45 

 

carbofuran 0.92 1.08 0.21 1.1 1.6861 

Chlorpropham 0.95 1.25 0.29 0.52 1.5766 

Chlorpyrifos 1.59 0.92 0 1.01 2.1503 

N,N-Diethyl-3-methylbenzamide 0.96 1.4 0 1.02 1.6773 

Disulfoton 1.25 0.86 0 1.03 2.0483 

Ethion 1.35 1.66 0 1.25 2.6747 

Ethofumesate 1.03 1.26 0 1.21 2.0511 

Fenpropathrin 1.73 1.91 0 0.68 2.7715 

Fenthion 1.33 1.73 0 0.67 1.9877 

Fenvalerate 2.2 2.5 0 1.2 3.1876 

Hexachlorobenzene 1.49 0.99 0 0 1.4508 

Irgarol 1.69 1.39 0.26 1.08 1.9748 

Malathion 0.69 1.84 0 1.18 2.3154 

Metazachlor 1.8 1.73 0 1.23 2.0865 

3(4-Bromophenyl)-1-methyl-1-

methoxyurea 
1.39 1.62 0.36 0.81 1.5881 

Metolachlor 1.11 1.53 0 1.25 2.2811 

Mevinphos 0.29 1.36 0 1.16 1.5657 

Paraoxon-ethyl 1.11 1.72 0 1.2 1.8936 

Parathion 1.44 0.93 0 1.04 1.9984 

Parathion-methyl 1.44 1.2 0 0.96 1.7166 

Pendimethalin 1.39 1.39 0.16 0.71 2.1509 

Permethrin 2.05 1.42 0 0.88 2.8186 

Prometryn 1.43 1.23 0.17 1.01 1.9425 

Propazine 1.19 1.26 0.13 1.05 1.7605 

Propham 0.9 1.25 0.37 0.64 1.4542 

Simazine 1.25 1.32 0.18 0.98 1.4787 

Terbutryn 1.43 1.23 0.12 0.99 1.9425 

Terbuthylazine 1.19 1.26 0.14 0.91 1.7605 

Galaxolide 1.09 1.15 0 0.63 2.2487 

1-tert-butyl-3,5-dinitro-2-methoxy-

4-methylbenzene 
1.19 1.72 0 0.7 1.9689 

Musk xylene 1.42 2.18 0 0.63 2.0844 

9-Nitroanthracene 2.47 1.73 0 0.53 1.6286 

1-Nitronaphthalene 1.6 1.59 0 0.29 1.2596 

2-Nitronaphthalene 1.6 1.5 0 0.27 1.2596 

1-Nitropyrene 2.81 2.07 0 0.33 1.7588 

Tri-n-butyl phosphate -0.1 0.71 0 1.26 2.2388 

triphenyl phosphate 1.83 1.66 0 1.1 2.3714 

tricresyl phosphate 1.73 1.63 0 0.94 2.7941 

Tri-m-cresylphosphate 1.61 1.82 0 1.1 2.7941 

2-Hydroxy-4-methoxybenzophenone 1.65 1.63 0 0.62 1.7391 

2‐Hydroxybenzophenone 1.54 1.46 0 0.46 1.5395 

4-Nonylphenol 0.77 0.88 0.55 0.36 2.0432 

Triclosan 1.73 1.55 0.47 0.45 1.8088 
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Table 2 Abraham Solvation Descriptors for LDPE 

Name E S B V L 

Indeno[1,2,3-cd]pyrene 3.61 1.93 0.42 2.0838 12.699 

Naphthalene 1.34 0.92 0.2 1.0854 5.161 

Acenaphthene 1.6 1.05 0.22 1.2586 6.469 

Acenaphthylene 1.75 1.14 0.26 1.2156 6.175 

Fluorene 1.59 1.06 0.25 1.3565 6.922 

Anthracene 2.29 1.34 0.28 1.4544 7.568 

Phenanthrene 2.06 1.29 0.26 1.4544 7.632 

Fluoranthene 2.38 1.55 0.24 1.5846 8.827 

Pyrene 2.81 1.71 0.28 1.5846 8.833 

Benz[a]anthracene 2.99 1.7 0.35 1.8234 10.291 

Chrysene 3.03 1.73 0.33 1.8234 10.334 

Benz[b]fluoranthene 3.19 1.82 0.4 1.9536 11.632 

Benzo[ghi]perylene 4.07 1.9 0.45 2.0838 13.264 

Dibenz[ah]anthracene 4 2.04 0.44 2.1924 12.96 

PCB 4 1.6 1.22 0.2 1.569 6.815 

PCB 14 1.65 1.18 0.16 1.569 7.365 

PCB 18 1.75 1.35 0.17 1.6914 7.48 

PCB 28 1.76 1.33 0.15 1.6914 7.904 

PCB 29 1.77 1.33 0.15 1.6914 7.722 

PCB 30 1.74 1.35 0.17 1.6914 7.39 

PCB 31 1.77 1.33 0.15 1.6914 7.862 

PCB 44 1.9 1.48 0.15 1.8138 8.312 

PCB 47 1.88 1.48 0.15 1.8138 8.227 

PCB 49 1.89 1.48 0.15 1.8138 8.186 

PCB 50 1.86 1.48 0.15 1.8138 7.854 

PCB 52 1.9 1.48 0.15 1.8138 8.144 

PCB 56 1.92 1.46 0.13 1.8138 8.842 

PCB 66 1.91 1.46 0.13 1.8138 8.716 

PCB 74 1.91 1.46 0.13 1.8138 8.583 

PCB 85 2.03 1.61 0.13 1.9362 9.092 

PCB 87 2.04 1.61 0.13 1.9362 9.051 

PCB 97 2.04 1.61 0.13 1.9362 9.033 

PCB 99 2.03 1.61 0.13 1.9362 8.91 

PCB 101 2.04 1.61 0.13 1.9362 8.868 

PCB 104 1.98 1.61 0.13 1.9362 8.244 

PCB 105 2.04 1.59 0.11 1.9362 9.594 

PCB 110 2.04 1.61 0.13 1.9362 9.161 

PCB 118 2.06 1.59 0.11 1.9362 9.396 

PCB 128 2.18 1.74 0.11 2.0586 9.957 

PCB 137 2.18 1.74 0.11 2.0586 9.712 

PCB 138 2.18 1.74 0.11 2.0586 9.772 
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PCB 141 2.19 1.74 0.11 2.0586 9.67 

PCB 145 2.13 1.74 0.11 2.0586 8.928 

PCB 149 2.16 1.74 0.11 2.0586 9.352 

PCB 151 2.17 1.74 0.11 2.0586 9.142 

PCB 153 2.18 1.74 0.11 2.0586 9.587 

PCB 155 2.12 1.74 0.11 2.0586 8.715 

PCB 156 2.21 1.72 0.09 2.0586 10.2 

PCB 170 2.33 1.87 0.09 2.181 10.577 

PCB 180 2.29 1.87 0.09 2.181 10.415 

PCB 187 2.31 1.87 0.09 2.181 9.864 

PCB 194 2.48 2 0.06 2.3034 11.186 

PCB 204 2.52 2 0.06 2.3034 10.143 

Hexachlorobenzene 1.49 0.99 0 1.4508 7.39 

 

Table 3 Diffusion Coefficient, Partition Coefficient, Thicknesses and Leaching 

time of some of the organic chemicals from PDMS polymer 

 

 

 

 

 

 

 

Name of 

Chemical

s 

logDPDMS 

(m
2
s

-1
)

DPDMS (m
2
s

-1
) KPDMS-W  

Thickness 

macroplastic 

(m)

Thickness 

microplasti

c (m)

Thickness 

nanoplasti

c(m)

Normal Microplastic 
Nanoplasti

c 

Acenaphth

ene
-10.03 9.33E-11 4.17E+03 5.00E-04 5.00E-06 5.00E-08 -0.19 -4.19 -8.19

Benz[a]ant

hracene
-10.73 1.86E-11 2.09E+05 5.00E-04 5.00E-06 5.00E-08 -1.19 -3.19 -5.19

Naphthale

ne
-9.82 1.51E-10 1.07E+03 5.00E-04 5.00E-06 5.00E-08 0.19 -1.81 -3.81

Fluoranthe

ne
-10.4 3.98E-11 4.17E+04 5.00E-04 5.00E-06 5.00E-08 -0.82 -2.82 -4.82

Benzo[ghi]

perylene
-10.98 1.05E-11 3.16E+05 5.00E-04 5.00E-06 5.00E-08 -1.12 -3.12 -5.12

Styrene -9.71 1.95E-10 7.24E+02 5.00E-04 5.00E-06 5.00E-08 0.25 -1.75 -3.75

Toluene -9.56 2.75E-10 2.57E+02 5.00E-04 5.00E-06 5.00E-08 0.55 -1.45 -3.45

m-Xylene -9.68 2.09E-10 8.91E+02 5.00E-04 5.00E-06 5.00E-08 0.13 -1.87 -3.87

Ethylbenze

ne 
-9.75 1.78E-10 5.13E+02 5.00E-04 5.00E-06 5.00E-08 0.44 -1.56 -3.56

Benzene -9.4 3.98E-10 1.10E+02 5.00E-04 5.00E-06 5.00E-08 0.76 -1.24 -3.24
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Table 4 Diffusion Coefficient, Partition Coefficient, Thicknesses and Leaching 

time of some of the organic chemicals from PE polymer 

 

Name of 

Chemicals 

logDPE(m
2

s
-1

)
DPE (m

2
s

-1
) KPE

Thickness 

 macro (m)

Thickness 

 

microplast

ic (m)

Thickness 

 

nanoplasti

c(m)

Normal Microplastic Nanoplastic 

Acenaphthe

ne
-12.36 4.37E-13 4.17E+03 5.00E-04 5.00E-06 5.00E-08 2.14 -1.86 -5.86

Benz[a]anth

racene
-14.16 6.92E-15 5.37E+05 5.00E-04 5.00E-06 5.00E-08 1.83 -2.17 -6.17

Naphthalen

e 
-12.26 5.50E-13 6.46E+02 5.00E-04 5.00E-06 5.00E-08 2.85 -1.15 -5.15

Fluoranthen

e
-13.16 6.92E-14 8.51E+04 5.00E-04 5.00E-06 5.00E-08 1.63 -2.37 -6.37

PCB 28 -12.75 1.78E-13 2.51E+05 5.00E-04 5.00E-06 5.00E-08 0.75 -3.25 -7.25

PCB 156 -13.04 9.12E-14 9.12E+06 5.00E-04 5.00E-06 5.00E-08 -0.52 -4.52 -8.52

Phenanthre

ne
-12.61 2.45E-13 1.66E+04 5.00E-04 5.00E-06 5.00E-08 1.79 -2.21 -6.21

Pyrene -13.28 5.25E-14 1.26E+05 5.00E-04 5.00E-06 5.00E-08 1.58 -2.42 -6.42

Chrysene -13.28 5.25E-14 6.03E+05 5.00E-04 5.00E-06 5.00E-08 0.9 -3.1 -7.1

PCB 105 -12.91 1.23E-13 2.75E+06 5.00E-04 5.00E-06 5.00E-08 -0.13 -4.13 -8.13

PCB 153 -13.04 9.12E-14 6.46E+06 5.00E-04 5.00E-06 5.00E-08 -0.37 -4.37 -8.37


