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Abstract

Artificial intelligence (AI) has made substantial progress in medicine. Automated dental

imaging interpretation is one of the most prolific areas of research using AI. X-ray imag-

ing systems have enabled dental clinicians to identify dental diseases since the 1950s.

However, the manual process of dental disease assessment is tedious and error-prone

when diagnosed by inexperienced dentists. Thus, researchers have employed different

advanced computer vision techniques, machine and deep learning models for dental dis-

ease diagnoses using x-ray imagery. Despite the notable development of AI in dentistry,

certain factors affect the performance of the proposed approaches. Hence, it is of utmost

importance for the research community to formulate suitable approaches, considering

the existing challenges and leveraging findings from the existing studies. In this regard,

lightweight Mask-RCNN model is proposed for periapical disease detection. The pro-

posed model is constructed in two parts: a lightweight modified MobileNet-v2 backbone

and region based network (RPN) is proposed for periapical disease localization on small

dataset. To measure the effectiveness of the proposed model, lightweight Mask-RCNN

is evaluated on a custom annotated dataset comprising images of five different types

of periapical lesions. The results indicate that the proposed model was able to detect

and localize periapical lesions with an overall accuracy of 94%, mean average precision

(mAP) of 85% and mIoU of 71.0%. The proposed model improves the detection, classifi-

cation, and localization accuracy significantly using smaller number of images compared

to existing methods.

Keywords - Disease Detection and segmentation, lightweight deep learning, Mask-

RCNN, Periodontal disease

x



Chapter 1

Introduction and Motivation

1.1 Overview

Artificial intelligence (AI) has been widely forecasted in the field of medicine since its

conception over 60 years ago [2, 3, 4, 6]. Although the maturity of AI in the field of

dentistry has fallen short in sub-fields such as periodontology, endodontics, orthodontics,

restorative dentistry, and oral pathology, keen interest has been witnessed in the past few

years as artificial intelligence has become incessantly accessible to researchers. Artificial

intelligence has made substantial progress in the diverse disciplines of dentistry including

dental disease diagnosis [36], localization [12], classification [47], estimation [50], and

assessment of dental disease [8].

On a broader level, AI enables the creation of intelligent machines that can achieve

tasks without requiring human intervention. Machine learning (ML) [32] is a subset

of AI that utilizes computational algorithms to analyze datasets to make predictions

without the need for explicit instructions. Towards a more sophisticated and increasingly

independent approach for diagnosis, treatment planning, and risk assessment, there has

been seen a profound inclination toward deep learning (DL) applications [23, 29].

1.2 Motivation

Over the past decade, Artificial intelligence has remarkably contributed to the various

subdisciplines falling under the category of dentistry, specifically periodontology. Dif-

ferent studies have explored dental disease detection, localization, classification, and

1



Chapter 1: Introduction and Motivation

Table 1.1: Strengths and weaknesses of baseline dental lesion localization models
Author, Year

(Ref)

Image

Modality
Task Method Strengths Weaknesses

Jader et al.,

2018 [24]

Panoramic

images

Localize missing

teeth

M-RCNN with

ResNet-101

backbone

The model is helpful in identifying

missing or broken teeth with an accuracy

of 98%.

- Highly variable data

- Other metrics i.e., mAP, IoU

are not reported for comparison

Anantharaman

et al., 2018 [20]
Colored images

Detect and segment

cold/canker sores

M-RCNN with

ResNet-101

backbone

The model is helpful in performing pixel-

wise segmentation of visible light images

of oral cavity with accuracy of 74.4%

- Sparse dataset

- Other metrics i.e, mAP, IoU,

precision, F1-score, recall are

not reported for comparison

Moutselos et al.,

2019 [38]
Colored images

Localize and classify

caries occlusal

surfaces

M-RCNN with FCN

and ResNet-101

backbone

The model provided encouraging

performance for automatically selecting

image texture features and detect lesions

without additional pre-processing

actions

- The computational complexity

is not reported

Chen et al., 2019 [33]
Periapical

radiographs

Teeth localization

and numbering
Faster-RCNN

The model detects and numbers teeth

with recall and precision exceeding

90% on manually annotated dataset

- The model suffers in numbering

teeth in complicated cases such

as heavily decayed teeth

Laishram &

Thongam, 2020 [43]

Panoramic

radiographs

Localize and classify

different type of

teeth

Faster-RCNN

built on RPN and

ODN

The model is helpful in detecting

different types of teeth achieving mean

average precision (mAP) of 91.40%

and accuracy of 91.03%

- Limited dataset in terms of size

Zhu et al., 2022 [63]
Periapical

radiographs

Detection of carious

teeth

Faster-RCNN with

pretrained ResNet-50

The model is helpful in with an average

precision of 73.49%, F1-score of 0.68

with sample detection speed of 0.1923

- It suffers from computational

compexity

- The model does not identify

caries type

Rashid et al.,

2022 [61]

Mixed images

(colored and

periapical

radiographic

images)

Detect and localize

dental carious regions
Hybrid M-RCNN

The model was helpful in localizing

dental carious regions with a precision

of 81.02% and accuracy of 95.75%

- Limited dataset in terms of size

- The model does not identify

caries type for both colored and

x-ray image

segmentation using different imaging modalities within the dental domain. However,

few studies explored dental disease localization as discussed in the literature review.

To localize dental carious regions, various challenges are observed in the recent studies,

which are discussed in Table 1.1. Further exploration is required to propose detection

and localization approaches for dental caries diagnosis in real time.

Faster-RCNN, which extends Fast-RCNN is utilized to localize and number teeth, the

model achieves recall and precision of above 90%, however, the model suffers in num-

bering teeth in complicated cases [33]. Faster-RCN built on region proposal network

(RPN) and object detection network (ODN) [43] was able to detect different types

of teeth achieving mean average precision (mAP) of 91.40% and accuracy of 91.03%,

however, the model was applied on a small dataset. Another variant of Faster-RCNN

pretrained on ResNet-50 [63] was employed for the detection of carious teeth, achieving

a precision of 73.49%, F1-score of 0.68, however, the model does not identify the type

of caries and only localizes caries region.

M-RCNN, which extends Faster-RCNN with pretrained ResNet-101 [24] was found to

2



Chapter 1: Introduction and Motivation

be helpful in the identification of missing or broken teeth achieving an accuracy of 98%.

However, segmentation performance metrics were not reported. For pixel-wise segmen-

tation of visible light images for identification of oral cavities [20], M-RCNN achieves

an accuracy of 74.4%, however, the dataset is sparse and other relevant performance

metrics have not been reported for comparison. In another attempt, M-RCNN with a

fully convolutional network (FCN) and a backbone of ResNet-101 [38] was investigated

to localize occlusal surface caries on a limited dataset and the computational complexity

was not reported. In a recent attempt, hybrid M-RCNN [61] was employed to identify

dentinal caries on mixed images achieving an average precision of 81.02% and accuracy

of 95.75%, however, the model does not identify caries type for both colored and x-ray

images. Additionally, M-RCNN with ResNet as backbone requires a substantial amount

of calculations to learn and analyze, and the training process for M-RCNN requires high-

performance computational resources such as GPU and memory [60]. Further research

is required to explore and investigate efficient models for the identification and diagnosis

of dental caries.

1.3 Scope

Dental disease detection is a tedious process and requires assistance of dental experts,

dentists, orthodonotists, and radiologists in properly diagnosing dental caries and other

related disease. The process of manually identifying disease is time consuming and prone

to human error. Additionally, due to prevalence of COVID-19, manual dental disease

diagnosis is suffering due to lack of physical accessibility of patients for routine checkups.

Thus, there is a need for research for robust and accurate dental lesion diagnosis systems

to automate the process and provide assistance to dental clinicians in a more efficient

and effective manner.

The aim of this research is to persuade researchers to broaden the scope of dental disease

diagnosis by proposing a deep learning based system that can be employed by dental

clinicians in day-to-day practice for dental disease detection. The main focus of this

study is to propose a system able to detect and localize dental lesions to assist dentists

in making decisions and plan treatment to prevent or cure lesions at early stages.

3



Chapter 1: Introduction and Motivation

1.4 Problem Statement

Visual examination of intraoral radiographs is preferred for dental caries detection, how-

ever this process is time consuming and leads to errors due to human intervention. To

automate the process of dental diagnosis, different studies explored use of Artificial in-

telligence. Several deep learning based methods are introduced for disease detection,

classification, and segmentation. However, a very few attempts are made for dental dis-

ease localization on intraoral radiographs. Additionally, the proposed models for dental

disease localization are computing resource intensive and require larger datasets to train

and make accurate predictions.

1.5 Key Contribution

The literature review indicates that there is still room for research on the localization and

segmentation of caries using periapical radiographic images. There are very few studies

focusing on usable carious region detection and localization on periapical radiographs.

The existing approaches for dental lesion localization provide the key knowledge which

can be adopted by researchers to focus on implementing improved segmentation and

localization approaches for dental caries. In this regard, this study makes the following

contributions:

• Put forward an automated deep learning based dental caries localization and seg-

mentation model to identify the type of periapical lesion and localize the lesion on

periapical radiographs.

• Propose a lightweight MobileNet-v2 with additional layers to enhance the perfor-

mance of Mask-RCNN on small periapical dataset.

• Preprocess low resolution images to obtain better disease diagnosis performance.

• Comprehensive evaluation and comparison of state-of-the-art deep learning based

segmentation and localization methods with proposed model.

• Considering the limitation of data availability, this study introduces an annotated

dental lesion dataset to identify periapical lesions.

4



Chapter 1: Introduction and Motivation

1.6 Thesis Breakdown

The research has been conducted in different phases and are divided into following

chapters:

Chapter 1 Introduction: An overview of already proposed approaches for dental

caries detection, scope of research, problem statement and key contributions made.

Chapter 2 Literature Review: Discussion related to already proposed approaches

for dental caries detection based on machine and deep learning and proposed clinical

decision support systems.

Chapter 3 Design and Methodology: Details of the detection and localization

model proposed to diagnose periapical lesions.

Chapter 4 Implementation and Results: Brief explanation of implementation steps

and performance evaluation of the proposed model.

Chapter 5 Discussion: An overview of results obtained by the proposed model and

limitations of the presented work.

Chapter 6 Conclusion: Conclude the presented work and discuss the impact of the

proposed model on detection and localization of dental lesions, and provide future di-

rections.

1.7 Summary

In this chapter, the use of Artificial intelligence in the field of dentistry is discussed

along with discussion related to several research studies exploring the use of AI in

disease detection, localization, classification, and segmentation. This chapter provides

brief overview of the strengths and weaknesses of different studies that employed deep

learning based model for disease detection localization indicating the need for further

research to explore and investigate efficient models for the identification and diagnosis of

dental caries. In addition, this chapter highlights the key contributions of the conducted

research to enhance the dental disease diagnosis process.

5



Chapter 2

Literature Review

2.1 Introduction

Recent advancements in artificial intelligence have contributed significantly to help den-

tal clinicians in making more accurate predictions in an efficient manner. The clinical

practices have involved different machine and deep learning approaches for dental le-

sion diagnosis. Several approaches have been proposed to localize dental lesions and

researchers have proposed different localization tools to detect lesions in real-time. The

performance comparison of different techniques proposed in periodontology are pre-

sented in Table. 2.1 and 2.2. The different machine learning, deep learning approaches

along with clinical support decision systems are discussed in the following sections.

2.2 Clinical Support Decision Systems

AI application technology is progressing remarkably in the field of dentistry. Clinical

decision support systems to provide expert support to a health practitioner is one ex-

ample [27]. Moreover, these systems have the capability of solving problems that are

too complex to be solved by using conventional methods [19]. Moreover, CDSS provides

valuable information to dental practitioners that aids in producing faster and superior

dental health outcomes.

In dentistry, the interpretation of data and carrying out proper diagnosis is crucial.

However, medical decision-making is cumbersome for doctors in a time-compressed en-

vironment. Thus, an intelligent tool is required to assist doctors in making accurate

6



Chapter 2: Literature Review

decisions. These systems come under the category of clinical support decision systems

(CDSS). Artificial neural networks (ANNs) have been used as CDSS for diagnosis, clas-

sification, and assessment. Several ANN architectures have been employed to assist

doctors in making accurate decisions in periodontology. Recently, Geetha et al. pro-

posed a back propagation neural network for tooth decay detection. The model achieved

an accuracy of 97.1% and a false positive rate of 2.8% using intraoral radiographs. The

study indicates that ANNs can be employed for precise decay detection compared to

traditional dental examination methods [42]. Papantonopoulos et al. evaluated multi-

layer perceptron ANN for bone loss assessment on medical health records. The model

provided effective periodontitis classification with an accuracy of 98.1% [10]. Using 230

textual subjects, Shankarapillai et al. proposed a multilayer feed-forward propagation

network for effective periodontitis risk prediction [8].

2.3 Machine Learning Approaches

Machine learning (ML) is the scientific study of algorithms and statistical models [32]

used for a vast array of processing tasks without requiring prior knowledge or hand-

crafted rules. Recent years have witnessed the wide spread of ML due to their superior

performance for various healthcare applications such as dentistry. ML algorithms fall

into two learning types: supervised and unsupervised.

The amount of data generated by healthcare service providers is huge, making the

data analysis process cumbersome. ML helps in effectively analyzing the data and

gaining actionable insights. Additionally, different dentistry applications can benefit

from ML techniques, including disease diagnosis, prognosis, treatment, and automating

the clinical workflow. Moreover, ML for clinical applications has great potential to

transform traditional healthcare service delivery [22].

To classify enamel, dentin, and pulp caries, Oprea et al. proposed rule-based classifi-

cation. The authors were able to categorize regions as dentin caries sized over 2mm

[5]. Another rule based approach based on gradient histogram and the threshold was

proposed by ALbahbah and fellow authors on panoramic radiographs to extract and

segment decayed and normal teeth. [14]. For localization of alveolar bone loss, Lin et al.

evaluated a level segmentation method based on SVM, KNN, and Bayesian classifier.

The model was able to localize alveolar bone loss with high classification effectiveness

7



Chapter 2: Literature Review

[12]. A cluster-based segmentation technique was proposed by Datta and Chaki to de-

tect dental cavities. The proposed model utilized Wiener filter to extract caries lesions

followed by region segmentation to monitor the lesion size and growth [11]. To detect

and classify proximal carious and non-carious lesions on panoramic radiographs, Na’am

et al. explored multiple morphological gradient based image processing method on im-

ages with manually cropped regions [17]. An extreme machine learning method based

on contrast limited adaptive histogram and gray-level covariance matrix was evaluated

by Li and fellow authors, using digital photographs, the model provided an accuracy

of 74% for gingivitis identification using a small dataset [37]. To minimize error in

diagnosis, authors have proposed methods involving machine learning techniques. Li

et al. proposed a plaque segmentation method based on CNN using oral endoscopic

images. The results provided performance superior to that of dentists with an accuracy

of 86.42% [58].

2.4 Deep Learning Approaches

Recent years have seen a surge of interest in deep learning (DL), a subfield of machine

learning (ML), as it allows machines to mimic human intelligence in increasingly inde-

pendent and sophisticated ways [23, 29]. DL uses multiple layers of non-linear units to

analyze and extract useful knowledge from huge amounts of data. The extracted knowl-

edge is then used to produce state-of-the-art prediction results. The neural network

architectures used in DL provide the capability to perform automatic and accurate de-

tection in healthcare. Based on the study, DL has enormous potential to bring genuinely

impactful applications to the field of dentistry.

Different deep learning approaches have been employed by researchers to pave way for

more efficient and effective methods to diagnose dental caries. To classify carious and

non-carious teeth on a small labeled dataset, a pretrained convolutional neural network

(CNN) was utilized by Prajapati et al. The model was able to classify dental caries,

periodontitis, and periapical infection [18]. Lee et al. utilized Deep CNN to diagnose

and classify caries using 3000 periapical radiographs. The model achieved an AUC

of 0.91 for premolar, 0.89 for molar, and 0.84 for both premolar and molar models

[26]. For identification of dental caries, Cantu et al. investigated U-Net on bitewing

radiographs. It was found that segmentation based models possess the potential to

8



Chapter 2: Literature Review

aid dental clinicians in detecting and locating dental caries more efficiently [41]. For

identification of endo-perio lesions on periapical radiographs, Sajjad et al. investigated

AlexNet, the model achieved an accuracy of 98% [39]. For early identification of dental

caries, Kumari et al. preprocessed bitewing radiographic images using contrast limited

adaptive histogram equalization (CLAHE) and noise filtering followed by meta-heuristic

based ResneXt RNN [56].

Deep learning-based methods have gained immense popularity in recent years. Several

authors have evaluated methods for bone loss detection in intraoral radiographs, Kim

et al. suggested using transfer learning to improve the performance of bone loss and

odontogenic cyst lesion detection using panoramic radiographs. The model was useful

in tooth numbering with performance superior to that of dental clinicians [35]. Another

model using deep-feed forward CNN was evaluated by Krois and fellow authors using

panoramic radiographs. The model showed discrimination ability similar to that of

three examiners [36]. Duong et al. proposed a U-Net-based network for alveolar bone

delineation using high-frequency ultrasound images yielding performance higher than

three experts [34]. For the classification of regions on the basis of periodontal bone

destruction, Moran et al. demonstrated a ResNet model achieving an accuracy of 82%

using 467 periapical radiographs [47]. Using ResNet34 as an encoder with U-Net, Nguyen

et al. assessed 1,100 intraoral images for alveolar bone segmentation, the model was able

to identify alveolar bone with a dice coefficient of 85.3% [48]. To automate the process

of detecting bone lesions and detecting correct shapes, Khan et al. presented a disease

segmentation method based on U-Net architecture. The model was able to detect the

presence and shape of caries with performance higher than three experts [52]. Another

anatomically constrained dense U-Net method was proposed by Zheng et al. for bone

lesion identification. Using CBCT images, the model was able to detect the correct shape

of the bone and lesion [50]. For periodontitis detection, Li et al. utilized Mask R-CNN

with a novel calibration method, using panoramic radiographs, the model diagnosed the

severity degree of periodontitis with an accuracy of 82% outperforming that of a junior

dentist [46]. In a recent attempt, Lee et al. proposed a VGG-based neural network for

diagnosing periodontal bone loss using 1,740 periapical radiographs. The model achieves

an accuracy of 99% and AUC of 98% outperforming the performance of three dentists

[57].

Radiological examinations help dental clinicians in the identification of teeth abnor-

9



Chapter 2: Literature Review

malities, cysts, infections, cysts, and infections. However, manual examinations are

time-consuming and rely solely on a specialist’s opinion which may bring differences

in the diagnosis. Different methods have been employed by researchers in recent years

mainly relying on boundary-based, region-based [45] and threshold-based methods [12],

cluster-based. As a first step, Jader et al. employed RCNN for the segmentation of caries

and the detection of missing teeth on buccal images. The results indicated that deep

learning-based instance segmentation has the potential to automate the process of caries

detection and medical report generation [24]. In another attempt to automate the sep-

aration of each individual tooth, Laishram and Thongam employed Faster-RCNN. The

model was able to detect and classify different types of teeth such as molar, premolar,

canine, viz., and incisors [43]. To detect and classify dental caries on occlusal surfaces

using colored, Moustselos et al. investigated Mask-RCNN, which extends Faster-RCNN

[38]. Anantharaman et al. explored Mask-RCNN on colored images to segment canker

and cold sores. The model achieved a pixel accuracy of 74% [20]. To detect the position

of teeth on manually annotated periapical radiographs based on prior domain knowl-

edge, Chen et al. utilized Faster-RCNN. It was found that the model can detect teeth

position with both precision and recall of above 90% [33]. Recently, Zhu and fellow

authors investigated Faster-RCNN to predict the number and locations of dental caries

on 200 dental periapical radiographs. The model achieved a mean average precision of

73.49%, an F1-score of 0.68. However, the model does not specify the type of caries

identified [63]. A hybrid M-RCNN model was proposed by Rashid et al. capable of

detecting and localizing dental lesions on mixed images including both colored and x-

ray images. The model achieves a precision of 95.5% for colored images, 84.45% for

radiographs, and 81.02%for mixed images [61].

10



Chapter 2: Literature Review

Table 2.1: Summary of related studies for AI application for disease diagnosis in periodontology

AI

Application

Author,

Year (Ref)
Architecture

Data

Modality

Dataset Size

Split (Train/

Val/Test or Train/

Test)

Study

Factor

Results

(Performance

metrics/values)

Conclusion

Disease

Segmentation

Li et al., 2022

[58]
CNN

Oral

endoscope

images

607 images

Train:320 images

Test:287 images

320 / 287

Plaque

segmentation

Acc: 0.864

IoU: 0.859

The model is helpful

in plaque segmentation

on small dataset

Disease

Diagnosis

Li et al., 2019

[37]

A method based

on contrast limited

adaptive histogram

(CLAHE), gray-level

co-occurrence

matrix (GLCM),

and extreme machine

learning

Digital

photographs

93 images

Train: 73 images

Test: 20 images

73 / 20

Gingivitis

identification

Accuracy: 0.74

Sensitivity: 0.75

Specificity: 0.73

Precision: 0.74

The method is helpful

for gingivitis identification

Disease

Localization

Lin et al., 2015

[12]

Level segmentation

based on Bayesian

or KNN or SVM

classifier

Periapical

Radiographs
31 images

Alveolar

bone loss

Mean SD

True Positive Fraction

(TPF): 0.925

True Positive Fraction

(FPF): 0.14

The model localizes bone

loss areas with high

classification effectiveness

4*
Disease

Detection

Lee et al., 2022

[57]

VGG+Individual

CNN

Periapical

Radiographs

1,740 images

Train: 1,218 images

Valid: 417 images

Test: 105 images

1218 / 417 / 105

Bone loss
Acc: 0.99

AUC: 0.98

The proposed algorithm

is helpful in diagnosing

periodontal bone loss

Krois et al., 2019

[36]

Seven Layered Deep

CNN

Panoramic

radiographs

1,750 images

Train: 1,400 images

Valid: 350 images

1400 / 350

Bone loss Acc: 0.81

The model shows

discrimination ability

similar to that of dentists

Kim et al., 2019

[35]

Deep CNN + Transfer

Learning

Panoramic

radiographs

12,179 images

Train: 11,189 images

Valid: 190 images

Test: 800 images

1189 / 190 / 800

Bone loss

AUROC: 0.95

F1-score: 0.75

Sensitivity: 0.77

Specificity: 0.95

PPV: 0.73

NPV: 0.96

The model is useful

in tooth numbering

and achieved detection

performance superior

to that of dental clinicians

Lee et al., 2019

[44]

GoogleNet InceptionV3

+ Transfer Learning

Panoramic

radiographs

and

CBCT images

2,126 images

including 1,140

panoramic and

986 CBCT images

Train: 1700 images

Test: 426 images

1700 / 426

Odontogenic

cyst lesion

Panoramic images:

AUC – 0.847

Sensitivity – 0.882

Specificity – 0.77

CBCT images

AUC – 0. 914

Sensitivity - 0.961

Specificity – 0.771

The model provides

higher diagnostic

performance on CBCT

images in effectively

detecting and diagnosing

cystic lesions

Disease

Classification

Moran et al., 2020

[47]

ResNet

Inception

Periapical

radiographs

467 images

Train: 415 images

Test: 52 images

415 / 52

Periodontal

bone

destruction

Acc: 0.81

Precision: 0.76

Recall: 0.92

Specificity: 0.71

NPV: 0.90

The inception model

classifies regions based

on the presence of

periodontal bone

destruction with

encouraging performance

11
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Table 2.2: Summary of related studies for AI application for disease segmentation, diagnosis

and risk assessment

AI

Application

Author,

Year (Ref)
Architecture

Data

Modality

Dataset Size

Split (Train/

Val/Test or Train/

Test)

Study

Factor

Results

(Performance

metrics/values)

Conclusion

Disease

Segmentation

Khan et al., 2021

[52]
UNet + DenseNet121

Periapical

radiographs

200 images

Train: 160 images

Test: 40 images

Bone recession

and inter-radicular

radioulency

mIoU: 0.501

Dice score: 0.569

Automates the process

of detecting the presence

and shape of caries

Zheng et al., 2021

[50]

Automatically

constrained dense

U-Net

CBCT images 100 images
bone lesion

identification

Dice score for

different categories:

Background: 0.961

Lesion: 0.709

Material: 0.822

Bone: 0.877

Teeth: 0.801

The model is helpful in

detecting the correct shape

of the lesion and the bone

Duong et al., 2019

[34]
UNet

High frequency

ultrasound images

35 images

Train: 30 images

Test: 5 images

30 / 5

Alveolar bone

assessment

Dice Coefficient: 0.75

Sensitivity: 0.77

Specificity: 0.99

The method yields a higher

performance in delineating

alveolar bone as compared

to experts

Nguyen et al., 2020

[48]

U-Net with ResNet34

encoder

Intraoral ultrasound

images

1,100 images

Train: 700 images

Valid: 200 images

Test: 200 images

700 / 200 / 200

Alveolar bone

assessment

Dice Coefficient: 0.853

Sensitivity: 0.885

Specificity: 0.998

The model has the potential

to detect and segment alveolar

bone automatically

3*
Disease

Diagnosis
Li et al., 2020 [46]

Mask RCNN + novel

caliberation method

Panoramic

radiographs

298 images

Train: 270 images

Test: 28 images

270 / 28

Periodontitis

prediction

mAP: 0.826

Dice score: 0.868

F1-score: 0.454

Accuracy: 0.817

The model is useful for

diagnosing the severity

degrees of periodontitis

Papantonopoulos

et al., 2014 [10]

Multilayer

Perceptron ANN
Textual 29 subjects

Aggressive

periodontitis
Accuracy: 0.981

The model provides

effective periodontitis

classification

Geetha et al., 2020

[42]

Back propagation

Neural Network

Intraoral digital

radiographs
105 images

Dental caries

detection

Accuracy: 0.971

FPR: 2.8%

ROC: 0.987

The model is helpful

for the detection of

tooth decay and is

independent of visual

errors

Risk

Assessment

Shankarapillai et al.

2012 [8]

Multilayer Feedforward

Propagation
Textual 230 subjects

Periodontitis

risk assessment
MSE: 0.132

The model can be used

for effective periodontitis

risk prediction
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Chapter 3

Design and Methodology

3.1 Introduction

This chapter includes detailed explanation of the deep learning based model proposed

for dental caries diagnosis on intraoral periapical radiographs. Figures representing

the dataset distribution and the proposed model are provided along with the details

regarding the loss function employed for multi-class classification and localization of

lesions. Additionally, details related to the performance measures adopted to analyze

the performance of the proposed deep learning mechanism are provided in the following

sections.

3.2 Proposed Methodology

3.2.1 Overview

The process flow of the proposed dental lesion detection is shown in Fig. 3.1. First, the

collected annotated images are preprocessed to remove noise, enhance contrast and im-

prove resolution of the images. Next, the preprocessed images are used by the proposed

lightweight backbone network for feature extraction, the extracted feature maps are then

forwarded to the region proposal network (RPN) that generates region proposals using

the feature maps and forwards it to the ROI align block, this block processes both the

feature maps and region proposals and classifies the input image using fully connected

layers. The model further exhibits the bounding box on the identified region so it can

be visualized.
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Figure 3.1: Proposed process flow

Figure 3.2: Dataset distribution

3.2.2 Dataset Analysis and Preprocessing

The dataset employed for this study was obtained from the Armed Forces Institute

of Dentistry, Rawalpindi Pakistan. A total of 534 periapical images were collected

out of which 516 were labeled by experienced radiologists and dentists. The dataset

distribution is shown below in Fig. 3.2.

The ground truth of the obtained images was generated using VGG Image Annotator

(VIA) tool [65]. Five types of lesions were localized manually using bounding polygons

around the carious regions. The annotations were saved in a JSON file, where each

mask represents a set of polygon points. The pixels inside the bounding polygons corre-

sponding to lesions were assigned values of 1 for primary endodontic, 2 for primary endo

with secondary perio, 3 for primary periodontal, 4 for primary perio with secondary

endo, and 5 for true combined, while the rest of the pixels were regarded as background

with a value of 0. For each labeled data, there is corresponding instance information as

illustrated in Fig. 3.3.
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Figure 3.3: Image labeling process using VIA tool

The annotated image dataset is preprocessed to improve image quality and remove noise

in radiographic images. The influence of image preprocessing has been analysed in sev-

eral studies. Tian et al. found that image enhancement leads to better performance

of fast R-CNN for detection tasks [31]. Chen et al. evaluated image enhancement on

RGB images followed by deep learning based method for accurate prediction of retinal

blood vessels [40]. In a more recent attempt, Pannetta et al. [59] tested different im-

age enhancement techniques such as Histogram equalization (HE) [1], Contrast Limited

Adaptive Histogram Equalization (CLAHE) [68], Dynamic Fuzzy Histogram Equaliza-

tion (DFHE) [7], Guided filtering (GF) [15], and Bi-Histogram Euqalization (BBHE) [9]

on medical image dataset. It was found that CLAHE performs better in comparison to

other techniques to enhance image contrast of the images. This study utilizes CLAHE to

enhance image contrast to improve the performance of the proposed lightweight disease

detection and localization model.

3.2.3 Lightweight Mask RCNN

The training process of M-RCNN requires high-performance computing resources to

learn and analyze substantial information obtained from medical imagery. To reduce the

performance requirement of M-RCNN and ensure that it operates properly, a lightweight

backbone network is utilzied with M-RCNN to classify five types of endo-perio lesions.

The focus of this research is to propose a lightweight M-RCNN model that can operate

on platforms with less computational resources such as graphic process unit (GPU) and

memory and provide performance similar to that of the original M-RCNN [60].
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Figure 3.4: Architecture of Lightweight M-RCNN with Modified MobileNet-v2 as backbone

For this purpose, a lightweight network MobileNet-v3 is utilized for feature extraction

followed by a depthwise separable convolutional layer proceeding tiny region proposal

network (RPN) to extract candidate regions with potential targets [55]. The RPN

generates anchor boxes for each classified object using the softmax activation function.

The extracted proposal regions along with feature maps are applied to ROI alignment to

locate all the feature map areas. ROI alignment wraps different feature vectors which are

then applied to mask generation and classification. The fully connected layer provides

classification and bounding boxes for each identified endo-perio lesion. The masks are

generated by the convolution layer for each object at the pixel level. The proposed

framework for lightweight M-RCNN for dental lesion classification and localization is

depicted in Fig. 3.4.

3.2.4 Backbone Network

To reduce the number of parameters in the proposed lightweight M-RCNN, MobileNet-v2

is employed, which extends MobileNet-v1 and is faster with 30% fewer parameters [67].

In MobileNet-v2 [28], an inverted residual structure is introduced to reduce complexity

and increase the speed. The employed backbone network comprises two layers with

the first layer of 1x1 pointwise convolution with ReLU6 and a depthwise convolutional

layer. The inverted design of the employed MobileNet-v2 makes the model considerably

memory efficient and improves overall performance. The structure of the employed

MobileNet-v2 is illustrated below in Fig. 3.5. The layers of the proposed backbone

network are shown in Fig. 3.6
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Figure 3.5: Proposed Backbone Network (Modified MobileNet-v2)

Figure 3.6: Layers of the Proposed Backbone Network
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For the classification of endo-perio lesions, MobileNet-v2 modified with additional layers

proposed by Kolonne et al. [53] is utilized in this work. To avoid impairment of already

learned features, the base layers are frozen. Additionally, the fully connected layer

of MobileNet-v2 is replaced with a Global average pooling layer which calculates the

average value of each feature map in the convolutional layers and sums the spatial

information of the input images. Additionally, a dropout layer is added to minimize the

model from overfitting. Finally, a dense layer is added for the classification of endo-

perio lesions. The model weights are saved after fine-tuning the hyperparameters of

the model to improve the classification results. As this is a multi-class classification

problem, Softmax is used as an activation function in the output layer to predict the

probability for each of the five classes and is defined below:

σ(z) = 1
1 + e−z

(3.2.1)

3.2.5 Region Proposal Network (RPN)

Once the multi-scale features are extracted using the proposed lightweight backbone

network, the feature maps are passed onto Regional Proposal Network (RPN). The RPN

detects regions and matches those regions to the ground truth. The region proposals

are predicted simultaneously at each sliding window, where k represents the maximum

possible proposals at each location. Additionally, k proposals are parameterized for

each proposal to form anchors [13]. Due to the small size of the regions to be localized

in the periapical radiographs, the anchor sizes and anchor aspect ratios were selected

after extensive experimentation to fit the task at hand adequately [51]. The anchors are

matched to the ground truth based on the intersection over union (IoU) between the

anchor and the ground truth. The anchors are linked to the ground truth boxes and are

assigned to the foreground once IoU exceeds the defined threshold which is 0.7 in this

study. If the IoU is below the defined threshold, the identified region is ignored. The

proposal regions with IoU higher than a threshold are considered as foreground. This

block provides several regions of interest (ROI) which are then utilized by ROI alignment

to identify where these regions of interest lie in the feature maps. The structure diagram

of RPN is illustrated below in Fig. 3.7.
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Figure 3.7: Structural Diagram of Region Proposal Network (RPN)

3.2.6 Region of Interest (ROI) Alignment

ROI Align extracts feature vectors from the feature map based on the region of interests

identified by RPN [69]. These feature vectors are turned into fixed-sized tensors to be

processed further. The ROI is scaled with their corresponding areas based on the regions’

location, scales, and aspect ratios. To ensure uniformity, the samples are aligned over

feature map areas. After generating the region proposals, the next block involves making

predictions by taking ground truth boxes, feature maps generated by the proposed

lightweight backbone network, and region proposals generated by RPN. Additionally,

the results represented by ROI feature maps are then processed by two parallel branches:

disease detection and mask generation.

• Disease Detection Head: Using the ROI feature map, the disease category is pre-

dicted along with refined instance boundary box. This branch contains two fully

connected (FC) layers to map the feature vector to the classes and instance bound-

ing box coordinates.

• Mask Generation Head: The ROI feature map is fed into a transposed convolu-

tional layer followed by another convolutional layer. The segmentation masks are

generated for the classes and the output mask is selected according to the class

prediction provided by the disease detection branch.
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3.3 Loss Function

A multiclass loss function for the proposed lightweight Mask-RCNN is used which com-

bines the loss of classification, localization and segmentation mask and calculated as

shown in Eq. 3.3.1:

L = Lcls + Lbox + Lmask (3.3.1)

where Lcls and Lbox are similar to Faster-RCNN and are used as loss functions in both

BBox regression and classification. Additionally, Lmask generates mask of dimension

K × m × m for each RoI extracted after RPN and classifies each pixel for corresponding

classes and K represents the number of classes to be classified which is five in this case.

3.4 Performance Measure

The performance of the proposed model is measured based on different performance

indicators. For evaluation of the model’s classification, classification accuracy, area

under receiving operating characteristic curve (AUC) are chosen and are represented in

Eq. 3.4.1 and 3.4.2, 3.4.3.

Accuracy = TP + TN

TP + FN + TN + FP
(3.4.1)

Sensitivity = Recall = TP

TP + FN
(3.4.2)

Specificity = TN

FP + TN
(3.4.3)

where AUC is calculated as area under the Sensitivity − (1 − Specificity) curve .

To detect and evaluate detection performance of the proposed model, mean average

precision (mAP), mean average recall (mAR), F1-score are chosen. The mAP, mAR

and F1-score are calculated as represented in Eq. 3.4.4, 3.4.5, and 3.4.6 respectively.

mAP = 1
N

N∑
i=1

APi (3.4.4)
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mAR =
∫ 1

0.5
recall(o)do (3.4.5)

F1 − score = 2 × (mAP × mAR)
mAP + mAR

(3.4.6)

where average precision (AP) is calculated for each class and then the average is taken

over N classes to calculate mAP [66]. A trade-off between precision and recall is consid-

ered along with both false positives and false negatives (FN). The calculation of mAR

is similar to mAP, however, the recall for mAR is calculated for different IoU thresholds

[21] and is calculated as two times the area under the recall IoU curve averaged over IoU

ranging between 0.5-1. After calculating mAP and mAR, F1-score is calculated using

mAP and mAR respectively.

3.5 Summary

This chapter demonstrates the proposed deep learning based model for detection and

identification of periapical lesions. Details regarding dataset collection, and preprocess-

ing are discussed. As this research is targeting multi-class, the loss function adopted is

discussed in the above sections. To measure the performance of the proposed model,

performance indicators are considered. The adopted performance metrics to be used for

analysis of the proposed model are also briefly explained. Using the model discussed

in this chapter can aid in identification of dental disease and help dental clinicians in

diagnosing periapical lesions.
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Implementation and Results

4.1 Introduction

For comparison, the proposed Mask RCNN based on lightweight MobileNet-v2, and the

base RCNN is trained under the same environment. In the collected dataset, each im-

age belongs to one of the disease classes. The custom-made dataset is used to train the

proposed model. The images within the dataset are divided as 80% for training, 10%

for validation, and the remaining 10% for testing. The images within the dataset belong

to one of the disease types (Primary endo with secondary perio, primary periodontal,

primary perio with secondary endo, primary endodontic, and true combined) lesions

have been utilized. To reduce the computational time and increase the efficiency of

Mask-RCNN, a modified lightweight pretrained Mobilenet-v2 is employed as the back-

bone network of Mask-RCNN. Different values for hyperparameters are employed to see

the performance of the proposed model on the disease detection dataset. To ensure

an effective comparative experiment, the hyperparameters for testing different back-

bone networks with Mask-RCNN are kept consistent. The following subsections explain

the experimental settings, the ablation experiment conducted to see how the proposed

model performs with different backbone networks, and the performance evaluation of

the proposed model on the test dataset.

22



Chapter 4: Implementation and Results

Table 4.1: Parameter Configuration for this experiment
Weight Decay Learning Rate Min Detect Confidence Epoch Batch Size

0.0001 0.001 0.7 50 2

Validation Steps Steps per Epoch Learning Momentum RPN Anchor Scale BBOX Standard Deviation

50 200 0.9 (8, 16, 64, 128, 256) [0.1 0.1 0.2 0.2]

4.2 Experiment Setting

For conducting experiments, a laptop equipped with an intel i7-1165G7 processor (2.80

GHz), 8GB RAM is utilized. Additionally, the code was implemented on Google Colab

equipped with Python 3.5, Tensorflow 1.14.0, and Keras 2.2.5.

Additionally, the configurations employed in the implementation of the model are shown

below in Table. 4.1.

4.3 Dataset Preprocessing

To enhance the small details, local contrast, and texture of medical images, CLAHE

[16] is used. Different tile regions of the image based on the histogram are computed

using CLAHE. The local details of the radiograph are enhanced by limiting histogram

amplification and clipping of the histogram. Additionally, CLAHE allows reducing over-

amplification of noise within x-ray images and serves as a better alternative fro image

enhancement compared to manula dileanation methods [49]. The process of CLAHE is

carried out in two steps: First, the image is divided into non-overlapping regions that

are equal in size followed by obtaining the clip limit for the clipping histogram. In the

second step, the histogram is redistributed so that the height remains under the clip

limit. The results obtained using CLAHE are illustrated in Fig. 4.1.

After the image has been preprocessed, the mask generated for the images from json file

in the collected dataset is overlaid on the original images. A visualization of the mask

predicted using the proposed M-RCNN on the collected disease dataset is illustrated in

Fig. 4.2.
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Figure 4.1: Preprocessed image sample with CLAHE

Figure 4.2: Mask overlaid on original image

24



Chapter 4: Implementation and Results

Table 4.2: Comparison of M-RCNN with different backbone networks

Model Backbone Network Precision Recall F1-score ROC AUC

Mask-RCNN ResNet-50 [45] 0.82 0.83 0.78 0.614

ResNet-101 [25] 0.81 0.84 0.74 0.670

MobileNet-v2 [62] 0.86 0.87 0.84 0.721

Proposed Backbone

Network
0.86 0.89 0.89 0.805

Figure 4.3: Evaluation of main evaluation indicators for different backbone networks

4.4 Ablation Experiment

To further examine the effectiveness and contribution of the proposed method, addi-

tional ablation experiments are conducted [30]. The aim of the ablation experiment

is to provide deeper insights into the improvements obtained by the proposed model.

The proposed model is built and trained using Tensorflow, which is an open resource

deep learning application programming interface (API). For comparison of the backbone

networks, the hyperparameters are kept consistent (optimizer ’Adam’ is chosen with a

learning rate of 0.0001 and loss function ’categorical cross entropy). Additionally, to

prevent the model from overfitting, early stooping is applied. The results obtained

from the ablation studies are shown in Table. 4.2. Additionally, the comparison of the

experimental results using different backbones is shown in Fig. 4.3.

The performance of Base Mask-RCNN is evaluated in regards to the evaluation metrics

like precision, recall, mean average precision (mAP), and area under the curve (AUC).
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Table 4.3: Comparison of performance indicators for each disease

Class Accuracy Precision Recall F1-score

Primary Endo with Secondary Perio 0.89 0.83 0.75 0.77

Primary Periodontal 0.96 0.80 1.00 0.75

Primary Perio with Secondary Endo 0.87 0.91 0.90 0.91

Primary Endodontic 0.92 0.94 0.86 0.89

True Combined 0.97 0.87 0.89 0.88

Average 0.93 0.86 0.89 0.89

It is evident from Table. 4.2, that the proposed modified lightweight Mobilenet-v2

performs accurately compared to other models like ResNet-50 and ResNet-101 that are

employed by the base Mask-RCNN, achieving an overall precision of 0.86, recall of 0.89,

mAP of 0.85, and ROC AUC of 0.805 for detection and classification of five types of

disease while reducing the number of parameters compared to the base Mask-RCNN.

Additionally, the performance of the proposed model was evaluated based on well-known

performance indicators, the result of the proposed model for each classified disease are

shown below in Table. 4.3. The performance parameters indicate that the proposed

backbone network provides good performance for disease classification.

4.5 Performance Evaluation

4.5.1 Comparison with Different Backbone Networks

To demonstrate the performance superiority of the proposed model, the previous section

discusses the experiments conducted to show the performance comparison of different

backbone networks with M-RCNN based on consistent hyperparameters. The results

indicate that the proposed backbone network performs better than other state-of-the-

art networks employed as the backbone with M-RCNN. However, to further validate the

proposed model’s precision and accuracy, it is compared with the Base M-RCNN with

ResNet-50 and resnet-101 backbone networks. The proposed and comparison model is

tested on different periapical radiographic images.

For the evaluation of the proposed lightweight M-RCNN, the collected dataset is divided
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into train, valid, and test sets. In the dataset, For comparison, the proposed model is

compared with Base M-RCNN with ResNet-50 backbone network and M-RCNN with

ResNet-101 backbone network. The parameter configuration for the experiment is shown

in Table. 4.1. in the process of training, the learning rate was set to 0.01 which was then

adjusted to 0.001, the weight decay was set to 0.0001, learning momentum of 0.9. In

medical images, the localized regions are often smaller in size, to fit the disease regions

more accurately in this study, the RPN anchor scale was set to (8,16, 64, 128, 256), and

the BBOX standard deviation of [0.1 0.1 0.2 0.2]. The model is trained for 50 epochs

and due to the small dataset, the batch size was kept at 2 with 50 validation steps, and

200 steps per epoch.

4.5.2 Comparison with Test Images

To verify the effectiveness of the model, two performance indicators, mean average

precision (mAP) and mean intersection over union (IoU) is used. Fig. 4.4. below

shows the comparison of the precision-recall curve of the Mask RCNN with two different

backbone networks which include ResNet-50 and ResNet-101. The results form Table.

4.4 indicate that the proposed Mask-RCNN with lightweight modified MobileNet-v2

backbone network and RPN based region detectiona achieved mAP (0.85) which is

higher compared to other compared models, Mask RCNN with ResNet-50 [45] with

mAP (0.71), ResNet-101 [24, 20] (0.74), ResNet-101 with FCN based region detection

[38] (0.67), and Faster RCNN with ResNet-50 [63] (0.80). The performance comparison

of the proposed model with other models proposed for disease detection and localization

is provided in Table. 4.4.

4.6 Accuracy and Loss Comparison

This study draws motivation from the current research initiatives on detection and lo-

calization of dental disease with a view of using deep learning networks. The proposed

Mask RCNN with a proposed lightweight modified MobileNet-v2 backbone model were

trained on 10 to 50 epochs respectively. The model outputs the location of the lesion

diagnosed and the intensity of the lesion by segmenting the area that contains lesion.

Additionally, the proposed model calculates the area ratio of the bounding boxes and

area of interest surrounding the detected lesion. The graphs of the training and valida-
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Figure 4.4: ROC-AUC curve of different backbone networks for M-RCNN

Table 4.4: Comparison of measurement index of different networks for disease localization

Model Variation
mean Average Precision

(mAP)

mean Insection over Union

(mIoU)

Mask-RCNN ResNet-50 [45] 0.71 0.70

ResNet-101 [24, 20] 0.74 0.68

ResNet101 backbone

and FCN based region

detection [38]

0.67 0.58

Faster RCNN ReNet-50 [63] 0.80 0.69

Mask-RCNN

Lightweight Modified

MobileNet-v2 backbone

with RPN based region

detection

0.85 0.71
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Figure 4.5: Accuracy and loss of proposed model

tion accuracy and loss for proposed model are shown in Fig. 4.5 a and b. It can be seen

that the model shows an increasing trend for accuracy and decreasing trend in terms

of training loss as the number of epochs increases. To avoid the mode from overfitting,

early stopping was applied.

The proposed model accurately predicts and localizes the lesions as depicted in Figures

4.6 to 4.10. The results indicate that the model makes predictions similar to that of the

annotated masks using the periapical radiographic images. Additionally, the proposed

model was evaluated based on performance indicators like precision, recall, F1-score, and

accuracy for each classified periodontal lesion. The results for each lesion are shown in

Table. 4.3. The obtained results indicate that the proposed backbone network provides

good performance for disease classification.

Compared to different backbone networks as shown in Table. 4.2, the proposed model

performs better compared to other detection and localization methods precision (86%)

recall (89%), F1-score (89%), and AUC (0.805). The results show the efficiency of the

proposed model and exhibit the efficiency of the proposed model for lesion detection

outweighing other state-of-the-art approaches for disease identification and localization.

To verify the effectiveness of the model, two performance indicators, mean average

precision (mAP) and mean intersection over union (IoU) is used. Fig. 4.4. below

shows the comparison of the precision-recall curve of the Mask RCNN with two different

backbone networks which include ResNet-50 and ResNet-101. The results from Table.

4.4 indicate that the proposed Mask-RCNN with lightweight modified MobileNet-v2
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Figure 4.6: Test Performance for localization of Primary Endo and Secondary Perio lesion

Figure 4.7: Test Performance for localization of Primary Endodontic lesion

Figure 4.8: Test Performance for localization of Primary Perio and Secondary Endo lesion

Figure 4.9: Test Performance for localization of Primary Periodontal lesion
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Figure 4.10: Test Performance for localization of True Combined lesion

backbone network and RPN based region detection achieved mAP (0.85) which is higher

compared to other compared models, Mask RCNN with ResNet-50 [45] with mAP (0.71),

ResNet-101 [24, 20] (0.74), ResNet-101 with FCN based region detection [38] (0.67), and

Faster RCNN with ResNet-50 [63] (0.80).

The figures 4.6 to 4.10 depict the location at which the disease has been classified along

with the confidence of the disease type detected. Fig. 4.6 a to c shows the original image,

the mask overlaid on the original image, and the model prediction. It can be seen that

the model predicts the lesion accurately and displays the lesion name, confidence, and

detection box to localize the lesion. Similarly, Fig. 4.7c localizes primary endodontic

lesion, it can be seen that the proposed model detects and localizes this lesion accurately

and identifies another region as highlighted in red in 4.7c. The results obtained by the

proposed model for primary perio with secondary endo lesion are depicted in Fig. 4.8c,

it can be seen that the model detected an additional region highlighted in blue. Fig.

4.9c indicates the results obtained from the proposed model for primary periodontal

lesion, it can be seen that the region with the lesion in question are highlighted with

confidence. Finally, the model localizes true combined lesion as illustrated in Fig. 4.10c

and highlights the region where the lesion is detected.

4.7 Summary

Overall, it is evident from the images, that the proposed model provides higher classifica-

tion accuracy compared to other approaches used within the dental disease localization

domain. It can be visualized that the proposed Mask RCNN with lightweight MobileNet-

v2 provides better detection of dental disease in radiographic images and positions the
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frames more accurately. To further validate the robustness of the proposed model for

dental lesion detection, different test images are selected to show the visual performance

of the proposed model compared with the ground truth and other state-of-art methods

like Mask-RCNN with ResNet-50 [45], ResNet-101 [24], ResNet-101 with FCN based

region detection [38] and Faster RCNN [63]. The proposed model provides good de-

tection and localization performance for five types of periodontal lesions. This chapter

highlights the performance of the proposed model in terms of loss and accuracy along

with discussion related to the test images to evaluate the performance of the proposed

model. It is evident from the analysis that the proposed model outperforms state-of-

the-art methods for identification of small regions with dental lesions. However there

are certain limitations that need consideration to further enhance the performance of

the proposed model. This chapter highlights these limitations to pave way for future

research in this regard.
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Conclusion

Due to the outbreak of COVID-19, several countries have been affected, leading to a

global emergency. The rise in COVID-19 has brought challenges in maintaining patients’

dental health and providing urgent dental care to mitigate risks of missed diagnosis.

Artificial intelligence (AI) has evolved rapidly in terms of complexity, diversity, and

computational capabilities, especially in medicine [62, 64]. AI has emerged as one of the

prospective technologies in healthcare, making significant progress in predictive machine

learning models for dental care [54]. The potential applications of AI apply to dental

practices and play a significant role in practice management. Dental clinicians may

deploy AI systems as a supplemental tool in providing precise dental diagnoses and

planning treatments.

Moreover, different techniques implemented to aid in dental disease diagnosis have led

to the introduction of different imaging systems, including x-ray radiography intraoral

and extraoral imaging. X-ray imaging systems have become a norm in dentistry for

identifying dental lesions, normal and abnormal dental structures, and predicting treat-

ment outcomes. However, a safer method with non-ionizing radiation is also employed

by dentists for diagnosing caries and lesions, known as near-infrared imaging. In den-

tistry, dental ailments are primarily identified using images of the oral cavity each shot

from a different angle; a process that is largely manual. Thus, human inference plays a

significant role in analyzing x-ray imagery to recognize dental structures, bone loss, and

cavities. However, human intervention is prone to error. Thus, there is a need of system

that can help dentists in analyzing radiographs and identify lesions more efficiently.

This study proposes a detection and localization network based on deep learning for
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classification and localization of different periodontal lesions on periapical radiographic

images. For feature map extraction, a lightweight modified MobileNet-v2 by adding a

global average pooling layer, dropout layer is utilized to enhance the performance of

the Mask-RCNN model followed by region proposal network (RPN) for identification

of region proposals. The proposed mechanism provides multi-disease prediction by ob-

taining anchor boxes. Additionally, hyperparameters are fine tuned to further improve

the performance of the model and acquire accurate predictions. The presented system

detects periapical lesions that are tough to recognize by other existing method due to

complex nature of radiographic images. The images are preprocessed using CLAHE to

enhance image contrast and reduce noise to gain better performance. The proposed

model is tested on a custom-made dataset with annotated disease labels. The masks are

generated using the provided annotations which are then utilized to train the model.

The results indicate that the proposed model is found helpful in identification and lo-

calization of periapical disease with an average mean average precision (mAP) of 80%

superior to other existing dental disease localization solutions on radiographic images.

5.1 Limitations

The proposed model provides good performance for periapical lesion detection on in-

traoral periapical radiographs, however there are certain limitations to the proposed

approach that need addressing to further improve the model, these are:

• The dataset used to train the proposed model is small in terms of size. In this

work, image augmentation is used for better classification accuracy. The model

performance may improve further by employing a larger annotated dataset with

multiple lesions.

• The proposed model is tested on only intraoral radiographic images, further re-

search is required to train the model on colored images and analyze its perfor-

mance.

5.2 Future Work

Further studies are needed to improve the performance of the proposed model.
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• A bigger dataset can be employed for feature regularization on periapical radio-

graphic images.

• This work can be extended further by embedding Internet of Things (IoT) for data

collection and make the proposed mechanism widely accessible.

• The proposed model’s performance can be analyzed on other radiographic datasets

like panoramic radiographs, colored images, and a hybrid dataset combining both

radiographic and colored images.

• In this work, for preprocessing radiographic images, CLAHE is used. Other image

enhancement methods can be employed and compared to analyze the performance

of the proposed model.
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