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Abstract 

Classification of neural correlates of hand motions from EEG signals recently gained attention of 

researchers for the development of BCI systems for persons suffered from stroke, spinal cord 

injury who are not able to do voluntary movements or person with amputated arm or legs. 

Commonly LDA, SVM and K-NN models are used for the classification of hand motions, CNN 

and hybrid models are also used but most methods include the complex methods or pre-

processing of EEG data and extraction of time or frequency domain features from the pre-

processed signals which is a time consuming and lack flexibility because the EEG signals vary 

from human to human. In this thesis a Deep CNN model for end-to-end0learning of neural 

corelates for reach and grasp actions is introduced, aiming to increase rate of recognition & 

balanced classification0accuracy throughout all the subjects. A new model of CNN for 

movement classification is proposed that can also be used on the edge devices because of its 

smaller size for the development of BCI systems. In the proposed model separable convolutional 

blocks are used which reduce the number of parameters and hence the size of model also 

decreases. The dataset that is used for the testing of model is BNCI Horizon 2020 Reach and 

Grasp action dataset that is publicly available dataset. The dataset is also tested on 3 machine 

learning models LDA, SVM and K-NN are used, in which input is given in the form of time 

domain feature set the average accuracies achieved on these models are 60.77 (±3.80 STD), 

66.73 (±2.86 STD), and 79.81 (±3.11 STD) respectively on the unseen dataset. Then the dataset 

is tasted on proposed Deep learning model along with DeepConvNet and EffNet models. The 

proposed model achieves the average classification accuracy of 92.44 (±4.13 STD), 92.9 (±4.23 

STD) and 81.7 (±5.68 STD). The model proposed achieves the same accuracy as DeepConvNet, 

but the size of proposed model is far smaller than the DeepConvNet model. Results shows that 

the proposed model shows the improved results with less variation of results within the subjects. 

Which will become helpful in the creation of real time BCI systems. 

Key Words: EEG, Reach and Grasp, Deep Learning, Machine Learning, CNN, BCI system
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CHAPTER 1: INTRODUCTION 

1.1 Brain-Computer Interfaces (BCI)  

As present assistive technology has evolved from simple and stiff items that are designed 

to solely support the user's weight to advance mechatronic devices that are capable of intricate 

motion and mechanical support, the need for enhanced user control devices has been increasing 

day by day. The hardware that is being used is already sufficiently advanced enough. Now 

researchers have shifted their focus towards the technologies that allow humans to build a 

communication path between the devices more easily and control or modify the behavior. From 

these methods, one of the foremost techniques that build these communication paths between 

humans and the assistive device is Brain-Computer Interfacing or BCI systems. In the BCI 

system, a specific type of exocortex device is used that builds up the communication path 

between the human brain and the output device using the brain signals [1]. Exocortex is an 

implantable or wearable device that is used for enhancing the brain’s cognitive actions of high-

level and sending information about users’ actions and decisions for example in the case of a 

severe spinal cord damage (SCI), regaining fundamental motor ability to grasping activities 

becomes challenging, BCI system is one of the possible way to regain the basic motor abilities 

by creates a communication link between the brain impulses and the external equipment, which 

may include robotic limbs, computers, or any other electronic devices. The commands and 

messages that are transmitted using the BCI system are encoded to the cerebral activity of the 

user. BCI systems are generally classified into two types first one is invasive BCI systems in 

which the neural activity is measured by using EEG electrodes inserted into the brain using 

surgical procedures. The second one is Non-Invasive BCI systems in which the brain's neural 

activity is measured by placing the electrodes outside the scalp or head or using other imaging 

methods like Magnetic resonance imaging (MRI) or fMRI for measuring the neural activity. The 

mostly used non-invasive method is Electroencephalography (EEG) which measures the 

electrical activity generated by the neurons from the scalp. The performance of movement action 

mentally without involving the movements of limbs or imagination of movement is known as 

Motor Imagery (MI). The imagination of motion generates the same neural activity rhythms in 

the motor cortex of the brain as the real performance of movement generates [2]. The MI-based 
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BCI systems, that are, the motor action imagination without the real limb movement, have a 

strong practical importance in the field of mobility rehabilitation (MR) & neurological 

rehabilitation (NR) of stroke or Spinal cord Injury (SCI) patients [3]. MR is a type of physical 

rehabilitation that is used by patients who are suffering from motor abilities issues, MR is used 

for restoring their lost motor abilities and recovering their normal level of motor abilities or 

helping them to learn about their disabilities. In the BCI system based on Motor Imagery, the 

movements can be identified by placing the EEG electrodes in the proper location over the motor 

cortex region of the brain [4]. The EEG signals are non-stationary, non-linear, and weak because 

while measuring the neural activity from the motor cortex area the EEG signals got contaminated 

with multiple artifact signals that are not part of the cerebral activity of brain-like, eye blink 

artifacts, line noises, or muscle movement artifacts. These artifacts decrease the motion detection 

accuracy of the system in Motor Imagery based BCI systems. So, for increasing the accuracy of 

BCI systems multiple techniques of artifact removal, feature extraction, feature selection, and 

classifications are used for the successful implementation of accurate and efficient BCI systems.  

1.2 Thesis Motivation and Scope 

BCI systems build an alternate communication path between a human brain and some 

external assistive devices. The process of motion recognition from neural correlates starts with 

the recording of neural activity from the motor cortex using the non-invasive EEG electrodes and 

continues through the pre-processing of recorded EEG signals to the identification or detection 

of a person’s intentions. After the detection of user intention, the signal is then sent to the 

external output device which may be a robotic limb, electronic wheelchair, or VR headset, and 

control the device according to the detected motion signal. The field of BCI is nowadays a very 

flourishing domain of research where a large number of research groups from all over the world 

are doing research and studying new methods for its improvement. Brain-Computer Interfacing 

systems have been found very useful in a large number of applications for both unhealthy and 

healthy persons. But still, the development and design of an accurate and complete BCI system 

that can be used for commercial use is an unsolved query for the researchers. An accurate and 

efficient BCI system successfully recognizes and classifies the specific set of movement patterns 

from the recorded EEG signals. For the data collection of human neural activities 

Electroencephalograph (EEG) is the most convenient and user-friendly method because of its 
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space & time resolution along with the non-invasive application of data recording. Motor signals 

are very commonly used in the development of Brain-Computer Interface systems. As the signals 

generates during the motor activities are just like the motor signals in brain patterns, the 

identification of these signals is done using the signal processing unit in a BCI application. 

That’s why the processing of EEG signals plays a vital role in the performance evaluation of 

BCI.  By the time0this research study0started, the convolutional techniques of machine learning 

of signal processing and classification like PCA, ICA, LDA, SVM, etc. had been used along with 

that Artificial Neural Networks (ANN) also used in which mostly hand-crafted features were 

used as an input for the model instead of Raw signals these techniques were explored by multiple 

studies & these techniques shows efficient results under the specific conditions. However, this 

trend is changing, and the use of Deep Learning (DL), particularly Convolutional Neural 

Networks (CNN), for the classification motor signals of different hand motions from raw EEG 

motor cortex signals is becoming more common because these are very effective in detecting 

complicated features and patterns from raw time series data. Through numerous layers of 

neurons, the deep network may intrinsically model complex properties and non-linear 

interactions between these features as the neural activity of the brain in EEG signals is highly 

complex and non-linear activities so, the deep learning models will become more helpful in the 

classification & understanding of these0patterns. Along with that, the continuous recording of 

EEG data in BCI systems generates a large size of dataset that is vital in deep network training. 

These factors motivated me to use the DL techniques in this study for classification aspects of 

the BCI system.  

This study investigates BCI systems, including EEG as the signal collection technique. The 

primary goal of this research is to investigate the factor of signal processing factor of the BCI 

system. For controlling a brain-computer interfacing system, a signal from the motor cortex area 

of the brain is used in this research. Different machine learning methods are investigated along 

with that a Deep learning model is also developed that recognizes the hand movement patterns 

from EEG signals. The pre-Recorded publicly available dataset is used in this study, signal 

processing and classification part of the BCI system are studied in this research by using multiple 

Machine and Deep Learning techniques.  
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1.3 Literature Review 

Traditionally neural networks were used in the early studies to classify motor cortex EEG 

signals in which the hand-crafted features or Wavelet Transform (WT) images are used as an 

input for the classification of motor signals from EEG recordings in which most data loss while 

manual selection of features or conversion of data into images and0topo-maps to aid CNN 

models that prefer 2D inputs instead of using raw time series signal [5]–[10]. For the feature 

extraction CSP, Fourier transform, & discrete wavelet transform (DWT) are found to be the most 

used techniques of feature extraction and classifying motor activity EEGs in this case. In the 

classification of EEG signals, traditional neural networks such as LDA, SVM, Random Forest 

(RF), K-NN, Multi-Layer Perceptron (MLP) and CNN have been preferred as classifiers []. 

Table no. 1.1 are showing the compression of classification results from different classifiers and 

the dataset that they used for the classification purposes. [11] uses the CNN model for the 

classification of hand motions in which they used the self-recorded dataset (5 subjects), the 

classification accuracy of right-hand and left-hand motions achieved in this study is 84.61 ± 

0.77% the input shape used is Channels x Time points. But for the classification of motions of 

same hand the [12] uses the Regularized LDA+ CSP techniques and achieves the accuracy of 

56.38%. [13] Uses the same dataset that is used in this study and classifies the palmar and lateral 

grasp motion by using the ensembled K-NN classifier and applied the techniques of Principle 

Component Analysis (PCA) for the feature reduction, the average classification accuracy 

achieved by this study is 85.13%.  [14] uses the Fast Fourier Transform (FFT), CWT coefficients 

and scalogram images are used for feature extraction and then the ML classifiers logistic 

regression, k-NN and RF methods are applied for the classification of hand motion from the 

extracted feature set and deep learning models also applied and highest accuracy achieved is 

88%. [15] uses the hybrid approach for the classification in which they used both temporal and 

frequency domain information for classifying the hand opening and closing movements the 

model with both time and frequency domain approaches archives the classification accuracy of 

76.21 ±3.77%. [16] used the hybrid DL model in which they use CNN + LSTM model for the 

classification of hand motion and achieves accuracy of 87.68%. But for the development of a 

model that can be used in edge devices the use of hand-crafted features is not a feasible solution 

so instead of using ML models deep Learning models should be used for the classification of 
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different hand motions from same hand. Table no 1.1 shows the compression of different 

techniques used for the classification of hand motions.  

Table 1:1 Comparison of Different Studies on the Classification of hand motions from EEG 

signals 
Ref Subjects  Electrodes Type of Movements Classifier Accuracy 

[11] 5 Subjects 64 Channels 5 hand motions RLDA+CSP 56.38% 

[13] 15 Subjects 58 channels Reach and Grasp PCA + 

Ensembled K-

NN 

85.13% 

[14] --- 19 channels 2 hand Motions RestNet 85% 

[15] Prerecorded 

Data 

--- Hand opening, closing, 

and resting 

CNN 76.21% 

[16] Prerecorded 

data 

22 channels Left hand, right hand, feet, 

tongue 

LSTM+CNN 87.68% 

[17] 109  

BC12000 

64 Channels Right- and Left-hand 

movements 

 

ANN 

  

68% 

[18] 13 Subjects 64 EEG 

Channels 

6 Lower Limb Movement   

Random Forest 

with 512 trees 

 

[19] 9 Subjects 64 EEG 

Channels 

6 Lower Limb Movement 

Tasks 

K-NN 

SVM 

LDA 

54% 

[20] 12 Subjects 32 channels Opening and closing of 

figure  

ANN 79.92% 

[21] Pre-Recorded 

Dataset 

--- Left- and Right-hand 

movement 

LDA 

QDA, 

KNN 

SVM 

SVM  

82.14% 

[22] 11 Subjects 14 Channels Right- and left-hand 

movement 

LDA 73.2% 

[23] 2 pre-

recorded 

datasets 

--- Hand opening, closing, 

and resting 

CNN + Spatial 

filtering 

83.61% 
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1.4 Contributions of Research 

The objective of this research is to develop a new proposed Deep Learning-based model 

that can categorize two separate motor imagery tasks: reach and grasp motions of the same hand 

by using raw EEG time series data. As mentioned earlier that in some previous studies on EEG 

motor signal classification, the EEG signals were first converted into images and0topo-maps to 

aid CNN models that prefer 2D inputs [5]–[10] Though, this conversion of data may result in the 

loss of critical features & information. Because the study indicates that EEG data is connected 

with time, that’s why raw EEG data is used in this research & seeks to learn general features. 

Several researchers recorded the neural activity from the surface of the skull and then converted 

these signals into topographical time0series images [5]–[10]. But there is proof that the recorded 

EEG signals are connected across the time scale, implying temporal modulation [24]. CNN 

models have recently achieved high accuracies with 2D input EEG data i.e., TxC (Time sample x 

Channels) [25], [26]. For these reasons, in this work 2D, raw EEG data is used as an input shape 

for the CNN model but before that data is minimally preprocessed using basic bandpass and 

noise removal filters. Then the performance of the proposed model is compared with the0well-

established models like SVM, LDA, and K-NN techniques along with the different Deep 

learning models like “DeepConvNet”, “EffNet” etc. that are developed for edge device 

perspective for the development of multiple applications and compare the classification results 

along with model sizes.  

The model proposed in this research for the classification of EEG signals is efficient, uses 

less computational power, and is smaller in size as compared to other DL models that are 

previously been used for the classification of Reach and Grasp actions of the same hand. This 

will help in the development of real-time BCI systems on embedded devices for the development 

of neurorehabilitation BCI systems for Stroke and SCI patients who lose their motor abilities.  

1.5 Thesis Organization 

The0rest of0thesis is divided as follows. Chapter 2 describes the basics of BCI & how the neural 

activity of a person is used for operating a BCI device. The following section describes the 

oscillatory nature of the electrical activity of neurons & their frequency ranges. It is followed by 

an explanation of the causes of artifacts in EEG data and the filtration technique. 
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The approach used in this study is described in Chapter 3. First, a description of the dataset is 

provided, followed by an explanation of the pre-processing techniques used to remove undesired 

noise and artifacts. Finally, the techniques for feature extraction and classification that were used 

in this research are discussed. 

Chapter 4 describes the results of this research. The EEG signals for reach and grasp motion are 

described first then the muscle artifacts, line noises, and eye blink components are identified 

from the recorded EEG data and then the removal of these artifacts from the EEG data is 

described by using multiple data pre-processing methods. Then next for machine learning 

methods feature extraction is described in which time domain features are discussed. For the DL 

CNN model, the raw data is used instead of hand-crafted features. Finally, the Movement 

Related Cortical Potentials (MRCPs) and classification results by using 3 ML classifiers and DL 

models are presented.  

Chapter 5 summarizes the key elements of the current work. The chapter concludes with a 

description of the scope of future work expansions. 
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CHAPTER 2: OVERVIEW OF BRAIN-COMPUTER INTERFACE 

SYSTEM & MOTOR SIGNAL CLASSIFCATION 

The objective of this thesis is to create a model that can classify distinct kinds of 

electroencephalography (EEG) motions to aid in the treatment & diagnosis of neurological 

disorders. This chapter mainly provides an overview of Human brain anatomy and physiology 

and the about also describes the concept of the BCI system's structure and commonly used 

methods for neural activity recording methods to have a broad understanding of BCI systems and 

the Structure and functioning of the brain, neural activity recording methods. 

2.1 Introduction 

The brain, as a human organ, has the unique capacity to self-adapt and generate new 

neuronal associations while absorbing and learning new information. The brain never stays the 

same. It grows and evolves over a person's life. Even as you read this sentence, fresh information 

is being absorbed in breakneck speed, with some of it being retained in short or long-term 

memory. The brain's enormous memory capacity acts as a repository for information and 

experience. Environmental sensing and motoric acts are also the coordination and responsibility 

of several brain areas. Each area is in charge of a distinct bodily part control, sensing, or mental 

function. However, the specific process of the brain's functioning is yet unexplained. More 

sophisticated brain operations, such as the conception of an idea, remain a mystery. It is 

impossible to map or develop a model of the brain without understanding its inner workings.   

The brain has been studied by several neurophysiologists & neuroscientists who 

undertake studies to discover the fundamental building blocks and scientific ideas behind the 

behavior and structure and of the brain. By confirming and demonstrating (or disproving) one 

theory at a time, the whole picture is becoming clearer. There are several issues that hinder a 

deeper investigation of the brain. Much of the difficulty stems from the brain's unpredictability. 

Although every person has the same organ of the brain, it is nonetheless unique in many 

functional and anatomical properties. However, the new issues and limitations do not deter 

people from studying brain function. Many science fiction films inspire scientists to bring fiction 

into the real world. Only by inventing and using new methods for analyzing brain anatomy and 

behavior can the mysteries of the brain be revealed. 
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2.2 Human Brain 

The brain is the supreme0commander of the human body. It is the central nervous system 

component that regulates the operations of many organs in the body. To begin, we will discuss 

the anatomical structures of the brain and their activities in this part. Then complete 

understanding of the why, and where the brain produces these electrical impulses and how this 

electrical activity can be recorded from the scalp of the human brain. It gives a clear concept of 

the formation of electrical current flow in the brain that may be recorded by using the EEG 

electrodes. 

2.2.1 Structure and Function of Brain 

As seen in Figure no. 2.1 the brain is split into three primary parts: the cerebrum, the cerebellum, 

and the brainstem [27]. The three brain areas are explained briefly below. 

 

 

Figure 2-1 Human Brain's Anatomical Areas [28] 

 

1. Cerebellum: 

The cerebellum is split into two hemispheres & is positioned in the bottom back of the 

skull Figure no. 2.2 shows the structure of cerebellum. It is the brain's second biggest 

structure, containing more than half of all neurons. The cerebellum is one of the brain's 

sensory centers, important for sensory perception, motor control, & coordination. 

The cerebellum is also linked to fine motor abilities, voluntary movements of muscles, 

balance control, & posture. 
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Figure 2-2 Cerebellum's Midsagittal cross-sectional area that shows the 3 primary lobes. [29] 

 

2. Cerebrum: 

The cerebrum is the most important & largest region of the human brain, & it is involved 

with brain processes such as motor skills, emotions, movements, & thoughts. The 

cerebral cortex is the outermost layer of the cerebrum made up of neural tissues. The 

cerebrum is divided into 2 halves, known as the left & right hemispheres. Each 

hemisphere has 4 lobes figure 2.3 shows the lobes cerebrum:  

I. Frontal Lobe: Frontal lobe plays role in problem solving, parts of speech, 

Personality, motor development, planning, emotions, thinking, & movement 

are all influenced by the frontal lobe. 

II. Temporal Lobe: The Temporal Lobe plays a role in speech, auditory stimuli 

identification, perception, & memory. 

III. Occipital Lobe: The Occipital Lobe oversees visual processing. 

IV. Parietal Lobe: The Parietal Lobe oversees feeling (e.g., touch, pain etc.), 

sensory recognition, understanding, direction, stimulus perception, & 

movement. 

 

3. Brainstem:  

The brainstem connects the cerebrum to the spinal cord and is positioned at the bottom of 

the brain figure no. 2.4 shows the structure of brain stem. The brainstem functions as the 

body's main control panel, much like a computer's hard drive. It regulates critical bodily 
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processes such as awareness, breathing, mouth & eye movements, & the relaying of 

sensory messages (heat, pain, noise, and so on), blood pressure, heartbeat, & hunger. 

 

Figure 2-3 4 Lobes of Human Brain [30] 

 

 

 

Figure 2-4 Human brain's sagittal section showing 3 main parts of the brainstem. [31] 

 

2.2.2 Neurophysiology of the Human Brain 

The human brain is made up of around 100 billion0nerve cells known as neurons, which 

maintain the brain's electrical charge [32]. Neurons contain the same components and properties 

as other cells, but their electrochemical nature allows them to conduct electrical messages and 

impulses across great distances. Neurons are made up of three fundamental components:  

I. Dendrites 

II. Soma (the cell body) 
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III. Axon 

Figure no. 2.5 shows the basic structure of neuron. 

 
Figure 2-5 Structure of Neuron [32] 

 

The cell nucleus is the cell's heart, giving it guidance regarding what to do. The axon is a thin 

and long part of a neuron that links its own nuclei to the dendrite of another neuron. The dendrite 

is a small portion of the neuron that contains several sites that act as receptors for 

neurotransmitters delivered by a linked axon. Dendrites can grow on either one or both ends of 

the cell. Neurons can interact with one another via the axon dendrite link. Neurons send and 

receive impulses in a predictable sequence. This connection is enabled by the Action-Potential 

(AP). Firstly, the resting potential (RP) is a negative electrical potential across the cell membrane 

of the neuron while it is at rest. Then the membrane0potential increases when the neuron is 

triggered0by electrical inputs from other0neurons. If the membrane potential exceeds a0specific 

threshold, it will rapidly grow to a0substantially higher value before0swiftly decreasing & 

stabilizing at the resting potential. When an AP fires in a neuron, it is transmitted up the axon to 

related neurons, where it may cause an AP to fire in those neurons as well. That's how data is 

transmitted & processed in biological brain networks. It's worth noting that the AP is an all-or-

nothing response means either it fires, or no data is transmitted from the axon. Thus, rather than 

the intensity of electrical impulses, information in the brain is represented by the frequency of 

AP’s. Figure no. 2.6 shows the graphical representation of action potential.   
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Figure 2-6 Action Potential  [33] 

 

Ion channels open’s when neurotransmitter particles attach to receptors on a neuron's dendrites. 

This hole allows positive ions to enter the neuron, resulting in membrane depolarization, a 

reduction in the differential in voltage between the interior & outside of the neuron [33]. A 

sensory cell or another neuron's stimulation depolarizes the target neuron to 55mV Potential 

known as threshold potential (TP). The axon hillock's Na+ channels open, allowing positive ions 

to enter the cell. When the sodium channels open, the neuron depolarizes entirely to a membrane 

potential of roughly +40 mV. After depolarization, the cell must "reset" its membrane voltage to 

its RP. To do so, the Na+-channels shut & cannot be opened. This begins the neuron's refractory 

phase, during which it is unable to generate another AP because its sodium channels are closed. 

Simultaneously, voltage-gated K+-channels then open, enabling K+ to exit the environment 

of cell. As K+ ions exit the cell, the membrane potential returns to a negative state. 

Post-synaptic Potentials (PSPs) are another source of electrical activity in the brain. These are 

variations in membrane potential induced by substances binding to0neuron receptors. Depending 

on the kind of receptor bound, the RP of membrane may rise or depolarize in the case of 

Excitatory-postsynaptic potentials (EPSPs) decrease or hyperpolarize in the case of inhibitory 

post-synaptic potentials (IPSPs). In the event of an EPSP, the membrane potential is pushed 

closer to the AP threshold, increasing the likelihood of firing. An IPSP has the reverse effect, 

lowering the likelihood of the AP activating. This is how hormones, neurotransmitters, 

psychotropic chemicals, & other substances interact with the neurological system [34].  

The0sum of a large group of neurons' electrical activity has a detectable influence on the 

electromagnetic environment that surrounds the head. Every neuron does not contribute equally 

to the field measured by EEG. The neurons that contribute to EEG are mostly those that create 
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open0fields [35]. Pyramidal neurons, a kind of neuron found in the cerebral cortex, create open 

fields. When these neurons fire0synchronously, they produce coherent electric and magnetic 

fields similar0to those of a dipole as shown in figure no. 2.7.  

 

 

Figure 2-7 Illustration of Dipole [36] 

 

These fields are measurable. MEG is created by measuring magnetic fields, whereas ECoG is 

created by monitoring electrical fields via subdermal implants. Finally, researchers record EEG 

by attaching electrodes on the scalp. 

2.2.3 Neural Activity Measuring 

Hemodynamic & Electrophysiological activities are produced by brain activity. Brain state data 

extraction strategies are essential to understand & analyze how the brain operates. There are 

several sensors that can identify various forms of neural activity. On the basis of signal 

acquisition techniques BCI systems are divided into two categories: invasive & non-invasive. 

Figure no. 2.8 shows different types of different types of Brain signals recording methods & 

Table 2.1 represents the comparison of these methods several signal collection methods. 

 

Figure 2-8 Methods of data recording for BCI system 
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Table 2:1 Different Methods for Brain Signals Recordings 
 

DATA 

ACQUISITION 

TECHNIQUES 

 

MEASURED 

NEURAL 

ACTIVITY 

 

INVASIVE/NON-

INVASIVE 

 

PORTABILITY 

 

INDIRECT/DIRECT 

DATA 

MEASUREMENT 

EEG Electrical Non-Invasive Portable Direct 

MEG Magnetic Non-Invasive Non-Portable Indirect 

MRI Magnetic Non-Invasive Non-Portable Indirect 

FMRI Magnetic Non-Invasive Non-Portable Indirect 

ECOG Electrical Invasive Portable Direct 

MEA Electrical Invasive Portable Direct 

 

Magnetic Resonance Imaging (MRI) and functional Magnetic resonance imaging (fMRI) is one 

of the procedures utilized for brain scanning. This approach identifies variations in blood flow in 

active brain areas. It is generally recognized that blood flow rises in more0active areas of the 

brain. This brain mapping approach has been the most widely employed since fMRI equipment 

were accessible in the early 1990s. It also gained popularity because it does not necessitate any 

additional medical intervention like surgery or the ingesting of radioactive material. The primary 

disadvantages of this technology are the non-real-time data recording and long scan times 

performance. However, innovative strategies for improving and temporal & spatial resolution are 

also being investigated. As in the invasive approaches sensors that are used need to place within 

the brain for recording brain impulses. Because they are placed into the brain, micro-electrode 

arrays (MeA) are very invasive. Electrocorticographic (ECoG) activity recording is another 

invasive technique in which sensors are put on the brain's surface rather than inside it. Despite 

their capacity to capture precise signals, intrusive approaches are less suitable for BCI 

applications due to surgical risks and implant-related issues. However, ECoG & MeA have been 

employed in several research for BCI applications. Although EEG is the most utilized kind of 

signal in BCI, it should be emphasized that a significant and quickly rising portion of BCI 

research is devoted to the use of implanted electrodes that record the activity of a set of neurons 

[37]. Implanted electrodes enable the acquisition of data with significantly higher quality & 

spatial resolution0than non-invasive approaches [38]. Invasive technologies may measure the 

activity of individual neurons, but non-invasive approaches, such as EEG, can monitor the 

activity of thousands of0neurons in real time with minimum risk. 



16 
 

2.3 Electroencephalography (EEG) 

EEG uses electrodes that are placed on the scalp to for measuring and recording the electrical 

activity generated by the brain. The total of the PSP generated by hundreds of neurons with the 

same radial direction with respect to the scalp is measured by EEG. Hans Berger performed the 

first EEG measurements on a human subject in 1924. He came up with the name 

electroencephalogram at that time. In 1929, his key discovery was published [39]. EEG signals 

have a very low amplitude of range of few microvolts. As a result, before digitizing & processing 

these signals, they must be amplified significantly. EEG signal measurements are often done 

with several electrodes ranging from 1 to around 256, with these electrodes commonly secured to 

use an elastic cap. The application of a conductive gel or paste improves the contact between the 

electrodes and the skin but the dry electrodes irrespective of the wet can be directly placed on 

scalp area for data recording without any conductive gel. As a result, the electrode montage 

method is often arduous and time-consuming. It is worth noting that BCI researchers have 

recently suggested and tested dry electrodes for BCI, that is, electrodes that do not require the 

use of conductive gels or pastes [40], [41]. However, the performance of the resultant BCI was 

on average 30% lower than that of a BCI based on conductive gels or pastes. In general, 

electrodes are positioned and identified using a common model, particularly the 10-20 

international system [42]. These numbers0indicate that the gap in between electrodes is 10%0or 

20% of the skull's front-back0or right-left0distance as shown in Figure no. 2.9. The 10—10 

method as shown in Figure no. 2.10 is also often utilized. These systems additionally provide a 

terminology for specifying sensor0locations. Each0letter represents a different0lobe of the 

cerebral0cortex, Table 2 shows the different lobes with their symbolic representation of 10-20 

system:  

 

Figure 2-9 10-20 System [43] 
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Figure 2-10 10-10 System [44] 

 

Table 2:2 Cerebral Cortex Lobe Division in 10-20 System 
LOBES OF CEREBRAL CORTEX SYMBOLS 

PRE-FRONTAL LOBE Fpz 

FRONTAL Fz 

VERTEX CZ 

OCCIPITAL OZ 

PARIETAL pZ 

 

The letter "C" does not0denote a lobe, bu0rather "Central." The sensors are also labelled0with 

numbers. The electrodes along the midline0of the skull are0designated by the letter "z." The 

remaining sensors are numbered, with odd numbers to the left of the midline & even no. to the 

right. The "A"s denotes the ears, which are frequently used as reference0electrodes. 

2.3.1 Types of EEG Signals 

EEG signals are made up of distinct0oscillations known0as rhythms [45]. These rhythms 

have specific spectral & spatial localization features. Figure 2. Represents the six classical brain 

rhythms. 

I. Alpha Waves (8-12 Hz) (α): These are waves arise mostly in the rear regions of the 

brain that is occipital lobe of cortex when the subject's is in relaxing state with eyes 

closed. 

II. Beta Waves (13-30 Hz) (β): This is a reasonably quick wave. These are found among 

awakened & mindful individuals. This rhythm is also influenced by movement 

performance in the motor cortex. 
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III. Delta Waves (1-4 Hz.) (δ): This is a slow wave with a relatively big amplitude that is 

mostly detected in adults during deep sleep. 

IV. Theta Waves (4-7 Hz.) (θ): This is a somewhat quicker waves that is mainly detected 

during sleepiness and in young infants. 

 

V. Mu Waves (8-13 Hz.) (µ): These are waves seen in the sensorimotor & motor cortex. 

When the subject moves, the amplitude of this wave changes. As a result, this wave is 

sometimes referred to as the sensorimotor0rhythm. 

 

VI. Gamma Waves (30 Hz. or above) (γ): This wave is often classified as having a 

maximum0frequency between 80 and 100 hertz. It is linked to a variety of motor & 

cognitive activities. 

 

Figure 2-11 Types of Brain Waves 

2.4 Brain Computer Interface (BCI) System 

BCI system is defined as a "control & communication channel that does not rely on the 

brain's regular0peripheral nerve & muscle output0pathways" [46]. Commands & Messages 

transmitted via BCI are encoded in the user's brain activity. BCI technologies enable direct 

communication between the brain and a computer [46]. The goal of a BCI is to offer people with 
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an0alternative communication channel by analyzing the brain's thought activity & permitting 

direct transmission0of messages from the brain. A BCI is a technology that discovers a new 

communication means of commanding machines using just the brain. A cap with EEG 

electrodes is put on a user's head to measure EEG signals. To control devices, a user imagines a 

certain goal, such as word composition or limb movement. These tasks have an impact on the 

patterns0of EEG signals. Computers categorize & recognize these patterns in order to operate a 

computer program such as movement of cursor or a machine like a brain control wheelchair. 

BCIs, unlike all other interfaces, do not involve physical0movement, and hence may be 

the only mode of communication available to those with severe motor0limitations. BCIs can also 

be used to control & communicate other user goals & groups, such as patients with less severe 

motor disabilities who want to control a wheelchair or orthosis [47] & healthy users in scenarios 

where traditional means of communication are impractical, difficult, or insufficient [48]. BCIs 

may also aid in the reduction0of symptoms associated with autism, stroke, & emotional and 

attention0disorders [49]. BCIs are classified into 2 main types as discussed in section 2.2.3: 

invasive (based on signals collected from electrodes implanted over the cerebral cortex) & non-

invasive (based on signals recorded from electrodes placed on the scalp (outside the head) [45]. 

According to current studies, the non-invasive EEG approach is the most desirable. 

2.4.1 BCI system Architecture 

A Brain Computer interfacing system typically necessitates the following0closed-loop 

procedure, which is represented in Figure no. 2.12: brain activity monitoring, pre-processing, 

feature extraction & reduction, classification into different classes, translation into required 

output [50]. 

 

Figure 2-12 Architecture of BCI system 
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I. EEG Signal Recording: 

Effectively measuring brain activity is a vital step in BCI communications. Human 

thoughts influence electrical impulses that are monitored using various types of 

electrodes and then0digitized. In this thesis, EEG signals are employed to assess brain 

activity. 

II. Pre-Processing of EEG data: 

Pre-processing simplifies later processing procedures while enhancing signal quality 

without sacrificing information. The recorded signals are cleaned and denoised in this 

stage to increase the important information included in the signals [51]. 

III. Feature Extraction: 

Certain characteristics distinguish the brain patterns employed in BCIs. The goal of 

feature extraction is to describe the signals using a few meaningful variables known0as 

"features" [51]. 

IV. Classification: 

Classes are assigned to a set of features derived from the signals during the classification 

stage. This class relates to the recognized mental states. This stage is also known as 

"translation of features." 

V. Application: 

Once the state of mind has been determined, a signal is connected with it in order to 

operate a specific application, such as a robot or a computer. 

Only certain patterns of activity in continuous brain impulses linked with specific tasks or events 

may be detected and classified by a BCI. The mental approach employed by a BCI system 

determines what a BCI user must do to generate these patterns. The core of every brain computer 

communication is the conceptual approach. The mental approach dictates what the user must do 

to generate brain signals that the BCI can understand. BCIs based on selective attention, on the 

other hand, require external stimuli given by a BCI system. Stimuli can be either somatosensory 

or auditory. 

2.4.2 EEG based BCI as Classification System 

EEG0signals are often encoded in a high-dimensional feature space, making manual analysis 

extremely challenging. Machine learning algorithms are useful for deciphering high-dimensional 
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feature sets and analyzing brain signal pattern properties. According to [] there are 5 types of 

classifiers utilized in BCI research. Nonlinear, linear, neural networks, closest0neighbor, & a 

mix of these are examples of classifiers. Linear classifiers are discriminant algorithms that 

discriminate between classes by using linear functions. These are the most often used techniques 

in applications of BCI. In BCI research, neural networks are also often employed classifiers. A 

neural network is a collection of artificial0neurons that may generate nonlinear decision limits. 

Nonlinear classifiers generate nonlinear decision0boundaries, allowing for more0efficient 

rejections of unclear data points as compared to discriminative classification techniques. 

 

Figure 2-13 Classification Techniques used in BCI systems 

2.5 Deep Neural Network (DNN) 

The term "deep" has two meanings in the context of deep neural networks. The number of layers 

in a neural network is measured by its "depth." The second meaning comes from deep learning: 

machine learning algorithms that learn data representations rather than merely how to classify 

them. The hidden layers in an ANN are typically seen as transforming the data in a way that 

benefits classification. Thus, by adjusting the hidden layer's weights and biases, the network 

learns how to turn the input into a better representation. More complicated changes can be 

performed by stacking layers. DNN’s were long thought to be too complicated to train to be 
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practical. However, in 2006, Geoffrey Hinton developed a quick training approach for a form of 

NN known as a “Deep belief network”, which reinvigorated DN research [52]. While [53] 

initially described the CNN in 1998, the continuing DL revolution began when [54] won the 

ImageNet Challenge with a CNN-based solution. The ImageNet competition is an annual 

competition in which research teams assess algorithms and compete for the highest score on 

picture classification tasks using the "ImageNet" labelled image dataset. [54] reduced the current 

error rate0from 26.1% to 15.3%. 

DL is a subset of ML that progressed from standard methodologies to artificial neural networks 

(ANN). ANNs are computer systems that were inspired by the human brain. They are made up of 

numerous0computing units known as neurons, which conduct a fundamental operation and send 

the results of that action on to other neurons.  

 

Figure 2-14 a: Biological neuron’s anatomy (Left) & b:artificial neuron structure (Right) [55] 
 

In general, the procedure is a summation of the information received by the neuron, followed by 

the application of a simple, non-linear function. These neurons are subsequently grouped into 

units called layers in most neural networks. Although the processing of neurons in one layer 

often feeds into the computations of the next, certain types of networks enable information to 

travel within levels or even to prior layers. 

2.5.1 Architecture of NN: 

A NN is produced when individual neurons are connected in a network [56]. A deep layered 

network, or DN for short, is one that has more than 3 levels. The most typical DN design is 

feedforward, in which the input flows towards the output and there is no feedback link to prevent 

model results from being sent back into the input branches. Fig. 3.4 depicts a rudimentary 
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example of a feedforward neural network with L layers. There are 3 sorts of layers in a DN. The 

leftmost layer is referred to as the input layer, the intermediate layers as the hidden layers, and 

the rightmost layer as the output layer as shown in Figure no. 2.14. Since a DNN is made up of 

many layers, calculations are given in vector form for better comprehension and diagnosis if 

mistakes arise. 

 

 

Figure 2-15 Architecture of DNN with L no. of Layers [57] 

2.5.2 Convolutional Neural Network 

All global patterns of the input space are learned in an CNN. For example, if the input0space is a 

picture, the global0patterns are all of the image pixels [58]. Thus, if a picture with a resolution of 

32 32 is provided as an input to a layer with 1000 neurons, the total number of parameters in the 

network is 32x32x1000 = 1024000. (1.024 million). This is where CNNs can help. Rather than 

learning global patterns, CNNs learn crucial local patterns observed in the input space. Fig. 3.5 

illustrates how CNN learns spatial patterns using an input picture (the number 'four') retrieved 

from an input0dataset (MNIST). 
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Figure 2-16 Deep Representation in Convolutional Neural Network Model [59] 

 

A CNN model is made up of multiple layers. For simple understanding, there are 3 major layers 

as shown in Figure no. 2.16, in every CNN model these are: 

I. Convolutional Layer (That can be 1D ,2D or 3D) 

II. Pooling Layer (Max pooling, Average Pooling etc.) 

III. Fully0Connected Layer 

 

 

Figure 2-17 General Architecture of CNN model for Signal Patterns Classification [60] 

 

2.5.2.1 Convolutional Layer 

Conv layer is the crucial building block of any CNN. This layer performs the convolution 

operation between an input image and one or many kernels of the layer. Simply put, a kernel or 

filter is a set of weights, and the convolution operation between the image and the kernel means 

sliding the kernel across the image with a user-defined step size (stride) and computing the 

weighted sum of the small area (patch) of the image. After all the patches are generated, they are 
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then applied to an activation function resulting in a final output called a feature or activation 

map.  

2.5.2.2 Pooling Layer 

Another critical component of any CNN is the pool layer. To produce its output, this layer 

connects the output of multiple nearby elements of the activation map supplied from a preceding 

Convolutional layer. As a result, this process significantly decreases the number of parameters in 

a CNN and aids in the prevention of overfitting. Overfitting occurs when a model or classifier 

generalizes well to training data but not to test data. 

2.5.2.3 FC (Fully Connected) Layer 

The feature map from the previous Conv or Pool is flattened into a single vector of values and 

sent to the FC layer. A FC layer is comparable to an ANN in that it conducts the same 

mathematical procedure. After passing through all FC levels, the last layer of a CNN employs a 

problem-specific activation function to determine the likelihood that the input belongs to a 

certain class [61]. The SoftMax function is used as the activation function when the issue 

involves multi-class classification (for example, digit recognition). If the task involves binary-

class classification (such as email spam detection), the activation function is the sigmoid 

function. Figure no. 2.17 shows how FC layers may be used for multi-class categorization. 

 

 
Figure 2-18 Illustration of the fully connected (FC) layers for multi-class classification [62] 
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CHAPTER 3:  METHDOLOGY 

This chapter describes about the dataset that is used in this research, details about its 

implementation and the structure & training of the proposed Convolutional Neural Network 

Model for classification of hand motions from neural corelates. In this thesis the Machine 

learning and deep learning both classification approaches are used on hand-crafted features set 

and raw signals respectively for the classification of Reach and Grasp motions.  

3.1 Methods & Materials 

In this research the dataset used in BNCI Horizon 2020 Reach & Grasp action decoding from 

Gel based EEG electrodes [63].  It is a Coordination & Support Action project that is funded in 

the European Commission’s Framework Program 7. The aim of this project is to develop neural 

computer interaction devices that can help mankind with multiple perspectives.   

3.1.1 Participants & Recordings 

The dataset used in this research in publicly available dataset, its recording procedure was 

conducted by the Institute of Neural Engineering, Graze University of Technology. The dataset 

is recorded using the g.tec USBamp/g.tec Ladybird System that is a gel-based EEG recording 

system from, developed by the g.tec medical Engineering GmbH Austria, they develop both 

invasive & non-invasive BCI technologies that are used all over world for recording the neural 

activities with highest resolution. For recording the data of Reach and Grasp action they took the 

15 abled right-handed persons. Before recording the data, all the participants gave the written 

consents forms & they also received compensation amount for participating in the experiment. 

From the 15 participants 5 of them were female and 10 were male with the age between 15 to 30 

years. For recording the EEG data 58 active EEG electrodes were placed using the 5% grid 

system over the Frontal lobe, Central lobe & Parietal lobe [64]. Along with that they also used 6 

Electrooculogram or EOG electrodes that were placed superior & infra orbitals on the right & 

left eyes and on the canthi outer side for recording the eye movement data. As a ground they 

used “AFz” channel and for reference they used right side earlobe. They used the 8th order 

Chebyshev filter with the cutoff frequency range 0.01 Hz. to 100 Hz. for the prefiltering of 

recorded data. They set the sampling frequency on 256 Hz and apply the 50 Hz. notch filter for 

suppressing the power line noise that contaminate the EEG data. All the dataset they recorded 
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were then synchronized using the “TOBI Signal Server” [65]. For recording the movement onset 

time point and the time point of object grasping for each object that was used in the activity by 

using the “Forcesensing Resistor” (FSR) sensors. The output of the sensors was digitized with 

the help of Arduino that is a battery-operated microcontroller [66]. 

 

 

Figure 3-1 Experimental Setup of Gel-Based EEG data recording system [66].  
 

3.2 Experimental Setup 

For recording the data, the same experimental format was used as used by the [67] in his study. 

For recording the data for gel-based EEG electrodes the experiment was conducted in the 

controlled laboratory environment where the subjects were asked to sit on chair placed Infront of 

table with “sensorized” surface in an electromagnetically shielded room without noise. Subject 

was instructed to place his/her right hand on the “sensorized” surface of the table that was placed 

in front of0them. On the table they placed a jar with spoon placed in it along with an empty jar as 

shown in Figure no. 3.2. Both the jars were placed on the comfortable reaching0distance halfway 

from the right hand of the subject. Then subject was asked to perform the action of reach & grasp 

for both the objects one by one by using their right hand. In case of jar with the spoon the subject 

grasps the spoon from the by using the motion of lateral grasp & in case of empty jar the subject 

reach the jar and hold it by using the palmar grasp motion. The subjects were instructed to gaze 

the object for about 2 seconds time and then start the action of reach & grasp. Subjects 

performed this experiment in self-initiated way without any visual or verbal clues. Once the 

subjects reach the object, they were asked to hold it for 1 to 2 seconds time as shown in Figure 
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no. 3.3. Then finally subject returned his/her right hand back to its normal or starting position. 

There was a display which gives the subject information about the number of grasping action 

he/she had performed on the objects placed on the table that display was inserted in the surface 

of table. Before starting a new trail, the subject took rest of 4 seconds and then starts the next 

motion. In this way they recorded the data of 80 trials per condition (TPC). Totally they 

performed this experiment in 4 runs in each run subject perform 20 trails of each motion and 

after every run subject took the pause of 4 seconds before starting the next run [66]. They also 

recorded the data rest in which subject was instructed to focus their gaze on a fixed-point present 

in the center of table, they recorded the data of rest for 3 minutes at the start of 1st run after the 

2nd run and then at the end of the 4th run. The data of eye movement recordings were also 

recorded by using the 6 EOG channels in which they recorded the vertical and horizontal eye 

movements by using the same method as followed by [67].  

 

Figure 3-2 Experimental setup, object placed on table surface for Reach and Grasp (Palmar & Lateral Grasps) [66] 

 

Figure 3-3 Timeline of each trail. Subject gaze object for 2 sec, the performed the motion of reach & grasp. Grasp 

the object for 1 to 2 seconds. Finally returned the hand back to starting position and take rest of 4 sec & start the 

next trail 
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3.3 Pre-processing of Data 

The EEG data is non-stationary in nature and while recording data it contaminates with multiple 

artifacts like line noises, muscle activities etc. Along with that the offline re-referencing of 

recorded data is also required, and for that multiple referencing techniques are being used. The 

techniques that are followed in this study are explained in below section.  

3.3.1 Common Average Referencing (CAR) Filter 

Re-referencing is the process of changing the reference offline after recording. The goal of re-

referencing is to express the voltage at the EEG0scalp channels in relation to a new reference. It 

can be made up of any recorded channel or an average of several. This ultimate0reference for 

data will have an impact on the analysis & should be chosen carefully. [68] used the CAR filter 

and proves that the CAR filter improves the Signal-to-Noise ratio (SNR) of EEG signal of motor 

and sensorimotor cortex areas that helps in extracting the motor activity from neural correlates.   

The new reference when using the so-called CAR filter is the average electrical activity 

measured across all the EEG channels. Re-referencing is accomplished by averaging all 

EEG channels & then subtracts the resulting signal from each. The overall amplitude across all 

channels will sum to zero after re-referencing at each time point. The amplitudes will be reduced 

overall when using this reference, but each channel will contribute equally to the new reference. 

The re-referenced signal should not be biased towards any specific location on the scalp, in 

theory. However, electrodes are not always evenly distributed across the head. Rather, electrodes 

are frequently placed more densely on the top of the head, with no coverage of the underside. 

The amplitudes in this region will be reduced if the signal on top of the head is overrepresented 

in the reference. To reduce this bias, the average reference must have a high coverage of at least 

64 to 128 EEG electrodes [69]. Ideally, EEG electrodes should be evenly spread out & cover up 

more than 50% of the surface of head [70]. [70] also encourages reporting of which channels 

were included in the average reference to allow for replication and comparison to other studies. 

3.3.2 Butter-Worth Filter  

As the raw EEG data contains a lot of artifacts there’s a need to remove these artifacts and 

improves the SNR of signal so that required information can be extracted from EEG signals. The 

most efficient and commonly used technique for filtration of EEG signals is Butterworth Filter. 
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A Butterworth filter is a type of signal processing filter that is designed to have the flattest 

frequency response possible in the passband. As a result, the Butterworth filter is also referred to 

as a "maximally flat magnitude filter." Stephen Butterworth, a British engineer, and physicist, 

invented it in 1930 in his paper "On the Theory of Filter Amplifiers." 

The Butterworth filter's frequency response is flat in the passband (i.e., a bandpass filter) and 

rolls off to zero in the stopband. The order of the filter influences the rate of slide response. The 

order of the filter is determined by the number of reactive0elements used in the filter circuit i.e., 

capacitor & inductors. But in case of Butterworth filter only the capacitor is used as a reactive 

element and the number of capacitors define the order of the filter. In the case of the Butterworth 

filter, however, only capacitors are used. As a result, the order of the filter is determined by the 

number of capacitors. Figure 3.4 shows the circuit diagram of 4th order butter worth filter that is 

used in this study for filtering the EEG signals.   

 

Figure 3-4 Circuit Diagram of 4th Order Butterworth Filter 

 

The designer attempts to achieve a response that is close to the ideal filter while designing the 

filter. It is extremely difficult to match results to the ideal attribute. To achieve an attribute that is 

close to the ideal, filter with higher orders must be employ complex. The general Transfer 

Function (TF) of the 4th order Butterworth bandpass filter is given in equation 3.1.  

𝐴(𝑠) =  

𝐴𝑚(∆𝛺)2

𝑏1
.𝑠2

1+[(
𝑞

𝑏1
∆𝛺)𝑠]+[{2+

(∆𝛺)2

𝑏1
}𝑠2]+[

𝑎1
𝑏1
 ∆𝛺𝑠3]+𝑠4

      (3.1) 

 

The figure no. 3.5 shows the frequency responses of the bandpass Butterworth filters of different 

orders.  
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Figure 3-5 Frequency response of Butterworth Filter 

  

Figure no. 3.6 shows the frequency response of 4th order with cutoff frequencies 0.01 to 35 Hz.  

that is used in this study. The filtration of EEG data is done by using the “ERPLAB” that is used 

for EEG data preprocessing in MATLAB®.  

 

 

Figure 3-6 Butterworth Bandpass Filter Frequency Response 
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3.3.3 Independent Component Analysis (ICA) 

ICA is a ML technique for distinguishing independent0sources in a mixed signal. Unlike 

“Principal Component Analysis” (PCA), which seeks to maximize data point variance, ICA 

seeks to maximize independence, i.e., independent components. So, the technique of ICA 

separates the independent sources that are mixed linearly in different0sensors. The method of 

ICA separates the embedded artifacts from the recorded EEG signals that are mixed linearly. The 

“cocktail party problem” is a common ICA example. The cocktail party problem refers to the 

literal scenario of creating a noisy environment in which people talking to each other cannot hear 

what the other person is saying. Figure no 3.7 shows the visual representation of cocktail party 

effect. 

 

 

Figure 3-7 Cocktail Party Concept Visual Representation 

  

The technique of ICA separates the audio signal from each source. In the same way the EEG 

signals with eye blink components, muscle artifacts line noise etc. the technique of ICA removes 

these artifacts from the EEG signals. In this study ICA is used by using the MATLAB ®  GUI 

name as “EEGLAB” for the preprocessing of data for machine learning classification problem. 

Infomax ICA is used which removes the eye blink components from EEG data along with, 

muscle artifacts, heart artifacts, and line noises. 

3.4 Movement Related Cortical Potentials (MRCP’s) 

MRCP’s & sensorimotor oscillatory EEG activities that are Event related Synchronization (ERS) 

or Event Related Desynchronization (ERD) provides the useful information about the related 



33 
 

motor activities. These were first discovered by the Deecke & Kornhuber in 1964 [71]. MRCP’s 

are negative shifting of low frequencies of range 0 to 5 Hz. in the EEG recording that occurs 1.5-

2 sec before voluntary0movement begins. Negative EEG0activity has been associated with 

increased0synaptic activity, so although the positive EEG activity has been0linked to synaptic 

inactivity in the cortical area under0study [71]. As a result, the MRCP's negative profile 

indicates an increase in cortical synaptic activity prior to movement0production. The amplitude 

& onset0time of the MRCP's premovement0components are known to vary depending on the 

psychological & physical properties of the upcoming movement [72]. As a result, the MRCP's 2 

premovement components, known as the negative slope (NS) & readiness potential (RP), & may 

reflect cortical processes involved in the preparation & planning for voluntary0movement [73]. 

Researchers frequently interpret the0magnitude of the negativity0as an indication of the 

amount0of energy or effort0required to plan the0performance of the upcoming movement [74]. 

Similarly, the MRCP onset time may indicate the amount of time it took to prepare & plan the 

movement [75]. The MRCP’s includes 3 events known as motor potential (MP), readiness 

potential (RP) or (BP), & movement-monitoring0potential (MMP), which are assumed to 

represent motion planning/preparation, implementation, & performance control, in that order. 

Figure no. 3.8 represents the MRCP plot for hand motion the BP1 represents the early0BP and 

BP2 represents the late BP. 0 sec is the time from where the motion starts.   

 

Figure 3-8 Movement Related Cortical Potential 

3.5 Feature Extraction 

For the classification of reach and grasp motions using machine learning techniques, hand-

crafted feature set is required because ML algorithms works on the hand-crafted feature set. So, 

in this study the time domain hand-crafted feature set is used. The most commonly used features 
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from the time domain are statical features that are: mean, median, mode, standard deviation, 

kurtosis, skewness & similar [76]. Zero-crossing is another time domain features. It is neither a 

statistical nor a simple feature [77]. It represents the number of times the signal0crosses the x-

axis. The period-amplitude analysis is based on the examination of half-waves, or signals 

between two zero crossings. The wave duration, number of waves, peak amplitude, & 

instantaneous frequency can all be calculated using period amplitude analysis [78]. Table no 3.1 

represents the time domain features that are used in this study. 

Table 3:1 Time domain features 

 

Time Domain Features MATLAB® Function  Formula 

Mean mean(X) 
= 

𝑆𝑢𝑚 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠
 

Medina median(X) 
=

{
 
 

 
 

{
 
 

 
 𝑋 [

𝑛 + 1

2
]            𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑋 [
𝑛

2
] + 𝑋 [

𝑛

2
+ 1]

2
      𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

}
 
 

 
 

 

Mode mode(X) 
=  𝐿 + ℎ 

(𝑓𝑚 − 𝑓1)

(𝑓𝑚 − 𝑓1) + (𝑓𝑚 − 𝑓2)
 

Variance var(X) 
= 
∑( 𝑥𝑖 − �̅�)

2

𝑛 − 1
 

Standard Deviation std(X) 

= √ 
∑( 𝑥𝑖 − µ)

2

𝑁
 

Minimum min(X) ____ 

Maximum max(X) ____ 

Kurtosis kurtosis(X) = 
µ4
𝜎4

 

Skewness skewness(X) 
=
∑ (𝑋𝑖 − �̿�)

3𝑁
𝑖

(𝑁 − 1) ∗  𝜎3
 

Mean Absolution Deviation mad(X) 
=
1

𝑛
∑ |

𝑛

𝑛=1

𝑥𝑖 −𝑚(𝑋)| 

3.6 Classification  

The feature set for machine learning models is then used to decode reach and grasp motions. The 

data was then evenly divided into two classes: reach movement & grasping movement. The 

following section describes the various decoders that were used. 
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3.6.1 Machine Learning Methods 

3.6.1.1 Support Vector Machine (SVM) 

SVM is applied to create the best hyperplane with the greatest margin for dividing data between 

two clusters. A single hyperplane is sufficient to divide two-dimensional data into two groups, 

such as +1 or -1. According to Figure no. 3.9, two hyperplanes are required to distinguish the 

data points for three-dimensional data.  SVM creates a hyperplane to separate the sample data 

into target0categories.  

 

Figure 3-9 SVM Linearly Separable Method 

 

There are several possible linear hyperplanes for 2D data, & the optimal hyperplane with the 

greatest0margin width must be found. H1 & H2 are parallel to the optimal hyperplane & 

represent the distance0between the hyperplane & the data points. Margin is defined as the 

distance between the dotted lines (AC). Support Vectors (SVs) are some of the sample data 

points that lie on the hyperplanes H1 & H2. Refer to figure 3.7 for more information. These SVs 

are required to calculate the width of margin. [79] asserts that linearly separable classification 

divides high-dimensional data into two groups, (𝑦
1
= +1,−1) with no overlapping or 

misclassification. Equations 3.2 & 3.3 are used to represent the H1 hyperplane & H2 

Hyperplane. 

𝑤1𝑥1 + 𝑤2𝑥2 − 𝑏 = 1      (3.2) 

 

𝑤1𝑥1 + 𝑤2𝑥2 − 𝑏 = −1      (3.3) 
 

In the above equations 𝑤1 & 𝑤2 represents the positions of the hyperplanes of H1 & H2 

respectively and 𝑥1 & 𝑥2 represents the data points whose values are -1, 0, +1 that represents how 
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far the hyperplane line lies away from the point of origin or original point of line. The minimum 

and maximum margin widths are 
1

𝑤
 & 

2

𝑤
 respectively.  

𝑦𝑖(𝑤1𝑥𝑖1 + 𝑤2𝑥2 − 𝑏) ≥ 1   𝑓𝑜𝑟 𝑖 = 1,2,3, . . . 𝑚      (3.4) 

 

The Lagrangian multiplier can be defined by equation as: 

𝐿(𝑤, 𝑏, 𝑎) = [
1

2
𝑤2 − ∑ 𝑎𝑖[𝑦𝑖𝑤

′𝑥𝑖 + 𝑏] − 1]𝑛
𝑖=1 ]     (3.5) 

This means that 

𝑤 = ∑ 𝑎𝑖
𝑛
𝑖=1 𝑦𝑖𝑥𝑖      (3.6) 

Hence the equation 3.7 defines the classifiers optimal Decision Function that is: 

𝑓(𝑦) = 𝑠𝑖𝑔𝑛(∑ 𝑎𝑖𝑦𝑖(𝑥𝑖𝑥𝑠𝑣) + 𝑏
𝑠𝑣
𝑖=1 )    (3.7) 

3.6.1.2 Linear Discriminant Analysis (LDA) 

For classification in LDA, a classifier employs the Bayes' theorem. The discriminant analysis 

calculates the Gaussian distribution parameters for each class, & the trained classifier selects the 

class with the least misclassification0cost. The product of the prior probability & multivariate 

normal density yields the posterior probability that a point x belongs to class C. At a point x, the 

density function of the multivariate normal with mean & covariance is given by: 

𝑃(𝑥|𝐶) =
1

(2𝜋|∑ 𝑐|)2
𝑒𝑥𝑝 (−

1

2
(𝑥 − 𝜇𝑐)

𝑇 ∑ (𝑥 − 𝜇𝑐)
−1
𝑐 )   (3.8) 

If P(C) symbolizes the prior0probability of the class C, then the observation’s x posterior 

probability of class C is given by: 

𝑃(𝐶|𝑥) =
𝑃(𝑥|𝐶)𝑃(𝐶)

𝑃(𝑥)
      (3.9) 

R. A. Fisher invented the LDA model. The linear method (LDA) uses the same covariance 

matrix for every class, with only the means0differing. Both the covariances & means of each 

class vary in quadratic discriminant analysis (QDA). 

3.6.1.3 K-Nearest Neighbors (k-NN) 

k-NN is one of the most basic classification algorithms. The classification of a feature vector is 

determined by the majority vote of its0neighbors. The object class is0assigned to the most 

common one0discovered among k nearest0neighbors. For example, class "square" is shown in 

the Figure no. 3.10.  
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Figure 3-10 k-NN classier for classification of object with k=5 

3.6.2 Deep Leaning Methods 

The “Keras” library is used to implement the deep learning portion of this research, with the 

“TensorFlow” library serving as a backend. On the reach and grasp motion dataset, a 2D deep 

CNN model is developed and tested, as well as the results with two other DL models. While they 

have a similar overall structure and design, they differ in depth, width, and the number of 

parameters. This section discusses the decisions made in the design of the proposed CNN model. 

3.6.2.1 Architecture of CNN model 

A deep learning CNN model is proposed in this study which classifies the Reach and Grasp 

motion from neural corelates. The design of the proposed model is shown in Figure no. 3.11. The 

model consists of 2D convolutional layers along with average pooling layers, and separable 

convolutional layers, followed by the fully connected layer. First layer C1 is input layer, the 

input shape used for the model is time series data in the form of Channels x Time Points (C x T). 

Second layer or C2 is of 2D convolutional layer along with bath normalization layer. It consists 

of 8 filters of size (1,64) which moves along the time axis for extracting the feature values. The 

feature map of C2 layer is used as a input for third layer C3 that is separable convolutional layer 

with 32 filters of size (1,64), these are doing depth and point wise convolution this layer extracts 

the time features depth and point wise, next to separable 2D convolutional layer is Bath 

normalization layer with activation function “ELU”. Forth layer C4 is average pooling layer with 

filter size (1,8). This layer reduces the complexity of the feature map then a dropout layer is 

applied with 0.2 dropout value. Fifth layer C5 is again separable convolutional layer with 16 

filter of size (1,16) and then again apply bath normalization layer with activation function 

“ELU”. Then again average pooling layer is applied for reducing the complexity of feature map. 
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Sixth layer C6 is flatten layer which combines the output of C5 into vector & the seventh layer 

C7 is a fully connected layer. Lastly the “Sigmoid” layer is added in the model that predicts the 

probability distribution of output classes i.e., Reach & Grasp actions. Detail about the activation 

function, optimizer, and layers used are given below. The detail of the architecture is given in 

appendix A. 

 

Figure 3-11 Architecture of Proposed Model 
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I. Activation Function 

Recently in most of the EEG classification NN models, the most used activation function in 

Exponential Linear Unit (ELU).  ELUs, unlike “ReLUs”, have negative values, allowing them to 

push mean unit0activations0close0to0zero. Just like the technique of “batch normalization” but 

in in case of “ELU” less computational power is used because of less computational complexity 

[80]. Because of the reduced bias shift effect, shifting of mean toward zero accelerate learning by 

bringing the normal gradient closer to the unit natural0gradient. Mathematically, the equation no. 

3.10 & 3.11 defines the “ELU” function: 

 

𝑦 = 𝐸𝐿𝑈(𝑥) = exp(𝑥) − 1 ; 𝑖𝑓 𝑥 < 0      (3.10) 

           𝑦 = 𝐸𝐿𝑈(𝑥) = 𝑥 ; 𝑖𝑓 𝑥 ≥ 0     (3.11) 

 

Graphically, Figure no. 3.12 represents the activation function “ELU”: 

 

 
 

Figure 3-12 ELU activation function curve [80] 

 

II. Dropout Regularization: 

In the deep learning model’s overfitting is a very common problem specially in CNN models. 

One of the method to reduce the effect of over fitting of model was introduced by the Srivastava 

et al. [] that is through Dropout Regularization (DR).  DR is the process of randomly0removing 

units and their connections from the network during each training0step. When a layer has 50% 

dropout, each unit in that0layer has a 50% chance of being0deactivated at each0training step. 

The concept behind DR is that by training networks of different configurations & using their 

average0output for prediction, one should be able to neutralize overfitting, but for complex 



40 
 

architectures, this is impossible. Dropout enables us to approximate0the average of an 

exponentially0large number of networks. With a 50% dropout rate, the network is trained with a 

slightly different0architecture at each step, with the net result being an0average of all these 

different architectures. 

III. Loss Function: 

The Loss Function used in prosed model is “Binary Cross-entropy”. This is commonly used for 

the binary class classification problems. There are multiple problems with only two answers so 

for that this is use d. In this thesis binary class classification is performed for classification of 

“Reach” and “Grasp” motions.  It is defined as the “Negative0average of log of corrected 

predicted0probabilities”. This loss is equivalent to the average of the0categorical cross entropy 

loss on many 2 category tasks. Mathematically binary Cross-Entropy is defined by equation 

3.12: 

𝐿𝑜𝑠𝑠 =  −
1

𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒
∑ 𝑦𝑖.𝑙𝑜𝑔𝑦�̂� + (1 + 𝑦𝑖). log(1 − �̂�𝑖) 
𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒
𝑖=1   (3.12) 

Here: 

�̂�𝑖 is mode’s output 𝑖 − 𝑡ℎ value 

𝑦𝑖 corresponding targeted value 

IV. Optimizer: 

The optimizer used in proposed model in “Adam” that was introduced by Jimmy Ba & Diederik 

Kingma from Toronto University & Open AI respectively in 2014 [81].  The name of optimizer 

“Adam” is developed from “Adaptive Moment0Estimation”. Adam optimizer is different from 

the classical SGD (Stochastic Gradient Descent” optimizer. For all weight updates, SGD 

maintains a single learning rate (lr) called as alpha, which does not change during training 

process. Each network weight or parameter has its own lr that is adjusted as learning progresses. 

Adam is made by combing the advantages of Adaptive Gradient Algorithm (AdaGard) that 

improves the performance by maintaining the pre-parameter lr & the Root mean square 

propagation (RMSprop) that also pre-parameters lr on the average of recent magnitudes0of 

gradients0for the weight. In this way the method performs best for both nonstationary (like EEG) 

& online problems.  These both are the extension of SGD. So, Adam realizes the advantages of 

both RMSProp & AdaGard.  
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Figure 3-13 Comparison of MLP training using other Optimizers with Adam [81] 
  

V. Training & Validation 

Accuracy, or how many of the objects in the data set were correctly classified, is the most 

common measure of success in any machine learning & Deep Learning problem. A ML or DL 

algorithm may achieve very high accuracy on the training set while failing to0generalize to new 

data, necessitating some method of validating the algorithm. Validation is required to accurately 

determine the performance of any ML or DL method. This is typically accomplished0by dividing 

the data set into 2 parts: a training set, on which the data is trained, & a testing set, on which the 

model is tested after training. The dataset can be divided in an infinite number of ways. It must 

be large enough to accurately represent the data while not being so large that we have 

insufficient0training data. An average split is 80% for training data & 20% for testing data []. In 

this thesis for ML models are trained and tested on small data because most of the trails got 

rejected on the basis of peak amplitude threshold value, abnormal kurtosis & abnormal joint 

probability values. So, there is another advance approach of validation is applied on ML models 

that is “cross validation approach”.  In this technique the model of ML is trained repeatedly on 

multiple subsets of the training dataset. The most used technique in cross validation is the one 

that is used in the research called as “k-fold cross validation approach”. Figure no. 3.13 shows 

the diagram of 5-fold cross validation approach 
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Figure 3-14 5-fold cross validation approach. Green represents the training data sets and orange represents the test 

subset. 

 

For the DL models the simple validation approach is used because in DL model’s raw data is 

used as an input so there is no loss of data while trail rejection. For DL & ML models 70:30 split 

ratio used for training and testing of models. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Pre-Processing 

For the preprocessing of EEG data MATLAB® toolbox EEGLAB is used. Firstly, the data is 

loaded and then channels list and events list are uploaded after that the spatial filtering technique 

of Common Average Referencing (CAR) filter is applied on the data of Gel based recordings for 

all the 15 subjects one by one. The CAR filter is enough to extract cortical0potentials of 

sensorimotor0cortical activities modulated by the user's0intention. Then the 4th order Butter 

worth filter with frequency range 0.01 Hz to 35 Hz. are applied on all the available EEG and 

EOG channels Figure no. 3.4 and Figure no. 3.5 shows the raw and filtered EEG data.  

 

Figure 4-1 Gel based EEG datasets recordings from 64 channels. (Raw Signal) 

 

 
Figure 4-2 Gel based EEG datasets recordings from 58 channels. (Filtered Signal) 
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Then for removing the line noise from the data the line uses the “Cleanline” plugin of EEGLAB 

Figure no. 3.6 shows the Power Spectral Density (PSD) of filtered signal without applying 

Cleanline filter. It is clearly visible that there are artifacts of line noise at 50 Hz. frequency.  

 

 

Figure 4-3 Power Spectral Density (PSD) of filtered EEG signal (with line noise) 

 
Figure 4-4 Power Spectral Density (PSD) of filtered EEG signal (After applying Cleanline plugin) 

 

After removing the line noise artifacts from EEG data, the eye blink components along with the 

muscle artifacts components, channel noise are removed from data by using the ICA algorithm. 

The ICA is applied by using the EEGLAB from there the infomax ICA technique is used then 

the components are labels by using the “IClabel” pretrained model that classifies the components 

into different classes. Figure no. 4.5 shows the labeled ICA components which shows multiple 

classes like eye, channel noise, muscle brain etc. from all these classes eye, muscle, line noise 

will be removed. The figure no. 4.6 (a) shows the EEG signal plot before (blue line) and after 

(red line) the ICA components removed. The blue lines clearly show the artifacts in brain signals 
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and these are removed after removing the ICA components of eye, line noise etc. as shown by 

red line signals.  

 

 

 
Figure 4-5 Labeled ICA components of EEG data 
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Figure 4-6 EEG signals before (blue) and after (red) removing ICA components. Region in circle shows the artifacts 

part.  

 

After removing the ICA components, the data is then down sampled to 26 Hz. from 256 Hz. for 

saving the computational power. After that the EOG channels are removed from the data by 

interpolating the channels.  

 

 
Figure 4-7 Interpolating of Channels 

 

After removing the EOG channels the trails of “Reach” and “Grasp” motions are then extracted 

from the continuous EEG data. The epoch trails are then rejected based on peak amplitude 

threshold i.e., 125uV, abnormal joint0probability & finally based on abnormal kurtosis 

Red signals are 

filtered signals 

without blink 

components etc.  
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by0threshold of 5 times the standard deviation, the rejected trails, & their details for Subject 4 in 

shown in Figure no. 4.8 & 4.9. 

 

 

Figure 4-8 Epoch rejection with 125 uV threshold amplitude, abnormal joint probability and abnormal kurtosis 

 

 

 

Figure 4-9 Rejected trails of Grasp action for Subject 4 based on peak amplitude threshold value, abnormal kurtosis 

and joint probability Highlighted trails show the rejected trails 

 



48 
 

MRCP’s are used to differentiate movements of different hand motions or limbs by measuring 

changes in Potential0distribution from brain0signals. To calculate & decode MRCPs for reach 

and grasp actions, EEG signals from EEG0recordings are resampled to 16 Hz to0save 

computational power, & then the CAR filter is applied again. The EEG signals are then subjected 

to a Moving averaging filter of 2nd order. The MRCP0values are calculated from each0channel, 

with the exception of the mean0confidence interval & the mean over all trails of each subject for 

each movement condition0type. The mean value over the subject specific averages is used to 

calculate the grand average for each type of available EEG dataset. All Reach and Grasp trails 

are epoched0according to the window of interest (WOI) , i.e. [-2 3] sec. The non-parametric t-

percentile bootstrap statistics are used to calculate the 95% confidence interval for0each 

movement condition. The MRCP’s are plotted for motor cortex channels that are FCz, C1, Cz 

and C2 shown in Figure no. 4.10.  

4.2 Feature Extraction 

For the ML models the feature set is extracted from the segmented trails of reach and grasp. As a 

feature set 11 amplitude values and band power of signal are taken from all the available EEG 

channels i.e., 58 channels. The total features extracted from recordings are 638 features (11 x 58 

channels).  

 
Figure 4-10 Movement Related Cortical Potentials (MRCP's) for Reach and Grasp Actions of Channel FCz, C1, Cz, 

and C2. Green line shows the MRCP of Reach action and blue lines shows the MRCP of Grasp actions. 
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4.3 Machine Learning Classifiers 

After extracting the features, the machine learning classifiers are applied to them for each subject 

one by one. In this thesis LDA, SVM and K-NN models are applied. All the features are 

extracted from the preprocessed data subject of each subject with 70:30 split ratios. For every 

subject 5-fold cross validation approach is used in which the training data is divided into 5 

groups and in each iteration one group is sued for testing and remaining 4 are used for training of 

model.  The accuracies of all the subjects are tested on the 3 models LDA, SVM and k-NN. 

Table no 4.1 shows the test and training accuracies of all the 15 subjects on LDA, SVM and k-

NN classifiers. It is visible from the results that the k-NN shows the overall best classification 

accuracy as compared to LDA and SVM classifiers. Figure no. 4.11 shows the comparison graph 

of 3 different ML classifiers. On the hand-crafted feature set k-NN classifiers shows the best 

classification results on unseen data.  

Table 4:1 Classification accuracies of 15 Subjects using LDA, SVM and K-NN Machine 

learning Models 

 
Classifiers / 

Subjects 

Linear Discriminant 

Analysis classification (%) 

Support Vector Machine 

classification (%) 

K-Nearest Neighbor 

Classification (%) 

 Training Test Training Test Training Test 

G01 65.2 63.7 67.8 66 79.8 77.6 

G02 63.4 60.8 68 67.8 77.4 76.0 

G03 64.2 60.8 66.4 65.2 84.4 81.4 

G04 71.2 69.1 69.6 68.8 80.2 79.1 

G05 63.4 60.3 67.4 68.3 81.3 79.6 

G06 65.3 64.9 70.2 69.1 81.4 80.7 

G07 60.6 56.2 67.4 67.2 76.9 75.8 

G08 55.2 53.8 62.9 61.0 78.5 83.8 

G09 64.5 62.8 70.6 68.4 74.4 74.6 

G10 60.2 60.1 65.4 62.9 72.6 76.3 

G11 60.2 61.6 68.5 66.5 77.4 82.8 

G12 58 55.7 66.6 68.0 76.3 80.9 

G13 66.2 60.7 73.5 72.1 81.4 82.2 

G14 62.7 58.6 67.7 67.1 81.7 84.2 

G15 66.2 62.4 65.3 62.6 79.8 82.2 

 

Average  

 

63.1 ± 3.86 

 

60.77 ± 3.80 

 

67.82 ± 2.53 

 

66.73 ± 2.86 

 

78.9 ± 3.11 

 

79.81 ± 3.11 
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Figure 4-11 Comparison of test accuracies of LDA, SVM and K-NN classifiers 

 

 

4.4 DL CNN based Classification 

For the deep learning model raw EEG data is used with simple pre-processing steps that includes 

the 4th order Butterworth bandpass filter with cutoff frequencies 0.1 to 35 Hz. After that the data 

is segmented and that segmented data is used as an input from the Deep learning CNN model. 

The data is split into training and test sets with 70:30 ration. The] models of DL in previously 

used in literature also tested on this dataset for comparing the accuracy of proposed model. The 

models of CNN proposed in literature related to edge device perspective are also used are 

DeepConvNet [82], and EffNet [83]. Figure no. 4.12 shows the comparison of size of proposed 

CNN model with models proposed in literature for the edge device perspective. Size wise the 

proposed model is much batter then the other models that usually used for Motor actions 

classification from EEG signals.  
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Figure 4-12 Comparison of Model sizes (KB) 
 

Table 4:2 Number of parameters in different DL models 

 

 

 

 

 

 

The EffNet is specially proposed for the edge device perspective but still its size is much bigger 

than our model. The number of parameters of each model is given in table no 4.2. As it is clear 

from table 4.2 that the number of parameters of proposed model is far lesser as compared to 

EffNet and DeepConvNet, here the classification accuracy of proposed model shows better 

results than the other 3 models of DL. Figure no. 4.13 shows the classification accuracy of 15 

subjects on Proposed model, DeepConvNet, and EffNet models. From the results of figure 4.13 

& 4.14 the proposed technique shows the batter classification accuracies as compared to 

DeepConvNet which shows greater average classification accuracy but because of greater 

number of parameters and large model size this model will use more computational power.  
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Figure 4-13 Subject wise classification accuracies of DL models 

 

 
 

Figure 4-14 Average classification accuracy of different DL models 

 

G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G12 G13 G14 G15

Proposed Model 94.73 96.67 93.75 91.18 88.12 84.37 93.55 97.56 90.42 95.81 89.06 95.83 85.11 92.56 97.83

DeepConvNet 95.31 95 90.62 98.36 90.62 84.32 98.89 87.5 86.83 93.55 92.19 95.13 93.68 94.64 96.77

EffNet 89.06 80.88 89.06 77.05 75 79.69 85.48 88.74 84.132 84.84 84.38 82.19 79.37 69.64 75.8

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Comparison of Classifcation accuraies of DL models

0 20 40 60 80 100 120

Proposed Model

DeepConvNet

EffNet

Proposed Model DeepConvNet EffNet

Accuracy 92.44 92.894 81.68746667

Average Calssification Accuracies

Accuracy



53 
 

 
Figure 4-15 Confusion Matrix of reach and Grasp action of Proposed Model of 15 Subjects 
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Figure 4-16 Precision of 15 Subjects on Proposed Model 

 

 

Figure 4-17 Recall of 15 subjects on proposed model 

 

 

Figure 4-18 F1-score of 15subjects on proposed model 

 

So overall, the proposed DL model shows the batter results with raw data as compared to other 

machine learning and deep learning models. 
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CHAPTER 5: CONCLUSION 

 

This thesis compares Machine learning models proposed a deep learning model. The ML models 

use the hand-crafted features as an input for the classifier in this thesis LDA, SVM, & K-NN ML 

models are used for decoding the EEG signals for the detection & classification of different 

motion of same hand using the dataset that is recorded by using the Gel-based recording system. 

But the focus of the thesis is the classification of raw signals using deep convolutional neural 

network which provides higher classification accuracy and consume less computational power so 

that the model can help in the development of BCI systems for the rehabilitation purposes for 

stroke or spinal cord injury patients. The methods of ML and DL applied subject wise. For the 

ML data the EEG signals are filtered using and then the ICA is also applied for removing the eye 

blink, line noise or muscle movements components from the recorded data and after applying 

these techniques and extracting time domain features of Reach and Grasp motions from the EEG 

signals the LDA, SVM and K-NN classifiers shows the average accuracies of 60.77%, 66.73% 

and 79.81% respectively on the unseen dataset. 

In case of Deep Learning model that is proposed the data set is used in the raw form and very 

minor preprocessing steps are applied that include butter worth filter and normalization step. The 

raw signal is given as an input to the deep learning model and the model achieves the average 

classification accuracy of 92.46 % on the unseen dataset. For the compression purposes the DL 

models that are proposed in literature are also tested on this dataset, the models used are EffNet 

that is specially designed for the edge device perspective. EffNet and DeepConvNet shows the 

classification accuracies of 81.68% & 92.89% on unseen dataset. The DeepConvNet shows 

approximately the same results as that of proposed CNN model, but the number of parameters 

and size of model is bigger as compared to proposed technique. So, developed CNN model 

shows the best results and can be used in the implemented on the edge devices and use for the 

development of BCI system 
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