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                                                           Abstract 

Real time natural control of assistive, rehabilitation and prosthetic devices has gained significant 

importance over the last few decades for the people suffering from motor disabilities due to 

stroke, any spinal cord injury or amputation. Although surface electromyography (s-EMG) has 

been used as a viable controlling interface for several robotic devices specifically designed for 

post stroke therapeutic services. But these conventional controlling strategies are not feasible to 

design the rehabilitation or HMI systems based on simultaneous movements of multiple degrees 

of freedom (DOF). This paper presents a novel control strategy for HMIs which is based on the 

coupled use of EMG and inertial sensors. EMG and kinematic data of healthy and stroke subjects 

for commonly used daily life activities has been recorded. Multiple machine learning models 

including LDA, QDA, LSVM, QSVM, Fine KNN, Ensembled discriminant, and ensembled 

KNN have been applied. Besides this a tri-layered neural network classifier has also been 

implemented.  A comparative analysis has been performed for the classification outcomes of all 

the applied models for EMG, IMU & EMG+IMU data. Overall, the KNN model performed well 

for all types of datasets with an average accuracy of 98.5% but results clearly demonstrated that 

average classification accuracies for all the applied models have significantly improved for 

EMG+IMU data which indicates that sensor fusion based control strategy for prosthesis can 

achieve higher performance than conventional control systems for each task. This study is an 

effort to provide a new EMG+IMU based technique for fast, efficient, and reliable control of 

robotic, rehabilitation and assistive devices for multiple movements with varying DOF.  

Key Words:  EMG, Inertial measurement unit (IMU), HMI, Stroke, Rehabilitation, Prosthesis 
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                                       CHAPTER 1: INTRODUCTION 

1.0 Problem Statement 

Stroke is ranked as the third-leading global cause of physical disability. Ageing is one of the 

powerful stroke drivers. According to the recent statistics, there are approximately 650 million 

population over the age of 60, but by 2050, that figure is expected to be increased up to 2.00 

billion [1].   If the statistics persist, the need for post-stroke care (PSC) services will rise as well, 

imposing an unsustainable financial burden, particularly on emerging economies like Pakistan. 

Thats is why it is necessary to replace the conventional therapeutic strategies with 

technologically advanced systems. It is very difficult for people with upper limb disabilities to 

perform daily life activities such as holding objects, eating meals and opening\closing of doors 

etc.  The use of assistive devices particularly targeting the hand can be significantly beneficial 

for such population. Depending upon the type of disability this device can be orthosis 

(supporting the functionality of existing limb), prosthesis (for amputated limb) or rehabilitative 

(for physical therapy). EMG signals have not only been used as the natural interface for 

controlling the artificial limbs but to design the rehabilitation devices as well [2]. The aim of this 

study is to decode the activities of daily living (ADL) based Electromyogram data using multiple 

machine learning and neural network classifiers to design an efficient rehabilitation system to 

achieve the ultimate goal of self-training for post stroke rehabilitation. Beside EMG the 

kinematic information of the subjects has also been recorded using IMU sensors to investigate 

the overall impact of sensor fusion strategy on the classification accuracy of algorithms. But 

before going into the technical depth of this study a brief introduction to understand the 

theoretical background of stroke disease, its’ causes, types, recovery stages during the post stroke 

rehabilitation, EMG, and assistive devices has been discussed. 

1.2 Stroke 

Stroke is termed as cerebrovascular accidents (CVA’s). “Cerebrum” is the Latin word refers to 

the brain and “vascular” is used for blood vessels. Stroke is one of the major reasons of brain 

damage especially in elderly people. In this condition the flow of blood to the brain is stopped. 

Arterial vessels which feed the brain can be blocked temporarily or permanently [3]. The term 



 

stroke is associated with the long-time blockages damaging the brain and leaving several mental 

and physical deficits because the brain cannot get enough oxygen and nerve cells die. Thus, 

abilities controlled by that part of the brain are partially or completely lost.   

 

Figure 1.1 Brain attack (Stroke) 

1.2.1 Types of Stroke 

Five types of stroke conditions are considered as medical emergencies which interrupt the blood 

supply to brain. These 5 types are: 

- Ischemic stroke.  

- Hemorrhagic stroke. 

- Transient Ischemic stroke (TIA). 

- Cryptogenic stroke. 

- Brain stem stroke. 

1.2.1.1 Ischemic stroke 

Ischemic stroke is occurred when blood vessels get blocked due to any clot called “thrombi” and 

blood supply to any specific part of brain is interrupted causing the associated brain cells 

(neurons) to die. The occurrence rate of ischemic stroke is approximately 87.00% of all stroke 

types [4].  

 

Figure 1.2 Ischemic Stroke 



 

1.2.1.2 Causes of Ischemic Stroke  

Fatty substances deposit on the inner side of blood vessels causing the hardening or thickening of 

the arterial vessels[5]. This state is called atherosclerosis which is the main reason for ischemic 

stroke. Deposition of fatty substances can mainly cause the following two kinds of obstructions: 

- Cerebral thrombosis: A kind of blood clot called thrombus which develops in the blood 

vessel at fatty plaque. This blood clot is formed at venous sinuses of the brain preventing 

the draining of blood out of the brain.  

- Cerebral embolism: This is a blood clot which can develop at any location of blood 

circulatory system, generally in the heart & the arteries of neck and upper chest. But 

sometimes it breaks and travelling through the main blood stream may reach the blood 

vessels of brain till it gets stuck in too narrow spaces to let it pass. Arterial fibrillation is 

considered as the main reason for embolism. In embolism, a clot is formed in the heart, 

and travels to the brain [5]–[8].  

 

(a) 

 

(b) 

Figure 1.3 Two types of clots because of fatty deposits (a) Cerebral thrombosis (b) Cerebral 

embolism 

- Silent stroke [8]:  

Silent cerebral infarction (SCI) is a kind of brain injury which is caused due to the interruption in 

the blood flow because of the formation of blood clot in the brain and this is the major risk factor 

of getting stroke in future and a symptom of progressive damage to brain.  

SCI is related to some other serious conditions as well: 

- Atrial fibrillation: In the people >65 the problem of irregular heartbeat is very common 

which increases the risk of silent cerebral infarction. 

- High blood pressure: Increased levels of blood homocysteine and high blood pressure 



 

are also the main risk factors of SCI. That’s why early diagnosis of hypertension is very 

important to minimize the risk of getting SCI. 

1.2.1.3 Symptoms of the Ischemic Stroke  

Symptoms of the ischemic stroke depends upon the affected brain part. But some of the 

symptoms are common such as: 

- Vision problems: Double vision or blindness in one eye. 

- Paralysis: Patient may suffer from physical immobility, paralysis, or weakness in single 

or both sides.  

- Dizziness: is taken as the common symptom of transient ischemic attack (TIA).  

- Loss of coordination: If the stroke attacks a person’s cerebellum, then he/she may suffer 

from problems with muscle control and coordination. Briefly the nervous system will 

struggle in coordinating with the movement and this state is called ataxia. 

-   Confusion: Stroke patients generally struggle with the problem called delirium which is 

an extreme state of disorientation/confusion which means he will not be able to take 

quick decisions. If this situation persists for a long time, it may also be the system of 

another neurological disorder called dementia. This state badly affects the memory, 

behavior, judgement, and everyday activities of a person.  

1.2.1.4 Hemorrhagic stroke [7] 

A hemorrhagic stroke occurs when any of the brain arteries is ruptured, and blood is spilled 

inside the brain. It exerts pressure and damages the delicate brain tissues. As a result, the 

affected area of brain doesn’t work properly and loses the capability of controlling the 

associated body part and its functionality.  

 

Figure 1.4 Hemorrhagic Stroke 



 

Generally hemorrhagic stroke falls in two categories: 

- Intracranial hemorrhages: It occurs when nerve bleeds inside the brain. 

- Subarachnoid hemorrhages: It happens when the bleeding is occurred between the 

brain and its covering membranes. 

1.2.1.5 Symptoms of hemorrhagic stroke  

- Body stiffness. 

- Paralysis of single or both sides of body. 

- Hand tremors. 

- Nausea or vomiting. 

- Sudden fluctuations in breathing and heart rate. 

1.2.1.6 Causes & risk factors of hemorrhagic stroke [6]  

The main risk factors for hemorrhagic stroke have briefly been discussed below: 

- Head injuries: A direct relation has been observed between the traumatic head injury 

and both hemorrhagic & ischemic stroke.  

- High blood pressure is one of the major risk factors of stroke. Hearts’ workload is 

increased with the high blood pressure which damages the arteries, and it has been 

proven that the people with the problem of high blood pressure are at greater risk of 

getting stroke. 

- Cerebral aneurysm: is the creation of a bulge in the brain artery. It seems like a small 

balloon filled with the blood. It is also defined as the brain aneurysm or intracranial 

aneurysm. It makes the artery to rupture from that area. 

- Rheumatoid vasculitis: People suffering from a long-time condition of rheumatoid 

arthritis (RA) has the problem of rheumatoid vasculitis in which blood vessels are 

inflamed and thus, risk of the hemorrhagic stroke is high in such patients. 

1.2.1.7 Transient ischemic attack (TIA) 

Mini stroke/Transient ischemic attack (TIA) of stroke is caused due to the temporary blockage of 

blood supply to any part of the brain. It persist for a very short time and the resulting effects of 

TIA [9] last for a few minutes to hours. Patients can recover from TIA within the time period of 

24 hours. It has the same risk factors as the other stroke types like high cholesterol, high blood 



 

pressure, smoking ,Obesity, and depression etc.  

1.2.1.8 Cryptogenic stroke 

Cryptogenic stroke (CS) is categorized as the stroke of unknown origin as the cause of 

cryptogenic stroke remains undetermined. This is because the CS is reversible or transitory. 

Almost 1/3rd cases of ischemic stroke are cryptogenic. It is more common in younger population 

than older patients due to coagulopathy, vasculopathy and cardiac embolism [10].  

1.2.1.9 Brain stem stroke 

Brain stem stroke is occurred when the base section of brain is deprived of the blood supply 

because of some reason i.e., clot or ruptured blood vessel. It affects numerous body functions 

such as breathing, blood pressure, and heart rate. It can be cured by removing the clot through 

embolectomy or by using the medicines like blood thinners to remove the clot in case of 

ischemic stroke. Brain stem stroke has very complex symptoms. Person suffering from this may 

feel dizziness, vertigo, and severe imbalance. It can cause slurred speech, decreased 

consciousness and double vision. Recovery from brain stem stroke is possible with the 

rehabilitation therapy of several weeks [11]. 

1.3 Stages of Stroke Recovery 

Stroke affects the coordination, movement, speaking, cognition, and other normal body functions 

making the person dependent on the post stroke care (PSC) services. Recovery from stroke is a 

difficult, emotional, and challenging process and different for every patient [12]. Outlook for 

stroke recovery is directly linked with the extent of lesion, time before the treatment and many 

other factors. However, a general pattern of motor recovery after stroke has been identified with 

the collaborative consultation of researchers, clinical & rehabilitation experts. Brunnstrom 

approach describes the seven well recognized stages of stroke recovery. This framework includes 

the monitoring of different involuntary and spastic movements as a part of recovery process and 

to help in physical rehabilitation [13]. Normally the physical movements occur due to the joint 

functioning of different group of muscles. This collaboration between the muscles is termed as 

“synergies”. Normally the brain performs the task of coordination among these movements 

which is severely affected after stroke. Stroke greatly affects this coordination resulting the 



 

muscle synergies to function abnormally. Brunnstrom approach mainly focus on teaching the 

patients to use these abnormal synergies for their advantage. This approach has gained a wide 

range of acceptance among the community of physical and occupational therapists. These seven 

stages have briefly been discussed below: 

1.3.1 Flaccidity 

The initial stage includes an immediate shock after stroke according to Brunnstrom’s approach in 

which flaccid paralysis occur.  Flaccidity or flaccid paralysis is a complete loss of voluntary 

movement. This kind of paralysis occurs due to nerve damage preventing the muscles from 

acquiring the appropriate brain signals. Stroke survivors are not able to initialize any volunteer 

muscle movement in the early stage of flaccid paralysis. If the patients remain deprive of certain 

physical therapy for long time in such state it may cause the muscles to become weak. This is the 

stage when muscle atrophy begins. That’s why it is compulsory to provide the effected muscle 

with certain kind of therapy in order to regain the normal muscle tone. But flaccid paralysis 

restricts the muscles from this.  

 

Figure 1.5 Muscle Atrophy 

In medical terms such a kind of muscle loss is called Hypotonia. Hypotonia weakens the muscles 

affecting the daily life activities of the patient. Hypotonia can be reduced with medical 

treatments and therapeutic exercises. This stage 1 of the Brainstorm’s approach also needs some 

modifications in routine life activities to keep the affected muscles protected from injury.  



 

1.3.2 Dealing with Spasticity 

In the 2nd stage of stroke recovery some of the fundamental limb synergies are marked because 

some muscles start to respond when they are stimulated. This is the stage when muscles start 

making certain small, abnormal, and spastic movements involuntary, but this is an encouraging 

sign during the recovery process of any stroke patient. However, this stage may lack even the 

minimal volunteer movements.  

1.3.3 Increased Spasticity 

During the 3rd stage of stroke recovery muscles’ spasticity increases up to its peak. Patients sense 

a feeling of unusual tightness, muscle pull or stiffness.  During this stage synergy patterns start 

emerging and certain volunteer actions can be expected. In-volunteer actions are because 

muscles are now capable of initiating movement but cannot control it. Appearance of the muscle 

coordination and synergy patterns assist the volunteer actions which can be improved with 

physical and occupational therapy. To increase the range of motion (ROM) passive exercises 

must be performed during this stage. Actions involve bending the knee and raising the hand over 

head etc.  

 

Figure 1.6 Passive movements  

1.3.4 Decline in Spasticity 

The spasticity of muscles starts to decline during the 4th stage of stroke recovery. A limited 

ability of performing the normal movements is developed. Although these movements may be 

out of synchronization, but patient recovers quickly during this stage. The actual focus 

throughout this stage is to strengthen the muscle control. During this stage the patient is asked to 



 

perform active exercises and he can perform these actions without any assistance. These 

movements involve lifting the limb to its’ full range of motion etc.  

 

Figure 1.7 Active ROM movements  

1.3.5 Combination of Complex Movements 

Synergy patterns of the muscles become coordinated allowing the patient to perform more 

complex activities. During this stage abnormal movements dramatically decrease, and the patient 

becomes able to make more deliberate and controlled movements in the stroke affected limbs. 

Some of the complex movements involve combing the hairs and swinging the bat etc.  

1.3.6 Spasticity Disappears 

Spasticity completely disappears during the 6th stage of stroke recovery. This is the stage where 

patients regain the full functional capability in the stroke affected parts of the body.  

1.3.7 Regaining of normal Actions 

This is the last stage of Brunnstrom’s Approach in which patient is able to move the hands, feet, 

arms, and legs in a volunteer and controlled manner. Synergy patterns becomes completely 

normal which is the ultimate goal of physical therapists and stroke patients.  



 

 

Figure 1.7 Brunnstrom Stages of stroke recovery 

1.4 Hand grasping actions[14]  

Grasping actions performed by hand can be classified into two categories: 

- Precision grasping: Combination of functions and processes required to keep an object 

in a specific position. 

- Dynamic grasping: Handling of objects on the inner side of the hand with the 

coordinated movements of fingers. 

 

Figure 1.8 Basic hand grasping actions 

 

 



 

 

In dynamic grasping thumbs’ abductor stabilizes the object against the palm keeping the hand 

still for example hold the cylinder or glass and lift the dumbbell etc. whereas precision grasping 

includes some palmar actions such as grasping a pencil or touch the thumb to the index finger. 

There is also a 3rd kind of lateral grasping which can belong to both classes for example it is 

called dynamic when thumb is in adduction position and precision when thumb is in the opposite 

position.  

1.5 Electromyography (EMG) 

Recording the electrical activity of muscle contraction is called ‘Electromyography’. Muscles are 

made up of the group of muscle fibers in the form of extended tubular cell. EMG signal is 

formed by the superposition of each muscle signal which depends upon the physiology of a 

person. The recorded EMG bio signal is called ‘Electromyogram’[15]. The variation in muscle 

membrane potential provides the electrical source of EMG readings. This occurs due to the 

transfer of potassium ions as a result of muscular contraction with the ions of calcium across the 

membrane. The best interpretation of the electric activity of certain activity can be achieved 

through the manifestation of neuromuscular activation related to certain contracting muscle and 

resulting signal is called ‘myo-electric signal (ME)’.  

There are 2 methods of EMG signal acquirement [16].  

- Invasive or intramuscular. 

- Non-invasive via surface electrodes (s-EMG). In this study we have used surface EMG 

electrodes considering the feasibility and comfort of the participated subjects  

(Figure 1.10). 

 

Figure 1.9 Sequence of s-EMG recording  



 

s-EMG signal is acquired by positioning the electrodes on the muscle belly over the skin surface 

whereas in invasive EMG recording needle electrodes are mostly used which are placed under 

the skin [17]. Although invasive electrodes provide the opportunity of deeply analyzing the 

activity of targeted muscle but practically, they are not generally feasible as it depends upon the 

willingness of the participated subjects. Moreover, s-EMGs have demonstrated an excellent 

reliability for multiple applications in numerous studies [18].  

 

(a) 

 

(b) 

  

1.6 Applications of s-EMG  

Some of the important applications of s-EMG have been discussed below [17], [19]: 

1.6.1 Rehabilitation & Physiotherapy  

Doctors can analyze the Patients’ electromyogram to evaluate the electrical activity of the 

muscles to determine whether the muscles are working properly or not. Now the rehabilitation 

experts and medical research community are working collaboratively to automate such 

detections along with the development of a real time bio feedback system to assist the doctor for 

the rehabilitation assessment of the patient. In areas where needle electrodes are not appropriate, 

such as rehabilitation medicine, sports, neurology and the control of assistive equipment, surface 

EMG has vital applications. Biomedical and clinical research community is exploring the new 

horizons to achieve the ultimate aim of self-training in the field of physical and 

neurorehabilitation. 

Figure 1.10 EMG recording with Delsys Trigono Avanti wireless sensors (a) at rest  

(b) performing an activity 



 

1.6.2 Human machine interface (HMI) 

  In the field of AI human computer interactions have the capability to provide a natural way of 

controlling different devices. For patients with any physical or motor disability surface EMG has 

the potential to enhance the useful interacting experiences of human and machines with the 

purpose of controlling any device. 

 

 

Figure 1.11: A simple overview of HMI  

 

- Prosthetic control  

It is one of the emerging areas of surface EMG. It secures a superior position over neural 

interfaces as it does not create neural scarring. Now the possibility of growing the new muscles 

and nerve clusters has increased particularly to control any prosthetic device through targeted 

muscle re innervation.  

- Robotic control  

Besides prosthetic control surface EMGs are widely being used to control the robotic interfaces 

as well such as robotic arms and humanoid robots etc. Robotic control of the robotic limbs is 

very necessary to reduce the overall training time of operations. Other applications of EMG 

include speech recognition, recognition of fascial expressions, to create a diagnostic database for 

diseases, and design a full proof robotic mechanisms to deal with limb amputees.  



 

 

 
 

Figure 1.12 Use of EMG for prosthesis  

1.7 Aims & Objective 

 

- To design a protocol for the data recording of ADLs. 

- To decode the data of daily living based upper limb activities. 

- To use the advanced concept of sensor fusion. 

- Statistical analysis of the results to reach any concluded statement about the overall 

impact of EMG and kinematic data fusion on classification accuracy 

1.8 Relevance to National Needs  

In a developing country like Pakistan where public health care system is not well maintained and 

literacy rate is only 62.1 % people have very less knowledge about the stroke and its health 

consequences, Mostly, population cannot afford expensive rehabilitation treatments and post 

stroke care (PSC) services. If the stroke disease keeps on prevailing with the persistent rate then 

it will cause disastrous impact over the country's economy. That is why providing an 

economical, physically comfortable, and technologically suitable self-rehabilitation training 

concept is the need of the hour. 

 



 

1.9 Advantage of the study 

The proposed concept of ADL based rehabilitation training system: 

- Will be economically feasible to implement. 

- Will be comfortable & enjoyable for the patients of physical mobility disorder. 

- Will make stroke patients physically independent. 

- Will minimize the dependency over clinical therapist. 

1.10 Areas of Application 

The proposed concept of ADL based rehabilitation training system will be: 

- Implementable for the physical rehabilitation and motor training of post stroke chronic 

patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

                              CHAPTER 2: LITERATURE REVIEW 

2.1 Fundamentals of EMG  

Research on EMG based control systems for human machine interfaces (HMI) applications, 

particularly in rehabilitation, is progressing. EMG is a technique that relies on experimentation to 

assess and record a stream of electrical impulses coming from the muscles of the body. The 

physiological variations in the state of the membrane of the muscle fibers produce the EMG 

signals. The excitability of muscle fibers is regulated by brain control, which is a significant 

aspect in muscle physiology [20]. EMG signals are generated through action potentials generated 

by depolarization & repolarization of the fiber membrane. When a muscle is not contracting, the 

interior and the exterior spaces of the cell combine to create a resting potential at the muscle 

membrane. This potential varies between -80 & -90 mV. Based on the condition and muscle 

types throughout the observation process, amplitude of the surface EMG signals varies from 

microvolts (uV) to millivolts (mV). Terminals of a motor neuron stimulate the multiple muscle 

fibers thus creating a motor unit (MU) [19], [20].  

 

Figure 2.1: A motor unit is formed by multiple muscle fibers that are innervated by nerve fibers 

that originate in the spinal cord. 

Motor unit (MU) is the tiniest part of the muscle which the central nervous system (CNS) can 

control. Each motor neuron-innerved muscle fiber experiences an action potential when a motor 



 

unit is activated, which causes the muscle to briefly contract or twitch (delay for few m-sec from 

AP origin). This spatial & temporal superposition of Individual fiber result in electrical signal 

known as motor unit action potential (MUAP). Both invasive and non-invasive methods may be 

used to detect these motor unit action potentials (MUAP).    

An invasive method involves inserting the wire or needle electrode in the muscle tissue to record 

EMG signals, while a non-invasive technique involves placing the electrodes directly to the skin. 

Generally, the non-invasive method is favored to detect the EMG signals as it spares amputees 

from pain and poses the lowest risk of infection. Surface electromyography (s-EMG) signals 

have a frequency range of 10-500.0 Hz & range of the amplitude is  0.0-10.0 mV [21].  

There are 2 main concerns that affect the fidelity of EMG signals while they are being detected 

and recorded: 

- Signal-noise ratio. 

- Noise signal 

Ratio of energy in EMG to noise signals is termed as signal to noise ratio and electrical signals 

which should not be the part of desired EMG are defined as ‘noise’.  

2.1.1 Noises in EMG Signal [21]– [24] 

- Inherent noises: This is electrical noise which is produced by the electronic devices with 

the freq. components ranging from 0.00 Hz to thousand Hz is known as inherent noise.  

- Ambient noise: Such noise is produced by electromagnetic radiation. Sometimes, 

amplitude is 1-3 times larger than relevant EMG signals. Power-Line Interference is an 

example of the ambient noise caused by the radiation of power source at 60 Hz or 50 Hz. 

If frequency of the interference is high, a high pass filter may eliminate it. However, it is 

crucial to understand the nature of EMG signal if frequency content of PLI is present in 

the EMG signal. 

- Motion artifacts: When a muscle is contracted, its length reduces. Additionally, 

electrodes, skin, and muscle all move relative to one another. Electrodes will display 

some movement artefacts during this time. Data abnormalities are caused due to 

the motion artefacts. The electrode interface and cable are the two major causes of such 

artifacts. The setup and proper design of the electrical circuitry may eliminate these 



 

motion artifacts. Motion noise often has the frequency range of 1.00-10.00 Hz and a 

voltage that is similar to EMG's amplitude. 

- Electrocardiographic (ECG) Artifacts: The main source of an ECG artefact, also 

known as interference, for EMG in the shoulder girdle is the electrical activity of heart. 

EMG data are often contaminated by this artefact, particularly in trunk muscle EMG. The 

amount of ECG contamination in EMG is often determined by the positioning of EMG 

electrodes, which is carried out by the selection of diseased muscle groups. It is highly 

challenging to eliminate ECG distortions from EMG data because the frequency spectra 

of the two signals overlap and because of their relative features, such as non-stationarity 

& variable temporal shape. 

- Crosstalk: Crosstalk is the term for an unwanted electromyographic signal from a 

muscle area that is not often checked. Crosstalk damages the EMG signal and may result 

in a misinterpretation of the information it contains. Crosstalk is affected by the variety of 

physiological factors, although it may be decreased by carefully choosing the electrode 

size and inter-electrode spacing (generally 1.00-2.00 cm or the radius of electrode). 

2.2 EMG signal processing 

To increase the precision and computational speed, a variety of methods for managing EMG data 

are utilized such as feature extraction & pre-processing phases (such as data 

filtration, segmentation, and then rectification). Initially data is segmented from the raw EMG 

signal. A feature set is created for each separated segment that has been corrected and filtered. 

The results will then be sent to the classifier. The windowing method and data length are two key 

considerations for data segmentation.  

The classification error of EMG data is affected by its length [25]. This claim was demonstrated 

by Farina and Merletti, who found that classifier performance suffers when segments are shorter 

than 128 ms, resulting in considerable feature bias and variation [26]. The accuracy of 

categorization increases as the length of segment rises from 125.00-500.00 ms, in line with a 

2013 study [27]. This is so that a longer segment can supply more information and produce an 

estimation of the feature with less bias and volatility. For upper limb applications, this segment 

condition offers great precision and is operable in real-time. In [28], the EMG data sample length 

is set to 256.00 ms at the start of the movement. Data windowing can be done using either the 



 

adjacent or the overlapping methods. Adjacent windowing is the method of using feature 

extraction and classification after a specific processing delay on adjacent disconnected segments 

of a predetermined length.  This is the time needed to compute a feature & classify the data.  The 

main disadvantage of this method is that it will keep the processor in an idle state throughout the 

remaining duration of the segment length [29]. This issue can be resolved using the concept of 

overlapping windowing in which the new segment slides over the previous segment and 

increment duration is less than the overall segment length. Although overlapping windowing 

doesn't increase the classification accuracy, it is important for large segments to decrease the 

delay time [30] EMG signals require to be filtered to decrease the artifacts in order to combat the 

numerous noises listed in the previous section (2.1.1).  A band pass filter was used to reduce the 

effects of motion artifacts with the cut off frequencies 20 Hz & 500 Hz for high and low pass 

filtration respectively [30]. 

2.3 EMG Feature Extraction 

Feature selection and extraction has a pivotal role in improving the classification accuracy for 

motion pattern identification in EMG signal data. In this procedure, raw EMG signals are 

converted into feature vectors. Generally, there are three categories of features used in the 

analysis of EMG data [31]: 

- Time-domain features (TD) 

- Frequency-domain features (FD) 

- Time-frequency domain features (TFD) 

2.3.1 Time Domain Features 

For TD features, the features are calculated using a time-varying signal amplitude. During the 

process of, the signal's amplitude is influenced by the types and conditions of the muscles. 

Mostly studies have concentrated on time domain features in order to keep the computing 

complexity minimum . These features don’t require any additional transformation of signal. 

Some of the TD features used in previous studies have been listed below: 

 

 

 



 

Table 2.1:TD features 

Features Abbreviations Reference 

Mean Absolute Value MAV [32] 

Variance V [33] 

Root mean square RMS [34] 

Zero crossing ZC [32], [33] 

Standard deviation SD [35] 

Maximum amplitude MAX [32] 

2.3.2 Frequency Domain Features 

Unlike time domain features, FD features are computed using parametric methods or a 

periodogram and include the power spectrum density (PSD) of the signals. Only a few studies 

had used FD features for the identification of motion patterns. Generally, the analysis of motor 

unit (MU) recruitment and the measurement of muscle strain consider spectral or frequency 

domain (FD) features. 

Table 2.2: FD features 

Features Abbreviations Reference 

Median frequency MDF [33] 

Mean frequency MNF [33] 

Total power TTP [33] 

Peak frequency PKF [32], [33] 

Energy EN [36] 

Signal to noise ratio SNR [37] 

Modified mean frequency MMNF [38] 

2.3.3 Time-Frequency Domain Features 

TFD features are described as time & frequency combination of information. TFD characteristics 

may distinguish between distinct frequency information at various time intervals, offering very 

useful non-stationary information about the preprocessed signals. The important parameters in 

every domain of signal analysis were illustrated by Oskei and Hu [39]. The computing time of 

TFD features is more than TD features.  



 

Table 2.3: TFD features 

Features Abbreviations Reference 

Discrete-Wavelet Transform DWT [40] 

Wavelet-Packet Transform WPT [40] 

Continuous-Wavelet Transform CWT [41] 

Empirical-Mode Decomposition EMD [41] 

 

Dimensionality reduction is used to decrease the dimensionality of the data while preserving its 

ability to discriminate in order to deal with the complexity of TFD features. There are two basic 

methods of dimensionality reduction: 

- Feature selection 

- Feature projection 

Feature projection technique is implemented to evaluate the best pattern of original features and 

creates a new feature set usually smaller than the previous one whereas feature selection 

technique selects the subset of original features as per specified criteria to assess whether it is 

better than other subset. 

2.4 EMG Classification 

The classifier will then use the data from the EMG signals to map distinct patterns and match 

them properly. To discriminate between distinct categories of the retrieved features, classifiers 

should be used. The resulting categories will then be employed in the next step as controller 

control commands. Artificial neural network (ANN), Bayesian classifiers (BC), fuzzy logic (FL), 

multilayer perceptron (MLP), support vector machines (SVM), linear discriminant analysis 

(LDA), hidden Markov models (HMM), and K-nearest neighbor are some of the techniques used 

to categorize EMG data (KNN). Many scientists have recently expressed interest in finding 

efficient ways to classify the EMG signal pattern. 

Although the LDA's design and training algorithm does not need to comply the heuristic criteria, 

it regularly outperforms other methods. This is most likely because the PCA's dimensionality 

reduction has the effect of linearizing the data. In 2013, Phinyomark et al. [30] compared the 

performance accuracies of Support vector machines (SVM), k-nearest neighbor (KNN), random 

forests (RFS), and decision trees (DT), Additionally, quadratic discriminant analysis (QDA) & 



 

multi-layer perceptron neural networks (MLP-NN) by classifying the 10 upper-limb movements 

using the TD features. LDA performed well with classification accuracy of 98.87%. However, 

the work of Khushaba & Al-Jumaily generated a nearly 99% accuracy by classifying human 

forearm motions based on TFD characteristics with MLP [42]. 

On the other hand, an ANN technique is appropriate for modelling nonlinear data since it can 

distinguish between various conditions, such as hand gestures (left, right, up and down). Based 

on TD characteristics and research by Ahsan et al., the overall performance for a single trial was 

found to be 89.20%, with an average success rate of 88.40% . 

EMG classification accuracies with different classifier algorithms have been listed in Table 2.4:  

Table 2.4: Comparison of EMG classification accuracies 

Classifiers Feature type Average 

Accuracy 

Reference 

LDA TD 98.87% [38] 

ANN TD 89.2% [43] 

SVM TD 73% [44] 

SVM TD 90% [45] 

LDA TFD 93.75% [40] 

ANN TFD 88.40% [43] 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

                                        CHAPTER 3:  METHODOLOGY 

3.1 Data recording 

A total of 30 including 15 stroke patients & 15 healthy subjects participated in this study. Data 

recording sessions were conducted in the ‘Fauji Foundation Hospital, Rawalpindi with the 

ethical consent of medical board of ‘Department of Physical medicine and Rehabilitation, FFH’ 

(approved ref # FFHO Itr no 6015/HD/50/Misc/18AK15DQ dated 26 Aug 2022). The group 

of healthy subjects include total 6 females and 9 males, and they had no previous record of any 

musculoskeletal disorder. The ages of the participants of the healthy group vary between (22 ± 

5yr to 50 ± 5yr). In the 2nd group of stroke subjects mostly participants were in chronic phase 

>1year from stroke onset and they were receiving rehabilitation and occupational therapies from 

physiotherapist. The ages of 2nd group vary between (30±5yr to 70±5yr). Electrodes used are 

‘Delsys Trigno Wireless Sensors’ to record the surface electromyographic (s-EMG) data and 

MPU6050 sensors for patients’ kinematic data. A total of six EMG electrodes have been used in 

the study to record the EMG data from upper limb (UL) Targeted muscles for EMG recording 

are listed in Table 3.1: 

Table 3.1: List of targeted muscles for EMG 

Sr# Targeted muscle 

1 Extensor carpi ulnaris 

2 Extensor carpi radialis 

3 Flexor carpi radialis 

4 Extensor digitorum 

5 Bicep 

6 Tricep 

 

To record the kinematic data of the subjects an arm band was used to place the electrode on the 

upper limb. As mentioned above, Inertial measurement unit (IMU) data has been recording with 

MPU6050 sensor. A total of two IMU sensors have been used in this study. Sensors were 

attached with an arm band to make sure their fixed safe placement without trembling during the 



 

recording. Data recording was accomplished in a separate room to ensure the comfortability of 

all the subjects. Participants were asked to sit on a chair in a straight position.  

 

Figure 3.1: Trigno Avanti wireless sensors for EMG recording  

 

First of all, EMG electrodes were placed at the targeted places of the forearm and upper arm. 

Then IMU-1 sensor was placed on the wrist and IMU-2 sensor was placed on the upper arm. The 

direction of the IMU sensors was kept symmetrical. The purpose of placing the IMU sensors was 

to record the kinematic information of upper limb including wrist, hand, finger, and complete 

arm movement.   

 

Figure 3.2: MPU 6050 sensors for IMU data 



 

3.1.1 Delsys Trigno wireless sensors 

Delsys Trigno EMG sensors have been designed specifically to study a range of human 

movements. It offers a complete system of biomechanical and physiological tools to accomplish 

the complex research studies by recording a high-quality data. It captures the muscles movement 

and activity data in reliable and accurate way. Some specifications of the Delsys Trigno sensors 

have been listed in Table 3.2. 

Table 3.2: Specification of Trigno Avanti sensors 

Sr# Specification Value/description 

1 Size 27.0 x 37.0 x 13.0 mm 

2 Mass 14g 

3 Battery Life 4 to 8 hours 

4 Operating range 40 m in RF mode host 

5 Wireless protocol 2.4-2.48 GHz ISM Band 

6 EMG bandwidth 20-450 Hz 

7 EMG sampling rate 2000-4370 sa/sec 

8 Contact material 99.90% silver 

10 Electrode spacing 10.00mm 

 

 

Figure 3.3: Trigno sensors Left- Base station Right-sensor 

 



 

3.1.2 MPU6050 sensor 

MPU6050 sensor module is a comprehensive 6-axis motion tracking device in a compact size. it 

includes a 3.00-axis gyroscope, 3.00-axis accelerometer, and a digital motion processor. 

Additionally, it incorporates an on-chip temperature sensor as an extra function. In order to 

connect with the microcontrollers, it has an I2C bus interface.  Pin configuration of the 

MPU6050 sensor is listed in (Table 3.3). 

- Gyroscope 

Micro-Electromechanical system (MEMS) technology is used in the 3-axis gyroscope of 

MPU6050. As seen in the figure below, it can be used to measure the rotational velocity 

component along the X, Y, and Z axes. 

1- MEM inside the MPU6050 sensor detects a vibration produced by the Coriolis Effect 

when the gyroscopes are rotated around any of three axes. 

2- A voltage that is directly proportional to an angular rate is produced by amplification, 

demodulation, and filtering the resulting signal. 

3- A 16-bit ADC is used to digitise this voltage and sample each axis. 

4- The output's full-scale ranges are +/-250.00, +/-500.00, +/-1000.00, and +/-2000.0 

5- It calculates the angular velocity in degrees per second (deg./sec) along each axis. 

 

Figure 3.4: Polarity & orientation of rotation 

- Accelerometer 

MPU6050 sensor has a 3-axis accelerometer as well with micro-electromechanical (MEM) 

technology. It is used to evaluate the inclination or tilt angle along three x, y & z as shown in 

(Figure 3.5).  



 

1- The movable mass is deflected by the 3-axis accelerometer. 

2- The movable mass is bent when there is acceleration along the axes. 

3- The differential capacitor becomes out of balance due to the movement of the moving 

plate, which generates the sensor output. o/p amplitude is directly proportional to the 

acceleration. 

4- The output is converted to digital using a 16.00-bit ADC. 

5-  The full-scale acceleration ranges are +/- 2.00 g, +/- 4.00 g, +/- 8.00 g, and +/- 16.00 g. 

6-  It is measured in units of g, or gravity force. 

7- The device will measure 0.00g on the X and Y axes and +1.00g on the Z axis when 

placed on a level surface. 

 

Figure 3.5: Accelerometer rotation and deflection angle 

- Digital motion processor (DMP) 

Motion processing algorithms are calculated by the integrated DMP. It processes data from the 

accelerometer, gyroscope, & extra third-party sensors such the magnetometer. It offers motion 

information such as roll, yaw angles, & pitch, as well as landscape & portrait sensing. It reduces 

the host's processing requirements for computing the motion data. From DMP registries, the 

obtained information can be read. 



 

- Temperature sensor 

ADC is used to digitize the output of the on-chip temperature sensor. The sensor's data register 

can be used to read the temperature sensor reading. 

 

Figure 3.6: MPU6050 sensor 

 

Table 3.3: Pin configuration of MPU6050 

Sr# Pins Description 

1 INT Interrupt digital o/p pin. 

2 AD0 Slave address I2C. It is wired with VCC. 

3 XCL Serial clock pin 

4 XDA Serial data pin. 

5 SCL Serial clock pin. 

6 SDA Serial data pin. 

7 GND Ground 

8 VCC Pin for power supply +5.00 DC. 

 

 



 

3.2 Recording Protocol 

Participants of both (Healthy & stroke) groups were asked to sit in a straight position on a chair. 

A protocol based on the composite of some activities which are frequently used in daily life has 

been designed. The designed protocol contains the usual movements of main upper limb (UL) 

joints including fingers, wrist, elbow, and shoulder. Briefly, this protocol reflects the gross motor 

actions of the entire UL. This protocol consists of 9 different movements of the upper limb 

generally replicating some complex activities of daily living (ADL). These tasks have been 

described in (Table 3.4). 

To provide the subjects, especially the patients, with an ease and comfort of performing the 

activities in sitting position a visual interface has been developed illustrating all the movements 

through the pictorial representation. It may be categorized as a GUI showing the details about the 

duration of activity, how to perform it and the sequence of activities. This visual graphic based 

interface has been designed in ‘App Designer, MATLAB version 2019’ (Figure 3.7). This 

pictorial presentation of required activities made it very easy for all subjects specially the stroke 

patients to understand and accomplish the complete protocol.  

 

 

Figure 3.7: Visual interface for data recording 

 

 



 

Table 3.4: List of activities for data recording protocol 

Sr# Task Description 

Activity 

1 

Wrist extension Include wrist joint, hand move upward 

Activity 

2 

Wrist flexion Wrist joint hand move downward 

Activity 

3 

Shoulder-flexion to 90.0º & elbow at 0º Move the shoulder joint & entire upper 

limb 

Activity 

4 

Shoulder-abduction to 90.0º & elbow at 0º Keeps forearm pronated & move the 

elbow joint 

Activity 

5 

Flip the paper placed on the table Involve the movement of fingers, wrist & 

elbow joint. 

Activity 

6 

Hold a cylindrical object placed on the table, 

include shoulder flexion to 90º 

Move the forearm from elbow joint & 

helps in enhancing the ability of holding 

an object 

Activity 

7 

Keep hand palm down and hold a ball with 

support grip 

Include fingers movement and works on 

grip strength ability 

Activity 

8 

Keep the shoulder 0.00º with hand pronated 

and then do supination 

Include shoulder joint, & elbow joint 

Activity 

9 

Rest position Forearm in a specified relaxed position 

 

Each participant was seated in upright position with the shoulder abducted at an angle of ‘0’ 

degrees. It was declared as the neutral or rest position of the participant. For every participant the 

experimental recording protocol consisted of ‘9’ activities in a specific order. In the start of 

protocol there is an initial rest time of ‘5’ seconds. There were three repetitions (Figure 3.8) for 

each movement.  



 

 

Figure 3.8: Recorded Electromyogram of one subject 

Each activity was to be performed for ‘10’ seconds and then there was a rest time of ‘10’ seconds 

before the next activity started. Participant goes through the entire sequence of activities first and 

then the second trial/repetition starts. After competition of one task the tested upper limb was to 

return to the defined neutral position for the time interval of ‘10’ seconds before starting the next 

task. This rest time was allowed to avoid muscle fatigue and mental stress especially for the 

stroke subjects.   

 

Figure 3.9: Sensor’s placement on upper limb 

 

Group of healthy subjects always performed every task comfortably at their regular daily speed. 

Stroke subjects were encouraged and advised to try their best to complete the protocol which 

truly reflected their motor function ability.  
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Figure 3.10: Participant performing the upper limb activities (1) Holding an object with support 

grip, shoulder flexion at ‘90º’, palm downwards & elbow at ‘0º’ (2) Shoulder flexion at ‘90º’ (3) 

Hold a cylindrical roll placed on the table with palm directing towards the body (4) Rest (Neutral 

position) (5) Wrist flexion (6) Palm supination (7) Flip the paper (8) Wrist extension (9) 

Shoulder abducted to ‘90º’. 
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3.3 Data Processing 

- EMG data processing  

To remove the motion artifacts and low frequency components a 2nd order butter-worth filter 

with the cut off frequencies of 20Hz & 500Hz respectively was applied to the raw EMG signals. 

Then filtered EMG signals were rectified. Rectified EMG signals were applied with a moving 

average filter to generate an EMG envelope for each movement. It has been done by applying the 

moving average with the sliding window of 150 data points to each channel. Then EMG data is 

normalized in the amplitude to the maximal value. Normalization is applied to all the EMG 

channels simultaneously.  

 

Figure 3.11: Raw EMG data of shoulder abduction for 1 channel 

 

Figure 3.12: Rectified EMG data  



 

 

Figure 3.13: EMG signal after applying mov-avg and normalization 

 

- IMU data processing  

As mentioned earlier, two IMU sensors MPU6050 have been used in this study. One is placed on 

the wrist joint to record the kinematic information of hand wrist & hand movement and second is 

placed on the upper forearm to record the data of shoulder joint. These IMU sensors have been 

integrated with the laptop via ‘Arduino’ interface. To record the raw kinematic data from 

accelerometer and gyroscope of IMU sensor MPU6050_tockn library has been used. IMU 

sensors are auto calibrated through this library at the stand still position and start taking the raw 

IMU data after the duration of ‘3’ seconds. ‘Tera-Term 4.10’ has been used for data logging in 

this study. It provides the choice of ‘time stamp’ as well. A baud rate of ‘115200’ was set for 

logging. Data sampling rate for accelerometer and gyroscope has been set to ‘103Hz’. A terminal 

emulator program called Tera Term is open-source and free software. It can simulate a variety of 

computer terminals, including the DEC VT100 and DEC VT382. Telnet, SSH versions 1 and 2, 

and serial port connections are supported as well. Additionally, it includes some helpful plugins 

and a built-in macro scripting language as well (Figure 3.13).   



 

 

(a) 

 

(b) 

Figure 3.14: Tera term (a) Configurational settings (b) Data logging 

To remove the gravity components and low freq. drift movement artifacts the raw IMU data was 

applied with a 2nd order high pass Butterworth filter with cut off frequency set as 25 Hz 

(0.48π rad/sample). Then filtered IMU data was applied with mov-avg filter with sliding window 

of 150 to each channel of accelerometer and gyroscope. Then triaxial data of accelerometer of 

IMU-1 was combined with the triaxial accelerometer data of IMU-2. Data was then normalized 

in the amplitude to the maximal value. Similarly, the gyroscope data was applied with mov-avg, 

concatenated, and normalized.  

 

Figure 3.15: Raw accelerometer-1 data of x-axis 



 

 

Figure 3.16: Processed accelerometer-1 data of x-axis 

 

Figure 3.17: Processed gyroscope-1 data of x-axis 

 

After concatenating and normalizing the accelerometer & gyroscope data of both the IMUs 

separately, they were concatenated again to generate a complete data matrix of IMU with 12 

columns (1-6 columns contain the accelerometer data & 7-12 columns contain data from both the 

gyroscopes). 



 

3.4 Feature Extraction 

Processed EMG data has been applied with an overlap window of 50ms (Fs=1926Hz, Window 

=50ms or 0.05, 96samples) with an overlap of 20samples (10ms) for feature extraction and 

segmentation. In this study time domain (TD) features have been considered due to their least 

computing complexity. One more benefit of using time domain features is that signal does not 

require any additional transformation. Extra number of samples from EMG feature set have been 

discarded to coincide the dimensions of IMU data’s feature set as this study also discuss the 

combine effect of EMG and IMU data fusion to analyze the overall impact on the classification 

accuracy. TD features (Table 3.5) have been extracted from both the data sets separately.  

Table 3.5: Extracted TD features for recorded data 

Sr# Features Abbreviations 

1 Mean_Absolute_Value MAV 

2 Root_Mean_Square RMS 

3 Variance Var 

4 Mean absolute value slope MAVS 

5 Integrated EMG IEMG 

6 Simple square integral SSI 

7 Waveform length WL 

 

Similarly processed IMU data has been applied with a sliding window of 50ms and overlap size 

of 10ms. A set of 6 statistical features (Mean, RMS, Standard deviation, variance, Kurtosis, & 

skewness)  has been extracted for the IMU data.   

3.5 Classification Models 

- Data label: After processing, feature extraction and segmentation, the data was assigned 

with unique labels before applying any supervised classification model. In this study 



 

there are a total of nine different classes assigned with distinctive labels listed in (Table 

3.6). 

   

Sr# Class Label 

1 Extension Ext 

2 Flexion Flx 

3 Shoulder abduction Sh-abd 

4 Shoulder flexion Sh-flx 

5 Flip the paper Flip-paper 

6 Hold cylindrical roll Hold-cyl 

7 Fetch an object/ball Fetch-ball 

8 Rest Rest 

9 Hand supination Supp 

 

- Test train split: For implementation of classification models labeled data has been 

divided with 80:20 ratio: 

Train data 80% 

Test data 20% 

 

- Machine learning Classifiers: In this study multiple machine learning classification 

models have been implemented including linear discriminant analysis (LDA), Quadratic 

discriminant analysis (QDA), Linear support vector machine (Linear-SVM), Quadratic 

support vector machine (Quadratic-SVM) and Fine KNN. Beside this recorded data has 

been tested for ensembled models also. These ensemble models include subspace 

discriminant and subspace KNN. These machine learning models have briefly been 

discussed in the next section: 

1- Linear discriminant analysis (LDA) 

LDA as the name suggests is a linear dimensionality reduction and classification model. It is 

widely being used in classification problems for features extraction. In this study LDA has been 

implemented for multiclass classification. Nonlinear separable classes may not be efficiently 



 

separated by linear decision boundaries. We want boundaries that are more adaptable. When 

there are more observations than features, LDA might not work as it should. It is called Small 

Sample Size (SSS). Regularization of data is necessary. LDA is utilized to identify a linear 

transformation that categorizes several classes. However, if the groups really aren't linearly 

separable, it is unable to project into a lower-dimensional space. This issue emerges when classes 

have similar meanings, i.e., that the discriminatory information is present in the data scatter 

rather than the mean.   Kernel functions are a tool we can apply to solve this problem. such as in 

SVM, SVR, etc. The goal is to use a non-linear mapping to convert the input data into the new, 

high dimensional feature space where kernel functions can compute the inner products. 

2- Quadratic discriminant analysis (QDA) 

The only significant difference between linear and quadratic discriminant analyses is the 

relaxation of the assumption that the covariance and mean of all classes were equal. That is why 

it needs to be calculated independently. A brief summary of QDA is given below: 

- QDA is categorized as a generative model. 

- Each class is thought to have a Gaussian distribution according to QDA. 

- The proportion of data points that belong to the class is the class-specific prior. 

- The average of the input variables that are part of the class makes up the mean vector 

particular to that class. 

- Covariance matrix is generated by the vector covariance which belongs to that class. 

3- Linear support vector machine (LSVM) 

Finding a hyperplane in the space with dimension N (N is No. of features) that categorizes the 

data points clearly is the goal of the support vector machine algorithm. There are a variety of 

different hyperplanes that might be used to split the two distinctive classes/categories of data 

points. Finding a plane with the greatest margin, that is, the largest separation between data 

points from both classes is the goal. Maximizing the distance of margin adds some support, 

increasing the confidence with which future data points can be categorized successfully. 



 

 

Figure 3.18: Possible hyperplane in LSVM 

 

4- Quadratic SVM 

The QSVM is a new non-linear SVM model without a quadratic kernel. It is possible to state the 

optimization problem of SVM as follows: With a functional margin bigger than a constant, 

maximize the geometrical margin subject to all training data. The equation of the hyper-plane 

used for linear separation, W T X + b, yields the functional margin. 1 ||W || is the geometrical 

margin. And in this instance, the constant is one. while implementing the QSVM   It is 

considered that the geometrical margin is equivalent to the inverse of the norm. 

5- Fine KNN 

KNN is a supervised machine learning (ML) method that can be used to solve classification and 

regression problems. It is mostly used in industry, nevertheless, to solve classification issues. 

The following two traits apply to KNN and are accurate: 

- KNN is actually a lazy learning algorithm because it uses all of the classification data as 

training rather than having a separate training phase. 

- Due to its lack of assumptions on the underlying data, KNN is also a non-parametric 

learning model. 

6- Ensemble ML models 

Ensembled classifiers are machine learning (ML) classifiers to combine the multiple other ML 

models for prediction process. These models are called base estimators. Ensemble models have 

proven to offer the solution to counter all the technical challenges in building a single estimator. 

These technical challenges include: 



 

- High variance: when model is sensitive to the given inputs for learned features. 

- Low accuracy: Implementation of single model may not fit in the complete training data 

and thus will not provide the desired results/accuracy. 

- Feature noise: Single model heavily relies on few features while computing any 

prediction. 

For a specific data set, a single ML model might not produce the ideal prediction. ML algorithms 

have their own limitations, and it might be difficult to create a model with high accuracy. Overall 

accuracy can be increased if we create & merge numerous models. After that, we combine the 

output from each model with the following two goals: 

- Reducing the models’ prediction error. 

- Maintaining the generalization of model. 

-  

Figure 3.19: Ensemble modeling concept 

In this study two ensembled models have been implemented for the created feature set of EMG 

& IMU data: 

1- Ensemble subspace discriminant. 

2- Ensemble subspace KNN. 

- Neural network classifiers 

An i/p vector is transformed into an o/p by units (neurons), which are grouped in layers in a 

neural network. Each unit receives an input, performs a nonlinear operation on it, and then 

transfers the result to the next layer. The networks are typically categorized as feed-forward, 

meaning that each unit transmits its output to every unit on the layer next to it, but no feedback to 

the previous one. Signals travelling from one unit to another are given weightings, and these are 

the weightings that are tweaked throughout the training phase for adapting a neural network to 

the specific issue. This is called learning phase.  



 

 

Figure 3.20: Basic structure of neural network classifier 

Neural networks find its applications in numerous problems ranging from pattern recognition to 

function representation etc. Neural networks are famous classification techniques, but they are 

implementable for regression problems as well. Advantages of using neural networks include 

their high tolerance towards noisy data. 

In this study a tri-layered neural network classifier has been implemented. Applied neural 

network model contains 3 fully connected layers each of size 10 and one activation layer with 

regularization strength ‘λ’ equals to ‘0’.  

 

 

 

 

 

 

 

 

 

 

 



 

                                CHAPTER 4: RESULTS & DISCUSSION 

In this study multiple machine learning models have been implemented for the long-term 

classification of Activities of daily living (ADLs) based upper limb movements to design a 

rehabilitation system for chronic stroke patients. These ML and neural network models have 

been implemented on three types of data sets (EMG, IMU & EMG+IMU) to perform a 

comparative analysis. This study also addresses the impact of sensor fusion (EMG+IMU) to 

present a novel strategy for prosthetic control based on the coupled utilization of EMG & inertial 

sensors. This comparison will allow us to evaluate the performance of proposed control for 

robotic, myoelectric, and prosthetic control as compared to the traditional only EMG based 

control systems. 

As mentioned earlier in ‘section 3.1’ there are two groups healthy and chronic stroke subjects 

with varying age dynamics. Each group consists of 15 subjects. In total we have a data set of 30 

subjects. Classification models include linear, quadratic, ensemble, and tri-layered neural 

networks with two different activation functions. A five-fold cross validation has been applied to 

each model before training. 

4.1 Classification results of EMG data 

- ML models 

The classification results for the recorded EMG data have been demonstrated in (Table 4.1). 

which summarizes the statistical characteristics mean, standard deviation and standard error for 

LDA, QDA, LSVM, QSVM and fine KNN. 

Table 4.1: Statistical analysis of ML model for EMG data 

Model Mean STD Standard Error 

LDA 70.22 8.17 1.54 

QDA 81.62 6.63 1.25 

LSVM 79.5 7.19 1.35 

QSVM 82.76 6.04 1.14 

KNN 83.95 5.17 0.97 

 

 



 

 

Figure 4.1: Comparison of avg. accuracies of ML models for EMG data 

- Ensemble ML Models 

Two ensembled models have been implemented in this study: 

1- Ensembled subspace discriminant 

2- Ensembled subspace KNN  

Statistical outcomes of the applied ensembled models have been listed in Table 4.2: 

Table 4.2: Statistical analysis of ensembled ML model for EMG data 

Model Mean STD Standard Error 

Ensembled subspace 

discriminant 

69.53 5.18 0.947 

Ensembled subspace KNN 81.26 6.21 1.13 

 

 

Figure 4.2: Average accuracies of ensembled ML models for EMG data 

70.22
81.62 79.5 82.767 83.95

0

10

20

30

40

50

60

70

80

90

LDA QDA LSVM QSVM KNN

A
ve

ra
ge

 (
%

) 
ac

cu
ra

ci
es

Models

70.1

81.2

60

65

70

75

80

85

Ensembled Subspace Discriminant Ensembled Subspace KNN

A
ve

ra
ge

 (
%

) 
ac

cu
ra

ci
es

Ensembled Models



 

- Neural Network model 

A tri-layered neural network classifier has been implemented for all types of data sets.  

specifications of the applied classifier have been mentioned in Table 4.3: 

Table 4.3: Specification of neural network classifiers 

Sr# Specifications Description  

1 No. of fully connected layers 3 

2 Size of each layer 10 

4 Iteration limit 1000 

5 Regularization strength (λ) 0 

6 Standardize data Yes 

7 Avg. training speed 18000 obs./sec 

 

Table 4.4: Statistical analysis of neural network classifier for EMG data 

Activation function Mean STD Standard Error 

Relu 81.26 5.18 0.947 

 

Multiclass machine learning classification models have been implemented for the classification 

of upper limb movements. Results demonstrate that among linear and quadratic QD & SVM 

models quadratic models performed well with the average accuracies of 81.62% & 82.76% for 

QDA & QSVM respectively. Average accuracies for LDA and LSVM are 70.22% & 79.5% 

respectively. But the performance of KNN for the given EMG data was best among all the 

models with the highest average accuracy of 83.95%, STD 5.17 and standard error of 0.97.  

Ensembled subspace KNN models showed better performance than ensembled subspace 

discriminant with average accuracies of 69.53% & 81.25% respectively. With ANN the average 

accuracy was 81.153%.  

Overall, the KNN model has been found to be best among all the applied ML models in terms of 

performance accuracy and training time. Classification results for neural networks can be 

significantly enhanced after optimization which has not been included in the presented study. 

Confusion matrix for the best performed models have been shown below. 

 

 



 

 

Figure 4.3: Comparison of applied classification models for EMG data 
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4.2 Classification results of IMU data 

Above mentioned classification models have also been applied for the kinematic data across 30 

subjects. Classification results, statistical outcomes and confusion matrices of the best 

performing classifiers have been presented below. 

 Table 4.5: Statistical outcomes of IMU data classification 

Model Average accuracies STD Standard Error 

LDA 50.5 3.66 0.81 

QDA 64.9 7.93 1.77 

LSVM 52.35 4.90 1.09 



 

QSVM 74.035 3.33 0.74 

KNN 95.64 2.95 0.66 

Ensemble Discriminant 49.5 3.04 0.68 

Ensemble KNN 89.49 4.59 1.02 

Neural network  60.525 2.92 0.65 

 

 

Figure 4.4: Comparison of applied classification models for IMU data 
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Classification result for QSVM 

 

Classification result of ensemble KNN 

4.3 Classification result of EMG+IMU 

Impact of sensor fusion technique on the overall classification accuracies of the applied models 

is the one of the main objective of the presented study. All the above-mentioned classifiers have 

been implemented for (EMG+IMU) data and the resulting outcomes have been demonstrated 

below: 

Table 4.6: Statistical outcomes of EMG+IMU data classification 

Model Average accuracies STD Standard Error 

LDA 85.64 4.53 0.67 

QDA 96.585 5.4 0.60 

LSVM 93.10 3.98 0.89 



 

QSVM 97.235 2.94 0.399 

KNN 96.87 4.25 0.45 

Ensemble Discriminant 82.83 3.72 0.95 

Ensemble KNN 96.68 2.67 0.43 

ANN  96.51 3.94 0.41 

 

 

Figure 4.5: Comparison of classification models for EMG+IMU data 
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                                       CHAPTER 5: CONCLUSION 

Classification of hand gestures from Electromyographic signals finds a wide range of 

applications in designing different human machine interfaces (HMI), prosthetic and 

rehabilitation control systems for the chronic stroke patients with mobility disorders or the 

people with limb amputee. But when there is a matter of simultaneous complex movements of 

varying degrees of freedom, conventional control techniques have proved not to be so efficient. 

Considering the above-mentioned problem, this study presents an idea of activities of daily living 

(ADLs) based rehabilitation systems for chronic stroke patients based on the idea of coupled use 

of EMG and inertial sensors. Nine different upper limb movements replicating the daily life 

activities have been classified using multiple machine learning and neural network classifiers.  

Besides this a comparative analysis have been performed to analyze the overall impact of sensor 

fusion over the classification accuracy. It has been observed that KNN models performed well 

for all types of data sets with average accuracy of 98.9% for EMG and IMU datasets. Other 

models include LDA, QDA, LSVM, QSVM, ensembled KNN and ensembled discriminant. 

Neural network classifier with three convolutional layers and two different activations functions 

have been implemented also. For EMG and IMU data SVM models performed better than LDA 

models with average accuracies of 82.76% & 74.5% respectively. Fine KNN model has been 

found to be best for both EMG & IMU data types with average accuracies of 83.95% and 

95.64% respectively. Similarly, ensembles KNN was more efficient than ensembled discriminant 

for both EMG and IMU data with mean accuracies of 81.56% & 89.49% respectively. ANN 

performed well with accuracies of 81.26% for EMG and 60.58% for IMU data. However, the 

average accuracies of all these models significantly improved for EMG+IMU data. All the 

applied models surprisingly produced >90.5% accuracies for EMG+IMU data (LDAs= 91.1%, 

SVMs= 95.16%, ensembled= 90.1% and ANN=95.13%).  Experimental outcomes indicate that 

rehabilitation control systems designed on the concept of coupled utilization of EMG & inertial 

sensors will not only be significantly efficient than conventional control systems but will allow 

the complex movements with varying degrees of freedom. 
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