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ABSTRACT 

The susceptibility to HIV infection and the development of AIDS are highly influenced by 

host genetic factors. Single nucleotide polymorphisms in the genes that code for several 

cytokines, including IL-18, IL-10, and TGF-β1, have previously been associated to variable 

risk of HIV infection in different populations. In this research, polymorphisms in these 

immunomodulatory molecules have been determined through SSP PCR and related to HIV 

pathogenesis in Pakistani population. Our results demonstrated a significant association of 

TGF-β1 -509TT genotype/TGF-β1 -509C/T polymorphism with HIV susceptibility and a 

probable link of T allele at this position with the disease susceptibility, while C allele has 

shown protective role against HIV infection. Contrary to previous studies regarding IL-10 

polymorphism, AG genotype has shown increased susceptibility towards HIV, while GG 

genotype has suggested protective role against HIV. No significant difference was found 

between HIV patients and controls for IL-18 polymorphisms. FAM26F is an essential 

regulatory protein involved in immunity, cell differentiation, infection, and anticancer 

activity. However, its specific role and modulatory mechanisms are yet unknown. Recently, 

immunofluorescence and immunoprecipitation-based techniques were employed to determine 

the six interaction partners of FAM26F namely, Calpain-1 catalytic subunit, Calmodulin-like 

protein 5, Peroxiredoxin-2, Protein S100-A7, Vinculin, and Thioredoxin. Current study has 

also evaluated the expression of FAM26F and its interacting partner peroxiredoxin-2 in HIV-

1-infected patients and in healthy individuals to determine the association of these genes at 

the mRNA level with HIV pathogenesis through real-time PCR. Our results have 

demonstrated that FAM26F has significant association with HIV infection while 

peroxiredoxin-2 has no significant association with HIV infection. 
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Chapter 1 

INTRODUCTION 

Since the discovery of AIDS in the 1980s, it is estimated that 32 million individuals are HIV-

positive, with 70% of infections occurring in sub-Saharan Africa. Approximately more than 

25 million fatalities have been attributed to HIV/AIDS, making it one of the gravest dangers 

to public health in the twenty-first century. Highly active antiretroviral therapy (HAART) 

regimens can restrict and manage viral replication, even though there is currently no drug to 

eliminate the virus completely and no vaccine for AIDS in the foreseeable future(Robertson 

et al., 2000). The substantial genetic diversity of HIV viruses is one of their defining 

characteristics and a barrier in viral suppression.  

Depending on environmental and genetic factors, the rate at which Human Immunodeficiency 

Virus-1 (HIV) advances towards immunological dysfunction varies significantly between 

individuals, with or without therapeutic intervention (Sobti et al., 2011b). These factors either 

change the availability of co-receptors or have an impact on HLA loci in hosts. (Coloccini et 

al., 2014). Most of these host genes are responsible for producing an array of cytokines both 

proinflammatory (TNFα, IL-1, IL-6, IFN-ɣ, and IL-18) and anti-inflammatory (IL-4, IL-10, 

IL-13, IL-1ra, and TGF-β) some of which determine the level of expression of either co-

receptors or co-receptor ligands (such as chemokines) that can reduce receptor availability for 

HIV attachment such as (RANTES, CCR5, SDF1, and CCR2) while others are involved in 

immune modulation (TNFα, IL-10, MBL) (Kaur & Mehra, 2009). 

HIV infection is characterized by immune activation, which also play role in the 

pathophysiology of the disease. It has now been shown that genetic heterogeneity in immune-

related genes explains the variable susceptibility to several infectious pathogens (Keynan, 
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Malik, & Fowke, 2013) and provide insights on the aetiology, possible pharmacological 

targets, risk stratification, and treatment response against the disease (Kwok, Mentzer, & 

Knight, 2021).  

Numerous single nucleotide polymorphisms (SNPs) in different immune related genes have 

been linked to variable disease progression rates and susceptibility to infection in genetic 

studies. Risk alleles may eliminate a binding site for a transcription factor (TF), generate a 

binding site for a TF, or can change the binding affinities to increase or decrease 

(Degtyareva, Antontseva, & Merkulova, 2021). So, it is critical to comprehend the role of 

host genetic factors in a disease for the development of new immune-based treatment 

strategies and the discovery of prognostic markers. 

Association studies provide a SNP-based 'genetic profile' which can be considered as a 

'fingerprint', valuable for identifying an individual's vulnerability to certain diseases, response 

to medications and for the 'tailoring' of therapies. In short when a gene is associated with a 

disease, the protein product of that gene becomes a potential therapeutic target. In the present 

study, we investigated the presence of correlation between polymorphic nucleotides in the IL-

18, IL-10, and TGF-β gene promoters with HIV susceptibility using SSP-PCR. 

A dynamic network of cellular and molecular networks makes up the mammalian immune 

system. Proteins regulate all these intricate networks by supporting the immune system or 

taking part in immunological reactions as signaling molecules, surface receptors or 

transcriptional regulators. Numerous new proteins have been added to this repertoire as a 

result of developments in molecular and structural biology. 

FAM26F is one such newly discovered protein that is involved in several immune regulating 

responses. FAM26F's precise role and modulatory mechanisms are still unknown. Rhesus 

macaques infected with the simian immunodeficiency virus (SIV) showed a considerable 
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increase in FAM26F expression 24 and 48 hours after viral infection in two separate AIDS 

vaccination studies. The group of Rhesus macaques that showed increased level of FAM26F 

following vaccination provided superior protection against SIV, indicating a crucial function 

for FAM26F in infections and immunity (A. J. G. D. P. G. Javed, Leibniz-Institut für 

Primatenforschung, Unit of Infection Models, 2012). In order to identify the cellular process 

that this protein regulates, co-immunoprecipitation and immunofluorescence approaches were 

previously used to identify the interacting partners of FAM26F. Using immunofluorescence 

and confocal laser scanning microscopy, the discovered interactors, including Calmodulin-

like protein 5, Calpain-1 catalytic subunit, Peroxiredoxin-2, Vinculin, Protein S100-A7, and 

Thioredoxin (Trx), were examined for co-localization with FAM26F. The findings showed 

that FAM26F strongly interacts with Trx, although some interaction with Peroxiredoxin-2 

was also noted (Malik, Zafar, Younas, Zerr, & Javed, 2020).  

Another protein is Peroxiredoxin 2 (Prdx2), which is an antioxidant protein that belongs to 

the peroxiredoxin subfamily and is primarily responsible for scavenging ROS (Duan et al., 

2016). Oxidative stress has been shown to be a characteristic of several viruses from various 

families, including HIV (Karpenko, Valuev-Elliston, Ivanova, Smirnova, & Ivanov, 2021). 

Oxidative stress is defined by an enhanced generation of reactive oxygen species (ROS) and 

an imbalanced antioxidant response. HIV infection alters the expression of peroxiredoxins 

(Masutani, Ueda, Yodoi, & Differentiation, 2005), so it is interesting to analyze its expression 

patterns at mRNA as well. 

Current study also evaluated the relative expression of FAM26F and its interacting partner 

Peroxiredoxin-2 in normal and diseased conditions using qPCR technique to elucidate their 

role in HIV pathogenesis. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Origin of HIV-1 

The etiologic agent of AIDS, HIV-1, was discovered in 1983. A simian origin for AIDS in 

humans was suspected not long after this discovery. SIVmac, the very first simian 

immunodeficiency virus (SIV), was found in a rhesus macaque (Macaca mulatta) with 

immunodeficiency and clinical indications similar to AIDS at the New England Regional 

Primate Research Center (NERPRC). (Daniel et al., 1985; Henrickson et al., 1983). 

Additionally, a survey of Senegalese citizens conducted in 1985 revealed that some people 

carried SIV antibodies, indicating the presence of another human retrovirus (Barin et al., 

1985). This observation was confirmed in 1986, when individuals living in France who were 

originally from West Africa were found to have HIV-2, a novel virus related to HIV-1 

(Clavel et al., 1986).Today, it is undeniably established that HIV was first spread to humans 

by repeated SIV transmissions from nonhuman primates (NHPs) (Sharp & Hahn, 2011). 

The first SIVcpz strains, SIVcpzGab1 and SIVcpzGab2, were discovered in two captive wild-

born chimpanzees in Gabon more than 20 years ago (Peeters et al., 1989). An unexpectedly 

high level of genetic variation among chimpanzee viruses was shown by the characterization 

of a third SIVcpz, known as SIVcpzANT in an animal. It is was originally from the 

Democratic Republic of the Congo (DRC, formerly Zaire) (HAESEVELDE et al., 1996; 

Peeters et al., 1992). This was connected, according to later research, to the fact that they 

were descended from two distinct chimpanzee subspecies (Gao et al., 1999). These early 

findings also demonstrated that all HIV-1 strains were more closely linked to SIVcpzPtt from 

Central chimpanzees (P. t. troglodytes) in West Central Africa than those to SIVcpzPts from 

Eastern chimpanzees (P. t.  schweinfurtii) in East Central Africa.  
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2.2 Prevalence in Pakistan 

Epidemiological data indicates that migrant workers from the Gulf States were responsible 

for the importation of the first HIV cases in Pakistan, which were initially documented in 

1987 (Khanani, Hafeez, Rab, & Rasheed, 1988; S. Shah, Khan, Kristensen, & Vermund, 

1999). Since then, non-continuous surveillance evaluations have observed significant HIV 

prevalence in several categories; the most current estimates for 2016-2017 were 5.6% among 

males who engage in sexual relations with other men and 5.6% among people who inject 

drugs, 7.2% among transgender people, and 38.4% among PWID (Emmanuel, Salim, Akhtar, 

Arshad, & Reza, 2013; Rabold et al., 2021). Estimates from the Joint United Nations 

Programme on HIV/AIDS (UNAIDS) for 2019 indicate that 190,000 individuals exist who 

are HIV positive, including 6,100 children younger than the age of 15, in the general 

population, or 0.1% of the population. Only 24,362 (54%) of the 44,758 PLHIV (People 

Living with HIV) identified with the National AIDS Control Program with a confirmed 

diagnosis were taking antiretroviral drugs at the end of 2020. The UNAIDS 90-90-90 HIV 

prevention and treatment targets (90% of HIV-positive people having aware of the 

symptoms; 90% taking ART; and 90% being virally controlled) are significantly missed by 

the majority of PLHIV (87%) in Pakistan. Public health professionals from the local and 

provincial levels of Pakistan's Larkana District identified a significant HIV outbreak there in 

April 2019 (Moher, Liberati, Tetzlaff, Altman, & Group*, 2009; Rabold et al., 2021). The 

provincial Sindh AIDS Control Program started a voluntary district-wide testing programme 

after a number of sick children with HIV-negative parents had positive HIV tests. A total of 

30,192 people under the age of 15 had their HIV status tested between April 25 and June 28, 

2019, and 876 (2.9%) of those were found to be positive. The World Health Organization 

(WHO) observed that this outbreak was the fourth HIV outbreak in Larkana since 2003 and 
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listed risky medical practices and inadequate infection control procedures as major risk 

factors for infection (Rabold et al., 2021; S. A. Shah, Altaf, Mujeeb, & Memon, 2004). 

2.3 HIV subtype diversity worldwide 

The main cause of the global epidemic known as AIDS is the spread of two distinct genetic 

lentiviruses, HIV-1 and HIV-2, from non-human primates to humans through a range of 

cross-species infections of simian immunodeficiency viruses. The unique HIV-1 groups M 

(Major), N (non-M, non-O), O (Outlier), and the most recent group P were created as a result 

of these distinct zoonotic viral transmissions (Sharp & Hahn, 2011). HIV-1 was first 

discovered in 1920s, in Kinshasa in the modern Democratic Republic of the Congo. From 

there, it spread through a transit network to other parts of sub-Saharan Africa, West Africa, 

Europe, and the rest of the world (Faria et al., 2014). A geographically confined distribution 

of numerous genetically diverse viruses functioned as a marker for this global distribution. 

Subtype B, for example, spread throughout practically all of Europe and the Americas, 

whereas a range of subtypes and intersubtype recombinants are found in Africa, with West 

Central Africa reporting the largest diversity. Since the beginning of the HIV epidemic, the 

majority of the world's viruses are from group M, while group N, O, and P viruses have not 

spread as widely. Group M viruses comprise nine subtypes (A–D, F–H, J, K) (Sharp & Hahn, 

2011). Although viral incursions have been detected abroad in Europe (Portugal and France), 

India, and the United States, HIV-2 is still mostly limited to the western part of Africa. 

(Visseaux, Damond, Matheron, Descamps, & Charpentier, 2016). HIV-2 is made up of at 

least nine groups (formerly known as subtypes; A to I), of which groups A and D are 

currently circulating (Visseaux et al., 2016). It has also been shown to be less contagious than 

HIV-1 (Gilbert et al., 2003; Kanki et al., 1994). Until now, only a few recombinants have 

been identified., and there is currently a lack of information on HIV-2 subtypes (Ibe et al., 

2010). 
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2.4 HIV structure 

HIV is regarded as a "complex" retrovirus since it has six regulatory genes (tat, rev, nef, vif, 

vpr, and vpu). The remaining genes were given the label "accessory" because, in some cell 

culture settings, they are not strictly necessary for replication (Kirchhoff, 2010).HIV-1 is a 

member of the Retroviridae family's Lentivirus genus (lentis = slow). The HIV-1 virion 

structure states that the virion is spherical and has a diameter of approximately 130 nm (about 

1/10,000 mm). Long terminal repeats (LTRs), including the promoter, surround the 

conventional retroviral genes gag, env, and pol in the HIV genome. Capsid (CA), matrix 

(MA), and nucleocapsid (NC) are structural proteins encoded by the gene gag. Reverse 

transcriptase (RT), protease (PR), and integrase (IN) are enzymes encoded by the gene pol. 

gp120 and gp41 are glycoproteins encoded by the gene env (van Kooyk & Geijtenbeek, 

2003). The viral envelope comprises of approximately 12 trimeric complexes of the envelope 

(Env) protein, which is derived from the host and contains cellular proteins. External 

glycoprotein 120 (gp120), which facilitates viral attachment, is part of the envelope virus 

(env). Glycoprotein 41 (gp41), a transmembrane protein essential for viral fusion. The 

conical capsid of gp41 contains the viral Gag protein, p24, and is connected to the viral p17 

matrix protein. Two positive polarity single stranded viral RNA with a combined length of 

around 10,000 nucleotides are present in the capsid. The RT and IN, as well as the 

nucleocapsid proteins, are connected to the RNA. The auxiliary Vif, Vpr, and Nef proteins, as 

well as some cellular components like tRNAlys3, which serves as a primer for reverse 

transcription, are also present in small quantities in the virions (Esposito & Craigie, 1999). 

2.5 HIV lifecycle 

There are early and late phases of replication in the complicated HIV-1 life cycle. The 

virion's attachment to the cell surface and integration of proviral DNA into the host genome 

are the first two stages of the early phase. The beginning of proviral transcription marks the 
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beginning of the late phase of replication, which concludes with the release of fully infectious 

offspring virions. The HIV life cycle only lasts one to two days in highly activated CD4+ T-

lymphocyte cells and is linked to the programmed cell death of both virally infected and 

uninfected bystander cells.  

2.5.1 Viral attachment 

Infected people often only have a 20–30 minute half-life for cell-free HIV virions. Therefore, 

the virus must quickly locate and infect a new cell. The main co-receptors for HIV entrance 

are the chemokine receptors CXCR4 and CCR5, as explained below. Receptor CD4 is the 

primary receptor. These receptors are enough to make cells open to HIV entrance and, as a 

result, to decide the viral cell tropism. Env trimer and CD4 receptor concentrations, however, 

are usually low on virions and target cells, respectively. As a result, viral attachment is 

frequently ineffective and a barrier to HIV infection. These cellular receptors are enough for 

viral entrance and, as a result, to decide the viral cell tropism. Env trimer and CD4 receptor 

concentrations, however, are usually low on virions and target cells, respectively. As a result, 

viral attachment is frequently ineffective and a barrier to HIV infection. Numerous receptors, 

including poly-glycans, lectins, and others, have the ability to bind HIV virions in a less 

specific manner, potentially leading to significantly higher rates of viral infection (Ugolini, 

Mondor, & Sattentau, 1999). 

2.5.2 Viral binding and viral fusion 

Viral entrance which is a complicated, process with multiple steps, that provides a variety of 

therapeutic intervention options (Didigu & Doms, 2012). The infection process is started by 

the engagement of the exterior viral glycoprotein gp120 with the target cell, either directly or 

after unspecific binding of HIV to the infected cell. Env trimer conformational changes 

brought on by the cellular CD4 receptor's CD4 binding allow gp120 to engage with either the 

CXCR4 (X4) or CCR5 (R5) co-receptor. X4 HIV strains appear later in the course of 
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infection and, in the absence of antiretroviral medication, are linked to a rapid progression to 

AIDS (Wilen, Tilton, & Doms, 2012). 

2.5.3 Viral reverse transcription 

The genetic material of the virus can enter the cell once fusion is complete. The nucleocapsid 

shields the two positive (+ve) stranded RNAs that make up the viral genome. After fusion, a 

process known as RT (Reverse Transcription) converts the ss viral RNAs into linear dsDNAs. 

Because the sequence of activities that typically happens during transcription, the synthesis of 

mRNA from genomic DNA, followed by exportation into the cytoplasm and viral protein 

synthesis, is reversed, this process is referred to as "reverse transcription." It is carried out by 

an enzyme called reverse transcriptase, which is typical of retroviruses, though not 

exclusively, and entails a very complex chain of actions (W.-S. Hu & Hughes, 2012). 

2.5.4 Viral uncoating and nuclear entry 

Before importing the viral DNA into the nucleus, the viral capsid is disassembled, which is 

referred to as uncoating. Viral infectivity is hampered by premature uncoating brought on by 

point mutations in the viral capsid protein or interactions with the tripartite motif 5-alpha 

protein (TRIM5a). Early research revealed that viral entrance could be followed promptly by 

uncoating. However, imply that capsid stability—which can last for several hours—is 

essential for HIV-1 infection. Additionally, it appears that uncoating is closely linked to 

reverse transcription and occurs as the reverse transcription complex (RTCs) changes into the 

pre-integration complex (PIC), which is capable of integrating into the genome of the host 

cell (Arhel, 2010). 

2.5.5 Integration 

HIV must integrate its genome into the host cell's genome after successfully producing linear 

ds DNA and transporting it across the cellular nuclear membrane in order for gene expression 



Chapter 2  Literature review 

10 
 

and productive infection to occur. The cell is typically infected throughout the balance of its 

life once the viral DNA has been incorporated into the cellular DNA by an enzyme known as 

integrase. The proviral DNA is reproduced alongside the host DNA as a component of the 

chromosome of the host cell. As a result, spreading an infection can be done by infecting new 

cells or by multiplying cells that already have proviral DNA. Notably, a number of 

substances that prevent viral integration are being utilized successfully in the clinic (Lusic & 

Siliciano, 2017). 

2.5.6 Transcription 

The integrated HIV provirus acts as a template in productively infected cells for the 

transcription of viral mRNAs and genomic RNA by the host cellular Pol II polymerase. The 

viral promoter, which can be found in the 5' LTR's U3 region and is active in a variety of cell 

types, starts proviral transcription. Cellular transcription factors like NFAT and NF-кB are 

essential for the production of viral genes. The viral transactivator protein Tat is necessary for 

efficient viral gene expression, therefore elongation of viral transcripts is relatively inefficient 

at first, resulting in poor transcriptional output (Colin & Van Lint, 2009; Karn & Stoltzfus, 

2012). 

2.5.7 Translation and assembly 

Rev, Tat and Nef are encoded by the viral RNAs that are fully spliced. Rev facilitates the 

transportation of unspliced and partially spliced viral RNAs to the cytoplasm, while Tat 

promotes viral transcription and RNA elongation. Nef serves a variety of purposes but 

essentially seems to reduce the effect of immune system to detect an infected cell by 

downregulating a number of surface receptors like CD4 and class I MHC. Nef also affects 

cells in a way that makes them more efficient producers of fully infectious viral particles. The 

expression of the Gag-Pol and Gag precursors, which are later processed into important 

enzymatic and structural proteins, is made possible by the synthesis of Tat and Rev. In 
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parallel, single-spliced viral RNAs are used to create the Vpu, Env, and Vif proteins. The 

process of viral assembly is intricate and well-organized. In a nutshell, interactions between 

Gag proteins cause the progenitors of Gag and Gag-Pol to multimerize. The two precursors 

are also localized in lipid rafts in the inner leaflet of the plasma membrane where they are N-

terminally myristoylated in the matrix domain (Ganser-Pornillos, Yeager, & Sundquist, 

2008). 

2.5.8 Budding 

Budding refers to the release of virions (progeny) from infected cells. These virions pinch out 

of the plasma membrane and enter the host bloodstream. It involves the late p6 domain of 

Gag and the cellular Tsg101 protein. Notably, tetherin (BST-2) binds infectious and matured 

viruses to the infected cell surface and is inhibited by the HIV-1 Vpu and the Nef or Env 

proteins of other primate lentiviruses (Martin-Serrano & Neil, 2011). 

2.5.9 Maturation 

The HIV particles are discharged in an immature, infectious state that is morphologically 

distinguished by a thick coating of radially organized precursors of the Gag and Gag-Pol 

proteins. The viral protease is active during or soon after budding and splits the precursors of 

Gag and Gag-Pol into their mature final forms. As a result, the protein structure is altered, 

creating the distinctive electron-dense conical inner core and making the virus contagious 

(Briggs & Kräusslich, 2011). 

2.6 Role of host factors in HIV pathogenesis 

There are three types of variables that affect the development of diseases and infection 

susceptibility: 1) Viral factors impacting virus replication or immune evasion, 2) host factors 

affecting innate or acquired immune responses to infection, and 3) Cellular factors 

collaborating with viral products to govern virus replication in human cells.  These factors 
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ultimately determine how rapidly HIV replicates /or how well it disarms the host's immune 

system (Lama & Planelles, 2007). 

IL-18, IL-10, and TGF-β1 are important immune homeostasis regulators, and polymorphisms 

in these genes may cause changes in their plasma levels and impact the progression of HIV 

infection. 

2.6.1 IL-18 

IL-18, a proinflammatory cytokine, is involved in polarized natural killer and T-helper 1 cell 

immune responses (Chaix et al., 2008; Kato et al., 2003). Monocytes and macrophages are 

the main producers of interleukin (IL)-18 (K. Nakanishi, Yoshimoto, Tsutsui, Okamura, & 

reviews, 2001). 

2.6.1.1 Effects on cells of immune system 

In association with IL-12, Interleukin IL-18 has been shown to increase the production of 

IFN- γ by anti-CD3-stimulated Th1 cells. Alone IL-18 cannot stimulate the development of 

Th1 cells; however, it may stimulate mature Th1 cells to secrete IFN-γ in the presence of IL-

12. As a result, IL-18 can be considered as a cytokine that promotes Type 1 responses. 

Additionally, IL-18 promotes type 2 responses by causing mature Th1 cells, natural killer 

cells, and natural killer T (NKT) cells to produce IL-3, IL-9, and IL-13 in the presence of IL-

2 (K. J. F. i. i. Nakanishi, 2018).  

2.6.1.2 IL-18 expression in HIV infection 

Several studies indicate that patients infected with HIV type 1 (HIV-1) had much higher 

circulating levels of IL-18 than healthy individuals (Ahmad, Sindhu, Toma, Morisset, & 

Ahmad, 2002; Iannello et al., 2010; Song et al., 2006; Torre et al., 2000). 

IL-18 has shown to restrict replication of HIV in macrophages due to SAMHD1 upregulation 

(Pauls et al., 2013). Recent study has also shown that IL-18, through the inhibition of HIV 
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induced caspase-3 activity, inhibits replication of HIV in Peripheral Blood Mononuclear 

Cells (PBMCs) and Jurkat cells (Wang, Mbondji-Wonje, Zhao, Hewlett, & communications, 

2016). However, HIV infection creates an imbalance between IL-18 (upregulated) and its 

antagonist Interleukin-18 Binding Protein (IL-18BP) (downregulated), which may increase 

HIV replication in CD4+ T cells (Iannello et al., 2010) 

2.6.1.3 IL-18 -607C/A gene’s promoter polymorphism (rs1946518) 

The most prevalent single nucleotide polymorphism in the IL-18 gene, -607C/A (rs1946518), 

is found in the promoter region and is predicted to provide a nuclear factor binding site for 

the cAMP-responsive element binding protein (Takada, Suzuki, Morohashi, & Gejyo, 2002). 

-607C/A polymorphism has shown to be associated with HIV infection in Brazilian and 

North Indian population, where -607C allele and CA genotype respectively is linked with 

increased risk of HIV infection (Segat et al., 2006; Sobti et al., 2011a). 

2.6.2 IL-10 

IL-10 is a broadly active anti-inflammatory cytokine. HIV infection initiates a cascade of 

cytokine production usually referred to as a cytokine storm (Ribeiro et al., 2021). IL-10 is a 

part of this widespread "cytokine storm" in early HIV infection and reduces the functional 

abilities of effector CD4+ T cells (Ngcobo et al., 2022). Damage to the gastrointestinal tract 

barrier at an acute stage of infection results in bacterial translocation and promotes systemic 

inflammation and immune activation. The detection of bacterial substances by TLRs can 

initiate the synthesis of IL-10 (Ribeiro et al., 2021). 

2.6.2.1 Effects on cells of immune system 

In animal models, deletion of the IL-10 gene or inhibition of the activation pathway boosts T 

cell responses, leading to fast viral eradication and the development of memory T cells 

responses, which ultimately results in virus shedding (Brooks et al., 2006; Ejrnaes et al., 

2006). 
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2.6.2.2 Expression in HIV infection 

HIV-infected people with AIDS often have higher circulating levels of IL-10 (STYLIANOU 

et al., 1999). In one study, IL-10, induced by tat protein of HIV, inhibits viral replication 

(Masood et al., 1994). Moreover, downregulation of IL-10 results in a more rapid progression 

of AIDS (Kwon & Kaufmann, 2010). However, it has been shown that IL-10 expression in 

the early stages of infection results in suppression of HIV specific T-cell responses (Liu et al., 

2014). 

2.6.2.3 IL-10 -1082A/G gene’s promoter polymorphism (rs1800896) 

The role of IL-10 in the pathogenesis of HIV-1 and its effects and mechanisms are highly 

contested. According to several studies, alleles related to low serum IL-10 levels are 

associated to a higher risk of HIV-1 susceptibility in the latter phases of the infection 

(Oleksyk et al., 2009; Shin et al., 2000). Other research suggests that the alleles (-1082A) 

linked to low levels of IL-10 have a protective role (Kallas et al., 2015; Naicker et al., 2009). 

Polymorphic site -1082A/G, lies on the proposed ETS like transcription factor binding site of 

IL-10 (Lazarus et al., 1997). 

2.6.3 TGFβ1 

TGF-β is a member of the cytokine superfamily and has three isoforms (TGF-β1, TGF-β2, 

and TGF-β3). Mammals produce all three isoforms with TGF-β1 being the most prominent in 

the immune system, where it serves as a key pleiotropic cytokine with significant 

immunoregulatory functions (Theron, Anderson, Rossouw, & Steel, 2017). Along with the 

regulation of immunological responses, TGF-βs are involved in an exceedingly variety 

of completely different biological processes including embryonic development, wound 

healing, fibrosis, angiogenesis, hematopoiesis (Prud'Homme & Piccirillo, 2000). 

2.6.3.1 Effects on cells of immune system 
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Transforming growth factor beta-1 (TGF-β1) employs a variety of ways to mediate the 

inhibition of cells of the Adaptive Immune System. By inhibiting the synthesis of the 

transcription factors T-bet and GATA-3, respectively, this cytokine effectively prevents T-

helper (Th)1 and Th2 cell differentiation and proliferation (Theron et al., 2017). Another way 

TGF-β1 affects humoral immune responses is by inhibiting B cell survival, proliferation, and 

their differentiation into antibody-producing cells (Tsuchida et al., 2017). 

TGF-β1 modulates the activity of innate immune cells by decreasing the synthesis of IFN-γ 

by human natural killer (NK) cells, inhibiting the in-vitro activation and maturation of 

dendritic cells, and suppressing neutrophil degranulation (Theron et al., 2017). 

2.6.3.2 Expression in HIV infection 

Normally, TGF-β1 is a protective anti-inflammatory cytokine, but its excessive production 

can have severe pathogenic repercussions. Several investigations have found increases in the 

amounts of TGF-β1 in the circulation of HIV-1-infected individuals (Eaton et al., 2013) and 

believed to contribute towards the progression of AIDS (Theron et al., 2017). One such 

investigation showed a correlation between TGF-β1 levels and HIV infection. In comparison 

to asymptomatic patients and healthy people, an increase in plasma TGF-β1 levels was seen 

in HIV patients. TGF-β1 levels in plasma and CD4 or CD8 cell counts were also shown to be 

negatively correlated (Wiercińska-Drapalo, Flisiak, Jaroszewicz, & Prokopowicz, 2004). 

HIV-1 proteins may also have a role in TGF-β1 synthesis. It has been demonstrated that the 

HIV-1 Trans activator of transcription (Tat) protein induces the production of TGF-β1 by 

human leukocytes (Reinhold, Wrenger, Kähne, & Ansorge, 1999). HIV-1 glycoprotein gp160 

also promotes considerable mRNA expression and TGF-β1 secretion in PBMC from HIV-

seronegative, healthy donors, according to a previous research (R. Hu et al., 1996). 
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2.6.3.3 TGF-β1 gene’s promoter polymorphism -509C/T (rs1800469) 

Polymorphisms in cytokine genes especially in promoter regions can change gene 

transcription and result in disparities in cytokine production across individuals.  

TGF-β1-509C > T allele has been linked to higher plasma levels of TGF-β1, decreased T cell 

proliferation and it is positioned inside a YY1 consensus binding site (Rathod & Tripathy, 

2015). This polymorphism is a C-to-T base exchange that results in the creation of YY1 

consensus sequence and is found in a promoter region linked to negative transcriptional 

regulation (Hobbs et al., 1998). In Thailand population, it was shown that TT and CT 

frequency at -509C/T promotor site of TGF-β1 was remarkably higher in people living with 

HIV (PLWH) and suffering from non-AIDS illnesses, hence, making it a good candidate for 

association studies with respect to AIDS (Akekawatchai, Phuegsilp, Changsri, Soimanee, & 

Sretapunya, 2022). 

In this context, the study's aim was to investigate how the TGF-β1 gene’s promoter 

polymorphism -509C/T (rs1800469) influenced Pakistani patients' susceptibility to infection 

with HIV. 

2.6.4 SSP-PCR 

For the discriminating of alleles resulting from single base substitutions, the polymerase 

chain reaction using sequence specific primers (PCR-SSP) offers a potent method 

(Kirschbaum, Foster, & haemostasis, 1995). 
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Figure 1: Principle of SSP-PCR. 

2.7 FAM26F 

FAM26F is a protein that is highly expressed in several immune cell types, indicating its 

significance in modulating a variety of immunological responses. FAM26F (family with 

sequence similarity 26, member F) is a relatively new term that has gained interest as an 

immunological regulator. The 315-amino-acid protein FAM26F, commonly known as 

CALHM6, is stable and weighs 34.258 kDa. It possesses 3-5 transmembrane helices and an 

immunoglobin-like shape, indicating its immunological significance(Malik et al., 2020). 

Investigating the role of FAM26F in SIV infection revealed that pre-infection levels of 

FAM26F are inversely correlated with overall viral load of plasma. As a result, FAM26F can 

be regarded as one of the earliest prognostic markers that, can provide us with information 

about severity and progression of antiviral immune response in the early stages of the 

infection (A. Javed et al., 2016). 

Previously, a little was known about functional characterization and subcellular localization 

of FAM26F. Recently, it was demonstrated that FAM26F is mostly localized in the cell's 

Golgi apparatus, albeit a little amount of it is also found in the ER (Malik et al., 2020). 
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To discover the biological process that FAM26F regulates, one study used co-

immunoprecipitation and immunofluorescence-based methods to identify the interaction 

partners of FAM26F. Proteins were co-immunoprecipitated using Dyna beads after cells had 

been transfected with the FAM26F plasmid and lysed. To find the interacting proteins, the 

eluates underwent MS analysis. Majority of the proteins were found to be involved in the 

innate immune system and the calcium homeostasis mechanism of the cell. Later, proteins 

were immunostained and their co-localization with FAM26F was viewed using confocal laser 

scanning microscopy to further assess the degree of functional relatedness between each of 

these proteins and FAM26F. The protein Thioredoxin and the protein Peroxiredoxin-2 were 

shown to be co-localizing with FAM26F primarily (Malik et al., 2020). 

To ascertain whether these genes are associated with HIV pathogenesis, it is essential to 

evaluate the expression of FAM26F and its interacting partners in HIV-1-infected patients 

and in healthy individuals at the mRNA level as well. 

2.8 Peroxiredoxin-2 (PRDX2)  

Peroxiredoxins (Prdxs), family of cysteine-dependent peroxidase enzymes are widely 

distributed and perform important functions in maintaining the levels of peroxide in cells 

(Perkins, Nelson, Parsonage, Poole, & Karplus, 2015). Prdxs are H2O2 metabolizing 

thioredoxin-specific antioxidants that were initially discovered in yeast (Zhao, Wang, & 

bioscience, 2012).  

A member of the peroxiredoxin family, peroxiredoxin 2 (Prdx2) is an antioxidant protein 

whose primary function is to combat ROS (Duan et al., 2016). Prdx2 is present in the nucleus 

and cytoplasm. It has also been shown to bind to the erythrocyte plasma membrane in 

oxidative stress (Karpenko et al., 2021). 
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Oxidative stress, which is characterized by increased formation of reactive oxygen species 

(ROS) and an unbalanced antioxidant response, has been shown to be a common feature of 

numerous viruses from different families. They include herpesviruses, several respiratory 

viruses, the hepatitis B and C viruses, the Human Immunodeficiency Virus (HIV), etc 

(Karpenko et al., 2021). Cellular protective factors including Bcl-2, TRX, and peroxiredoxins 

exhibit altered expression because of HIV infection (Masutani et al., 2005).  

Thus, evaluation of these host factors can help to find novel Host-based therapeutic targets 

whose overexpression or silencing could prove to be potential anti-HIV therapy. 

So, the Objectives of present study were: 

1. To evaluate the role of SNPs in important immunomodulatory cytokines such as IL-

10, IL-18, and TGF-β1 in HIV infected Pakistani population. 

2. To analyse the expression of FAM26F and interacting partner Peroxiredoxin at the 

mRNA level in healthy individuals and HIV-infected patients using quantitative 

polymerase chain reaction (qPCR) to elucidate their role in HIV pathogenesis. 
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Chapter 3 

MATERIALS AND METHODS 

3.1 SNP analysis 

3.1.1 Primer designing 

Manually designed Sequence Specific primers were used to genotype SNPs using Sequence 

Specific Primer PCR (SSP-PCR). 

The sequences of human genomic regions containing our target SNPs were obtained from the 

NCBI SNP database or UCSC Genome Browser. Primer3 software (Untergasser et al., 2012) 

was used to design these SNP-specific primers. Primer blast (Ye et al., 2012) software was 

used to test the specificity of binding to our target template; or else, modifications were made 

to prevent non-specific amplifications. OligoCalc, Multiple Primer Analyser, and idtDNA 

tools were used to analyze hairpin formation, heterodimers formation, and the possibility of 

primer dimer formation between forward and reverse primers, as well as among allele 

specific primers. Salt solution melting temperature were measured. Candidates with a higher 

potential for cross-hybridization were removed, and new primers were designed. 

To facilitate the determination of common annealing temperatures, the melting temperatures 

of all four primers were maintained within a 2 °C range. GC content was kept between 30-

70% and melting temperature ranges were established between 50-70 °C. The allele was kept 

at the 3' end of allele-specific primers. To prevent the formation of potential dimers, the 

primer length of allele-specific primers was altered according to the sequence and kept 

between 16 and 30 bp. 

Table 1: List of primers designed for reported HIV SNPs. 

Sr. no. Labels Sequence (5’-3’) Product Ta (°C) 
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size (bp) 

1. 

IL-18F CTTTGCTATCATTCCAGGAA 

301 

55 

IL-18R TAACCTCATTCAGGACTTCC 

1L-

18F(C) 

GTTGCAGAAAGTGTAAAAATTATTAC 

196 

1L-

18F(A) 

GTTGCAGAAAGTGTAAAAATTATTAA 

2. 

IL-10F TATCTGAAGAAGTCCTGATGTC 

318 

55 

IL-10R TTCTTTTAGTTGTAAGCTTCTGTG 

IL-

10F(A) 

CTACTAAGGCTTCTTTGGGAA 

168 

IL-

10F(G) 

CTACTAAGGCTTCTTTGGGAG 

3. 

TGF-βF CTGACCCCAGCTAAGGCATG 

384 

66 

TGF-βR AGAGGACCAGGCGGAGAAG 

TGF-

βF(C) 

CCTCCTGACCCTTCCATCCC 

197 

TGF-

βF(T) 

CCTCCTGACCCTTCCATCCT 

 

In accordance with the manufacturer's instructions, stock solutions for primers were prepared 

by adding the required quantity of water to each primer. Using 10 µL of the stock solution 

and 90 µL of nuclease-free water, primer dilutions were made. These procedures were carried 

out inside a biosafety cabinet to prevent contamination of the stock solutions and dilutions. 



Chapter 3  Materials and Methods 

22 
 

3.1.2 Sampling 

As experimental group, inclusion criteria were HIV-positive patients with a confirmed 

positive status. As a control group, 50 HIV-negative samples were collected. 

3.1.2.1 Study group selection 

With the patients' informed consent, blood samples were obtained from 103 HIV-positive 

patients at the Pakistan Institute of Medical Sciences (PIMS) in Islamabad and the Punjab 

AIDS Control Program (PACP) in Lahore for this study. 

3.1.2.2 Ethical statement 

Ethical Review Board of Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), 

Islamabad, Pakistan, and Institutional Review Board (IRB) of ASAB, NUST, Islamabad, 

Pakistan, granted approval for this research. It was completed in conjunction with the NACP 

(National AIDS Control Program), its referral laboratory at the Pakistan Institute of Medical 

Sciences (PIMS), Islamabad, and its provisional counterpart PACP (Punjab AIDS Control 

Program) located in Lahore. 

3.1.2.3 Blood sample collection 

Blood samples were required for the genotyping of SNPs under study. Our study comprised 

of 103 HIV-positive patients and 50 samples of healthy individuals from control population. 

Blood samples were taken from HIV-infected/AIDS patients with explicit informed consent. 

Patients' blood was taken in sterile EDTA tubes and kept at 4 degrees Celsius until further 

processing. Prior to the study, patients' clinical data including age, gender, plasma viral load, 

and CD4 cell count were obtained. 

Control blood samples were obtained from students at the Atta-Ur-Rahman School of 

Applied Biosciences (ASAB), National Institute of Sciences and Technology (NUST), 

Islamabad, randomly. For each subject, information such as gender and HIV history in the 
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family was collected to ensure they did not violate inclusion criteria. To avoid coagulation 

prior to DNA extraction, all blood samples were collected in EDTA tubes and stored at 4 °C 

in a refrigerator. 

3.1.3 DNA extraction 

DNA extraction from control and patient samples was performed utilizing Phenol-

Chloroform method. All the procedures were carried out at the PACP laboratory in Lahore. 

Table 2: Chemical composition of DNA extraction solutions. 

Solution A Solution B Solution C Solution D 

0.32M Sucrose 400mM NaCl 

400 µL Phenol 

Chloroform (24 vol) 

10mM Tris (pH 7.5) 10mM tris (pH 7.5) 

5mM MgCl2 2mM EDTA (pH 8) 

Isoamyl alcohol  

(1 vol) 

Add 1% (v/v) triton X-

100 after autoclaving the 

above solution 

 

 

For each sample, 750 μL of Solution A and 750 μL of blood were added to a 2 mL Eppendorf 

tube, mixed by inversion, and left at room temperature for 5–10 minutes. The tubes were 

centrifuged for 1 minute at 13000 rpm. The pellet was resuspended in 400 μL of Solution A 

after removing the supernatant. After 1 minute of centrifugation at 13000 rpm, the 

supernatant was discarded and the nuclear pellet was dissolved in 400 μL of Solution B. 12 

μL of 20% SDS, and 5 μL of Proteinase K was added to the solution prior to overnight 

incubation at 35 °C. SDS was added for denaturation of the proteins, and Proteinase K was 

added to inactivate the nucleases. 
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Next day, 500 µL of a fresh mixture of Solution C (250 µL phenol) and Solution D (250 µL 

(24 Chloroform: 1 Isoamyl alcohol)) were added to each tube, well mixed through inversion, 

and then centrifuged at 13000 rpm for 10 minutes. Calculations for the preparation of 

solution C and D were done according to the number of samples being processed. 

Three layers were obtained. In fresh 1.5 mL Eppendorf tubes, the aqueous (upper) layer was 

collected, measured, and equal volumes (ranging from 300 to 500 µL) of Solution D were 

added. The centrifugation step was then repeated for 10 minutes. After that, the aqueous layer 

was collected in fresh tubes, and DNA was precipitated by adding 55 µL of 3M Sodium 

Acetate (pH 6), along with an equivalent volume of chilled iso-propanol (equal to aqueous 

layer). The tubes were inverted many times to guarantee DNA precipitation, centrifuged for a 

further ten minutes, and the supernatant was removed completely. The DNA pellet was 

washed by adding 200 µL of 70% ethanol, centrifugation was done at 13000 rpm for seven 

minutes, and ethanol was discarded. The tubes were dried on absorbent paper, and the DNA 

pellet was dried by incubating it at 37 °C for 20 minutes. The DNA pellet was later dissolved 

in 75 µL of TE buffer (Tris-EDTA). Using the Thermo Scientific™ NanoDrop, the DNA 

yield was determined prior to storing the samples at -20 °C. 

3.1.4 DNA quantification 

DNA Quantification was done using Nanodrop spectrophotometer. A spectrophotometer can 

precisely determine the purity and concentration of DNA in as little as 1μl of sample. 

On the pedestal, 1 μL of each sample was dispensed, and absorbance was measured. The 

NanoDrop software computes the DNA concentration based on the obtained absorbance 

values. The absorbance of DNA is maximum near 260 nm. The A260/A280 ratio is an 

indicator of the purity of the DNA samples, and values of 1.8 or higher indicate pure DNA 

samples. 
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As a secondary measure of nucleic acid purity, 260/230 ratio is used. Generally, the 260/230 

values for pure nucleic acid are greater than the corresponding 260/280 values. Expected 

260/230 values typically range between 2.0 and 2.2. When the ratio of absorbance 260/230 is 

less than 1.8, it indicates contamination by organic or chaotropic compounds that absorb at 

230 nm. Whereas, high A260/A230 ratio may be the result of a blank measurement on an 

uncleaned pedestal or the use of the incorrect Blank measurement solution. The pH and ionic 

strength of the blank solution should be similar to the sample solution. 

3.1.5 Validation of DNA extraction by gel electrophoresis 

The DNA extraction was validated by analyzing it on 1% agarose gel made in a 1X TAE 

buffer solution. 7 μL of sample and 3 μL of loading dye was used for loading into wells and 

gel was run in gel tank containing a similar concentration of 1X TAE buffer. 

To make a 50X TAE buffer stock solution, 242 g of Tris base was mixed with 700 mL of 

distilled water. Then 100 mL of 0.5 M EDTA, 57.1 mL of Glacial acetic acid (GAA) was 

added, the pH was adjusted to 8, and the volume was increased to 1 litre at the end with 

distilled water. 

2 mL of 50X buffer and 98 mL of distilled water were mixed to prepare 100 mL of 1X TAE 

working solution. 

3.1.6 Genotyping through SSP PCR 

The genotyping of each sample was performed through SSP-PCR. Two 25 μL reaction 

mixtures were prepared for each SNP using 12.5 μL Zokeyo 2xHLingene PCR Master Mix 

(serial number HPR001-01), 1 μL (10 pmol) of either allele specific primer, 1 μL (10 pmol) 

of control forward primer and 1.5 μL (15 pmol) of common reverse primer; 2 μL (0.1 to 2.5 

μg) of DNA and 9 μL of nuclease free water. The following cycling conditions were 

established: initial denaturation at 95 °C for 15 minutes, followed by 35 cycles of 95 °C for 
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45 seconds, Ta °C for 45 seconds, and 72 °C for 45 seconds, and a final extension at 72 °C 

for 10 minutes. TGF-β1 was optimized at Ta of 64 °C, whereas IL-10 and IL-18 had a Ta of 

55 °C. 

3.1.7 Gel electrophoresis 

2% agarose gel prepared in 1X TAE buffer was used for the analysis of the SSP PCR 

products. For the preparation of 100 mL agarose gel, 2 g of agarose was dissolved in 100 mL 

of TAE buffer and heated in a microwave until it became clear. After it cooled down to room 

temperature, 10 µL of ethidium bromide was added for staining the gel and then swirled for 

mixing. 3 µL of loading dye was mixed with 7 µL of PCR product for loading purpose. 

Total 10 µL was loaded in each well. At 90 V and 500 mA current, the gel was run for 50 

minutes. The Dolphin ™ Gel Documentation System was used to analyze and obtain pictures 

of the gel. 

3.1.8 Statistical analysis 

In both infected and control samples, direct counting was done to estimate the allelic and 

genotypic frequencies for each polymorphic site, then these frequencies were compared using 

the Chi-square test in Graph Pad Prism version 8.0.1. P values under 0.05 were considered 

significant. Using the free statistical program MedCalc, odds ratios (OR) were calculated 

with a 95% confidence interval (CI) (Waqar, Altaf, Nazir, Javed, & Evolution, 2020). 

3.2 Gene expression analysis 

3.2.1 Primer designing 

Primers for the housekeeping genes (glyceraldehyde phosphate 3-dehydrogenase (gapdh), 

actin beta (actb), glucuronidase beta (gusb), hypoxanthine phosphoribosyltransferase 1 

(hprt1), phosphoglycerate kinase 1 (pgk1), peptidylprolyle isomerase A (ppia), beta-2-

microglobulin (b2m), TATA-box binding protein (tbp), transferrin receptor (tfrc), tyrosine 3-
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monooxygenase (ywhaz), ATP synthase peripheral stalk-membrane subunit b (atp5bp)), 

calhm6 and prdx2 were designed using NCBI primer BLAST (Ye et al., 2012) employing 

following conditions: 

• Size of PCR products: 70–200 bp 

• Tm range: 60–63 °C 

• An exon-exon junction must be covered by primer. 

• Refseq mRNA database was chosen. 

• Only Homo sapiens were the focus of the primer's specificity. 

The ability of these primers to create secondary structures was further examined using the 

Oligo Calc: Oligonucleotide Properties Calculator (Kibbe, 2007). Finally, using UCSC 

Genome Browser's In-Silico PCR (Kent et al., 2002), the melting temperature and specificity 

of these primers were once more examined. 

3.2.2 Sample collection 

Patients who had confirmed HIV infection met the requirements for participation in the 

experimental group. As a control group, 30 samples that tested HIV-negative were gathered. 

With their informed agreement, 50 HIV-positive patients at the Punjab AIDS Control 

Program (PACP) in Lahore supplied blood samples for this study. 

The Ethical Review Board of Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), 

Islamabad, Pakistan, and the Institutional Review Board (IRB) of ASAB, NUST, Islamabad, 

Pakistan, both approved this work. With the collaboration of Punjab AIDS Control Program 

(PACP) in Lahore and its interim equivalent, the NACP (National AIDS Control Program), 

this project was completed. 
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Before blood samples were taken, patients with HIV infection or AIDS gave their explicit, 

informed consent. Blood from the patients was taken in sterile EDTA tubes and processed 

immediately. Prior to the trial, clinical data on the patients, such as their age, gender, plasma 

viral load, and CD4 cell count, were collected. 

Control blood samples were chosen at random from students at the Atta-Ur-Rahman School 

of Applied Biosciences (ASAB), National Institute of Sciences and Technology (NUST), 

Islamabad. Data on each subject's gender and family history of HIV infection were gathered 

to make sure that participants did not go against the inclusion criteria. Each blood sample was 

taken in sterile EDTA tube and immediately processed. 

3.2.3 RNA extraction 

All HIV-positive samples had their RNA extracted at PACP. RBC lysis buffer pH 7.3 (17.98 

g NH4Cl, 2 g KHCO3, 400 μL 0.5 M EDTA in 200 mL total volume) and Solarbio Triquick 

Reagent R1100 were used to extract the RNA. 

To do this, 25 mL of RBC lysis buffer were combined with 5 mL of blood and let to sit at 

room temperature for 10 minutes. Supernatant from the mixture's 10-minute centrifugation at 

600 rcf was discarded. Reconstituted pellet was incubated for five minutes at room 

temperature with 1 mL of lysis buffer. After that, a pellet of white blood cells (WBCs) was 

resuspended in 1 mL of PBS after being centrifuged at 3000 rpm for 2 minutes. The final 

pellet was resuspended in 1 mL of Solarbio Triquick Reagent R1100 after being centrifuged 

once more at 3000 rpm for 2 minutes. At -80 °C, this can be kept in storage indefinitely. 

Following the use of Solarbio Triquick Reagent R1100 and effective WBC extraction, 200 

μL of chloroform was added, and then vortexed for 30 seconds. This mixture was then 

centrifuged at 12000 rcf for 10 minutes at 4 °C after being incubated at -20 °C for 3 minutes. 

500 μL of isopropanol was added after the aqueous phase had been properly transferred to a 
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new microcentrifuge tube. This mixture was inverted numerous times, followed by a 10-

minute incubation period at -20 °C. This mixture was then centrifuged for 10 minutes at 4 °C 

at 12000 rcf. After removing the supernatant, the pellet was washed with 1 mL of 75% 

ethanol. At 4 °C, a centrifuge was run for 2 minutes at 12000 rcf. The supernatant was 

discarded, and before being suspended in nuclease-free water, the final RNA pellet was air 

dried at 4 °C for 10 minutes. Denaturing gel electrophoresis was used to confirm the presence 

of RNA and was carried out at 90 V, 90 mA, and for 50 minutes. 

3.2.4 cDNA synthesis 

Nanodrop was used to measure the amount of extracted RNA, and Thermo Scientific's 

RevertAid First Strand cDNA Synthesis Kit K1622 was used to create cDNA from 1 μg of 

RNA. In a total capacity of 12 μL, 1 μg of RNA and 1 μL of random hexamer are combined 

for this purpose. For five minutes, this mixture was incubated at 65 °C. Then, to this mixture, 

were added 4 μL of 5X buffer, 1 μL of ribolock, 2 μL of 10 mM dNTPs, and 1 μL of RT 

enzyme. For this reaction, the temperature range was 25 °C for 5 minutes, 42 °C for 60 

minutes, and then 70 °C for 5 minutes. Then, a 1:3 dilution of the synthesized cDNA was 

prepared. 

3.2.5 Primer optimization 

Using 2% agarose gel electrophoresis and gradient PCR, the calhm6 and prdx2 primers were 

optimized. Using Zokeyo 2X HLiHRPene PCR Master Mix HPR001 in a final concentration 

of 1X HLiHRPene PCR Master Mix, conventional PCR was carried out using 44.4 ng of 

cDNA, 10 pmol of forward primer, and 10 pmol of reverse primer. The reaction volume was 

up to 25 μL. Gradient PCR was run at 95 °C for 5 minutes of initial denaturation, 35 cycles of 

95 °C for 45 seconds of denaturation, 57 °C to 63 °C for annealing, 72 °C for 45 seconds of 

extension, and 72 °C for 7 minutes of final extension. Finally, 50 minutes of 90 V, 500 mA 

2% agarose gel electrophoresis were performed. 
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3.2.6 Real-time PCR and analysis 

Real-time PCR was used to initially finalize the house-keeping gene before additional gene 

expression research on infected and uninfected samples. Then, each sample was subjected to 

a series of triplicate real-time PCR procedures to determine the Ct values of the house-

keeping gene, capn1, and vcl. In a reaction volume of 20 μL, real-time PCR was carried out 

using Solis BioDyne 5X HOT FIREPol® EvaGreen® qPCR Mix Plus (ROX) at a final 

concentration of 1X, 5 pmol of forward and reverse primers, and 44.44 ng of cDNA. Real-

time PCR was carried out at 95 °C for 12 minutes of initial activation, then 40 cycles of 95 

°C denaturation for 15 seconds, 60 °C annealing for 20 seconds, and 72 °C extension for 20 

seconds. EvaGreen's fluorescence was photographed during the extension stage. 

Following real-time PCR, the gene copy number and fold change for calhm6 and prdx2 were 

determined for each sample. The following formulas were used for copy number: 

∆𝐶𝑡 = 𝐶𝑡(𝑡𝑎𝑟𝑔𝑒𝑡)
− 𝐶𝑡(ℎ𝑜𝑢𝑠𝑒 𝑘𝑒𝑒𝑝𝑖𝑛𝑔)

 

𝐶𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 = 100 × 2−∆𝐶𝑡 

These formulas provide us a relative measurement of how many copies of the target gene 

(calhm6 or prdx2) will be present for every 100 copies of house-keeping genes. 

The average of the Ct values for the infected and uninfected groups were determined 

separately for both genes to determine the fold change. Then, the formulas below were used: 

∆∆𝐶𝑡 = ∆𝐶𝑡(𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑)
− ∆𝐶𝑡(𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑)

 

𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 = 2−∆∆𝐶𝑡 

3.2.7 Statistical analysis 

GraphPad Prism 8.0.1 for Windows, GraphPad Software, San Diego, California, USA, 

www.graphpad.com, was used to conduct the statistical analysis. Using an unpaired t-test, the 
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calhm6 copy number of 30 uninfected and 46 infected samples (4 samples did not show 

expression) was compared. In order to create column graphs, mean with SEM was used. 

Unpaired t-test was also used to compare the prdx2 copy number in 50 infected samples and 

30 uninfected samples. In order to create column graphs, mean with SEM was used. 30 

uninfected samples of calhm6 and prdx2 underwent linear regression analysis, and an XY 

graph was also produced. 46 infected samples of calhm6 and prdx2 underwent linear 

regression analysis as well, and a corresponding XY graph was produced. As 14 samples 

exhibited undetectable viral loads, 32 samples and 36 samples underwent linear regression 

analysis of calhm6 and prdx2, respectively, with log10 viral load, and XY graphs were 

produced, respectively. With 39 samples (11 samples' CD4 counts were unavailable), a linear 

regression analysis of calhm6 and prdx2 with CD4 count was also carried out, and XY graphs 

were produced, respectively. Unpaired t-tests were used to determine the gender distribution 

of uninfected calhm6 (12 males and 18 females) and prdx2 (12 males and 18 females), and 

column graphs (mean with SEM) were produced, respectively. Unpaired t-tests were used to 

determine the gender distribution of the infected calhm6 (30 males, 16 females) and 

prdx2 (33 males, 17 females), and column graphs (mean with SEM) were produced, 

accordingly. 
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Chapter 4 

RESULTS 

4.1 SNP analysis 

4.1.1 Validation of DNA extraction by gel electrophoresis 

DNA extraction was validated using agarose gel electrophoresis to check the DNA genomic 

quality. Unsheared genomic DNA usually gives a thick band at around 23 kb. Fragmentation 

of genomic DNA was observed in patient samples. Gel results are listed in the figure and 

figure. 

 

Figure 2: Confirmation of extraction from control samples on 1% agarose gel 

electrophoresis. M: 1 kb ladder, control samples C1D-C12D. 

 

Figure 3: Confirmation of extraction from patient samples on 1% agarose gel 

electrophoresis. M: 1 kb ladder, HIV patient samples 1D-12D. 
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4.1.2 IL-18 -607C/A, IL-10 -1082A/G, and TGF-β1 -509C/T primer optimization for 

Ta °C determination 

 

Figure 4: Primer optimization of IL-18 -607C/A, IL-10 -1082A/G, and TGF-β1 -509C/T 

on control samples. 2 control samples and 2 different predicted temperatures used for IL-18 

SNP primer set. IL-10 and TGF-β run on 55 °C and 66 °C respectively as predicted 

temperatures. Product size for control fragment and allele specific fragment of IL-18: 301 bp 

and 197 bp, IL-10: 318 bp and 168 bp, TGF-β: 384 bp and 197 bp respectively. M: 50 bp 

ladder. 

4.1.3 Genotyping using SSP PCR and gel electrophoresis 

The participants in the study were divided into two groups. HIV-infected group consisted of 

73 males and 30 females, had a mean age of 31.21±12.78 years, a median CD4+ count of 

372.5 cells/L, and a median viral load of 137,206 IU/ml. The control group had a mean age of 

25.18±8.83 years and consisted of 16 males and 34 females. 

IL-18 -607C/A, IL-10 -1082A/G, and TGF-β1 -509C/T genotyping was done using SSP PCR 

and agarose gel electrophoresis on extracted DNA samples. 

4.1.3.1 Genotyping of IL-18 -607C/A on control and HIV-infected samples using SSP 

PCR 
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Figure 5: IL-18 (rs1946518) polymorphism screening in control and infected samples 

via SSP-PCR. (A) represents control samples. (B) represents infected samples. C represent 

PCR with C allele specific primer and A represents PCR with A allele specific primer. Size 

of control fragment:301 bp and allele specific fragment: 197 bp. M: 50 bp ladder. 

4.1.3.2 Genotyping of IL-10 -1082A/G on control and HIV-infected samples using SSP 

PCR 

In our study, 50 samples of healthy persons and 103 samples of HIV-infected patients were 

analysed for IL-10 -1082A/G polymorphism. 
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Figure 6: IL-10 (rs1800896) polymorphism screening in control and infected samples 

via SSP-PCR. (A) represents control samples. (B) represents infected samples. A represent 

PCR with A allele specific primer and G represents PCR with G allele specific primer. Size 

of control fragment:318 bp and allele specific fragment: 168 bp. M: 50 bp ladder. 

4.1.3.3 Genotyping of TGF-β1 -509C/T on control and HIV-infected samples using SSP 

PCR 
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Figure 7: TGF-β1 (rs1800469) polymorphism screening in control and infected samples 

via SSP-PCR. (A) represents control samples. (B) represents infected samples. A represent 

PCR with A allele specific primer and G represents PCR with G allele specific primer. Size 

of control fragment:318 bp and allele specific fragment: 168 bp. M: 50 bp ladder. 

4.1.4 Statistical analysis 

4.1.4.1 IL-18 -607C/A statistical analysis 

Table 3: Genotypic and allelic frequencies of IL-18 -607C/A polymorphisms. 

Genotypic and Allelic frequencies of IL-18 -607C/A polymorphisms 

Polymorphism Patient frequency Control frequency 

IL-18 -607C/A 

Genotype 

CC 36% (37/103) 34% (17/50) 

AA 2% (2/103) 6% (3/50) 

CA 62% (64/103 60% (30/50) 

Allele 

C 67% (138/206) 64% (64/100) 

A 33% (68/206) 36% (36/100) 
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Table 4: Statistical analysis and genotypic and allelic significance of IL-18 -607C/A. 

Polymorphism HIV+ HIV- Odds 

Ratio 

(OR) 

95% CI p-value Signi

fican

ce 

P<0.

05 

IL-18 -

607C/A 

Genotype 

CC 0.359 0.34 1.0882 0.5349 to 

2.2140 

0.8155  

AA 0.019 0.06 0.3102 0.0501 to 

1.9193 

0.2081  

CA 0.62 0.6 1.0940 0.5477 to 

2.1852 

0.7991  

Allele 

C 0.66 0.64 1.1415 0.6916 to 

1.8841 

0.6046  

A 0.33 0.36 0.8760 0.5308 to 

1.4458 

0.6046  

 

Figure 8 depicts the genotypic distribution of the IL-18 -607C/A polymorphism, whereas 

Figure 9 demonstrates the allelic frequency of the C and A alleles. 
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Figure 8: Genotypic distribution of IL-18 -607C/A in control and HIV groups. 

 

Figure 9: Allelic frequency in % of IL-18 -607C/A in control and HIV group. 

Gender-based distribution data was available for only 62 infected samples. Statistical analysis 

was performed using chi-square test. 
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Figure 10: Genotypic distribution of IL-18 -607C/A for HIV patients in male and female 

groups. 

Due to unavailability of viral load data of all the infected samples, only 59 samples were 

analysed for viral load associations. Statistical analysis was performed using unpaired t-test 

for IL-18 -607C/A CA and CC genotype. No significant results were produced. 
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Figure 11: Viral load in different genotypes of IL-18 -607C/A. 
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61 samples were analysed for CD4 count association with genotypes. Statistical analysis was 

performed using unpaired t-test for IL-18 -607C/A CA and CC genotype. 
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Figure 12: CD4 count in different genotypes of IL-18 -607C/A. 

4.1.4.2 IL-10 -1082A/G statistical analysis 

Table 5: Genotypic and allelic frequencies of IL-10 -1082A/G polymorphisms. 

Genotypic and Allelic frequencies of IL-10 -1082A/G polymorphisms 

Polymorphism Patient frequency Control frequency 

IL-10 -1082A/G 

Genotype 

AA 5% (5/103) 8% (4/50) 

GG 0% (0/103) 8% (4/50) 

AG 95% (98/103) 84% (42/50) 

Allele 

A 52% (108/206) 50% (50/100) 

G 48% (98/206) 50% (50/100) 
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Table 6: Statistical analysis and genotypic and allelic significance of IL-10 -1082A/G. 

Polymorphism HIV+ HIV- Odds 

Ratio 

(OR) 

95% CI p-value Signi

fican

ce 

P<0.

05 

IL-10 -

1082A/G 

Genotype 

AA 0.048 0.08 0.5867 0.1505 to 

2.2876 

0.4425  

GG Δ0 0.08 0.0499 0.0026 to 

0.9464 

0.0459 * 

AG 0.95 0.84 3.7333 1.1536 to 

12.0817 

0.0279 * 

Allele 

A 0.52 0.5 1.1020 0.6833 to 

1.7773 

0.6903  

G 0.47 0.5 0.9074 0.5626 to 

1.4634 

0.6903  

 

Figure 13 depicts the genotypic distribution of the IL-10 -1082A/G polymorphism, whereas 

Figure 14 demonstrates the allelic frequency of the A and G alleles. 
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Figure 13: Genotypic distribution of IL-10 -1082A/G in control and HIV groups. 

 

Figure 14: Allelic frequency in % of IL-10 -1082A/G in control and HIV group. 

IL-10 -1082A/G analysis with respect to gender distribution, viral load and CD4 count was 

not performed because these details were available for only 62, 59, and 61 samples, 



Chapter 4  Results 

43 
 

respectively, and all these samples had only one genotype dominant in infected samples so 

statistical tests were not applied. 

4.1.4.3 TGF-β1 -509C/T statistical analysis 

Table 7: Genotypic and allelic frequencies of TGF-β1 -509C/T polymorphisms. 

Genotypic and Allelic frequencies of TGF-β1 -509C/T polymorphisms 

Polymorphism Patient frequency Control frequency 

TGF-β1 -

509C/T 

Genotype 

CC 23% (24/103) 40% (20/50) 

TT 33% (34/103) 2% (1/50) 

CT 44% (45/103) 58% (29/50) 

Allele 

C 45% (93/206) 69% (69/100) 

T 55% (113/206) 31% (31/100) 

 

Table 8: Statistical analysis and genotypic and allelic significance of TGF-β1 -509C/T. 

Polymorphism HIV+ HIV- Odds 

Ratio 

(OR) 

95% CI p-value Signi

fican

ce 

P<0.

05 

TGF-β1 

-509C/T 

Genotype 

CC 0.23 0.4 0.4557 0.2202 to 

0.9430 

0.034 * 

TT 0.33 0.02 24.1449 3.1964 to 

182.3848 

0.002 ** 

CT 0.43 0.58 0.5618 0.2837 to 0.098  
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1.1127 

Allele 

C 0.45 0.69 0.3698 0.2232 to 

0.6126 

0.0001 *** 

T 0.54 0.31 2.7045 1.6324 to 

4.4807 

0.0001 *** 

 

Figure 15 depicts the genotypic distribution of the TGF-β1 -509C/T polymorphism, whereas 

Figure 16 demonstrates the allelic frequency of the C and T alleles. 

 

Figure 15: Genotypic distribution of TGF-β1 -509C/T in control and HIV groups. 
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Figure 16: Allelic Frequency in % of TGF-β1 -509C/T in control and HIV groups. 

Total number of samples for gender-based distribution was 62. Statistical analysis was 

performed using chi-square test. 

CC TT CT

0

20

40

60

TGF-ß1 -509C/T Gender Distibution

Genotype

F
re

q
u

e
n

c
y

 i
n

 %

M

F

 

Figure 17: Genotypic distribution of TGF-β1 -509C/T for HIV patients in male and 

female groups. 
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TGF-β1 -509C/T analysis was performed using one-way ANOVA. 59 samples were analysed 

for viral load associations. Graphs were generated using mean with SEM. 
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Figure 18: Viral load in different genotypes of TGF-β1 -509C/T. 

61 infected samples were analysed for CD4 count association with genotypes. Analysis was 

performed using one-way ANOVA. Graphs were generated using mean with SEM. 
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Figure 19: Viral load in different genotypes of TGF-β1 -509C/T. 

58 samples were analysed for viral load vs CD4 count correlation. Linear regression analysis 

was performed. 
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Figure 20: Viral load vs CD4 count correlation. 
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4.2 Gene expression analysis 

4.2.1 Primer designing and optimization 

Table 9 contains information about specified primers and their optimum annealing 

temperature. Additionally, Figure 21 shows the gradient PCR results for calhm6 and 

prdx2 after electrophoresis on agarose gel. 

Table 9: Designed primer sequences, GC content, and annealing temperature 

information. 

 
Sequence (5'-3') GC (%) Ta (°C) 

calhm6 

Forward primer CACCCGATGCCTATCTCCAG 60 

60 

Reverse primer TTTGCTGCCACTCTTTCATGC 48 

prdx2 

Forward primer AGACGAGCATGGGGAAGTTTG 52 

60 

Reverse primer GGGCACAAGCTCACTATCCG 60 

gusb 

Forward primer TGGAGCAAGACAGTGGGCT 57.89 

60 

Reverse primer ACCTTAAGTTGGCCCTGGGT 55 

hprt1 

Forward primer CCCTGGCGTCGTGATTAGTG 60 

60 

Reverse primer CGAGCAAGACGTTCAGTCCT 55 

pgk1 

Forward primer CCCACAGCTCCATGGTAGGA 60 

60 

Reverse primer TCTGCAACTTTAGCTCCGCC 55 

ppia 
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Forward primer GCCGAGGAAAACCGTGTACTAT 50 

60 

Reverse primer CTTGTCTGCAAACAGCTCAAAGG 48 

rps18 

Forward primer GGATGGAAAATACAGCCAGGTCC 52 

60 

Reverse primer GAAGTGACGCAGCCCTCTATG 57 

b2m 

Forward primer TTGTCTTTCAGCAAGGACTGGT 45 

60 

Reverse primer GCTTACATGTCTCGATCCCACTT 48 

tbp 

Forward primer AGTGAGGTCGGGCAGGTTC 63 

60 

Reverse primer CCAAGAAACAGTGATGCTGGGT 50 

tfrc 

Forward primer CTCGTGTCCTCCCTTCATCCT 57 

60 

Reverse primer CTGCCACACAGAAGAACCTGC 57 

ywhaz 

Forward primer GACTGGGTCTGGCCCTTAAC 60 

60 

Reverse primer ATCCGATGTCCACAATGTCAAGT 43 

atp5pb 

Forward primer TCACAGGGACGCTAAGATTGC 52 

60 

Reverse primer TTGCCTGCAATACCCCTGGAC 57 

gapdh 

Forward primer CCCACTCCTCCACCTTTGAC 60 

60 

Reverse primer TCCTCTTGTGCTCTTGCTGG 55 
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Figure 21: Results of gradient PCR for calhm6 and prdx2 on gel electrophoresis. Results 

of the calhm6 gradient PCR at 60 °C, and 62 °C, and results of the prdx2 gradient PCR at 57 

°C, 58 °C, and 60 °C to 63 °C. 

Our findings showed that clhm6 and prdx2 could be run over a wide range of Ta, whereas the 

Ta of other house-keeping genes was confirmed using real-time PCR. 

4.2.2 RNA extraction 

50 uninfected samples and 30 uninfected samples were processed for RNA extraction. Figure 

22 displays representative RNA denaturing gels for uninfected and infected samples. 
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Figure 22: Results of RNA denaturing of infected and uninfected samples. (A)  RNA of 

infected samples 1 – 5 and (B) uninfected samples 1 – 5. 

4.2.3 Real-time results and statistical analysis 

Real-time results and additional calculations showed that there was significant difference in 

the expression levels of the calhm6, while no significant difference was seen in 

prdx2 gene between the uninfected and infected groups. The fold changes for calhm6 and 

prdx2 in infected samples were found to be -3.61 and -1.61, respectively, compared to 

uninfected samples. 

Statistical analysis further revealed that gender had no significant impact on calhm6 and 

prdx2 copy number. Figure 23 and Figure 24 showed that there was no association 

among viral load, CD4 count, calhm6, and prdx2. While Figure 25 shows that the expression 

of the calhm6 and prdx2 genes are significantly correlated in the case of uninfected 

individuals, while in case of infection, no correlation was observed. 
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It was observed that the p-value for uninfected individuals was 0.0002, indicating that this 

link was significant. In contrast, the p-value for infected people is 0.9751, showing that there 

is no correlation between calhm6 and prdx2 between infected individuals. 

 

Figure 23: calhm6 gene expression analysis. calhm6 expression based on gender 

distribution, infected and uninfected groups, and its linear regression analysis with viral load 

and CD4 count. 
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Figure 24: prdx2 gene expression analysis. prdx2 expression based on gender distribution, 

infected and uninfected groups, and its linear regression analysis with viral load and CD4 

count. 

 

Figure 25: Analysis of linear regression between calhm6 and prdx2 in samples that were 

both infected and uninfected. 
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Chapter 5 

DISCUSSION 

The global aim of eradicating HIV/AIDS by 2030 necessitates underpinning of multifaceted 

mechanisms and a variety of factors that play a crucial role in this disease. It has been 

observed that most of the polymorphisms are typically located within the introns and 

promoter regions, thereby regulating the expression of certain cytokine genes and affecting 

the binding ability of transcriptional factors. The host factors included in this research were 

chosen due to their possible influence on pathogenicity of HIV infection, their reaction to 

treatment and infection control. Upon evaluating the genetic and allelic distribution of SNPs 

within the study, IL-18 exhibited non-significant results, however IL-10 and TGF-β1 

demonstrated significant results. 

IL-18 is a proinflammatory cytokine that increases HIV replication. SNPs in the promoter 

region of the IL-18 gene alter both the quantitative expression as well as transcriptional 

activity of this cytokine. Sobti et al. found that IL-18 -607CA and CC genotypes were 

associated with a higher level of IL-18 and rapid progression to AIDS in a study including 

500 HIV/AIDS-infected individuals from North India. 15 The AA genotypes corresponds to a 

lower level of IL-18. The C to A transition has been shown to disrupt the binding of CREB 

protein (Giedraitis, He, Huang, & Hillert, 2001). An investigation carried out by Segat et al. 

in Brazilian children infected with HIV also related this polymorphism to differential HIV 

susceptibility (Segat et al., 2006). In current study, the CC and CA genotypes did not differ 

significantly between the case and control population group (P= 0.8155 and 0.7991, 

respectively) neither did the C and A allele frequency (P=0.6046 each). The CC and CA 

genotypes were found in higher number in both the control as well as case group which 

previously have been associated with a rapid progression to AIDS. A larger sample size is 
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needed to justify this claim if whether these genotypes prevail amongst the general Pakistani 

population too.  

The second polymorphism under study was the IL-10 -1082A/G polymorphism. Freitas et al. 

had studied the associations of 5 SNPs with HIV infection and pathogenicity out of which 3 

exhibited significant results (Bonfim Freitas et al., 2015). One of these polymorphisms is -

1082A/G in IL-10 which in theory lowers CD8+ T cells count. IL-10 is a macrophage growth 

inhibiting cytokine also constraining HIV replication in these cells (Kollmann et al., 1996). 

Different   IL-10 genetic variants have exhibited various association to AIDS progression 

such as lower IL-10 serum levels have been linked to a higher risk of rapid progression to 

AIDS while at the same time conferring protection in other groups such as a study carried out 

by Winkler et al. showed that a transition from A>C at position -592 within the IL-10 

promoter was linked to a slower progression to AIDS (Shin et al., 2000). Naicker et al. found 

that the   AA and AG genotypes at position -1082 conferred protection by enhancing the 

immune response of HIV specific CD8+ T-cells (Naicker et al., 2012). In the present study, 

an equal number of AA genotype indicate that its frequency did not differ significantly 

between the case and control population (P=0.4425) as well as the allele frequency of A and 

G was non-significant occurring at almost equal frequencies (P=0.6903). However, AG 

genotype at -1082 position has shown to increase susceptibility towards HIV infection with 

P=0.0279. Surprisingly, the GG genotypes which is associated with a rapid progression to 

AIDS was found within the control population with P=0.0459.  

TGF-β1 is recognized as a CTLA-4 stimulant and its expression is correlated to progression 

markers, and IL-2 inhibition (Blobe, Schiemann, & Lodish, 2000). The 509C > T variant is 

located within a YY1 consensus binding site, and the 509T allele has been associated with 

elevated plasma levels of TGF-β1*.In HIV infected people, CTLA-4 positive T-regulatory 

cells are amplified triggering virus related immune dysfunction (Andersson et al., 2005). The 
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study suggested T allele’s likely association with a greater HIV susceptibility which can 

partially be described by TGF-β1’s linkage to increased expression of the HIV coreceptors 

CCR5 and CXCR4, vital for viral entry (Riley et al., 2000). In this study, the TT genotype 

differed significantly between the control and case group (P=0.002) with a higher TT 

genotype in HIV patients being linked to a higher level of TGF-β1. Similarly, T allele at this 

position also showed significant results with P=0.0001 suggesting a strong linkage to HIV 

susceptibility. However, CC genotype and C allele also showed significant difference 

between control and case group (P=0.034 and 0.0001, respectively) with a higher CC 

genotype and C allele in the control group hence suggesting their protective role against HIV 

susceptibility. 

The genetic variability of cytokines in HIV-1-infected individuals in Pakistan and their 

impact on disease development are poorly understood. Therefore, this research will help to 

assess the prevalence of these polymorphisms and their impact on people's vulnerability to 

HIV infection. 

The biological modification of the immune system has emerged during the past several years 

as a therapeutic option in medicine. We examined putative immune mediators in HIV patients 

while emphasising their significance as host factors that may help us better understand the 

biological complexity of HIV pathogenesis. 

FAM26F is a newly identified immune-regulating protein. Unknown are FAM26F's role and 

modulatory mechanisms. Co-immunoprecipitation and immunofluorescence were employed 

to discover FAM26F's interaction partners and cellular process. Calmodulin-like protein 5, 

Calpain-1 catalytic subunit, Peroxiredoxin-2, Vinculin, Protein S100-A7, and Thioredoxin 

(Trx) were tested for co-localization with FAM26F. FAM26F interacts substantially with Trx 

and Peroxiredoxin-2 (Malik et al., 2020). 
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FAM26F in SIV infections has revealed that its pre-infection levels are inversely correlated 

to viral load (A. Javed et al., 2016). It was also seen in HBV infections, that FAM26F 

expression was significantly downregulated (Jabeen et al., 2021). Our results further endorse 

this previous literature, as it is demonstrated in our study that calhm6 is significantly 

downregulated in case of HIV expression. 

PRDX2 has previously shown overexpression in case of HIV exposed-uninfected individuals 

(Peretz, Cameron, Sékaly, & AIDS, 2012). In our study, it was also demonstrated that prdx2 

expression was decreased non-significantly in case of HIV infections.  
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