
 

Machine Learning Models to Probe the 

CYP3A4 Mediated Drug Metabolic Profiles 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

By 

Varda Mian 

MS BI-5 00000359057 

Supervised By: 

Dr. Yusra Sajid Kiani 

 

 

School of Interdisciplinary Engineering and Sciences (SINES) 

National University of Sciences and Technology (NUST) 

Islamabad, Pakistan. 

October 2022 



 

Machine Learning Models to Probe the CYP3A4 

Mediated Drug Metabolic Profiles 
 

A thesis submitted in partial fulfilment of the requirement for the degree 

of Master’s in Bioinformatics 

 

 

 

 

 

 

 

 

 

 

 

 

By 

Varda Mian 

MS BI-5 00000359057 

Supervised By: 

Dr. Yusra Sajid Kiani 

 

 

School of Interdisciplinary Engineering and Sciences (SINES) 

National University of Sciences and Technology (NUST) 

Islamabad, Pakistan. 

October 2022 



 

Annex A to NUST Letter No. 

0972/102/Exams/Thesis-Cert 

dated 23 Dec 16.  

THESIS ACCEPTANCE CERTIFICATE 

 

Certified that final copy of MS/MPhil thesis written by Ms.                Varda Mian Registration 

No.       00000359057 of __SINES___ has been vetted by undersigned, found complete in all 

aspects as per NUST Statutes/Regulations, is free of plagiarism, errors, and mistakes and is 

accepted as partial fulfillment for award of MS/MPhil degree. It is further certified that necessary 

amendments as pointed out by GEC members of the scholar have also been incorporated in the 

said thesis.  

 

Signature with stamp: ___________________________ 

Name of Supervisor:                      Dr. Yusra Sajid Kiani 

Date: ________________________________________ 

 

 

Signature of HoD with stamp: _____________________ 

Date: ________________________________________ 

 

 

Countersign by 

Signature (Dean/Principal): ________________ 

Date: __________________________________ 

  



 

Dedication 

 

I dedicate this work to my parents, for their endless love, support, and 

encouragement. I also dedicate this thesis to my beloved husband, Dr. Hashim 

Naeem, without whom this would not have been possible. 

  



 

Certificate of Originality 

 

I hereby declare that the research work presented in this thesis has been generated 

by me as a result of my own research work. Moreover, none of its contents are 

plagiarized or submitted for any kind of assessment or higher degree. I have 

acknowledged and referenced all the main sources of help in this work. 

 

 

_____________________ 

Varda Mian 

NUST00000359057-MSBI-5 

  



 

ACKNOWLEDGMENT 

 

First and foremost, I would like to praise and thank Allah the Almighty, the Most Gracious, and 

the Most Merciful for giving me the strength and courage to complete this thesis. 

I would like to express my gratitude and sincere thanks to Dr. Yusra Sajid Kiani and Dr. Ishrat 

Jabeen, this research would not have been possible without their constant support and guidance, 

and for that I am extremely grateful. 

I would like to acknowledge my sister, Hadiya Mian, for her readily available help whenever I 

needed it, and my husband, Dr. Hashim Naeem, for his support throughout this whole endeavor. 

A huge thanks is owed to my friends, especially Fatima Ahmed, for their moral support, 

encouragement, and help in the completion of this degree.  

Last but not the least, I would like to acknowledge School of Interdisciplinary Engineering and 

Sciences for providing the infrastructure that made this research possible.  



 

Table of Contents 

List of Abbreviations ..................................................................................................................... i 

List of Figures ............................................................................................................................... iii 

List of Tables ..................................................................................................................................v 

Abstract ......................................................................................................................................... vi 

Chapter 1: Introduction ................................................................................................................1 

1.1 Drug Discovery ......................................................................................................................1 

1.2 Why Drugs Fail ......................................................................................................................4 

1.3 Drug Metabolism ....................................................................................................................4 

1.4 Cytochrome P450 in Drug Metabolism .................................................................................6 

1.5 Cytochrome P450 3A4 ...........................................................................................................8 

1.6 Drug-Drug Interactions ..........................................................................................................9 

1.7 Problem Statement and Proposed Solution ..........................................................................11 

1.8 Objectives .............................................................................................................................11 

Chapter 2: Literature Review .....................................................................................................12 

2.1 Computational Techniques ...................................................................................................12 

2.1.1 Structure Based Approaches ..........................................................................................12 

2.1.1.1 Molecular Docking ................................................................................................12 

2.1.2.2 Molecular Dynamic Simulations ...........................................................................13 

2.1.2 Ligand Based Approaches .............................................................................................15 

2.1.2.1 QSAR .....................................................................................................................15 

2.1.2.2 Pharmacophore Modeling ......................................................................................16 

2.2 Machine Learning Techniques .............................................................................................17 

2.2.1 Support Vector Machine................................................................................................17 

2.2.2 Decision Trees ...............................................................................................................18 



 

2.2.3 Random Forest...............................................................................................................18 

2.2.4 K-Nearest Neighbor .......................................................................................................19 

2.2.5 Logistic Regression .......................................................................................................19 

Chapter 3: Methodology..............................................................................................................25 

3.1 Dataset Curation ...................................................................................................................25 

3.1.1 ChEmbl CYP3A4 Dataset .............................................................................................25 

3.1.2 PubChem CYP3A4 Dataset ...........................................................................................25 

3.1.3 Dataset Refining ............................................................................................................26 

3.1.4 Class Label Application ................................................................................................26 

3.2 Descriptor Generation ..........................................................................................................27 

3.2.1 Descriptor Refining .......................................................................................................27 

3.3 Feature Engineering .............................................................................................................28 

3.4 Feature Elimination ..............................................................................................................28 

3.5 Splitting Data ........................................................................................................................29 

3.6 Machine Learning Models ...................................................................................................30 

3.6.1 Logistic Regression .......................................................................................................30 

3.6.2 Support Vector Machines ..............................................................................................31 

3.6.3 Decision Tree.................................................................................................................31 

3.6.4 Random Forest...............................................................................................................31 

3.6.5 Multilayer Perceptron ....................................................................................................32 

3.7 Model Performance Evaluation ............................................................................................34 

3.7.1 Classification Accuracy .................................................................................................34 

3.7.2 Classification Error ........................................................................................................34 

3.7.3 Specificity ......................................................................................................................34 

3.7.4 Sensitivity ......................................................................................................................35 



 

3.7.5 Precision ........................................................................................................................35 

3.7.6 False Positive Rate ........................................................................................................35 

3.7.7 AUC ROC .....................................................................................................................35 

3.7.8 Mathew’s Correlation Coefficient .................................................................................35 

3.8 K-Fold Cross Validation ......................................................................................................36 

Chapter 4: Results........................................................................................................................37 

4.1 Feature Importance ...............................................................................................................37 

4.2 Machine Learning Models ...................................................................................................40 

4.2.1 Logistic Regression .......................................................................................................40 

4.2.1.1 Model Performance for All Descriptors ................................................................40 

4.2.1.2 Model Performance for 20 Descriptors  .................................................................43 

4.2.2 Support Vector Machine................................................................................................45 

4.2.2.1 Model Performance for All Descriptors ................................................................45 

4.2.2.2 Model Performance for 20 Descriptors ..................................................................47 

4.2.3 Decision Tree.................................................................................................................49 

4.2.3.1 Model Performance for All Descriptors ................................................................49 

4.2.3.2 Model Performance for 20 Descriptors ..................................................................52 

4.2.3 Random Forest...............................................................................................................55 

4.2.3.1 Model Performance for All Descriptors ................................................................55 

4.2.3.2 Model Performance for 20 Descriptors ..................................................................57 

4.2.3 Multilayer Perceptron ....................................................................................................59 

4.2.4.1 Model Performance for All Descriptors ................................................................59 

4.2.4.2 Model Performance for 20 Descriptors ..................................................................61 

Chapter 5: Discussion ..................................................................................................................65 

Chapter 6: Conclusion .................................................................................................................69 



 

References .....................................................................................................................................71



i | P a g e  

 

List of Abbreviations 

ADME Absorption, Distribution, Metabolism, Excretion 

ADR Adverse Drug Reaction 

ANN Artificial Neural Network 

AUC Area Under the Curve 

CCR Corrected Classification Rate 

CNS Central Nervous System 

CYP Cytochrome P450 

DDI Drug-drug Interactions 

DNN Deep Neural Network 

DT Decision Tree 

FCFD Functional-Class Fingerprint Descriptors  

FN False Negative 

FP  False Positive  

GALAS Global, Adjusted Locally According to Similarity 

GOLD Genetic Optimization for Ligand Docking 

GST Glutathione S-Transferase  

IC50 Inhibitory Potency 

IG Information Gain 

kNN K-Nearest Neighbor 

MCC Mathew's Correlation Coefficient 

MD Molecular Dynamic 

MLP Multilayer Perceptron 

MSA  Multiple Sequence Alignment 

NB Naïve Bayesian  

NDA New Drug Application 

NSCLC Non-Small Cell Lung Cancer 

QSAR Quantitative Structure and Activity Relationship  

RF Random Forest 

ROC Receiver Operating Characteristic  



ii | P a g e  

 

RP Recursive Partitioning 

SAR Structure and Activity Relationship  

SE Sensitivity 

SP Specificity 

SULT Sulfotransferases  

SVM Support Vector Machine 

TN True Negative 

TP True Positive  

UGT Glucuronosyltransferase  

 

  



iii | P a g e  

 

List of Figures 

Figure 1. Drug Development Process Overview ............................................................................ 3 

Figure 2. Contribution of Enzymes to Metabolism of Marketed Drugs ......................................... 6 

Figure 3. Distribution of Actives and Inactives in CYP3A4 Data ................................................ 27 

Figure 4. Data Before Scaling ....................................................................................................... 28 

Figure 5. Data After Scaling ......................................................................................................... 28 

Figure 6. Distribution of Training and Testing Data .................................................................... 29 

Figure 7. Effect of Varying C parameter on SVM Margins ......................................................... 32 

Figure 8. Example Multilayer Perceptron ..................................................................................... 33 

Figure 9. K Fold Cross Validation Visualization.......................................................................... 36 

Figure 10. Descriptor Importance ................................................................................................. 40 

Figure 11. Logistic Regression Confusion Matrix: 1179 Descriptor Set...................................... 42 

Figure 12. Logistic Regression ROC: 1179 Descriptor Set .......................................................... 43 

Figure 13. Logistic Regression Confusion Matrix for 20 Descriptors.......................................... 45 

Figure 14. Logistic Regression ROC: 20 Descriptor Set .............................................................. 45 

Figure 15. SVM ROC: 1179 Descriptor Set ................................................................................. 47 

Figure 16. SVM Confusion Matrix: 1179 Descriptor Set ............................................................. 48 

Figure 17. SVM Confusion Matrix: 20 Descriptor Set ................................................................. 49 

Figure 18. SVM ROC: 20 Descriptor Set ..................................................................................... 50 

Figure 19. Decision Tree Confusion Matrix: 1179 Descriptor Set ............................................... 51 

Figure 20. Decision Tree: 1179 Descriptor Se.............................................................................. 51 

Figure 21. Decision Tree ROC: 1179 Descriptor Set ................................................................... 52 

Figure 22. Decision Tree Confusion Matrix: 20 Descriptor Set ................................................... 53 

Figure 23. Decision Tree: 20 Descriptor Set ................................................................................ 54 

Figure 24. Decision Tree ROC: 20 Descriptor Set ....................................................................... 55 

Figure 25. Random Forest Confusion Matrix: 1179 Descriptors ................................................. 56 

Figure 26. Random Forest ROC: 1179 Descriptors ...................................................................... 57 

Figure 27. Random Forest Confusion Matrix: 20 Descriptor Set ................................................. 58 

Figure 28. Random Forest ROC: 20 Descriptor Set ..................................................................... 58 

Figure 29. MLP Confusion Matrix: 1179 Descriptor Set ............................................................. 60 

https://d.docs.live.net/67899ae4bec7d1b6/Documents/Varda%20Thesis%20FINAL%20-%201.docx#_Toc118123030


iv | P a g e  

 

Figure 30. MLP ROC: 1179 Descriptor Set.................................................................................. 60 

Figure 31. MLP Confusion Matrix: 20 Descriptor Set ................................................................. 62 

Figure 32. MLP ROC: 20 Descriptor Set...................................................................................... 62 

 

  



v | P a g e  

 

List of Tables 

Table 1. Summary of CYP Isoforms............................................................................................... 8 

Table 2. Assessment of Machine Learning Models for CYP3A4 Inhibitors in Literature ........... 20 

Table 3. Descriptors used in Refined Descriptor Subset .............................................................. 38 

Table 4. Descriptor Type and Count ............................................................................................. 40 

Table 5. Logistic Regression Model Evaluation: 1179 Descriptor Set ......................................... 41 

Table 6. Logistic Regression Coefficients 1179 Descriptor Set ................................................... 43 

Table 7. Logistic Regression Model Evaluation: 20 Descriptor Set ............................................. 44 

Table 8. Logistic Regression Coefficients: 20 Descriptor Set ...................................................... 46 

Table 9. SVM Model Evaluation: 1179 Descriptor Set ................................................................ 47 

Table 10. SVM Model Evaluation: 20 Descriptor Set .................................................................. 49 

Table 11. Decision Tree Model Evaluation: 1179 Descriptor Set ................................................ 51 

Table 12. Decision Tree Model Evaluation: 20 Descriptor Set .................................................... 53 

Table 13. Random Forest Model Evaluation: 1179 Descriptor Set .............................................. 56 

Table 14. Random Forest Model Evaluation: 20 Descriptor Set .................................................. 57 

Table 15. MLP Model Evaluation: 1179 Descriptor Set .............................................................. 59 

Table 16. MLP Model Evaluation: 20 Descriptor Set .................................................................. 61 

Table 17. Model Performance Evaluation for all Models ............................................................. 64 



  

vi | P a g e  

 

Abstract 

Cytochrome P450s (CYP) are a diverse group of Heme-containing proteins found in all kingdoms 

of life, that participate in vital life processes including oxidization of endogenous and exogenous 

compounds. Of the 57 CYP isoforms, CYP3A4 is the most abundant isoform in humans. CYP3A4 

is highly promiscuous in substrate specificity and allows the accommodation of compounds 

diverse in size and structure, which leads to CYP3A4-mediated metabolism of up to 50% of all 

marketed drugs. However, the ability of CYP3A4 to adjust two or more similar or different 

molecules may also lead to adverse drug-drug interactions (DDIs), as the inhibition or induction 

of CYP3A4 by one drug can lead to adverse effects in the in vivo metabolism of other drugs. 

Pharmacokinetic issues due to the inhibition or induction of CYP isozymes are accredited for the 

failure of nearly 80% of drugs during development. Therefore, it is important to analyze 

cytochrome interactions before preclinical trials to ensure the success during the drug development 

process. The current study aims to utilize supervised machine learning techniques and molecular 

modeling strategies on publicly available CYP3A4 inhibition data to predict CYP inhibition 

through the development of a predictive model and the identification of 3D features responsible 

for CYP3A4 inhibition. Five models were built to predict CYP3A4 Inhibition on two refined 

different datasets of CYP3A4 inhibitors: Support Vector Machine, Logistic Regression, Decision 

Tree, Random Forest, and Multilayer Perceptron. The Support Vector Machine and Logistic 

Regression models built on the more refined dataset outperformed all others, with accuracies of 

98% and 96% indicating superior performance. Therefore, these two models built on the chosen 

hyperparameters are suitable for the prediction of CYP3A4 inhibition in new chemical entities and 

can assist in the drug developmental process. Additionally, all models in the more refined dataset 

resulted in accuracies over 80% indicating the stabilities of the models on the data used and 

highlighting the importance of  the  refined  features and data refining in general over the use of 

noisy raw data. The results draw attention to the importance of increased lipophilicity, vander 

waals surface area on pharmacophoric points, number of aromatic and rotatable bonds, percentage 

of Nitrogen atoms, topological distances between Nitrogen and Oxygen, and Nitrogen and Sulfur, 

and overall negative charge on a molecule  in CYP3A4 inhibition.  Thus, this study assists in 

understanding the key CYP3A4 interactions, prediction of CYP3A4 inhibition and the 

optimization of the toxicological profiles of new chemical entities.
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1: Introduction 

1.1 Drug Discovery  

Drug discovery is an interdisciplinary process which combines biology, chemistry, and 

pharmacology to identify potential new medicines1. The need for drug discovery and development 

begins with disease prevalence and medical necessity. The design and discovery of new drugs is 

becoming increasingly essential as new diseases are discovered. The COVID19 pandemic being a 

stark reminder of the possibility that new diseases can still arise, and the disastrous consequences 

of not having treatment readily available2. Aside from this, drug resistance is also a major cause 

for the need of new drugs, the improper use and over prescription of antibiotics can result in the 

development of drug resistance in bacteria, resulting in staggering death tolls and rendering the 

need for new antibiotics to counteract the drug resistance clear. In a similar vein, new drugs are 

also needed to contend with drug resistance as a result of viruses and parasites becoming immune 

to currently available treatments, the multiple drug resistance of the Plasmodium parasites 

resulting in reduced efficacy of currently available malaria treatment being a notable example3. 

Research and understanding of disease pathways and metabolism are increasing year by year, as a 

result we are now equipped with the tools needed to treat and potentially even cure diseases that 

were previously thought to be untreatable or unpreventable. The capacity to treat or improve the 

treatment of such conditions is where the future of drug discovery has the biggest potential.  

Drug discovery begins with the identification of a potential biological target involved in a 

biological pathway that is believed to be behaving dysfunctional in people with a specific disease, 

and after years of tests and trials, ultimately results in the introduction of a new drug into the 

market. On average it takes between 10-15 years for new drug compounds to be approved, costing 

nearly $1-2 billion. Therefore, it is a huge achievement for a drug to pass clinical trials, however 

90% of drug candidates fail during clinical studies with an even higher failure rate if preclinical 

failures are included4. Of the limited number of compounds that enter clinical trials, only 1 in 10 

will even reach the market5. With such a high rate of failure, it is safe to assume that most candidate 

compounds will fail before reaching the market, and for those that do succeed, the duration and 

costs are extremely high making the process of drug design and discovery and extremely process. 

The drug development process, summarized in Figure 1, is a 5-stage process consisting of 1. 

Drug Discovery, 2. Preclinical Development, 3. Clinical Phases, 4. FDA Review and 5. Post 
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Marketing Monitoring. During the drug discovery phase of drug design, the target is identified 

which is usually a nucleic acid sequence or protein that is involved in gene regulation or 

intracellular signaling of a pathway that plays a significant role in a disease. This is done through 

intensive mining of the available biomedical data. The target is then validated to ensure that it 

indeed involved in the disease mechanism and elicits a biological response upon testing in vivo 

and in vitro that can be measured and regulated6. This is arguable the most critical part of drug 

design, as many of the reasons why drugs fail in the later stages of drug design, including lack of 

safety and efficacy, can ultimately be traced back to poor target validation7. Once the target is 

validated, a series of processes are undertaken in order to identify a naturally occurring or synthetic 

small molecule, known as a lead, which interacts with the previously selected target. The lead 

compound undergoes multiple tests, screening procedures, and optimization to ensure satisfactory 

absorption, distribution, metabolism, and excretion (ADME) results before it is ready for animal 

testing8.  

The next phase of drug development is the preclinical phase which determines if a drug is safe 

for human trials by first performing extensive testing on animal models. Preclinical trials test the 

drug’s efficacy, toxicity and pharmacokinetic in vivo and in vitro with unrestricted dosages. The 

drug then enters clinical development which take place using human subjects and consists of the 

following phases: 

1. Phase 1: Safety, tolerability, pharmacodynamic and pharmacokinetic effects of the drug 

are tests on up to 100 healthy volunteers. Safe dosage is also determined during this step. 

2. Phase 2: Effectiveness of the drug on up to 500 patients with the target disease is tested. 

3. Phase 3: Hypothesis of efficacy and adverse effects determined in large scale testing on up 

to 5,000 patients with the target disease. 

4. Phase 4: Studies conducted after FDA approval to monitor the adverse effects of the drug 

post marketing5,9.  

After the clinical trials have been completed and delivered positive outcomes, the data is 

compiled in a New Drug Application (NDA) and submitted to the FDA for review. The NDA 

must prove the safety and efficacy of the drug, and then may be accepted or rejected by the 

FDA. If a drug is rejected, the applicant is given a reason as to why, as well as what information 
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would be required for the application to be accepted. Once an application is approved, it is 

ready for marketing10.  

The strict regulation of the drug development process has ensured therapeutic safety in 

populations taking the drugs, but this also means that very few of the compounds that enter the 

trials reach FDA approval. In fact, of 5,000-10,000 compounds that enter preclinical studies, 

only 5 reach clinical trials and only 1 reaches approval for marketing9,11. This begs the question 

of why the drug failure rate is so low and is an area of interest for those in the drug development 

and pharmaceutical industries. 

 

Figure 1. Drug Development Process Overview, adapted from Moein et al.12 and Reda et al.13 
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1.1 Why Drugs Fail 

Given the high expenditure of research and development in drug development, it is 

important to understand the reasons for drug failure so as to avoid failures in the later stages. 

Premature failure of drugs is preferable over late-stage drug failure as the costs of development 

increase exponentially as the drug moves further along the development cycle. Lack of efficacy is 

the main reason for drug failure in preliminary stages. While this implies that efficacy should be 

well established by the time a drug reaches clinical trials, research has shown that lack thereof is 

still a major contributing factor for late-stage failures14. The staggeringly high attrition rates in 

preclinical and clinical development are contributed to lack of safety, efficacy, and poor 

pharmacokinetics with pharmacokinetics being a major contributing factor resulting in 39% of 

failures in drug design15. Identifying these factors early on could aid in reducing both the cost and 

time required to get a new drug into the market. Since ADME properties play a role in both toxicity 

and efficacy, they are crucial in differentiating successful drugs from those likely to fail16. In fact, 

recent studies by Palmer et al. have shown that the incorporation of strong pharmacokinetic and 

pharmacodynamic principles leads to higher successes in antimicrobial drug development17.  

1.2 Drug Metabolism 

Improvements can be made in the drug development process by focusing on methods that 

will reduce the number of failures during the preclinical and clinical trials. The best way to do this 

is to direct more effort towards determining early on if a drug candidate has all the required 

properties and characteristics of a drug. Applying more focus on metabolites studies during the 

initial stages of drug design is key in determining the success of a drug as it plays a role in tethering 

together the various disciplines of drug development including drug discovery, drug safety, clinical 

development, and pharmaceutical development, as well as project management and regulatory 

affairs18. Moreover, dose regimen designs also depend on metabolic studies. Defined as “the 

biotransformation of exogenous compounds by living organisms, usually through specialized 

enzymatic systems”19, drug metabolism is essentially the modification of a drug substrate to make 

it more polar and thus assist its removal from the body, thus avoiding the undesirable side-effects 

associated with the accumulation of drugs within the body. The metabolism of majority of 

xenobiotics including orally administered drugs takes in two stages. During stage 1, 
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functionalization occurs, during which a functional moiety is attached to the drug substrate, 

resulting in a more water-soluble substrate. in the enhance water-solubility of the xenobiotic. Next 

is stage 2 of metabolism, during which conjugation reactions occur, involving the addition of a 

molecule, usually sulfates or glucuronic acid molecules, to the drug substrate leading to the 

formation of an intermediate. Conjugation results in the increased solubility of the drug molecules 

leading to their enhanced removal from the body20.  

In most cases, metabolism leads to the inactivation of a drug, however on some occasions 

it leads to the formation of an active metabolite which is the major circulating active agent solely 

or partially responsible for pharmacological response21,22. On other occasions the metabolism of a 

drug may result in a toxic metabolite that interacts with cells by covalently binding to cellular 

constituents, stimulating peroxidation, and decomposing cellular lipids23 leading to the initiation 

or aggravation of a variety of toxicities including hepatotoxicity, nephrotoxicity, and pulmonary 

toxicities24. Another aspect to take into consideration are the major liabilities associated with drug-

drug interactions (DDIs) caused by enzyme inhibition or induction of major metabolizing 

enzymes22.  Hence, having a good understanding of the metabolism of new chemical entities is 

needed during the development of new drugs.  

Studies have shown that increased effort in applying pharmacokinetic principles during the 

drug design process has decreased attrition from 40% in 1990 to 10% in 200018. Extensive research 

has shown that phase 1 metabolizing enzymes, especially Cytochrome P450s (CYPs) mediate 

majority of drug activation, while phase 2 metabolic enzymes like glucuronosyltransferase 

(UGTs), glutathione S-transferase (GSTs) and sulfotransferases (SULT) play a smaller role24, as 

summarized in Figure 2. 
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Figure 2. Contribution of Enzymes to Metabolism of Marketed Drugs, adapted from Williams et 

al.25 

  

1.3 Cytochrome P450 in Drug Metabolism 

The CYPs are a superfamily of heme containing enzymes embedded mainly in the lipid bilayer 

of the endoplasmic reticulum, mitochondria of hepatocytes and in the intestines26. Found in almost 

all organisms, CYPs are in involved in the metabolism of a wide variety of drugs and xenobiotics 

including drugs, chemicals, pollutants, steroids, bile and fatty acids, vitamin D and other natural 

products. These phase 1 metabolic enzymes catalyze a range of oxidative and reductive 

biotransformation including carbon hydroxylation, heteroatom oxidation, bond oxidation, 

hydrocarbon desaturation, and halocarbon dehalogenation27. The CYP monooxygenases reactions 

typically involve the insertion an oxygen atom from dioxygen into a C–H bond to give the 

corresponding alcohol, while the remaining oxygen atom is reduced to water, depicted as follows:  

NADPH + H+ + O2 + RH → NADP+ + H2O + ROH 

Here, RH represents an oxidizable drug substrate and ROH is the hydroxylated metabolite, and 

CYP catalyzes the overall reaction. The two electrons required in the process are provided by 

NADH or NADPH cofactors28.  
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In mammals, 57 CYP genes are present that are divided into 18 families and 42 subfamilies 

based on amino acid sequence homology29. Seven of these 57 isoforms including CYP1A2, 

CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 are responsible for the 

metabolism of more than 90% of all currently used clinical use drugs30. Table 1 displays the role 

played of each of these isoforms. The requirement to be considered a member of the CYP family 

is at least 40% homology to another member of the family, while >55% homology is required for 

members in the same subfamily31. CYPs are classified into 2 categories based on their intracellular 

location; 1. microsomal cytochrome P450, which are present mainly in the microsomes of liver 

cells and represents about 14% of the microsomal fraction of liver cells, and 2. mitochondrial 

cytochrome P450, which are present in mitochondria of many tissues but are particularly abundant 

in the liver and other tissues such as adrenal cortex, testis, ovary, placenta, and kidney. CYPs have 

a helix-rich secondary structure that encloses the active site, the heme cofactor is located in the 

bottom area of the active site with the iron tethered to a cysteine thiolate32. The tertiary structure 

of CYP enzymes is highly conserved with a characteristic protein fold shared among the 

superfamily, however the only amino acid residue that is completely conserved is the proximal 

cysteine ligand of the haem group33. However, these isoenzymes differ in pharmacogenetics, 

substrate specificities, inducibility, and susceptibility to inhibition by competing drugs34.  

Since so many medications are metabolized by such a small group of enzymes, the risk of 

DDIs, adverse drug reactions (ADRs) and decreased drug efficacy due to CYP inhibition or 

induction remain high. DDIs may occur when the intake of one drug inhibits the CYP-mediated 

metabolism of another drug, usually in a dose dependent manner, resulting in the decrease in 

metabolism and possible accumulation of the other drug, which may lead to toxicity34. Therefore, 

proper screening of drugs against CYP isoforms is essential in drug design, and lack thereof can 

result in serious ADRs and DDIs. Therefore, it is of vital importance for the for the pharmaceutical 

industry and professionals to identify the likely effect of a drug candidate in terms of interactions 

with any CYP isoform well before time to avoid the losses associated with drug developmental 

failures at the later stages. This aspect is crucial to determine whether the drug will be worth the 

time, money, and resources it takes to develop it, and alludes to the lives that can be saved when 

proper CYP screening protocols are applied. 
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Table 1. Summary of CYP Isoforms 

CYP Isoform Role in Metabolism of 

Drugs (percentage) 

Location 

CYP1A2 2% Liver 

CYP2E1 4% Liver, Brain, etc. 

CYP2B6 4% Liver 

CYP2C9 10% Liver 

CYP2C19 10% Liver 

CYP2D6 28% Liver, Central Nervous 

System (CNS) 

CYP3A4 47% Liver, Small Intestine, etc. 

 

1.4 Cytochrome P450 3A4 

As far as the CYP450 isoforms are concerned the CYP3A4 enzyme is the most widely 

expressed and is typically found in the liver and gastrointestinal tract. The human CYP3A4 protein 

is encoded by the CYP3A4 gene, which is part of the Cytochrome P450 genes positioned at 

chromosome 7q2235. Its structure contains a heme group in the active site and consists of a small 

β-strand N terminal and a larger α-helical C-terminal domain and adopts the typical fold of the 

cytochrome P450 superfamily36. An important feature of CYP3A4 is its promiscuous substrate 

specificity which allows it to accommodate and oxidize a wide array of substrates with many 

different structural features29. This characteristic of CYP3A4 can be attributed to its large substrate 

binding cavity, which is studied to be open, flexible, and able to accommodate volumes ranging 

from 1173 to 2862 cubic angstroms (Å3), and accounts for its importance in the metabolism of 

approximately 50% of all clinically used drugs.An interesting feature of the CYP3A4 crystal 

structure is the cluster of seven phenylalanine residues above the active site which form forming a 

hydrophobic core, reducing the active site to 520 Å 3. This is surprising given the generous size of 

some CYP3A4 inhibitors; however, mutagenesis studies show that these residues play a role in 

substrate metabolism and can be relocated or displaced to accommodate the metabolism of larger 

substrates36,37. 
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This, as well as its ability to accommodate one large substrate or multiple smaller substrates 

of the same or different types makes CYP3A4 of practical interest in the pharmaceutical industry 

as well as in the conventional drug design process. The wide array of drugs metabolized by 

CYP3A4 include benzodiazepines, calcium channel blockers, cyclosporine, macrolide antibiotics, 

opioids, several statins, and it also contributes to the metabolism of steroid hormones38,39, making 

CYP3A4 a key player in drug metabolism as it is sensitive to changes in CYP3A4 activity and 

expression level. 

In addition, CYP3A4 is also inhibited by a wide range of xenobiotics, such as 

erythromycin, grapefruit juice, ketconazole, and HIV protease inhibitors, all of which have been 

proven to react with other medications and result is serious adverse effects3940. Among inhibitors 

like these, there are a few high energy binding interactions that tend to occur, for example high 

affinity binders tend to have one or more aromatic rings capable of forming numerous pi–pi 

stacking interactions with active phenylalanine residues, be lipophilic, and make polar interactions 

with D76, R106, S119 and R37238. However, despite this knowledge, predicting DDIs due to 

CYP3A4 is still relatively difficult due to the flexible nature of its binding pocket and the diversity 

of its ligand interactions. 

Since many pharmaceuticals have narrow therapeutic indices and are CYP3A4 substrates, 

their dose needs to be adjusted for optimal therapy; preferably their concentrations are monitored 

continuously to prevent adverse drug reactions41. Interactions between simultaneously 

administered drugs may affect drug clearance and the outcome of drug therapies and are therefore 

also of major importance for the pharmaceutical industry.  

1.5 Drug-Drug Interactions 

Drug-drug interactions are becoming an increasing issue in healthcare. Around 20-40% of 

DDIs are due to polypharmacy, as older adults tend to consume multiple drugs to treat a greater 

number of comorbidities. However, this use of multiple drugs and the resultant DDIs are 

responsible for the induction of adverse drug reactions and decreased efficacy of therapeutics. 

Changes in physiology, pharmacokinetics and pharmacodynamics in elderly patients also make 

them prone to altered drug responses including prolonged drug half-lives ADRs and DDIs which 

escalates the prevalence and severity with an increased number of medications42. Moreover, ADRs 
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and DDIs have been found to be associated with prolonged hospital stay, increased morbidity and 

mortality43. DDIs can be pharmacokinetic-related, where drug absorption, distribution, 

metabolism, or excretion are affected or inhibited due to interaction with another drug, or 

pharmacodynamic related, where a drug modifies the responsiveness of tissues towards another 

drug by either having an agnostic or antagonistic effect. Of these, pharmacokinetic DDIs are the 

most common, and mostly involve impaired drug removal because of interference with hepatic 

metabolism, renal excretion, or transcellular transport44. Despite standard screening procedures, 

DDIs are still present in 16-41% of oncology patients, suggesting the need for better screening 

procedures in not only oncology but other medicinal fields as well45. 

Furthermore, it is notable that majority of pharmacokinetic DDIs interactions arise due to 

the effect of previously administered drugs on the hepatic Cytochrome P450s (CYPs). Whereby, 

the mechanism of CYP450 inhibition and induction predominantly result in the occurrence of the 

most clinically significant DDIs46. DDIs often involve isozymes of CYP and result in alterations 

in drug bioavailability that can lead to serious adverse events or decreased drug efficacy47. It is 

common knowledge that many drugs are metabolized by CYP3A4 mediated reactions, however 

there are also some drugs which are activated by the enzyme. Substances such as grapefruit juice 

and some drugs, interfere with the action of CYP3A4 resulting in either amplified or weakened 

action of other drugs modified by CYP3A4, causing them to accumulate to toxic levels and create 

adverse side effects. CYP3A4 can be inhibited in one of three ways; competitively, non-

competitively, or mechanism based.  

A well-known example of CYP3A4 inhibition is that of grape juice, where researchers 

discovered bergamottin, a furanocoumarin found in grape juice, increased the bioavailability of 

drugs in patients who had consumed the liquid48. An example of the severe DDIs that can result 

from CYP3A4 inhibition includes the antihypertensive and anti-anginal drug Mibefradil (Posicor), 

which was was withdrawn from the market in 1998 based on its tendency to inhibit the CYP3A4-

mediated metabolism of drugs treating cardiovascular diseases. The resultant DDIs were the cause 

of higher mortality in patients with congestive heart failure who were also taking Mibefradil49.  

Similarly, antihistamines terfenadine (Seldane), astemizole (Hismanal) and cisapride (Propulsid) 

are all drugs that were withdrawn from the U.S. market due to metabolic inhibition by other drugs 

that led to life-threatening arrhythmias50. Therefore, understanding a drug’s potential to inhibit 
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CYP3A4 is an essential step in drug development. Current studies in drug development attempt to 

do this by applying traditional and novel machine learning algorithms to chemical datasets in an 

attempt to discover non-linear patterns within the data. 

1.6 Problem Statement and Proposed Solution 

Often drug failure is not detected until the late stages of drug discovery and development as the 

interactions and properties of the drug candidates that lead to failure, such as DDIs, metabolism, 

and toxicity are only exposed during clinical studies. CYP3A4 is an important compound in the 

metabolism of drugs but is susceptible to inhibition and induction by a diverse range of compounds 

resulting in undesirable DDIs and toxic side effects that can ultimately lead to drug failure. 

Therefore, the development of models that can predict the likelihood of a drug candidate to inhibit 

CYP3A4 can assist in saving time, money and resources in the drug discovery and development 

process. The proposed solution is to develop an in-silico profiler using a variety of machine 

learning techniques including Support Vector Machine, Logistic Regression, Decision Tree, 

Random Forest, and Multilayer Perceptron to predict likelihood of chemical entities to inhibit 

CYP3A4. These machine learning models can also provide insight into what features of inhibitors 

are important to look out for in new drug candidate compounds. 

1.7 Objectives 

• To elucidate the impact of 2D structural descriptors on CYP3A4 inhibitory profiles. 

• Developing machine learning models to probe the CYP3A4 inhibition profiles of new 

chemical entities.
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2: Literature Review 

2.1 Computational Techniques 

Drug mediated CYP3A4 inhibition can lead to ADRs associated with accumulation of the 

drug toxic levels or reduced efficacy of other administered drugs. Therefore, it is of interest to 

conduct screening protocols for potential new drugs to avoid or attenuate potential DDIs. 

Currently, hepatocytes are used to determine the risk of DDIs associated with CYP3A4 

metabolism however these in vitro assays are time-consuming and provide limited information 

about the structure activity relationship of CYP3A4 with the compound causing its inhibition. 

Computational techniques, on the other hand, have been used to provide insight into CYP3A4 

inhibition. The ability of in silico approaches to evaluate a large number of compounds with a 

relatively low cost and reduce the need for a number of experimental studies makes it a more 

attractive approach for determining CYP3A4 inhibition of drug candidates, and thus improve 

success rate.  

2.1.1 Structure Based Approaches 

2.1.1.1 Molecular Docking 

Molecular docking is becoming an increasingly important tool in drug discovery, and has 

been commonly used for such since the 1980’s. It allows us to model the atomic level interaction 

between a small molecule and a protein which in turn gives us information about favored binding 

orientation of the ligand within the protein and is a valuable tool for investigating metabolic 

stereoselectivity51. Docking works by first predicting the ligand pose within the binding pocket 

and then providing scores to assess the binding affinity of each of the ligand poses52. Molecular 

docking studies have been performed to determine the interaction of molecules with CYPs, 

especially CYP3A4. 

Molecular docking studies have often been used to determine the binding mode of 

anticancer drugs as well as carcinogens with CYP3A4, as many cancer drugs are metabolized by 

this CYP isoform. For example, A study conducted by Maréchal et al. to predict the ability of 33 

commonly used cancer drugs to inhibit CYP3A4 determined that the residues in the phenylalanine 

cluster (Phe108, Phe213, Phe219, Phe220, Phe241, Phe304 and Phe215), as well as Arg212 and 
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Glu37 are important residues in the isoforms active site53. The rigid and flexible docking 

approaches used by Panneerselvam et al. on the cancer drugs Cytarabine, daunorubicin, 

doxorubicin and vincristine observed that S119, R212 and R372 are the major drug-binding 

residues in CYP3A454. Using the GOLD (Genetic Optimization for Ligand Docking) software 

version 3.3.1, in combination with the Chemscore scoring function to dock the potent natural 

carcinogen Aflatoxin B1(AFB1) into the CYP3A4 binding site, the importance of the amino-acid 

residues Leu210, Leu211, and Phe304 were confirmed as indispensable for the positive 

homotropic cooperativity of both AFB1 oxidations55. Chemotherapeutic agents for the treatment 

of Non-Small Cell Lung Cancer (NSCLC) such as gemcitabine, cisplatin, carbo platin, docetaxel, 

and paclitaxel were docked by induced fit against CYP3A4 using Schrödinger suite 2014 by 

Subhani et al. during which ARG105 was identified as a key residue involved in drug binding, 

along with Pro107, Ser119 and Arg21256. 

Zhou et al. docked the compound Miltirone in major CYP isoforms and discovered the 

importance of Vander Waals interactions with Phe57, Arg212, Phe215, Thr309, Ala370, Arg372 

and Met37, and polarity with Gly481 and Phe213 residues57. A docking study performed by 

Ashour M used the C-Docker protocol of Discovery Studio to dock 38 compounds found in active 

plant extracts against CYP3A4 and elucidated the importance of hydrogen or ionic bonding with 

Arg 212 and Glu374, π bonding with Arg105, and hydrogen bonding with Arg375, Asn441, 

Cys442, Gly48, Ile443 and Pro434 in the binding mode of flavonoids58.  

Thus, multiple docking studies elucidate the role and importance of the following amino acid 

residues in CYP3A4 binding; Met37, Phe57, Phe108, Phe213, Phe215, Phe219, Phe220, Phe241, 

Phe304, Phe215, Pro107, Thr209, Ala 370, Arg105, Arg212, Arg372, Glu37, Ser119, Leu210, 

Leu211 and Gly481. 

2.1.1.2 Molecular Dynamics Simulations 

Molecular Dynamics (MD) Simulations are a structure based computational method that 

use approximations based on Newtonian physics to simulate atomic motions over time based on a 

model of the interatomic interactions. This technique plays a practical role in drug design and 

development as it assists in probing molecular properties that are either difficult or impossible to 

determine in a wet lab. They are also useful in generating hypothesis’ that can be used as a baseline 

for new experimental work to substantiate structural and functional properties of a potential drug59.  
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MD simulations have proven to be useful in confirming important residues within the CYP3A4 

binding pocket was well as critical interactions between the enzyme and its inhibitors and 

substrates. MD Simulations were used to examine the differences in structural and dynamic 

properties between CYP3A4 complexes with the substrate progesterone and the inhibitor 

metyrapone by Hwangseo et al. using AMBER force fields. The study intimated that the flexible 

loop containing amino acid residues Asp214, Phe215 and Leu216 was responsible for the diverse 

substrate specificity of CYP3A4. Hydrogen bonding between the Ser119 sidechain and a carbonyl 

group was found to be a stabilizing binding force for inhibitors and substrates in the active site of 

CYP3A4, and the interaction between a structural water molecule and the heme group was seen to 

be a significant stabilizing force60.  

A study by Han et al. built MD simulations using the LEaP module of the AMBER16 

package and applied AMBER force field ff14SB and General AMBER Force Fields to study the 

mechanisms causing the effects of CYP3A4 variants on the differential kinetic profiles of 

acalabrutinib and ibrutinib. A 30-ns molecular dynamic simulation was conducted through which 

it was determined that the clearance rate of the compounds was mediated by distance between the 

redox site and the heme iron atom of CYP3A461. 

A combination of molecular dynamics simulations and free-energy calculations was used 

by Bren et al. to determine the origin of the positive homotropic cooperativity in the binding of 

ketoconazo to CYP3A4, and thus provided insight into the mechanism of CYP3A4 inhibition. The 

10-ns simulation determined that the main driving force for ketocanzao binding was shape 

complementarity through Vander Waals forces, which coincides with what we know about 

CYP3A4 and its binding promiscuity. The presence of nonpolar residues and flexibility of 

CYP3A4’s binding site also contribute towards the high interaction energy of ketocanzao and the 

enzyme62.  

Teixiera et al. studied the binding modes of ligands into CYP3A4 conformations by 

building MD simulations through GROMACS version 3.2.1 package and the GROMOS96 43a1 

force field to model both the protein and ligands alone and in a complex, for five 10-ns MD 

simulations. The study confirmed the importance of the residues Arg105, Arg212, Glu374, Ser119, 

Thr309, Phe213, Phe215, and Phe304 in stabilization, accommodating space and orienting ligands 

for enzymatic action by CYP3A463. Analysis of results of MD simulations and docking protocols 
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performed by Kiani et al. indicate similar results while also confirming the importance of Arg106 

and Arg372 in the stabilization of CYP3A4-inhibitor complexes64. 

2.1.2 Ligand Based Approaches 

2.1.2.1 QSAR 

Quantitative Structure and Activity Relationship (QSAR) is a ligand-based computational 

method for identifying the relationships between the structural properties of chemical compounds 

and their biological activities. QSAR models employ data from the molecular structure of ligands 

and examines physiochemical properties, therapeutic activities, and pharmacokinetic parameters 

to obtain a reliable statistical model for prediction of the activities of new chemical entities and 

thus predict the best molecules for a target. While previously QSARs only modeled linear 

relationships using Hansch analysis, it is now used to generate multiple linear regression models 

using 3D grid-based approaches. The fundamental underlying principle being that ‘similar 

structures behave similarly’. QSARs have applications all throughout the preclinical phase of drug 

development as it helps in the prediction of ADMET properties early in the drug discovery process, 

and ultimately result in experimentally testable hypotheses’65. Recent advancements in QSAR 

modelling involve the prediction of CYP mediated metabolism based on previously known 

inhibitor data and provide important insight into what structural properties are essential in 

CYP3A4 based inhibition. For example, Didziapetris et al. used datasets from PubChem and NCBI 

to develop a Structure Activity Relationship (SAR) model using the GALAS (Global, Adjusted 

Locally According to Similarity) approach to predict the CYP3A4 inhibition and determine the 

properties of interest. 

Their model determined that the presence of a strong basic group or an acidic group in a 

compound reduces its probability to inhibit CYP3A4, that higher inhibition was associated with 

increase in molecule size of the molecule as well as association with hydrophobic aliphatic or 

aromatic, and highlighted the importance of molecular weight and lipophilicity in determining a 

compounds tendency and level of CYP3A4 inhibition66. A model by Roy et al. showed the 

importance of a U shape conformation of the substrate for optimal inhibitory activity and showed 

that the logp descriptor had the greatest effect on inhibition of CYP3A467. The generalized model 

developed by Riley et al. established the importance of lipophilicity and heme interactions on the 

inhibition potency68.  
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This is corroborated through work by Lewis et al., whose QSAR model on 3 series of 

CYP3A4 inhibitors concluded that lipophilicity is a major contributing factor for inhibition, 

regardless of the structural class of the inhibitor. They also determined that hydrogen bonding 

between the inhibitors and at least one active site donor or acceptor amino acid as common 

interactions in CYP3A4 inhibitors69.  

2.1.2.2 Pharmacophore Modeling 

A pharmacophore is a computational technique implemented in rational drug design, 

defined as “a molecular framework that carries (phoros) the essential features responsible for a 

drug's (pharmacon) biological activity”. Ligand based pharmacophore approaches involve 

superposing a set of 3D structures that are representative of essential interactions between the 

ligand and target, to extract similarities in their chemical features. Such approaches have become 

key in facilitating the drug discovery process, specifically virtual screening of chemical 

compounds, de novo design and lead optimization70. Pharmacophore modelling are often applied 

in combination with other computational methods such as QSAR, machine learning, and MD 

simulations.  

Kaur et al. used rationally designed compounds to test their pharmacophore model of 

CYP3A4. Through this, they were able to confirm important features in compounds for inhibition, 

including a flexible backbone, H-bond donor/acceptor moieties, and aromatic side group 

analogous. Their model also reaffirmed the essential role of hydrophobic interactions near the 

enzyme heme group and phenylalanine cluster in the ligand binding process71. This further 

substantiates the contribution of hydrophobic interactions and hydrogen bonding in a compounds 

affinity to binding to CYP3A4 that was previously verified in previous pharmacophoric 

studies72,73. However, these studies also indicate that building an accurate pharmacophore-based 

model for predicting CYP3A4 inhibition proves difficult, mostly in part to the enzymes 

promiscuous binding site that allows substrates with a diverse range of features to bind72. 
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2.2 Machine Learning Techniques 

While computational methods can provide important insights into CYP3A4 interactions 

and inhibition, they tend to be computationally expensive and tend to pose problems when 

incorporating them into software tools. Machine learning provides a solution to this problem as 

they are less computationally expensive, and provide accurate results in a timely manner, making 

them ideal for usage in web applications and software tools. Another advantage of machine 

learning is that it allows the in-silico investigation of CYP interactions early in drug development 

so that investigators are allowed to select compounds that are less likely to fail due to undesirable 

pharmacokinetics later stages of the drug design process38. Machine learning techniques are 

frequently used for substrate specificity prediction as they can model complex nonlinear 

relationships from large datasets of enzyme-substrate interaction data74. Machine learning 

approaches for CYP3A4 inhibition prediction has gained traction in recent years. The models 

generated for CYP inhibitors, including decision trees, support vector machines (SVMs), k-nearest 

neighbors (kNN), random forests, artificial neural networks (ANN), and deep learning to predict 

the likelihood of CYP inhibition of a compound75,76,77.  

2.2.1 Support Vector Machine 

Support vector machine (SVM) is one of the most widely used deep learning algorithms 

which allows the classification of linear as well as non – linear data into separate groups with the 

help of hyperplanes. A hyperplane can be defined as a decision boundary that differentiates 

between two or more classes in SVM. Any datapoint that falls on either side of the hyperplane can 

be categorized into separate classes. However, finding the optimal hyperplane that maximizes the 

distance between those datapoints is the key to a good learning model. SVM falls under the 

category of supervised machine learning algorithms because this classification provides a learning 

basis for future data processing. It primarily uses labeled input data to perform training, and after 

numerous training examples, can be used to perform training on unlabeled data. Needless to say, 

this algorithm has proven its potential for structure – activity relationship analysis in the drug 

development process78. Table 2 displays research carried out in the past on the implementation of 

SVMs in CYP3A4 inhibition prediction. 
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2.2.2 Decision Trees 

Decision Tree (DT) also belongs to the family of supervised machine learning algorithms 

with the difference being that it follows a hierarchical, top – down approach and has a tree – like 

structure consisting of one root node, branches, internal and leaf nodes. The root node has no 

incoming branches, but it does have outgoing branches which lead to the internal nodes – also 

known as the decision nodes. These decision nodes help in further segregation of the data into 

classes or groups which are denoted by the leaf nodes and these leaf nodes are a representation of 

all the possible outcomes within a dataset. All of these node types aid in classification by 

conducting evaluations on the basis of pre – set features. The most crucial step in this algorithm is 

deciding the hierarchy of the features based on their level of importance for classification. This is 

mainly done by using the Information Gain (IG) criteria, according to which the feature with the 

highest IG is placed at the root node. In terms of applicability, Decision Trees are extensively 

being used in the pharmaceutical domain with noteworthy prediction accuracy79. This algorithm 

type has also been used in the prediction of CYP3A4 inhibition that is being shown in Table. 

2.2.3 Random Forest 

The Random Forest (RF) classification is an extension of the Decision Tree algorithm 

performed by using an ensemble approach known as bootstrap aggregation, or bagging. This 

method works by constructing multiple independent decision trees, each using a sub – sample of 

the original dataset. This is done by sampling with replacement, meaning that duplicates of the 

observations can be used and that samples created will be independent of each other with respect 

to their observations. Each of these samples is used to construct a decision tree and the consensus 

among all of these trees aids in predicting the final outcome. Decision made by majority vote will 

be more accurate and statistically significant than the decision predicted by each of those trees 

individually. Additionally, this approach is not as sensitive to overfitting as other algorithms. 

Several researchers are of the view that a consensus – based approach would be more effective in 

predicting drug – target activity than each machine learning model individually80. Table shows 

research that has already been carried out on the application of Random Forest in CYP3A4 

inhibition prediction. 
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2.2.4 K-Nearest Neighbor 

K-Nearest Neighbor (KNN) is a simple and easy – to – understand supervised machine 

learning algorithm which is based on the assumption that similar entities are supposed to exist in 

proximity to each other. A model trained by using KNN classification will predict the values of 

new datapoints by calculating how close those points are to the points in the training set. In order 

to identify which of the points are closest to a certain datapoint, distance of the type Euclidean, 

Manhattan, Minkowski or other is calculated between them. The points closest to that query 

datapoint will be grouped together and the rest will fall into another group. ‘K’ in KNN is an 

essential parameter that defines the number of nearest neighbors to be considered for classification. 

This method is easy to implement, adapts effectively and uses only two hyperparameters which 

are distance metric and k – value. As for its applicability, KNN is widely used in QSAR analysis 

during the process of drug development81. This algorithm type has also been used in the prediction 

of CYP3A4 inhibition that is being displayed in Table. 

2.2.5 Logistic Regression 

Logistic Regression is one of the most popular supervised machine learning techniques 

being used today. It is used to predict a categorical dependent variable by the help of a given set 

of independent variables. This type of classification does not provide the researcher with a discrete 

outcome of the variable, rather it gives a probabilistic value between 0 and 1 which divides the 

date into two separate groups. It is used when our dependent variable is dichotomous in nature. 

This simply means that the variable will have only two possible outcomes, for example, whether 

a person has a disease or not. Logistic regression has become a valuable tool in the field of machine 

learning today, especially because of the ease of training data as compared to other techniques. 

This methodology can be used for differentiating between cancerous and non – cancerous cells 

during drug development82. 
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Table 2. Assessment of Machine Learning Models for CYP3A4 Inhibitors in Literature 

Sr. Model 

Type 

Data Descriptors Results 

1. SVM DRUGDEX system Drug 

Information Handbook, 

Flockart CYP interaction 

Table, 

Literature 

Constitutional, Geometrical, 

Topological, RDF, 

Molecular walk counts, 

3D MoRSE, BCUT, WHIM, 

Galvez topological Charge 

indices, 

GETAWAY, 2D 

autocorrelations, Functional 

groups, Charge, Atom-

centered, Aromaticity 

indices, Empiricals, Randic 

Molecular profiles, 

Molecular properties 

Sensitivity (SE) 

= 92% 

Specificity (SP) 

= 97.3% 

Concordance = 

96% MCC = 

0.89383 

2. SVM Experimental QSAR 

dataset 

Physical properties, Surface 

areas, Atom and Bond 

counts, Pharmacophore 

feature descriptors, 

topological, electrostatic 

potential, hydrogen bond 

behavior, shape molecular 

polarizability 

Q2= 0.4 −

0.51 ± 0.01 

RMSE = 0.36-

0.4584 

3. SVM PubChem AID 1851 Classical topological 

Atom type 

AUC = 0.87 

Accuracy = 

81.1%85 

4. SVM BindingDB 

ChEMBL 

 

Molecular Descriptors: 

AlogP, 

ES_Count_aas 

C,ES_Count_dS 

Sensitivity = 

1.000 

Specificity = 

1.000 
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ES_Count_sOH 

ES_Count_ssNH2 

ES_Count_ssS 

ES_Count_sssN 

ES_Count_sssNH 

ES_Sum_aaN 

ES_Su-m_aaS 

ES_Sum_aasC 

ES_Sum_dNH, 

ES_Sum_dO, 

ES_Sum_sCl 

ES_Sum_sF 

Num_AromaticRings 

CHI_V_3_C 

Kappa_2_AM 

SC_3_CH 

Wiener 

Prediction 

Accuracy 

Substrates (Q+) 

= 0.006 

Prediction 

Accuracy 

Inhibitors (Q-) = 

1.00 

MCC = 0.50286 

5.  SVM Curated from FDA 

approved drug list and 

DRUGDEX system 

Charge Analysis Descriptors  

Topological Descriptors 

Constitutional Descriptors 

Corrected 

Classification 

Rate (CCR) = 

66.487 

6. K Nearest 

Neighbor 

(KNN) 

BindingDB 

ChEMBL 

DS 2D Descriptors Sensitivity = 

1.000 

Specificity = 

1.000 

Prediction 

Accuracy 

Substrates (Q+) 

= 0.004 

Prediction 

Accuracy 
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Inhibitors (Q-) = 

1.00 

MCC = 0.50286 

7. KNN Curated from FDA 

approved drug list and 

DRUGDEX system 

Charge Analysis Descriptors  

Topological Descriptors 

Constitutional Descriptors 

 (CCR) = 64.287 

8. Recursive 

Partitioning 

(RP) 

BindingDB 

ChEMBL 

DS 2D Descriptors SE = 0.796 

SP = 0.801 

Q+ = 0.844 

Q- = 0.802 

MCC = 0.88686 

9. RP BindingDB 

ChEMBL 

DS 2D Descriptors 

ECFP-6 Fingerprints 

SE = 0.827 

SP = 0.832 

Q+ = 0.917 

Q- = 0.880 

MCC = 0.83286 

10. RP Commercially available 

data 

Augmented Atom 

Descriptors 

r2= 0.8288 

11. Naïve 

Bayesian 

(NB) 

BindingDB 

ChEMBL 

DS 2D Descriptors 

 

SE = 0.852 

SP = 0.809 

Q+ = 0.211 

Q- = 0.809 

MCC = 0.84286 

12. NB BindingDB 

ChEMBL 

DS 2D Descriptors 

ECFP-6 Fingerprints 

SE = 0.902 

SP = 0.894 

Q+ = 0.954 

Q- = 0.886 

MCC = 89486 

13. Random 

Forest (RF) 

PubChem AID 1851 

PubChem AID 844 

ChEMBL 

Morgan Fingerprints MCC = 0.68 

AUC = 0.94 

TPR = 0.74 
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ADME TNR = 0.92 

PPV = 0.87 

BA = 0.8351 

14.  RF Curated from FDA 

approved drug list and 

DRUGDEX system 

Charge Analysis Descriptors  

Topological Descriptors 

Constitutional Descriptors 

CCR = 65.887 

15. Artificial 

Neural 

Network 

(ANN) 

Curated from FDA 

approved drug list and 

DRUGDEX system 

Charge Analysis Descriptors  

Topological Descriptors 

Constitutional Descriptors 

 CCR = 62.887 

16. Decision 

Tree 

PubChem AID 1851 1D, 2D, 3D Descriptors 

Atom Type Electro 

Topological State 

Descriptors 

Crippen’s logP 

Molar refractivity 

extended topochemical 

atom, McGowan volume, 

molecular linear free energy 

relation,ring counts, count of 

chemical substructures 

identified by Laggner 

Accuracy = 

72.3% 

Sensitivity = 

76.3% 

Specificity = 

72.0% 

G-mean = 

74.1%89 

17. Decision 

Tree 

Commercially available 

Fujitsu database 

Constitutional  

Electrostatic 

Geometric 

Accuracy 

=72.58%  

Sensitivity = 

82.64% 

Specificity = 

53.85%  

Kappa = 0.38 

MCC = 0.37990 
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18. Laplacian-

modified 

naïve 

Bayesian 

method 

PubChem AID 1851 VolSurf+ functional-class 

fingerprint descriptors 

(FCFPs) 

AUC = 0.9 

MCC = 0.6191 

19. GXBoost PubChem AID 1851 

PubChem AID 884 

PubFP Descriptors 

PaDEL Descriptors 

Accuracy = 

89.4%92 

20. Multilayer 

Perceptron 

(MLP) 

Inhouse Experimental 

Assay Dataset 

Molecular Descriptors  

Atom Pair Descriptors 

Pharmacophoric Donor-

Accept or Pair Descriptors 

r2= 0.7993 

21. Deep 

Neural 

Network 

(DNN) 

AID 884 PaDEL-1D and 2D 

Descriptors PubChem 

Fingerprints 

ACC = 0.884  

SP = 0.652 

SE = 0.951 

MCC = 0.649 

AUC = 0.92994 
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3. Materials and Methodology 

To predict and classify compounds as either inhibitors or noninhibitors of CYP3A4, a large 

data set of CYP3A4 inhibitors with varying inhibition potencies was curated. The dataset was 

curated and refined after which class labels were assigned. After which, descriptors were generated 

and refined to build machine learning models and the best model was determined using model 

validation techniques. 

3.1 Dataset Curation 

Data collection and curation is the first and arguably the most important step for the 

development of machine learning models. The dataset containing inhibitors with inhibitory 

potency (IC50) values against CYP3A4 that was used in this study was curated from two publicly 

available datasets. The first was a large dataset downloaded through ChEMBL, while the second 

was a smaller dataset obtained through PubChem. 

3.1.1 ChEMBL CYP3A4 Dataset 

The ChEMBL dataset initially consisted of 11,460 entries of CYP3A4 inhibitors with IC50 

values ranging from 0.053 – 77,624,711.66 nM. The data within the dataset was computed from a 

variety of sources, including the BindigDB database, DrugMatrix, Drugs for Neglected Diseases 

Initiative, Patent Bioactivity Data, as well as from scientific literature. However, the dataset also 

contains many duplicate and blank entries that require refining before it can be used for 

classification purposes. 

3.1.2 PubChem CYP3A4 Dataset 

PubChem AID 686941 was also included into the classification dataset. It consists of 31 

compounds tested for inhibition against CYP3A4 as well as CYP3A5. To determine inhibitory 

activity of the compounds, the protocol included incubating 10 nM of the enzyme with substrate 

concentrations equal to their respective Michaelis constant (Km) concentrations, with 0.1 M 

potassium phosphate buffer, pH 7.4, and at 37 C. Analysis was performed using an API4000 mass 

spectrometer, and inhibitory activity was calculated after achieving chromatographic separation. 

The dataset consists of 12 columns including IC50 in μM, Compounds ID (CID), Substrate ID 

(SID) and Panel name.  
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In order to make the PubChem data compatible with the ChEMBL data, all the entries were 

removed for CYP3A5 inhibition for each compound. The SMILES code for the remaining entries 

relating to CYP3A4 were compared with those in the ChEMBL dataset, and entries with novel 

SMILES codes were merged with the ChEMBL dataset data. The IC50 values were converted from 

μM to nM. Following this, full dataset refinement was achieved.  

3.1.3 Dataset Refining 

The ChEMBL dataset contains many duplicate, inconsistent, and blank entries. As the aim 

of this study is to perform classification based on IC50 values, any entries with no inhibition data 

were removed. The dataset was further refined by removing entries with inconsistent inhibitory 

potency values, such as non-absolute values. After the final refinement a dataset with 4.314 

CYP3A4 inhibitors was used for further study. 

3.1.4 Class Label Application 

Additionally, further preprocessing was performed by applying class labels to the data. In 

this study, an activity threshold of 1,000 nM for highly actives, 1,000-1,500 nM for 

actives/efficient, and <1,500 for least actives or inactives was used. The intermediate class was 

later on removed, and actives were given the class label ‘1’ while inactives were given the class 

label ‘0’, indicating a compound to be an inhibitor or non-inhibitor respectively. Figure 3 shows 

the distribution of the data, with a total of 3,051 inactives and 1,059 actives.  
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Figure 3. Distribution of Actives and Inactives in CYP3A4 Data 

3.2 Descriptor Generation 

Initially, 5,669 2D descriptors were calculated using the alvaDesc tool version 2.0.895. The 

type of descriptors can be divided into 33 categories including Constitutional indices, Ring 

descriptors, Topological indices, Walk and path counts, Connectivity indices, Information indices, 

2D matrix-based descriptors, 2D autocorrelations, Burden eigenvalues, P_VSA-like descriptors, 

ETA indices, Edge adjacency indices, Geometrical descriptors, 3D matrix-based descriptors, 3D 

autocorrelations, RDF descriptors, 3D-MoRSE descriptors, WHIM descriptors, GETAWAY 

descriptors, Randic molecular profiles, Functional group counts, Atom-centred fragments, Atom-

type E-state indices, Pharmacophore descriptors, 2D Atom Pairs, 3D Atom Pairs, Charge 

descriptors, Molecular properties, Drug-like indices, CATS 3D descriptors, WHALES descriptors, 

MDE descriptors, and Chirality descriptors. 

3.2.1 Descriptor Refining 

The descriptor data set generated required refinement due to the presence of ‘na’ values, 

multiple 0 value columns, and columns with little to no variance, refining of the descriptor data 

was needed. In order to remove the ‘na’ values, they were converted to ‘0’ through excel. All the 

0 values were then removed together through python. As a result, 2,522 empty descriptors were 

74%

26%

Distribution of Actives and Inactives in 
CYP3A4 data

Inactives (0) Actives (1)
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removed. Descriptors with low variance were removed by calculating the variance for each 

column, then removing descriptors with variance below 0.5. Overall, 1,181 useful descriptors 

remained after refining.  

3.3 Feature Engineering 

Feature Engineering is the process of converting raw data into useful features that help us 

to understand our model better and increase its predictive power. This was done through the 

MinMaxScaler() function in the SciKitLearn Library. This aims to transform the data in all the 

columns such that each value is proportionally within the range 0 – 1. Normalizing data in this 

way serves to improve the performance and training reliability of the model by transforming the 

data to be on a similar scale while also preserving the shape of the data. Figure 4 and Figure 5 

display a snippet of the data before and after scaling. 

 

Figure 4. Data Before Scaling 

 

Figure 5. Data After Scaling 

3.4 Feature Elimination 

Feature elimination is the process of selecting only those features or descriptors within a 

dataset that are more relevant in predicting the target variable, which is the Class label in this case. 

The most relevant features were determined by using the feature_importances() function, which 

assigns a value to each feature or descriptor based on the role it plays in predicting the Class label. 

The higher the feature importance value, the more of a role it plays. The top 20 important 
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descriptors were selected to create a descriptor subset. All the models were run on the two 

Descriptor sets; 1. 1179 Descriptor Set, and 2. 20 Descriptor set. The model performances were 

evaluated and compared for all models on both descriptor sets. 

3.6 Splitting Data 

Both inhibitor datasets were randomly split into separate training and testing sets using the 

train_test_split() function in the sklearn.model_selection library. For all models, the data was split 

so that 30% of the data was used for testing while the remaining 20% was used for training. 

However, for the model built using the Random Forest Classifier, 33% of the data was used for 

testing as opposed to 30%, as this provided better results.  

After splitting the data, the test set contained the descriptor data for 327 inhibitors and 906 

noninhibitors, while the training set contained the descriptor data for 732 inhibitors and 2,145 

noninhibitors. This data is displayed in Figure 6. 

 

Figure 6. Distribution of Training and Testing Data 
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3.7 Machine Learning Models 

Machine Learning is a modern technique that identifies the data patterns used to classify 

the data into desired classes. Several types of machine learning models can be applied to data 

depending upon the data type of attributes and classification labels. Here in this research, the aim 

is to perform binary classification in order to predict and differentiate between inhibitors and non-

inhibitors of human CYP3A4. All machine learning models were built on the Jupyter Notebook 

platform in Python. 

3.7.1 Logistic Regression 

The LogisticRegression classifier  was implemented using Python and Scikit-Learn. The 

model built a classifier that predicts whether a compound in our dataset is an inhibitor or not. 

Hyperparameter Optimization was used to tune and select the parameters that provided the best 

accuracy. After hyperparameter optimization, the selected parameters for the model included: 

C=100, penalty = 'l1', solver='liblinear', random_state=0, max_iter=50. Where C is a regularization 

parameter that determines the model’s reliance on the training data and can be set to values such 

as 1, 10, 100 or 1000. the higher the C value, the more the model relies on the training data. The 

penalty function also performs regularization by reducing the coefficients of variables that are less 

contributive towards predicting the Class label. L1 regularization penalizes the sum of absolute 

values of the weights.  

The ‘liblinear’ solver was used, which performs L1 regularization and is optimal for high 

dimension datasets such as the CYP3A4 dataset used in this study. Random state was set to 0, and 

the default settings were used for the remaining parameters. The value of the C hyperparameter 

was adjusted for best results. C = 1.0 gave the best results and was thus selected as the 

hyperparameter for the model. The solver parameter determines the algorithm used for 

optimization. The Liblinear solver, or Library for Large Classification solver, uses a Coordinate 

Descent algorithm which optimizes by achieving fairly accurate minimization along coordinate 

directions. The max_iter = 50 parameter ensures that the solver does not iterate more than 50 times, 

helping to prevent overfitting. Lastly, the random state parameter simply controls randomness in 

the machine learning model so that it is reproduceable. Whereas for all other models the default 

parameters were used. 
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3.7.2 Decision Tree 

The DecisionTree Classifier was built using the SciKitLearn Library in Python. It aims to 

produce a flowchart-like tree where the branches in the tree represent decision rules and the leaf 

nodes represent outcomes. Hyperparameter Optimization was used to tune and select the 

parameters that provided the best accuracy. After hyperparameter optimization, the selected 

parameters for the model included: criterion='gini', max_depth=3, and random_state=0. The 

criterion parameter determines the criteria with which to split the branches in the tree. The gini 

index criteria establishes branching by calculating the frequency of mislabeling a compound when 

it is randomly selected. The Gini Index is calculated using the following formula96: 

GiniIndex = 1– ∑ pj
2

j

 

Where pj is the probability of class j. 

The random state once again controls the randomness of the model, and the max_depth 

parameter controls the complexity of the model by determining how deep the tree will be. All other 

parameters are kept at their default. 

3.7.3 Random Forest 

The RandomForest Classifier was imported from the ScikitLearn library in python to build 

the model. It builds multiple decision trees on samples of the data and then uses majority vote to 

classify CYP3A4 inhibitors and noninhibitors. The parameters that provided the best results 

included: n_estimators=100, random_state=0. Where the n_estimators = 100 ensures that 100 

decision trees will be made before the model takes majority consensus, and random state 

determines the randomness of the model97. 

3.7.4 Support Vector Machine (SVM) 

A support vector machine model was built by importing the SVM classifier from the 

ScikitLearn library. It aims to map the data points onto a grid so that a hyperplane can be 

constructed that separates inhibitor and oninhibitor data as best as possible, linearly, or nonlinearly. 

Hyperparameter Optimization was used to tune and select the parameters that provided the best 

accuracy. After hyperparameter optimization, the selected parameters for the model based on all 
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1179 descriptors included: kernel = rbf, C=1000, max_iter=100. The best parameters selected for 

the model created for 20 Descriptors included: kernel = linear, C=1000, max_iter=100. The kernel 

parameter is the mathematical function that decides how to manipulate the data. A linear kernel 

separates the data by creating a hyperplane that is a single line. 

The Radial Basis Function, or rbf, kernel separates the data by creating a nonlinear 

hyperplane. The C parameter helps in lower misclassification of the data by setting margins, the 

higher the C value, the smaller the margin, as shown in Figure 7. A C value of 1000 indicates high 

reliance on the training data and smaller margins in the hyperplane. The max_iter parameter 

prevents overfitting by ensuring that the kernel does not iterate more than 100 times98. 

 

 

Figure 7. Effect of Varying C parameter on SVM Margins 

 

3.7.5 Multilayer Perceptron (MLP) 

A multilayer perceptron model was generated using the MLPClassifier in the SciKitLearn 

library. It is a type of feedforward artificial neural network that consists of weighted input and 

hidden layers that are used to send a signal to the output layer which in turn makes a decision or 

prediction about whether a data point is to be classified as an inhibitor of noninhibitor of CYP3A4. 

Figure 8 displays a simplified version of a multilayer perceptron. 
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Figure 8. Example Multilayer Perceptron 

Hyperparameter Optimization was used to tune and select the parameters that provided the 

best accuracy. After hyperparameter optimization, the selected parameters for the model generated 

using all 1179 descriptors included: hidden_layer_sizes=(256,128,64,32), activation="relu", 

random_state=1, max_iter=100. On the other hand, the model generated using only 20 descriptors 

had the following parameters: hidden_layer_sizes=(100, 50, 30),alpha = 0.05, learning_rate = 

'constant', activation="relu", random_state=1. The hidden_layer_sizes parameter determines the 

number of hidden layers used in the model, as well as the number of nodes used in each layer. The 

1179 descriptor model generates 4 hidden layers with decreasing nodes in each layer, while the 

20-descriptor model works best with 3 hidden layers, with 100, 50, and 30 nodes in the respective 

layers. The activation parameter determines which activation function is used to linearly maps the 

weighted inputs to the output of each neuron. The Rectified Linear Unit function, or relu function, 

returns 0 if it receives any negative input, and returns the value itself for any positive value x. The 

random state parameter again controls the randomness of the model. 

The alpha parameter is a penalty term and helps to prevent overfitting by constraining the 

weights. The learning rate parameter controls how much to change the weights in the model based 

on the estimated error. A constant learning rate keeps the learning rate the same for each step while 
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other learning rate values may cause it to vary at each step. All other parameters were kept at their 

default values99.  

3.7 Model Performance Evaluation 

The performances of the models were calculated and compared using Accuracy, 

Classification Error, Sensitivity, Specificity, Precision, True Positive Rate (TP rate), False Positive 

Rate (FP rate) Area under the receiver operating characteristic curve (AUC ROC), and Mathews 

Correlation Coefficient (MCC).  

3.7.1 Classification Accuracy 

Classification Accuracy is defined as the ratio of correct predictions to the total number of 

input samples. It is calculated through the following formula100. 

Classification Accuracy =  
TP + TN

TP + TN + FP + FN
 

Where TP indicates the number of true positives, TN indicates the number of true negatives, FP 

indicates the number of false positives and FN indicates the number of false negatives. 

3.7.2 Classification Error 

Classification error is the ratio of incorrect predictions to the total number of input samples. 

It is calculated through the following formula101. 

Classification error =  
FP + FN

TP + TN + FP + FN
 

3.7.3 Specificity 

Specificity is the defined as the proportion of true negatives that are correctly identified by 

the model, and as calculated by100: 

Specificity =  
TN

TN + FP
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3.7.4 Sensitivity 

Sensitivity is defined as the measure of how well a model can detect positive instances, 

also known as the true positive rate. It is be calculated by100: 

Sensitivity =  
TP

TP + FN
 

3.7.5 Precision 

Precision is the ratio of correct positive prediction to the total number of positive 

predictions. It can be calculated by101: 

Precision =  
TP

TP + FP
 

3.7.6 False Positive Rate 

The FP rate is the ratio of incorrect positive predictions to the total number of actual 

negative predictions.  It can be calculated by101: 

FP rate =  
FP

FP + TN
 

3.7.7 AUC ROC  

AUC ROC is the measure of the 2D space under a ROC graph. The ROC curve provides a 

measure of performance across all possible classification thresholds by plotting the rate of true 

positives with respect to the rate of false positives. AUC helps to determine the ability of the model 

to distinguish between classes by determining the probability that the model will rank a randomly 

chosen positive entry higher than that of a randomly chosen negative entry. The higher the AUC 

value, the better the model can distinguish between inhibitors and noninhibitors101.  

3.7.8 Mathew’s Correlation Coefficient (MCC) 

MCC determines how good a model is at differentiating classes in classification by 

measuring the difference between predicited values and actual values. MCC values range between 

+1 and -1, where +1 indicates a completely correct classifier and -1 indicates a completely 

incorrect classifier. It is calculated by100: 
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MCC =  
(TP × TN) − (FP × FN)

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

3.8 K-Fold Cross Validation 

K-fold cross validation was used to calculate the accuracy of all models to better estimate 

the skill of the models. K-fold cross validation i works by randomly and evenly splitting the dataset 

into ‘k’ parts. The model is then trained on all subsets of the data except 1 (k-1 parts). The 

excluded, or holdout set, is then used to test the accuracy model. This is repeated k number of 

times, until every subset of the data has been used once as the holdout set for testing. The final 

accuracy is then calculated as the average accuracy of all k sub models102. Figure 9 is an example 

of how k-fold cross validation works103. 

 

Figure 9. K Fold Cross Validation Visualization 
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4: Results 

The sim of the study is to build machine learning models to predict CYP3A4 inhibition and 

determine which features are important for decision making. Thus, this section presents the 

results of the performance evaluation matrices for each of the machine learning models in order 

to identify the best one. Additionally, through assessment of the model performances, and 

visualizing the decision trees, descriptors that are important for CYP3A4 inhibition can be 

defined. 

4.1 Feature Importance 

As previously mentioned, two descriptor datasets were generated, and models were built 

separately for both. Initially, the Alvadesc software generated 5,226 descriptors using the refined 

CYP3A4 inhibitor dataset. After removal of columns with all or mostly ‘0’ values, missing values, 

and columns with variance less than 0.5, we were left with the first descriptor dataset, consisting 

of 1179 descriptors belonging to 33 different classes or descriptor types. The second descriptor 

dataset was generated by further refining through the calculation of feature importance. Feature 

importance is a function in Python that is ranks features in a dataset based on their importance by 

calculating the model performance error whenever a certain feature is adjusted. Highly important 

features results in higher performance error when adjusted, and less important features result in 

little to no change in prediction error when adjusted104.  

After calculating feature importance, the descriptors were ranked and ordered from most 

to least important. The top 20 most important descriptors were selected and used to create a second 

dataset of refined descriptors to compare model performances. Table 3 displays and describes the 

selected descriptors and presents them along with their relative importances. The important 

descriptor types include Chirality, P_VSA-like, 2D Atom Pairs, Pharmacophore, IC50, Atom-

centered fragments, Atom Pairs, Charge, and Edge adjacency indices Descriptors, the frequencies 

of which are displayed in Table 4. Figure 10 helps to visualize the importance of each descriptor.  
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Table 3. Descriptors used in Refined Descriptor Subset 

Sr. Descriptor Descriptor Type Description Score 

1. CATS2D_06_DL Pharmacophore CATS2D Donor-

Lipophilic at lag 06 

0.00861321 

2. H-049 Atom-centered 

fragments 

H attached to 

C3(sp3)/C2(sp2)/C3(sp2

)/C3(sp) 

0.006592495 

3. P_VSA_charge_1 P_VSA-like P_VSA-like on partial 

charges, bin 1 

0.003446934 

4. CATS2D_07_DL Pharmacophore CATS2D Donor-

Lipophilic at lag 07 

0.005586357 

5. T(O..S) Atom Pairs sum of topological 

distances between O..S 

0.005313494 

6. P_VSA_MR_7 
P_VSA-like 

P_VSA-like on Molar 

Refractivity, bin 7 

0.005094096 

7. s2_size 

Chirality  

number of heavy atoms 

of the substituent 2 

normalized by the atoms 

shared 

0.00506147 

8. s3_numRotBonds 

Chirality  

number of rotatable 

bonds of the substituent 

3 

0.004985541 

9. P_VSA_ppp_con 

P_VSA-like 

P_VSA-like on potential 

pharmacophore points, 

con – conjugated atoms 

0.004748966 

10. s2_numAroBonds 

Chirality  

number of aromatic 

bonds of the substituent 

2 

0.004584241 
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11. s4_numAroBonds 

Chirality  

number of aromatic 

bonds of the substituent 

4 

0.004557113 

12. qnmax 
Charge  

maximum negative 

charge 

0.004550546 

13. Eig01_EA(dm) 

Edge adjacency 

indices 

eigenvalue n. 1 from 

edge adjacency mat. 

weighted by dipole 

moment 

0.004194529 

14. P_VSA_ppp_ar 

P_VSA-like 

P_VSA-like on potential 

pharmacophore points, 

ar – aromatic atoms 

0.004016411 

15. nLevel9 

Chirality  

number of neighbouring 

atoms of the chiral centre 

(level 9) 

0.004010727 

16. F10[C-O] 
2D Atom Pairs 

Frequency of C – O at 

topological distance 10 

0.003991062 

17. nLevel8 

Chirality  

number of neighbouring 

atoms of the chiral centre 

(level 8) 

0.003945131 

18. T(N..O) 
2D Atom Pairs 

sum of topological 

distances between N..O 

0.003644445 

19. s3_numAroBonds 

Chirality 

number of aromatic 

bonds of the substituent 

3 

0.00362814 

20. T(N..N) 
2D Atom Pairs 

sum of topological 

distances between N..N 

0.003456152 

 

 



Chapter 4  RESULTS 

40 | P a g e  

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Descriptor Type and Count 

 

 

 

 

 

 

 

 

Descriptor Type Count 

Chirality 7 

P_VSA-like 4 

2D Atom Pairs 3 

Pharmacophore 2 

Atom-centered 

fragments 

1 

Atom Pairs 1 

Charge  1 

Edge adjacency 

indices 

1 

Grand Total 20 

Figure 10. Descriptor Importance 
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4.2 Machine Learning Models 

4.2.1 Logistic Regression 

4.2.1.1 Model Performance for All Descriptors 

The logistic regression model was built on the training dataset consisting of all 1179 

descriptors as mentioned in the previous chapter. This model was tested on the test set and model 

performance was checked with the help of parameters like accuracy, precision, specificity, and 

sensitivity by taking inhibitors as the positive and noninhibitors as a negative class. Table 5 shows 

compares the cross validated accuracies for the training and test sets and displays the other 

performance evaluators for the test set, like classification error, specificity, sensitivity, precision, 

TP rate, FP rate, AUC and MCC. The model shows high prediction accuracy for both training and 

testing data with good specificity, and high sensitivity and precision. A low FP rate indicates low 

false positive predictions, or low chance of classifying noninhibitors as inhibitors. This can also 

be seen in the confusion matrix in Figure 11. The ROC curve can be seen in Figure 12, and the 

high AUC value of 0.769 indicates that the model is a good model whose predictions are not 

random. The MCC of 0.538 indicates a high correlation between true and predicted values. 

The descriptors with the highest influence on classification were P_VSA_charge_1, ChiA_Dz(p), 

StsC, O-059, chiralMoment, s1_size, ATSC8i, SpDiam_Dt, D/Dtr04, T(O..Br), MaxDD, 

ATSC4m, ChiA_Dz(m), ChiA_Dz(Z), F09C-C, SsCH3, Yindex, ATSC8e, nROR, and 

SpDiam_B(m), their respective coefficients and the y intercept of the logistic regression are seen 

in Table 6 . 

Table 5. Logistic Regression Model Evaluation: 1179 Descriptor Set 

Data Accuracy Specificity Sensitivity Precision FP 

Rate 

AUC Classification 

Error 

MCC 

Training 0.923 0.881 0.935 0.963 0.119 0.883 0.077 0.791 

Testing 0.818 0.663 0.876 0.876 0.337 0.769 0.182 0.538 
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Figure 11. Logistic Regression Confusion Matrix: 1179 Descriptor Set 
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Figure 12. Logistic Regression ROC: 1179 Descriptor Set 

 

Table 6. Logistic Regression Coefficients 1179 Descriptor Set 

Sr. Descriptors Coefficients 

0 Intercept -1.06262893 

1 SpDiam_B(m) 50.02708668 

2 ATSC7m 39.45904162 

3 nROR 38.14392325 

4 J_Dz(m) 37.69750303 

5 J_Dz(Z) 34.94809515 

6 meanDistFromCC 34.85094625 

7 SpMAD_B(m) 31.49826766 

8 ChiA_D/Dt 30.86856477 

9 P_VSA_ppp_A -31.67862306 

10 P_VSA_m_5 -32.82728164 

11 nCIR -33.02395796 

12 chiralMoment -33.15895957 

13 J_Dz(p) -34.30527496 
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14 O-059 -37.76760288 

15 s1_size -37.84041623 

16 ChiA_Dz(p) -39.4024263 

17 IDET -39.62337482 

18 Wi_Dz(p) -61.25856468 

19 StsC -67.26435048 

20 SpDiam_Dt -73.27013629 

 

 

4.2.1.2  Model Performance for 20 Descriptors 

The logistic regression model built with the second set of 20 descriptors yielded even 

higher accuracies than the model built on all descriptors, as seen in Table 7. The specificity, 

sensitivity, and precision rates are also seen to be high, while the FP rate is very low, indicating an 

even better model. The confusion matrix in Figure 13 shows the high number of correctly predicted 

compounds and the sparse number of incorrectly predicted compounds. The ROC curve in Figure 

14 is nearly at 45° with a high AUC value of 0.968, indicative of a nearly perfect model. This is 

also demonstrated in the high MCC value of 0.923. The model performances for the two descriptor 

sets can be compared in Table 8. The model coefficients and intercept are displayed in Table 7. 

 

Table 7. Logistic Regression Model Evaluation: 20 Descriptor Set 

Data Accuracy Specificity Sensitivity  Precision FP 

Rate 

AUC Classification 

Error 

MCC 

Training 0.979 0.938 0.994 0.978 0.062 0.980 0.021 0.946 

Testing 0.962 0.922 0.988 0.970 0.078 0.968 0.031 0.923 
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Figure 13. Logistic Regression Confusion Matrix for 20 Descriptors 

 

 

 

Figure 14. Logistic Regression ROC: 20 Descriptor Set 
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Table 8. Logistic Regression Coefficients: 20 Descriptor Set 

Sr. Descriptor Coefficient 

0 Intercept 0.915 

1 CATS2D_06_DL 4.401 

2 T(O..S) 3.715 

3 nLevel9 2.083 

4 P_VSA_ppp_ar 1.932 

5 H-049 1.842 

6 nLevel8 0.675 

7 s2_numAroBonds 0.614 

8 P_VSA_MR_7 0.531 

9 P_VSA_charge_1 0.524 

10 s3_numAroBonds 0.330 

11 CATS2D_07_DL 0.248 

12 Eig01_EA(dm) 0.112 

13 s2_size -0.398 

14 s4_numAroBonds -1.077 

15 s3_numRotBonds -1.240 

16 F[10C-O] -1.4970 

17 qnmax -1.658 

18 P_VSA_ppp_con -1.827 

19 T(N..N) -2.209 

20 T(N..O) -2.444 

 

4.2.2 SVM 

4.2.2.1 Model Performance for All Descriptors 

For the SVM built on all 1179 descriptors, Table 9 displays a comparison of the 

performance metrics. We can see that this model results in extremely good accuracy in both 

training and testing, with values above 80%. This is also seen in the confusion matric in Figure 16 
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and the ROC curve in Figure. 15The MCC value above 50% tells us that the predictions are likely 

not random and the AUC of above 80% indicates extremely good predictive performance. Overall, 

based on these results, we can conclude that the model is can accurately predict whether a molecule 

is an inhibitor or noninhibitor of CYP3A4. 

 

Table 9. SVM Model Evaluation: 1179 Descriptor Set 

Data Accuracy Specificity Sensitivity Precision FP 

Rate 

AUC Classification 

Error 

MCC 

Training 0.998  0.999 0.998  1.000   0.001 0.997  0.002   0.995 

Testing 0.848 0.718 0.895 0.897 0.282 0.805 0.153 0.612 

 

 

 

 

Figure 15. SVM ROC: 1179 Descriptor Set 
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Figure 16. SVM Confusion Matrix: 1179 Descriptor Set 

  

4.2.2.2 Model Performance for 20 Descriptors 

From the performance metrics in Table 10, we can see that the 20-descriptor set once 

against yields higher accuracies overall as compared to the 1179 descriptor set. The confusion 

matrix in Figure 17 shows the high number of correctly predicted compounds and the low number 

of incorrectly predicted compounds. The ROC curve in Figure 18 is nearly at 45° with a high AUC 

value of 0.987, indicative of a nearly perfect model. This is also demonstrated in the high MCC 

value of 0.956. The model performances for the two descriptor sets can be compared in Table 17. 
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Table 10. SVM Model Evaluation: 20 Descriptor Set 

Data Accuracy Specificity Sensitivity Precision FP 

Rate 

AUC Classification 

Error 

MCC 

Training 0.989 0.959 1.000 0.986 0.041 0.993 0.011 0.972 

Testing 0.982 0.940 0.999 0.977 0.060 0.987 0.018 0.956 

 

 

 

 

Figure 17. SVM Confusion Matrix: 20 Descriptor Set 
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Figure 18. SVM ROC: 20 Descriptor Set 

4.2.3 Decision Tree 

4.2.3.1 Model Performance for All Descriptors 

The Decision Tree in Figure 19 shows that, for the model built on the all-descriptor dataset, 

the D/Dtr05 descriptor was selected as the root node, which is a Ring descriptor that describes 

shortest distance between single rings at a certain position in the molecule. Moreover, the minssO, 

CATS2D_06_DL, WiA_D/Dt, MaxsOH, minssN and N% descriptors were selected as internal 

nodes. This shows that from 1179 descriptors in the data, these seven are integral for the 

classification of CYP3A4 inhibitors and noninhibitors.  

While the performance measures in Table 11 show that the model displays good accuracy 

of 79.5%, it shows a low MCC score of 35.8%. This may be due to the class imbalance present in 

the data, where noninhibitors outnumber inhibitors by almost 3 times. Since Decision Trees are a 

cost sensitive learning and rely on information gain, it is sensitive to class imbalance and will make 

more accurate predictions for the majority class, and less accurate ones for the minority class. The 

confusion matrix in Figure 20 shows that the model resulted in relatively high correctly predicted 

values, but also a high number of False Negative predictions as a result of the class imbalance 
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issue. Figure 21 shows the ROC curve which has an AUC value of 0.613. The good accuracy 

evaluation indicates that the Decision Tree model created using all descriptors and with the chosen 

parameters results in a good classification model. 

 

Table 11. Decision Tree Model Evaluation: 1179 Descriptor Set 

Data Accuracy Specificity Sensitivity Precision FP 

Rate 

AUC Classification 

Error 

MCC 

Training 0.806 0.837   0.803  0.981 0.163   0.632  0.194 0.412  

Testing 0.795 0.792 0.776 0.975 0.208 0.613 0.222 0.358 

 

 

 

 

 

Figure 19. Decision Tree Confusion Matrix: 1179 Descriptor Set 
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Figure 20. Decision Tree: 1179 Descriptor Se
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Figure 21. Decision Tree ROC: 1179 Descriptor Set 

 

4.2.3.2 Model Performance for 20 Descriptors 

The Decision Tree built on the 20-descriptor data set resulted in the tree in Figure 22. The 

tree shows that the H-048 descriptor was selected as the root node, which is Atom-centred 

fragments descriptor that quantifies the number of hydrogen atoms attached to 

C2(sp3)/C1(sp2)/C0(sp). Moreover, the S3_numRotBonds, CATS2D_06_DL, qnmax, and 

P_VSA_ppp_con descriptors were selected as internal nodes. This shows that from 20 descriptors 

in the data, these five are integral for the classification of CYP3A4 inhibitors and noninhibitors. 

The model built with the second set of 20 descriptors again yielded higher accuracies than the 

model built on all descriptors, as seen in Table 12. The specificity, sensitivity, and precision rates 

are also seen to be high, while the FP rate is lower, indicating an even better model. The confusion 

matrix in Figure 23 shows the high number of correctly predicted compounds and comparatively 

low number of incorrectly predicted compounds. The ROC curve in Figure 24 has an AUC value 
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of 0.592 indicating that the predictions are likely not random. The model performances for the two 

descriptor sets can be compared in Table. 

 

Table 12. Decision Tree Model Evaluation: 20 Descriptor Set 

Data Accuracy Specificity Sensitivity  Precision FP 

Rate 

AUC Classification 

Error 

MCC 

Training 0.796 0.857 0.791 0.987 0.143 0.606 0.204 0.370 

Testing 0.792 0.557 0.782 0.902 0.442 0.592 0.254 0.281 

 

 

 

 

Figure 

22. Decision Tree Confusion 

Matrix: 20 Descriptor Set 
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Figure 23. Decision Tree: 20 Descriptor Set
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Figure 24. Decision Tree ROC: 20 Descriptor Set 

 

4.2.4 Random Forest 

4.2.4.1 Model Performance for All Descriptors 

For the Random Forest model, the performance measures in Table 13 compares the 

accuracies for the training and test sets. The high training and testing set accuracies are indicative 

of a good model, as well as the low FP rate. The confusion matrix in Figure 25 shows that the 

model resulted in relatively high correctly predicted values and relatively low incorrectly predicted 

values. As Random Forests are built from multiple Decision Trees, it is susceptible to the same 

class imbalance problems as Decision Trees. This can be seen in the less than optimal ROC Curve 

in Figure 26, with the AUC of 0.6726, and the low MCC of 0.3999. 
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Table 13. Random Forest Model Evaluation: 1179 Descriptor Set 

Data Accuracy Specificity Sensitivity Precision FP 

Rate 

AUC Classification 

Error 

MCC 

Training 0.999 0.994  0.997  0.998   0.006  0.995 0.004 0.990  

Testing 0.806 0.694 0.802 0.936 0.306 0.6726 0.214 0.399 

 

 

 

 

Figure 25. Random Forest Confusion Matrix: 1179 Descriptors 
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Figure 26. Random Forest ROC: 1179 Descriptors 

4.2.4.2 Model Performance for 20 Descriptors 

The 20-descriptor dataset yielded higher performance measures than the Random Forest 

model built on the 1179 descriptor dataset, as seen by the higher accuracies and overall 

performance measures in Table 14. Similarly, the lower FP rate and classification error are 

indicative of satisfactory performance. The confusion matrix in Figure 27 shows the high number 

of correctly predicted compounds and the small number of incorrectly predicted compounds. The 

ROC curve in Figure 28 has an AUC value of 0.7034, indicating that the predictions are not 

random. This is also demonstrated in the MCC value of 0.517. The model performances for the 

two descriptor sets can be compared in Table. 

Table 14. Random Forest Model Evaluation: 20 Descriptor Set 

Data Accuracy Specificity Sensitivity Precision FP 

Rate 

AUC Classification 

Error 

MCC 

Training 0.996 0.994 0.997 0.998 0.006 0.995 0.004 0.990 

Testing 0.833 0.858 0.826 0.972 0.142 0.703 0.166 0.540 
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Figure 27. Random Forest Confusion Matrix: 20 Descriptor Set 

 

 

Figure 28. Random Forest ROC: 20 Descriptor Set 
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4.2.5 Multilayer Perceptron 

4.2.5.1 Model Performance for All Descriptors 

The Multilayer perceptron built on  the 1179 descriptor dataset yielded excellent 

performance as indicated by the performance measure results in Table 15. The confusion matrix 

in Figure 29 also shows that the model resulted in relatively high correctly predicted values and 

relatively low incorrectly predicted values. The ROC curve in Figure 30 has an AUC of 0.779, 

indicating that the predictions made by the model are not random. The performance evaluation 

indicates that the Multilayer Perceptron created using all descriptors and with the chosen 

parameters results in a good classification model. 

 

 

 

Table 15. MLP Model Evaluation: 1179 Descriptor Set 

Data Accuracy Specificity Sensitivity Precision FP 

Rate 

AUC Classification 

Error 

MCC 

Training 0.977 0.973 0.978 0.991 0.027  0.963  0.023 0.977 

Testing 0.950 0.725 0.863 0.918 0.275 0.779 0.167 0.950 
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Figure 29. MLP Confusion Matrix: 1179 Descriptor Set 

 

Figure 30. MLP ROC: 1179 Descriptor Set 
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4.2.5.2 Model Performance for 20 Descriptors 

The Multilayer Perceptron built on the second set of 20 descriptors yielded higher 

accuracies than the model built on all descriptors, as seen in Table 16. The specificity, sensitivity, 

and precision rates are also seen to be high, while the FP rate is very low, indicating an even better 

model. The confusion matrix in Figure 31 shows the high number of correctly predicted 

compounds and the low number of incorrectly predicted compounds. The ROC curve in Figure 32 

has an AUC value of 0.766, indicating that the predictions are not random. This is also 

demonstrated in the MCC value of 0.573. The model performances for the two descriptor sets can 

be compared in Table 17. 

 

 

 

 

Table 16. MLP Model Evaluation: 20 Descriptor Set 

Data Accuracy Specificity Sensitivity Precision FP 

Rate 

AUC Classification 

Error 

MCC 

Training 0.9802 0.981 0.980 0.994 0.019 0.967 0.020 0.947 

Testing 0.976 0.75 0.867 0.927 0.250 0.766 0.158 0.573 
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Figure 31. MLP Confusion Matrix: 20 Descriptor Set 

 

Figure 32. MLP ROC: 20 Descriptor Set
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Table 17. Model Performance Evaluation for all Models 

Cross Validated Machine Learning Results with 1079 Descriptors 

Sr Model Accuracy Specificity Sensitivity Precision FP Rate AUC Classification 

Error 

MCC 

1 SVM 0.848 0.718 0.895 0.897 0.282 0.805 0.153 0.612 

2 MLP 0.950 0.725 0.863 0.918 0.275 0.757 0.167 0.550 

3 Logistic Regression 0.818 0.663 0.876 0.876 0.337 0.769 0.182 0.538 

4 Decision Tree 0.795 0.792 0.776 0.975 0.208 0.613 0.222 0.358 

5 Random Forest 0.806 0.694 0.802 0.936 0.306 0.6726 0.214 0.399 

Cross Validated Machine Learning Results 20 Important Descriptors 

Sr Model Accuracy Specificity Sensitivity  Precision FP Rate AUC Classification 

Error 

MCC 

1 SVM 0.982 0.940 0.999 0.977 0.060 0.987 0.018 0.956 

2 MLP 0.976 0.75 0.867 0.927 0.250 0.766 0.158 0.573 

3 Logistic Regression 0.962 0.922 0.988 0.970 0.078 0.968 0.031 0.923 

4 Decision Tree 0.792 0.557 0.782 0.902 0.442 0.592 0.254 0.281 

5 Random Forest 0.833 0.858 0.826 0.972 0.142 0.703 0.166 0.540 
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5: Discussion 

CYP3A4 plays a vital role in the metabolism of majority of clinically available drugs. The 

large and flexible active site is accountable for the accommodation and metabolism of a wide range 

and number of substrates. Due to this, drug-drug interactions can occur that have a variety of 

adverse effects including decreased metabolism of a drug, ADRs, prolonged hospital stays and 

even mortality. Therefore, there is a need for screening protocols for new drug candidates against 

CYP3A4 to reduce the potential DDIs owing to inhibition, promising a higher chance of success 

of the drug candidate while also saving resources. Recently, Machine Learning techniques have 

been applied to solve drug design problems by predicating the biological activities of new chemical 

entities as well as predicting their tendencies to inhibit important biological compounds within the 

body105. In addition, machine learning models have been applied to extract features that are 

important in prediction106. The aim of this study was to build the best machine learning model on 

CYP3A4 datasets that would be able to classify and predict whether a new drug compound has the 

potential to inhibit CYP3A4, as well as to see which descriptors and structural properties of 

CYP3A4 inhibitors tend to lead to inhibition.  

The Machine Learning models built for the purpose of CYP3A4 inhibition prediction in 

current literature are mostly built using experimental datasets84,88,107. This study made use of 

publicly available CYP3A4 inhibitor data from the ChEmbl and PubChem libraries for the purpose 

of CYP3A4 inhibitor prediction and classification. Studies that made use of similar datasets often 

make use of the PubChem AID 1851, which consists of inhibition data for multiple CYP isoforms 

instead of just CYP3A451,89. These studies also build one type of machine learning model and aim 

to optimize the available model. This has its limitations as not every model works as well on every 

type of data108, as seen with the lower MCC values in the Decision Tree, Random Forest, and 

Multilayer Perceptron models in this study, as a result of class imbalance. The advantage of using 

multiple machine learning models is that the model that can perform best according to the data is 

available and provides the best results, instead working around the limitations of the model. This 

study also has the advantage of using and comparing 2 refined datasets, built on a relatively large 

dataset. The first dataset consisted of 1179 refined descriptors while the second was even further 

refined on the basis of feature importance. Feature refining has proved to be essential in machine 

learning, especially during the training process to increase the quality of the data and make it easier 

for the model to determine features important for decision making, as well as identify patterns in 
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the data109. Thus, the high-performance measures seen in all the models in this study can be 

attributed towards the refined data. The application of hyperparameter optimization also ensures 

that the model performs as best as possible and gives it the groundwork to make the best possible 

decision.  

Of the machine learning models built, the models built on the 20-descriptor dataset 

outperformed those built using the same classifiers but with all 1179 descriptors. This is because, 

while the 1179 descriptor dataset contains more information, not all this information is useful in 

classification, some may be useless, and some may in fact introduce discrimination into the model. 

The refined dataset contains only relevant information, making it easier for the model to identify 

key patterns for classification. 

Within the models generated using the 20-descriptor dataset, the MLP model provided  one 

of the best accuracies of 0.976. The MLP model also outperformed the other models when all 

descriptors were used. However, while the accuracies provided by these models were ideal, they 

tended to result in slightly less than ideal MCC and AUC values. This could be due to the relatively 

higher number of False Negative (FN) and False Positives (FP) results as seen above in the 

confusion matrixes in Figures 29 and 31. This increase in FNs and FP can be attributed to the class 

imbalance in the data, as there are nearly 4 times as many actives, or inhibitors, as compared to 

inactive, or noninhibitors. Studies have shown that class imbalance tends to deteriorate the MCC 

value in classification problems, and this has been seen in our study as well110. Similarly, other 

studies have also shown that deep neural networks tend to have high accuracies but also high FNs 

and FPs, leading to lower detection efficiency111. 

Resulting in only a slight increase in accuracy, SVMs provided the best accuracies (0.848 and 

0.982 respectively), followed by the Logistic Regression Models (0.818 and 0.962). However, as 

opposed to the MLP models, the SVMs and Logistic Regression models provided high 

performance evaluation results all around, including for MCC and AUC. SVMs have been used in 

previous studies to predict CYP3A4 inhibition, often with reliable results as seen in Table 1. 

However, the overall performance is better in all regards for the SVM model generated using the 

20-descriptor dataset in this study with the given hyperparameters. This means that this model is 

useful in identifying compounds with the potential of inhibiting the CYP3A4 enzyme and can be 

used early in the drug development process to screen new drug candidates for CYP3A4 inhibition. 
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On the other hand, Logistic Regression is not often used to predict CYP3A4 inhibition alone and 

is used in consensus with other machine learning models if at all. Even when used in consensus 

modeling, the logistic regression accuracies tend to be relatively low, with kappa values nearing 

0.5 whereas kappa values of 0.7 and above are considered to show good agreement112. Our logistic 

regression model is also useful in telling us which descriptors are most relevant during 

classification (Table 8). 

The decision tree models also provided us with vital information involving the relevance 

and importance of individual descriptors for classification. Similar to other studies, the model 

determined that the most important descriptor for classification was the H-048 or number of 

hydrogen bonds descriptor113. Our study also identified that the number of donor lipophilic atoms, 

rotatable bonds, maximum negative charge, and Vander Waals surface area for potentially 

pharmacophoric points are relevant features for classification. Overall, our decision tree also 

shows higher accuracy than decision trees used to predict CYP3A4 inhibition in literature and 

proved to be a reliable model90. 

According to already available literature, the presence of high overall negative charge in 

CYP3A4 inhibitors has been associated with more tightly bound ligands114. Increase in the amount 

of nitrogen, and hydrogen bonding has also been seen to be a determinant of CYP3A4 inhibition 

according to literature and is confirmed through the research performed in this study. Similarly, 

the study confirms what is known about lipophilicity and number of donor lipophilic atoms being 

a key characteristic in predicting inhibitor binding affinity and validates the presence of a high 

number of rotatable bonds being associated with high affinity CYP3A4 inhibitors, allowing the 

molecule to be more flexible and thus fit better within the binding pocket. The presence of a high 

number of aromatic moieties has been previously associated with higher affinity CYP3A4 

inhibition as well and is also indicated as an important descriptor during this study38. This increase 

in affinity is due to the increase in pi-pi interactions within the binding pocket, which has 

previously been determined as a common interaction between CYP3A4 and its inhibitors69. On the 

other hand, while the study has decreed the importance of Vander Waals surface area in potentially 

pharmacophoric points, not much information is available on this in the literature, making this a 

potentially novel insight into CYP3A4 inhibitors.  
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In general, all the models were useful in identifying compounds with the potential to inhibit 

CYP3A4. The SVM model and the logistic regression model built on the 20-descriptor dataset had 

the best all round results indicating that these models can be used for screening projects early in 

drug development. This also indicates the usefulness and importance of the descriptors present in 

Table 3 in CYP3A4 inhibition prediction and classification.  
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6: Conclusion 

One of the major challenges of drug design and development is overcoming the 90% failure 

rate of drugs, of which pharmacokinetics and drug metabolism problems play a huge role. Of all 

the enzymes involved in drug metabolism, the CYP3A4 isoform of the Cytochrome P450 enzyme 

has a major contribution towards the metabolism of drugs, as it is responsible for the metabolism 

of nearly 50% of clinical drugs. The presence of the enzymes large and highly promiscuous binding 

site makes CYP3A4 prone to inhibition and induction by other molecules, leading to drug-drug 

interactions as the inhibition of CYP3A4 by one drug can lead to altered metabolism of another 

drug leading to toxicity, ADRs, and mortality. For these reasons CYP3A4 is a valid target for 

screening purposes early in the drug development process and this also demonstrates the vital 

importance for the pharmaceutical industry and professionals to identify the likely effect of a drug 

candidate in terms of interactions with any CYP isoform well before time to avoid the losses 

associated with drug developmental failures at the later stages. 

This study aimed to build machine learning models to classify and predict CYP3A4 

inhibitors and noninhibitors, to be used for the early predication of CYP3A4 inhibitors in new 

chemical entities and thus determine the success of a drug early on in the drug development process 

while also gaining insight into which features are commonly present in CYP3A4 inhibitors. This 

was done by generating multiple machine learning models including Logistic Regression Models, 

SVMs, Decision Trees, Random Forests, and Multilayer perceptron on two sets of descriptor data, 

and the best model was selected. The descriptor set was generated using Alvadesc and refined 

using the feature importance function in the Python Scikitlearn Library to select the 20 most 

important descriptors that made up the second descriptor set. Hyperparameter optimization was 

used to select the parameters that had the best performance for each model, and the accuracies 

were cross validated for more reliable results. Model performance was evaluated by calculating 

accuracy, sensitivity, specificity, precision, FP rate, AUC, and MCC. These metrices were used to 

select the best model. All the model accuracies fell within the range of 79.2%-98.2%. 

While all the models performed well, the SVM and Logistic Regression models built on 

the 20-descriptor dataset performed the best with overall high results in all the evaluation metrices 

including accuracies of 98.2% and 96.2% respectively. This signifies that these models are the best 
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predictors of CYP3A4 inhibition and are valuable screening tools in the drug discovery process to 

accurately screen large datasets of CYP3A4 inhibitors  and new chemical entities.
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