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Abstract

Inter-area oscillations are one of the major threats to the stability of an interconnected

power system due to the fact that these oscillations involve generators from different

areas of a power system and hence may result in higher oscillation in the tie-line by

adding up effects from each of the participating generators. The success of oscillation

damping within a given duration, such as less than 15 seconds, is substantially corre-

lated with the safe operation of a contemporary power system. Since power systems are

highly non-linear in nature, with time varying parameters, and a specific control design

based on the linearized model may not ensure satisfactory performance under varied op-

erating scenarios. Therefore, a non-linear self-tuning controller is required that damps

inter-area oscillations in interconnected power systems under varied post-disturbance

operating conditions without requiring manual adjustment or re-tuning of controller pa-

rameters. An effective controller for power oscillation damping has been designed in this

research. Moreover, a powerful online batch training method for neural networks known

as the Levenberg-Marquardt (LM) algorithm is modified for computationally efficient

online estimation of power system’s dynamic behaviour and is referred as Computa-

tionally Efficient Levenberg-Marquardt (CELM) algorithm. A unique form of neural

network, referred as Computationally Efficient Neural Network (CENN), is proposed

that is compatible with the Feedback Linearizable Controller (FBLC), is used to ensure

non-linear self-tuning control. It has been demonstrated that using the modified version

of LM algorithm i.e. CELM algorithm for successive disturbance leads to better accu-

racy, faster convergence and offer less computational time than using the classical LM

algorithm.

Keywords: Inter-area oscillation, Damping, Non-linear estimation, Computationally

efficient neural network (CENN), Levenberg-Marquardt (LM), Computationally efficient

Levenberg-Marquardt (CELM), Feedback linearization control (FBLC).
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Chapter 1

Introduction

1.1 Background

Electric power supply networks are huge and integrated in a complex way. Deregulation,

reregulation, restructuring, and the uncertainty of what is still to come have caused util-

ities in many regions of the world to make varied investment decisions. Over the years,

the process of obtaining approval to build new transmission lines has become extraordi-

narily complicated, time-taking, and costly [4]. The load on current transmission lines

will increase continuously, necessitating the most efficient use of existing transmission

assets. Furthermore, the producing sites (for example, in Pakistan) are far away from

the load centers, so power must be transmitted across a great distance. The main

challenge in this scenario is ensuring the security of power supply, when there are low

frequency electro-mechanical oscillations [2, 5]. The oscillations, in a frequency range

of 0.1Hz to 1.0Hz, are mostly owing to the back and forth movement of one generator

group in relation to another [6]. Oscillatory instability has been blamed for a number

of instances, some of which resulted in infamous blackouts affecting huge areas [3]. This

causes network operators to take a cautious approach in order for the system to run

within a reasonable stability margin, resulting in inefficient use of current assets.

Over the last four decades, significant progress has been made in the addition of sup-

plementary control to damp the unwanted oscillations [7–22]. The criteria for damping

these unwanted oscillations vary by benefit, for instance, in european countries, a settling

time of 10 to 15 seconds is mandatory [23]. The utilization of power system stabilizers

(PSS) [7] is a well-known and economical method to improve power system stability.
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Chapter 1: Introduction

In recent times, flexible ac transmission system (FACTS) devices has entered the con-

trol space and has shown to be a long-term, low-cost solution for improving reliability

and transmission capacity [24–29]. FACTS devices make it possible to regulate power

flow more precisely and load transmission lines safely such that they are loaded close to

their thermal limits [30–33], making them a practical substitute for the building of new

transmission lines. Furthermore, because they are installed on transmission lines, these

instruments have direct access to the factors influencing inter-area oscillation.

Typically, the dynamics of a power system is enhanced by modulating the excitation

system of generators. For years, PSS have been primarily utilized to mitigate oscillations

[34]. For control design, traditional model-based procedures are utilized, which depend

on the provision of correct system parameters. This is dependent on precise knowledge

about the factors involved, such as load current, voltage, frequency, and so on [35]. In

a real-time context, obtaining these critical parameters can be difficult. Independent

power producers (IPPs) will make the expanding interconnected power systems even

more complex. As a result, the focus of study is on control design based on input-

output mapping of the system, which eliminates the need for precise knowledge about

the system parameters.

1.2 Problem Statement

Power systems are highly non-linear with time varying parameters, and a fixed control

design based on the linearized model may not guarantee satisfactory performance over

various operating conditions. Therefore, a non-linear self-tuning controller is required

that damps inter-area oscillations in interconnected power systems under varied post-

disturbance operating conditions without requiring manual adjustment or re-tuning of

controller parameters.

1.3 Research Motivation

Although traditional control strategies are simple, but they have a limited working

range. Traditional non-adaptive designs are constructed close to the nominal operating

point, they may produce oscillations that are poorly damped or even unstable, due to

uncertainties and drastic changes in operating conditions [28]. Use of robust control

2



Chapter 1: Introduction

techniques can increase the performance range of such a linear controller [36–38]. How-

ever, with significant disturbance, the post-disturbance system may deviate significantly

from its nominal operational states and may even outperform the robust controllers per-

formance range. The key risk for network operators is that the system may migrate to

an unanticipated operating condition or network structure after a disruption, such as a

bus malfunction followed by a transmission network loss. Hence, a self-tuning controller

is needed to maintain proper damping throughout a wide range of operating conditions.

In order to increase stability, the controller must quickly recognise electro-mechanical

oscillations, estimate the suitable parameters of the controller, and implement the nec-

essary control actions.

The control of FACTS devices has recently been the focus of efforts. Until now, the

PSS/FACTS controller settings have been derived using a linearized power system

model. The parameters of the FACTS devices must be adjusted in reaction to the

oscillations, in order for them to offer suitable damping over variety of operating points.

With time-varying parameters, power systems are really non-linear, so a specific con-

trol strategy based on the linear system might not perform well enough in a range of

operating scenarios. [39]. Furthermore, restricting the controller to the linear domain

may not be feasible, particularly under extreme stress circumstances [40]. As a result,

a non-linear self-tuning controller that considers system non-linearities and adjusts to

changing operating conditions could potentially produce better outcomes [41].

The major intent of this study is to develop a non-linear self-tuning controller that damps

inter-area oscillations in interconnected power systems under varied post-disturbance

operating conditions without requiring manual adjustment or re-tuning of controller

parameters. Also, it should only necessitate a basic understanding of the system and

its post-disturbance operating conditions. Moreover, a powerful online batch training

method for neural networks known as the Levenberg-Marquardt (LM) algorithm is mod-

ified for improved online estimation of power system dynamic behaviour and is named

as Computationally Efficient Levenberg-Marquardt (CELM) Algorithm. A unique form

of neural network, named as Computationally Efficient Neural Network (CENN), is pro-

posed that is compatible with the Feedback Linearizable Controller (FBLC) is used to

enable non-linear self-tuning control. It has been demonstrated that using the modified

version of LM algorithm i.e. CELM for successive disturbance leads to improved accu-

racy, faster convergence and offer less computational time than using the typical LM

3
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Figure 1.1: Control architecture employing computationally efficient neural network (CENN)

with computationally efficient levenberg-marquardt (CELM) in conjunction with

feedback linearizable controller (FBLC)

algorithm.

1.4 Research Objectives

The main objectives of this thesis are:

• Modelling of power system behaviour using the neural network modelling tech-

nique(s).

• Simulate the behavior of the power system using the online estimation tech-

nique(s).

• Optimized neural network design to make the model computationally inexpensive.

• Design a controller based on the proposed neural network model for inter-area

oscillation.

Power system design is not considered in this research work. A schematic outline of the

control architecture is shown in Figure. 1.1.

In summary, the non-linear self-tuning controller is investigated in this thesis in or-

der to damp oscillations in power system. Non-linear model has considered for the

4



Chapter 1: Introduction

power system. For estimation of parameters, online modified levenberg-marquardt i.e.

computationally efficient levenberg-marquardt (CELM) in batch mode is used. On the

4-machine 2-area power system [2], the computationally efficient neural network - com-

putationally efficient levenberg-marquardt (CENN-CELM) in conjunction with feedback

linearizable controller (FBLC) is tested.

1.5 Description of the power system

The method to simulate a variety of power system components is quite typical. The

main goal of power system stability is to maintain all of the connected machines in

sync [42, 43]. Their stability is also influenced by a number of other factors. such as

speed governors, generator excitation systems, loads, and the FACTS devices etc. A set

of non-linear differential algebraic equations (DAE) describes the dynamic behaviour of

an interconnected power system. The model employed in this study, which is useful for

studying inter-area oscillations, is decribed in [44].

1.5.1 4-Machine 2-Area Power System

The case study uses a 4-machine, 2-area power system [2], as depicted in Figure. 1.2.

which is a benchmark model for studying inter-area oscillations. Approximately 400MW

flows from area 1 to area 2 via a 220 km transmission line at steady state. A thyristor

controlled series capacitor (TCSC) is inserted in one of the lines to manage and facilitate

this tie-line power flow [45]. It provides 10% compensation in steady state and has a

dynamic range of variation from 1% to 50%. When a disturbance occurs in the system,

poorly damped oscillations are brought on by the presence of a lightly damped inter-area

mode. The goal is to create a TCSC control scheme that reduces undesirable oscillations.

For this simple system, there are two plausible line outage scenarios that can be imple-

mented while maintaining system integrity. These are either a line outage linking buses

7 and 8 or a line outage linking buses 8 and 9, both of which cause inadequately damped

inter-area oscillations. For the reasons stated in [6], an extra damping control for the

TCSC using the observed flow in line 10 - 9 will be created.

5
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G1 G3

G2 G4

1 5 6 7 8 9 10 11 3

Area - 1 Area - 2
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25
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- -

Figure 1.2: 4-Machine 2-Area Power System [2]

1.6 Thesis Organization

The thesis has organized as follows:

Chapter 2 discusses literature review, and it focuses on the techniques, algorithms and

methods applied by researchers for power system oscillation damping control.

Chapter 3 explains the methodology used in this research. It explains the fundamental

concept of self-tuning controller. The detailed study and modelling of neural network

(NN) and computationally efficient neural network (CENN), that is compatible with

feedback linearizable controller (FBLC) is done. Later, this chapter explains the classical

Levenberg-Marquardt (LM) algorithm and its modified version (CELM) in detail. The

chapter ends with the explanation and derivation of feedback linearizable controller

(FBLC).

Chapter 4 compares the results between computationally efficient neural network

(CENN) - classical Levenberg-Marquardt (LM) and computationally efficient neural

network (CENN) - computationally efficient Levenberg-Marquardt (CELM) in terms

of accuracy, convergence and computational time. The efficiency of online modified

LM approach i.e. CELM for non-linear estimation is shown through a case study on a

4-machine 2-area power system.

Finally, Chapter 5 highlights conclusions from this work, and gives direction towards

future research.

6



Chapter 1: Introduction

1.7 Thesis Contributions

In this study, a measurement-based controller i.e Feedback linearizable controller (FBLC),

is designed that requires little prior knowledge of the system’s parameters and post-

disturbance operating conditions to damp inter-area oscillations in the power system.

For the estimation of the power system, a classical Levenberg-Marquardt (LM) algo-

rithm has been transformed into an online Levenberg-Marquardt approach referred as

computationally efficient Levenberg-Marquardt (CELM) in sliding window batch mode.

To capture the non-linearities in system responses, a novel structure of neural network

i.e. computationally efficient neural network (CENN) has been implemented with the

computationally efficient Levenberg-Marquardt (CELM) algorithm. The computation-

ally efficient neural network structure (CENN) in conjunction with computationally

efficient Levenberg-Marquardt (CELM) estimator has utilized in a closed loop using

a feedback linearizable controller (FBLC), which has been demonstrated to produce

improved performance in terms of accuracy, convergence, and computational time than

computationally efficient neural network structure (CENN) in conjunction with classical

Levenberg-Marquardt (LM) estimator.

7



Chapter 2

Literature Review

Electric power supply networks are extensive and intricately linked. Utilities have made

a variety of investment decisions across the globe as a result of deregulation, reregulation,

restructuring, and the unknown future. The approval procedure for new transmission

lines has grown incredibly arduous, pricey, and time-taking over the years [4]. The

most effective utilization of the currently available transmission assets is required due

to the increasing demand on the current transmission networks. Furthermore, power

must be carried across a considerable distance because the producing sites, for instance,

in Pakistan are far from the load centers. In this situation, maintaining the security

of the power supply, when there are low frequency electro-mechanical oscillations, is

the key difficulty [2, 5]. These oscillations, which occur between 0.1 and 1.0 Hz, are

mostly caused by the back and forth movement of one group of generators in relation

to another [6]. Numerous occurrences, most of which resulted in infamous blackouts [3]

impacting vast areas, have been attributed to oscillatory instability. In order for the

system to operate within a sufficient stability margin, this compels network operators

to take a cautious stance, which results in the inefficient utilization of current assets.

The capability of power systems to keep them stable and guarantee uninterrupted elec-

trical supply to clients in the event of a disturbance is of critical importance [46, 47].

Since the power system is dispersed over wide geographic areas, it is likely that it may

experience a variety of faults and failures [48]. Unfortunately, unforeseen errors and

cascading events frequently result in blackouts that could have an impact on modern

life [3]. Contemporary power systems are operated close to their steady state stability

as energy demand rises, which can quickly result in a crisis condition [49–51]. There-

8



Chapter 2: Literature Review

Country/Region Date cause(s)

Mexico and USA September 8, 2011 Transmission line tripping

Brazil February 4, 2011 Transmission line fault and fluctuated power flow

India July 30, 2012 Transmission line overload

Philippines August 6, 2013 Voltage collapse

Bangladesh November 1, 2014 HVDC station outage

Pakistan January 26, 2015 Plant technical fault

Turkey March 31, 2015 Power system failure

Sri Lanka March 3, 2016 A severe thunderstorm

USA March 1, 2017 Cascading failure in transmission system

Sudan January 10, 2018 Cascading failures

Azerbaijan July 3, 2018 Unexpectedly high temperatures

Brazil March 21, 2018 Transmission line failure

Canada December 20, 2018 Winds reached speeds of 100 km/h

Table 2.1: A list of the severe power outages that have been reported globally in the past ten

years [3]

fore, in order to handle disruptions, contemporary power systems must be outfitted with

proper control and protection mechanisms. Decades of research have been conducted

on a power system’s capacity to maintain steady state and transient stability [52,53].

Significant progress has been achieved over the past 40 years in the inclusion of sup-

plemental damping control to increase security margin by removing undesirable oscil-

lations [7–22]. The requirements for reducing these oscillations differ depending on the

utility; for instance, in Europe, a settling time of 10–15 seconds is necessary [23]. One

of the most practical and affordable methods to increase power system stability is the

employment of power system stabilizers (PSS) [7]. In recent times, flexible ac trans-

mission system (FACTS) devices has entered the control domain and has shown to be

a long-term, low-cost solution for increasing transmission capacity and improving reli-

ability [24–29]. FACTS devices are practical substitute for building new transmission

lines because they enable more precise management of power flow and safe loading of

transmission lines close to their thermal limits [30–33]. However, they are installed

on transmission lines, these instruments have direct access to the factors influencing

9



Chapter 2: Literature Review

inter-area oscillations.

Typically, the dynamics of a power system is enhanced by modulating the excitation

system of generators. For years, PSS have been primarily utilized to mitigate oscillations

[34]. For control design, traditional model-based procedures are utilized, which depend

on the provision of correct system parameters. This requires detailed information of the

contributing components, including load current, voltage, frequency, and others [35].

It can be challenging to gather these crucial parameters in a real-time setting. The

interconnection of the power system will become more complex as a result of independent

power producers (IPPs). The study eliminates the need for exact information about

system components by concentrating on control design based on system input-output

measurements.

Although traditional control strategies are simple, they have a limited working range.

Traditional non-adaptive designs are constructed close to the nominal operating point,

they may produce oscillations that are poorly damped or even unstable, due to uncer-

tainties and drastic changes in operating conditions [28]. Use of robust control tech-

niques can increase the performance range of such a linear controller [36–38]. However,

with significant disturbance, the post-disturbance system may deviate significantly from

its nominal operational states and may even outperform the robust controllers perfor-

mance range. The key problem for network operators is the migration of system to an

unanticipated operating condition or network topology after a disruption, such as a bus

malfunction followed by a transmission network loss. A self-tuning controller is needed

to maintain proper damping throughout different operating points. To increase stability,

the controller must quickly recognize electro-mechanical oscillations, determine the op-

timal controller settings, and implement the necessary control actions, such as damping

the least stable modes.

Recently, initiatives have been made to enhance FACTS device control. Uptil now,

a linearized power system model has been used to create the PSS/FACTS controller

parameters. To adequately dampen at a variety of operating points, the settings of

FACTS devices must be fine-tuned in response to the oscillations. With time-varying

parameters, power systems are highly non-linear, and a specified control scheme based

on the linear model may not provide sufficient performance under a variety of operating

conditions [39]. Additionally, it might not be possible to limit the controller to the linear

10
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domain, especially in high-stress circumstances [40]. Because of this, a non-linear self-

tuning controller that takes into account system non-linearities and adapts to altering

operating conditions may result in superior outcomes [41].

Power systems have highly non-linear behaviour, and stressful operating circumstances

amplify the effects. On the other hand, linear controllers are usually built to provide

acceptable performance in a single operating circumstance. Additionally, it calls for ac-

curate system parameter knowledge, which is generally challenging to attain. To ensure

that the controller is "self-tuned" in each working state, reducing the dependency on a

correct system model, many adaptive procedures have been developed [54–56]. Similar

approaches have been utilised for applications involving the power system. For power

system stabilisers (PSS) [7] and flexible ac transmission systems (FACTS) devices [28],

self-tuning control based only on observed signals has been proposed to address some

of the difficulties of model-based designs. Self-tuning control scheme, has guaranteed

better performance as compared to classical control schemes [57–59].

In order to predict the oscillatory behaviour of the power system using least square

methods, the auto-regressive with an external input (ARX) form or standard neural

network (NN) structures are frequently utilised [60,61]. For linear control based on ap-

proximation models, pole-shifting controllers have received a lot of support [62]. On the

other hand, the existence of non-linearities in the measured signal can affect the perfor-

mance of the linear controller [63]. Although numerous researchers have created neural

network-based non-linear approximators and controllers [39, 64–67], it is challenging to

obtain a standard non-linear control framework.

The auto-regressive with external input (ARX) model is commonly used in linear system

identification, in combination with the RLS algorithm [68–70]. With this approach,

the neural network structure can be used, however the model must be expressed as

linear in parameter [71]. These strategies may not always produce satisfactory results

due to the substantial non-linearities in power systems. The non-linear model and

precise parameter estimation are therefore essential for the representation of the power

system. Because of their ability to generalise and learn, neural networks are frequently

used to explain non-linear systems [39]. In recent years, online estimation of input-

output mapping of non-linear systems has been reported using different frameworks

of artificial neural networks (ANN) [72] that includes, multi-layer perceptron (MLP),

11
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Elman neural network (ENN), radial basis function (RBF), recurrent neural network

(RNN) and simultaneous recurrent neural network (SRN) [26,39,73–76]. To update the

neural network parameters online, these methods commonly use back-propagation (BP)

or back-propagation through time (BPTT). These algorithms can quickly adjust the

settings and return the system to normal because of their capacity to learn and adapt to

system changes. The back-propagation algorithm has limitations in terms of convergence

speed and accuracy [26,39,75] and its learning process is slow [77]. However, Levenberg-

Marquardt [78] algorithm used in sliding window batch mode, allow model parameters

to converge faster and with more precision than the back-propagation approach [79].

Levenberg-Marquardt (LM) algorithm has the benefit to save training time and to reduce

error oscillations [80]. Recent developments in modifying Levenberg-Marquardt (LM)

algorithm, for better performance has proven to be more effective [81,82].
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Methodology

3.1 Self-Tuning Control - An Overview

The topic intents to provide a summary of self-tuning control (STC), which includes the

identifier and controller. Modeling, estimation, and control design techniques make up

the self-tuning control’s overall framework.

3.1.1 Basic Concepts

The majority of industrial processes are stochastic in nature. Traditional controllers for

these systems often work with specific parameters and are inadequate because variation

is always present. This is because of how things are made, the materials used, the

fuel used, the usage of machinery, etc [83]. Applying self-tuning control is one way to

enhance the standard of control for such processes.

The basic purpose of a self-tuning control is to develop an algorithm that will automat-

ically adjust the model’s parameters to satisfy the intended specifications. Performance

is achieved using an adjustment mechanism that keeps track of the system and the

controller’s associated coefficients.

The dynamics of systems can change in control engineering and these changes can hap-

pen at any time and might not be accounted for by a robust design. The adjustment

mechanism, however, offers a means of adjustment to system change in self-tuning con-

trol. The controller is also simple to tune if the system changes in future. For example,

The change in flow control is the most frequent control loop in the process industry.
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Figure 3.1: Self-tuning control scheme

The practice of replacing valves with differing specifications is prevalent. Such a loop’s

self-tuning control automatically tunes to updated valve specifications.

3.1.2 Composition of Self-tuning Control

Automating the tuning of the control systems is the goal of self-tuning control. The

following are the key phases in the creation of such control systems:

1. System’s behavior modeling.

2. Controller design.

3. Controller implementation.

The idea of self-tuning control is demonstrated in Figure 3.1, where the controller is

given the estimated system parameters in order to produce the desired response. System

identifier, control synthesis, and a controller are the related components of self-tuning

control. Utilizing the available input-output measurements, the modeling and identi-

fication of the system behavior constitute the initial phase. This is used to estimate

parameters of the controller and get the system to respond as required [84]. It is impor-

tant to remember that the controller’s parameters are determined by extrapolating the

system parameter estimates from the real system parameters.
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Depending on one’s viewpoint, system modeling and simulation can have a variety of

different meanings. For a system designer, simulation often entails utilizing a slightly

reduced model of the system that is computationally simple, efficient and physically

realistic enough to represent the behavior of the system. Designing model of a system

is essentially, a combination of empirical techniques and physical laws based on the

system’s observable behaviour. System identification is the process of creating a model

using measured input and output data [85]. The desired controller intends to make

use of the mathematical model of the fundamental information produced by the system

identification. Synthesis is carried out in accordance with an objective function and may

adhere to design criteria or algorithms. These are algorithms that result in a certain

controller from a particular model representation [60]. This strategy, called “self-tuning

control” is employed in this research work. The three steps that make up the design

approach are as follows:

• Step 1: Model employed in System Identification

• Step 2: Estimation Algorithm

• Step 3: Control Design

These three steps are described in the next sections.

3.2 Model employed in System Identification

3.2.1 Neural Network (NN) - An Overview

An artificial neural network (ANN) is a computational model that resembles the be-

haviour of nerve cells in the human brain. Artificial neural network (ANN), sometimes

referred as neural network (NN) make use of learning algorithms that enable them to

freely adjust or learn as they process new data. Neural network is incredibly effective

and expanding quickly in the numerous applications, such as those requiring informa-

tion processing, learning, and adaption activities. Following the publication of Defense

Advanced Research Projects Agency (DARPA), neural network study report in 1988,

NN applications in the fields of aerospace, automotive, defense, electronics, robotics, oil

and gas, and other fields are growing swiftly [78]. Mostly, NN is an adaptable system
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that modifies its structural parameters in response to data entering or leaving the net-

work. In contrast to the biological role model, components of mathematics, statistics,

and optimization are pursued in our study. A tool for simulating complex interactions

between inputs and outputs is provided by the modelling of non-linear data using neural

networks. The significant characteristics of NN are:

• It has a large number of neurons, which are interlinked processing units, that

perform all operations.

• The basic unit of information stored in neurons is the weighted link of neurons.

• Through links and linking weights, the input signals reach the processing units.

• By appropriately assigning and adjusting weights, it may learn from the provided

data and recall it as well as make generalisations.

Depending on the type of application, the structures of neural network are simple to

modify into a required form. A basic NN structure consists of:

• Input layer

• Hidden layer(s)

• Output layer

An input neuron is a node at the input, and the input layer is made up of all input

neurons. An output neuron is a node at the output, and the output layer is made up of

output neuron(s). The hidden layer is the collective term for all of the central neurons

that realize the activation function known as hidden layer neurons. Through input and

output links known as input/output weights, these three layers i.e. input layer, hidden

layer(s), and output layer are interconnected.

Figure 3.2 shows the basic structure of neural network (MLP) with a bias, a hidden layer

and an output. This topology is termed as ‘h − 1’ feed-forward MLP neural network

where ỹ(k + 1) is the estimated output. ‘h’ is the number of neurons in hidden layer

and has a single node in output layer. This structure is capable to perform non-linear

input-output mapping Rn+m → R. Every connection made from one layer to the next

is represented by a synaptic weight matrix for that layer [71].
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Figure 3.2: A Basic Structure of Neural Network (MLP)

‘n’ is the number of past control inputs and ‘m’ is the number of past measurements.

‘Wij ’ are the weights of input layer. ‘Woi ’ are the weights of output layer. ‘bi’ is the

vector of bias. For i = 1, 2, ..., h and j = 1, 2, ..., n+m.

In basic function formulation, the MLP can be written as:

ỹ(k + 1) =
h∑︂

i=1
Woi × Ψi{bi + (

n+m∑︂
j=1

Wij ×Xj)} (3.2.1)

where Xj = [ u1 u2 . . un y1 y2 . . ym ] is the NN input vector and Ψ is the acti-

vation function in the hidden layer. Thr neuron in hidden layer use non-linear logistic

function defined as:

Ψ(χ) = 1
1 + e−(χ) (3.2.2)

where

χ =
n+m∑︂
j=1

Wij ×Xj ϵR

Define:

Ψ ∆= [ ψ1 ψ2 . . ψh ]T ϵRh (3.2.3)
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Figure 3.3: Computationally Efficient Neural Network (CENN)

and

Wo
T ∆= [ Wo1 Wo2 . . Woh ] ϵRh (3.2.4)

by substituting (3.2.3) and (3.2.4), (3.2.1) becomes:

ỹ(k + 1) = Wo
TΨ (3.2.5)

For updating the parameters of NN, we have the following options:

1. Update all the input weights Wij and output weights Woi . The output ỹ in (3.2.5)

is a non-linear function of the parameters Wij . This is owing to the selection of

non-linear activation functions in the hidden layer.

2. Since (3.2.5) is linear in parameter, so the output weights are just tuned in this

technique.

Wo
T = Woi (3.2.6)

The output ỹ in (3.2.5) is a linear function of the parameter vector Wo.

3.2.1.1 Computationally Efficient Neural Network (CENN)

The feed-forward MLP NN’s incompatibility with the traditional non-linear control

framework is a challenge. To address this challenge, a non-linear model that is com-
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putationally efficient and is compatible with feedback linearizable controller (FBLC) is

proposed and is referred as computationally efficient neural network (CENN) shown in

Figure 3.3.

The output of computationally efficient neural network (CENN) with a single hidden

layer and a single output with bias can be expressed as in (3.2.7).

ỹ(k + 1) = Wo
∗ × Ψ{b∗ + (W∗ × [ū, ȳ])} (3.2.7)

where, ỹ(k + 1) is the estimated output

Wo
∗ = [ Wg

∗
(1,n−1) Wf

∗
(1,m) ]

b∗ = [ b∗
1 b∗

2 . . b∗
h ]

W∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

W ∗
11 W ∗

12 · · · · · · W ∗
1(n−1+m)

W ∗
21 W ∗

22 · · · · · · W ∗
2(n−1+m)

...
... · · · · · ·

...

W ∗
h1 W ∗

h2 · · · · · · W ∗
h(n−1+m)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where:

h = No. of hidden layer neurons of size, Rn−1+m

ū = [ u1 u2 . . un−1 ]T

ȳ = [ y1 y2 . . ym ]T

Ψ = hidden layer activation function (log-sigmoid)

m = no. of past measurements

n = no. of past control inputs

Wf
∗ = output weights to function f(x)

and Wg
∗, output weights to function g(x) is kept constant.

3.3 Estimation Algorithm

When using self-tuning control, parameters are estimated iteratively, allowing the es-

timated model to be updated as soon as new input-output data become available at
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sampling moment ‘k’. Model estimation scheme is shown in Figure 3.4, which compares

the observed output ‘ỹ’ with the measured output ‘y’ to produce an error ẽ(k). The

estimation algorithm LM and CELM use this error to update the model parameters at

each sampling instant.

3.3.1 Levenberg-Marquardt (LM) Algorithm

For the least squares estimate of non-linear parameters, the damped Gauss-Newton ap-

proach was proposed by Levenberg in 1944 and Marquardt in 1963 [86]. LM, which

combines the steepest descent and Gauss-Newton methods in a unique way, has recently

emerged as a formal approach for solving non-linear least squares problems. It is an

iterative approach that is stated as the sum of squares of non-linear functions and is typ-

ically used for off-line optimization [86]. This approach behaves like a Steepest-Descent

method when the present solution is far from the correct one, yet it still converges. On

the other hand, it turns into a Gauss-Newton method when the present solution reaches

close to the correct one [78].

The aim is to create an algorithm that minimizes the cost function fc(x), optimizes the

performance index, and determines the value of the parameter vector x. The Newton

method will be evaluated in the following in order to derive the LM algorithm because
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of its higher performance and usage of precise knowledge about second order derivative.

The great benefit of this method is that the Hessian is only approximated using the first

order derivative.

The typical Newton method, based on second order Taylor’s series is expressed as:

fc(xk+1) = fc(xk + ∆xk ≈ fc(xk) + ∇fc
T (x)|x=xk

∆xk + 1
2∆xk

T ∇fc
2(x)|x=xk

∆xk

(3.3.1)

The stationary point of fc(x) is located here as:

∇fc
T (xk) + ∇fc

2(xk)∆xk = 0

solving for ∆xk produces

∆xk = −[∇fc
2(xk)]−1∇fc

T (xk)

since

∆xk = xk+1 − xk

Hence, the typical Newton method becomes:

xk+1 = xk − [∇fc
2(xk)]−1∇fc

T (xk) (3.3.2)

Assuming fc(x) is a sum of square function and we find the vector ‘x+’ which minimizes

the squared distance eT e, stated as:

fc(x) =
d∑︂

i=1
ei

2(x) = eT (x)e(x) (3.3.3)

where ‘d’ is number of elements in data set. A non-linear optimization technique such

as LM has to be used, if the gradient of the cost function is non-linear in parameter ‘x’,

to search for the optimal parameter ‘x+’. The gradient of jth element would be:

|∇fc(x)|j = ∂fc(x)
∂xj

= 2
d∑︂

i=1
ei(x) · ∂ei(x)

∂xj

In matrix form:

∇fc(x) = 2JT(x)e(x) (3.3.4)
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where,

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂e1(x)
∂x1

∂e1(x)
∂x2

· · · ∂e1(x)
∂xn

∂e2(x)
∂x1

∂e2(x)
∂x2

· · · ∂e2(x)
∂xn

...
...

...

∂ed(x)
∂x1

∂ed(x)
∂x2

· · · ∂ed(x)
∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Now, find the Hessian matrix of (3.3.2). The k, j element of the Hessian would be:

|∇fc
2(x)|k,j = ∂f2

c (x)
∂xk∂xj

= 2
d∑︂

i=1

(︄
∂ei(x)
∂xk

· ∂ei(x)
∂xj

+ ei(x) · ∂
2ei(x)
∂xk∂xj

)︄

In matrix form:

∇2fc(x) = 2JT(x)J(x) + 2Q(x)

where,

Q(x) =
d∑︂

i=1
ei(x) · ∇2ei(x)

Assuming Q(x) is small and can be ignore, then the approximated Hessian becomes:

∇2fc(x) = 2JT(x)J(x) (3.3.5)

by Substituting (3.3.4) and (3.3.5) into (3.3.2), we get:

xk+1 = xk − [2JT(x)J(x)]−12JT(x)e(x)

= xk − [JT(x)J(x)]−1JT(x)e(x) (3.3.6)

This approach may not yield the invertible matrix JTJ. To solve this issue, we change

the (3.3.6) into a form that ultimately results in the Levenberg-Marquardt (LM) algo-

rithm:

xk+1 = xk − [JT(x)J(x) + λI]−1JT(x)e(x) (3.3.7)

where, ‘λ’ is the learning rate. LM acts like a steepest descent algorithm when λ tends

to increase. We get:

xk+1 = xk − 1
λ

JT(x)e(x)
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Also, it acts like a Gauss-Newton method when λ tends to zero.

An effective way to select the value of λ is that, a small value is chosen initially and if this

value of λ does not produce the smaller value in the cost function expressed in (3.3.3),

then the value of λ is increased further to a factor v > 1. This results in decrement of the

cost function fc(x) and LM algorithm becomes steepest-descent method. by increasing

the value of λ, if it produces smaller value in the cost function fc(x), then λ is divided

by a factor v > 1. This converts the LM algorithm into a Gauss-Newton method. As a

result, the LM algorithm achieves a good balance between the assured ‘convergence’ of

the steepest- descent method and the ‘speed’ acquired by the Gauss-Newton method [78].

3.3.1.1 Working of CENN-LM and CENN-CELM

The CENN updating equation is given as:

ỹ(k + 1) = f(ū, ȳ) + [g(ū, ȳ) × u(k)] (3.3.8)

For LM, subject to:

||∆P|| ≤ ϵ2 × ||P|| + ϵ2

where,

P =
[︃
W ∗

i1 W ∗
i2 · · · W ∗

ih ; b∗
1 · · · b∗

h ; W ∗
f1 · · · W ∗

fm

]︃

For, i = 1, ..., h and h ϵRn−1+m

For CELM, subject to:

||∆W ∗|| ≤ ϵ2 × ||W ∗|| + ϵ2

||∆b∗|| ≤ ϵ2 × ||b∗|| + ϵ2

||∆W ∗
f || ≤ ϵ2 × ||W ∗

f || + ϵ2

The equation (3.3.8) can be rewritten as:

ỹ(k + 1) =
h∑︂

i=n+1
[W ∗

oi
× Ψi{bi

∗ +
n−1+m∑︂

j=1
(W ∗

ij ×Xj)}]

+
n−1∑︂
i=1

[W ∗
oi

× Ψi{bi
∗ +

n−1+m∑︂
j=1

(W ∗
ij ×Xj)} × u(k)]

(3.3.9)
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where: h = no. of hidden layer neurons of size, Rn−1+m.

X = [ū, ȳ]T , u = [ u(k − n+ 1), u(k − n), . . u(k) ] is the vector of previous n control

inputs and y = [ y(k −m+ 1) y(k −m) . . y(k) ] is the vector of past m measure-

ments. Ψ(.) is a non-linear activation function, here, Ψ(.) = log − sigmoid(.) = 1
1+e−(.) .

The estimated output in (3.3.9) can be expressed as (3.3.10).

ỹ(k + 1) = Wf
∗ × Ψf (ū, ȳ) + [Wg

∗ × Ψg(ū, ȳ)] × u(k) (3.3.10)

Case - I: CENN in conjunction with typical LM

Here, batch mode operation with sliding window for online estimation is carried out

using the standard LM technique. First, a suitable window size is chosen.

The error vector ẽ over a window containing wsize samples is given by:

ẽ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(k + 1) − ỹ(k + 1)

y(k) − ỹ(k)

...

y(k − wsize + 1) − ỹ(k − wsize + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3.11)

where, y(.) is the actual output, ỹ(.) is the estimated output and wsize is the number of

samples in a window.

The weights that need to be updated (unknown parameters) are placed in a form of a

vector P as follows in (3.3.12) to calculate the error derivatives throughout an entire

window:

P =
[︃
W ∗

i1 W ∗
i2 · · · W ∗

ih ; b∗
1 · · · b∗

h ; W ∗
f1 · · · W ∗

fm

]︃
(3.3.12)

where, i = 1, ..., h and h ϵRn−1+m

The total number of unknown parameters is given by: Up ϵR(h×h)+h+m, which is the

size of the parameter vector P.

The corresponding error derivatives for weight update equation can be written as:

J = ∂ẽ

∂P

24



Chapter 3: Methodology

W

ws i z e = Window size 

u = Control input 

y = Measured output

= Error vector

P = Parameter vector 

J = Jacobian vector 

W = Input weights

b = Bias

Wf = Output weights

 = Learning rate

1  = 10- 4  

2  = 10- 5

'W', 'b', 'Wf ', 'J'

k=0, kk=0, t=0

No
t < simulation time

Yes

No

Yes

end

Obtain new

samples

Initialize kk=0

Batch Processing

Increment kk

Stack the

error n e w

Increment 

k

Calculate the Jacobian vector 'J'

and 

Parameter vectors 'W', 'b', 'Wf '

Calculate the 

estimated output

and error

No

kk >

 

Ws i z e

Update 'J'

Update 'b'

Update 'Wf '

Update 'W'

Yes

No

 =  * 2

 =  / 2

n e w n e w  > p r p r

JT  > 1  II k < 30

Yes

Update 'W'

Update 'b'

Update 'Wf '

Figure 3.5: Typical LM scheme (CENN-LM)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ỹ(k+1)
∂P (1)

∂ỹ(k+1)
∂P (2) · · · ∂ỹ(k+1)

∂P (Up)

∂ỹ(k)
∂P (1)

∂ỹ(k)
∂P (2) · · · ∂ỹ(k)

∂P (Up)

...
...

...

∂ỹ((k−wsize+1)
∂P (1)

∂ỹ((k−wsize+1)
∂P (2) · · · ∂ỹ((k−wsize+1)

∂P (Up)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3.13)

The derivatives for each sample within a window are calculated with respect to each

adjustable parameter and stacked to form a matrix, as shown in (3.3.13). The weight

parameters are then updated according to (3.3.14).

Pupdated = Pprevious + [JTJ + λI]−1JTẽ (3.3.14)

where:

∆P = [JTJ + λI]−1JTẽ

The flowchart in Figure 3.5 shows how the typical LM algorithm update equations

(3.3.13)-(3.3.14) to train the computationally efficient neural network (CENN) numerous

times for a single window.
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Each sliding window receives an online update. *The weights of neural network, stacked

in a vector are initialized at the beginning of the first window. A fixed window size

wsize applies to each sample, and the output of neural network is computed. later, the

estimated samples are compared with actual measured samples throughout the entire

window to create an error vector (ẽ). The new squared error over the entire window

ẽnewẽnew is then compared with the previous squared error ẽprẽpr. If ẽnewẽnew is less

than ẽprẽpr, the value of λ is divided by 2 and the weights update is accepted otherwise,

the value of λ is multiplied by 2 without updating the weights. The iteration for the

window is continued until the convergence criteria is met. During the first few windows,

the convergence is slower but it accelerates once the weight parameters get stable.*

Case - II: CENN in conjunction with CELM

Here typical LM algorithm is reshaped in such a way that, instead of updating P on

the whole, we update input weights ‘W ∗’, bias ‘b∗’ and output weights ‘W ∗
f ’ separately

as shown in (3.3.15) to (3.3.20). This approach guarantees better convergence than

updating P collectively. In this scenario, the weights once converges to the defined

criteria will not update further, and this results in less computations.

From (3.3.14):

∆P = [JTJ + λI]−1JTẽ

∆W ∗ =
h×h∑︂
i=1

∆Pi (3.3.15)

∆b∗ =
(h×h)+h∑︂

i=(h×h)+1
∆Pi (3.3.16)

∆W ∗
f =

Up∑︂
i=(h×h)+h+1

∆Pi (3.3.17)

where, Up ϵR(h×h)+h+m

W ∗
new = W ∗ + ∆W ∗ (3.3.18)
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Figure 3.6: Computationally Efficient LM scheme (CENN-CELM)

b∗
new = b∗ + ∆b∗ (3.3.19)

W ∗
fnew

= W ∗
f + ∆W ∗

f (3.3.20)

Each movable window receives an online update as shown in Figure 3.6. After updating

input weights, bias and output weights, these are combined to form updated parameter

vector Pnew as shown in (3.3.21).

Pnew = [ W ∗
new b∗

new W ∗
fnew

] (3.3.21)

The rest of the algorithm works exactly same as previously discussed in section 3.3.1*.

3.4 Controller Design

A linearized model around a theoretical operating point may serve as the foundation for

the controller design. An exciting topic of controller design study is determining what

characteristics of a model make it suitable for control and how to effectively recognize

them. In order to solve the reference tracking problem, self-tuning control can be used

in a variety of ways. This Section presents a feedback linearization controller (FBLC),
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Figure 3.7: A general structure of Feedback Linearizable Controller (FBLC) [1]

an existing control strategy, for regulating system output. The goal is to investigate the

design options for the inter-area oscillation damping in power systems.

3.4.1 Feedback Linearizable Controller (FBLC) [1]

A control approach known as feedback linearization is the conversion of the original

non-linear model into an approximate linear model with a more straightforward form.

It is applicable to the class of non-linear systems. Choosing a model to represent the

dynamics of the system in the desired frequency range is the first stage in creating

self-tuning control [87].

According to Figure 3.7, feedback linearization cancels out the non-linearities in a non-

linear system, resulting in a linear closed-loop dynamics [87, 88]. It is applicable to a

class of non-linear systems known as:

yo(k + 1) = fest(Xstack(k)) + gest(Xstack(k))uc(k) (3.4.1)

where Xstack = [ū ȳ]T and ū, ȳ are control inputs and past measurements vectors,

respectively. The non-linear functions fest(Xstack), gest(Xstack) ϵRn → R are assumed

to be unknown.

Deriving the control action ‘uc’ in this case is the goal in order to ensure that the plant

accurately follows the intended trajectory ydesired(k). The following are the definitions

of the intended trajectories envelop over windows:

ydesired(k)∗ ∆= [ ydesired(k −m+ 1) . . ydesired(k − 1) ydesired(k) ]T
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In this practical design, following assumption is used:

gest(Xstack) > 0.

An error vector is defined as:

er(k) = ydesired(k)∗ − yo(k) (3.4.2)

where,

yo(k) = [ yo(k −m+ 1) . . yo(k − 1) yo(k) ]T

A filter error is defined as:

fr(k) = [τl
T 1 ]er(k) (3.4.3)

where,

τl = [ τl1 τl2 · · · τlm−1 ]T

is appropriately chosen coefficient vector such that er(k) tends to 0 as fr(k) tends to 0

is stable. Then, the (3.4.1) can be written in term of filtered error:

fr(k + 1) = fest(Xstack) + gest(Xstack)uc + YD (3.4.4)

where,

YD ≈ −ydesired(k + 1) + [ 0 τT
l ] er(k)

Hence, the control law is given by:

uc = 1
gest(Xstack) [ −fest(Xstack) −Kcfr − YD ] (3.4.5)

It would result in fr(k) tending to zero for any positive Kc. Since the assumption is

that, these functions are estimated by LM/CELM algorithm, we can choose a control

signal:

uc = 1
gest(Xstack) [ −fest(Xstack) + c ] (3.4.6)

where,

c = −Kcfr − YD (3.4.7)

The fest(Xstack) and gest(Xstack) estimates will be created by neural network. Note that

when gest(Xstack) = 0, the control law (3.4.6) is not accurately described. As a result,

one must be cautioned to ensure the boundedness of the controller. Fixing the estimate

gest(Xstack) constant, is a simple way to overcome this issue.
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Results and Discussions

4.1 Evaluation - I: Estimation with CENN-LM and CENN-

CELM

In evaluation - I, the estimation of non-linear computationally efficient neural network

(CENN), which is trained through online standard Levenberg-Marquardt (LM) algo-

rithm is carried out and later, it is compared with the estimation of non-linear com-

putationally efficient neural network (CENN), which is trained through modified online

computationally efficient Levenberg-Marquardt (CELM) algorithm. This test is carried

out on the 4-machine 2-area power system as shown in Figure 1.2. A line between buses

7 - 8 is taken out at 5s. Following a disturbance at bus 8, results in oscillations on the

line 10 - 9. The output data is power flowing through line 10 - 9, and the input signal is

a square wave at 0.01Hz. The numerical values of the parameters used in the estimation

of CENN-LM and CENN-CELM is shown in table 4.1.

Parameter Value Equation

m 6 3.3.9

n 6 3.3.9

h 11 3.3.9

wsize 25 3.3.11

λ 0.1 3.3.14

Table 4.1: Parameters used in evaluation - I
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Figure 4.1: Estimation with CENN-LM

Figure 4.1 displays the actual output and estimated output with CENN-LM. Figures.

4.2, 4.3, 4.4 shows the variation of input weights, bias and output weights with CENN-

LM respectively.
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Figure 4.2: Variation of Input weights with CENN-LM
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Figure 4.3: Variation of Bias with CENN-LM
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Figure 4.4: Variation of Output weights with CENN-LM
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Figure 4.5: Estimation with CENN-CELM

Figure 4.5 displays the actual output and estimated output with CENN-CELM. Figures.

4.6, 4.7, 4.8 shows the variation of input weights, bias and output weights with CENN-

CELM respectively.
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Figure 4.6: Variation of Input weights with CENN-CELM
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Figure 4.7: Variation of Bias with CENN-CELM
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Figure 4.8: Variation of Output weights with CENN-CELM

From the comparison of figures 4.2 and 4.6, 4.3 and 4.7, 4.4, and 4.8, it is clearly shown

that the weight parameters in case of CENN-CELM converges faster than CENN-LM.
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Figure 4.9 presents the comparison of prediction error between CENN-LM and CENN-

CELM. It clearly demonstrates that better estimation is carried out with CENN-CELM

as compared to CENN-LM.
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Figure 4.9: Comparison of prediction error between CENN-LM and CENN-CELM

The computation time for estimating weight parameters in CENN-LM is 52.914736 sec-

onds and the computation time for estimating weight parameters in CENN-CELM is

21.237873 seconds. This is obvious because, in CENN-CELM, once the weight param-

eters gets convergence, they will not compute again and again at each epoch but in

CENN-LM, weight parameters will continue to compute again and again irrespective of

some of the weights gets convergence. Hence, this comparison shows that CENN-CELM

is computationally faster than CENN-LM.

4.2 Evaluation - II: Damping performace of FBLC with

LM and CELM algorithm

FBLC is based on the non-linear CENN structure, and the parameters are estimated

at each sampling instant using the classical LM algorithm and its modified version i.e.

CELM algorithm. The performance of FBLC is demonstrated for the power system
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described in section 1.5. A fault is created near bus 8 at 5s that results in outage of one

of the lines connecting to buses 7-8 and It results in power oscillations. The parameters

of the CENN model, using the classical LM and CELM algorithm, has captured the

power sytems’s oscillatory behvaiour. The numerical values of the parameters used in

the Damping of power oscialltions with LM-FBLC and CELM-FBLC is shown in table

4.2.

Parameter Value Equation

m 6 3.4.1

n 6 3.4.1

h 11 3.4.1

wsize 5 3.4.2

τl -0.8±3.61ι, -10, -5, -8 3.4.3

Kc 0.9 3.4.5

Table 4.2: Parameters used in evaluation - II

Figure 4.10 shows the damping performance with classical Levenberg-Marquardt (LM)

algorithm in conjunction with feedback linearizable controller (FBLC).
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Figure 4.10: Controller performance with LM-FBLC

Figure 4.11 shows the damping performance with computationally efficient Levenberg-

Marquardt (CELM) algorithm in conjunction with feedback linearizable controller (FBLC).
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Figure 4.11: Controller performance with CELM-FBLC
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Figure 4.12: Comparison of controller performance between LM-FBLC and CELM-FBLC

Figure 4.12 presents the comparison of damping performance between LM-FBLC and

CELM-FBLC. FBLC in conjunction with classical LM algorithm as well as with CELM

algorithm, successfully dampens the power oscillation within 10-15s. The comparison

plot clearly shows that FBLC performs almost same for both, classical LM algorithm

and CELM algorithm.
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Conclusions

A powerful online batch training method for neural networks known as the Levenberg-

Marquardt (LM) algorithm is transformed for computationally efficient online estimation

of power system’s dynamic behaviour, referred as Computationally Efficient Levenberg-

Marquardt (CELM) algorithm. A unique form of neural network, referred as Compu-

tationally Efficient Neural Network (CENN), is proposed that is compatible with the

Feedback Linearizable Controller (FBLC), is used to allow non-linear self-tuning control.

It has been demonstrated that using the modified version of LM algorithm i.e. CELM

algorithm for successive disturbance leads to improved accuracy, faster convergence and

offer less computational time than classical LM algorithm. The efficiency of CELM

algorithm for non-linear estimation is shown via a case study on a 4-machine 2-area

power system. Feedback linearization control framework (FBLC) has been implemented

for damping power oscillation, with classical LM algorithm and it’s modified version i.e.

CELM algorithm. Moreover, the comparison between LM-FBLC and CELM-FBLC,

showed approximately the same damping performace.

5.1 Future Works

In this research, a non-linear activation function i.e. log-Sigmoid is employed in non-

linear computationally efficient neural network (CELM) structure to get better perfor-

mance in terms of convergence, speed and accuracy. however, more efficient results can

be achieved using rectified linear unit (ReLU) as an activation function in the neural

network structure as ReLU activation function solves the vanishing gradiant problem,
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allowing models to learn faster and might perform better. This thesis is based on

the damping of oscillation using the non-linear computationally efficient neural net-

wok structure in conjunction with typical Levenberg-Marquardt (LM) algorithm and

it’s modified version, computationally efficient Levenberg-Marquardt (CELM) algorithm

through feedback linearization control (FBLC) approach. This exercise was carried out

for single-input, single-output (SISO) structure on a 4-machine 2-area power system.

This exercise can be carried out with multi-inputs, single-output (MISO) and multi-

inputs, multi-outputs (MIMO) structures in future and this may yield better outcomes.

Feedback linearization control (FBLC) is based on choosing fixed values of τl. Due

to this, FBLC works well with a certain fault or operating condition but it will not

yield better response in case of varied operating conditions or faults. This issue may

be resolved by designing a non-linear controller, which rules out the τl factor and this

non-linear controller may work effectively in case of various operating scenarios or faults

by automatically capturing the behaviour of the system in case of contingencies.
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