
Adaptive Robust Nonlinear Controller

Design For Drug Delivery In

Chemotherapy Cancer Treatment

By

Sarwat Akram

00000317559

Supervisor

Dr. Absaar Ul Jabbar

School of Interdisciplinary Engineering and Sciences

(SINES)

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

September 2022



Adaptive Robust Nonlinear Controller

Design For Drug Delivery In

Chemotherapy Cancer Treatment

By

Sarwat Akram

00000317559

Supervisor

Dr.Absaar Ul Jabbar

A thesis submitted in conformity with the requirements for

the degree of Master of Science in

Applied Coumpter Science

School of Interdisciplinary Engineering and Sciences

(SINES)

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

September 2022



Declaration

I, Sarwat Akram declare that this thesis titled “ROBUST NONLINEAR CONTROLLER

DESIGN FOR DRUG DELIVERY IN CHEMOTHERAPY CANCER TREATMENT”

and the work presented in it are my own and has been generated by me as a result of

my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a Master of Science

degree at NUST

2. Where I have consulted the published work of others, this is always clearly at-

tributed

3. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work

4. I have acknowledged all main sources of help

5. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself

Sarwat Akram,

NUST00000317559

i



Copyright Notice

• Copyright in text of this thesis rests with the student author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with in-

structions given by the author and lodged in the Library of SINES, NUST. Details

may be obtained by the Librarian. This page must form part of any such copies

made. Further copies (by any process) may not be made without the permission

(in writing) of the author.

• The ownership of any intellectual property rights which may be described in this

thesis is vested in SINES, NUST, subject to any prior agreement to the con-

trary, and may not be made available for use by third parties without the written

permission of SINES, which will prescribe the terms and conditions of any such

agreement.

• Further information on the conditions under which disclosures and exploitation

may take place is available from the Library of SINES, NUST, Islamabad.

ii



I’d want to dedicate this thesis to my beloved parents and siblings.

iii



Abstract

Cancer is the second most fatal disease worldwide resulting in millions of deaths world-

wide. Numerous complex biological interactions result in the growth of a malignant

tumor.The tumor forms as a result of the body’s normal cells expanding incorrectly

and out of control. Chemotherapy is most widely used treatment for eradicating ma-

lignant tumors from the body. Chemotherapy medicine, however, has adverse impacts

on the patient’s body. The regulation of chemotherapeutic drugs has been suggested

in this thesis using adaptive non-linear control methods. For this purpose, a four-state

ODE model proposed in the literature has been used. The model’s structure is exceed-

ingly nonlinear and chaotic. For the control of chemotherapeutic medication, adaptive

controllers using nonlinear control techniques such as ASMC, AISMC, ASTSMC, and

ATSMC have been developed. Mathematical analysis based on the Lyapunov stability

theory has been addressed to verify the controller stability.The performance of sug-

gested controllers are compared in Simulink/MATLAB. Furthermore, we were not only

restricted to MATLAB/SIMULINK, we also performed simulations using the hardware-

in-the-loop to gain the confidence regarding our designed controller performance when

implemented on actual hardware. The results show that in comparison to the already

published control techniques in literature, our ATSMC controller performs best with

quick tumor cells removal from body (5% less days to recovery) for minimal amount of

drug delivery(46% less dosage drug).

Keywords: Chemotherapy,Cancer tumor, Adaptive Sliding Mode Control, Adaptive

Integral Sliding Mode Control,Adaptive Terminal Sliding Mode Control and Adaptive

Super Twisting Sliding Mode Control
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Chapter 1

Introduction

1.1 Importance of Cancer

Cancer is the deadliest disease worldwide and millions of people die every year due to

cancer.Defects in the cell-growth system frequently lead to the unchecked and abnormal

expansion of cancer-causing cells. Tumors are made up of some harmful cells, and the

presence of the tumor cells encourages the development of immune cells. Major health

issues, including mortality, are caused by the immune system’s subpar performance and

inability to effectively combat the tumor cells. [4],[5]-[6] According to a WHO cancer

report, [1] nearly 19.2 million cancer cases are reported annually. According to the data

of the National Center for Health Statistics, USA [7] cancer is the second major cause

of death in the USA after heart disease,13.3% of the world’s population and 14.4% of

deaths occur in the Americas. In comparison to other world regions, Asia and Africa

have higher rates of certain cancer types associated with poorer prognoses and higher

mortality rates, as well as limited access to timely diagnosis and treatment in many

countries. This results in higher proportions of cancer deaths in these regions (57.3%

and 7.3%, respectively). [1]

In Pakistan, cancer is a significant issue. The prevalence of various cancers affects about

23% of the population. With each accounting for 8% of fatalities, lower respiratory

infections and cancer rank highly among the primary causes of death. The number

of cancer cases has steadily increased during the past 20 years. The most prevalent

among them is breast cancer, which is now very common, as skin cancer, blood cancer,

brain tumors, and prostate cancer of all diseases, cancer is the one that is spreading the
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Chapter 1: Introduction

fastest in Pakistan. Every year, around a million people receive a cancer diagnosis. The

figure1.1 below shows the most common cases in Pakistan 2020.

Figure 1.1: Cancer cases in Pakistan [1]

Sadly, Pakistan does not produce any drugs that treat cancer locally; instead, the ma-

jority of the country’s medications are imported, which drives up the cost of treatment

and control. Only relief and some form of control are intended by the affordable locally

produced drug. Only 40% of Pakistanis have access to quality healthcare, leaving the

country critically lacking in medical facilities for treating cancer patients. Most patients

(60%) lack access to diagnostic and treatment resources. Many Pakistanis develop ad-

vanced stages of cancer, which reduces their likelihood of being cured, because palliative

care, the treatment intended to relieve cancer symptoms, is lacking in that country.

The treatment of cancer is pricey. One of the finest ways to remove tumor cells from

the body is through chemotherapy. Chemotherapy treatment involves the removal of

tumor cells by injecting less amount of drug in less number of days. The chemotherapy

method will reduce the expense of cancer treatment, more patients will be treated in

less time. Chemotherapy will reduce the death rate, which will enhance patient health.

More people can be treated in hospitals, which is an indirect benefit. As a result hospital

workload will be reduced.

2



Chapter 1: Introduction

1.2 Cancer Treatment Methods

The removal of cancer cells from the body can be accomplished via a variety of treatment

methods, including radiotherapy, immunotherapy, surgery, and chemotherapy.

Cancer can be treated with radiotherapy either before it spreads or after it has been

detected. In radiotherapy, radiation is utilized to eliminate cancer cells. radiation was

selected because it can either kill cancer cells or stop their growth by causing DNA

damage. In radiotherapy, powerful energy beams like X-rays are employed. These cells

are severely damaged and either stop dividing or pass away, which means they separate

from the body. The removal of cancer cells by RT may take days or weeks.

The cancer-fighting ability of the immune system is enhanced by immunotherapy. The

body’s immune system helps the body fight off diseases and infections. Organs, lym-

phatic system components, and white blood cells are some of their constituents. Im-

munotherapy is a type of biological therapy. Drugs originating from living beings are

used as a form of treatment for cancer patients receiving biological therapy. immunother-

apy is advised since it makes use of the patient body’s immune system to fight cancer.

Cancer can spread because the patient immune system doesn’t recognize it as an inva-

sion. Immunotherapy can support the patient immune system in detecting and battling

cancer.

Surgery is used for cancer diagnosis, staging, and treatment. The discomfort or problems

brought on by cancer can also be palliated (relieved) through surgery. Sometimes a single

technique can achieve more than one of these goals. Sometimes, numerous surgeries may

be needed over time.

Chemotherapy is used in conjunction with other therapies like surgery, radiation, and

hormone therapy to eradicate malignant cells from the body. One or more anti-cancer

medications are used as part of the chemotherapy treatment. The chemotherapy drugs

are put into the body through a catheter tube placed in an artery or vein supplying

blood to the tumor, or in a cavity/ body part near the tumor site. Although chemo is

an effective treatment method, however, it has many side effects associated with it. The

side effects can vary from mild which can be treated easily, to serious side effects that

adversely affect the patient health and recovery process.

3



Chapter 1: Introduction

Side Effects of Chemotherapy

All of the body’s rapidly dividing and growing cells are affected by chemotherapy. This

applies to both cancerous and healthy cells, such as the bone marrow’s production

of new blood cells and the cells that make up the mouth, stomach, skin, hair, and

reproductive organs. Chemotherapy’s adverse effects are brought on by damaged normal

cells. Chemotherapy treatment is toxic in nature we have to inject the correct amount of

drug if the correct amount of drug is not injected then the patient’s health would suffer.

Chemotherapy treatment involves the removal of healthy cells along with cancer cells

which results in a rapid decline in patient health. The type and dosage of medications

given, as well as how a patient reacts from one treatment cycle to the next, determines

the severity of the side effect. The majority of side effects are temporary and manageable.

Once treatment is stopped and the normal, healthy cells return, they typically start to

get better gradually. Chemotherapy can occasionally result in persistent side effects.

These could involve harm to the patient kidneys, reproductive organs, nerves, heart,

lungs, or nerve endings. To minimize the side effects it is extremely important to

administer the medication in the right amounts to the

1.3 Problem Statement

There is a need to design an efficient controller for effective drug delivery in chemother-

apy treatment, thus ensuring quick recovery and improved patient health. The controller

should be robust and adaptive to the variations in the system as well.

1.4 Benefits of Purposed Control Techniques

• Patient health under chemotherapy treatment will be improved.

• Patient recovery time will be improved.

• The cost of cancer treatment will be reduced.

• The indirect benefits include more patients can be treated in given hospital facilities

and the hospital burden will be reduced.

4



Chapter 1: Introduction

1.5 Prior State of the Art

Various work has been done previously for the control of drug dosage for chemotherapy

treatment. Current state-of-the-art include the work [8], in which Synergetic and State

feedback nonlinear control techniques are used along with fuzzy on a four-state model.

However, the control design is not robust and not adaptive as well.

1.6 Research Goals and Objectives

• To study and understand various mathematical models used in literature for the

chemotherapy drug delivery mechanism.

• Implement already used control techniques in the literature and reproduce the simu-

lation results published in the literature.

• Understand the Robust control techniques and implement them in MATLAB/Simulink.

• Study and understand Adaptive Nonlinear control techniques and implement them

on MATLAB/Simulink.

• Compare our results with the already published results in the literature.

• Implement the designed controller using Hardware-in-the-loop (HIL) and compare

the results with MATLAB/Simulink results.

1.7 Methodology

Different Nonlinear Control approaches have been used in this study to eliminate tu-

mor cells from the body in fewer days and with a smaller overall treatment dosage.

To do this, we must first study and comprehend robust nonlinear control techniques

before putting them into use in MATLAB/SIMULINK. To achieve better outcomes,

5



Chapter 1: Introduction

we adapted our controller by utilizing adaptive law and compared our findings to prior

research in the literature. The Stability Analysis was done using the Lyapunov-based

stability method. We performed simulations using hardware-in-the-loop and compared

the outcomes to those obtained using MATLAB/Simulink because we were not solely

limited to MATLAB/SIMULINK.

Figure 1.2 shows the research’s chosen workflow.

Figure 1.2: METHODOLOGY

6



Chapter 1: Introduction

1.8 Contribution

The robust nonlinear controller is designed for effective drug delivery in chemotherapy

treatment, which is adaptive to the variations in the systems. We have not found such

an adaptive controller in literature so far implemented for the problem at hand.

1.9 Organization of Thesis

Chapter 2: Tumor Model

In Chapter 2 Cancer details and different treatment methods for cancer are discussed,

four–the state mathematical tumor model is discussed in detail. Chapter 3: Litera-

ture Review

Chapter 2 discusses the details of cancer, various cancer treatments, and a four-state

mathematical tumor model in great depth.

Chapter 4: Control dynamics of Non-Linear Tumor Model

There is a discussion of several nonlinear control techniques both with and without

adaptation.

Chapter 5: Hardware-In-the-Loop

In Chapter 5, the specifics of the HIL implementation are covered.

Chapter 6: Simulations and Results

Results and Simulations are discussed in Chapter 6.

Chapter 7: Conclusion

Chapter 7 discusses the results of the research and potential directions for further work.

7



Chapter 2

Literature Review

2.1 Background

Early 20th-century researchers began studying cancer, and it is still a hot research

area. Malignant cells grow uncontrollably and abnormally, which frequently happens

as a result of defects in the cell-growth process. Tumors are made up of some harmful

cells, and the presence of the tumor cells encourages the development of immune cells.

Major health problems, leading to death, are brought on by the immune system’s subpar

functioning and inability to fight tumor cells.

2.2 Literature on Cancer Treatment Methods

As briefly discussed in chapter 1, there are various treatment methods for cancer. In

this section, we discuss those treatment methods in more detail.

2.2.1 Immunotherapy

In recent years, immunotherapy treatments that enhance the immune system’s capacity

to identify and destroy malignancy have benefited an increasing number of cancer pa-

tients. These novel medications, which include immune checkpoint inhibitors and CAR

T-cell therapies, have had remarkable and long-lasting effects in a few patients. Rarely,

immunotherapy treatment has caused tumors in people with advanced cancer to van-

ish. Like any medical procedure, immunotherapy can have side effects, many of which

8



Chapter 2: Literature Review

are brought on when the immune system, which has been engaged to combat cancer,

also begins to assault the body’s healthy cells and tissues. For different people, there

are different side effects. The type of cancer, its stage, the type of immunotherapy the

patient is receiving, and the amount will all have an effect on the symptoms the patient

experiences and how the patient feels. Immunotherapy may endure for a long time, and

side effects can occur both during and after treatment at any moment. Doctors are

unable to predict the occurrence of side effects, their severity, or when they may mani-

fest. Understanding the warning signs and what to do if a patient start having problems

is therefore crucial. All immunotherapy treatments come with a few common side effects.

2.2.2 Radiotherapy

While radiation is safe, there may be additional short or long-term side effects. This

could happen if radiation damages healthy cells in addition to the cancer cells that are

being treated. The sorts of side effects patients may experience and how severe they are

can vary depending on the patient’s general health, the amount of radiotherapy provided,

the area of the patient’s body being treated, and any additional cancer treatments

patient may be receiving. Some patients receiving radiation therapy experience little,

if any, adverse effects and can resume their regular activities. Others go into greater

depth on adverse outcomes. Patients frequently experience radiation side effects a few

weeks into their treatment. Even after the course of treatment is through, they continue

for a time. Some of the frequent side effects include fatigue, dry mouth and/or mouth

sores, nausea and/or vomiting, bowel issues like diarrhea, urinary issues like urgency or

incontinence, lymphoedema (swelling in soft tissue), hair loss, and infertility. Fatigue

is when a patient feels exhausted and worn out. It could start quickly or take time

to grow. A patient might feel worn out differently from someone else receiving the

same dose of radiation therapy in the same body location because different patient

experience exhaustion in various ways. The patient may experience other side effects

from radiation therapy depending on the location of the body that is treated. Most of

them are temporary and fade with time, however, some, like infertility, may be lifelong.

9



Chapter 2: Literature Review

2.2.3 Surgery

Like all cancer treatments, surgery has advantages, disadvantages, and adverse effects.

How severe and specific side effects are for each patient varies depending on the type and

location of cancer, the procedure used, any additional therapies the patient underwent

before the surgery, such as chemotherapy and radiation therapy, the patient’s general

health, and any warning signs the patient experienced before the procedure. Many

procedures today are less invasive than they used to be. Surgery frequently allows for

a quicker recovery for patients and has milder side effects. After surgery, there are

numerous ways to deal with physical side effects including disc comfort. However, the

majority of surgeries have an impact on the body and might have detrimental effects

in the short and long term. Minimizing side effects is a crucial part of cancer care and

treatment. This is supportive care, often known as palliative care.

2.2.4 Chemotherapy

Chemotherapy is an effective treatment for many cancer types. But it frequently results

in side effects, just like other cancer treatments. It’s critical to be informed of possible

chemotherapy side effects so patients can be alert to them.

Depending on the medication or medication combination recommended, patients who

are receiving chemotherapy may encounter side effects. Side effects are caused by var-

ious medications differently. Additionally, each patient’s experience is unique. Even

when taking the same medication, not all patients will have the same adverse effects.

Additionally, if the patient uses the same medication again, they can experience different

adverse effects than previous people in the past.

The most common side effect of chemotherapy is fatigue. Even if the patient receives

enough sleep, fatigue is when the patient feels tired. It is the most typical adverse reac-

tion to chemotherapy.

Hair falls Not all chemotherapy treatments, although some do result in hair loss. The

patient body’s hair may grow slowly over time or in big clumps. Usually, hair loss be-

gins several weeks during chemotherapy. One to two months into treatment, it usually

gets worse. Pain. Chemotherapy can occasionally be painful. Several types of pain can

result from nerve damage, such as headaches, muscle discomfort, stomach pain, burning,

numbness, or shooting pains that typically affect the fingers and toes.

10



Chapter 2: Literature Review

Any cancer-related pain will be treated by first addressing its underlying cause. Addi-

tional to chemotherapy itself, there may be other causes of pain. If chemotherapy-related

pain is present, medical professionals may manage it by:

• Providing painkiller drugs.

• Modifying the dosage of particular medications..

• Blocking pain signals from the nerves to the brain through spinal manipulations or

nerve blocks..

The cells in the mouth and throat can suffer damage from chemotherapy. Mucositis,

a condition brought on by this, results in painful sores in certain locations. Typically,

mouth sores appear 5 to 14 days following treatment. It’s crucial to keep an eye out for

infection in these wounds.

Some chemotherapy treatments result in sloppy or watery stools. Patients can avoid

being dehydrated by either preventing diarrhea or treating it quickly (losing too much

body fluid). It also aids in the prevention of other health issues. Constipation can

result after chemotherapy. This entails either insufficient bowel motions or challenging

bowel movements. Constipation can also be brought on by other medications, such as

painkillers. By getting regular exercise, eating well-balanced meals, and drinking ade-

quate fluids, patients can reduce their risk of constipation. Chemotherapy can make the

patient nauseous and make the patient throw up. Before and after every chemotherapy

dose, several drugs are administered with preventing the goal of preventing nausea and

vomiting.

The spongy material inside of a patient’s bones is called the patient’s bone marrow. It

produces fresh blood cells. Because chemotherapy alters this procedure, having too few

blood cells may have negative effects on the patient.

Following chemotherapy, the number of blood cells often recovers to normal. Low blood

cell counts can, however, become problematic during treatment and need to be carefully

monitored. Some medications harm the nerves. Nerve or muscle problems such as Loss

of balance, Tingling, Burning, swaying or trembling, stiff neck or headache, issues with

normal vision, hearing or walking, and clumsiness may occur. Usually, following treat-

ment or with a lower chemotherapy dose, these symptoms improve. After chemotherapy,

it may take 6 to 12 months for symptoms to subside. Some adverse consequences may

last a lifetime. After chemotherapy, some people have problems focusing and thinking

clearly. Chemo brain is a common term used by cancer

11
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2.3 Mathematical Modeling of Tumor Model

Since it is known that interactions between various body cells are crucial for the growth

of tumors, a variety of spatial and non-spatial mathematical models have been presented

to shed light on the dynamic behavior of cancer cells and their interactions with the sur-

rounding ones. [9] In addition to other biological dimensions, these models include

interactions at the molecular, cellular, and tissue levels. While ODE models provide

a much more easy research base, spatial models frequently take the form of cellular

automata or partial differential equations (PDEs). To control the death rate due to

cancer previously different work has been done using One-state, Two-state, three-state,

and four-state tumor mathematical models. In the one-state Model[6] only the behavior

of tumor cells was discussed. In the two-state model[10] two clone model for tumor,

regrowth is considered in which a small population of immune-resistant cancer cells that

are either initially present or that form and expand unchecked by the activity of killer

cells is what causes tumor regrowth. Further three-state tumor model describes the

dynamics of acute Leukemia cells[11]

Another three-state tumor mathematical model uses tumor cells, hunting predator cells,

and resting predator cells[12], Several tumor progression-related subjects have been stud-

ied using the four-state tumor model. The model focuses on the interactions at the tumor

site between immune, normal, and tumor cells. site.[8],[13],[14],[15]

2.3.1 One-state Mathematical Model

The paper [6] proposes a control model for chemotherapy drug delivery schedule using a

one-dimensional tumor growth mathematical model. The model imposes a constraint on

the growth of tumor size such that it must decreases once the chemotherapy treatment

starts. In this model, no interaction of the tumor cell with immune cells, healthy cells,

or with drugs is considered. The system is treated using the well-known numerical solu-

tion technique known as control parametrization, resulting in a non-linear programming

problem. In this paper, only tumor cells were discussed.
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2.3.2 Two-state Mathematical Model

A two-dimensional Mathematical Model of tumor growth that discusses the relationship

between the tumor and immune cells[10]

To reduce the rate of expansion of the main immunogenic tumor cell population, The

mice received a very modest amount (0.004%) of the tumor cell population. The model

also predicts that the initial quantity of implanted tumor cells will impact the size of

the tumor following dormancy as well as the eventual recurrence of the tumor. In this

two-state model, only immune and tumor cells were discussed.

2.3.3 Three-state Mathematical Model

The three-dimensional cancer model deals with normal cells, leukemic cells, and the

number of chemotherapy agents [11]

To control the number of therapeutic agents delivered to the patient, two types of

therapy functions—the monotonic function and the non-monotonic function—have been

taken into account in this study. Three-dimensional cancel model in which tumor and

immune cells are not defined.

Another work has been done using the mathematical model of acute leukemia [16]

Using the concept of acute leukemia, the manuscript uses monotonic and non-monotonic

therapy functions to describe various treatment effects on both normal and leukemic

cells. the goal of utilizing a safe dose of a complete chemotherapeutic drug to kill the

leukemic cells while preserving a safe amount of normal cells.

A three-dimensional cancer model dealing with tumor cells, hunting predator cells, and

resting predator cells[12]

The main objective was to stop the growth of tumor cells at a point where they would

no longer be harmful, to keep the hunting predator cells at their highest level, and to

keep the resting predator cells at 40% of the hunting predator cells. Chemotherapy and

its effects on various cell types have been developed. A three-dimensional cancer model

is used which is not very accurate. Moreover, the nonlinear controllers used are not very

robust.

13
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2.3.4 Four-state Mathematical Model

The non-linear mathematical model for tumor growth proposed by De Pillis and Radun-

skaya was chosen for chemotherapy drug control. [5],[4]

The interaction of normal, tumor and immune cells at the tumor site is the focus of the

model. Different work has been done using this model the details of the work done are

mentioned below.

The mathematical model of tumor growth with immune response and chemotherapy

serves as the foundation for this paper’s phase-space analysis[4]

The primary objective was to demonstrate that all orbits are constrained and must con-

verge to one of several potential equilibrium sites. As a result, the basin of attraction

in which an orbit begins determines its long-term behavior Using numerical experi-

ments, it is shown that optimal control therapy can move the system into a desired

basin of attraction, whereas the addition of a drug term to the system can move the

solution trajectory into a desired basin of attraction to the solutions of the model with

a time-varying drug term approach to the solutions of the system without the drug once

treatment has stopped.

The paper [8] in which an It is addressed how normal, tumor, and immune cells interact

with the tumor site in a four-dimensional cancer model. The main goal was to reduce

the tumor cells from the body in less number of days, by injecting less amount medicine

for this purpose Non-linear Control techniques were used. In this four-state model, the

Nonlinear control techniques used are not very robust.

[14] a four-dimensional mathematical model in which the logistic growth law is used

to simulate both tumor and host cells. Tumor cells can encourage the development of

immune cells, and these immune cells then kinetically kill out the tumor cells. In an

updated model of brain tumor, several nonlinear control techniques have been applied

to the therapeutic agent to reduce the number of brain tumor cells, maintain a safe

number of normal cells, maintain immune cells above a certain value, and ensure the

use of the correct dosage of the drug for the therapy. The robust non-linear control

techniques are not applied, but the four-state mathematical model is precise.

A four-dimensional model that includes the dynamics of normal cells, immune cells,

tumor cells, and drug dosage[13]

The controller is designed such that the tumor cells achieve their reference value of 0 in
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the shortest amount of time by delivering the drug in an appropriate amount, maintain-

ing a safe number of normal cells, and keeping the immune cells above a particular value.

Variable structured-based nonlinear control algorithms have been used for this purpose.

The main drawback was that the Controller design is not adaptive to the internal or

external variations in the system.

A logistic growth law is used in this model to simulate both the tumor cells and the host

cells. Immune cells can be stimulated to develop by tumor cells, and once they do, the

immune cells kinetically destroy the tumor cells. Two nonlinear control algorithm-based

controllers were developed for the therapeutic agent in an updated mathematical model

of a brain tumor to reduce the tumor cells, maintain a safe number of healthy cells, keep

the immune cells above a specific level, and ensure the correct dosage of the drug during

the therapy.[15] The robust non-linear control techniques are not implemented, but the

four-state mathematical model is accurate.
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The Non-Linear Tumor Model

Control Dynamics

3.1 Nonlinear Tumor Model

De Pillis and Radunskaya [4],[5] created the mathematical model of the nonlinear four-

state ODE for tumor progression, and it has been used to examine several features of

tumor development, including cancer dormancy, creeping through, and immune surveil-

lance escape. The selected model focuses on how the surrounding immune, normal, and

tumor cells interact. Tumor cells within the body encourage the growth of immune cells.

The reaction of these immune cells is insufficient to compete with the rapidly dividing

tumor cell. At the tumor location, normal and tumor cells are continually competing for

the same scarce resources. Using ordinary differential equations, the model is depicted

in eq 3.1.1.

Ṅ = j2N (1 − g2N) − h4TN − v(1 − e−M )N

Ṫ = j1T (1 − g1T ) − h2IT − h3TN − v2(1 − e−M )T

İ = o + ρIT

α + T
− h1IT − i1I − v1(1 − e−M )I

Ṁ = u(t) − i2M

(3.1.1)

In the above model (3.1.1) N(t) represent normal cells, T(t) represents tumor cells,I(t)

represents immune cells at time t.

M(t) is the amount of chemotherapeutic medication discovered in the patient’s blood-

stream at the tumor location, and u(t) is the medication dosage that was given to the

16



Chapter 3: The Non-Linear Tumor Model Control Dynamics

patient at time t. N(1 − g2N),T (1 − g1T ), ρIT
α+T correspondingly indicate the logistic

growth of normal cells, tumors, and immune cells. Where j1and j2 are the rates at

which normal and malignant cells develop. The carrying capacities of normal and ma-

lignant cells are g1 and g2, respectively. The decay of normal cells, or h4T(t)N(t), results

from the competition of normal and malignant cells for the same local resources, h2IT

Represents several tumor cells killed by immune cells, h3TN Represents several tumor

cells killed by normal cells.i1Irepresents immune cells per capita death, I2M represents

the chemo drug per capita death . h1I(t)T(t),v3(1 − e−M )N represents the interaction

of tumor and immune cells. Represents the number of Normal cells killed by Chemo

drug u,v2(1 − e−M )T Represents the number of Tumor cells killed by Chemo drug u,

v1(1 − e−M )I Represents the number of Immune cells killed by Chemo drug u. Immune

cells age at a pace of I1 in the absence of tumor cells. The cells that died as a result

of chemotherapeutic drug treatment are designated as ai(i = 1, 2, 3). Below table 3.1

shows the Values of Normalized Parameter
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Parameters Description Values

v1 Immune cells killed due to chemo drug 0.2

v2 Tumor cells killed due to chemo drug 0.3

v3 Normal cells killed due to chemo drug 0.1

g1 Carrying capacity of Tumor cells 1

g2 Normal cells Carrying capacity 1

h1 Tumor cells killed fractional Immune cells 1

h2 Immune cells killed fractional tumor cells 0.5

h3 Normal cells killed fractional tumor cells 1

h4 tumor cells killed fractional normal cells 1

i1 immune cells Per capita death 0.2

i2 chemo drug Per capita death 1

j1 Growth rate of tumor cells growth rate per unit 1.5

j2 Normal cells growth rate per unit 0.33

o Steady source rate of immune cells 0.33

ρ Response rate of Immune cells 0.01

α Threshold rate of Immune cells 0.3

Table 3.1: Normalized Parameter Values[4]

Additionally, we can modify the model by substituting N(t), T (t), I(t)andM(t) by x1,x2,x3and

x4 we get:

ẋ1 = j2x1(1 − g2x1) − h4x2x1 − v3(1 − e−x4)x1

ẋ2 = j1x2(1 − g1x2) − h2x3x2 − h3x2x1 − v2(1 − e−x4)x2

ẋ3 = o + ρx3x2
α + x2

− h1x3x2 − i1x3 − v1(1 − e−x4)x3

ẋ4 = u(t) − i2x4

(3.1.2)

There are three possible possibilities for the system’s equilibrium points in the absence

of chemotherapeutic medications.

•Two unstable dead equilibrium points exist in the system where normal cells are not

present.

•There exists a stable equilibrium point at [1, 0, 1.65] with N = 1, T = 0, and I =
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1.65. After chemotherapy has successfully eliminated a tumor from the body, this is the

system’s intended equilibrium state.

• The system has a coexisting equilibrium point with N = 0.44, T = 0.56, and I = 0.44,

where both tumour and normal cells can be found.

Figure 3.1 depicts the system’s co-existing equilibrium condition before the injection of

chemotherapeutic medicines. The system approaches equilibrium after approximately

138-140 days, as shown in the graph.

Figure 3.1: Performance of Controller without drug .

Considering the above tumor model we will be using Robust Nonlinear control techniques

and then we will be adapting the controller by using adaptive law.

3.2 Robust Controller Design

In this section Robust Control techniques SMC, ISMC, TSMC, and ST-SMC are dis-

cussed.

3.2.1 Sliding Mode Control

Sliding mode control a robust controller that has benefits such as finite time conver-

gence, minimal steady-state error, cheap processing costs, and ease of use. The sliding

surface is chosen in the first stage, after which the control rule is developed to direct

the system toward the sliding surface. Figure 3.2 shows a visual representation of SMC.

It demonstrates how the variable initially has a value of Xo, converges to the sliding

surface due to the control action, and then eventually reaches the intended value.
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Figure 3.2: Sliding Mode Control Phase [2]

We define error terms as follows to track all states to their target values:

e1 = x1 − x1ref

e2 = x2 − x2ref

e3 = x3 − x3ref

e4 = x4 − x4ref

(3.2.1)

In above eq 3.2.1 x1, x2, x3andx4 are the state varibles and x1ref , x2ref , x3ref , x4ref are

the desired values.

Taking time derivative of error terms in 3.3.1

ė1 = ẋ1 − ẋ1ref

ė2 = ẋ2 − ẋ2ref

ė3 = ẋ3 − ẋ3ref

ė4 = ẋ4 − ẋ4ref

(3.2.2)

The Sliding surface is defined as

S = c1e1 + c2e2 + c3e3 + c4e4 (3.2.3)

here c1, c2, c3andc4 are constant design parameters of the sliding surfaces which can have

any positive constant value.

Taking time derivative of S

Ṡ = c1ė1 + c2ė2 + c3ė3 + c4ė4 (3.2.4)

putting values of ė1, ė2, ė3, ė4 in eq 3.3.5
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Ṡ =c1(ẋ1 − ẋ1ref ) + c2(ẋ2 − ẋ2ref )

+c3(ẋ3 − ẋ3ref ) + c4(ẋ4 − ẋ4ref

(3.2.5)

Ṡ = c1ẋ1 − c1ẋ1ref + c2ẋ2 − c2ẋ2ref

+c3ẋ3 − c3ẋ3ref + c4ẋ4 − c4ẋ4ref

(3.2.6)

putting values of ẋ1, ẋ2, ẋ3, ẋ4 in eq 3.2.6

Ṡ = c1(j2x1)(1 − g2x1) − h44x2x1 − v3(1 − e−x4)x1 − c1ẋ1ref + c2(j1x2(1 − g1x2)

−h22x3x2 − h33x2x1 − v2(1 − e−x4)x2) − h2ẋ2ref + h3(o + ρx3x2
α+x2

−h11x3x2 − i1x3 − v1(1 − e−x4)x3) − h3ẋ3ref + c4(u(t) − i2x4) − h4ẋ4ref

(3.2.7)

Simplifying above eq 3.2.7

Ṡ = c1(j2x1 − j2g2x2
1 − h44x2x1 − v3x1 + v3e−x4x1) − c1ẋ1ref + c2(j1x2 − j1x2

2g1

−h22x3x2 − h33x2x1 − v2x2 + e−x4x2) − g2ẋ2ref + c3(o + ρx3x2
α+x2

− h11x3x2 − i1x3

−v1(1 − e−x4)x3) − c3ẋ3ref + c4(u(t) − i2x4) − c4ẋ4ref

(3.2.8)
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Simplifying above eq3.2.8

Ṡ = c1j2x1 − c1j2g2x2
1 − c1h44x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2 − c2j1x2

2g1

−h22x3x2 − c2h33x2x1 − c2v2x2 + c2e−x4x2 − c2ẋ2ref + c3o + c3
ρx3x2
α+x2

−c3h11x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + c4u(t) − c4i2x4 − c4ẋ4ref

(3.2.9)

We consider Ṡ=-ksign(S) the SMC’s reaching law. When the state is far from the switch-

ing manifold, a law known as the power rate reaching law speeds up reaching. k, which

can be any constant positive value, is a design parameter. Following is a definition of

the Signum function:

sign(S) = −1 if S < 0

= 0 if S = 0

= 1 if S > 0

(3.2.10)

−ksign(S) = c1j2x1 − c1j2g2x2
1 − c1h44x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2

−c2j1x2
2g1 − h22x3x2 − c2h33x2x1 − c2v2x2 + c2e−x4x2 − c2ẋ2ref + c3o

+c3
ρx3x2
α+x2

− c3h11x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + c4u(t)

−c4i2x4 − c4ẋ4ref

(3.2.11)

Rearranging equation 3.2.11

−c4u(t) =c1j2x1 − c1j2g2x2
1 − c1h44x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2

−c2j1x2
2g1 − h22x3x2 − c2h33x2x1 − c2v2x2 + c2e−x4x2 − c2ẋ2ref + c3o

+c3
ρx3x2
α+x2

− c3h11x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + ksign(S)

−c4i2x4 − c4ẋ4ref

(3.2.12)

eq3.2.12 will give control input u:
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u(t) = −1
c4

[c1j2x1 − c1j2g2x2
1 − c1h44x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2 − c2j1x2

2g1

−h22x3x2 − c2h33x2x1 − c2v2x2 + c2e−x4x2 − c2ẋ2ref + c3o + c3
ρx3x2
α+x2

−c3h11x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + ksign(S) − c4i2x4 − c4ẋ4ref ]
(3.2.13)

For stability analysis, let us consider following Lyapunov candidate function:

V = 1
2S2 (3.2.14)

V̇ = SṠ (3.2.15)

putting Ṡ = −ksign(S)in eq 3.2.15:

V̇ = −S(ksign(S)) (3.2.16)

Lyapunov analysis shows that the proposed controller meets the stability conditions,

which ensures the convergence of errors to zero in finite time and asymptotic stability

of the system.

3.2.2 Integral Sliding Mode Control

To order to lower the steady-state error and reduce the chattering effect integral terms

of errors are added to the sliding surface in ISMC a variation of sliding mode control.

The integral of error terms are defined as follows:

e5 =
∫

x1 − x1ref dt

e6 =
∫

x2 − x2ref dt

e7 =
∫

x3 − x3ref dt

e8 =
∫

x4 − x4ref dt

(3.2.17)

In above eq 3.2.17 x1, x2, x3andx4 are the state varibles and x1ref , x2ref , x3ref , x4ref are

the desired values.
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Taking time derivative of integral error terms in eq 3.2.17

e5 = x1 − x1ref = e1

e6 = x2 − x2ref = e2

e7 = x3 − x3ref = e3

e8 = x4 − x4ref = e4

(3.2.18)

Sliding Surface is defined as

S = f1e1 + f2e2 + f3e3 + f4e4 + f5e5 + f6e6 + f7e7 + f8e8 (3.2.19)

here f1, f2, f3, f4f5, f6, f7, f8 are constant design parameters of the sliding surfaces which

can have any positive constant value. Taking time derivative of S

Ṡ = f1ė1 + f2ė2 + f3ė3 + f4ė4 + f5ė5 + f5ė6 + f7ė7 + f8ė8 (3.2.20)

putting values of ė1, ė2, ė3, ė4 in eq3.2.20

Ṡ = f1(ẋ1 − ẋ1ref ) + f2(ẋ2 − ẋ2ref ) + f3(ẋ3 − ẋ3ref ) + f4(ẋ4 − ẋ4ref ) + f5e1 + f6e2 + f7e3 + f8e4

(3.2.21)

Ṡ = f1ẋ1 − f1ẋ1ref + f2ẋ2 − f2ẋ2ref + f3ẋ3 − f3ẋ3ref

+f4ẋ4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4
(3.2.22)
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putting values of ẋ1, ẋ2, ẋ3, ẋ4 in eq3.2.22

Ṡ =f1[j2x1(1 − g2x1) − h4x2x1 − v3(1 − e−x4)x1 − f1ẋ1ref + f2[j1x2(1 − g1x2) − h2x3x2

−h3x2x1 − v2(1 − e−x4)x2 − f2ẋ2ref + f3[o + ρx3x2
α+x2

− h1x3x2 − i1x3 − v1(1 − e−x4)x3]

−f3ẋ3ref + f4[u(t) − i2x4] − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4
(3.2.23)

Reaching law of SMC Ṡ= -ksign(S) here k is a design parameter and can have any

constant positive value.

Signum function is defined as follows:

sign(S) = −1 if S < 0

= 0 if S = 0

= 1 if S > 0

(3.2.24)

putting value of Ṡ in eq 3.2.23:

-ksign(S) =f1[j2x1(1 − g2x1) − h4x2x1 − v3(1 − e−x4)x1 − f1ẋ1ref + f2[j1x2(1 − g1x2)

−h2x3x2 − h3x2x1 − v2(1 − e−x4)x2] − f2ẋ2ref + f3[o + ρx3x2
α+x2

− h1x3x2 − i1x3

−v1(1 − e−x4)x3] − ẋ3ref f3 + f4[u(t) − i2x4] − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4
(3.2.25)

Simplifying eq 3.2.25:

-ksign(S) =f1[j2x1 − g2x2
1 − h4x2x1 − v3x1 + v3e−x4x1] − f1ẋ1ref + f2[j1x2 − j1g1x2

2

−h2x3x2 − h3x2x1 − v2x2 − v2e−x4x2] − f2ẋ2ref + f3[o + ρx3x2
α+x2

− h1x3x2

−i1x3 − v1x3 − v1e−x4x3] − ẋ3ref f3 + f4[u(t) − i2x4] − f4ẋ4ref + f5e1

+f6e2 + f7e3 + f8e4
(3.2.26)
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Simplifying eq3.2.26 further will give:

-ksign(S) =f1j2x1 − f1g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 − f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3v1e−x4x3 − ẋ3ref f3 + f4u(t)

−f4i2x4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4
(3.2.27)

Simplifying above eq3.2.27

-f4u(t) =f1j2x1 − f1g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 − f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3v1e−x4x3 − ẋ3ref f3 + ksign(S)

−f4i2x4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4
(3.2.28)

eq 3.2.28 will give our control our control input u

u(t) =− 1
f4

[f1j2x1 − f1g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 − f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3v1e−x4x3 − ẋ3ref f3 + ksign(S)

−f4i2x4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4]
(3.2.29)

In order to check the stability we take following lyapunov function:

V = 1
2S2 (3.2.30)

After taking time derivative above eq becomes 3.2.31

V̇ = SṠ (3.2.31)
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Putting value of Ṡ

V̇ = S(−ksign(S) (3.2.32)

Lyapunov analysis shows that the proposed controller meets the stability conditions,

which ensures the convergence of errors to zero in finite time and asymptotic stability

of the system

3.2.3 Terminal Sliding Mode Control

Compared to SMC, terminal sliding mode control (TSMC) makes better use of nonlinear

functions in the sliding surface to ensure error convergence to zero in a finite amount

of time and higher accuracy in acquiring and maintaining the terminal sliding surface.

It has a fairly straightforward implementation, can accommodate model uncertainty,

is robust to internal and external perturbations/disturbances, and ensures parametric

invariance. The incorporation of a specific nonlinear factor in the system dynamics,

which considerably enhances the convergence property, is the key component of TSMC

[17]

In contrast to more conventional nonlinear controllers like backtracking, Lyapunov re-

design, etc., it also offers the advantage of model order reduction. For the regulation

of nonlinear systems, terminal SMC has been used in [17],[18],[19]. Considering the

tracking errors of all the states defined in eq 3.2.1

Taking time derivative of error terms

ė1 = ẋ1 − ẋ1ref

ė2 = ẋ2 − ẋ2ref

ė3 = ẋ3 − ẋ3ref

ė4 = ẋ4 − ẋ4ref

(3.2.33)

Taking the sliding surface as follows:

S = f1e1 + f2e2 + f3e3 + f4e4 + f5(
∫

e1dt)
p1
q1 + f6(

∫
e2dt)

p2
q2 + f7(

∫
e3dt)

p3
q3 + f8(

∫
e4dt)

p4
q4

(3.2.34)
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In above eq design cofficients are f1, f2, f3, f4, f5, f6, f7 and f8 and their value can be

any positive real number.

positive odd numbers are p1, p2, p3, p4, q1, q2, q3 and q4 such that:

1 < pi
qi

< 2 and i=1,2,3,4...

Taking above eq3.2.34 time derivative

Ṡ =f1ė1 + f2ė2 + f3ė3 + f4ė4 + f5(
∫

e1dt)
p1
q1

−1

(p1
q1

)e1 + f6(
∫

e2dt)
p2
q2

−1

(p2
q2

)e2

+f7(
∫

e3dt)
p3
q3

−1

(p3
q3

)e3 + f8(
∫

e4dt)
p4
q4

−1

(p4
q4

)e4
(3.2.35)

letting the above terms as:

A = (
∫

e1dt)
p1
q1

−1
(p1

q1
)e1

B = (
∫

e2dt)
p2
q2

−1
(p2

q2
)e2

C = (
∫

e3dt)
p3
q3

−1
(p3

q3
)e3

D = (
∫

e4dt)
p4
q4

−1
(p4

q4
)e4 (3.2.36)

putting values of ė1,ė2,ė3,ė4 in eq 3.2.35

Ṡ =f1(ẋ1 − ẋ1ref ) + f2(ẋ2 − ẋ2ref ) + f3(ẋ3 − ẋ3ref ) + f4(ẋ4 − ẋ4ref ) + f5A

+f6B + f7C + f8D

(3.2.37)

Simplifying eq 3.2.37

Ṡ =f1ẋ1ref − f1ẋ1ref + f2ẋ2 − f2ẋ2ref + f3ẋ3 − f3ẋ3ref + f4ẋ4 − f4ẋ4ref + f5A

+f6B + f7C + f8D

(3.2.38)

putting ẋ1, ẋ2, ẋ3, ẋ4 in eq 3.2.38
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Ṡ =f1(j2x1(1 − g2x1) − h4x2x1 − v3(1 − e−x4)x1) − f1ẋ1ref + f2(j1x2(1 − g1x2)

−h2x3x2 − h3x2x1 − v2(1 − e−x4x2) − f2ẋ2ref + f3(o + ρx3x2
α+x2

− h1x3x2 − i1x3

−v1(1 − e−x4x3) − f3ẋ3ref + f4(u(t) − d2x4) − f4ẋref + f5A + f6B + f7C + f8D

(3.2.39)
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Simlplifying eq 3.2.39

Ṡ =f1(j2x1 − j2g2x2
1 − f4x2x1 − v3x1 + v3e−x4x1) − f1ẋ1ref + f2(j1x2 − j1x2

2g1 − h2x3x2

−h3x2x1 − v2x2 + e−x4x2) − g2ẋ2ref + f3(o + ρx3x2
α+x2

− h1x3x2 − i1x3 − v1(1 − e−x4)x3)

−f3ẋ3ref + f4(u(t) − i2x4) − f4ẋ4ref + f5A + f6B + f7C + f8D

(3.2.40)

Ṡ =f1j2x1 − f1j2g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1x2
2g1 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3e−x4x3v1 − f3ẋ3ref + f4u(t)

−f4i2x4 − f4ẋ4ref + f5A + f6B + f7C + f8D

(3.2.41)

We consider Ṡ=-ksign(S) the SMC’s reaching law. When the state is far from the switch-

ing manifold, a law known as the power rate reaching law speeds up reaching. k, which

can be any constant positive value, is a design parameter. Following is a definition of

the Signum function:

sign(S) = −1 if S < 0

= 0 if S = 0

= 1 if S > 0

(3.2.42)

putting Ṡ=−ksign(S)in eq 3.2.41

-ksign(S) =f1j2x1 − f1j2g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1x2

2g1

−h2x3x2 − f2h3x2x1 − f2v2x2 + f2e−x4x2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 − f3e−x4x3v1 − f3ẋ3ref + f4u(t) − f4i2x4 − f4ẋ4ref

+f5A + f6B + f7C + f8D

(3.2.43)
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Rearranging eq 3.2.43:

-f4u(t) =f1j2x1 − f1j2g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1x2
2g1 − h2x3x2 − f2h3x2x1 − f2v2x2 + f2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3e−x4x3v1 − f3ẋ3ref − ksign(S)

−f4i2x4 − f4ẋ4ref + f5A + f6B + f7C + f8D

(3.2.44)

From eq 3.2.44 we will get control input u:

u(t) =−1
f4

[f1j2x1 − f1j2g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1x2
2g1 − h2x3x2 − f2h3x2x1 − f2v2x2 + f2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3e−x4x3v1 − f3ẋ3ref − ksign(S)

−f4i2x4 − f4ẋ4ref + f5(
∫

e1dt)
p1
q1

−1

(p1
q1

)e1 + f6(
∫

e2dt)
p2
q2

−1

(p2
q2

)e2

+f7(
∫

e3dt)
p3
q3

−1

(p3
q3

)e3 + f8(
∫

e4dt)
p4
q4

−1

(p4
q4

)e4
(3.2.45)

Consider the following proposed Lyapunov function for stability analysis

V = 1
2S2 (3.2.46)

Taking the eq3.2.46 time derivative

V̇ = SṠ (3.2.47)

putting Ṡ in eq 3.2.47

V̇ = −S(ksign(S) (3.2.48)

Lyapunov analysis shows that the proposed controller meets the stability conditions,

which ensures the convergence of errors to zero in finite time and asymptotic stability

of the system.
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3.2.4 SuperTwisting Sliding Mode Control

First, we must choose a sliding surface for the Super Twisting mode-based Sliding Mode

Control. Although there are other methods for choosing sliding surfaces, tracking faults

is the simplest. Error is defined as the difference between actual and desired values.

Tracking of errors terms are defined as followed

e1 = x1 − x1ref

e2 = x2 − x2ref

e3 = x3 − x3ref

e4 = x4 − x4ref

(3.2.49)

In above eq 3.2.49 x1, x2, x3andx4 are the state varibles and x1ref , x2ref , x3ref , x4ref are

the desired values.

Taking time derivative of error terms in eq 3.2.49:

ė1 = ẋ1 − ẋ1ref

ė2 = ẋ2 − ẋ2ref

ė3 = ẋ3 − ẋ3ref

ė4 = ẋ4 − ẋ4ref

(3.2.50)

Sliding Surface is defined as:

S = f1e1 + f2e2 + f3e3 + f4e4 (3.2.51)

here f1, f2, f3, f4 are constant design parameters of the sliding surfaces which can have

any positive constant value.

Taking time derivative of eq 3.2.51

Ṡ = f1ė1 + f2ė2 + f3ė3 + f4ė4 (3.2.52)

putting values of ė1, ė2, ė3, ė4 in eq 3.2.52

Ṡ = f1(ẋ1 − ẋ1ref ) + f2(ẋ2 − ẋ2ref ) + f3(ẋ3 − ẋ3ref ) + f4(ẋ4 − ẋ4ref ) (3.2.53)
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Simplifying eq 3.2.53

Ṡ = f1ẋ1 − f1ẋ1ref + f2ẋ2 − f2ẋ2ref + f3ẋ3 − f3ẋ3ref + f4ẋ4 − f4ẋ4ref (3.2.54)

putting values of ẋ1, ẋ2, ẋ3, ẋ4 in eq 3.2.54

Ṡ = f1[j2x1(1 − g2x1) − h4x2x1 − v3(1 − e−x4)x1] − f1ẋ1ref + f2[j1x2(1 − g1x2)

−h2x3x2 − h3x2x1 − v2(1 − e−x4)x2] − f2ẋ2ref + f3[o + ρx3x2
α+x2

− h1x3x2

−i1x3 − v1(1 − e−x4)x3] + f4[u(t) − i2x4] − f4ẋ4ref

(3.2.55)
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Simplifying eq 3.2.55

Ṡ =f1[j2x1(1 − g2x1) − h4x2x1 − v3(1 − e−x4)x1] − f1ẋ1ref + f2[j1x2(1 − g1x2)

−h2x3x2 − h3x2x1 − v2(1 − e−x4)x2] − f2ẋ2ref + f3[o + ρx3x2
α+x2

− h1x3x2

−i1x3 − v1(1 − e−x4)x3] − ẋ3ref f3 + f4[u(t) − i2x4] − f4ẋ4ref

(3.2.56)

Ṡ =f1[j2x1 − g2x2
1j2 − h4x2x1 − v3x1 + v3e−x4x1] − f1ẋ1ref + f2[j1x2 − j1g1x2

2

−h2x3x2 − h3x2x1 − v2x2 + v2e−x4x2] − f2ẋ2ref + f3[o + ρx3x2
α+x2

− h1x3x2

−i1x3 − v1x3 + v1e−x4x3] − ẋ3ref f3 + f4[u(t) − i2x4] − f4ẋ4ref

(3.2.57)

Ṡ =f1j2x1 − f1g2x2
1j2 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1g1x2

2

−f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 + f4u(t) − f4i2x4 − f4ẋ4ref

(3.2.58)
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putting Ṡ = 0 in eq 3.2.58

0 =f1j2x1 − f1g2x2
1j2 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1g1x2

2

−f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3

−f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 + f4u(t) − f4i2x4 − f4ẋ4ref

(3.2.59)

Rearranging eq 3.2.59

-f4u(t) =f1j2x1 − f1g2x2
1j2 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1g1x2

2

−f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 − f4i2x4 − f4ẋ4ref

(3.2.60)
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eq 3.2.60 will give control input u

u(t) = − 1
f4

[f1j2x1 − f1g2x2
1j2 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1g1x2

2

−f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 − f4i2x4 − f4ẋ4ref ]
(3.2.61)

Next the switching control for supertwisting sliding mode

usw is defined as

usw =-K1 |S|α sign(S) + u1 (3.2.62)

u̇1 =-K2sign(S) (3.2.63)

Taking integral of eq 3.2.62

u1 =-k2
∫

sign(S)dt (3.2.64)

putting u1 from eq 3.2.64 in eq 3.2.62 k1 and k2 are given in [17]:

usw =-k1 |S|α sign(S) − k2
∫

sign(S)dt (3.2.65)

The overall control law for ST-SMC can be written as:

uST −SMC =ueq + usw (3.2.66)

putting values ueq from eq 3.2.61 and uswfrom eq3.2.65 in eq 3.2.66:

In order to check the stability of the controller following conditions should be fulfilled:
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uST −SMC = −1
f4

[f1j2x1 − f1g2x2
1j2 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 − f4i2x4

−f4ẋ4ref ] − K1 |S|α sign(S) − k2
∫

sign(S)dt

(3.2.67)

1. V should be positive definite

2. V should be radially unbounded

3. V̇ should be negative definite

Defining Lyapunov candidate function as:

V =1
2S2 (3.2.68)

Taking time derivative of eq3.2.68

V̇ =SṠ (3.2.69)

V̇ =S[f1ė1 + f2ė2 + f3ė3 + f4ė4] (3.2.70)

Putting value of ė4 from eq 3.2.50 in to eq 3.2.70:

V̇ =S[f1ė1 + f2ė2 + f3ė3 + f4[ẋ4 − ẋ4ref ]] (3.2.71)

putting value of ẋ4 from eq 3.1.2 in to eq 3.2.71:
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V̇ =S[f1ė1 + f2ė2 + f3ė3 + f4[u(t) − i2x4 − ẋ4ref ]] (3.2.72)

Simpling above eq 3.2.72

V̇ =S[f1ė1 + f2ė2 + f3ė3 + f4u(t) − f4i2x4 − f4ẋ4ref ] (3.2.73)
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Putting value of u(t) from eq 3.2.67in to eq 3.2.73:

V̇ =S[f1ė1 + f2ė2 + f3ė3 + f4
−1
f4

[f1j2x1 − f1g2x2
1j2 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref

+f2j1x2 − f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 − f4i2x4

−f4ẋ4ref + k1 |S|α sign(S) + k2
∫

sign(S)dt]

−f4i2x4 − f4ẋ4ref ]
(3.2.74)

Simplifying eq 3.3.85:

V̇ ≤ S[−k1 |S|α sign(S) − k2
∫

sign(S)dt)] (3.2.75)

The developed controller is stable and V̇ is a negative definite variable according to

equation 3.2.75. The stability analysis suggested in [20] demonstrates that the proposed

controller meets the stability condition V̇ ≤ 0, this also explains how in a fixed amount

of time, all errors eventually converge to zero.

3.3 Adaptive Controller Design

In order to get more accurate results controllers are adapted using adaptive law.

3.3.1 Adaptive Sliding Mode Control

Error terms are defined as :

e1 = x1 − x1ref

e2 = x2 − x2ref

e3 = x3 − x3ref

e4 = x4 − x4ref

(3.3.1)
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In above eq 3.3.1 x1, x2, x3andx4 are the state varibles and x1ref , x2ref , x3ref , x4ref are

the desired values.

Taking time derivative of error terms in 3.3.1

ė1 = ẋ1 − ẋ1ref

ė2 = ẋ2 − ẋ2ref

ė3 = ẋ3 − ẋ3ref

ė4 = ẋ4 − ẋ4ref

(3.3.2)

S = c1e1 + c2e2 + c3e3 + c4e4 (3.3.3)

here c1, c2, c3andc4 are constant design parameters of the sliding surfaces which can have

any positive constant value.

Taking time derivative of S

Ṡ = c1ė1 + c2ė2 + c3ė3 + c4ė4 (3.3.4)

putting values of ė1, ė2, ė3, ė4 in eq 3.3.3

Ṡ = c1(ẋ1 − ẋ1ref ) + c2(ẋ2 − ẋ2ref ) + c3(ẋ3 − ẋ3ref ) + c4(ẋ4 − ẋ4ref ) (3.3.5)

Ṡ = c1ẋ1 − c1ẋ1ref + c2ẋ2 − c2ẋ2ref

+c3ẋ3 − c3ẋ3ref + c4ẋ4 − c4ẋ4ref

(3.3.6)

putting values of ẋ1, ẋ2, ẋ3, ẋ4 in above eq 3.3.6.

Ṡ = c1(j2x1)(1 − g2x1) − h4x2x1 − v3(1 − e−x4)x1 − c1ẋ1ref + c2(j1x2(1 − g1x2)

−h2x3x2 − h3x2x1 − v2(1 − e−x4)x2) − h2ẋ2ref + h3(o + ρx3x2
α+x2

−h1x3x2 − i1x3 − v1(1 − e−x4)x3) − h3ẋ3ref + c4(u(t) − i2x4) − h4ẋ4ref

(3.3.7)
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Simplifying eq 3.3.7

Ṡ = c1(j2x1 − j2g2x2
1 − h4x2x1 − v3x1 + v3e−x4x1) − c1ẋ1ref + c2(j1x2 − j1x2

2g1

−h2x3x2 − h3x2x1 − v2x2 + e−x4v2x2) − c2ẋ2ref + c3(o + ρx3x2
α+x2

− h1x3x2 − i1x3

−v1(1 − e−x4)x3) − c3ẋ3ref + c4(u(t) − i2x4) − c4ẋ4ref

(3.3.8)

Taking j2 as adaptive parameter j2=δ1

Ṡ = c1δ1x1 − c1δ1g2x2
1 − c1h4x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2 − c2j1x2

2g1

−h2x3x2c2 − c2h3x2x1 − c2v2x2 + c2e−x4x2v2 − c2ẋ2ref + c3o + c3
ρx3x2
α+x2

−c3h1x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + c4u(t) − c4i2x4 − c4ẋ4ref

(3.3.9)

for the convergence of the system, defining the adaptive law which can estimate the

parameters as :

δ̃i=δ̂i − δi (3.3.10)

we can take i=1,2

from adaptive law we can conclude value of δ1

δ1 = δ̂1 − δ̃1 (3.3.11)

for stability analysis we take lypanov candid function

V = 1
2S2 + 1

2η
δ2

1 (3.3.12)

Taking Time derivative of eq 3.3.12

V̇ = SṠ + 1
η

δ̃1
˙̂
δ1 (3.3.13)

Putting value of Ṡ
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V̇ =c1δ1x1 − c1δ1g2x2
1 − c1h4x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2 − c2j1x2

2g1

−h2x3x2c2 − c2h3x2x1 − c2v2x2 + c2e−x4x2v2 − c2ẋ2ref + c3o + c3
ρx3x2
α+x2

−c3h1x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + c4u(t) − c4i2x4 − c4ẋ4ref

+ 1
η δ̃1

˙̂
δ1

(3.3.14)

putting value of δ1 from eq 3.3.11

V̇ =S[c1[δ̂1 − δ̃1]x1 − c1[δ̂1 − δ̃1]g2x2
1 − c1h4x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2

−c2j1x2
2g1 − h2x3x2c2 − c2h3x2x1 − c2v2x2 + c2e−x4x2v2 − c2ẋ2ref + c3o

+c3
ρx3x2
α+x2

− c3h1x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + c4u(t) − c4i2x4 − c4ẋ4ref ]

+ 1
η δ̃1

˙̂
δ1

(3.3.15)

Seperate terms having δ̃1 :

V̇ =S[c1δ̂1x1 − c1δ̂1g2x2
1 − c1h4x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2

−c2j1x2
2g1 − h2x3x2c2 − c2h3x2x1 − c2v2x2 + c2e−x4x2v2 − c2ẋ2ref + c3o

+c3
ρx3x2
α+x2

− c3h1x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + c4u(t)

−c4i2x4 − c4ẋ4ref ] − Sc1δ̃1x1(1 − g2x1) + 1
η δ̃

˙̂
δ1

(3.3.16)

Taking 1
η δ̃1 Common from eq 3.3.16:

V̇ =S[c1δ̂1x1 − c1δ̂1g2x2
1 − c1h4x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2

−c2j1x2
2g1 − h2x3x2c2 − c2h3x2x1 − c2v2x2 + c2e−x4x2v2 − c2ẋ2ref + c3o

+c3
ρx3x2
α+x2

− c3h1x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + c4u(t)

−c4i2x4 − c4ẋ4ref ] + 1
η δ̃[ ˙̂

δ1 − Sηc1x1(1 − g2x1)
(3.3.17)

Simplifying eq 3.3.17
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V̇ =S[c1δ̂1x1 − c1δ̂1g2x2
1 − c1h4x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2

−c2j1x2
2g1 − h2x3x2c2 − c2h3x2x1 − c2v2x2 + c2e−x4x2v2 − c2ẋ2ref + c3o

+c3
ρx3x2
α+x2

− c3h1x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + c4u(t)

−c4i2x4 − c4ẋ4ref ] + 1
η δ̃[ ˙̂

δ1 − Sηc1x1 + Sηc1g2x2
1]

(3.3.18)

Considering the boundedness of parameter estimation, so inV̇ the adaptive update laws

are designed as:

ˆ̇δ1 =ηProj(δ̂1, +Sc1x1 − Sc1g2x2
1) (3.3.19)

To get the varying parameters bounded, adaptation parameters are redefined as follows:

ˆ̇δ1=+Sηf1x1 − Sηf1g2x2
1 (3.3.20)

Taking eq 3.3.19 in to eq 3.3.16 then eq 3.3.16 can be simplified as :

V̇ ≤ S[c1δ̂1x1 − c1δ̂1g2x2
1 − c1h44x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2

−c2j1x2
2g1 − h2x3x2c2 − c2h3x2x1 − c2v2x2 + c2e−x4x2v2 − c2ẋ2ref + c3o

+c3
ρx3x2
α+x2

− c3h1x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + c4u(t)

−c4i2x4 − c4ẋ4ref ] + 1
η δ̃[ ˙̂

δ1 − Sf1x1 + Sf1x2
1g2]

(3.3.21)

Defining Signum Function as

sign(S) = −1 if S < 0

= 0 if S = 0

= 1 if S > 0

(3.3.22)

putting Ṡ=−ksign(S)in eq 3.3.9
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−ksign(S) = c1δ̂1x1 − c1δ̂1g2x2
1 − c1h4x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2 − c2j1x2

2g1

−h2x3x2c2 − c2h3x2x1 − c2v2x2 + c2e−x4x2v2 − c2ẋ2ref + c3o + c3
ρx3x2
α+x2

−c3h1x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + c4u(t) − c4i2x4 − c4ẋ4ref

(3.3.23)

−c4u(t) =c1δ̂1x1 − c1δ̂1g2x2
1 − c1h4x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2 − c2j1x2

2g1

−h2x3x2c2 − c2h3x2x1 − c2v2x2 + c2e−x4x2v2 − c2ẋ2ref + c3o + c3
ρx3x2
α+x2

−c3h1x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + ksign(S) − c4i2x4 − c4ẋ4ref

(3.3.24)

eq 3.3.24 will give control input u

u(t) = −1
c4

[c1δ̂1x1 − c1δ̂1g2x2
1 − c1h4x2x1 − c1v3x1 + c1v3e−x4x1 − c1ẋ1ref + c2j1x2 − c2j1x2

2g1

−h2x3x2c2 − c2h3x2x1 − c2v2x2 + c2e−x4x2v2 − c2ẋ2ref + c3o + c3
ρx3x2
α+x2

−c3h1x3x2 − c3i1x3 − c3v1x3 − c3e−x4x3v1 − c3ẋ3ref + ksign(S) − c4i2x4 − c4ẋ4ref ]
(3.3.25)

putting eq 3.3.23 in eq 3.3.21 and consedring properties of sgn(·) from eq 3.3.22, eq

3.3.21 can be simplified as :

V̇ ≤ −k |S| ≤ 0 (3.3.26)

Thus, it is demonstrated that the system as a whole is asymptotically stable and the

developed controller satisfies the Lyapunov stability criteria.
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3.3.2 Adaptive Integral Sliding Mode Control

Taking Integral of Error terms defined in eq 3.3.1:

e5 =
∫

x1 − x1ref dt

e6 =
∫

x2 − x2ref dt

e7 =
∫

x3 − x3ref dt

e8 =
∫

x4 − x4ref dt

(3.3.27)

In above eq 3.3.27 x1, x2, x3andx4 are the state varibles and x1ref , x2ref , x3ref , x4ref are

the desired values.

Taking time derivative of error terms in 3.3.27 :

ė5 = x1 − x1ref = e1

ė6 = x2 − x2ref = e2

ė7 = x3 − x3ref = e3

ė8 = x4 − x4ref = e4

(3.3.28)

defining the sliding surface as :

S = f1e1 + f2e2 + f3e3 + f4e4 + f5e5 + f6e6 + f7e7 + f8e8 (3.3.29)

here f1, f2, f3, f4f5, f6, f7, f8 are constant design parameters of the sliding surfaces which

can have any positive constant value. Taking the time derivative of S:

Ṡ = f1ė1 + f2ė2 + f3ė3 + f4ė4 + f5ė5 + f5ė6 + f7ė7 + f8ė8 (3.3.30)
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putting values of ė1, ė2, ė3, ė4 from eq3.3.30 and simplifying eq 3.3.30 will give:

Ṡ = f1ẋ1 − f1ẋ1ref + f2ẋ2 − f2ẋ2ref + f3ẋ3 − f3ẋ3ref

+f4ẋ4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4
(3.3.31)

putting values of ẋ1, ẋ2, ẋ3, ẋ4in above eq 3.3.31

Ṡ =f1j2x1 − f1g2x2
1 − h4x2x1 − v3(1 − e−x4)x1 − f1ẋ1ref + f2[j1x2(1 − g1x2) − h2x3x2

−h3x2x1 − v2(1 − e−x4)x2 − f2ẋ2ref + f3[o + ρx3x2
α+x2

− h1x3x2 − i1x3 − v1(1 − e−x4)x3]

−f3ẋ3ref + f4[u(t) − i2x4] − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4
(3.3.32)

Simplifying eq 3.3.32

Ṡ =f1[j2x1(1 − g2x1) − h4x2x1 − v3(1 − e−x4)x1 − f1ẋ1ref + f2[j1x2(1 − g1x2) − h2x3x2

−h3x2x1 − v2(1 − e−x4)x2] − f2ẋ2ref + f3[o + ρx3x2
α+x2

− h1x3x2 − i1x3 − v1(1 − e−x4)x3]

−ẋ3ref f3 + f4[u(t) − i2x4] − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4
(3.3.33)

Ṡ =f1[j2x1(1 − g2x1) − h4x2x1 − v3(1 − e−x4)x1 − f1ẋ1ref + f2[j1x2(1 − g1x2) − h2x3x2

−h3x2x1 − v2(1 − e−x4)x2] − f2ẋ2ref + f3[o + ρx3x2
α+x2

− h1x3x2 − i1x3 − v1(1 − e−x4)x3]

−ẋ3ref f3 + f4[u(t) − i2x4] − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4
(3.3.34)

Taking j2 as adaptive parameter j2=δ1

Ṡ =f1δ1x1 − f1δ1x2
1j2 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3v1e−x4x3 − ẋ3ref f3 + f4u(t)

−f4i2x4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4
(3.3.35)
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for the convergence of the system, defining the adaptive law which can estimate the

parameters as we can take i=1,2,3...

δ̃i=δ̂i − δi (3.3.36)

from adaptive law we can conclude value of δ1

δ1 = δ̂1 − δ̃1 (3.3.37)

for stability analysis we take lypanov candid function

V = 1
2S2 + 1

2η
δ2

1 (3.3.38)

Taking Time derivative of V

V̇ = SṠ + 1
η

δ̃1
˙̂
δ1 (3.3.39)

Putting value of Ṡ

V̇ =S[f1δ1x1 − f1g2x2
1j2 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3v1e−x4x3 − ẋ3ref f3 + f4u(t)

−f4i2x4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4] + 1
η δ̃1

˙̂
δ1

(3.3.40)

putting value of δ1 from eq 3.3.37
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V̇ =S[f1[δ̂1 − δ̃1]x1 − f1g2x2
1[δ̂1 − δ̃1] − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3v1e−x4x3 − ẋ3ref f3 + f4u(t)

−f4i2x4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4] + 1
η δ̃1

˙̂
δ1

(3.3.41)

Seperate the terms having δ̃1:

V̇ =S[f1δ̂1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3v1e−x4x3 − ẋ3ref f3 + f4u(t)

−f4i2x4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4] − Sf1δ̃1x1(1 − g2x1) + 1
η δ̃

˙̂
δ1

(3.3.42)

Taking 1
η δ̃1 common from eq 3.3.42:

V̇ =S[f1δ̂1x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3v1e−x4x3 − ẋ3ref f3 + f4u(t)

−f4i2x4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4] + 1
η δ̃1[ ˙̂

δ1 − Sηf1x1(1 − g2x1)]
(3.3.43)
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Simplifying eq 3.3.43

V̇ =S[f1δ̂1x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3v1e−x4x3 − ẋ3ref f3 + f4u(t)

−f4i2x4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4] + 1
η δ̃1[ ˙̂

δ1 − Sηf1x1 + Sηf1g2x2
1]

(3.3.44)

Considering the boundedness of parameter estimation, so in V̇ the adaptive update laws

are designed as:

ˆ̇δ1 =ηProj(δ̂1, +Sf1x1 − Sf1g2x2
1) (3.3.45)

To get the varying parameters bounded, adaptation parameters are redefined as follows:

ˆ̇δ1=+Sηf1x1 − Sηf1g2x2
1 (3.3.46)

Taking eq 3.3.45 into eq 3.3.43 eq 3.3.43 can be written as :

V̇ ≤ S[f1δ̂1x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3v1e−x4x3 − ẋ3ref f3 + f4u(t)

−f4i2x4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4] + 1
η δ̃[ ˙̂

δ1 − Sf1x1 + Sf1x2
1g2]

(3.3.47)
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Reaching law of SMC Ṡ= -ksign(S) here k is a design parameter and can have any

constant positive value.Signum function is defined as follows:

sign(S) = −1 if S < 0

= 0 if S = 0

= 1 if S > 0

(3.3.48)

putting value of Ṡ in eq 3.3.35 :

−ksign(S) =f1δ̂1x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3v1e−x4x3 − ẋ3ref f3 + f4u(t)

−f4i2x4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4
(3.3.49)

u(t) =− 1
f4

[f1δ̂1x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3v1e−x4x3 − ẋ3ref f3 + ksign(S)

−f4i2x4 − f4ẋ4ref + f5e1 + f6e2 + f7e3 + f8e4]
(3.3.50)

Putting eq 3.3.49 in eq 3.3.47 and consedring properties of sign(.) from eq 3.3.48 eq

3.3.47 can be written as :

V̇ ≤ −k |S| ≤ 0 (3.3.51)

Thus, it is demonstrated that the system as a whole is asymptotically stable and the

developed controller satisfies the Lyapunov stability criteria.

3.3.3 Adaptive Terminal Sliding Mode Control

Consedring the tracking of errors defined in eq 3.3.1.Sliding Surface is defined as:

S = f1e1 + f2e2 + f3e3 + f4e4 + f5(
∫

e1dt)
p1
q1 + f6(

∫
e2dt)

p2
q2 + f7(

∫
e3dt)

p3
q3 + f8(

∫
e4dt)

p4
q4

(3.3.52)

50



Chapter 3: The Non-Linear Tumor Model Control Dynamics

where f1, f2, f3, f4, f5, f6, f7 and f8 are the gains of the controller which are positive real

numbers.

p1, p2, p3, p4, q1, q2, q3andq4 are the gains which are positive odd numbers.

1 < pi
qi

< 2 and i=1,2,3,4...

After taking time derivative eq 3.3.52 becomes

Ṡ =f1ė1 + f2ė2 + f3ė3 + f4ė4 + f5(
∫

e1dt)
p1
q1

−1

(p1
q1

)e1

+f6(
∫

e2dt)
p2
q2

−1

(p2
q2

)e2 + f7(
∫

e3dt)
p3
q3

−1

(p3
q3

)e3

+f8(
∫

e4dt)
p4
q4

−1

(p4
q4

)e4

(3.3.53)

letting above terms as :

A = (
∫

e1dt)
p1
q1

−1
(p1

q1
)e1

B = (
∫

e2dt)
p2
q2

−1
(p2

q2
)e2

C = (
∫

e3dt)
p3
q3

−1
(p3

q3
)e3

D = (
∫

e4dt)
p4
q4

−1
(p4

q4
)e4 (3.3.54)

putting values of ė1,ė2,ė3,ė4 from eq 3.3.2 in eq 3.3.53

Ṡ =f1(ẋ1 − ẋ1ref ) + f2(ẋ2 − ẋ2ref ) + f3(ẋ3 − ẋ3ref ) + f4(ẋ4 − ẋ4ref ) + f5A

+f6B + f7C + f8D

(3.3.55)
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Ṡ =f1ẋ1ref − f1ẋ1ref + f2ẋ2 − f2ẋ2ref + f3ẋ3 − f3ẋ3ref + f4ẋ4 − f4ẋ4ref

+f5A + f6B + f7C + f8D
(3.3.56)

putting ẋ1, ẋ2, ẋ3, ẋ4 in above eq

Ṡ =f1(δ1x1(1 − g2x1) − h4x2x1 − v3(1 − e−x4)x1) − f1ẋ1ref + f2(j1x2(1 − g1x2) − h2x3x2

−h3x2x1 − v2(1 − e−x4x2) − f2ẋ2ref + f3(o + ρx3x2
α+x2

− h1x3x2 − i1x3 − v1(1 − e−x4x3)

−f3ẋ3ref + f4(u(t) − d2x4) − f4ẋref + f5A + f6B + f7C + f8D

(3.3.57)

Simlplifying eq 3.3.57

Ṡ =f1(δ1x1 − δ1g2x2
1 − f4x2x1 − v3x1 + v3e−x4x1) − f1ẋ1ref + f2(j1x2 − j1x2

2g1 − h2x3x2

−h3x2x1 − v2x2 + e−x4x2v2) − g2ẋ2ref + f3(o + ρx3x2
α+x2

− h1x3x2 − i1x3 − v1(1 − e−x4)x3)

−f3ẋ3ref + f4(u(t) − i2x4) − f4ẋ4ref + f5A + f6B + f7C + f8D

(3.3.58)

Taking adaptive parameter =j2 so we can take j2=δ1

Ṡ =f1δ1x1 − f1δ1g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1x2
2g1 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2e−x4x2v2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3e−x4x3v1 − f3ẋ3ref

+f4u(t) − f4i2x4 − f4ẋ4ref + f5A + f6B + f7C + f8D

(3.3.59)

for the convergence of the system, defining the adaptive law which can estimate the

parameters as we can take i=1,2
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δ̃i=δ̂i − δi (3.3.60)

from adaptive law we can conclude value of δ1

δ1 = δ̂1 − δ̃1 (3.3.61)

for stability analysis we take lypanov candid function

V = 1
2S2 + 1

2η
δ2

1 (3.3.62)

Taking Time derivative of V

V̇ = SṠ + 1
η

δ̃1
˙̂
δ1 (3.3.63)
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Putting Ṡ in above eq:

V̇ =S[f1δ1x1 − f1δ1g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1x2

2g1

−h2x3x2 − f2h3x2x1 − f2v2x2 + f2e−x4x2v2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 − f3e−x4x3v1 − f3ẋ3ref + f4u(t) − f4i2x4 − f4ẋ4ref

+f5A + f6B + f7C + f8D] + 1
η δ̃1

˙̂
δ1

(3.3.64)

putting value of δ1 from eq 3.3.61

V̇ =S[f1[δ̂1 − δ̃1]x1 − f1[δ̂1 − δ̃1]g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1x2
2g1 − h2x3x2 − f2h3x2x1 − f2v2x2 + f2e−x4x2v2 − f2ẋ2ref + f3o + f3

ρx3x2
α+x2

−f3h1x3x2 − f3i1x3 − f3v1x3 − f3e−x4x3v1 − f3ẋ3ref + f4u(t) − f4i2x4 − f4ẋ4ref

+f5A + f6B + f7C + f8D] + 1
η δ̃1

˙̂
δ1

(3.3.65)

Seperate the terms having δ̃1

V̇ =S[f1δ̂1x1 − f1δ̂1g2x2
1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1x2

2g1 − h2x3x2

−f2h3x2x1 − f2v2x2 + f2e−x4x2v2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3

−f3e−x4x3v1 − f3ẋ3ref + f4u(t) − f4i2x4 − f4ẋ4ref + f5A + f6B + f7C + f8D]

−Sf1δ̃1x1(1 − g2x1) + 1
η δ̃

˙̂
δ1

(3.3.66)
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Taking 1
η δ̃1 common from eq 3.3.66

V̇ = S[f1δ̂1x1 − f1δ̂1g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1x2

2g1

−h2x3x2 − f2h3x2x1 − f2v2x2 + f2e−x4x2v2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 − f3e−x4x3v1 − f3ẋ3ref + f4u(t) − f4i2x4 − f4ẋ4ref

+f5A + f6B + f7C + f8D] + 1
η δ̃[ ˙̂

δ1 − Sηf1x1(1 − g2x1)]
(3.3.67)

Simplifying eq 3.3.67:

V̇ = S[f1δ̂1x1 − f1δ̂1g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1x2

2g1

−h2x3x2 − f2h3x2x1 − f2v2x2 + f2e−x4x2v2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 − f3e−x4x3v1 − f3ẋ3ref + f4u(t) − f4i2x4 − f4ẋ4ref + f5A

+f6B + f7C + f8D] + 1
η δ̃[ ˙̂

δ1 − Sηf1x1 + Sηf1g2x2
1]

(3.3.68)
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Considering the boundedness of parameter estimation, so inV̇ the adaptive update laws

are designed as:

ˆ̇δ1 =ηProj(δ̂1, +Sf1x1 − Sf1g2x2
1) (3.3.69)

To get the varying parameters bounded, adaptation parameters are redefined as follows:

ˆ̇δ1=Sηf1x1 − Sηf1g2x2
1 (3.3.70)

Taking eq 3.3.69 into eq 3.3.67 eq 3.3.67 can be written as

V̇ ≤ S[f1δ̂1x1 − f1δ̂1g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1x2
2g1 − h2x3x2 − f2h3x2x1 − f2v2x2 + f2e−x4x2v2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3e−x4x3v1 − f3ẋ3ref + f4u(t)

−f4i2x4 − f4ẋ4ref + f5A + f6B + f7C + f8D] + 1
η δ̃[ ˙̂

δ1 − Sf1x1 + Sf1x2
1g2]
(3.3.71)

Reaching law of SMC Ṡ= -ksign(S) here k is a design parameter and can have any con-

stant positive value.Signum function is defined as follows

sign(S) = −1 if S < 0

= 0 if S = 0

= 1 if S > 0

(3.3.72)

putting Ṡ=−ksign(S)in eq 3.3.59

-ksign(S) =f1δ̂1x1 − f1δ̂1g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1x2

2g1

−h2x3x2 − f2h3x2x1 − f2v2x2 + f2e−x4x2v2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 − f3e−x4x3v1 − f3ẋ3ref + f4u(t) − f4i2x4 − f4ẋ4ref

+f5A + f6B + f7C + f8D(p4
q4

)e4
(3.3.73)
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Rearranging eq 3.3.73:

-f4u(t) =f1δ̂1x1 − f1δ̂1g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1x2

2g1

−h2x3x2 − f2h3x2x1 − f2v2x2 + f2e−x4x2v2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 − f3e−x4x3v1 − f3ẋ3ref − f4i2x4 − f4ẋ4ref + +f5A

+f6B + f7C + f8D + ksign(S)
(3.3.74)

from eq3.3.74 we can get our control input u

u(t) =−1
f4

[f1δ̂1x1 − f1δ̂1g2x2
1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1x2
2g1 − h2x3x2 − f2h3x2x1 − f2v2x2 + f2e−x4x2v2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 − f3e−x4x3v1 − f3ẋ3ref + ksign(S)

−f4i2x4 − f4ẋ4ref + +f5A + f6B + f7C + f8D]
(3.3.75)
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Putting eq 3.3.73 in eq3.3.71

and consedring the properties of sign(·) from eq3.3.72, eq 3.3.71 can be simplified as :

V̇ ≤ −k |S| ≤ 0 (3.3.76)

It is demonstrated as a consequence that the system as a whole is asymptotically stable

and that the developed controller complies with the requirements for Lyapunov stability.

3.3.4 Adaptive Super Twisting Sliding Mode Control

Defining Sliding Surface as:

S = f1e1 + f2e2 + f3e3 + f4e4 (3.3.77)

here f1, f2, f3, f4 are constant design parameters of the sliding surfaces which can have

any positive constant value.

Taking time derivative of eq 3.3.76

Ṡ = f1ė1 + f2ė2 + f3ė3 + f4ė4 (3.3.78)

putting values of ė1, ė2, ė3, ė4from eq 3.3.2 in eq 3.3.78

Ṡ = f1(ẋ1 − ẋ1ref ) + f2(ẋ2 − ẋ2ref ) + f3(ẋ3 − ẋ3ref ) + f4(ẋ4 − ẋ4ref ) (3.3.79)

Simplifying eq 3.3.79

Ṡ = f1ẋ1 − f1ẋ1ref + f2ẋ2 − f2ẋ2ref + f3ẋ3 − f3ẋ3ref + f4ẋ4 − f4ẋ4ref (3.3.80)

putting values of ẋ1, ẋ2, ẋ3, ẋ4 in eq 3.3.79
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Ṡ = f1[j2x1(1 − g2x1) − h4x2x1 − v3(1 − e−x4)x1] − f1ẋ1ref + f2[j1x2(1 − g1x2) − h2x3x2

−h3x2x1 − v2(1 − e−x4)x2] − f2ẋ2ref + f3[o + ρx3x2
α+x2

− h1x3x2 − i1x3 − v1(1 − e−x4)x3]

+f4[u(t) − i2x4] − f4ẋ4ref

(3.3.81)

Simplifying eq 3.3.80

Ṡ =f1[j2x1(1 − g2x1) − h4x2x1 − v3(1 − e−x4)x1] − f1ẋ1ref + f2[j1x2(1 − g1x2) − h2x3x2

−h3x2x1 − v2(1 − e−x4)x2] − f2ẋ2ref + f3[o + ρx3x2
α+x2

− h1x3x2 − i1x3 − v1(1 − e−x4)x3]

−ẋ3ref f3 + f4[u(t) − i2x4] − f4ẋ4ref

(3.3.82)

Ṡ =f1[j2x1 − g2x2
1j2 − h4x2x1 − v3x1 + v3e−x4x1] − f1ẋ1ref + f2[j1x2 − j1g1x2

2

−h2x3x2 − h3x2x1 − v2x2 + v2e−x4x2] − f2ẋ2ref + f3[o + ρx3x2
α+x2

− h1x3x2 − i1x3 − v1x3

+v1e−x4x3] − ẋ3ref f3 + f4[u(t) − i2x4] − f4ẋ4ref

(3.3.83)

Taking j2 adaptive parameter so we can write j2=δ1

Ṡ =f1δ1x1 − f1g2x2
1δ1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1g1x2

2

−f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3

−f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 + f4u(t) − f4i2x4 − f4ẋ4ref

(3.3.84)

for the convergence of the system, defining the adaptive law which can estimate the

parameters as :
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δ̃i=δ̂i − δi (3.3.85)

we can take i=1,2

from adaptive law we can conclude value of δ1

δ1 = δ̂1 − δ̃1 (3.3.86)

Ṡ =f1δ̂1x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref

+f2j1x2 − f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2

−f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3

+f3v1e−x4x3 − ẋ3ref f3 + f4u(t) − f4i2x4 − f4ẋ4ref

(3.3.87)

for stability analysis we take lypanov candid function

V = 1
2S2 + 1

2η
δ2

1 (3.3.88)

Taking Time derivative of V

V̇ = SṠ + 1
η

δ̃1
˙̂
δ1 (3.3.89)
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Putting Ṡ in above eq:

V̇ =S[f1δ1x1 − f1g2x2
1δ1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 + f4u(t)

−f4i2x4 − f4ẋ4ref ] + 1
η δ̃1

˙̂
δ1

(3.3.90)

Putting value of δ1 from eq 3.3.86 in eq 3.3.90

V̇ =S[f1[δ̂1 − δ̃1]x1 − f1g2x2
1[δ̂1 − δ̃1] − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref

+f2j1x2 − f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2

−f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3

+f4u(t) − f4i2x4 − f4ẋ4ref ] + 1
η δ̃1

˙̂
δ1

(3.3.91)

Seperate the terms having δ̃1

V̇ =[Sf1δ̂1x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1g1x2

2

−f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 + f4u(t) − f4i2x4 − f4ẋ4ref ]

−Sf1δ̃1x1(1 − g2x1) + 1
η δ̃

˙̂
δ1

(3.3.92)

Taking 1
η δ̃1 common from eq 3.3.92:

V̇ =S[f1δ̂x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1g1x2

2

−f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 + f4u(t) − f4i2x4 − f4ẋ4ref ]

+ 1
η δ̃[ ˙̂

δ1 − Sηf1x1(1 − g2x1)]
(3.3.93)
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Simplifying eq 3.3.93

V̇ =S[f1δ̂x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1g1x2

2

−f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 + f4u(t) − f4i2x4 − f4ẋ4ref ]

+ 1
η δ̃[ ˙̂

δ1 − Sηf1x1 + Sηf1g2x2
1]

(3.3.94)

Considering the boundedness of parameter estimation, so inV̇ the adaptive update laws

are designed as

ˆ̇δ1 =η1Proj(δ̂1, +Sf1x1 − Sf1g2x2
1) (3.3.95)

To get the varying parameters bounded, adaptation parameters are redefined as follows:

ˆ̇δ=+ηSf1x1 − Sηf1g2x2
1 (3.3.96)

From eq 3.3.94 and eq 3.3.95 we can write :

V̇ ≤ S[f1δ̂x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1g1x2

2

−f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 + f4u(t) − f4i2x4 − f4ẋ4ref ]
(3.3.97)

usw can be written as

usw= -K1 |S|α sign(S) + u1 (3.3.98)

Taking integral of u1
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u̇1=-K2sign(S) (3.3.99)

u1=-k2
∫

sign(S)dt (3.3.100)

usw=-k1 |S|α sign(S) − k2
∫

sign(S)dt (3.3.101)

from eq 3.3.97and 3.3.98 we can write

−k1 |S|α sign(S) − k2
∫

sign(S)dt =f1δ̂1x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1

−f1ẋ1ref + f2j1x2 − f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1

−f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

−f3h1x3x2 − f3d1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3

+f4u(t) − f4i2x4 − f4ẋ4ref

(3.3.102)

simplifying above eq 3.3.102

-f4u(t) =f1δ̂1x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 + f4u(t)

−f4i2x4 − f4ẋ4ref + k1 |S|α sign(S) + k2
∫

sign(S)dt

(3.3.103)

Simplifying further will give u(t)

u(t) =−1
f 4

[f1δ̂1x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2

−f2j1g1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o

+f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 − f4d2x4

−f4ẋ4ref + k1 |S|α sign(S) + k2
∫

sign(S)dt]
(3.3.104)
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Putting value of u in eq 3.3.97 we get

V̇ ≤ S[f1δ̂x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1 + f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1g1x2

2

−f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2 − f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2

−f3i1x3 − f3v1x3 + f3v1e−x4x3 − ẋ3ref f3 + f4
−1
f4

[f1δ̂1x1 − f1g2x2
1δ̂1 − f1h4x2x1 − f1v3x1

+f1v3e−x4x1 − f1ẋ1ref + f2j1x2 − f2j1b1x2
2 − f2h2x3x2 − f2h3x2x1 − f2v2x2 + f2v2e−x4x2

−f2ẋ2ref + f3o + f3
ρx3x2
α+x2

− f3h1x3x2 − f3i1x3 − f3a1x3 + f3v1e−x4x3 − ẋ3ref f3 − f4i2x4

−f4ẋ4ref + k1 |S|α sign(S) + k2
∫

sign(S)dt] − f4i2x4 − f4ẋ4ref ]
(3.3.105)

Simplifying eq 3.3.105

V̇ ≤ S[−k1 |S|α sign(S) − k2
∫

sign(S)dt)] (3.3.106)

The system as a whole is shown to be asymptotically stable in the eq 3.3.106 above, and

the constructed controller is shown to meet the Lyapunov stability condition.
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Chapter 4

Results and Discussion

In this Chapter, the results of MATLAB implementation are discussed. Firstly the

comparison of the robust controller is done with the already work done, Secondly, the

comparison of Adaptive controllers is done with the already work done. The comparison

was done on the bases of tracking tumor cells in less number of days and with the intake of

medicine in less number of days. The x-axis represents time, while the y-axis represents

medicine dosage. All of the tumor mathematical model’s states correspond to various

cell types, and values are employed in normalized form. The simulation can last up to

200 days at most. The table below lists the initial circumstances for normal, tumor,

immune cell, and chemotherapeutic medication.4.1.

State Initial Condition

N(0)/x1(0) 1

T(0)/x2(0) 0.2

I(0)/x3(0) 0.15

M(0)/x4(0) 0

Table 4.1: Initial conditions of the states
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4.1 Comparison of Robust Controllers

In the accompanying Figure 4.1 the comparison of the controllers (SMC, ISMC, STSMC,

and TSMC) is done with Synergetic and State Feedback Control. From Figure 4.1 we

can see that TSMC outperforms other controllers, as normal and tumor cells are tracking

to their reference value within 60 days, immune cell is tracking to their reference value

within 62 days, and drug at the site is being delivered within 20 days, respectively. On

the other side, synergetic control is underperforming.

(a) (b)

(c) (d)

Figure 4.1: Comparison of Controllers
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The following figure 4.2 compares the drug delivery scenario. We can see that the

delivery of the medication takes around 18 days in TSMC and 62 days in Synergetic

Control.

Figure 4.2: Drug Delivery scenario

The table below 4.2, compares various controllers.. From the table 4.2 we can conclude

that TSMC is performing best as the tumor cells are tracking to their reference value

within 60 days and the amount of drug dosage was 14.31.

Table 4.2: Comparison of several controllers

Techniques Time of Convergence Error at steady state Total

drug dosage

SMC 62days No 16.59

ISMC 70days No 18.25

TSMC 60days No 14.31

STSMC 60days No 35.16

Synergetic Control 60days No 24.0000 [8]

Statefeedback 68days No 14.8637 [8]

4.2 Comparison of Adaptive Controllers

According to Figure 4.3, ATSMC is outperforming other controllers because normal,

tumor cells are tracking to their reference value within 57 days and immune cells are

tracking in 60 days, and drug at the site is being delivered within 20 days, respectively.
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(a) (b)

(c) (d)

Figure 4.3: Comparison of Controllers

Figure 4.4 compares the drug delivery scenario for the above-mentioned controllers. In

ATSMC, the medication is supplied in 17 days; in Synergetic Control, it takes 62 days.

Figure 4.4: Drug Delivery scenario
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The comparison of adaptive controllers with synergetic and state feedback controllers is

shown in the table 4.3 below. As the tumor cell is tracking to the reference values in 57

days and the total drug was 13.62, we can say that ATSMC is performing at its best.

Table 4.3: Comparison of various controllers

Techniques Time of convergence Error Total

drug dosage

ASMC 60days No 13.17

AISMC 58days No 17.96

ATSMC 57days No 13.62

ASTSMC 58days No 22.31

Synergetic Control 60days No 24.0000 [8]

Statefeedback 68days No 14.8637 [8]

4.3 Comparison of Controllers

In this section, the results of robust controllers and adaptive controllers are compared.

4.3.1 Comparison of SMC and ASMC

The Comparison of SMC with ASMC is shown in the below figure 4.5 from the figure

it’s clear that ASMC is producing better results as compared to SMC. In ASMC normal

and immune cells are tracking to their reference value within 60 days tumor cells are

tracking to their reference value within 61 days drug at the site is being delivered within

22 days.

While in SMC normal cells are tracking to their reference value within 62 days, tumor

cells are tracking to their reference value within 63 days immune cells are tracking to

their reference value within 65 days and the drug at the site is being delivered within

43 days.
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(a) (b)

(c) (d)

Figure 4.5: Comparison of SMC and ASMC

4.3.2 Comparison of ISMC and AISMC

The comparison of ISMC and AISMC is displayed in figure 4.6 below. From the figure,

it is obvious that AISMC is outperforming normal cells are tracking to their reference

value with in 58 days, tumor cells are tracking to their reference value within 60 days,

immune cells are tracking within 58 days, and drug at the site is being delivered within

23 days,while in ISMC, immune cells track to their reference value in 82 days, tumor

cells track to their reference value in 67 days, and normal cells track to their reference

value in 65 days drug at the site is being delivered within 81 days.

(a) (b)

(c) (d)

Figure 4.6: Comparison of ISMC and AISMC
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4.3.3 Comparison of STSMC and ASTSMC

The figure 4.7 below shows the comparison of STSMC and ASTSMC from the figure

4.7 we can see that ASTSMC outperforms as normal and tumor cells are tracking to

their reference value with in 58 days, immune cells are tracking to their reference value

within 60 days and the drug at the tumor site is being delivered within 37 days.In

STSMC, immune cells track to their reference value in 100 days, tumor cells track to

their reference value in 62 days, normal cells track to their reference value in 80 days

and drug at the site is being delivered within 100 days.

(a) (b)

(c) (d)

Figure 4.7: Comparison of STSMC and ASTSMC

4.3.4 Comparison of TSMC and ATSMC

The comparison between TSMC and ATSMC is depicted in the image below 4.8. The

figure makes it obvious that ATSMC surpasses TSMC in terms of results as normal,

tumor and immune cells are tracking to their reference value within 57 days and the

drug at the tumor site is being delivered within 20 days.In TSMC normal and tumor

cells are tracking to their reference value within 60 days, the immune cell is tracking to

their reference value within 62 days, and the drug at the site is being delivered within

20 days, respectively.

71



Chapter 4: Results and Discussion

(a) (b)

(c) (d)

Figure 4.8: Comparison of TSMC and ATSMC

4.3.5 Comparison of Drug Delivery Scenario

Figure 4.9 depicts the drug delivery situation for all cases. The medication was given

to SMC and ASMC for a total of 42 and 20 days. The medicine is being given by the

controller at ISMC and AISMC for a total of about 120 and 21 days. Figure 4.9 show

the drug delivery scenario for both cases. ST SMC and ASTSMC received the medicine

for a total of 100 and 35 days respectively. The controller at TSMC and ATSMC is

administering the medication for a total of roughly 18 and 17 days, respectively.

(a) (b)

(c) (d)

Figure 4.9: Comparison Of Drug delivery Scenario
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4.4 Hardware-in-the-loop

Hardware-in-the-loop (HIL) simulation is a type of real-time simulation. HIL simulation

shows how the controller responds in real-time to realistic virtual stimuli.

4.4.1 HIL Combination

HIL is the combination of Software in the loop and Processor in the Loop. While the

system is processed on the processor in the loop, the simulation work is done on the

software in the loop.[21],[22]

MATLAB/Simulink has been used to depict the performance of the suggested controller,

and the HIL setup has been used for experimental analysis. The setup of the launch

pad is shown in the Figure 4.10. The performance of the controllers as illustrated in

Figure 4.10: Hardware-In-The-Loop setup [3]

Figure 4.11 is further validated by the use of real-time controller hardware in a loop (C-

HIL) experiment. These C-HIL tests are useful to confirm how the signed controller will

operate in a real-world system. The model is simulated in MATLAB/Simulink, and the

launchpad is a C2000 Delfino Microcontroller F28397D Launchpad that generates the

control signals. From the figure4.11 we can say that in ASMC normal cells are tracking
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to their reference values within 63 days, tumor cells are tracking within 64 days, immune

cells are tracking in 79 days and the drug at the site is being delivered within 45 days.

In AISMC normal cells are tracking within 62 days, tumor cells are tracking within 63

days, immune cells are tracking within 78 days and the drug at the site is being delivered

within 43 days however in ASTSMC normal cells are tracking with in 65 days, tumor

cells are tracking within 65 days, immune cells are tracking within 80 days and drug

at the site is being delivered within 70 days. On the other hand in ATSMC normal

cell is tracking to their reference value within 60 days, tumor cells are tracking within

58 days immune in 63 days and the drug at the tumor site is being delivered within

37 days, whereas in MATLAB normal and tumor cells are tracking within 57 days,

immune cells are tracking in 60 days, and drug at the site is being delivered within 20

days respectively. The delay in HIL simulation occurs due to the delay occurs when

running in the simulation.

(a) (b)

(c) (d)

Figure 4.11: Comparison of Controllers

4.4.2 Benefits of HIL

1. Cost saving.

2. HIL testing can include scenarios that would be too risky or difficult to evaluate

in a real-world setting. The HIL tests can be repeated. The HIL testing procedure

is highly automated and supports multithreading, enabling numerous tests to run

concurrently, and accelerating the development process.
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3. Easily implemented on both simple and complex Systems.

4. HIL Simulations give confidence that the controller will work on the actual Hard-

ware as well.
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Conclusion and Future work

5.1 Conclusion

1. Designed and implemented robust nonlinear controllers in MATLAB/Simulink.

2. Designed and implemented the adaptive nonlinear controllers in MATLAB/Simulink.

3. Results showed that Adaptive Terminal Sliding Mode Controller (ATSMC) per-

formed better than other controllers.

4. In comparison to the already published nonlinear controllers for the said problem:

• ATSMC tracked tumor cells to the reference value with 46% less drug dosage

• ATSMC tracked healthy cells to reference value quickly with 5% less days.

5. Less drug dosage will improve the overall patient health since the side effects faced

will be less.

6. Reduce treatment cost.

7. .HIL Simulations give confidence that the controller will work on the actual Hard-

ware as well.

5.2 Future work

1. Future work can be done by applying barrier-based Non-linear Control Techniques.

2. Future work can be done by putting the proposed controller on actual platforms.
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