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Foreword

The original work Théorie des corps déformables of the Cosserat brothers (Eugène
who was a mathematician and François who was an engineer) was published in
1909. It was based on differential geometry theory applied to mechanics. Extending
the concepts of Cauchy on continuum mechanics, the Cosserat brothers developed a
theory for continuous oriented bodies that consist not of material points, but also of
directions associated with each material point. They recognized the application
of their theory for representing the deformations of rods and shells; however, their
work was ignored for half a century. New interest in Cosserat continuum theory
arose with the rebirth of micromechanics in the 1960s. Different names have been
given to Cosserat theory (e.g. micropolar media, oriented media, continuum theo-
ries with directors, multipolar continua, microstructured or micromorphic continua).
The state of the art at this time was reflected in the collection of papers presented at
the historical IUTAM Symposium on the “Mechanics of Generalized Continua”, in
Freudenstadt and Stuttgart in 1967 (E. Kröner, ed, Springer-Verlag, Berlin, 1968).
There is no doubt that Cosserat continuum theory is mostly suitable for describing
the kinematics of granular media; this was clear in the minds of the scientists of this
first period, among whom Mindlin (Micro-structure in linear elasticity. Arch. Rat.
Mech. Anal, 10, 51–77, 1964) is the most prominent proponent. However, early
applications of Cosserat theory for the description of the mechanics of granular
media were less encouraging, as it appeared that Cosserat effects are negligible
when the dominant wavelength of the deformation field is large as compared to the
grain size.

New interest appeared in the 1980s when the link was made by H. B. Mühlhaus
and I. Vardoulakis between Cosserat continuum description and strain localization
in their seminal paper: The thickness of shear bands in granular materials
(Géotechnique, 37(3):271–283, 1987). Later, advanced experimental testing and
discrete element model simulations evidenced significant grain rotations inside the
shear band.

In the last 30 years, an important literature was published on Cosserat continua
with applications to geotechnics and geomechanics (e.g. borehole stability,
soil–structure interaction, layered and blocky rock mass, slope stability), structural
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geology and geophysics (e.g. mechanics of folding and faulting, fault mechanics),
structural mechanics (e.g. masonry structures) and more generally in applied
mechanics for representing the behaviour of heterogeneous and periodic materials
or structures. These developments were associated with studies on constitutive
modelling and advanced numerical models among which I. Vardoulakis and
co-workers made significant and innovative contributions. I. Vardoulakis also
brought clarifications in highly debated issues on the applicability of Cosserat
continuum theory to granular materials with respect to asymmetry of stress in
granular media, upscaling methods for defining stresses and couple stresses from
contact forces, micromechanical interpretation of stresses and couple stresses.

Despite the fact that Cosserat continuum models are becoming more and more
popular for applications in various fields of mechanics, the basic concepts of the
theory are rarely taught in graduate schools. Maybe this is due to the lack of a
comprehensive textbook clarifying the basic concepts of Cosserat continuum the-
ory. In 2009, Prof. Vardoulakis started to write this work on Cosserat continuum
mechanics and mechanics of granular media, emphasizing its sound mathematical
formulation based on continuum thermodynamics. An original use of the von Mises
motor mechanics was introduced, for the compact mathematical description of the
mechanics and statics of Cosserat continua. This book contains numerous examples
and exercises and addresses postgraduate students and researchers. I. Vardoulakis
intended to teach these topics in several advanced graduate and doctoral pro-
grammes over the world. The first part of the textbook was almost complete in
September 2009 when Prof. Vardoulakis passed away in a tragic accident. With the
approval of his family, the book was prepared for publication in Springer series
“Lecture Notes in Applied and Computational Mechanics”. We believe that it will
be of great use for scientists and engineers for addressing advanced multi-scales
problems in mechanics.

Paris, France Jean Sulem
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Chapter 1
Introduction

Abstract This chapter succinctly describes the need for a compact representation
in order to describe continua with higher degrees of freedom than the classical
translational ones.

There is a continuing discussion concerning the “origins” of the so-called
advanced-continuum theories, such as the Cosserat Theory. A footnote in a paper
by Mindlin reveals the learned opinion on the subject by M. A. Biot, who gives the
credit to Cauchy.1 At any rate as precursors of the Cosserat theory are mentioned in
the literature the theory of Lord Kelvin concerning the light-aether and the works of
W. Voight on the physics of crystalic matter [1, 2]. A historical note on the subject
can be found in the introduction of the CISM Lecture on “Polar Continua” by
Stojanović [3].

What is the major difference between classical continua and Cosserat continua?
Classical continuum mechanics is based on the axiom that the stress tensor is
symmetric. According to Schaefer [4], it is Hamel [5] who has named this statement
the Boltzmann axiom, since it is Boltzmann who has pointed first, already in the
year 1899, to the fact that the assumption about the symmetry of the stress tensor
has an axiomatic character. Thus, the Mechanics of continua with non-symmetric
stress tensor may be termed also as non-Boltzmann Continuum Mechanics. Such a
theory is the theory of the Cosserat continuum, that originates from the seminal
work of the brothers Eugène and François Cosserat [6]. This work is a difficult
reading that was made known to the general continuum mechanics community
through the works of Sudria [7], published in 1935, and through the famous 1958
paper of late Professor Günther [8], who presented the subject using modern tensor
notation.

A 3D Boltzmann continuum is a continuous manifold of material points that
possess 3 degrees of freedom (dofs), those of displacement. The Boltzmann con-
tinuum is juxtaposed to the Cosserat continuum, that is in turn a manifold of
oriented rigid particles, called “trièdres rigides” or rigid crosses, with 6 dofs,

1Cauchy, A. L. (1851). Note sur l’équilibre et les mouvements vibratoires des corps solides.
Comptes-Rendus, 32, 323–326.
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namely 3 dofs of displacement and 3 dofs of rotation. This basic property of the
Cosserat continuum has prompted Schaefer [9] to propose the use of the von Mises
motor mechanics [10, 11], for the compact mathematical description of the
mechanics and statics of Cosserat continua. In 1967 Schaefer remarked “Heute, im
Abstand von mehr als 40 Jahren, muss man feststellen, daß von dieser
Motorrechnung nur in wenigen Fällen Gebrauch gemacht worden ist; sie ist fast in
Vergessenheit geraten”.2 Schaefer’s complaint is still true today, more than
40 years after the publication of his paper. To this end we use here some basic
concepts of motor algebra [12, 13] and motor calculus [9, 14, 15] and analysis [14],
as applied to rigid body mechanics and to Cosserat continuum mechanics, with the
aim to make the analogy more transparent between the micromechanics of
rigid-granular media and Cosserat continuum mechanics. The analysis is restricted
here to infinitesimal particle displacements and rotations. Incorporation of finite
rotations [16] and introduction of non-Abelian motor calculus [17] lie outside the
scope of this textbook.

The present work is meant as an addendum to a standard Continuum Mechanics
course and is addressed to post graduate Students and Researchers. The reader must
have been exposed to the basic concepts and notions of Continuum Mechanics [18,
19]. Some sections in the present textbook are inspired by the book of Becker and
Bürger [19], that follows the German tradition of presenting the subject.

In terms of notation we use mainly Cartesian coordinates, bold face letters for
vectors and the Gauss-Einstein summation convention over repeated indices.
However, some sections are developed in general fixed-in-space curvilinear coor-
dinates, in order to illustrate some fine but important details of the mathematical
structure of the Cosserat continuum theory [8].
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Chapter 2
Rigid-Body Mechanics and Motors

Abstract This chapter lays down the fundamental representation concepts that will
be used in the book thereafter. It eventually defines the concept of a “von Mises
motor”, which is a compound vector including force and moment vectors. This
compound representation of forces and moments in turn defines a geometric space/
representation, where all the balance laws are going to be formulated upon. It
continues by laying the basic theorems that will be used to formulate the Cosserat
continuum, together with the appropriate kinematic fields conjugate to the “motor”
vectors that are naturally called “kinematic von Mises motors”. Such a kinematic
motor is a compound vector including linear velocity and spin (angular velocity),
fully describing a rigid body motion in the new reduced geometric representation.

In the Mechanics literature we can find various ways of representing rigid-body
statics and kinematics. Starting from elementary geometric statements taken from
vector mechanics, we introduce here the concept of motor as applied to rigid body
mechanics with the aim to reach in later chapters a better understanding of the
micromechanics of Cosserat continua.

A motor is the synthesis of two words, moment and vector. The word was coined
by Clifford [1] in his Preliminary Sketch of bi-Quaternions (1873), and was used by
Richard von Mises [2, 3] in the sense given to it by Study [4] in his Geometrie der
Dynamen (1903). As also pointed out by Schaefer, the paper of von Mises is
another difficult to read reference. Note that a section on motor algebra, as an
algebra of duals, and its application to rigid-body mechanics can be found in the
textbook of Brand [5] and an introductory chapter related to the so-called dynams1

can be found in the more recent book of Talpaert [6].

1In German literature this is called Dyname, a term that stems from the Greek word dύmali1; in
French literature it is called torseur.

© Springer International Publishing AG, part of Springer Nature 2019
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2.1 Some Definitions from Vector Mechanics

2.1.1 Line Vectors

Geometrically, a vector is defined by the following two statements: (a) Every
ordered pair of points A;Bf g in an Euclidian space defines a vector, denoted as

a ¼ AB
!

. (b) All ordered pairs of points that can be brought into congruence through
a parallel translation define the same vector. From this definition follows that all
vectors can be mapped on the set of pairs of points that result by connecting all
points P in space with a common origin O. This means that in the three dimensional
Euclidian space 0E3 we have as many vectors as points, namely 13.

Thus, any vector r is represented by the point vector R ¼ OP
!

or, for fixed
Cartesian coordinates with the origin at point O, by the ð3� 1Þ-column of the
coordinates of the endpoint PðxiÞ (Fig. 2.1),

r $ R ¼ OP
!

¼ xiei $
x1
x2
x3

8<
:

9=
; ð2:1Þ

where ei are the Cartesian basis vectors.
Richard von Mises in his paper on Motor Calculus, [2, 3] has pointed to the

well-known difference between a vector and a beam,2 the latter being a term
originally introduced by Study [4]. The definition of a beam is as follows: (a) Every
ordered pair of points A;Bf g in space defines a beam. (b) All ordered pairs of
points that can be brought into congruence through a parallel translation along their
axis ðeÞ, define the same beam.

We recognize from this definition that a typical example of a beam is the
line-force, as this is used within the frame of rigid-body statics. Indeed, the force in
rigid-body statics is not a vector in the usual sense but a sliding vector, i.e. a
line-vector, denoted as ~FðeÞ, that can slide along its axis or line of action ðeÞ. From
the definition follows that all beams can be generated, if we connect all points P in
space with points O that lie on one and the same plane ðEÞ; Fig. 2.1. This means in
turn that in 0E3 we have as many beams as points in space and points on a plane,
namely 15.

As already mentioned above, a line force with axis ðeÞ is denoted as ~FðeÞ. For any
point A 2 ðeÞ we define a fixed force, denoted as ~FA, that is attached to the point A
and corresponds to the ordered pair of points fA;Bg; Fig. 2.2. Obviously ~FðeÞ as a
sliding vector is the totality of all these point-fixed forces,

2German: Stab.
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~FðeÞ ¼ ~FA A 2 ðeÞ ^ B 2 ðeÞ :j ~FA
�� �� ¼ AB

!��� ��� ¼ const:
n o

ð2:2Þ

We can always define a vector F, that can be brought into congruence with the
“beam” ~FðeÞ, such that ~FðeÞ � F. This vector F has a unique point vector repre-

sentative, f ¼ OB0!
, that results by a parallel translation of any of the ~FA to the

origin. Alternatively f can be seen as the point-vector that results as the difference

between the point vectors OA
!

and OB
!

that define the endpoints of ~FA,

f ¼ OB0!
¼ OB

!
�OA

!
¼ bi � aið Þei ¼ f iei ð2:3Þ

We consider now a sliding force ~FðeÞ, with axis ðeÞ, and we select a represen-
tation of that force through the fixed force ~FA, with endpoints the oriented pair
fA;Bg 2 ðeÞ (Fig. 2.3). The moment of the force ~FðeÞ with respect to a point O is

Fig. 2.1 Vector and “beam”

Fig. 2.2 Fixed force as a point difference
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the vector product of the position vector OA
!

and the point force vector ~FA,
denoted as

MO ¼ OA
!

�~FA ð2:4Þ

If f ¼ OB0!
is the point vector that is assigned to the fixed force ~FA, Eq. (2.3),

then the moment of the force ~FðeÞ with respect to point O is computed from the

vector product of the position vector of the point of attachment of ~FA, RA ¼ OA
!

,

and the point vector f ¼ OB0!
that is assigned to the fixed force ~FA,

MO ¼ OA
!

�~FA ¼ RA � f ¼ eijkeiajfk ð2:5Þ

where fe1; e2; e3g is a right-handed Cartesian basis, ai and fi the Cartesian com-

ponents of the vectors RA ¼ OA
!

and f ¼ OB0!
, and eijk is the corresponding

Cartesian permutation tensor,

eijk ¼
1 if : ði; j; kÞ ¼ cyclð1; 2; 3Þ
�1 if : ði; j; kÞ ¼ cyclð2; 1; 3Þ
0 else

8<
: ð2:6Þ

It can be easily seen that the moment vector MO depends on the choice of point
O and is independent of the choice of the point A of attachment of the force, since:
(a) MO is normal to the plane ðO; eÞ, (b) MO is oriented in such a way that the
system of vectors fRA; f ;Mg is right-handed. (c) The magnitude of MO is com-
puted from the magnitude of the force, F,

F ¼ Fj j ¼ ~F
�� �� ¼ ~FðeÞ�� �� ¼ ~FA

�� �� ¼ fj j ¼
ffiffiffiffiffi
fifi

p
ð2:7Þ

Fig. 2.3 Definition of the moment of a force
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The distance ‘ of the reference point O from the axis ðeÞ of the force is,

‘ ¼ OA
!��� ��� sinu ð2:8Þ

and,

MO
�� �� ¼ OA

!��� ��� fj j sin/ ¼ fj j‘ ð2:9Þ

The orientation and magnitude of the moment vector follow from the geometric
representation of it as a surface element vector, as shown in Fig. 2.4,

MO
�� �� ¼ OC

!
¼ OA

!
� OB0!

¼
~e1 ~e2 ~e3
a1 a2 a2
f1 f2 f3

������
������ ð2:10Þ

MO
�� �� ¼ ðOAO0BÞ ¼ ðOAÞðOBÞ sin h: ð2:11Þ

2.1.2 Force-Couples

Let ~F ¼ ~FðeÞ and ~F0 ¼ ~F0ðe0Þ be two forces with ðeÞ and ðe0Þ as their axes respec-
tively. For any two points A � ðeÞ and A0 � ðe0Þ, the corresponding point-fixed
forces are denoted as ~FA � ~FðeÞ and ~F0A0 � ~F0ðe0Þ and the corresponding force
vectors are F and F0. As shown in Fig. 2.5, we define a force-couple ð~FA;~F0A0Þ as a
set of opposite forces with parallel axes ðeÞ and ðe0Þ

F0 ¼ �F; ðe0Þ==ðeÞ ð2:12Þ

By selecting an arbitrary origin O, we can compute the moment of each of the
two forces that make up the considered force-couple as,

MO ¼ OA
!

�~F
A ð2:13Þ

Fig. 2.4 The moment vector
as a surface element vector
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MO0 ¼ OA0!
�~F0A0 ð2:14Þ

We define the moment of the force-couple ðF;�FÞ to be the sum of the
moments of its components. This is a vector that lies normal to the plane ðe; e0Þ of
the force-couple and does not depend on the choice of the origin O (Fig. 2.5),

M ¼ MO þMO0 ¼ RA � f þRA0 � ð�f Þ ¼ RA � RA0ð Þ � f ð2:15Þ

or

M ¼ A0A
!

�~F
A ð2:16Þ

with

M ¼ Mj j ¼ F‘ ð2:17Þ

where F is the magnitude of the force ~F and ‘ is the distance between the two
parallel axes. From Eq. (2.17) follows that with ‘ ¼ 0 a co-linear couple of forces
has zero moment.

We remark that two force-couples are in equilibrium, if their moments are
opposite,

M1 þM2 ¼ 0 , M1 ¼ �M2 ð2:18Þ

On the other hand two force-couples are equivalent, if their moments are equal,

M1 ¼ M2 , M1 �M2 ¼ 0 ð2:19Þ

Based on these remarks, we conclude that the moments of two force-couples can
be added.

Fig. 2.5 Non-collinear
force-couple
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2.2 Vector Statics

2.2.1 Reduction of a System of Forces

We start our consideration with a system of line forces ~F1;~F2; . . .
� �

that are acting
on a given rigid body B in 0E3 along their axes ðeiÞ; Fig. 2.6. In order to reduce
these forces into a minimal set, we select an arbitrary point O and an arbitrary plane
ðEÞ in space, such that the point O does not lie on the chosen plane ðEÞ.3 The point
O and the plane ðEÞ are called the reduction point and the reduction plane,
respectively.

We decompose the force ~Fi into a force ~�FO
i , that is attached to point O, and a

component ~F0
i that lies on a line ðe0iÞ � ðEÞ, that results as the intersection of the

plane ðEÞ and the plane ðPÞ � ðO; eiÞ; Fig. 2.7. Line ðe0iÞ intersects line ðeiÞ at point
O0, and with that ~F0O0

i � ~F0
i . The axis of

~�FO
i is the line ð�eiÞ ¼ ðOO0Þ, thus ~�FO

i � ~�Fi.
In that sense, the decomposition of force ~Fi is unique,

~Fi ¼ ~�Fi þ~F0
i ð2:20Þ

The above procedure can be repeated for all forces of the considered system
~F1;~F2; . . .

� �
.

Let ~�FO be the resultant of all components ~�FO
i , that are set to be attached to point

O (Fig. 2.8),

~�FO ¼
X
i

~�FO
i ð2:21Þ

The resultant of all components ~F0
i with axis in the plane ðEÞ may be either a

single force ~F0 or a force-couple ð~F0A;�~F00BÞ, such that, F00 ¼ �F0. As already
said, the moment ~M0 of a force-couple does not depend upon the choice of the
origin and is said to be a “free” vector, meaning that M0 is a vector, since its axis is
restricted only to be perpendicular to the plane ðEÞ,

M0 ¼ BA
!

�~F0A ð2:22Þ

Thus, as a result of the arbitrary choice of the reduction point O and of the
reduction plane ðEÞ, the system of forces ~F1;~F2; . . .

� �
is reduced into ether: (a) A

system of two skew forces, f~�FO
;~F0g, with the axis of ~�FO passing through point O

3This section is mostly inspired by the presentation of the subject, given by my Teacher, late
Professor Bitsakos (Cexqcijόpotko1 K.X. jai Mpisrάjo1 K.I., Tevmijή Mηvamijή B’,
Cqauorsasijή, Ejd. Tevmijoύ Epilekηsηqίot sη1 Ekkάdo1, 1967.).
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Fig. 2.6 System of line forces acting on a rigid body

Fig. 2.7 Decomposition of a force into a force passing through a point O and a force lying in a
plane ðEÞ

Fig. 2.8 Reduction of a force system into two a force passing through the reduction point O and
a a skew force or b a force-couple, lying in the reduction plane ðEÞ
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and the axis of ~F0 lying in the plane ðEÞ, or (b) a system of a force ~�FO and a couple

M0, denoted as f~�FO
;M0g, with the axis of ~FO passing through point O and the

couple ~M0 being normal to the plane ðEÞ.
For the given system of forces ~F1;~F2; . . .

� �
, the above described reduction

strategy introduces an equivalence class of 16 reduced systems f~�FO
;~F0g or

f~�FO
;M0g; their multitude being determined by the multitude of points O and planes

ðEÞ in 0E3.

The system of the two skew forces f~�FO
;~F0g can be further reduced into a force

passing through point O and a force-couple as follows (Fig. 2.9): Let the axis of the
force ~F0 in the plane ðEÞ be line ðe0Þ. From point O we draw a line ðe00Þ that is
parallel to ðe0Þ and along this line we add at point O the self-equilibrating
force-doublet ð~F00O;�~F00OÞ such that the vectors that correspond to the forces ~F0

and ~F00O are equal (Fig. 2.9) to a vector F0. With this construction the original pair
of skew forces f~FO;~FðEÞg is replaced by the resultant force,

~SO ¼ ~FO þ~F00O ð2:23Þ

that lies in the plane ðe; e00Þ and is passing through point O, and the force-couple
ð~F0;�~F00Þ that is made of the force ~F0 with axis line ðe0Þ in the plane ðEÞ and the
force �~F00, with axis line ðe00Þ==ðe0Þ, passing through point O. The moment M00 of
this force-couple is a vector, that lies normal to the plane ðE0Þ ¼ ðO; e0Þ,

M00 ¼ OO0!
�~F0 ð2:24Þ

Fig. 2.9 Further reduction of a system of two skew forces
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Note that in both cases the force that is attached to the reduction point O is equal
to the resultant force of the considered system,

~SO ¼ ~�FO þ~F00O ð2:25Þ

or

~SO ¼ ~�FO ð2:26Þ

The above considerations resulted in the following general theorem:
Given is a system of forces ~F1;~F2; . . .

� �
that are acting on a rigid body, a plane

ðEÞ and a point O outside this plane. The given system of forces can always be
reduced into a force that is passing through the point O and is equal to the resultant
force of the system, ~FO, and a force-couple MðEÞ that is either normal to the plane
ðEÞ ðMðEÞ � M0Þ or is normal to the plane ðE0Þ that is made of point O and the axis
of the resultant force in the plane ðEÞ ðMðEÞ � M00Þ.

We note that if the resultant force and the resultant force-couple are coplanar,
then the vector product of the corresponding vectors vanishes,

S �M ¼ 0 ð2:27Þ

In this case the original system of forces can be reduced into a single force as
indicated in Fig. 2.10.

In general a system of forces ~F1;~F2; . . .
� �

is reduced into a single force, if there
exists a point O in space, such that the moment of these forces with respect to this
point vanishes (Fig. 2.11),

MO ¼
X
i

OAi

!
� ~FAi

i ¼ 0 ð2:28Þ

Fig. 2.10 Synthesis of a coplanar system, consisting of a force and force-couple, into a single
resultant force
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In this case the system of forces is said to be in equilibrium, if in addition the
resultant force of that system vanishes,

S ¼
X
i

Fi ¼ 0 ð2:29Þ

2.2.2 Transport Law of Forces: The Dynamic Motor

Let us consider a fixed force ~FP acting at a point P of its axis ðeÞ; Fig. 2.12. We
denote the corresponding point vector by FP. If we consider now a force that arises
through parallel translation of ~FP to another point O1, resulting to the force ~FO1

with axis ðe1Þ==ðeÞ, then

FO1 ¼ FP ð2:30Þ

The force ~FP can be replaced by the force ~FO1 and a co-planar force-couple
ð~FP;�~FO1Þ with moment,

MO1 ¼ O1P
!

�~F
P ð2:31Þ

We note that for all points P0 � ðeÞ along the axis of ~FP,

MP0 ¼ P0P
!

�~F
P ¼ 0 ð2:32Þ

Thus, by construction the systems f~FO1 ;MO1g are identical for all O1 � ðe1Þ and
are all reducible to the original system f~FP;MP0 ¼ 0g for all P0 � ðeÞ. In this case
we say that the given force is transported from point P to point O1.

We may now select another reference point O2 with,

Fig. 2.11 Geometric layout
for the formulation of the
equilibrium equations
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MO2 ¼ O2P
!

�~FP ¼ O2O1

!
þ O1P

!� �
� ~FP ¼ MO1 þ O2O1

!
�~FO1 ð2:33Þ

The above results are summarized into the following transport law for a single
line force, Eqs. (2.30) and (2.33),

FO2 ¼ FO2 ¼ F ð2:34Þ

MO2 ¼ MO1 þ O2O1

!
�~FO1 ð2:35Þ

Equation (2.34) means equality of the force vectors that correspond to the point
vectors acting at arbitrary points O1 � ðe1Þ and O2 � ðe2Þ along the axes
ðe1Þ==ðe2Þ. We remark that in the considered case, of the transport of a single line
force, we have always that,

F �MO ¼ 0 ð2:36Þ

The vector-moment compound,

p ¼ F
MO

� 	
ð2:37Þ

is called a proper von Mises motor, if the force F and the couple MO obey the
transport law, Eqs. (2.34) and (2.35), and the normality condition, Eq. (2.36).

Fig. 2.12 The transport law of a line force
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Any system of forces acting on a rigid body can be reduced to a single resultant
force~SO and a couple MðEÞ by the choice of a plane ðEÞ and a point O outside that
plane. If we select a different reduction point, say point O1, then the given system is
reduced to the force ~SO1 that obeys the transport law, Eq. (2.30),

SO1 ¼ SO2 ¼ S ð2:38Þ

and to the couple,4

MO1 ¼ MðEÞ þ O1O
!

�~SO ð2:39Þ

We observe that in this case the normality condition, Eq. (2.36), does not apply
necessarily.

A compound of the two vectors,

p ¼ S
MO

� 	
ð2:40Þ

will be called a von Mises motor, if the vectors S and MO fulfil the transport law,
Eqs. (2.34) and (2.35). In particular the motor, defined above, is called a dynamic
motor.5 We have shown that a system of forces acting on a rigid body is always
reducible into a dynamic motor.

2.2.3 Central Axis of a System of Forces and Axis
of a Motor

Consider a system of forces f~F1;~F2; . . .g acting on a rigid body and let
fF1;F2; . . .g be the corresponding system of (free) force vectors. Let the resultant
force vector be,

S ¼
X
i

Fi ð2:41Þ

Following the above described procedure, the system may be reduced to a fixed
force~SO attached to a point O and a couple MðEÞ. Consider two points O1 and O2.
According to Eq. (2.39), if we transport the force S to these points, then the
moments of the system of forces in reference to these points are,

4This is true because two force-couples can be added by adding their moments.
5Dύmali1, Greek for dynamic action.
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MO1 ¼ MðEÞ þ O1O
!

�~SO ð2:42Þ

MO2 ¼ MðEÞ þ O2O
!

�~SO ð2:43Þ

Their difference is independent of MðEÞ,

MO2 �MO1 ¼ O2O
!

�O1O
!� �

� ~SO ¼ O2O1

!
� S ð2:44Þ

Thus

MO2 ¼ MO1 þR21 � S ð2:45Þ

We remark that the condition,

MO2 ¼ MO1 ð2:46Þ

implies either of the following two possibilities: (a) S ¼ 0; i.e. the original system is
equivalent to a planar force-couple. (b) The line ðO1O2Þ is parallel to the axis of
resultant force. With

R21 � Sð Þ � S ¼ R21 S � Sð Þ ¼ 0 ð2:47Þ

from Eq. (2.45) we get,

MO2 � S ¼ MO1 � S ð2:48Þ

Thus for a given system of forces f~F1;~F2; . . .g, besides their resultant force
S ¼ P

i Fi, invariant with respect to changes in the position of the origin is also the
projection of the resultant moment vector on S.

Let e and s be unit vectors with the same direction as the resultant force vector

S and the point-difference vector R21 ¼ O2O1

!
, respectively

s ¼ Sffiffiffiffiffiffiffiffiffi
S � Sp ; sj j ¼ 1;

ffiffiffiffiffiffiffiffiffi
S � S

p
¼ S[ 0 ð2:49Þ

r ¼ R12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R12 � R12

p ; rj j ¼ 1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R12 � R12

p
¼ r12 [ 0 ð2:50Þ

From Eq. (2.45) we get

s � MO2 ¼ s � MO1 þ s � R21 � Sð Þ ¼ s � MO1 � s � r � sð Þr12S ð2:51Þ
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We assume now that the points O1 and O2 are on a plane ðPÞ that is normal to
S (Fig. 2.13). At point O1 we attach a right-handed ortho-normal basis ðs; r; nÞ.
With

s � r � sð Þ ¼ s � ð�nÞ ¼ �ð�rÞ ¼ r ð2:52Þ

we get from Eq. (2.51)

s � MO2 ¼ s � MO1 � r r12S ¼ s � MO1 � R12S ð2:53Þ

or

S � MO2 ¼ S � MO1 � R12S
2 ð2:54Þ

Consider the equation,

R12 ¼ 1
S2

S � MO1 ð2:55Þ

This allows to determine a point O2 � ðPÞ such that,

S � MO2 ¼ 0 ð2:56Þ

This means that the moment of the considered system of forces with respect to

that point O2, MO2 ¼ P
i O2Ai

!
� FAi

i , is a vector that is parallel to the resultant
S ¼ P

i Fi, i.e. also normal to the plane ðPÞ. The same property holds for all points

Fig. 2.13 Construction of the
central axis
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along an axis ðaÞ that is normal to the plane ðPÞ and passes through the point O2.
For all these points P � ðaÞ the original system is reduced into a force resultant
S and a planar force-couple with its plane normal to S. The corresponding motor
has the property,

p ¼ S
MP

� 	
P � ðaÞ : S � MP ¼ 0 ð2:57Þ

Such an axis ðaÞ is called the central axis of the given system of forces or simply
the axis of the corresponding motor. From Eq. (2.55) we get the vector equation for
the axis ðaÞ of the motor, Eq. (2.57):

O1O2

!
� S ¼ 1

S2
S � MO1

 � � S ð2:58Þ

2.3 Vector Kinematics

2.3.1 Rigid-Body Motion

We summarize here some of the basic definitions and theorems of finite rigid-body
kinematics that are proven in standard books of classical mechanics.

Definition A point of a body is called a fixed point, if after the application of the
motion this point is mapped onto itself.

Theorem 1 If a motion has four fixed points, that are not on the same plane, then
the motion is an identity mapping of all points onto themselves.

Theorem 2 If a motion has a fixed plane and the motion is not the identity
mapping, then this motion is not a real motion; it is a pseudo-motion that corre-
sponds to a reflection of all points of the considered body with respect to the given
fixed plane.

In other words if we exclude pseudo-motions we have,

Theorem 3 The position of all points of a rigid body is determined by the position
of three of its points, provided the points are not collinear.

Theorem 4 If a motion possesses a fixed straight line, then this motion is a rotation
with respect to that line.

Theorem of Euler: Rotation about a single fixed point is equivalent to a rotation
about an axis that is passing through this point.

If no constraints are attached to the body, then it is said to be free. Free rigid
body kinematics are summarized in the famous,

Theorem of Chasles [7]: A rigid body can be displaced from one arbitrary
position to another by means of one translation and one rotation about an axis.
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In general this can be done in infinitely many ways, but the axes of rotation will
always be parallel and the angles of rotation equal, if the axes have the same sense.

By some authors [8] this theorem is originally attributed to Mozzi [9] and is
considered as the basis of the mechanical theory of screws [10].

If a body makes a translation and then a rotation about an axis parallel to the
translation, then the body is said to have made a twist.

Theorem 5 A body can always be displaced from one arbitrary position to another
by means of a twist and this can be done in only one way.

2.3.2 Instantaneous Rigid Body Motion:
The Kinematic Motor

Let

OP
!

¼ RðX; tÞ ð2:59Þ

be the position vector of a material point X 2 B as function of time, measured with
respect to a fixed-in-space origin O. In time t0 ¼ tþDt the material point is moved
to a new position,

OP0
!

¼ RðX; t0Þ ¼ RðX; tþDtÞ � RðX; tÞþ @R
@t

Dt ð2:60Þ

Since the body is rigid, the distance between two arbitrary points P and Q
remains constant. In general the symbol X will be omitted from the argument list of
the position vector, meaning that, if not otherwise explicitly stated, the vector RðtÞ
will always follow the same material point. In that sense the velocity of the material
point X, which at time t was at point P, is given by

v ¼ lim
Dt!0

OP0
!

�OP
!

Dt
¼ dR

dt
ð2:61Þ

A rigid-body motion is called a translation, when the velocity is the same for all
points of the considered body. In this case all points of the body are displaced
equally during a given time interval (Fig. 2.14),

PP0
!

¼ dR ¼ vdt v ¼ const:8X 2 B ð2:62Þ

In general however, the velocity will be not the same for all points of a moving
rigid body. For example, if the rigid body is rotated around a fixed-in-space axis
ðaÞ, then all its material points will move along circles, with their centers on that
axis (Fig. 2.15). At the instantaneous position P of a material point at time t we
introduce the corresponding polar basis vectors, er and eu. The velocity vector is
then purely circumferential,
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vP ¼ vueu ð2:63Þ

where

vu ¼ rx; x ¼ du
dt

ð2:64Þ

r is the radial distance of the point P from the axis and x is its angular velocity or
spin.

Fig. 2.14 Translatory motion of a rigid body

Fig. 2.15 Rotation around a
fixed axis
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In view of Euler’s Theorem, in case the motion is taking place around one fixed
point A, we consider that at any instant this motion will be a rotation around an
instantaneous axis ðaÞ, that will be passing through the fixed point A. If ex is the
unit vector along this axis of rotation, pointing in the positive sense, then according
to Fig. 2.16 we have,

r ¼ ðP0PÞ ¼ RAPj j sin h ¼ ex � RAPj j ð2:65Þ

and

dRP ¼ rdueu ð2:66Þ

Thus,

dRP ¼ ðex � RAPÞdu ð2:67Þ

One can introduce an infinitesimal rotation vector du,

du ¼ duex ð2:68Þ

and the spin vector w,

w ¼ du
dt

¼ xex ð2:69Þ

In that case, we get from Eq. (2.66),

vP ¼ dRP

dt
¼ w � RAP ð2:70Þ

Fig. 2.16 Rotation around a
fixed point
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At this point it should be emphasized that the infinitesimal rotation du and the
corresponding spin w ¼ du=dt are vectors. This is not true however for finite
rotations.

In the most general case of a free rigid-body motion, we select an arbitrary point
M of the rigid body and we place a coordinate system Aðx0iÞ fixed on that point and
with its axes always parallel to the axes of the fixed-in-space coordinate system.
Since the point M is fixed relative to the system Aðx0iÞ, the motion of the body
relative to that system is a rotation about A. The instantaneous relative motion will
be therefore an instantaneous rotation about an axis ðaÞ through A.

Let P be an arbitrary point of the considered body. The velocity vP of this point,
with respect to the fixed-in-space system OðxiÞ, can be seen as the sum of the
velocity vA of point A, with respect to the fixed-in-space system OðxiÞ, and the
relative velocity vAP of point P, with respect to point A,

vP ¼ vA þ vAP ð2:71Þ

Equation (2.71) is illustrated in Fig. 2.17, where the velocity decomposition is
shown for a plane rigid-body motion.

According to Eq. (2.70), the relative motion is a rotation around an axis ðaÞ � A
with spin vector w,

vAP ¼ w � RAP ð2:72Þ

Thus,

vP ¼ vA þw � RAP ¼ vA � RAP � w ¼ vA þRPA � w ð2:73Þ

Fig. 2.17 Plane rigid-body motion and velocity plan
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With,

RPA ¼ RA � RP ¼ PA
!

ð2:74Þ

we get,

vP ¼ vA + PA
!

�w ð2:75Þ

According to Chasles’ theorem, if we select another reference point, say B, the
instantaneous axis of rotation ðbÞ will be parallel to the line ðaÞ and for any
infinitesimal transition the angle of rotation du will be also the same. This means in
turn that the spin vector is invariant to the selection of the reference point,

wB ¼ wA ¼ w ð2:76Þ

With respect to reference point B, the velocity of the arbitrary point P is com-
puted in analogy to Eq. (2.75),

vP ¼ vB + PB
! �w ð2:77Þ

If we subtract Eqs. (2.77) and (2.75), and utilize Eq. (2.76), we get the
well-known transport-law for the velocity in rigid-body kinematics,

wB ¼ wA ¼ w ð2:78Þ

vB ¼ vA þ BA
!

�w ð2:79Þ

The compound of the two vectors,

�j ¼ w
vA

� 	
ð2:80Þ

will be called a kinematic von Mises motor, if the vectors wA and vA fulfil the
transport law, Eqs. (2.78) and (2.79). We have shown that the velocities of the
particles of a rigid body constitute a kinematic motor. We remark that in case of a
plane motion (Fig. 2.17) we have that,

w � vA ¼ 0 ð2:81Þ

In this case �j is a proper von Mises motor. However, as we see in the next
section, this not the only possibility.
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2.3.3 Central Axis of Rotation: Twist

The above reduction allows us to transfer the result concerning the central axis of a
system of forces directly to the characterization of rigid-body kinematics:

Theorem 6 The kinematic motor, Eq. (2.80), has in general a unique axis of
rotation ðaÞ, called the central axis of rotation, such that all points along this axis
move parallel to it and the resulting motion is a twist or proper helicoidal motion.

In analogy to Eq. (2.55) we get the vector equation for the central axis ðaÞ of the
motion,

O1O2

!
�w ¼ 1

x2 w � vO1

 � � w ð2:82Þ

The general twisting motion of a rigid-body is given by the velocity of trans-
lation of a point O along the central axis, say vO ¼ V, and the angular velocity
vector w that defines in turn its axis of rotation. We use a coordinate system located
at the considered point O and let xi be the coordinate of any point P of the moving
body. Then the velocity at point P is,

vPi ¼ Vi � eijkxjwk ð2:83Þ

If we chose for example the translational velocity and the axis of rotation to be
both vertical, then

Vi ¼ di3V

wi ¼ di3x
ð2:84Þ

and with that,

v1 ¼ �e1j3xjx ¼ �x2x

v2 ¼ �e2j3xjx ¼ þ x1x

v3 ¼ V

ð2:85Þ

The position of particles attached to a normal, circular helix is,

x1 ¼ a cos/

x2 ¼ a sin/

x3 ¼ b/

ð2:86Þ

and their velocity as the helix turns, becomes

vi ¼ _xi ð2:87Þ
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Fig. 2.18 Velocity of particles attached to the helix, Eq. (2.86)

where
v1 ¼ _x1 ¼ �a sin/ _/ ¼ �a sin/x

v2 ¼ _x2 ¼ þ a cos/ _/ ¼ þ a cos/x

v3 ¼ _x3 ¼ b _/ ¼ bx

ð2:88Þ

The velocity is decomposed in a horizontal and a vertical component (Fig. 2.18),

v ¼ aþ b ð2:89Þ

The component a is parallel to the Oðx1; x2Þ—plane,

a ¼ v1e1 þ v2e2 ð2:90Þ

and is tangential to the circle OðaÞ at point Pða;/Þ, pointing in the direction of
increasing /; its modulus is

aj j ¼ ax ð2:91Þ

The axial component of the velocity is

b ¼ bxe3 ð2:92Þ

2.4 Motor Statics

2.4.1 Axiomatics

The statics of rigid bodies may be developed axiomatically and independently of
dynamics [5]. The axioms of rigid body statics are elegantly presented by using the
mathematical instrument of motor calculus.
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Axiom 1 (transmissibility of force): A force acting on a rigid body may be shifted
along its line of action ðeÞ so as to act on any point of that line.

F ¼ F
MA

� 	
¼ F

MB

� 	
8A;B 2 ðeÞ ð2:93Þ

since

MB ¼ MA þ AB
!

�F ¼ MA 8A;B 2 ðeÞ ð2:94Þ

Axiom 2 (addition of forces): Two forces acting on the same point A may be
replaced by a single one, acting at this point and equal to their vector sum.

If,6

F ¼ F
MA

� 	
;A 2 ðeÞ; MA ¼ RA � F ð2:95Þ

F0 ¼ F0

M0A

� 	
;A 2 ðgÞ; MA0 ¼ RA � F0 ð2:96Þ

Then,

FþF0 ¼ FþF0

M0A þM0A

� 	
; A ¼ ðeÞ \ ðgÞ ð2:97Þ

MA þM0A ¼ RA � FþF0ð Þ ð2:98Þ

Rigid-body statics uses only Newton’s 3rd law, thus:
Axiom 3 (action and reaction): Rigid bodies interact by pairs of opposed forces.
In order to illustrate Axiom 3, let us consider the two rigid bodies, enumerated by
the index a ¼ 1; 2 and denoted as ð1Þ and ð2Þ, respectively (Fig. 2.19). According
to Axiom 3, the two bodies interact with a pair of opposite forces ð~FA;�~FAÞ, acting
along a line ðeÞ, say realized at a point A 2 ðeÞ. We assume that ~FA is the force
acted upon body ð1Þ by body ð2Þ, and �~FA its reaction, i.e. the force acted upon
body ð2Þ by body ð1Þ. Let P be a selected point,7 say along the line that connects the
centroids Ka of bodies ð1Þ and ð2Þ. Transport of the interaction force-pair on point
P, produces the following pair of proper motors,

Fð1ÞP ¼ Fð1ÞP

Mð1ÞP

� 	
; Fð1ÞP �Mð1ÞP ¼ 0 ð2:99Þ

6Note that in a rigorous but heavy presentation, in the expressions for the vector products one
should use the point vector f instead of the free vector F.
7The selection of the reduction point is arbitrary. However a general rule must be put down if one
wants to produce some useful result.

28 2 Rigid-Body Mechanics and Motors



Fð2ÞP ¼ Fð2ÞP

Mð2ÞP

� 	
; Fð2ÞP �Mð2ÞP ¼ 0 ð2:100Þ

where

Fð1ÞP ¼ F

Mð1ÞP ¼ Mð1ÞA þ PA
!

�F; Mð1ÞA ¼ RA � F
ð2:101Þ

and

Fð2ÞP ¼ �F

Mð2ÞP ¼ Mð2ÞA þ PA
!

� ð�FÞ; Mð2ÞA ¼ RA � ð�FÞ
ð2:102Þ

Thus

Mð2ÞP ¼ �Mð1ÞP ð2:103Þ

and with that also Newton’s 3rd law reads,

Fð2ÞP ¼ �Fð1ÞP ð2:104Þ

The interaction force pair may by further transported to the centroids of the
considered particles,

FK1
P ¼ Fð1Þ

P
MK1

P

� 	
ð2:105Þ

FK2
P ¼ Fð2Þ

P
MK2

P

� 	
ð2:106Þ

Fig. 2.19 Action and reaction between two rigid bodies
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where

Fð1Þ
P ¼ F; MK1

P ¼ Mð1ÞP þ K1P
! �F ð2:107Þ

Fð2Þ
P ¼ �F; MK2

P ¼ Mð2ÞP þ K2P
! � ð�FÞ ð2:108Þ

We note that the lines ðeÞ and K1P or K2P are in general skew. Thus, FK1
P and

FK2
P are in general non-coaxial motors.
Assume now that a system of motors is acting on a rigid body. The resultant

action is their motor sum,

FK ¼
X
p

FK
p ¼ F

MK

� 	
ð2:109Þ

where

F ¼
X
p

Fp

MK ¼
X
p

MK
p

ð2:110Þ

This motor is in general equivalent to two skew line forces.

2.4.2 Equilibrium and Virtual Work Equation

Axiom 4 (static equilibrium): If the forces acting on a rigid body, initially at rest,
can be reduced to zero by means of axioms 1 and 2, the body will remain at rest.

FK ¼ 0 , F ¼
X
p

Fp ¼ 0 ^ MK ¼
X
p

MK
p ¼ 0 ð2:111Þ

Let djK be the kinematic motor for a virtual displacement of the considered rigid
body,

d�jK ¼ dw
dvK

� 	
ð2:112Þ

where dw and dvK are the corresponding virtual spin vector and virtual velocity
vector of the centroid K, respectively.

The virtual power of the force and couple are defined as the corresponding von
Mises motor scalar product [2, 3],
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dW ¼ FK 	 d�j ¼ F
MK

� 	
	 dw

dvK

� 	
¼ F � dvK þMK � dw ð2:113Þ

Let us consider the case where instead of point K a different reduction point was
chosen, say K0. From Eqs. (2.44) and (2.79) we get,

MK ¼ MK0 þ KK0!
�F ð2:114Þ

dvK ¼ dvK
0 þ KK0!

� dw ð2:115Þ

From these expressions and Eq. (2.113) we obtain that,

dW ¼ F � dvK
0 þ KK0!

� dw
� 	

þ MK0 þ KK0!
�F

� 	
� dw

¼ F � dvK0 þF � KK0!
� dw

� 	
þMK0 � dwþ KK0!

�F
� 	

� dw
ð2:116Þ

Since

F � KK0!
� dw

� 	
¼ � KK0!

�F
� 	

� dw ð2:117Þ

it follows that the value of the von Mises motor scalar product is invariant with
respect to changes in the position of the reduction point,

dW ¼ FK 	 d�jK ¼ FK0 	 d�jK0 ð2:118Þ

Finally, we observe that from the virtual work equation,

dW ¼ 0 ð2:119Þ

and for independent variation of dw and dvK we get the equilibrium Eq. (2.111) and
conversely from the equilibrium Eq. (2.111) we get the virtual power Eq. (2.119).
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Chapter 3
Cosserat Continuum Kinematics

Abstract This chapter derives the kinematic fields (deformation and deformation
rate tensors) in general curvilinear coordinates, before reducing them to the familiar
forms of Cosserat continuum in Cartesian coordinates. It showcases this way that
the motor calculus approach has the same information as the classical representation
as a limiting case, but can be used in a generic framework. It finishes with the
integrability, compatibility and discontinuity conditions for the considered
representation.

3.1 Motion and Deformation in General Coordinates

Let the position vector of a point in the three dimensional space be denoted as
(Fig. 3.1),

OP
! ¼ R ¼ xiei ð3:1Þ

where xi and ei are the underlying Cartesian coordinates of the position vector and
the Cartesian basis vectors, respectively. Let Hiði ¼ 1; 2; 3Þ denote fixed in space
general curvilinear coordinates, that are related to the Cartesian coordinates through
the transformation,

xi ¼ viðHkÞ; @vi

@Hk

����
���� 6¼ 0 ð3:2Þ

This transformation allows us to write the position vector as a function of the
curvilinear coordinates Hi of the point P

R ¼ RðHiÞ ð3:3Þ

and to introduce at any point in space the local covariant affine basis

gi ¼
@R
@Hi ¼ R;i; ð�Þ;i �

@

@Hi ð3:4Þ
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We assume that the basis vectors, g1; g2; g3, in the given order build a
right-handed system.

Let a Cosserat continuum particle be located at point PðHiÞ. This particle is seen
as a rigid body of infinitesimal dimensions and has the degrees of freedom of
rigid-body displacement and rigid-body rotation. We restrict here our analysis to
infinitesimal motions. The infinitesimal particle rotation is an axial vector and we
emphasize that this statement is not true for finite rotations, that are not considered
here.

The motion of the Cosserat particle is described by its rotation vector, that is in
turn described primarily by its contravariant components (Fig. 3.2),

Fig. 3.1 Cartesian and curvilinear coordinates of point in the plane

Fig. 3.2 Dofs of a
2D-Cosserat particle and the
local affine covariant basis
vectors (g1; g2)
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w ¼ wiðHkÞgi ð3:5Þ

and its displacement vector, that is described by its covariant components,

u ¼ uiðHkÞgi ð3:6Þ

where gi and gi are the covariant and contravariant bases respectively at point
PðHiÞ.

For the compact description of the Cosserat continuum particle kinematics we
follow Schaefer’s suggestion [1] and we introduce the vector compound,

�KðHiÞ ¼ wðHiÞ
uðHiÞ

� �
¼ wigi

uigi

� �
ð3:7Þ

It is important to note that the first entry in vector compound, Eq. (3.7), is a
contravariant vector and the second a covariant vector. This distinction will be lost
if we use Cartesian coordinates and we get the false impression that both entries are
of the same nature.

If the Cosserat continuum in the vicinity of a point PðHkÞ is not deforming, then
the motion in this neighbourhood is that of a rigid body. In this case we have that,

wðHi þ dHiÞ ¼ wðHiÞ ) dw ¼ 0 ð3:8Þ

since in rigid-body mechanics the infinitesimal rotation vector is independent of the
point of reference. On the other hand, the infinitesimal displacement vector obeys
the transport law of rigid-body kinematics,

uðHi þ dHiÞ ¼ uðHiÞþwðHiÞ � dHkgk ) du ¼ wðHiÞ � dHkgk ð3:9Þ

Thus, the kinematic compound in the infinitesimal neighborhood of point
PðHkÞ is,

�K 0 ¼ �KðHi þ dHiÞ ¼ wðHiÞ
uðHiÞþwðHiÞ � dHlgl

� �
¼ wigi

ui þ eiklw
kdHl� �

gi

� �
ð3:10Þ

where eklm is the corresponding Levi-Civita 3rd-order fully antisymmetric tensor,

eklm ¼
ffiffiffi
g

p
if : ðk; l;mÞ ¼ cyclð1; 2; 3Þ

� ffiffiffi
g

p
if : ðk; l;mÞ ¼ cyclð2; 1; 3Þ

0 else

8<
: ; g ¼ det gij

� �
[ 0 ð3:11Þ

and gij is the covariant metric tensor, associated to the chosen covariant basis.
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With,

�K 0 ¼ �KðHi þ dHiÞ ¼ w0igi
u0ig

i

� �
ð3:12Þ

from Eq. (3.10) follows that the components of the two vector compounds �KðHiÞ
and �KðHi þ dHiÞ are related as,

w0i ¼ wi

u0i ¼ ui þ eiklw
kdHl

ð3:13Þ

This means that in case of a locally non-deforming continuum the above
introduced compound �K of the two vectors w and u, Eq. (3.7), is a motor in the
sense of von Mises. From Eq. (3.13) follows that the two motors �K and �K 0 are
“equal” or “kinematically equivalent”. This fundamental kinematical property of
Cosserat continua has motivated their application to the mechanics of granular
media. In that case the single, rigid grain is seen as the smallest material unit.

In general the differential forms,

dw ¼ wðHi þ dHiÞ � wðHiÞ ð3:14Þ

du� wðHiÞ � dHkgk ¼ uðHi þ dHiÞ � ðuðHiÞþwðHiÞdHkgkÞ ð3:15Þ

will not vanish. In this case we will say that the neighborhood of the point PðHkÞ is
deforming. In compact form the deformation is described by the absolute
differential,

d �KðHiÞ ¼ �KðHi þ dHiÞ � �KðHiÞ ð3:16Þ

or by the differential compound,

d �KðHiÞ ¼ wðHi þ dHiÞ � wðHiÞ
uðHi þ dHiÞ � uðHiÞþwðHiÞ � dHkgk

� �� �
¼ dw

duþ dHkgk � w

� �
ð3:17Þ

In view of Eqs. (3.14), (3.15) and (3.17) we introduce the Pfaffian vector forms

jidH
i ¼ dw ð3:18Þ

cidH
i ¼ duþ dHkgk � w ð3:19Þ

These forms define in turn the two vectors,
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ji ¼ w;i ð3:20Þ

and

ci ¼ u;i þ gi � w ð3:21Þ

We recall that the gradient of a vector is expressed by means of its covariant
derivative,

w;i ¼ wk
� igk ð3:22Þ

and

u;i ¼ uk ij gk ð3:23Þ

where ðÞi jj denotes covariant differentiation of a vector; e.g.,

ai jj ¼ ai;j � Ck
ijak ð3:24Þ

and

Ci
jk �

i
jk

� 	
ð3:25Þ

are the Christoffel symbols of the second kind.
We notice also that the ith component of the vector product of two vectors is

computed

ðx� yÞi ¼ eiklx
kyl ð3:26Þ

Thus, the 2nd term on r.h.s. of Eq. (3.21) becomes,

gi � w ¼ wkgi � gk ¼ wkeilkgl ¼ �eilkw
kgl ð3:27Þ

From Eqs. (3.20) and (3.22) we get that,

ji ¼ wk
� ij gk ð3:28Þ

and from Eqs. (3.21), (3.23) and (3.27) we get that

ci ¼ ðuk ij � eiklw
lÞgk ð3:29Þ

With
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ji ¼ j� ki gk ð3:30Þ

and

ci ¼ cikg
k ð3:31Þ

The components of the above introduced deformation vectors define the corre-
sponding deformation tensors,

j�ki ¼ wk
� ij ð3:32Þ

cik ¼ uk ij � eiklw
l ð3:33Þ

With

d �KðHiÞ ¼ ji
ci

� �
dHi ¼ j� ki gk

cikg
k

� �
dHi ¼ wk

� ij gk
uk ij þ ekilw

l� �
gk

 !
dHi ð3:34Þ

the deformation that is induced by the vector fields, Eqs. (3.5) and (3.6), is best
illustrated if we introduce the tensor compound,

��H ¼ j� ki gi � gk
cikg

i � gk

� �
¼ wk

� ij gk � gi

uk ij þ ekilw
l� �
gk � gi

 !
ð3:35Þ

In Cosserat continuum mechanics the compound ��H plays the role of a
generalized-displacement gradient.

Following Kessel [2], the above observations prompt the definition of a gradient
operator that is applied onto the kinematic motor �K and produces the
generalized-displacement gradient,

�K ¼ wigi
uigi

� �
) ��H ¼ Grad�K :¼ wi

� kj gi � gk

ui kj þ eiklw
l� �
gi � gk

 !
ð3:36Þ

Thus from the 6 placements wi and ui ði ¼ 1; 2; 3Þ we have generated 18
deformations j�ki and cik. The tensor j� ki , Eq. (3.32), is called the infinitesimal

tensor of distortions; the components j� ðiÞðiÞ are called infinitesimal “torsions” and the

rest components are the infinitesimal “curvatures”. We call cik, Eq. (3.33), the
infinitesimal (relative) deformation tensor. Its symmetric part coincides with the
usual infinitesimal strain tensor,
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c ikð Þ ¼
1
2

cik þ ckið Þ ¼ eij ð3:37Þ

where

eij ¼ 1
2

uk ij þ ui kj
� � ð3:38Þ

The antisymmetric part of cik coincides with the relative rotation,

c ik½ � ¼
1
2

cik � ckið Þ ¼ wik � xik ð3:39Þ

where

xik ¼ 1
2

ui kj � uk ij
� � ð3:40Þ

and

wij ¼ �eijkw
k ð3:41Þ

Let xk be the axial vector that corresponds to xij,

xij ¼ �eijkx
k ð3:42Þ

Then the antisymmetric part of cik is indeed given in terms of the difference of
the two related axial vectors,

c ij½ � ¼ eijk xk � wk� � ð3:43Þ

This property justifies the name relative deformation tensor that is given to cik.

3.2 Cosserat Kinematics in Cartesian Coordinates

3.2.1 Strain, Spin, Curvature and Torsion

Let xi be the Cartesian coordinates of a point of a rigid body before the motion and
x0i the coordinates of the same point after the motion. We consider two neighbouring
points PðxiÞ and QðyiÞ in the undeformed configuration of a Cosserat continuum,
such that yi ¼ xi þ dxi. The material line element that connects these two points is
given by the vector,
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PQ
! ¼ dxiei ð3:44Þ

The positions of points P and Q in the deformed configuration are computed as,

x0i ¼ xi þ ui
y0i ¼ xi þ dxi þ ui þ @juidxj

ð3:45Þ

where @i is the Cartesian differentiation operator,

@i � @

@xi
ð3:46Þ

Thus

dx0i ¼ y0i � x0i ¼ xi þ dxi þ ui þ @juidxj � xi þ uið Þ
¼ dxi þ @juidxj ¼ dij þ @jui

� �
dxj

ð3:47Þ

The length of the line element before and after the deformation is

ds2 ¼ dxidxi

ds02 ¼ dx0idx
0
i ¼ dij þ @jui

� �
dxj dik þ @kuið Þdxk

¼ dkjdxjdxk þ @kuj þ @juk þ @jui@kui
� �

dxjdxk

� ds2 þ 2cðijÞdxidxj

ð3:48Þ

where cðijÞ is the symmetric part of the relative deformation tensor,

cðijÞ ¼
1
2

cij þ cji
� � ¼ 1

2
@iuj þ @jui
� � ð3:49Þ

that coincides in turn with common infinitesimal strain tensor in the Boltzmann
continuum,

cðijÞ ¼ eij ð3:50Þ

where

eij ¼ 1
2

@iuj þ @jui
� � ð3:51Þ

Let us now consider the antisymmetric part of the relative deformation tensor,

c½ij� ¼
1
2

cij � cji
� � ¼ 1

2
@iuj � @jui
� �� eijkwk ð3:52Þ
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The antisymmetric part of the transposed displacement gradient is denoted as

xij ¼ 1
2

@jui � @iuj
� � ð3:53Þ

Thus

c½ij� ¼ wij � xij ð3:54Þ

where

wij ¼ �eijkwk ð3:55Þ

We may define the axial vector xk that corresponds to xij,

xk ¼ � 1
2
eijkxij , xij ¼ �eijkxk ð3:56Þ

with

xk ¼ xlk; lklk ¼ 1 ð3:57Þ

With this notation Eq. (3.56) becomes,

c½ij� ¼ wij � xij ¼ �eijkwk þ eijkxk ¼ �eijk wk � xkð Þ ð3:58Þ

Summarizing the above results, we get from Eqs. (3.49) to (3.58),

cij ¼ eij þ wij � xij
� � ¼ eij � eijk wk � xkð Þ ð3:59Þ

From the above equation we get,

cji þ ejikwk ¼ eji þ ejikxk ð3:60Þ

In Cartesian components, from Eq. (3.33) we get

@jui ¼ cji þ ejikw
k ð3:61Þ

From Eqs. (3.47) we get,

Ddxi ¼ dx0i � dxi ¼ @juidxj ¼ cji þ ejikwk

� �
dxj ð3:62Þ

and with Eq. (3.60) it reduces to the familiar linear form

Ddxi ¼ eji þ ejikxk
� �

dxj ð3:63Þ
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Remark
In matrix notation Eq. (3.56) reads as,

xij

 � ¼ 0 x12 x13

x21 0 x23

x31 x32 0

2
4

3
5 ¼

0 �e123x3 �e132x2

�e213x3 0 �e231x1

�e312x2 �e321x1 0

2
4

3
5

¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

2
4

3
5 ð3:64Þ

Or in indicial notation

xm ¼ 1
2
emkl@kul ð3:65Þ

Explicitly, in components we have,

x1 ¼ 1
2
e1kl@kul ¼ 1

2
e123@2u3 þ e132@3u2ð Þ ¼ 1

2
@2u3 � @3u2ð Þ ¼ x32 ð3:66Þ

x2 ¼ 1
2
e2kl@kul ¼ 1

2
e231@3u1 þ e213@1u3ð Þ 1

2
@3u1 � @1u3ð Þ ¼ x13

x3 ¼ 1
2
e3kl@kul ¼ 1

2
e312@1u2 þ e321@2u1ð Þ ¼ 1

2
@1u2 � @2u1ð Þ ¼ x21

ð3:67Þ

With,

rot u ¼ @u3
@x2

� @u2
@x3

� �
e1 þ @u1

@x3
� @u3

@x1

� �
e2 þ @u2

@x1
� @u1

@x2

� �
e3 ð3:68Þ

we retrieve the well-known result,

x ¼ xiei ¼ 1
2
rot u ð3:69Þ

Note that,

@mxm ¼ 1
2
emkl@m@kul ¼ 1

2
ekml@k@mul ) 1

2
emkl@m@kul � 1

2
ekml@k@mul ¼ 0

) 1
2
emkl@m@kul þ 1

2
emkl@k@mul ¼ 0 ) emkl@m@kul ¼ 0 ) @mxm ¼ 0

ð3:70Þ
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or symbolically,

divx ¼ 0 ð3:71Þ

Equation (3.71) follows directly from Eq. (3.69), since for any vector u holds
the identity,

div rot u � 0 ð3:72Þ

Note also that in general the divergence of the mean torsion is non-zero,

divw ¼ @mwm ¼ jmm 6¼ 0 ð3:73Þ

3.2.2 2D Cosserat Kinematics

As an application we assume a 2D setting. In this case we have the following
placements [3],

u ¼ u1e1 þ u2e2
w ¼ w3e3

ð3:74Þ

The components of the relative deformation tensor are

c11 ¼ @1u1
c12 ¼ @1u2 þw12 ¼ @1u2 � e123w3 ¼ @1u2 � w

c21 ¼ @2u1 þw21 ¼ @2u1 � e213w3 ¼ @2u1 þw

c22 ¼ @2u2

ð3:75Þ

Similarly, the components of the curvature tensor become,

j11 ¼ j12 ¼ 0; j13 ¼ @1w3 ¼ @1w

j21 ¼ j22 ¼ 0; j23 ¼ @2w3 ¼ @2w

j11 ¼ j22 ¼ j33 ¼ 0

ð3:76Þ

Introducing the infinitesimal strain tensor,

e11 ¼ @1u1

e12 ¼ e21 ¼ 1
2

@1u2 þ @2u1ð Þ
e22 ¼ @2u2

ð3:77Þ
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and the infinitesimal background rotation tensor

x11 ¼ 0

x12 ¼ 1
2

@2u1 � @1u2ð Þ ¼ �e123x3 ¼ �x

x21 ¼ 1
2

@1u2 � @2u1ð Þ ¼ �e213x3 ¼ þx

x22 ¼ 0

ð3:78Þ

we get,

c11 ¼ e11

c12 ¼ @1u2 	 1
2
@2u1 � w ¼ e12 þ x� wð Þ

c21 ¼ @2u1 	 1
2
@1u2 þw ¼ e21 � x� wð Þ

c22 ¼ @2u2

ð3:79Þ

Thus

cðijÞ ¼ eij ð3:80Þ

and

c½12� ¼
1
2

c12 � c21ð Þ ¼ 1
2

@1u2 � w� @2u1 þwð Þð Þ

¼ 1
2

@1u2 � @2u1ð Þ � w ¼ x� w
ð3:81Þ

We consider a line element PQ
!

that is originally parallel to the x1-axis,
Eq. (3.44); Fig. 3.3. With

dx1
dx2

� 	
¼ 1

0

� 	
dx ð3:82Þ

we get from Eq. (3.63),

Ddx1
Ddx2

� 	
¼ e11 e21 � x

e12 þx x22

� 
1
0

� 	
dx ¼ e11dx

e12 þxð Þdx
� 	

ð3:83Þ

Similarly for a line element PR
!

that is originally parallel to the x2-axis we get,

Ddx1
Ddx2

� 	
¼ e11 e21 � x

e12 þx x22

� 
0
1

� 	
dy ¼ e21 � xð Þdy

e22dy

� 	
ð3:84Þ
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In Fig. 3.3 we show the geometrical visualization of the deformation of the solid

orthogonal element PQ
�!

; PR
�!n o

, that is computed from Eqs. (3.83) and (3.84).

From this figure it becomes clear that the diagonal terms of the relative deformation
matrix describe normal strains,

ðPQ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e11ð Þdxð Þ2 þ e12 þxð Þdxð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 1þ 2e11ð Þ

p
� dx 1þ e11ð Þ

ðPQ0Þ � ðPQÞ
ðPQÞ � 1þ e11ð Þdx� dx

dx
¼ e11

ð3:85Þ

Similarly we get that

ðPR0Þ � ðPRÞ
ðPRÞ � e22 ð3:86Þ

Angular strains are given by,

p
2
� 
 ðQ0PR0Þ � e12 þxð Þdx

1þ e11ð Þdx þ e21 � xð Þdy
1þ e22ð Þdy � e12 þ e21 ¼ 2e12 ¼ 2e21 ð3:87Þ

From Fig. 3.4 we see that in case where the strains vanish, eij ¼ 0, the defor-
mation of the considered solid orthogonal element is a rigid-body rotation. In
Fig. 3.5 we see the relative rotation of the polar material point with respect to the

Fig. 3.3 The deformation of a solid orthogonal element
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rotation of its neighbourhood, caused by the displacement field. In Fig. 3.6, for the
visualization of the curvature of the Cosserat deformation we consider the relative
rotation of the rigid crosses attached at points Q and R, with respect to the rigid
cross attached at point P,

Fig. 3.4 The rotation of a solid orthogonal element

Fig. 3.5 Visualization of the relative spin
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w Qð Þ � w Pð Þþ j13Dx1; w Rð Þ � w Pð Þþ j23Dx2 ð3:88Þ

Thus in 2D the curvature tensor is seen as a measure of the bend of the
neighbourhood of point P.

3.3 Exercises: Special Orthogonal Curvilinear
Coordinates

3.3.1 Polar Cylindrical Coordinates

The polar cylindrical coordinates of a point Pðr; h; zÞ, are related to its Cartesian
coordinates by the following set of equations (Fig. 3.7),

x ¼ x1 ¼ H1 cosH2 ¼ r cos h ð0� h� 2pÞ
y ¼ x2 ¼ H1 sinH2 ¼ r sin h

z ¼ x3 ¼ H3

ð3:89Þ

for r 2 ð0;1Þ and h 2 ½0; 2pÞ.

Fig. 3.6 Visualization of the curvature of the deformation
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Prove that the deformation tensors in cylindrical polar cylindrical coordinates are
as follows,

ru½ � ¼
@ur
@r

@uh
@r

@uz
@r

1
r
@ur
@h � uh

r
1
r
@uh
@h þ ur

r
1
r
@uz
@h

@ur
@z

@uh
@z

@uz
@z

2
64

3
75 ð3:90Þ

sym c½ � ¼
err erh erz
ehr ehh ehz
ezr ezh ezz

2
64

3
75

¼

@ur
@r

1
2

1
r
@ur
@h þ @uh

@r � uh
r

� �
1
2

@ur
@z þ @uz

@r

� �
1
2

1
r
@ur
@h þ @uh

@r � uh
r

� �
1
r
@uh
@h þ ur

r
1
2

@uh
@z þ 1

r
@uz
@h

� �
1
2

@ur
@z þ @uz

@r

� �
1
2

@uh
@z þ 1

r
@uz
@h

� �
@uz
@z

2
66664

3
77775

ð3:91Þ

asym c½ �

¼

0 1
2

@uh
@r � 1

r
@ur
@h þ uh

r

� �� wz
1
2

@uz
@r � @ur

@z

� �
þwh

� 1
2

@uh
@r � 1

r
@ur
@h þ uh

r

� �þwz 0 1
2

1
r
@uz
@h � @uh

@z

� �
� wr

� 1
2

@ur
@z � @uz

@r

� �
� wh � 1

2
1
r
@uz
@h � @uh

@z

� �
þwr 0

2
66664

3
77775

ð3:92Þ

Fig. 3.7 Cartesian and polar
cylindrical coordinates
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j½ � ¼

@wr

@r
@wh

@r
@wz

@r
1
r
@wr

@h
� wh

r
1
r
@wh

@h
þ wr

r
1
r
@wz

@h
@wr

@z
@wh

@z
@wz

@z

2
6666664

3
7777775 ð3:93Þ

3.3.2 Polar Spherical Coordinates

The polar spherical coordinates of a point be Pðr; h;/Þ are related to its Cartesian
coordinates by the following set of equations (Fig. 3.8)

x ¼ x1 ¼ H1 sinH2 cosH3 ¼ r sin h cos/

y ¼ x2 ¼ H1 sinH2 sinH3 ¼ r sin h sin/

z ¼ x3 ¼ H1 cosH2 ¼ r cos h

ð3:94Þ

for r 2 ð0;1Þ, h 2 ½0; pÞ and u 2 ½0; 2pÞ.

Fig. 3.8 Cartesian and polar spherical coordinates
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Prove that the deformation tensors in polar spherical coordinates are as follows,

sym½c� ¼
@ur
@r

1
2

1
r
@ur
@h þ @uh

@r � uh
r

� �
1
2

@u/
@r þ 1

r sin h
@ur
@/ � u/

r

� �
1
2

1
r
@ur
@h þ @uh

@r � uh
r

� �
1
r
@uh
@h þ ur

r
1
2

1
r sin h

@uh
@/ þ 1

r
@u/
@h � cot h

r u/
� �

1
2

@u/
@r þ 1

r sin h
@ur
@/ � u/

r

� �
1
2

1
r sin h

@uh
@/ þ 1

r
@u/
@h � cot h

r u/
� �

1
r sin h

@u/
@/ þ ur

r þ cot h uh
r

� �

2
66664

3
77775

ð3:95Þ
asym c½ � ¼

0 1
2

@uh
@r � 1

r
@ur
@h þ uh

r

� �þw/
1
2

@u/
@r � 1

r sin h
@ur
@/ þ u/

r

� �
� wh

� 1
2

@uh
@r � 1

r
@ur
@h þ uh

r

� �� w/ 0 1
2

1
r
@u/
@h � 1

r sin h
@uh
@/ þ cot h

r u/
� �

þwr

� 1
2

@u/
@r � 1

r sin h
@ur
@/ þ u/

r

� �
þwh � 1

2
1
r
@u/
@h � 1

r sin h
@uh
@/ þ cot h

r u/
� �

� wr 0

2
66664

3
77775

ð3:96Þ

½j� ¼
@wr
@r

@wh
@r

@w/

@r
1
r
@wr
@h � wh

r
1
r
@wh
@h þ wr

r
1
r
@w/

@h
1

r sin h
@wr
@/ � w/

r
1

r sin h
@wh
@/ � 1

r tan h wh
1

r sin h
@w/

@/ þ wr
r þ 1

r tan h wh

2
664

3
775 ð3:97Þ

3.4 Integrability Conditions and Compatibility Equations

3.4.1 Formulation in General Curvilinear Coordinates

Let ðCÞ be a curve in space that is passing through points P0 and P. Starting from
point P0 we can compute the value of one of the Cosserat particle kinematic fields,
say the particle rotation, by means of a line integral that is evaluated along the
considered curve ðCÞ. Thus from

wðPÞ ¼ wðP0Þþ
ZP
P0

w;kdH
k ð3:98Þ

and Eq. (3.20) we get

wðP0Þ ¼ w0

wðPÞ ¼ w0 þ
ZP
P0

jkdH
k ð3:99Þ
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For uniqueness purposes we may require that the value of the Cosserat rotation
at point P, as computed from Eq. (3.99), is independent of the particular choice of
the curve ðCÞ that joins the points P0 and P; assuming that at point P0 the value of w
is known. According to the fundamental theorem of Tensor Analysis, the sufficient
and necessary condition for this integrability requirement is that

rotjk ¼ 0 ð3:100Þ

or in components,

Ji
ð1Þ

¼ eijkjk;j ¼ 0 ð3:101Þ

The first-order system Ji
ð1Þ

is called the 1st incompatibility form [4].
With

jk;j ¼ j�lk jj gl ð3:102Þ

we get

Ji
ð1Þ

¼ eijkj�lk jj gl ¼ Iil
ð1Þ

gl ð3:103Þ

Thus, Eq. (3.101) yields the 1st set of compatibility equations [4],

Iil
ð1Þ

¼ eijkj�lk jj ¼ 0 ð3:104Þ

Similarly from,

uðPÞ ¼ uðP0Þþ
ZP
P0

u;kdHk ¼ u0 þ
ZP
P0

ðck � gk � wÞdHk ð3:105Þ

and Eq. (3.4) we get,

uðPÞ ¼ u0 þw0 � R� R0ð Þþ
ZP1

P0

ðck þðR� R0Þ � jkÞdHk ð3:106Þ

The integrability of Eq. (3.106) results to the following condition

eijk ck þðR� R0Þ � jkð Þ;j¼ 0 ð3:107Þ
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or

eijk ck;j þR;j � jk þðR� R0Þ � jk;j
� � ¼ 0 ð3:108Þ

Due to Eqs. (3.101) and (3.4), Eq. (3.108) yields the following condition,

Ji
ð2Þ

¼ eijk ck;j þ gj � jk
� � ¼ 0 ð3:109Þ

The first-order system Ji
ð2Þ

is called the 2nd incompatibility form. With

ck;j ¼ ckljg
l ð3:110Þ

and
gj � jk ¼ gj � j�mk gm ¼ eljmj�mk gl ð3:111Þ

we get

Ji
ð2Þ

¼ eijk ckl jj þ eljmj
�m
k

� �
gl ¼ Ii�l

ð2Þ
gl ð3:112Þ

Thus Eq. (3.109) yields [4],

Ii�l
ð2Þ

¼ eijk ckl jj þ eljmj
�m
k

� �
¼ 0 ð3:113Þ

The motion is called to be an incompatible one, if the “incompatibilities” Iil
ð1Þ

and

Ii�l
ð2Þ

are not zero.
In view of the above derivations and following Kessel [2], we define the rotor of

the generalized-displacement gradient ��H,

��H ¼ j�ki g
i � gk

cikg
i � gk

� �
) Rot ��H :¼ �eikj

j�lk jj gi � gl

ckl jj þ j�mk ejml
� �

gi � gl

 !
ð3:114Þ

and with that the compatibility Eqs. (3.104) and (3.113) become,

Rot ��H ¼ ��0 ð3:115Þ

Indeed, with Eq. (3.36) we get formally that these newly defined differential
operators on the generalized-displacement gradient satisfy the well-known identity,

��H ¼ Grad �K ) RotGrad �K ¼ ��0 ð3:116Þ
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3.4.2 Compatibility Equations in Cartesian Coordinates

In Cartesian coordinates the compatibility conditions, Eqs. (3.104) and (3.113)
become,

Ikl
ð1Þ

¼ ekpq@pjql ¼ 0 ð3:117Þ

Ipi
ð2Þ

epjk@jcki þ dpijll � jip ¼ 0 ð3:118Þ

Explicitly these compatibility equations read as follows,

I11
ð1Þ

¼ 0 ¼ e1pq@pjq1 ¼ e123@2j31 þ e132@3j21 ¼ @2j31 � @3j21

I12
ð1Þ

¼ 0 ¼ e1pq@pjq2 ¼ e123@2j32 þ e132@3j22 ¼ @2j32 � @3j22
. . .

ð3:119Þ

and

I11
ð2Þ

¼ 0 ¼ e1jk@jck1 � j11 þ d11jkk ¼ @2c31 � @3c21 þ j22 þ j33

I12
ð2Þ

¼ 0 ¼ e1jk@jck2 � j21 þ d21jkk ¼ @2c32 � e132@3c22 � j21
. . .

ð3:120Þ

If jij are the components of the gradient of a vector field wk , then the com-
patibility Eqs. (3.119) reduce to the differentiability conditions for the named vector
field,

I11
ð1Þ

¼ 0 ¼ @2@3w1 � @3@2w1

I12
ð1Þ

¼ 0 ¼ @2@3w2 � @3@2w2

. . .

ð3:121Þ

Similarly, if the cij are given by Eqs. (3.59), then the compatibility Eqs. (3.120)
reduce to the differentiability conditions for the vector field ui,

I11
ð2Þ

¼ 0 ¼ @2 @3u1 � e31lwlð Þ � @3 @2u1 � e21lwlð Þþ @2w2 þ @3w3

¼ @2@3u1 � @3@2u1 � @2w2 � @3w3 þ @2w2 þ @3w3 ¼ @2@3u1 � @3@2u1
. . .

ð3:122Þ
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Finally in a 2D setting, the above compatibility conditions yield

I33
ð1Þ

¼ e3pq@pjq3 ¼ e321@2j13 þ e312@1j23
¼ �@2j13 þ @1j23 ¼ 0

ð3:123Þ

I31
ð2Þ

¼ e3jk@jck1 � j13 ¼ e312@1c21 þ e321@2c11 � j13
¼ @1c21 � @2c11 � j13 ¼ 0

I32
ð2Þ

¼ e3jk@jck2 � j23 ¼ e312@1c22 þ e321@2c12 � j23
¼ @1c22 � @2c12 � j23 ¼ 0

ð3:124Þ

3.5 Kinematical Compatibility Conditions for Stationary
Discontinuities

The mathematical treatment of discontinuity surfaces as applied to continuum
mechanics can be found in the textbooks of Thomas [5] and Vardoulakis and Sulem
[6].

Let �½ � denote the jump of a quantity across a discontinuity surface SD,

Z½ � ¼ Z þ � Z� ð3:125Þ

where Z þ and Z� are the one-sited limits of the (scalar, vector or tensor) function Z
on SD, whose positive side is determined by the unit outward normal vector n.

In the considered context we will be interested in the formulation of compati-
bility conditions across material discontinuity surfaces, i.e. discontinuity surfaces
that move attached always to the same material particles. In that sense we have to
introduce the time dependence in the argument list of the kinematic fields that
describe the motion of the particle by setting

wi ¼ wi Hk; t
� �

ui ¼ ui H
k; t

� � ð3:126Þ

In Eulerian description the particle is moved with the velocity,

vi ¼ @ui
@t

þ ui kj vk ) gik � ui kj
� �

vk ¼ @ui
@t

ð3:127Þ
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We assume that across SD the particle displacement and its 1st order derivatives
are continuous,

ui½ � ¼ 0;
@ui
@t

� 
¼ 0; ui;k


 � ¼ 0 ) ui kj

 � ¼ 0 ð3:128Þ

From Eqs. (3.127) and (3.128) we get that the velocity vector is continuous,

vi½ � ¼ 0 ð3:129Þ

This implies the following Maxwell conditions,

vk ij

 � ¼ vk;i


 � ¼ bkni ð3:130Þ

With the velocity being continuous, the considered material discontinuity sur-
face SD moves with the normal velocity of the particles that are attached to it,

c ¼ vn ¼ vin
i ð3:131Þ

If we assume that the particle rotation is also continuous across SD,

wi
 � ¼ 0 ð3:132Þ

then the corresponding kinematical compatibility conditions for the 1st order partial
derivatives of wi are [5],

@wi

@t

� 
¼ �kic; wi

kj
h i

¼ kink ð3:133Þ

or due to Eq. (3.131),

@wi

@t

� 
¼ �kivn; wi

kj
h i

¼ kink ð3:134Þ

Let the rate of particle rotation be denoted as

wi ¼ @wi

@t
þ vkwi

kj ð3:135Þ

From the compatibility conditions (3.134) and Eq. (3.135) follows that the jump
in particle spin must vanish [7],

wi

 � ¼ �kivn þ kinkv

k ¼ 0 ð3:136Þ
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This implies in turn the following Maxwell conditions,

wk
� ij

h i
¼ akni ð3:137Þ

Within the frame of a small strain theory, material time differentiation of the
deformation measures, Eqs. (3.32) and (3.33), leads to the definitions of the cor-
responding rate-of-deformation measures denoted as: (a) The distortion-rate tensor

K �k
i ¼ wk

� ij ð3:138Þ

and (b) the rate of deformation tensor,

Cik ¼ vk ij � eiklw
l ð3:139Þ

From the continuity requirements, Eqs. (3.129), (3.130) and (3.136), (3.137) we
get the compatibility conditions for the rate of deformation measures,

K �k
i


 � ¼ akni ð3:140Þ

and

Cik½ � ¼ bkni ð3:141Þ

In certain cases we may be forced to consider the existence of strong disconti-
nuities of the particle rotation vector, that are identified as strong particle-rolling
discontinuities. This means that we may have to assume that,

wi
 � ¼ ri 6¼ 0 ð3:142Þ

In this case the corresponding geometrical compatibility conditions for the
distortions are rather involved expressions that account also for the curvature of the
discontinuity surface. The derivation of such compatibility equations for strongly
discontinuous fields can be found in [5] and will be omitted here.
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Chapter 4
Cosserat Continuum Statics

Abstract In this chapter conservation considerations are firstly introduced. The
virtual work principle, together with equilibrium equations in generalized curvi-
linear coordinate systems, are briefed under the auspices of the new mathematical
representation, with working examples of how they reduce in cartesian, polar
cylindrical and spherical coordinate systems. Finally, the definition of the concept
of the traction motor—in accordance to the concept of the traction vector through
Cauchy’s tetrahedron—is detailed.

It is well known [1] that the statics of rigid bodies can be developed axiomatically
and independently of dynamics. Since rigid bodies interact by pairs of opposed
forces and couples, we keep from Newton’s laws only lex tertia. Along this line of
thought we introduce here the notions of stress and couple stress in Cosserat
continua by resorting to the principle of virtual work.

4.1 The Virtual Work Equation

We consider a Cosserat continuum B, that occupies a domain with volume V that
has the boundary @V . Body B is assumed to be in a state of stress in static
equilibrium. In order to formulate the equilibrium conditions we consider fields
dwiðHkÞ and duiðHkÞ, that are defined uniquely at all points of the given body.
These fields will be called virtual particle rotation and virtual particle displacement
fields, respectively, and it will be assumed that they are sufficiently differentiable.

We define the virtual curvature and relative deformation tensors,

dj�ki ¼ dwk
� ij ð4:1Þ

dcik ¼ duk ij þ ekildw
l ð4:2Þ
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We define fields rijðHkÞ and li�jðHkÞ, through the so called virtual work of the
internal forces, that is in turn defined per unit volume of the considered Cosserat
continuum,

dwðintÞ ¼ rikdcik þ li�kdj
�k
i ð4:3Þ

We assume that dwðintÞ is an invariant scalar quantity. The tensor dcij is a
covariant 2nd order tensor and the tensor dj�ki is a mixed co-contravariant 2nd order
tensor. For dwðintÞ to be invariant, rij must be a full contravariant 2nd order tensor
and li�j a mixed, conte-covariant 2nd order tensor. Thus the quantities r and l in
Eq. (4.3) are tensors and are called the stress- and couple-stress tensors,
respectively.

Remarks At this point we should remark that in some occasions in the literature
alternative but equivalent definitions for the virtual work of internal forces can be
found. For example one can start from the following definition [2],

dwðintÞ ¼ rikd~cki þ li�kd~j
k
�i ð4:4Þ

This definition is based on deformation measures that are simply the transposed
of the ones we have have introduced here,

d~jk�i ¼ dw�k
ji ; d~cik ¼ duijk þ eikldw

l ð4:5Þ

Alernatively one may define the virtual work of internal forces as follows [3, 4],

dwðintÞ ¼ ~rikd~cik þ ~li�kd~j
i
�k ð4:6Þ

This definition is based on stress and deformation measures that are simply the
transposed of the ones we have introduced here.

We recall also that an intensive property (also called a bulk property) is a
physical property of a system that does not depend on the system’s size or the
amount of material (mass) in the system. By contrast, an extensive property of a
system does depend on the system size or the amount of material in the system.
From the point of view of continuum thermodynamics the stress-and couple stress
tensors are intensive quantities, that are dual in energy to the relative deformation
tensor and distortion tensor, respectively, that are in turn the corresponding
mechanical intensive quantities of the considered continuum.

We decompose additively the virtual relative deformation into symmetric and
antisymmetric part,

dcij ¼ dcðijÞ þ dc½ij� ð4:7Þ
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where

dcðijÞ ¼
1
2

dcij þ dcji
� �

dc½ij� ¼
1
2

dcij � dcji
� � ð4:8Þ

Let

deij ¼ 1
2

duj ij þ dui jj
� � ð4:9Þ

dxij ¼ 1
2

dui jj � duj ij
� � ¼ �eijkdx

k ð4:10Þ

where dxk is the axial vector that corresponds to the non-symmetric part of the
virtual displacement gradient. Thus,

dcij ¼ deij þ eijk dxk � dwk� � ð4:11Þ

Similarly, we decompose additively the stress tensor into symmetric and
antisymmetric part,

rij ¼ rðijÞ þ r½ij� ð4:12Þ

where

rðijÞ ¼ 1
2

rij þ rji
� �

r½ij� ¼ 1
2

rij � rji
� � ð4:13Þ

With this decomposition the virtual work of the internal forces, Eq. (4.3),
becomes,

dwðintÞ ¼ rðijÞdeij þ r½ij�dc½ij� þ li�kdj
�k
i

¼ rðijÞdeij þ r½ij�eijk dxk � dwk� �þ li�kdj
�k
i

ð4:14Þ

The antisymmetric part of the stress tensor is dual in work to the relative spin,

r½ij�dc½ij� ¼ 2t�k dxk � dwk� � ð4:15Þ

where t�i is the axial vector that corresponds to the non-symmetric part of the stress
tensor.

t�i ¼
1
2
eijkr

jk ¼ 1
2
eijkr

½jk� , r½jk� ¼ eijkt�i ð4:16Þ

4.1 The Virtual Work Equation 61



With this remark Eq. (4.14) becomes,

dwðintÞ ¼ rðijÞdeij þ 2t�i dxi � dwi� �þ li�kdj
�k
i ð4:17Þ

This equation demonstrates that in a Cosserat continuum the virtual work of the
internal forces is defined in such a way that: (a) The symmetric part of the stress
tensor is dual to the strain. (b) The antisymmetric part of the stress tensor is dual to
the relative particle spin. For this reason we may call r½ij� the “relative” stress tensor.
(c) The couple stress tensor is dual to the distortion tensor.

The work of the internal forces is defined as the integral of the work density
function dwðintÞ over the volume V ,

dW ðintÞ ¼
Z
ðVÞ

dwðintÞdV ð4:18Þ

For the formulation of the principle of virtual work, we must define also the
virtual work of the “external” actions. In particular we assume that on the Cosserat
continuum body three types of external actions are applied: (a) Volume forces f idV ,
where dV is the volume element. (b) Surface tractions tidS. (c) Surface couples
midS. In these expressions dS is the surface element. In general one may assume the
existence of body couples as well; this case will be disregarded here.

The bounding material surface @V of a material volume V is seen as a two
dimensional, piecewise smooth particle manifold, with each particle of that mani-
fold possessing two vectorial degrees of freedom, the one of particle rotation and
that of particle displacement.

For clarity we use here for the description of the boundary conditions the natural
curvilinear coordinates of the surface. The position of any point P 2 @V is given by
its surface coordinates a1 and a2. The position of points in space inside and outside
that surface are described by their normal distance from it, that is given by the
coordinate a3; i.e. the coordinate that is measured positive along the outward
normal to the surface. At the arbitrary point P a1; a2; 0ð Þ on the surface we can
define the corresponding covariant basis, a1; a2; a3ð Þ, as is shown in Fig. 4.1. From
that basis we construct the corresponding contravariant basis a1; a2; a3ð Þ. With this
notation we can express admissible sets of boundary conditions by assigning
continually a number of individual components of the kinematic and static vector
properties of the surface particles, the components themselves being defined with
respect to aforementioned covariant and contravariant surface vector bases. For
example, a set of admissible boundary conditions at point P a1; a2; 0ð Þ could be the
following,

P 2 @V : SD : pð ÞP¼ � � w3

� � u3

� �
P

� �
[ SN : qð ÞP¼

m1 m2 �
t1 t2 �

� �
P

� �� �
ð4:19Þ
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The sets SD and SN are called here the Dirichlet and the Neumann set, respec-
tively. In the example given above by Eq. (4.19) in the neighbourhood of point
P a1; a2; 0ð Þ and along the aa-surface lines ða ¼ 1; 2Þ at least locally tractions and
couples are prescribed, whereas normal to the surface the particle displacement and
spin are restricted. This example illustrates also the assumption, that if some
information, say w3 ¼ p31, is given for a surface particle at P a1; a2; 0ð Þ, no infor-
mation concerning m3 ¼ q31 can be given at this particle et vice versa. This is
exactly the mathematical meaning of the “empty slot” symbols �, used in the
corresponding matrices of Eq. (4.19). The corresponding entries to these empty
slots are called reactive constraints.

On the basis of the above definitions we define a functional that is called the
virtual work of external forces,

dW ðextÞ ¼
Z
ðVÞ

f iduidV þ
Z

ðSN Þ

midw
i þ tidui

� �
dS ð4:20Þ

With these definitions we remark that the second integral on the r.h.s. of
Eq. (4.20) is a generalized integral of the Lebesgue type. In order to remove this
difficulty, we assume that the virtual kinematics vanish on the complementary part
of the boundary; i.e. we assume that,

on SD : dwi ¼ 0 ^ dui ¼ 0 ð4:21Þ

We assume that these data are continuously extended into V and on the disjoint
parts of the boundary. Thus, whatever the values of the reactive constraints are on
SD, the functional, Eq. (4.20), can be continuously extended over the whole
boundary, and

dW ðextÞ ¼
Z
ðVÞ

f iduidV þ
Z

ð@VÞ

midw
i þ tidui

� �
dS ð4:22Þ

Fig. 4.1 Local coordinates in
a point at the bounding
surface

4.1 The Virtual Work Equation 63



where the second integral on the r.h.s. of Eq. (4.22) is a normal Riemann surface
integral.

On the basis of the above definitions, the principle of virtual work in a Cosserat
continuum is defined as follows:

Definition The system rij; li�j; f
i; ti;mi

n o
is called an equilibrium set, if, for any

choice of the virtual fields of particle displacement and rotation that satisfy
Eq. (4.21), the virtual work equation holds,

dW ðextÞ ¼ dW ðintÞ ð4:23Þ

From Eq. (4.23) and the definitions for the virtual work of internal- and external
forces, Eqs. (4.17), (4.3) and (4.22), we obtain the following integral equation,Z

ðVÞ

f iduidV þ
Z

ð@VÞ

tiduidSþ
Z

ð@VÞ

midw
idS ¼

Z
ðVÞ

rikdcik þ li�kdj
�k
i

� �
dV ð4:24Þ

This is the virtual work equation for a Cosserat continuum in the absence of
body couples.

4.2 Equilibrium Equations

4.2.1 General Curvilinear Coordinates

We remark first that the density of the virtual work of the internal forces can be
written as follows,

dwðintÞ ¼ rik duk ij � eikldw
l� �þ li�kdw

k
� ij

¼ rikduk þ li�kdw
k� �

ij � rikij duk þ li�k ij dw
k

� 	
� eiklr

ikdwl
ð4:25Þ

With the notation,

qi ¼ rikduk þ li�kdw
k ð4:26Þ

and with the use of Gauss’ theorem we get,

Z
V

qi� ij dV ¼
Z
@V

qini dS ð4:27Þ
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and, Z
V

rikduk þ li�kdw
k� �

ij dV ¼
Z
@V

rikduk þ li�kdw
k� �
nidS ð4:28Þ

With Eq. (4.28) the virtual work Eq. (4.24) becomes

Z
ðVÞ

f kdukdV þ
Z

ð@VÞ

tkdukdSþ
Z

ð@VÞ

mkdw
kdS ¼

Z
@V

rikduk þ li�kdw
k� �
nidS

�
Z
ðVÞ

rikij dukdV �
Z
ðVÞ

li�l ij þ eiklr
ik

� 	
dwldV

ð4:29Þ

or Z
ðVÞ

rikij þ f k
� 	

dukdV þ
Z
ðVÞ

li�k ij þ eilkr
il

� 	
dwkdV

¼
Z

ð@VÞ

rikni � tk
� �

dukdSþ
Z

ð@VÞ

li�kni � mk
� �

dwkdS
ð4:30Þ

The test functions dukðHiÞ and dwkðHiÞ can be chosen arbitrarily. In particular
they may be chosen in such a way that from Eq. (4.30) two sets of equations follow,

Z
ðV 0Þ

rikij þ f k
� 	

dukdV ¼ 0 8V 0 � V

Z
ðV 0Þ

li�k ij þ eilkr
il

� 	
dwkdV ¼ 0 8V 0 � V

ð4:31Þ

and Z
ð@V 0Þ

rikni � tk
� �

dukdS ¼ 0 8@V 0 � @V

Z
ð@V 0Þ

li�kni � mk
� �

dwkdS ¼ 0 8@V 0 � @V
ð4:32Þ

These equations result finally to the following set of local stress equilibrium
equations,

rikij þ f k ¼ 0 8PðHiÞ 2 V ð4:33Þ
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rikni ¼ tk 8PðHiÞ 2 @V ð4:34Þ

and local moment-stress equilibrium equations,

li�k ij þ eilkr
il ¼ 0 8PðHiÞ 2 V ð4:35Þ

li�kni ¼ mk 8PðHiÞ 2 @V ð4:36Þ

4.2.2 Cartesian Coordinates

We apply Eqs. (4.33) to (4.36) for a Cartesian description, thus yielding

rikni ¼ tk ð4:37Þ

@irik þ fk ¼ 0 ð4:38Þ

and

likni ¼ mk ð4:39Þ

@ilik þ eimkrim ¼ 0 ð4:40Þ

We observe that the equilibrium Eqs. (4.37) and (4.38) are identical to the ones
holding for the Boltzmann continuum and that the equilibrium Eqs. (4.37) and
(4.39) introduce the stress-and couple stress tensors as lineal densities for the
internal forces in the sense of Cauchy. Due to the moment equilibrium Eq. (4.40),
however, the stress tensor in a Cosserat continuum is in general non-symmetric.

As an example we apply the above equilibrium equations for a 2D setting, thus
yielding [5] (Fig. 4.2),

t1 ¼ r11n1 þ r21n2
t2 ¼ r12n1 þ r22n2
m3 ¼ l13n1 þ l23n2

ð4:41Þ

and (Fig. 4.3)

@r11
@x1

þ @r21
@x2

þ f1 ¼ 0

@r12
@x1

þ @r22
@x2

þ f2 ¼ 0

@l13
@x1

þ @l23
@x2

þ r12 � r21 ¼ 0

ð4:42Þ
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4.2.3 Exercises: Special Orthogonal Curvilinear
Coordinates

4.2.3.1 Polar Cylindrical Coordinates

Prove that the equilibrium equations for a Cosserat continuum in terms of physical
components in polar, cylindrical coordinates are the following:

@rrr
@r

þ 1
r
@rhr
@h

þ 1
r

rrr � rhhð Þþ @rzr
@z

þ fr ¼ 0

@rrh
@r

þ 1
r
@rhh
@h

þ 1
r

rrh þ rhrð Þþ @rzh
@z

þ fh ¼ 0

@rrz
@r

þ 1
r
@rhz
@h

þ 1
r
rrz þ @rzz

@z
þ fz ¼ 0

ð4:43Þ

Fig. 4.2 Stress and couple stress in the sense of Cauchy in 2D

Fig. 4.3 Stress and moment stress equilibrium in 2D
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and

@lrr
@r

þ 1
r
@lhr
@h

þ @lzr
@z

þ 1
r

lrr � lhhð Þþ rhz � rzh þUr ¼ 0

@lrh
@r

þ 1
r
@lhh
@h

þ @lzh
@z

þ 1
r

lrh þ lhrð Þþ rzr � rrz þUh ¼ 0

@lrz
@r

þ 1
r
@lhz
@h

þ @lzz
@z

þ 1
r
lrz þ rrh � rhr þUz ¼ 0

ð4:44Þ

In the above equations with Ur, Uh and Uz we denote the components of body
couples.

4.2.3.2 Polar Spherical Coordinates

Prove that the equilibrium equations for a Cosserat continuum in terms of physical
components in polar, cylindrical coordinates are the following:

@rrr
@r

þ 1
r
@rhr
@h

þ 1
r sin h

@r/r
@/

þ cot h
r

rhr þ 1
r

2rrr � r// � rhh
� �þ fr ¼ 0

@rrh
@r

þ 1
r
@rhh
@h

þ 1
r sin h

@r/h
@/

þ 1
r

2rrh þ rhrð Þþ cot h
r

rhh � r//
� �þ fh ¼ 0

@rr/
@r

þ 1
r
@rh/
@h

þ 1
r sin h

@r//
@/

þ 1
r

rr/ þ r/r
� �þ cot h

r
rh/ þ r/h
� �þ f/ ¼ 0

ð4:45Þ

@lrr
@r

þ 1
r
@lhr
@h

þ 1
r sin h

@l/r
@/

þ cot h
r

lhr þ
1
r

2lrr � l// � lhh
� �þ r/h � rh/ þUr ¼ 0

@lrh
@r

þ 1
r
lrhh
@h

þ 1
r sin h

@l/h
@/

þ 1
r

2lrh þ lhrð Þþ cot h
r

lhh � l//
� �þ rr/ � r/r þUh ¼ 0

@lr/
@r

þ 1
r

@lh/
@h

þ 1
r sin h

@l//
@/

þ 1
r

2lr/ þ l/r
� �þ cot h

r
lh/ þ l/h
� �þ rhr � rrh þU/ ¼ 0

ð4:46Þ

4.3 The Traction Motor

In view of Eqs. (4.34) and (4.36) we consider the traction and the couple that are
acting on an infinitesimal oriented surface element ndS located at point PðHiÞ,

t ¼ tigi ¼ rkinkgi ð4:47Þ
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m ¼ migi ¼ lk�inkg
i ð4:48Þ

For the compact description of the Cosserat continuum statics we introduce the
vector compound,

Tðnj;H jÞ ¼ tðnj;H jÞ
mðnj;HjiÞ

� �
¼ tiðnj;H jÞgi

miðnj;H jÞgi
� �

¼ rkiðH jÞnkgi
lk� iðH jÞnkgi

� �
ð4:49Þ

This prompts to introduce the stress compound

R ¼ rkigk � gi
lk� igk � gi

� �
ð4:50Þ

Such that,

T ¼ RT � n ð4:51Þ

This is true, because we recall that the definition of the inner product of the
tensor product with a vector obeys the relations [6],

a� bð Þ � c ¼ a b � cð Þ; a � b� cð Þ ¼ a � bð Þc ð4:52Þ

Thus indeed,

RT � n ¼ rkigi � gk
lk� ig

i � gk

 !
� nlgl

¼ rkinl gi � gkð Þ � gl
lk� inl g

i � gkð Þ � gl
 !

¼ rkinlgid
l
k

lk� inlg
idlk

 !
¼ rkinkgi

lk� inkg
i

 !
¼ T

ð4:53Þ

where dlk is the only Kronecker delta,

gk � gl ¼ dlk ¼
1 if : k ¼ l
0 if : k 6¼ l

�
ð4:54Þ

We consider now the virtual displacement and deformation compounds,

d�K ¼ dwigi
duigi

� �
) d��H ¼ Gradd�K :¼ wi

� kj gi � gk

ui kj þ eiklw
l� �
gi � gk

 !
¼ dj�ikg

k � gi
dckig

k � gi

� �

ð4:55Þ

We observe that the above defined invariant virtual work of internal forces,
Eq. (4.3), can be written as a von Misses scalar product of the related static and
kinematic tensor compounds,
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dwðintÞ ¼ R 	 dH

¼ rkigk � gi
lk� igk � gi

 !
	 dj�jl g

l � gj
dcljg

l � g j

 !

:¼ rkidclj gk � gið Þ : gl � g j
� �þ lk� idj

�j
l gk � gi
� �

: gl � gj
� �

ð4:56Þ

We recall that for two second order tensors a scalar product may be defined in
the following manner [6],

a� bð Þ : c� dð Þ ¼ a � cð Þ b � dð Þ ð4:57Þ

With that Eq. (4.56) reduces to Eq. (4.3), since

gk � gið Þ : gl � g j
� � ¼ gk � gl

� �
gi � g j
� � ¼ dlkd

j
i

gk � gi
� �

: gl � gj
� � ¼ gk � gl

� �
gi � gj
� � ¼ dlkd

i
j

ð4:58Þ

and with that from Eq. (4.56) we get in fact that,

dwðintÞ ¼ rkidcljd
l
kd

j
i þ lk�idj

�j
l d

l
kd

i
j ¼ rkidcki þ lk�idj

�i
k ð4:59Þ

Note also that the above re-defined von Mises scalar product is commutative,
since

dwðintÞ ¼ dH 	 R

¼ dj�jl g
l � gj

dcljg
l � g j

 !
	 rkigk � gi

lk�igk � gi

 !

¼ dj�jl l
k
�i g

l � gj
� �

: gk � gi
� �þ dcljr

ki gl � g j
� �

: gk � gið Þ
¼ dj�jl l

k
�id

l
kd

i
j þ dcljr

kidlkd
j
i ¼ dj�jl l

l
�j þ dcljr

lj

ð4:60Þ

i.e.,

dwðintÞ ¼ R 	 dH ¼ dH 	 R ð4:61Þ

If the Cosserat continuum in the vicinity of a point PðHkÞ and for surface
elements in an arbitrary direction n is behaving like a rigid body, then the traction
tðni;HiÞ is a line vector and mðni;HiÞ is the corresponding couple that satisfy the
following “transport” law [7],

tðnj;H j þ dH jÞ ¼ tðnj;H jÞ ) dt ¼ 0

mðnj;H j þ dH jÞ ¼ mðnj;H jÞþ tðnj;H jÞ � dHkgk ) dm ¼ tðnj;H jÞ � dHkgk
ð4:62Þ
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Thus,

T 0 ¼ Tðnj;H j þ dH jÞ ¼ tðnj;H jÞ
mðnj;H jÞþ tðnj;H jÞ � dHkgk

 !

¼ tiðnj;H jÞgi
miðnj;H jÞþ eikltkðnj;H jÞdHl� �

gi

 ! ð4:63Þ

With,

T 0 ¼ t0igi
m0

ig
i

� �
ð4:64Þ

We get

t0i ¼ ti

m0
i ¼ mi þ eiklt

kdHl
ð4:65Þ

This means that in case of a rigidified continuum domain the above introduced
generalized-traction vector compound �T , consisting of the two vectors t and m, is a
motor in the sense of von Mises. We call T the traction motor. We observe that with
Eq. (4.65) the two motors TðHiÞ and T 0 ¼ TðHi þ dHiÞ are “equal” or “statically
equivalent”. This fundamental statical property of Cosserat continua enforces fur-
ther their application to the mechanics of granular media, if again the single (rigid)
grain is seen as the smallest material unit.

In general the differential forms,

dt ¼ tðHi þ dHiÞ � tðHiÞ ð4:66Þ

dm� tðHiÞ � dHkgk ¼ mðHk þ dHkÞ � ðmðHiÞþ tðHiÞdHkgkÞ ð4:67Þ

will not vanish. In compact form this is described by the non-vanishing absolute
differential vector compound,

dTðni;HiÞ ¼ tðHi þ dHiÞ � tðHiÞ
mðHi þ dHiÞ � mðHiÞþ tðHiÞ � dHkgk

� �� �

¼ dt
dmþ dHkgk � t

� �
ð4:68Þ

In analogy to kinematics, we introduce the Pfaffian vector forms

ridH
i ¼ dt ð4:69Þ

4.3 The Traction Motor 71



lidH
i ¼ dmþ dHkgk � t ð4:70Þ

These forms define in turn the two vectors,

ri ¼ t;i ð4:71Þ

and

li ¼ m ;i þ gi � t ð4:72Þ

with,

t;i ¼ tk� ij gk ð4:73Þ

and

m;i ¼ mk ij gk ð4:74Þ

Thus in a given direction n we get

ri ¼ rmk�� ij nmgk ð4:75Þ

and

li ¼ lm�k ij þ eilkr
ml

� 	
nmgk ð4:76Þ

With

dTðni;HiÞ ¼ ri
li

� �
dHi ¼

rmk�� ij gk
lm�k ij þ eilkrml
� 	

gk

 !
nmdH

i ð4:77Þ

and according to Kessel [8], we define the divergence of the stress compound as,

R ¼ rkigk � gi
lk� igk � gi

� �
) DivR :¼

rki�� kj gi
lk� i kj þ eiklrkl
� 	

gi

 !
ð4:78Þ

From Eqs. (4.33), (4.35) and the definition Eq. (4.78), equilibrium is expressed
in compact form as,

DivR ¼ �f igi
0

� �
ð4:79Þ
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Note that for non-equilibrium stress- and couple-stress states we have to abandon
the realm of statics and re-formulate the governing equations within the frame of
Cosserat continuum dynamics.

4.4 Statical Compatibility Conditions for Stationary
Discontinuities

Within the frame of a small deformation theory, we neglect geometric correction
terms and the continued equilibrium across a material discontinuity surface is
expressed in terms of the material time derivatives of the Cauchy-type stress and
couple-stress tensors [4],

_rik

 �

ni ¼ 0 ð4:80Þ

and

_li�k

 �

ni ¼ 0 ð4:81Þ

Following standard techniques, further compatibility equations can be derived
from the above discussed differential equilibrium equations, as explained in stan-
dards texts [4, 9].
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Chapter 5
Cosserat Continuum Dynamics

Abstract In this chapter the conservation (balance) laws for mass, linear and
angular momentum are presented. It is shown that the Cosserat continuum differs
from the Boltzmann continuum only in the angular momentum balance equation.
Examples of how momentum balance laws can be applied to cartesian and polar
coordinate systems are also presented.

The equations that describe mass balance and balance of linear momentum in a
Cosserat continuum are the same as the ones holding for a Boltzmann continuum [1].
The difference between the two types of continua arises while considering the action
of the extra dofs of the Cosserat continuum, i.e. in the formulation of the momentum
balance- and energy balance equations [2]. For completeness we derive here also the
equations that describe balance of mass and balance of linear momentum.

5.1 Balance of Mass

The material particle of the Cosserat continuum is equipped with a linear particle
velocity

vi ¼ Dui

Dt
ð5:1Þ

where

Du
Dt

i

¼ @ui

@t
þ ui� kj v

k ð5:2Þ

We remark that from Eq. (5.2)

vk dik � ui� kj
� �

¼ @ui

@t
) vi ¼ @ui

@t
þO ui� kj

� �
ð5:3Þ
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This means that within a small deformation theory we have the following
approximation,

vi � @tu
i; @t � @

@t
ð5:4Þ

The mass of the particle is,

dm ¼ qdV ð5:5Þ

where density q Hi; t
� �

is the mass density at the considered point.
The total mass of a body B at a given time t is,

MðtÞ ¼
Z
ðVÞ

q dV ð5:6Þ

Mass balance is expressed by the requirement,

dM
dt

¼ 0 ð5:7Þ

We recall Reynolds’ transport theorem [1],

SðtÞ ¼
Z
ðVÞ

sðHk; tÞdV ) dS
dt

¼
Z
ðVÞ

@tsþ svi
� �

ij
� �

dV ð5:8Þ

Thus, from Eqs. (5.6) and (5.7) follows that mass balance is expressed asZ
V 0ð Þ

@tqþ qvi
� �

ij ¼ 0
� �

dV ¼ 0 8V 0 � V ð5:9Þ

If we assume that mass balance holds for any subdivision of the considered body,
then from Eq. (5.9) we get the following local form for the mass balance equation,

@q
@t

þ qvi
� �

ij ¼ 0 8PðHiÞ 2 V ð5:10Þ

or,

_q ¼ �qviij ð5:11Þ

where

_q � Dq
Dt

¼ @q
@t

þ vkq kj ð5:12Þ

76 5 Cosserat Continuum Dynamics



is the material time derivative of the density and

q kj ¼ q;k ð5:13Þ

Remark Note that if Eq. (5.10) holds, then Reynolds’ transport theorem, Eq. (5.8),
applied for the global quantity

SðtÞ ¼
Z
ðBÞ

sdm ¼
Z
ðVÞ

qs dV ð5:14Þ

yields,

dS
dt

¼
Z
ðVÞ

q_sdV ð5:15Þ

where _s is the material time derivative of the specific quantity sðHk; tÞ.
This is because,

dS
dt

¼
Z
ðVÞ

@t qsð Þþ qsvi
� �

ij
� �

dV ¼
Z
ðVÞ

s @tqþ qvi
� �

ij
� �

þ q @tsþ vis ij
� �� �

dV

ð5:16Þ

5.2 Balance of Linear Momentum

The total force that is acting on a body B at a given time t is,

FiðtÞ ¼
Z
ðVÞ

f idV þ
Z

ð@VÞ

tidS ð5:17Þ

The total linear momentum of the consider body is,

IiðtÞ ¼
Z
ðVÞ

qvidV ð5:18Þ

Balance of linear momentum is expressed as,

dIi

dt
¼ Fi ð5:19Þ
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From Reynolds’ transport theorem we get that,

dIi

dt
¼ d

dt

Z
ðVÞ

qvidV ¼
Z
ðVÞ

q @tv
i þ vkvi� kj

� �
dV ð5:20Þ

Thus from Eqs. (5.17) to (5.20) we get,Z
ðVÞ

q @tv
i þ vkvi� kj

� �
dV ¼

Z
ðVÞ

f idV þ
Z

ð@VÞ

tidS ð5:21Þ

We assume that the linear momentum balance holds for any subdivision of the
considered body. If we apply Eq. (5.21) in particular for the elementary tetrahedron
under suitable mathematical restrictions [3] the volume integrals tend to zero and
the remaining surface integral yields Cauchy’s theorem, Eq. (4.34),

rkink ¼ ti 8PðHmÞ 2 @V ð5:22Þ

From Eqs. (5.21), (5.22) and Gauss’ theorem we getZ
V 0ð Þ

q @tv
i þ vi� kj v

k
� �

dV ¼
Z
V 0ð Þ

f idV þ
Z
@V 0ð Þ

rkinkdS

¼
Z
V 0ð Þ

f idV þ
Z
V 0ð Þ

rkikj dV 8V 0 � V
ð5:23Þ

We observe that the material time derivative of the velocity coincides with the
particle acceleration,

ai ¼ Dvi

Dt
¼ @tv

i þ vi� kj v
k ð5:24Þ

From Eqs. (5.23) and (5.24) we get the dynamic equations,

rkikj þ f i ¼ q
Dvi

Dt
ð5:25Þ

In Cartesian coordinates the above dynamic equations become,

@krki þ fi ¼ q
Dvi
Dt

ð5:26Þ

We observe that if we assume that the particle acceleration is vanishing, then
Eqs. (5.25) and (5.26) reduce to the static equilibrium Eqs. (4.33) and (4.38),
respectively.
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5.3 Balance of Angular Momentum

The total moment of the forces and couples acting on a body B at a given time t is,

M ¼
Z

ð@VÞ

R� t dSþ
Z
ðVÞ

R� f dVþ
Z

ð@VÞ

m dS ð5:27Þ

where R is the position vector.
On the other hand, the total angular momentum is

L ¼
Z
ðVÞ

R� ðqvÞdV þ
Z
ðVÞ

qh dV ð5:28Þ

where qh is the angular momentum of the spinning polar material point.
Balance of angular momentum is expressed as,

dL
dt

¼ M ð5:29Þ

Assuming that mass balance is holding, we have that,

dL
dt

¼ d
dt

Z
ðVÞ

q R� vþ hð ÞdV ¼
Z
ðVÞ

R� q
Dv
Dt

� �
dV þ

Z
ðVÞ

q
Dh
Dt

dV ð5:30Þ

5.3.1 Cartesian Coordinates

We consider the 1st term on the r.h.s. of Eq. (5.27), and evaluate its components for
convenience in a Cartesian description,Z

ð@VÞ

R� tð ÞidS ¼
Z

ð@VÞ

eijkxjtkdS ¼
Z

ð@VÞ

eijkxjrmknmdS

¼
Z
ðVÞ

eijk@m xjrmk
� �

dV ¼
Z
ðVÞ

eijk dmjrmk þ xj@mrmk
� �

dV

¼
Z
ðVÞ

eijkrjk þ eijkxj@mrmk
� �

dV

ð5:31Þ
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Let,

t� ¼ t�i ei; t
�
i ¼

1
2
eijkrjk ð5:32Þ

and with that Eq. (5.27) becomes

Mi ¼
Z
ðVÞ

2t�i dV þ
Z
ðVÞ

eijkxj@mrmkdV þ
Z
ðVÞ

eijkxjfkdV þ
Z

ð@VÞ

lkinkdS

¼
Z
ðVÞ

2t�i þ @klki
� �

dV þ
Z
ðVÞ

eijkxj @mrmk þ fkð Þ� �
dV

ð5:33Þ

By combining Eqs. (5.29), (5.30) and (5.33) we obtain

Z
ðVÞ

q
Dhi
Dt

dV ¼
Z
ðVÞ

2t�i þ @klki
� �

dV þ
Z
ðVÞ

eijkxj @mrmk þ fk � q
Dvk
Dt

� �� �
dV

ð5:34Þ

If we assume that balance of linear momentum holds, then the last term on the r.
h.s. of Eq. (5.34) is vanishing, thus yielding,Z

ðVÞ

q
Dhi
Dt

dV ¼
Z
ðVÞ

2t�i þ @klki
� �

dV ð5:35Þ

The local form of Eq. (5.35) is

@klki þ eiklrkl ¼ q
Dhi
Dt

ð5:36Þ

cf. Eq. (4.40).

5.3.2 Exercise: General Curvilinear Coordinates

Prove that in curvilinear coordinates Eq. (5.36) becomes,

li�k ij þ eilkr
il ¼ q

Dhk
Dt

ð5:37Þ

80 5 Cosserat Continuum Dynamics



Proof From

Mi ¼
Z

ð@VÞ

eijkx
jtkdSþ

Z
ðVÞ

eijkx
jf kdVþ

Z
ð@VÞ

midSþ
Z
ðVÞ

UidV ð5:38Þ

where for completeness we considered the action of body couples as well. Thus,

Mi ¼
Z

ð@VÞ

eijkx
jrlknldSþ

Z
ðVÞ

eijkx
jf kdVþ

Z
ð@VÞ

l j
�injdSþ

Z
ðVÞ

UidV

¼
Z
ðVÞ

l j
�i jj þ e�ijkrjk þUi þ eijkx

j rlk��� lj þ f k
� �� �

dV
ð5:39Þ

and

Li ¼
Z
ðVÞ

eijkx
jqvkdV þ

Z
ðVÞ

qhidV ð5:40Þ

Then from Eq. (5.29) we get,

Z
ðVÞ

l j
�i jj þ e�ijkrjk þUi � q

Dhi
Dt

þ eijkx j rlk��� lj þ f k � q
Dvk

Dt

� �� �
dV ¼ 0 ð5:41Þ

In view of Eq. (5.25) we get Eq. (5.37).
q.e.d.

5.4 The Micro-morphic Continuum

For the identification of the angular momentum of the spinning polar material
particle we follow a demonstration by Becker and Bürger [2] by resorting to the
so-called micro-morphic continuum interpretation. The term “micro-morphic” was
introduced by Eringen [4]. A volume element of a micro-morphic medium consists
of micro-elements which undergo micro-motions and micro-deformations. Note
that micro-polar media are a subclass, in which the micro-elements behave like
rigid bodies.

In this case we assign to the material polar particle (or macro-particle) of the
continuum the average properties of a Representative Elementary Volume (REV);
that is of an assembly of sub-particles, as shown in Fig. 5.1. The (REV) may consist
of N sub-particles (or micro-particles).
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We use here Cartesian notation. The spatial position of the polar macro-particle
is identified with the position of the center of mass SðxiÞ of the sub-particles in the
(REV). The velocity vi of the center of mass SðxiÞ is defined as the velocity of the
particle itself,

vi ¼ _xi ð5:42Þ

The sub-particle at position Pðxi þ yiÞ has the mass ~m ¼ qp eV , where qp is the

sub-particle mass density and eV is its volume.
The sub-particle has a velocity that is composed of the velocity of the center of

mass and the deviation from that,

viðPÞ ¼ viðSÞþ~vi ð5:43Þ

The total mass of the macro-particle is the sum of the masses of its constituents,

m ¼
X
N

~mN ð5:44Þ

The linear- and angular momentum of the macro-particle are computed as
follows,

ii ¼ mvi ð5:45Þ

dk ¼ meijkxivj þ
X
N

~meijkyi~vj
� �

N ð5:46Þ

Fig. 5.1 The microstructure
of an (REV) with
sub-particles sharing a
rigid-body motion
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The volume of the material (REV) is V and the total volume of the sub-particles
inside the (REV) is

Vp ¼
X
N

eVN ð5:47Þ

The volume fraction

/ ¼ V � Vp

V
¼ 1�

P
N

eVN

V
ð5:48Þ

is the porosity of the (REV). The density of the macro-particle is1

q ¼
P
N

~mN

V
¼

P
N

~mNP
N

eVN

P
N

eVN

V
¼ ð1� /Þqp ð5:49Þ

Similarly we introduce the linear momentum of the macro-particle,

si ¼ mvi
V

¼ qvi ð5:50Þ

and its angular momentum

Dk ¼ dk
V

¼ qeijkxivj þ 1
V

X
N

~meijkyi~vj
� �

N ð5:51Þ

The relative velocity ~vi of the sub-particle at position Pðxi þ yiÞ with respect to
the center of mass SðxiÞ is assumed to be a function of its position inside the
(REV) and of time. We expand this function in a Taylor series in the vicinity of the
center of mass SðxiÞ of the REV by setting

~vi � vijðtÞyj þ vijkðtÞyjyk þ � � � ð5:52Þ

We can develop a special theory, if we consider only the linear term in the series
expansion, Eq. (5.52),

~vi � vijðtÞyj ð5:53Þ

This assumption is interpreted as a statement for local homogeneity of the
micro-deformation; i.e. of the deformation inside the (REV). In this case from
Eqs. (5.51) and (5.53) we get,

1If the particles consist of different substances then we should replace qp with an average particle
density \qp [ in Eq. (5.49).
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Dk ¼ qeijkxivjðtÞþ eijkJilvjlðtÞ ð5:54Þ

where Jjl is the inertia tensor of the (REV) with respect to its center of mass,

Jil ¼ 1
V

X
N

~myiylð ÞN ¼ qp
1
V

X
N

yiyl eV� �
N ð5:55Þ

For simplicity we assume that on the (REV) only volume external forces are
acting. In this case the moment per unit volume of external forces acting on the
(REV) is,

lk ¼ eijkxifj þ eijk fji ð5:56Þ

where,

fi ¼ 1
V

X
N

~fi eV� �
N

fij ¼ 1
V

X
N

~fi eVyj� �
N

ð5:57Þ

If we integrate Eq. (5.56) over the volume of the continuum body B, we get the
expression for the total moment of body forces acting on B,

Mðb:f :Þ
k ¼

Z
ðVÞ

lkdV ¼
Z
ðVÞ

eijkxifjdV þ
Z
ðVÞ

eijkfjidV ð5:58Þ

In view of Eq. (5.27) we recognize the 1st term on the r.h.s. of Eq. (5.58), as the
moment of body forces. The 2nd term is the contribution of body-couples, that were
systematically ignored in the previous derivations, since there was no real moti-
vation to introduce such body-couples until this point in the demonstration. Thus
we introduce here body couples,

Uk ¼ eijkfji ð5:59Þ

and Eq. (5.58) becomes,

Mðb:f :Þ
k ¼

Z
ðVÞ

eijkxifjdV þ
Z
ðVÞ

UkdV ð5:60Þ

With this background we may re-write the linear- and angular momentum
equations for the considered special micro-morphic continuum; these are,
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d
dt

Z
ðVÞ

qvidV ¼
Z
ðVÞ

fidV þ � � � ð5:61Þ

d
dt

Z
ðVÞ

DkdV ¼
Z
ðVÞ

eijkxifjdV þ
Z
ðVÞ

UkdV þ � � � ð5:62Þ

where the dots stand for the actions of surface tractions and surface couples.
Equation (5.62) with (5.54) becomes,

d
dt

Z
ðVÞ

qeijkxivj þ eijkJilvjl
� �

dV ¼
Z
ðVÞ

eijkxifjdV þ
Z
ðVÞ

UkdV þ � � � ð5:63Þ

The balance equations for the Cosserat continuum can be derived from
Eq. (5.63) if we set,

vij ¼ _wij ¼ �eijkwk ð5:64Þ

where

wk ¼ Dwk

Dt
� @twk ð5:65Þ

This assumption means that the considered macro-element is a swarm of m
sub-particles that they all share a rigid body motion: The center of mass of these
sub-particles is translated by the velocity vi and at the same time all the
sub-particles rotate around an instantaneous axis with director nk and have an
angular velocity w, such that,

wk ¼ nkw ð5:66Þ

Thus, the spin and the velocity of a sub-particle inside the (REV) is given by the
von Mises motor that characterizes the rigid-body motion of the sub-particles,

wðPÞ ¼ wðSÞ
vðPÞ ¼ vðSÞþw� RP � Rsð Þ

� �
¼ wi

vi þ eikjwkyj

� �
ð5:67Þ

In this case we have that

eijkJilvjl ¼ eijkJil �ejlmwm
� � ¼ Jkmwm ¼ qhk ð5:68Þ

With these results we return to the momentum balance Eq. (5.35), that is written
now as follows,
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Z
ðVÞ

qJim
Dwm

Dt
dV ¼

Z
ðVÞ

t�i þ @klki þUi
� �

dV ð5:69Þ

Its local form reads,

@plpk þ ekpqrpq þUk ¼ qJkm
Dwm

Dt
ð5:70Þ

In general curvilinear coordinates the dynamic Eq. (5.70) takes the following
form,

lp�k pj þ ekpqr
pq þUk ¼ qJkm

Dwm

Dt
ð5:71Þ

5.5 Exercises: Dynamic Equations in Plane Problems

5.5.1 Cartesian Coordinates

Prove that the dynamic equations in-plane Cartesian coordinates are (Fig. 5.2):

@r11
@x1

þ @r21
@x2

¼ q
Dv1
Dt

@r12
@x1

þ @r22
@x2

¼ q
Dv2
Dt

ð5:72Þ

@l13
@x1

þ @l23
@x2

þ r12 � r21 ¼ qJ
Dw3

Dt
ð5:73Þ

Fig. 5.2 Dynamic equilibrium in a Cosserat medium in Cartesian coordinates
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where the assumption is made that the micro-inertia tensor is isotropic,

Jij ¼ Jdij ð5:74Þ

5.5.2 Plane, Polar Coordinates

Prove that in the absence of body forces and body couples the dynamic equations in
physical components and in plane polar coordinates are (Fig. 5.3),

@rrr
@r

þ 1
r
@rhr
@h

þ 1
r

rrr � rhhð Þ ¼ q
Dvr
Dt

@rrh
@r

þ 1
r
@rhh
@h

þ 1
r

rrh þ rhrð Þ ¼ q
Dvh
Dt

ð5:75Þ

@lrz
@r

þ 1
r
@lhz
@h

þ 1
r
lrz þ rrh � rhr ¼ qJ

Dwz

Dt
ð5:76Þ
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Chapter 6
Cosserat Continuum Energetics

Abstract In this chapter the energy and entropy balance laws for a Cosserat
continuum are presented. It is shown that the higher-order continuum introduces
additional terms in the local dissipation of a system.

6.1 Energy Balance Equation

The total energy EðtÞ of a continuum body B is split into two parts: one part that
depends on the position of the observer, that is called the kinetic energy KðtÞ of the
considered body, and another part that does not depend on the observer, called the
internal energy UðtÞ,

EðtÞ ¼ KðtÞþUðtÞ ð6:1Þ

The kinetic energy of a Cosserat continuum consists of the contribution that is
due to the translationary motion of the particles,

1
2
vkvkdm ð6:2Þ

and of the contribution that is due to their spin,

1
2
wkhkdm ð6:3Þ

Thus the total kinetic energy is computed as,

KðtÞ ¼
Z

ðVÞ

q
1
2
vkvk þ 1

2
wkhk

� �
dV ð6:4Þ
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The internal energy is given by means of a specific internal energy density
function, e Hi; t

� �
,

UðtÞ ¼
Z

ðBÞ

edm ¼
Z

ðVÞ

qedV ð6:5Þ

The 1st Law of Thermodynamics requires that the change of the total energy of a
material body B is due to two factors: (a) the power W ðextÞ of all external forces
acting on B in the current configuration, and (b) the non-mechanical energy Q,
which is supplied per unit time to B from the exterior domain; i.e.:

dE
dt

¼ W ðextÞ þQ ð6:6Þ

By eliminating dE=dt from Eqs. (6.1) and (6.6) we arrive to the fundamental
energy balance equation

dU
dt

þ dK
dt

¼ W ðextÞ þQ ð6:7Þ

According to Truesdell and Toupin [1] the first formulation of the Energy
Balance Law, Eq. (6.7), is due to Duhem [2].

The work of external forces is computed as follows,

W ðextÞ ¼
Z

ð@VÞ

tkvk þmkw
k

� �
dSþ

Z

ðVÞ

f kvk þUkw
k

� �
dV ð6:8Þ

The influx of energy in the form of heat flow is defined through a heat-flow
vector qi Hk; t

� �
, that is taken positive if heat flows into the considered body,

Q ¼ �
Z

ð@VÞ

qknkdS ð6:9Þ

We introduce into Eq. (6.8) the stress- and couple-stress tensors, according to
Eqs. (4.34) and (4.36),

W ðextÞ ¼
Z

ð@VÞ

rikvk þ li�kw
k

� �
nidSþ

Z

ðVÞ

f kvk þUkw
k

� �
dV ð6:10Þ
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and we apply Gauss’ theorem,

W ðextÞ ¼
Z

ðVÞ

rikji þ f k
� �

vkdV þ
Z

ðVÞ

li�kji þUk

� �
wkdV þ

Z

ðVÞ

rikvkji þ li�kw
k
�ji

� �
dV

ð6:11Þ

Similarly from Eq. (6.9) we get

Q ¼ �
Z

ðVÞ

qk� kj dV ð6:12Þ

The l.h.s. of Eq. (6.6) is computed by means of Eqs. (6.1) to (6.5) and Reynolds’
transport theorem

dE
dt

¼
Z

ðVÞ

q
1
2
D
Dt

vkvk
� �

dV þ
Z

ðVÞ

q
1
2
D
Dt

wkhk
� �

dV þ
Z

ðVÞ

q
de
dt

dV ð6:13Þ

We remark that the following relations hold,

1
2
D
Dt

vkvk
� � ¼ 1

2
D
Dt

vkgklv
l

� � ¼ gklv
l Dv

k

Dt
¼ vk

Dvk

Dt
ð6:14Þ

Dhk
Dt

wk ¼ hk
Dwk

Dt
ð6:15Þ

the latter will be demonstrated below. Thus,

1
2
D
Dt

hkw
k

� � ¼ 1
2

Dhk
Dt

wk þ hk
Dwk

Dt

� �
¼ wk Dhk

Dt
ð6:16Þ

By combining Eqs. (6.6), (6.11) with (6.16) we get

Z

ðVÞ

q
Dvk

Dt
vkdV þ

Z

ðVÞ

q
Dhk
Dt

wkdV þ
Z

ðVÞ

q
De
Dt

dV

¼
Z

ðVÞ

rikji þ f k
� �

vkdV þ
Z

ðVÞ

li�kji þUk

� �
wkdV þ

Z

ðVÞ

rikvkji þ li�kw
k
�ji

� �
dV �

Z

ðVÞ

qk�jkdV

ð6:17Þ

6.1 Energy Balance Equation 91



or

Z

ðVÞ

q
De
Dt

dV¼
Z

ðVÞ

rikji þ f k � q
Dvk

Dt

� �
vkdV þ

Z

ðVÞ

li�kji þUk � q
Dhk
Dt

� �
wkdV

þ
Z

ðVÞ

rikvkji þ li�kw
k
�ji

� �
dV �

Z

ðVÞ

qk�jkdV
ð6:18Þ

We assume that linear- and angular momentum balance equations, Eqs. (5.25)
and (5.37), are holding. In this case we get from Eq. (6.18),

Z

ðVÞ

q
De
Dt

dV ¼
Z

ðVÞ

rik vkji � eikmw
m

� �þ li�kw
k
�ji � qk�jk

� �
dV ð6:19Þ

In accordance to Eqs. (3.138) and (3.139) we define the rate of distortion tensor

K �k
i ¼ wk

� ij ð6:20Þ

and the relative rate of deformation tensor,

Cik ¼ vk ij þ ekilw
l ð6:21Þ

With this notation and in accordance to Eq. (4.3) we define the stress power in a
Cosserat continuum as,

P ¼ rikCik þ li�kK
�k
i ð6:22Þ

Notice that in accordance to Eq. (4.14) the stress power can be split as follows,

P ¼ rðijÞCðijÞ þ 2t�i _xi � wi
� �þ li�kK

�k
i ð6:23Þ

With this definition, from Eq. (6.19) we obtain the following local form of the
energy balance equation,

q
De
Dt

¼ P� qk� kj ð6:24Þ

Remark In order to have the above derivation complete we must prove the validity
of Eq. (6.15); cf. Becker and Bürger [3]. We use Cartesian coordinates and
Eqs. (5.55) and (5.68) as starting points,

hk ¼ J�kmwm ð6:25Þ
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where J�ij is the (symmetric) inertia tensor referred the unit of mass

J�il ¼
1
q
Jil ¼ 1

m

X
N

~myiylð ÞN ; Jij ¼ qJ�il ð6:26Þ

In view of the l.h.s. of Eqs. (6.15), (6.25) and the symmetry of the moment of
inertia tensor we get,

Dhk
Dt

wk ¼ DJ�km
Dt

wm þ J�km
Dwm

Dt

� �
wk ¼ wk

DJ�km
Dt

wm þ Dwm

Dt
J�kmwk

¼ wk
DJ�km
Dt

wm þ Dwm

Dt
J�mkwk

ð6:27Þ

In a Cosserat continuum the particles move like rigid bodies. This means that for
a fixed coordinate system, the inertia tensor is,

J�ijðtÞ ¼ QinðtÞQjmðtÞJ�nmð0Þ ð6:28Þ

The proper orthogonal tensor QijðtÞ describes the (finite) rotation of the particle
between its configuration at time t ¼ 0 and time t[ 0.

We recall that QijðtÞ fulfills the orthogonality conditions,

QikQil ¼ dkl; QkiQli ¼ dkl ð6:29Þ

Thus,

D
Dt

J�ij ¼ _QinQjmJ
�
nmð0ÞþQinðtÞ _QjmðtÞJ�nmð0Þ ð6:30Þ

If we take the current configuration as reference configuration, then Eq. (6.30)
yields

D
Dt

J�ij ¼ _QindjmJ
�
nm þ din _QjmJ

�
nm ¼ _QinJ

�
nj þ _QjmJ

�
im ð6:31Þ

or

D
Dt

J�ij ¼ XinJ
�
nj � J�imXmj ð6:32Þ

where the tensor

Xkl ¼ _Qkl ð6:33Þ
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is antisymmetric and has the angular velocity vector wk as an axial vector,

½X� ¼
0 �w3 w2

w3 0 �w1

�w2 w1 0

2
4

3
5 ð6:34Þ

or

Xij ¼ �eijkwk ð6:35Þ

Thus,

D
Dt

J�ij ¼ �einkwkJ
�
nj þ emjkwkJ

�
im ð6:36Þ

and

wi
DJ�ij
Dt

wj ¼ wi �eimkwkJ
�
mj þ emjkwkJ

�
im

� �
wj

¼ emikwkwiJ
�
mjwj þ emjkwkwjJ

�
miwi ¼ 2rm emikwiwkð Þ ¼ 0

ð6:37Þ

q.e.d.

6.2 Stress Power in Micro-morphic Media

At this point we would like to make a reference to the more general formulation of
the stress power that applies for a micro-morphic medium [4]; cf. Sect. 5.4. In this
context we define the following kinematic variables:

The rate of macro-deformation,

Dij ¼ 1
2

@ivj þ @jvi
� � ð6:38Þ

the micro-deformation vij, the rate of relative deformation,

Cij ¼ @ivk � vij ð6:39Þ

and the rate of micro-deformation gradient,

Kijk ¼ @ivjk ð6:40Þ
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Based on these definitions we define the stress power as follows,

P ¼ sijDij þ aijCij þ lijkKijk ð6:41Þ

The tensor sij is called the macro-stress, the tensor aij is the relative stress and
the tensor lijk is the double stress [5].

We specialize now the micro-deformation so as to correspond to a rigid-body
rotation [cf. Eq. (5.64)],

vij ¼ _wij ¼ �eijkwk ð6:42Þ

and with that,

Kijk ¼ @ivjk ¼ �ejkl@iwl ¼ �ejklKil ð6:43Þ

In that case from Eq. (6.41) we get,

P ¼ sijDij þ aijCij þ lijkKijk

¼ sijDij þ aij @ivj � _wij

� �
� ejkllijkKil

¼ sijDij þ aij Dij þWij þ eijkwk
� �� ejkllijkKil

¼ sij þ aðijÞ
� �

Dij þ a½ij� Wij þ eijkwk
� �� ejkllijkKil

ð6:44Þ

where Wij is called the macro-spin

Wij ¼ 1
2

@jvi � @ivj
� � ð6:45Þ

If we compare Eqs. (4.14) and (6.44), we obtain the following identification
among the stress fields defined in the micro-morphic and the Cosserat continuum,
respectively,

rðijÞ ¼ sij þ aðijÞ
r½ij� ¼ a½ij�
lil ¼ �ejkllijk

ð6:46Þ

If we assume also that,

aðijÞ ¼ 0 ð6:47Þ

this identification allows us to write the stress power for a Cosserat continuum as
follows,

P ¼ sijDij þ aijRij þ lijKij ð6:48Þ
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where Rij is the relative spin

Rij ¼ Wij þ eijkwk ð6:49Þ

This means that in a Cosserat continuum, the macro-stress coincides with the
symmetric part of the true (equilibrium) stress and works on the rate of deformation.
The relative stress coincides with the antisymmetric part of the true stress and works
on the relative spin. Finally, the couple stresses of the micromorphic medium
collapse to the true (equilibrium) couple stresses, that work in turn on the rate of
distortion.

6.3 Entropy Balance

Let H be the total entropy of the considered material body B in the current
configuration

HðtÞ ¼
Z

V

qsdV ð6:50Þ

In Eq. (6.50) s ¼ sðxk; tÞ is the specific entropy. Let also T ¼ Tðxk; tÞ[ 0 be the
absolute temperature. We define further the following quantities: (a) The Helmholtz
free energy as that portion of the internal energy, which is available for doing
mechanical work at constant temperature

f ¼ e� sT ð6:51Þ

and (b) the local dissipation function,

Dloc ¼ P� q
Df
Dt

þ s
DT
Dt

� �
ð6:52Þ

With the above definitions the energy balance Eq. (6.24) becomes,

q T
Ds
Dt

� �
¼ �qk� kj þDloc ð6:53Þ

This equation is the balance law for local entropy production. The entropy
balance law, Eq. (6.53), is further worked out by introducing appropriate consti-
tutive assumptions concerning the Helmholtz free energy function, the local dis-
sipation function and the law of heat conduction that are compatible with the
underlying Cosserat structure of the medium.
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Chapter 7
Cosserat-Elastic Bodies

Abstract This chapter explores certain classes of materials. It begins with linear
elastic bodies, laying down the basic concepts for linear isotropic elasticity.
Examples are following, including bending of a beam, annular shear and torsion of
a sphere of Cosserat elastic material.

7.1 Linear, Isotropic Cosserat Elasticity

For an elastic Cosserat material that is stressed under isothermal conditions, the
energy balance Eq. (6.24) provides the means to compute the rate of the internal
energy density function.

In Cartesian coordinates we have,

q
De
Dt

¼ rijCij þ lijKij ð7:1Þ

Within the frame of a small-deformation theory we assume that the density
remains practically constant,

q

qð0Þ
¼ dV

dV ð0Þ ) q ¼ qð0Þ

1þ ekk
� qð0Þð1� ekkÞ � qð0Þ ð7:2Þ

where qð0Þ is the density of the material in the initial, unstrained configuration.
Thus for small deformations we get,

Cij ¼
Dcij
Dt

� @tcij

Kij ¼ Djij
Dt

� @tjij

ð7:3Þ
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and

q
De
Dt

� qð0Þ
De
Dt

� rijCij þ lijKij ð7:4Þ

We assume that the elastic energy density,

wðelÞ ¼ qð0Þe ð7:5Þ

is a function of the 18 kinematic variables, cij and jij,

wðelÞ ¼ F cij; jij
� � ð7:6Þ

Then from Eqs. (7.6) and (7.4) we get that

rij ¼ @wðelÞ

@cij
; lij ¼

@wðelÞ

@jij
ð7:7Þ

Within the frame of linear elasticity, we assume that wðelÞ ¼ F cij; jij
� �

is
homogeneous of degree 2 with respect to its arguments.

From

rijcij ¼ rðijÞcðijÞ þ r½ij�c½ij� ð7:8Þ

we get that the elastic strain energy is split into three terms, as

wðelÞ ¼ wðelÞ
1 cðijÞ
� �

þwðelÞ
2 c½ij�
� �

þwðelÞ
3 jij
� � ð7:9Þ

A simple elasticity model arises if we assume that the 1st term on the r.h.s. of
Eq. (7.9) reflects Hooke’s law for linear, isotropic, elastic materials [1],

wðelÞ
1 ¼ 1

2
rðijÞeij ) ð7:10Þ

wðelÞ
1 ¼ 1

2
kemmenn þGemnemn; k ¼ 2m

1� 2m
G ð7:11Þ

where G and m are the elastic shear modulus and Poisson’s ratio, respectively.
Equations (7.10) and (7.11) are yielding,

rðijÞ ¼ @wðelÞ

@eij
¼ @wðelÞ

1

@eij
¼ 2G eij þ m

1� 2m
ekkdij

� �
ð7:12Þ
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We notice also that both, r½ij� and c½ij�, are antisymmetric tensors of 2nd order.
Both are possessing axial vectors, say

r½ij� ¼ eijkt
�
k ; c½ij� ¼ eijkc

�
k ð7:13Þ

where

c�k ¼ xk � wk ð7:14Þ

Isotropy calls for proportionality between the axial vector of the antisymmetric
stress and the antisymmetric part of the deformation, thus yielding

t�i ¼ 2g1Gc
�
i ðg1 [ 0Þ ) r½ij� ¼ 2g1Gc½ij� ð7:15Þ

and with that

wðelÞ
2 ¼ 1

2
r½ij�c½ij� ¼ g1Gc½ij�c½ij� ¼ 6g1Gc

�
kc

�
k ð7:16Þ

The couple stress tensor and the gradient of the Cosserat rotation wk are also
decomposed additively into symmetric and antisymmetric parts,

lij ¼ lðijÞ þ l½ij�; jij ¼ jðijÞ þ j½ij� ð7:17Þ

Then the isotropic linear-elastic law for the couple stress reads,

lðijÞ ¼
@wðelÞ

3

@jðijÞ
¼ G‘2 jðijÞ þ g2dijjkk

� �
; g2 [ 0

l½ij� ¼
@wðelÞ

3

@j½ij�
¼ G‘2g3j½ij�; g3 [ 0

ð7:18Þ

where ‘ is a material constant with the dimension of length, called also material or
internal length. Thus

wðelÞ
3 ¼ 1

2
G‘2 jðmnÞjðmnÞ þ g2jðmmÞjðnnÞ þ g3j½ij�j½ij�
� � ð7:19Þ

Note that the general anisotropic Cosserat elasticity can be found in a paper by
Kessel [2].

7.2 A 2D Linear, Isotropic Cosserat-Elasticity Theory

Here we summarize some results from the paper of Schäfer [3], that pertain to a
proposition for a simple two-dimensional, linear elasticity theory for isotropic
materials of the Cosserat type. This is a theory of plane stress states.
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First we assume that the symmetric part of the stress tensor is related to the
symmetric part of the deformation tensor (i.e. to the symmetric part of the dis-
placement gradient, that is identified with the infinitesimal strain tensor), through
the usual equations of plane-stress, isotropic Hooke elasticity,

e11 ¼ 1
E

r11 � mr22ð Þ

e22 ¼ 1
E

r22 � mr11ð Þ

e12 ¼ 1
2G

rð12Þ

ð7:20Þ

where

eij ¼ 1
2

ui;j þ uj;i
� � ð7:21Þ

The antisymmetric parts of the relative deformation and of the stress are also
linked by a linear relation,

c½12� ¼
1

2Gc
r½12�; Gc ¼ g1G[ 0 ð7:22Þ

where according to Eqs. (3.81) and (4.13)

c½12� ¼
1
2

c12 � c21ð Þ ¼ x� w

r½12� ¼ 1
2

r12 � r21ð Þ
ð7:23Þ

Due to the isotropy requirement we assume that the couple stresses are linked to
the curvatures by means of only one additional material constant,

l13 ¼ Dj13; l23 ¼ Dj23; D[ 0 ð7:24Þ

where
j13 ¼ @1w3 ¼ @1w

j23 ¼ @2w3 ¼ @2w
ð7:25Þ

7.3 Examples of Elementary Cosserat Elasticity
B.V. Problems

7.3.1 Pure Bending of a Cosserat-Elastic Beam

We consider a beam with rectangular cross section, as shown in Fig. 7.1. The only
stresses that are considered are the axial stress rxx and the couple stress lxy.
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Motivated by the classical beam theory we apply a semi-inverse approach and
assume that [3],

rxx ¼ cz; lxy ¼ ~c ð7:26Þ

where c and ~c are positive constants to be determined.
In the considered case the only significant equilibrium equations are,

@rxx
@x

¼ 0;
@lxy
@x

¼ 0 ð7:27Þ

Thus the stress fields, Eqs. (7.26), are equilibrium fields.
The elasticity equations and the ansatz (7.26) yield,

exx ¼ 1
E
rxx ¼ c

E
z ð7:28Þ

jxy ¼ 1
D
lxy ¼

~c
D

ð7:29Þ

The only surviving compatibility condition in the considered case is,

I21
ð2Þ

¼ @exx
@z

� jxy ¼ 0 ð7:30Þ

which in turn yields a restriction for the introduced constants,

c
E
� ~c
D
¼ 0 ) ~c ¼ D

E
c ð7:31Þ

Note that in the paper by Schäfer [3] we find the derivation of stress functions
that satisfy equilibrium and compatibility conditions.

Fig. 7.1 Pure bending of a Cosserat beam: stresses on fiber
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We normalize the material constant D by the Young’s modulus, by setting.

D ¼ 1
12

E‘2 ð7:32Þ

where ‘ is a micro-mechanical length that is in most cases considered to be small, if
compared with the typical geometric dimension of a structure. As we will see
below, the factor 1=12 is put for convenience in the computation.

With this remark from Eqs. (7.29) and (7.32) we get

lxy ¼
1
12

E‘2jxy ð7:33Þ

and

jxy ¼ c
E

ð7:34Þ

As in classical beam bending theory, from Fig. 7.2 we read

@xuxdx
z

¼ dx
R

) exx
z
¼ 1

R
)

c
E
¼ 1

R

ð7:35Þ

where R is the radius of curvature of the beam.

Fig. 7.2 Pure bending: exploitation of the Euler-Bernoulli hypothesis
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On other hand, from Eqs. (7.35) and (7.34) we get

@wy

@x
¼ 1

R
) dx ¼ Rdwy ð7:36Þ

The total bending moment that is taken by the rectangular cross-section of the
beam is computed as

M ¼
Zh=2

�h=2

rxxzbdzþ
Zh=2

�h=2

lxybdz ¼ cb
Zh=2

�h=2

z2dzþ~cb
Zh=2

�h=2

dz

¼ c
bh3

12
þ~cbh ¼ c

bh3

12
þ bh

12
‘2

� �
¼ cI 1þ ‘

h

� �2
 ! ð7:37Þ

where I is the surface moment of inertia of the rectangular cross-section of the
beam,

I ¼ bh3

12
ð7:38Þ

Then from Eq. (7.37) we get

M ¼ EI 0

R
ð7:39Þ

where

I 0 ¼ I 1þ ‘

h

� �2
 !

ð7:40Þ

This is a typical result of Cosserat elasticity theory, meaning that a structure
made of Cosserat elastic material is stiffer then the corresponding classical elastic
structure. The smaller the structure is, the larger is the effect of the material length to
the bending stiffness.

7.3.2 Annular Shear of a Cylindrical Hole
in Cosserat-Elastic Solid

7.3.2.1 Background

The problem of annular shear of a cylindrical hole in Cosserat-elastic solids has
been analyzed first by Besdo [6]. Bogdanova-Bontcheva and Lippmann [7],
Unterreiner and Vardoulakis [8] analyzed the same problem within the frame of
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Cosserat elastoplasticity. Controlled interface shear tests on granular materials were
performed in the annular shear apparatus ACSA of CERMES/ENPC [4]; Fig. 7.3.
When a granular material is sheared against a rough boundary, zones of localized
deformation are observed at the interface; Fig. 7.4. The boundary localization
phenomenon in the annular shear apparatus was simulated numerically by Zervos
et al. [5] by using the Contact Dynamics method (Fig. 7.5). More recently Mohan
et al. [9] have tackled this problem semi-analytically/numerically by utilizing the
elasto-plastic model of Mühlhaus and Vardoulakis [10]. We quote from this paper
[9]: “…Experiments on viscometric flows of dense, slowly deforming granular
materials indicate that shear is confined to a narrow region, usually a few grain
diameters thick, while the remaining material is largely undeformed.”. In this
section we address the problem analytically by using Cosserat elasticity in order to
demonstrate that even the simplest Cosserat model will allow the formation of such
“boundary layers”.

Fig. 7.3 Plane-strain
Couette-type annular shear
apparatus for sand [4]

Fig. 7.4 Interface
localization in granular
material realized in the
annular shear apparatus [4]
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7.3.2.2 Problem Statement

We consider a cylindrical hole of radius R under the action of internal shear as
shown in Fig. 7.6. Axial symmetry yields the following equilibrium equations,

drrh
dr

þ 1
r

rrh þ rhrð Þ ¼ 0 ð7:41Þ

dlrz
dr

þ 1
r
lrz þ rrh � rhr ¼ 0 ð7:42Þ

We note that for Boltzmann continua the considered problem is isostatic; i.e. for
the determination of the stress field one does not need to specify the constitutive
equation. Indeed in that case the only valid equilibrium equation is,

drrh
dr

þ 2
r
rrh ¼ 0 ð7:43Þ

Fig. 7.5 Contact dynamics simulation of interfacial localization [5]
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The boundary conditions for the classical problem are,

r ¼ R : rrh ¼ s ð7:44Þ

r ! 1 : rrhj j\1 ð7:45Þ

These b.c. admit the solution

rrh ¼ s
r
R

� ��2
ð7:46Þ

As mentioned, the problem of a cylindrical cavity under annular shear is isostatic
(Figs. 7.7 and 7.8). In this case principal stresses exist and their trajectories are
logarithmic spirals,

ðr1Þ : r ¼ R exp h cot
p
4

� �� �
; x ¼ r cos hþ h0ð Þ; y ¼ r sin hþ h0ð Þ

ðr2Þ : r ¼ R exp �h cot
3p
4

� �� �
; x ¼ r cos �hþ h0ð Þ; y ¼ r sin �hþ h0ð Þ

ð7:47Þ

In the case, however, of a Cosserat continuum, none of the above holds. The
problem is not isostatic, the solution depends on the constitutive assumptions made
for the stresses and the couple stresses and a boundary layer is forming close to the
cavity wall, where Cosserat effects are dominant. Indeed in case of a Cosserat
continuum, we get the following expressions for the deformation measures,

Fig. 7.6 Cylindrical hole in plane strain annular shear
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sym½c� ¼
err erh erz
ehr ehh ehz
ezr ezh ezz

2
4

3
5 ¼

0 1
2

@uh
@r � uh

r

� �
0

1
2

@uh
@r � uh

r

� �
0 0

0 0 0

2
4

3
5 ð7:48Þ

asym c½ � ¼
0 1

2
@uh
@r þ uh

r

� �� wz 0
� 1

2
@uh
@r þ uh

r

� �þwz 0 0
0 0 0

2
4

3
5 ð7:49Þ

Fig. 7.8 Principal stress trajectories in case of Boltzmann continuum, indicating the isostaticity of
the considered problem

Fig. 7.7 Stress state at the cavity lips in case of a Boltzmann continuum
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j½ � ¼
0 0 @wz

@r
0 0 0
0 0 0

2
4

3
5 ð7:50Þ

These expressions are combined here with the constitutive equations of linear
isotropic Cosserat elasticity and provide the following set of generalized
stress-strain relationships,

rðrhÞ ¼ 2Gerh ¼ G
duh
dr

� uh
r

� �
ð7:51Þ

r½rh� ¼ 2g1Gc½rh� ¼ g1G
duh
dr

þ uh
r

� �
� 2wz

� �
ð7:52Þ

and couple-stress-curvature relationships

lðrzÞ ¼ G‘2jðrzÞ ¼
1
2
G‘2

dwz

dr

l½rz� ¼ G‘2g3j½rz� ¼
1
2
G‘2g3

dwz

dr

ð7:53Þ

Thus

rrh ¼ rðrhÞ þ r½rh� ¼ G 1þ g1ð Þ duh
dr

� 1� g1ð Þ uh
r
� 2g1wz

� �
ð7:54Þ

and

lrz ¼ lðrzÞ þ l½rz� ¼
1
2
G‘2 1þ g3ð Þ dwz

dr
ð7:55Þ

Introducing the above set of constitutive equations into the equilibrium
Eqs. (7.41) and (7.42) we get a set of two coupled differential equations for the
particle displacement in tangential direction uh and for the particle rotation, wz,

d2uh
dr2

þ 1
r
duh
dr

� uh
r2

¼ 2a
dwz

dr
ð7:56Þ

and

‘2
d2wz

dr2
þ ‘2

1
r
dwz

dr
� 2bwz ¼ �b

duh
dr

þ uh
r

� �
ð7:57Þ
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where

a ¼ g1
1þ g1

; b ¼ 4
g1

1þ g3
ð7:58Þ

For g1 ¼ 0 ða ¼ b ¼ 0Þ the stress tensor is symmetric and Eqs. (7.56) and (7.57)
become decoupled,

d2uh
dr2

þ 1
r
duh
dr

� uh
r2

¼ 0 ð7:59Þ

d2wz

dr2
þ 1

r
dwz

dr
¼ 0 ð7:60Þ

The solution of Eqs. (7.59) and (7.60) is,

uh ¼ C3rþC4
1
r

ð7:61Þ

wz ¼ C1 þC2 ln r ð7:62Þ

The boundedness condition at infinity for the particle rotation angle wz and for
the circumferential displacement uh is fulfilled, if C2 ¼ 0 and C3 ¼ 0. The solution
for C1 6¼ 0 is physically meaningless, thus we accept the solution

uh ¼ C4

r
; wz ¼ 0 ð7:63Þ

The integration constant C4 is determined from the boundary condition for the
shear stress,

r ¼ R : rrh ¼ s ð7:64Þ

Thus

uh ¼ ��u
R
r
; �u ¼ s

2G
R ð7:65Þ

In the uncoupled case (g1 ¼ 0), the valid solution for the displacement,
Eq. (7.65), together with the constitutive equation for the symmetric part of the
stress, Eq. (7.51), yield the classical solution, Eq. (7.46).

In the general case (g1 [ 0), Eqs. (7.57) and (7.56) yield

‘2
d2wz

dr2
þ 1

r
dwz

dr

� �
� g2wz ¼ 0 ð7:66Þ
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where ‘[ 0 and,

g2 ¼ 8
g1

1þ g3

1
1þ g1

[ 0 ðg1 [ 0Þ ð7:67Þ

Let
q ¼ g

r
‘

ð7:68Þ

the general solution of Eq. (7.66) is given in terms of 0th-order modified Bessel
functions

wz ¼ C1I0 qð ÞþC2K0 qð Þ ð7:69Þ

and from that

dwz

dz
¼ C1

g
‘
I1 qð Þ � C2

g
‘
K1 qð Þ ð7:70Þ

The extra boundary conditions are given in terms of the particle rotation and/or
of the couple stress. In order to introduce these extra boundary conditions within the
Cosserat continuum description, we resort to the concept of ortho-fiber [11]. An
ortho-fiber is a rigid bar of length ‘0 aligned normally to the surface of the con-
sidered Cosserat continuum body and it is pointing outwards. On the end of this
fiber we assume either displacements or tractions are applied thus giving to the
surface actions the meaning of v. Mises motors (Fig. 7.9). Accordingly we assume
here that at the cavity wall the shear stress and the couple stress are prescribed and
at infinity the particle displacement and rotation must vanish,

r ¼ R :
rrh
lrz

� �
¼ s

�s‘0

� �
ð7:71Þ

r ¼ R� ! 1 :
wz
uh

� �
¼ 0

0

� �
ð7:72Þ

Fig. 7.9 Shear traction applied on an ortho-fiber at distance ‘0, resulting into a surface traction and
a surface couple when transported to the surface
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The sign of the surface couple in Eq. (7.71) results as follows: as shown in
Fig. 7.9 the shear traction of magnitude s is assumed to be applied on an ortho-fiber
of length ‘0, thus yielding an equivalent set of surface actions, a surface traction and
a surface couple. If the surface traction is positive then the surface couple must be
negative.

For large argument q we have the following asymptotic expression for the
solution, Eq. (7.69)

wz ¼ C1
exp qð Þffiffiffiffiffiffiffiffi
2pq

p þC2

ffiffiffiffiffiffi
p
2q

r
exp �qð Þ ð7:73Þ

From Eqs. (7.72), (7.71) and (7.73) we get

eq
�
c1 þ e�q�c2 ¼ 0 ðq� � 1Þ

I1 qRð Þc1 þK1 qRð Þc2 ¼ �1
ð7:74Þ

where

ci ¼ � Ci
1

1þ g3ð Þg
2s
G

‘0
‘

ði ¼ 1; 2Þ; qR ¼ g
R
‘

ð7:75Þ

The solution of the system of linear Eqs. (7.74) takes the following form,

c1 ¼ e�2q�

K1ðqRÞ � I1ðqRÞe�2q� ! 0 ðq� ! 1Þ

c2 ¼ 1
K1ðqRÞ � I1ðqRÞe�2q� !

1
K1ðqRÞ

ðq� ! 1Þ
ð7:76Þ

This means that the valid solution here is the logarithmic one ðC1 ¼ 0Þ

wz ¼ C2K0 qð Þ ð7:77Þ

and with that

lrz ¼ �C2
g
‘
G‘2 1þ g3ð ÞK1 qð Þ ð7:78Þ

The b.c. at the cavity wall, Eq. (7.71) for the couple-stress yields,

C2 ¼ 1
g 1þ g3ð Þ

4u
R

� �
1

K1 qRð Þ
‘0

‘

� �
ð7:79Þ

and with that (Fig. 7.10)
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wz ¼
1

g 1þ g3ð Þ
4u
R

� �
‘0

‘

� �
K0 qð Þ
K1 qRð Þ [ 0 ð7:80Þ

For small values of the internal length 0\g‘ � R we have the following
asymptotic solution for the particle rotation.

wz � 4
u
R

� � ‘0

‘

� � ffiffiffiffiffi
qR
q

r
e� q�qRð Þ ð7:81Þ

This means that the particle rotations are confined in a boundary layer and they
decay faster than exponentially with the radial distance from the cavity wall. On the
other hand, we observe that the particle rotation depends linearly on the ratio of the
“roughness” length scale ‘0 to the material length scale ‘, and on the ratio of
first-order imposed hoop displacement to the radius of the cavity.

Equation (7.56) becomes,

d2uh
dr2

þ 1
r
duh
dr

� uh
r2

� C
d
dr

K0 qð Þ ¼ 0; C ¼ 2aC2 ð7:82Þ

or

uh ¼ C3rþC4
1
r
� 2aC2

‘

g
K1 qð Þ ð7:83Þ

As already explained above, the only meaningful solution is the one for C3 ¼ 0,
thus

uh ¼ C4
1
r
� 2

C
1þ g1

‘

g
K1 qð Þ
K1 qRð Þ ð7:84Þ

Fig. 7.10 Boundary particle
displacement and rotation
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where

C ¼ C2g1 ¼
4g1

g 1þ g3ð Þ
1

K1 qRð Þ
�u
R
‘0

‘
ð7:85Þ

The b.c. at the cavity wall, Eq. (7.71), for the shear stress yields,

C4 ¼ �uþCR2 2
1

1þ g1

1
qR

þ K0 qRð Þ
K1 qRð Þ � K0 qRð Þ

� �
ð7:86Þ

and with that

uh � uð0Þh � ~uh ð7:87Þ

In this expression with uð0Þh we denote the classical solution Eq. (7.65)

uð0Þh ¼ �u
R
r
; u ¼ s

2G
R ð7:88Þ

and ~uh is the perturbation that stems from the Cosserat terms,

~uh � C‘
g

q2R
q

þ 2
1þ g1

qR
q

�
ffiffiffiffiffi
qR
q

r
e� q�qRð Þ

� �� �
C‘
g

¼ g1
g2 1þ g3ð Þ

1
K1 qRð Þ

2s
G
‘0

ð7:89Þ

The perturbation for the displacement contains both hyperbolically and expo-
nentially decaying terms, it is proportional to the classical solution, Eq. (7.65), and
it scales linearly with the interfacial length scale, ‘0,

uh ¼ uð0Þh � ~uh � ��u
R
r
þ ~C

‘0

R

� �
f ðqR; qÞ

� �
ð7:90Þ

7.3.3 Sphere Under Uniform Radial Torsion

We consider a spherical body of radius R made of linear-elastic, isotropic
Cosserat-type material, that is subjected on its surface to uniform radial-torsional
loading of intensity lrrðRÞ ¼ m (Fig. 7.11). We want to analyze its state of stress
and the deformation that this object suffers. In the considered setting the defor-
mations, distortions and torsions are given in polar spherical coordinates as follows:
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asym c½ � ¼
0 0 0
0 0 wr
0 �wr 0

2
4

3
5 ð7:91Þ

½j� ¼
dwr
dr 0 0
0 wr

r 0
0 0 wr

r

2
64

3
75 ð7:92Þ

½l� ¼
lrr 0 0
0 lhh 0
0 0 l//

2
4

3
5 ð7:93Þ

The only significant stress and couple-stress components are (Fig. 7.12):

rh/ ¼ g1Gwr; r/h ¼ �g1Gwr ð7:94Þ

Fig. 7.11 Sphere under
uniform surface torsion

Fig. 7.12 Stress state in the
element of a sphere under
uniform torsion
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lrr ¼ G‘2 1þ g2ð Þ dwr

dr
þ 2g2

wr

r

� �

lhh ¼ l// ¼ G‘2 g2
dwr

dr
þ 1þ 2g2ð Þwr

r

� � ð7:95Þ

The governing equilibrium equation is:

dlrr
dr

þ 1
r

2lrr � l// � lhh
� �þ r/h � rh/ ¼ 0 ð7:96Þ

The solution that is acceptable (as being regular at the origin) is (Fig. 7.13):

wr ¼ CWðqÞ; W ¼ q cosh q� sinh q
q2

; q ¼ r
‘

ð7:97Þ

In this case the torsion is also confined in a boundary layer. For example the
solution for the isotropic part of the torsion reads,

lT ¼ 1
3

lrr þ lhh þ l//
� � ¼ 1

3
G‘2 1þ 3g2ð Þ dwr

dr
þ 2

wr

r

� �
¼ CMðqÞ

M ¼ sinh q
q

¼ þOðq3Þ
ð7:98Þ

Remark Following the seminal paper by Günther [12] a number of papers
appeared, such as the ones by Grioli [13], Toupin [14], Mindlin and Tiersten [15],
that dealt with the so-called media with couple-stresses. In this theory we assume

Fig. 7.13 Torsional boundary layer solution
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that the relative particle spin is zero, meaning that the particle rotation coincides
with the antisymmetric part of the displacement gradient. Such a theory is called
also the restricted Cosserat continuum or pseudo Cosserat continuum [1] theory. In
the original work of the Cosserat brothers, this special case is related to what they
call the triédre cache. This theory, although widely used, has led to severe math-
ematical difficulties, since the isotropic part of the couple-stress remains indeter-
minate [16, 17] and cannot be determined by the boundary conditions. It is usually
set arbitrarily equal to zero. This observation has lead to some controversies that we
believe that have been resolved recently by Froiio et al. [11], who have shown, by
using the concept of ortho-fiber, that such a restricted Cosserat continuum is
incapable to absorb boundary conditions that refer to the torsional dof. In other
words, the above example of the sphere under uniform torsion illustrates clearly the
ability of the true Cosserat continuum theory to provide a unique solution for the
torsion and the mean torsion!

References

1. Schaefer, H. (1967). Das Cosserat-Kontinuum. Zeitschrift für Angewandte Mathematik und
Mechanik, 47, 485–498.

2. Kessel, S. (1964). Lineare Elastizitätstheorie des anisotropen Cosserat-Kontinuums.
Abhandlungen der Braunschweigische Wissenschaftliche Gesellschaft, 16, 1–22.

3. Schaefer, H. (1962). Versuch einer Elastizitätstheorie des zweidimensionalen ebenen
Cosserat-Kontinuums. In Miszellaneen der angewandten Mechanik (pp. 277–292). Berlin:
Akademie-Verlag.

4. Corfdir, A., Lerat, P., & Vardoulakis, I. (2004). A cylinder shear apparatus. ASTM
Geotechnical Testing Journal, 27, 1–9.

5. Zervos, A., et al. (2000). Numerical investigation of granular kinematics. Mechanics of
Cohesive-Frictional Materials, 5, 305–324.

6. Besdo, D. (1974). Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums. Acta
Mechanica, 20, 105–131.

7. Bogdanova-Bontcheva, N., & Lippmann, H. (1975). Rotationssymmetrisches ebenes Fließen
eines granularen Modellmaterials. Acta Mechanica, 21, 93–113.

8. Unterreiner, F., & Vardoulakis, I. (1994). Interfacial localisation in granular media. In
Proceedings of the eighth international conference on computer methods and advances in
geomechanics. Morgantown, West Virginia, USA: Balkema.

9. Mohan, S. L., Rao, K., & Nott, P. R. (2002). A frictional Cosserat model for the slow shearing
of granular materials. Journal of Fluid Mechanics, 457, 377–408.

10. Mühlhaus, H.-B., & Vardoulakis, I. (1987). The thickness of shear bands in granular
materials. Géotechnique, 37, 271–283.

11. Froiio, F., Zervos, A., & Vardoulakis, I. (2010). On natural boundary conditions in linear
2nd-grade elasticity. In EUROMECH 510. Mechanics of generalized continua: A hundred
years after the Cosserats. Springer.

12. Günther, W. (1958). Zur Statik und Kinematik des Cosseratschen Kontinuums.
Abhandlungen der Braunschweigische Wissenschaftliche Gesellschaft, 10, 195–213.

13. Grioli, G. (1960). Elasticità asimmetrica. Anali di Matematica pura et applicata, 4, 389–417.

118 7 Cosserat-Elastic Bodies



14. Toupin, R. (1962). Elastic materials with couple-stresses. Archive for Rational Mechanics and
Analysis, 11, 385–414.

15. Mindlin, R. D., & Tiersten, H. F. (1962). Effects of couple-stresses in linear elasticity. Archive
for Rational Mechanics and Analysis, 11, 415–448.

16. Mindlin, R. D., & Eshel, N. N. (1968). On first strain-gradient theory in linear elasticity.
International Journal of Solids and Structures, 4, 109–124.

17. Paria, G. (1970). Constitutive equations in Cosserat elasticity. Journal of Engineering
Mathematics, 4, 203–208.

References 119



Chapter 8
Cosserat Fluids

Abstract This chapter moves from linear elastic solids to Cosserat fluids, show-
casing the versatility of the approach. It presents the Navier-Stokes equations,
generalized for an incompressible, linear viscous Cosserat fluid. Following this,
examples are given, including shear flow and shallow flow slide of a granular fluid.

In the literature there is a number of publications concerning the Cosserat contin-
uum generalization of the constitutive equations for simple fluids [1–3]. Here we
consider the incompressible, linear Cosserat fluid.

8.1 Constitutive Equations

Let the Cartesian coordinates of the particle velocity and spin be viðxk; tÞ and
wiðxk; tÞ and let,

Dij ¼ 1
2

@ivj þ @jvi
� � ð8:1Þ

Wij ¼ 1
2

@jvi � @ivj
� � ð8:2Þ

denote the classical rate-of-deformation and vorticity tensors, respectively. Note
that the axial vector that is related to the spin tensor is computed as follows,

Wij ¼ �eijk _xk , _xi ¼ 1
2
eikl@kvl ð8:3Þ

The rates of relative deformation- and distortion tensors are,

Cik ¼ @ivk � eiklwl ð8:4Þ

Kij ¼ @iwj ð8:5Þ
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We decompose the rate of deformation-and the rate of distortion tensors into
spherical and deviatoric part,

Dij ¼ 1
3
Dkkdij þD0

ij ; Kij ¼ 1
3
Kkkdij þK0

ij ð8:6Þ

The constitutive equations for the stress and couple-stress for a linear, incom-
pressible Cosserat fluid are,

rij ¼ �pdij þ 2lD0
ij þ 2lceijk _xk � wkð Þ ð8:7Þ

lij ¼ c0Kkkdij þ c1K0
ðijÞ þ c2K0

½ji� ð8:8Þ

Due to the incompressibility constraint,

Dkk ¼ 0 ð8:9Þ

the fluid pressure p is kinematically undetermined; it is determined by the boundary
conditions of any given problem. For the same reason the rate-of-deformation
tensor collapses to its deviator

Dij ¼ D0
ij ð8:10Þ

The constitutive Eq. (8.7) can be written also in the following form,

rij ¼ �pdij þ 2lDij � 2lc Wij þ eijkwk
� �

¼ �pdij þ 2lCðijÞ þ 2lcC½ij�
¼ �pdij þ lþ lcð ÞCij þ l� lcð ÞCji

ð8:11Þ

If the particle spins as its neighbourhood, then Eqs. (8.11) collapse to those of a
classical (Boltzmann) incompressible Newtonian fluid. Thus, in Eqs. (8.7) or
(8.11), the constitutive parameter l[ 0 is identified as the classical (macroscopic)
fluid viscosity,

rðijÞ ¼ 2lD0
ij ð8:12Þ

The viscosity parameter lc is an extra material parameter that accounts for the
relative spin of the Cosserat fluid particle with respect to background vorticity that
is due to the particle velocity,

r½ij� ¼ 2lceijk _xk � wkð Þ ð8:13Þ
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Since there is an axial vector assigned to the antisymmetric part of the stress
tensor, Eq. (4.16), the extra constitutive Eq. (8.13) is a linear vector relation,

t�k ¼ 2lc _xk � wkð Þ ð8:14Þ

We can normalize this extra viscosity by the macroscopic viscosity and write,

lc ¼ al ða[ 0Þ ð8:15Þ

The constitutive equations for the couple-stress tensor can be also written as
follows,

lij ¼ c0 � 1
3
c1

� �
Kkkdij þ 1

2
c1 þ c2ð ÞKij þ þ 1

2
c1 � c2ð ÞKij

¼ cT@kwkdij þ cB@iwj þ c0B@jwi

ð8:16Þ

They introduce three additional gyro-viscosity coefficients, which are taken
proportional to the square of a material length parameter ‘,

cT ¼ cl‘2 ; cB ¼ bl‘2 ; cB0 ¼ b0l‘2 ðc; b; b0 [ 0Þ ð8:17Þ

Note that the above constitutive equations are proposed for the description of
granular flow problems, where the material length is set equal to the (mean) grain
diameter [4].

In summary, if we choose as primary kinematic variables the rate of relative
deformation and the rate of distortion, then the constitutive equations for an
incompressible, linear Cosserat fluid are the following,

rij ¼ �pdij þ lþ lcð ÞCij þ l� lcð ÞCji

lij ¼ cTKkkdij þ cBKij þ c0BKji

Ckk ¼ 0

ð8:18Þ

8.2 Cosserat Generalization of the N.-S. Equations

We consider the dynamic Eq. (5.26) for the stresses,

q
Dvk
Dt

¼ @irik þ qgk ð8:19Þ

where q is the fluid density and gk is the gravity acceleration. We introduce into the
dynamic Eq. (8.19) the constitutive Eq. (8.7) and utilize Eqs. (8.1)–(8.10), thus
yielding,
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q
Dvk
Dt

¼ �@kpþ @i l @ivk þ @kvið Þð Þþ @i lc @ivk � @kvið Þ � 2eiklwlð Þð Þþ qgk ð8:20Þ

For constant viscosities, Eq. (8.20) becomes,

q
Dvk
Dt

¼ �@kpþ l @i@ivk þ @i@kvið Þþ lc @i@ivk � @i@kvið Þ � 2eikl@iwlð Þþ qgk ð8:21Þ

From the incompressibility condition, Eq. (8.9), we get

Dkk ¼ @kvk ¼ 0 ) @i@kvi ¼ @k@ivi ¼ 0 ð8:22Þ

Thus from Eqs. (8.21) and (8.22) we obtain,

q
Dvi
Dt

þ @ip� qgi ¼ lþ lcð Þr2vi þ 2lceikl@kwl ð8:23Þ

In Chapman-Cowling bold letter notation Eq. (8.23) reads as follows,

q
Dm
Dt

þ gradp� qg ¼ lþ lcð Þr2vþ 2lcrotw ð8:24Þ

Equations (8.23) or (8.24) can be viewed as the Cosserat continuum general-
ization of the Navier-Stokes equations. Indeed for lc ! 0 they reduce to the N.-S.
equations for an incompressible Newtonian fluid

q
Dvi
Dt

þ @ip� qgi ¼ lr2vi ð8:25Þ

We recall that the N.-S. equations are already a singular perturbation of the Euler
equations for an ideal, incompressible fluid, that can be derived from Eq. (8.25) by
setting m ¼ 0,

q
Dvi
Dt

þ @ip� qgi ¼ 0 ð8:26Þ

If we apply the rot-operator on both sides of Eq. (8.23) we get,

q
D _xi

Dt
¼ lþ lcð Þr2 _xi þ lc r2wi � @i@kwk

� � ð8:27Þ

In bold notation Eq. (8.27) takes the form,

q
D _x

Dt
¼ lþ lcð Þr2 _xþ lc r2w� grad divw

� � ð8:28Þ
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This is a generalized vorticity diffusion equation with a source/sink term that is
due to the particle spin. Note that, as already stated in Sect. 3.2.1, the last term on
the r.h.s. of Eq. (8.27), can be interpreted as the gradient of the mean torsion. It is
obvious that this term is in general non-zero. For lc ¼ 0 Eq. (8.27) or (8.28) reduce
to the vorticity diffusion equation of classical Fluid Dynamics,

q
D _xi

Dt
¼ lr2 _xi ð8:29Þ

The second equation is derived from the dynamic Eqs. (5.70) for the
couple-stresses in the absence of body couples, for constant viscosities and for
isotropic micro-inertia tensor,

qJ
Dwi

Dt
¼ @klki þ eiklrkl ð8:30Þ

Introducing in this equation the constitutive equations for the couple-stresses,
Eq. (8.16), and for the antisymmetric part of the stress, Eq. (8.13), we obtain the
following,

qJ
Dwk

Dt
¼ cBr2wk þ cT þ cB0ð Þ@k@lwl þ 4lc _xk � wkð Þ ð8:31Þ

or symbolically,

qJ
Dw
Dt

¼ cBr2wþ cT þ c0B
� �

grad divwþ 2lcrot v� 4lcw ð8:32Þ

Equation (8.31) or (8.32) is the diffusion equation for the particle vorticity with a
source/sink term that expresses the weak coupling to the generalized N.-S.
Equations (8.27) or (8.28). From Eqs. (8.27) and (8.31) we observe that for van-
ishing macroscopic viscosity ðl ! 0Þ, not only the classical spin but also the
Cosserat spin are sustained for “long” time intervals.

8.3 Shear Flow of a Cosserat Fluid

8.3.1 Kinematics and Statics of Forming Boundary Layers

As shown in Fig. 8.1, we consider a “long” layer of Cosserat fluid, confined
between two “rough“plates, at distance H apart. Through appropriate boundary
conditions, to be specified below, we assume that a steady, laminar shear flow is
established. The only two significant kinematic variables of this problem are the
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particle velocity in the long, x1� direction and the particle spin in the x3� direction,
perpendicular to the plane of shear. Both fields are assumed to be functions only of
x2 ¼ y,

v1 ¼ vðyÞ ð8:33Þ

w3 ¼ wðyÞ ð8:34Þ

From Eqs. (8.1), (8.2), (8.33) and (8.34) we get the following expression for the
rate-of-deformation tensor,

D½ � ¼ D0½ � ¼
0 1

2 v
0 0

1
2 v

0 0 0
0 0 0

2
4

3
5 ð8:35Þ

where

:ð Þ0� d
dy

ð8:36Þ

The flow is isochoric and the only significant component of the classical vor-
ticity tensor is _x21 ¼ � _x12 ¼ _x,

W½ � ¼
0 1

2 v
0 0

� 1
2 v

0 0 0
0 0 0

2
4

3
5 ¼

0 � _x 0
_x 0 0
0 0 0

2
4

3
5 ð8:37Þ

Fig. 8.1 A Cosserat-fluid shear layer
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Similarly, from Eqs. (8.4) and (8.5) we get the following matrix representations
of the rate of relative deformation-and distortion tensors

C½ � ¼
0 �w 0

v0 þw 0 0
0 0 0

2
4

3
5 ð8:38Þ

K½ � ¼
0 0 0
0 0 w0

0 0 0

2
4

3
5 ð8:39Þ

From Eqs. (8.18), (8.38) and (8.39) we obtain the expressions for the non-zero
stress and couple-stress components,

r11 ¼ r22 ¼ r33 ¼ �p ð8:40Þ

r12 ¼ l� lcð Þv0 � 2lcw ð8:41Þ

r21 ¼ lþ lcð Þv0 þ 2lcw ð8:42Þ

and

l23 ¼ cBw
0 ð8:43Þ

Thus the symmeric and antisymmetric parts of the stress are,

rð12Þ ¼ lv0 ð8:44Þ

r½12� ¼ �lc v0 þ 2wð Þ ð8:45Þ

Here gravity forces are either considered as being negligible or they are acting in
the x3� direction, normal to the plane of deformation, as is the case in an
Couette-Hatschek type of apparatus (cf. Fig. 7.3). For shear-flow and in the absence
of gravity forces and body couples, the equilibrium Eqs. (4.42) read,

@r21
@y

¼ 0 ) r21 ¼ s ¼ const: ð8:46Þ

� @p
@y

¼ 0 ) p ¼ const: ð8:47Þ

@l23
@y

þ r12 � r21 ¼ 0 ð8:48Þ
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The pressure p is determined from the boundary condition for the normal stress
that is applied on the upper plate,

r22ðHÞ ¼ �r ðr[ 0Þ ) p ¼ r ¼ const: ð8:49Þ

Equations (8.46) and (8.42) yield,

v0 ¼ s
lþ lc

� 2
lc

lþ lc
w ð8:50Þ

Similarly for constant gyro-viscosity from Eqs. (8.48) and (8.43) we get

cBw
00 � 2lc v0 þ 2wð Þ ¼ 0 ð8:51Þ

The governing equation is derived by elimination of v0 from Eqs. (8.50) and
(8.51), resulting to,

cBw
00 � 4

lc
lþ lc

lw ¼ 2
lc

lþ lc
s ð8:52Þ

If we scale the y� coordinate with the geometric length that characterizes the
boundary-value problem at hand; i.e. with layer thickness H,

~y ¼
ffiffiffi
2

p y
H

ð8:53Þ

Equation (8.52) becomes,

Co
d2w
d~y2

w00 � 2
a

1þ a
w ¼ a

1þ a
s
l

ð8:54Þ

The parameter a is the viscosity ratio, that was introduced already above by
Eq. (8.15). The dimensionless group,

Co ¼ cB
lH2 ð8:55Þ

is called the Cosserat number of the flow [3]. We note that with Eq. (8.17) the
Cosserat number is in fact the square of a non-dimensional material length of the
Cosserat fluid. The reference dimension of the domain H is assumed to be suffi-
ciently “large”, if compared to this micromechanical length parameter, and with that
Co is a small number.

Equation (8.54) belongs to the set that is known to describe the formation of two
boundary layers at y ¼ 0 and y ¼ H [5]. Accordingly we use here terminology that
considers the two asymptotic solutions of this equation, one, called the outer
approximation and holding away from the boundaries and another called the inner
approximation and holding close to the boundaries.
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With Co ! 0 we get from Eq. (8.54) the outer approximation,

w � wðoutÞ ¼ � 1
2
s
l

ð8:56Þ

From Eqs. (8.50) and (8.56) we recover Newton’s law,

dv
dy

� s
l

ð8:57Þ

In classical theory from Eq. (8.57) and Stoke’s non-slip boundary condition we
obtain the classical linear profile, as the corresponding outer approximation for the
particle velocity,

v � vðoutÞ ¼ s
l
y ð8:58Þ

Note that,

_xðoutÞ ¼ � 1
2
dvðoutÞ

dy
¼ � 1

2
s
l
¼ const: ð8:59Þ

is the only significant component of the background vorticity in the classical fluid.
Thus the outer approximation for the particle spin, Eq. (8.56) takes the form,

wðoutÞ ¼ _xðoutÞ ¼ � 1
2
vðoutÞ ð8:60Þ

This means that away from the boundaries of the shear layer the fluid particles
rotate as their neighbourhood.

The exact solution is obtained by the scaling of the y� coordinate with the
material dimension

y� ¼
ffiffiffi
2

p y
‘c

ð8:61Þ

where

‘2c ¼
1
2
lþ lc
lc

cB ¼ 1
2
1þ a
a

b‘2 ð8:62Þ

With this transformation Eq. (8.52) becomes,

d2w
dy�2

� wþwð0Þ ¼ 0 ð8:63Þ
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The exact, general solution of this equation is,

w ¼ wðoutÞ þC1 sinh y� þC1 cosh y� ð8:64Þ

The integration constants C1 and C2 must be determined from boundary con-
ditions that refer to the spin. We note first that Stoke’s classical non-slip condition
applies to the particle velocity, and is expressed by taking all components of the
particle velocity at a boundary equal to zero. As we saw clearly in Sect. 2.3.2, the
velocity and the spin of a rigid particle are coupled through the well known
transport law of rigid-body dynamics. Thus, one important implication of Stoke’s
non-slip condition is that, within the realm of Cosserat Continuum Fluid
Mechanics, we must equally apply the corresponding non-spin boundary condition.
Actually the non-spin boundary condition will imply the non-slip condition for the
particle that adheres to a rough boundary. This condition is called in the literature
hyper-stick or adherence condition.

In the considered boundary value problem the particle non-spin boundary con-
ditions are,

wð0Þ ¼ 0 ^ wðHÞ ¼ 0 ð8:65Þ

These boundary conditions are yielding the following exact solution (Fig. 8.2),

w ¼ � 1
2
s
l

1� f �ð Þ ; f � ¼ sinh y� þ sinh H� � y�ð Þ
sinhH� ð8:66Þ

Fig. 8.2 Particle spin distribution for a ¼ 1:; Eqs. (8.66) and (8.71)
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For relatively large values of the dimensionless layer thickness,

H� ¼
ffiffiffi
2

p H
‘c

ð8:67Þ

we get from Eq. (8.66) that close to the boundary at y ¼ 0 the exact solution is
approximated as,

f � ¼ sinh y� þ sinh H� cosh y� � sinh y� cosh H�

sinh H�

� cosh y� � sinh y� ¼ e�y� ¼ f �0

ð8:68Þ

Similarly close to the boundary y ¼ H we get,

f � ¼ sinh y� þ sinh H� cosh y� � sinh y� cosh H�

sinh H�

� sinh y�

sinh H� ¼
1
2 ey

� þ e�y�
� �

1
2 eH� þ e�H�ð Þ � e�ðH��y�Þ ¼ f �H

ð8:69Þ

From the above considerations we obtain the following asymptotic form for the
considered function

f � � f �0 þ f �H ¼ e�y� þ e�ðH��y�Þ ; 0� y� �H� ð8:70Þ

and with that,

w � wðoutÞ 1� e�y� þ e�ðH��y�Þ
� �� �

ð8:71Þ

The difference between the two asymptotic solutions, wðoutÞ � w
		 		, is less then

1% at a distance from the boundaries,

dbl � 4:6
‘Jffiffiffi
2

p � 3:2‘c ð8:72Þ

that determines in turn the conventional thickness of the boundary layers. The
material length parameter ‘c is set proportional to the grain size. In Fig. 8.3 we
plotted this result as a function of the viscosity parameter a and for two typical
values of the viscosity parameter b. Experimental observations suggest that a shear
boundary layer in granular media has about half the thickness of the “shear-band”,
which in turn is about 10 to 15 grain diameters thick [6]. This gives rise to suggest
that the parameter b should be of the same order as the parameter a.
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From Eqs. (8.50) and (8.66) we get,

v0 ¼ s
l

1þ a
1þ a

f �
� �

ð8:73Þ

Similarly from Eq. (8.73) we get that the shear rate v0 is practically constant
away from the boundaries (Fig. 8.4),

Fig. 8.3 Estimate of the boundary layer “thickness”

Fig. 8.4 Shear rate profile for a ¼ 1:; Eq. (8.73)
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v0 � v0ðoutÞ ¼ vðoutÞ

H
¼ s

l
ð8:74Þ

Close to the boundaries the shear rate assumes a value that is higher than v0 ðoutÞ

in proportion to the Cosserat viscosity ratio a; e.g. close to the boundary y ¼ 0 we
have that

v0 � v0 ðoutÞ 1þ a
1þ a

e�y�
� �

� v0 ðoutÞ
1þ 2a
1þ a

� O y�ð Þ
� �

ð8:75Þ

As is shown in Fig. 8.5, the velocity profile is linear in the core of the shear-layer
and convex inside the boundary layers (Fig. 8.5),

v � s
l

‘cffiffiffi
2

p y� þ a
1þ a

1� e�y�� �� e�H� � e� H��y�ð Þ
� �� �� �

ð8:76Þ

Finally, from Eqs. (8.43) and (8.66) we get also the corresponding expression
for the couple stresses that are acting on planes parallel to the shear-layer axis
(Fig. 8.6),

l23 ¼ bl‘2w0 ¼ 1
2
sb‘2f � 0 � � 1

2
sb‘2 e�y� � e�ðH��y�Þ

� �
ð8:77Þ

Thus couple stresses exist practically inside the two boundary layers.

Fig. 8.5 Typical, locally convex/linear velocity profile, computed for a ¼ 1:; Eq. (8.76)
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8.3.2 Dissipation

We recall that according to Eq. (6.23) the stress power in a Cosserat continuum can
be split as follows,

P ¼ rðijÞDij þ 2t�i _xi � wið Þþ likKik ð8:78Þ

In the considered example we have,

P ¼ 2rð12ÞD12 þ 2t�3 _x3 � w3ð Þþ l23K23 ð8:79Þ

where

2t�3 ¼ r12 � r21 ; _x3 ¼ _x ¼ � 1
2
v0 ð8:80Þ

Thus,

P ¼ l v0 2 þ a v0 þ 2wð Þ2 þ b ‘w0ð Þ2
� �

ð8:81Þ

From Eqs. (8.73), (8.66) and (8.77) we have,

Fig. 8.6 Dimensionless couple-stress distribution for a ¼ 1:; Eq. (8.77)
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v0 ¼ s
l

1þ a
1þ a

f �
� �

v0 þ 2w ¼ 1þ 2a
1þ a

s
l
f �

‘w0 ¼ 1
2
b
s
l
‘f � 0

ð8:82Þ

From these expressions and the exponential decay of the distribution function f �

away from the boundaries, Eq. (8.70), we obtain the following asymptotic expre-
sion for the stress power inside the shear layer (Fig. 8.7),

P � PðoutÞ 1þ 2
a

1þ a
e�y� þ e�ðH��y�Þ
� �� �

; PðoutÞ ¼ s2

l
ð8:83Þ

We assume that all stress power is dissipated in heat. From the above discussion
we conclude that the 1st term on the r.h.s. of Eq. (8.83) gives practically constant
dissipation across the shear layer, whereas the contribution of the other terms is
confined inside the two boundary layers. To see the effect of that, we derive first the
heat equation starting from first principles.

We assume that the free energy of the fluid is only a function of the absolute
temperature T, thus

De
Dt

¼ jc
DT
Dt

ð8:84Þ

Fig. 8.7 Stress power distribution that is produced and is dissipated inside the Cosserat-fluid
shear layer, for a ¼ 1:; Eq. (8.83)
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where c is the specific heat of the medium and j ¼ 4:184 Joule
cal is the mechanical

equivalent of heat, that appears in any equation that is related to the 1st Law and
expresses the conversion of mechanical work into heat.

In addition, we adopt Fourier’s law for isotropic heat conduction,

qi ¼ �jkF@iT ð8:85Þ

where kF is the Fourier coefficient for heat conduction of the medium.
From the constitutive Eqs. (8.84) and (8.85) and the energy balance Eq. (6.24)

we get,

qjc
DT
Dt

¼ P� j@i kF@iTð Þ ð8:86Þ

For constant Fourier coefficient, the heat conduction equation for steady state
conditions is,

d2T
dy2

þ 1
jkF

P ¼ 0 ð8:87Þ

We scale again the y� coordinate with the layer thickness

�y ¼ y
H

ð8:88Þ

and the temperature with the temperature at the boundaries, say T0,

T� ¼ T
T0

) T�ð0Þ ¼ T�ð1Þ ¼ 1 ð8:89Þ

In terms of these dimensionless dependent variables the governing heat equation
for steady heat production, Eq. (8.87), becomes

d2T�

d�y2
þGr 1þ 2

a
1þ a

e�y� þ e�ðH��y�Þ
� �� �

¼ 0 ð8:90Þ

were the dimensionless group,

Gr ¼ s2H2

ljkFT0
ð8:91Þ

is called the Gruntfest number. The analytic solution of Eq. (8.90) is,

T� ¼ �T� þ ~T� ð8:92Þ
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where �T� is the classical parabolic solution holding also for classical (Boltzmann)
Newtonian fluids,

�T� ¼ 1þ 1
2
Gr�y 1� �yð Þ ð8:93Þ

and ~T� is the superimposed boundary layer solution that is due to the Cosserat
effects,

~T� ¼ 1
2
Gr� 1� e�y�� �þ e�H� � e� H��y�ð Þ

� �� �
ð8:94Þ

The dimensionless group Gr� is a Gruntfest number that is refered to material
length scale,

Gr� ¼ Gr
2a

1þ a
‘

H

� �2

¼ 2a
1þ a

s2‘2

ljkFT0
ð8:95Þ

This number governs also the extra heat that is produced at the boundary layers
and will result into a net increase of the core temperature by,

DT � 1
2
Gr�T0 ¼ 2a

1þ a
s2‘2

ljkF
ð8:96Þ

Note that if we set, ‘ � Dg, then DT is in principle a measurable quantity. Note
that according to Eq. (8.96) DT scales with the square of the particle size and the
applied shear stress.

8.4 An Energy Consistent Granular Flow Model

8.4.1 Rate-Dependent Viscosity Functions

We consider the constitutive equations for an incompressible Cosserat fluid, dis-
cussed in Sect. 8.1, Eqs. (8.18). Based on this model we compute the stress power
that is assumed to be totally dissipated in heat,

Dloc ¼ P ¼ lC2 þ lcC
2
c þ cTK2

T þ cBK2
B þ c0BK

2
B0 ð8:97Þ

where we define the following invariants,
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C2 ¼ CkiCki þCkiCik ¼ Cki2CðkiÞ ¼ 2CðkiÞCðkiÞ � 0

C2
c ¼ CkiCki � CkiCik ¼ Cki2C½ki� ¼ 2C½ki�C½ki� � 0

K2
T ¼ K2

mm � 0

K2
B ¼ KkiKki � 0

K2
B0 ¼ KkiKik � 0

ð8:98Þ

The last inequality follows directly from the polar decomposition of the dis-
tortion tensor: Assuming that Kij is regular, Kij

		 		 6¼ 0, then its left polar decom-
position reads

K½ � ¼ S½ � Q½ � ; S½ � ¼ S½ �T ; Qj j ¼ 	1 ð8:99Þ

Thus

K½ � K½ �T¼ S½ � Q½ � Q½ �T S½ �T¼ S½ �2 ) tr K½ � K½ �T � 0 ð8:100Þ

These remarks prompt to make the following constitutive assumptions con-
cerning the viscosity functions,

l ¼ f1 Cð Þ ; lc ¼ f2 Ccð Þ
cT ¼ f3 KTð Þ ; cB ¼ f4 KBð Þ ; c0B ¼ f5 KB0ð Þ ð8:101Þ

such that,

l ¼ @Dloc

@C
; etc:

For the considered case of shear flow, we get from Eqs. (8.38) and (8.39) that

Cs ¼ v0j j ; Cc ¼ v0 þ 2wj j ð8:102Þ

and

KT ¼ KB0 ¼ 0 ; KB ¼ w0j j ð8:103Þ

Thus, an energy consistent model for rate-dependent viscosities in shear flows of
an incompressible Cosserat fluid is the following,

l ¼ f1 v0j jð Þ ; lc ¼ f2 v0 þ 2wj jð Þ ð8:104Þ

and

cB ¼ f4 w0j jð Þ ð8:105Þ
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In order to make this model more realistic and closer to the theme of these Notes,
we adopt here some findings that apply to granular flows.

The shearing resistance of a granular medium is pressure sensitive. From the
point of view of a classical continuum the shear stress obeys formally a friction law,

rð12Þ ¼ p tanus ð8:106Þ

where us is the so-called Coulomb friction angle of the granular medium. In
particular in shallow, rapid granular flows it is observed and/or computed using
DEM that the friction is rate dependent [4]. The granular medium at rest possesses a
static friction coefficient, tanust, while, if sheared at relative high shearing-rates, it
gets fluidized and the internal friction increases from its static value to an
asymptotic value, that we call the dynamic friction coefficient, tanudn [ tanust [7].
A simple law that interpolates between these two extreme values is an exponential
law of the form,

tanus ¼ tanudn � tanudn � tanustð Þe�Is ð8:107Þ

where Is is the “inertial number” of the flow, defined as

Is ¼ Tc v
0j j[ 0 ð8:108Þ

Tc is a characteristic time factor, that is reflecting inertia effects at grain scale,

Tc ¼
ffiffiffiffiffiffi
Dg

g

s
ð8:109Þ

In the above definition Dg is the grain size and g is the acceleration of gravity.
Note that for small values of the inertial number, Eq. (8.107) is approximated by

a linear law, as was suggested by Da Cruz et al. [8],

tanus ¼ tanust þ tanudn � tanustð ÞIs þO I2s
� � ð8:110Þ

Equation (8.107) is a visco-plastic constitutive law, since rate effects become
apparent above the given threshold placed by the static friction. In order to keep the
model consistent with the assumptions that hold for a fluid, we adapt here this law
so as to describe a granular fluid by setting tanust ¼ 0, thus yielding the following
constitutive equation for the mobilized friction coefficient,

tanus ¼ tanudn 1� e�Is
� � ð8:111Þ
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This assumption together with Eq. (8.106) leads to the following constitutive
law for a pressure- and rate-dependent viscosity,

l ¼ pTc tanudnl
� Isð Þ ð8:112Þ

where

l� Ið Þ ¼ 1� e�I

I
ð8:113Þ

It is obvious that the constitutive Eq. (8.112) is consistent with the energy
requirement, placed above by Eq. (8.104), since

Is ¼ TcCs ð8:114Þ

Moreover from this exercise we gain an insight about the probable form for the
other two viscosity functions that are needed to close the problem. For example we
may introduce two more inertial numbers,

Ic ¼ TcCc ¼ Tc v
0 þ 2wj j ð8:115Þ

IB ¼ DgTcKB ¼ DgTc w
0j j[ 0 ð8:116Þ

These inertial numbers together with the one originally defined for granular
flows, Eq. (8.114), are proportional to the above discussed rate-of-deformation and
distortion invariants, Eqs. (8.102) and (8.103). With this choice we may test as a
minimal set the following viscosity functions,

lc ¼ pTc tanudnl
� Iað Þ ð8:117Þ

cB ¼ pTcD
2
g tanudnl

� IBð Þ ð8:118Þ

In the next section we will apply this model to a standard steady shallow
granular flow problem.

8.4.2 Steady, Shallow Flow-Slide of a Granular Fluid

We consider the problem of a steady gravitational flow of an incompressible
Cosserat fluid, down an incline of infinite extend at constant slope angle h
(Fig. 8.8). As in Sect. 8.3 and in the previous subsection, we assume here that the
only two significant kinematic variables of this problem are the particle velocity in
the x1� direction of the slope and the particle spin in the x3� direction, perpen-
dicular to the plane of the incline. Again, both fields are assumed to be functions
only of x2 ¼ y, and accordingly the set of constitutive Eqs. (8.40) to (8.45), and the
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moment stress equilibrium Eq. (8.48) also hold. Since we consider here a
gravity-driven flow problem, we have to resort to the stress equilibrium Eqs. (4.42),
which in the presence of gravity and for a granular fluid with density q yield,

@r21
@y

þ qg sin h ¼ 0 ) r21 ¼ sð0Þ � qg sin hy

� @p
@y

� qg cos h ¼ 0 ) p ¼ pð0Þ � qg cos hy
ð8:119Þ

The integration constants in Eqs. (8.119) follow directly from the condition that
the upper boundary of the flow-slide at y ¼ H is stress-free; thus

r21ðHÞ ¼ 0 ) r21 ¼ qg sin h H � yð Þ ð8:120Þ

r22ðHÞ ¼ 0 ) p ¼ qg cos h H � yð Þ ð8:121Þ

From the constitutive Eq. (8.42), the above introduced constitutive assumtions
for the rate-dependent viscosities and Eq. (8.120) we get,

l� Isð ÞTcv0 þ l� Iað ÞTc v0 þ 2wð Þ ¼ kðhÞ ð8:122Þ

where

k ¼ tan h
tanudn

\1 ð8:123Þ

We assume that

v0 [ 0 ; v0 þ 2w[ 0 ; w0 [ 0 ð8:124Þ

Fig. 8.8 Flow slide down an
incline of infinite extend
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These assumptions must be checked a posteriori (Figs. 8.2, 8.4 and 8.6). By
utilizing these inequalities, we get from Eqs. (8.122), (8.113) and the equilibrium
Eqs. (8.48), (8.43) and (8.45) the following non-linear ordinary differential equa-
tions for the kinematic variables of the problem at hand,

1� e�Tcv0
� �

þ 1� e�Tc v0 þ 2wð Þ
� �

¼ k ð8:125Þ

Dg
1
p
d
dy

p 1� e�DgTcw0
� �� �

� 2 1� e�Tc v0 þ 2wð Þ
� �

¼ 0 ð8:126Þ

Next we try some analytical treatment of this set of equations.

8.4.2.1 Outer Approximation

Equation (8.126) describes again a boundary layer problem. The outer approxi-
mation of the solution for this problem follows from this equation by neglecting the
term that is multiplied by Dg, thus yielding

1� exp �Tc vðoutÞ 0 þ 2wðoutÞ
� �� �

¼ 0 ) wðoutÞ ¼ � 1
2
v0 ðoutÞ ð8:127Þ

cf. Equation (8.60). This result and Eq. (8.125) yield,

1� exp �Tcv
ðoutÞ 0

� �
¼ k ) vðoutÞ 0 ¼ 1

Tc
ln

1
1� k

� �
ð8:128Þ

Thus, as expected, the outer solution is again linear across the shear-layer. If we
utilize the definition of the time factor Tc, Eq. (8.109), we get the following
expression for the velocity gradient across the flow slide,

vH
H

�
ffiffiffiffiffiffi
g
Dg

r
F0ðkÞ ð8:129Þ

where vH is the flow-velocity vH at the top of the flow-slide, and F0 is a function of
the parameter k,

F0 ¼ � ln 1� kð Þ ð8:130Þ

The parameter 0\k\1, depends according to Eq. (8.123) on the dynamic
friction and on the slope angle. We note however that for k ¼ 1 ðh ¼ udnÞ the
present model breaks down.
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As is done in the pertinent literature, the flow velocity is expressed in terms of
the Froude number that refers to the grain size [7],

FrD ¼ vHffiffiffiffiffiffiffiffi
gDg

p ð8:131Þ

In this case Eq. (8.129) yields a linear relation between FrD and the dimen-
sionless flow-height, normalized by the grain size,

FrD � F0ðkÞ HDg
ð8:132Þ

8.4.2.2 Shallow Flow-Slides

In order to investigate the effect of the forming boundary layer at the base of the
flow slide, we return to the moment equilibrium Eq. (8.126). With,

1
p
dp
dy

¼ � 1
H � y

ð8:133Þ

in a first step of approximation this equation yields,

D2
g Tcw

00 � 1
H � y

Tcw
0

� �
þ 2 1� e�Tcv0 � k
� �

¼ 0 ð8:134Þ

Equation (8.125) can be solved for w, yielding

Tcw ¼ � 1
2
ln 2� kð Þe�q � 1ð Þ � � 1

2
ln 1� kð Þþ 2� k

1� k
q

� �
ð8:135Þ

where,

q ¼ Tcv
0 ð8:136Þ

With this notation from Eq. (8.134) we get,

�‘2c q00 � 1
H � y

q0
� �

þ 2 1� e�q � kð Þ ¼ 0 ð8:137Þ

where,

‘c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
2� k
1� k

r
Dg ð8:138Þ
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We rescale the y� coordinate according to Eq. (8.61) and we set

s ¼ H� � y� ð8:139Þ

With this transformation the governing Eq. (8.137) becomes,

d2q
ds2

þ 1
s
dq
ds

þ e�q � ð1� kÞ ¼ 0 ð8:140Þ

We set,

q ¼ qðoutÞ þ ~q ð8:141Þ

such that,

e�qðoutÞ ¼ 1� k , qðoutÞ ¼ � ln 1� kð Þ ð8:142Þ

cf. Equation (8.128). Thus

d2~q
ds2

þ 1
s
d~q
ds

� ð1� kÞ 1� e�~q
� � ¼ 0 ð8:143Þ

Its linearized version,

d2~q
ds2

þ 1
s
d~q
ds

� ð1� kÞ~q ¼ 0 ð8:144Þ

admits an analytic solution in terms of modified Bessel functions,

q ¼ C1I0ð
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
sÞþC2K0ð

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
sÞ ð8:145Þ

At the top of the flow-slide ðy ¼ HÞ we assume that the couple stress l23 is zero,
which according to Eqs. (8.43), (8.135) and (8.139) yields

y ¼ H ) s ¼ 0 : w0 ¼ 0 ) dq
ds

				
s¼0

¼ 0 ð8:146Þ

With,

dq
ds

¼ �C1K1

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
s

� �
þC2I1

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
s

� �
ð8:147Þ

the condition at the free boundary leads to C1 ¼ 0, thus,

~q ¼ C2I0
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
s

� �
ð8:148Þ
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At the base of the flow-slide ðy ¼ 0Þ we apply the no-spin boundary condition,
which according to Eqs. (8.135) and (8.136) reads,

y ¼ 0 : w ¼ 0 ) q ¼ qðoutÞ þ ~q ¼ � 1� k
2� k

ln 1� kð Þ )
~q ¼ 1

2� k
ln 1� kð Þ

ð8:149Þ

This gives,

~q ¼ 1
2� k

ln 1� kð Þ
I0

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
H� � y�ð Þ

� �
I0ð

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
H�Þ ð8:150Þ

and with that,

q ¼ � ln 1� kð Þ 1� 1
2� k

I0
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
H� � y�ð Þ

� �
I0

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
H�

� �
0
@

1
A

� � ln 1� kð Þ 1� 1
2� k

e�
ffiffiffiffiffiffi
1�k

p
y�

� �
ð8:151Þ

From Eq. (8.151) we get

dv�

dy�
¼ qðy�Þ ; v� ¼

ffiffiffi
2

p Tc
‘c

v ð8:152Þ

The solution for the velocity is obtained by integrating Eq. (8.152) and by
utilizing the non-slip condition at the base of the flow-slide,

y ¼ 0 : v ¼ 0 ð8:153Þ

The predicted solution corresponds to concave/linear velocity profile across the
flow-slide, as is shown in Fig. 8.9,

v� ¼ � lnð1� kÞ 1� 1
2� k

1� e�
ffiffiffiffiffiffi
1�k

p
y�ffiffiffiffiffiffiffiffiffiffiffi

1� k
p

y�

 !
y� ð8:154Þ

From Eq. (8.154) we get further the following relation between Froude number
and flow-height,

FrD � F1 k;
H
Dg

� �
H
Dg

ð8:155Þ
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where

F1 ¼ � ln 1� kð Þ 1� 1
2� k

1� e
�
ffiffiffiffiffiffi
2�k

p H
Dgffiffiffiffiffiffiffiffiffiffiffi

2� k
p

H
Dg

0
BBB@

1
CCCA ð8:156Þ

We note that for large values of H=Dg, Eq. (8.155) tends to a line that is parallel
to the one we obtained by utilizing the outer approximation. Deviations from
linearity hold for relatively small values for H=Dg, where the boundary layers
influence the solution. In Fig. 8.10 we compare the outer solution, Eq. (8.132) and
the Cosserat-approximate solution, Eq. (8.155). From this figure one can see clearly
that consideration of the boundary layer that is forming at the base of the flow-slide
provides more conservative estimates for the top flow-velocity. It is however
important to notice that for high values of the Froude number, the steady solution is
linearly unstable and that stability must be investigated before adopting such a
result.

Fig. 8.9 Predicted locally concave/linear velocity profile across the flow-slide thickness,
ðk ¼ 0:5Þ; Eq. (8.154)
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8.4.2.3 Exercise: Flow-Slide with Basal Slippage

If we evaluate the basal stresses and couple-stress from the previously analyzed
problem, they take the following form,

r22ð0Þ ¼ �r0 ¼ �pð0Þ ¼ �qgH cos h

r21ð0Þ ¼ �s0 ¼ sð0Þ ¼ qgH sin h

l23ð0Þ ¼ �m0 ¼ �s0‘
0

ð8:157Þ

As can be seen from Fig. 8.11, the appearance of the couple stress at the base of
the flow-slide may be interpreted as a surface roughness effect [9]. This can be
envisioned by letting the shear stress s0 to be applied at a distance ‘0 away from the
theoretical base and its effect being transported to the base through a series of rigid
ortho-fibers that are continuously attached to the basal surface.

Following these remarks, the previously discussed problem can be solved for an
alternative set of boundary conditions at the base of the slide, that will allow in turn
for slippage to occur. First we prescribe the basal couple stress as function of the
basal shear stress, Eq. (8.157). This is a Neumann-type boundary condition for the
particle spin. Thus, it allows for the particles to rotate at the basal plane. In this case
it is not physically sound to assume the non-slip condition, since the rigid-body
rotation of the particle that finds itself at the basal plane will impose a velocity on
that particle (Fig. 8.12),

vð0Þ ¼ �Dg

2
wð0Þ ð8:158Þ

Fig. 8.10 Normalized flow-velocity as function of the normalized flow-height. Comparison
a classical (outer) solution. b Cosserat solution ðk ¼ 0:9Þ
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Let,

k0 ¼ k
‘0

Dg
\k ð8:159Þ

Fig. 8.11 Mechanical interpretation of the basal stress-and couple-stress boundary conditions as a
surface roughness effect

Fig. 8.12 Sphere rolling down a planar incline. The velocity of the sphere is directly linked to its
rotation. Basal friction may include rolling resistance due to existence of asperities and other
surface roughness agents
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As an exercise one is asked here to determine the solution of this boundary value
problem in terms of particle velocity and spin. Using the notation of the previous
section, one should check as intermediate results that the following equations hold,

q � � ln 1� kð Þ � ln 1� k0ð Þffiffiffiffiffiffiffiffiffiffiffi
1� k

p exp �
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
y�

� �
ð8:160Þ

Tcw � 1
2
ln 1� kð Þ
1� k

þ 1
2
2� k
1� k

ln 1� k0ð Þffiffiffiffiffiffiffiffiffiffiffi
1� k

p exp �
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
y�

� �
ð8:161Þ

dv�

dy�
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
2� k
1� k

r
qðy�Þ ð8:162Þ

Compare your results with the ones depicted in Fig. 8.13.
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Chapter 9
Mechanics of Discrete Granular Media

Abstract This chapter links the Cosserat continuum with discrete granular media.
Through a discrete modelling approach, it presents a homogenisation method based
on intergranular energetics and fabric averaging.

We consider here the basic statics and kinematics of discrete media, consisting of
rigid grains in semi-permanent contact. The usually irregular in shape grains will be
pictured as circles and the mutual grain (multiple) contacts as single point contacts.
This picture retains the main topological properties of the thought configuration of a
granular medium. Knowledge concerning shape and size of grains, the nature of
their contacts and the description of their packing in 3D space will always be
incomplete. Having this in mind, we try here to not overdo with graph-theoretical
and statistical physics considerations, and notations as well as the related jungle of
assumptions. In principle we will try to keep our set of assumptions to a bare
minimum. In this section we use Cartesian notation throughout.

9.1 Compatibility in the Discrete Setting

Let us consider two particles ðpaÞ and ðpbÞ in contact at point Pc (Fig. 9.1). We
denote with wðaÞ the spin of the particle ðpaÞ and with vKa the velocity of the
centroid Ka of particle ðpaÞ. All points of ðpaÞ including the contact point Pc share
its rigid body motion, thus their motion is given by the corresponding kinematic
particle motor,

�kðaÞ ¼ wðaÞ

vPc

� �
ð9:1Þ

such that

wðaÞKa ¼ wðaÞ Pc ð9:2Þ
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vPc ¼ vKa þwðaÞ � KaPc
! ð9:3Þ

We observe that this property of the discrete particles is in harmony with local
Cosserat continuum kinematics, as this is expressed above by Eqs. (3.8) and (3.9).

In Cartesian components Eq. (9.3) reads

vðaÞci ¼ vðaÞi þ eijkw
ðaÞ
j xck � xak
� � ð9:4Þ

Similarly for particle pb we have,

vðbÞci ¼ vðbÞi þ eijkw
ðbÞ
j xck � xbk
� �

ð9:5Þ

These expressions allow us to compute the relative motion between two
neighboring particles in contact; i.e. their relative spin

wðb;aÞ
i ¼ wðbÞ

i � wðaÞ
i ð9:6Þ

and their relative velocity at the contact point,

vðb;aÞci ¼ vðbÞci � vðaÞci )
vðb;aÞci ¼ vðbÞi � vðaÞi þ eijk wðbÞ

j xck � xbk
� �

� wðaÞ
j xck � xak
� �� � ð9:7Þ

Let us consider an open line of N-grains in sequential contact, usually termed
also a granular column (Fig. 9.2). If we apply Eqs. (9.6) and (9.7) consecutively,
then we get the following expressions for the difference in rotation and displace-
ment between two grains in “remote” contact,

Fig. 9.1 Relative velocity of two grains in contact
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DwðN;1Þ
i ¼ wðNÞ

i � wð1Þ
i ¼

XN�1

a¼1

wða;aþ 1Þ
i ð9:8Þ

and

DvðN;1Þi ¼ uðNÞi � uð1Þi ¼
XN�1

a¼1

vða;aþ 1Þc
i � eikj xcðaþ 1;aÞ

k � xcða;a�1Þ
k

� �
wðaÞ
j

� �
ð9:9Þ

where xð1;0Þck � x1k and xðN;Nþ 1Þc
k � xNk .

Following a remark by Satake [1], Eqs. (9.8) and (9.9) are seen as the discrete
manifestation of the line integrals, Eqs. (3.99) and (3.105), holding for a Cosserat
continuum:

DwiðP2;P1Þ ¼ wiðP2Þ � wiðP1Þ ¼
ZP2

P1

j�ik dH
k $ DwðN;1Þ

i ¼ wðNÞ
i � wð1Þ

i

¼
XN�1

a¼1

wða;aþ 1Þ
i ð9:10Þ

and

DuðP2;P1Þ
i ¼ uiðP2Þ � uiðP1Þ ¼

RP2

P1

cik � eiklw
l� �
dHk

$
DdvðN;1Þi ¼ duðNÞi � duð1Þi ¼ PN�1

a¼1
dvða;aþ 1Þc

i � eikj xcðaþ 1;aÞ
k � xcða;a�1Þ

k

� �
dwðaÞ

j

� � ð9:11Þ

Fig. 9.2 Open line of
homothetically rotating grains
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With the symbol$ we depict here an observed analogy between the continuum-
and the discrete mathematical description. Satake’s analogy that is displayed above
allows us to identify:

1. The Cosserat continuum rotation as that kinematical property of the continuum
that is meant to reproduce the particle rotation.

2. The relative deformation of the Cosserat continuum as measure for relative or
inter-particle displacement.

3. The distortions of the Cosserat continuum as the measure for the relative
inter-particle rotation.

The discrete and the continuous realization of the relative displacement and
relative rotation between two points are given by Eqs. (9.10) and (9.11). If these
relative motions are path independent, then we are dealing with “compatible”
deformations. In particular the relative motions in a compatible deformation should
vanish, if evaluated in a closed loop. This is not always the case in granular media.
To demonstrate this statement we consider the paradigm of the planar, 3-grain
circuit of Fig. 9.3.

For simplicity we assume that the “grains” in Fig. 9.3 are indeed circular rods of
equal radius Rg and that grains (1) and (2) are spinning homothetically, grain (3) is
spinning antithetically, all with the same strength dx. We see immediately that this
constellation provides two pure rolling contacts ðrcÞ at c1 and c3, and a pure sliding
contact ðscÞ at c2. We note that the relative displacement between two neighboring
grains is null across pure rolling contacts. For the virtual motion of this circuit that
is shown in Fig. 9.3 we compute,

Ddwð2;1Þ
3 ¼ 0; Ddxð1;3Þ

3 ¼ 2dw; Ddwð3;2Þ
3 ¼ �2dw

) P
cycl

Ddwða;bÞ
3 ¼ 0 ð9:12Þ

Fig. 9.3 Three-particle assembly of two homothetically and one antithetically rotating particle,
forming two rolling contacts and one sliding contact
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and

Ddvð2;1Þc2 ¼ Rgdw; Dduð1;3Þc2 ¼ Rgdw; Ddvð3;2Þc2 ¼ �Rgdw

) P
cycl

Ddvða;bÞc2 ¼ Rgdw 6¼ 0 ð9:13Þ

Ddvð2;1Þc1 ¼ 0; Ddvð1;3Þc1 ¼ �
ffiffi
3

p
4 dw; Ddvð3;2Þc1 ¼ �

ffiffi
3

p
4 Rgdw

) P
cycl

Ddvða;bÞc2 ¼ �
ffiffi
3

p
2 Rgdw 6¼ 0 ð9:14Þ

This means that incorporation of antithetically rotating particles into our con-
sideration, would mean to extend the Cosserat model to incompatible deformations,
as was the case for example in Günther’s [2] interpretation of Kröner’s [3] theory of
dislocations. Note that in the terminology of granular Physics, if the grains in a
network can rotate without sliding on each other, then the network is called dy-
namically unfrustrated, since it can deform freely under shear and behaves like a
dry fluid. A sufficient condition for “non-frustration” in 3D is that all closed circuits
of grains in contact are even [4]. This means in turn that solid granular matter differs
from granular fluid in the aspect that in solid granular mater sliding is the rule and
rolling the exception. What we call in granular solid Mechanics compatibility is
called in granular fluid Physics frustration. As we will discuss next, the transition
from a fully frustrated to a partially unfrustrated system is an instability, that is
related in granular Mechanics with shear-banding. This observation allows also to
view shear banding as a granular solid-fluid phase transition. To this end we recall
an early statement by Oda and Kazama [5], who remarked that: “… that a shear
band grows through buckling of columns together with rolling at contacts; it can be
said that the thickness of a shear band is determined by the number of particles
involved in a single column”. Indeed, from the micro-mechanical point of view an
important structure that appears to dominate localized deformation in 2D DEM
simulations is the formation and collapse (buckling) of grain columns, as this was
demonstrated experimentally by Oda and was given a simple structural mechanics
description by Satake [6]. These load-carrying columns belong to the so-called
competent grain fraction, a concept first introduced by Dietrich [7] and later used in
continuum shear-banding analyses by Vardoulakis [8]. In later years the existence
of the bimodal character of the contact-forces network in granular media was
filtered-out from numerical CD simulations, by Radjai and co-workers [9, 10]. The
length of these buckling granular columns reflects more or less the current shear
band thickness. Recently Tordesillas [11] picked on this matter and pointed that
“One such unjamming mechanism is the buckling of force chains and associate
growth of surrounding voids … This mechanism is characteristically non-affine”.
The term non-affine in connection to an open line of grains is, in our understanding,
not outside Günther’s original idea of incompatible deformations and Satake’s
integrability and dislocation concepts. This can be seen in Fig. 9 of Ref. [11], where
we observe that the line of grains that caries non-affine deformation information
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includes antithetically rotating grains. To our understanding, the essential feature
here is the incompatibility of grain rotation across a grain contact that is leading to
the possibility of an internal instability in the form of the total plastic yielding of an
internal (frictional) hinge. Thus, shear-banding as the manifestation of an internal
instability in the sense of Oda should include the formation of plastic hinges
between grains that belong to the strong force network. Note that in terms of
continuum mechanics, the formation of plastic hinges aligned more or less in a
granular surface [12] inside a shear band, means the appearance of finite jumps (i.e.
strong discontinuities) in the particle spin.

9.2 Equilibrium in the Discrete Setting

9.2.1 Definitions

Following Bardet and Vardoulakis [13] we consider a Representative Elementary
Volume (REV) that consists of N sub-particles (“grains”), some of which are
subjected to external forces or couples, applied from the exterior of the considered
(REV); Fig. 9.4. The particles inside the (REV) are grouped in the set
B ¼ pa a ¼ 1j ; . . .;Nf g. The forces and couples acting on the particles of B are
reduced at M points that form the set of “contact” points, C ¼ Pc c ¼ 1j ; . . .;Mf g.
The subset I � C contains the contact points between two particles of B, whereas
the subset E � C contains the points where external actions are applied,

I ¼ P1; . . .; PMIf g; E ¼ PMIþ 1 ; . . .; PM
	 


C ¼ I [E; £ ¼ I \E
ð9:15Þ

Fig. 9.4 (REV) containing set B of particles in contact among each other and other exterior
particles
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Sets Ia, Ea and Ca denote the contact points on particle pa corresponding to
internal actions, external actions and all actions. Sets Ca, Ia, Ea, I, E and C are
related as follows:

C ¼
[
pa2B

Ca; Ca ¼ Ia [Ea

I ¼
[
pa2B

Ia

E ¼
[
pa2B

Ea

ð9:16Þ

The intersections of Ia and Ea are either empty or reduced to a single (contact)
point,

Ea \Eb ¼ £ ða 6¼ bÞ
Ia \ Ib ¼ ci 2 If g:or:£ ða 6¼ bÞ ð9:17Þ

9.2.2 Equilibrium of the Single Particle

The mechanical action on particle ðpaÞ from one of its neighbors is reduced to the
contact action motor which consists of a line force vector and a couple, that are
transported at the “contact” point Pc (Fig. 9.5),

FðaÞc ¼ FðaÞPc
MðaÞPc

� �
ð9:18Þ

This is because particles in granular assemblies are not necessarily convex and
they interlock. As explained by Froiio et al. [12], the selection of the “contact” point
Pc is rather arbitrary, a fact that is very well reflected in the transport properties of
the contact action motor, Eq. (9.18).

Fig. 9.5 The intergranular
contact motor
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For easy computation of the resulting forces and couples we may use again
Cartesian notation for the related vectors

FðaÞPc ¼ f ðaÞci ei ð9:19Þ

MðaÞPc ¼ mðaÞc
i ei; mðaÞc

i � mðaÞ
i ðPcÞ ð9:20Þ

The resultant of force acting on particle ðpaÞ is

FðaÞ ¼
X
c2Ca

FðaÞPc ð9:21Þ

We transport all forces and moments acting on ðpaÞ to its “centre” Ka
1, thus

obtaining the total particle motor,

FðaÞ ¼ FðaÞ

MðaÞKa

� �
ð9:22Þ

with

FðaÞ ¼ f ðaÞi ei; f ðaÞi ¼
X
c2Ca

f ðaÞci ð9:23Þ

MðaÞKa ¼ mðaÞ
i ei ð9:24Þ

mðaÞ
i � mðaÞ

i ðKaÞ ¼
X
c2Ca

mðaÞc
i þ eijk xcj � xaj

� �
f ðaÞck

� �
ð9:25Þ

2and the position vectors

RKa ¼ xai ei; RPc ¼ xci ei ð9:26Þ

Equilibrium for particle ðpaÞ is expressed by

FðaÞ ¼ 0 ð9:27Þ

Let d�kðaÞ be the kinematic motor for a virtual motion of the particle ðpaÞ,

d�kðaÞ ¼ dwðaÞ

dvKa

� �
ð9:28Þ

1Point Ka could be the centroid of the grain.
2Note that in this equation summation of repeated lower indices is meant!
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where

dwðaÞ ¼ dwðaÞ
i ei; dvKa ¼ dvðaÞi ei ð9:29Þ

are the virtual spin vector of the particle and the virtual velocity vector of the centre
Ka of particle pa, respectively.

The virtual power of the total force and total couple acting on particle ðpaÞ for
the considered virtual motion is computed as the corresponding von Mises motor
scalar product [14],

dW ðaÞ ¼ FðaÞ � d�kðaÞ ¼ FðaÞ � dvKa þMKa � dwðaÞ ð9:30Þ

Note that the von Mises motor scalar product is invariant of the choice of the
particular selection of the reference point Ka.

The virtual power equation for particle ðpaÞ expressing equilibrium reads,

dW ðaÞ ¼ 0 ð9:31Þ

With Eq. (9.23) in Cartesian form, Eq. (9.31) becomes

X
c2Ca

f ðaÞci dvðaÞi þ mðaÞc
i þ eijk xcj � xaj

� �
f ðaÞck

� �
dwðaÞ

i

� �
¼ 0 ð9:32Þ

Obviously, a particle assembly inside an (REV) is in equilibrium, if each
sub-particle is in equilibrium. Then Eq. (9.32) holds for all grains in B, thus
equilibrium for the assembly is expressed by

X
a2B

X
c2Ca

f ðaÞci dvðaÞi þ mðaÞc
i þ eijk xcj � xaj

� �
f ðaÞck

� �
dwðaÞ

i

� �
¼ 0 ð9:33Þ

The double sum over Ca and B can be split into two separate sums, one over
I and one over E, respectively. In addition we observe that for any two grains ðpaÞ
and ðpbÞ in contact at point Pc we have from Newton’s 3rd law that,

f ða;bÞci � f ðaÞci ¼ �f ðbÞci ) f ða;bÞci ¼ �f ðb;aÞci

mða;bÞc
i � mðaÞc

i ¼ �mðbÞc
i ) mða;bÞc

i ¼ �mðb;aÞc
i

ð9:34Þ

Thus from Eq. (9.33) we get an equivalent expression that can be written as a
virtual power equation,

dW ðintÞ ¼ dW ðextÞ ð9:35Þ
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where

dW ðintÞ ¼
X
c2I

f ða;bÞci dvðaÞci � dvðbÞci

� �
þmða;bÞc

i dwðaÞ
i � dwðbÞ

i

� �� �
ð9:36Þ

dW ðextÞ ¼
X
e2E

f ðeÞi dvðeÞi þmðeÞ
i dwðeÞ

i

� �
ð9:37Þ

9.2.3 Equilibrium Conditions for Compatible
Virtual Kinematics

In order to evaluate the above expressions, Eqs. (9.35) to (9.37), we set the virtual
spin of a particle to be a linear function, and the virtual velocity of the centre of the
particle to be a bi-linear form of the coordinates of the position of its centre,

dwðaÞ
i ¼ ai þ bijx

a
j

dwðbÞ
i ¼ ai þ bijx

b
j

. . .

ð9:38Þ

dvðaÞi ¼ ai þ bijxaj þ cijkxaj x
a
k

dvðbÞi ¼ ai þ bijx
b
j þ cijkx

b
j x

b
k

. . .

ð9:39Þ

where ai; bij and ai; bij; cijk are arbitrary coefficients. This bilinear expansion of the
virtual velocity field has been used in the past by Chang & Liao [15] and was
adopted later by Bardet & Vardoulakis [13]. Its justification, however, is supplied
here as a consistency requirement by the consideration of the transport law for the
particle velocity, Eq. (9.4).

If we introduce the particular realizations, Eqs. (9.38) and (9.39) in Eqs. (9.6)
and (9.7) we get,

dwðb;aÞc
i ¼ bij xbj � xaj

� �
ð9:40Þ

dvðb;aÞci ¼ bij xbj � xaj
� �

þ cijk xbj x
b
k � xaj x

a
k

� �
� eijkaj xbk � xak

� �
þ eijkbjl xck � xbk

� �
xbl � xck � xak

� �
xal

� � ð9:41Þ
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Similarly,

dvei ¼ dvðaÞi þ eijkdw
ðaÞ
j xek � xaek
� �

¼ ai þ bijx
ae
j þ cijkx

ae
j x

ae
k þ eijkaj x

e
k � xaek

� �þ eijkbjlx
ae
l xek � xaek
� � ð9:42Þ

where xaei is the position of the centre of particle pa, where contact e takes place.
From Eqs. (9.36) and (9.41) to (9.42) we get the following expressions for the

virtual power of internal and external actions in and on the considered (REV),

dW ðintÞ ¼ bij
X
c2I

f ða;bÞci xbj � xaj
� �

þ cijk
X
c2I

f ða;bÞci xbj x
b
k � xaj x

a
k

� �

� aj
X
c2I

f ða;bÞci eijk xbk � xak
� �

þ bji
X
c2I

eijkf
ða;bÞc
i xbl xck � xbk

� �
� xal xck � xak

� �� �
þmða;bÞc

j xbl � xal
� �� �

ð9:43Þ

and

dW ðextÞ ¼ ai
X
e2E

f ei þ bij
X
e2E

f ei x
ae
j

þ cijk
X
e2E

f ei x
ae
j x

ae
k

þ aj
X
e2E

me
j þ eijkf

e
i xek � xaek
� �� �

þ bji
X
c2I

me
j þ eijkf

e
i xek � xaek
� �� �

xael

ð9:44Þ

The virtual power Eq. (9.35), with Eqs. (9.43) and (9.44), applies for arbitrary
choice of the coefficients ai; bij; cijk; ai; bij. Thus, by independent variation of these
coefficients we get the following set of algebraic equations:

X
e2E

f ei ¼ 0 ð9:45Þ

X
c2I

xbj � xaj
� �

f ða;bÞci ¼
X
e2E

xaej f
e
i ð9:46Þ

X
c2I

f ða;bÞci xbj x
b
k � xaj x

a
k

� �
¼

X
e2E

f ei x
ae
j x

ae
k ð9:47Þ
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X
c2I

eijk xbj � xaj
� �

f ða;bÞck ¼ �
X
e2E

mðe;aÞ
i ð9:48Þ

X
c2I

eiklf
ða;bÞc
l xbj xck � xbk

� �
� xaj xck � xak

� �� �
þmða;bÞc

i xbj � xaj
� �� �

¼
X
e2E

mðe;aÞ
i xaej

ð9:49Þ

where

mðe;aÞ
i ¼ me

i þ eijk xej � xaej
� �

f ek ð9:50Þ

is the moment that results by transporting the external contact force and couple
from point Pe on particle pa to its centre Ka.

Equation (9.45) is expressing the equilibrium of external forces that are applied
to the whole assembly of particles in the considered (REV). From Eq. (9.46) we get

X
c2I

eijk xbj � xaj
� �

f ða;bÞck ¼
X
e2E

eijkx
ae
j f

e
k ð9:51Þ

and with that Eq. (9.48) transforms into

X
e2E

mðe;aÞ
i þ eijkx

ae
j f

e
k

� �
¼ 0 ð9:52Þ

or to the moment equilibrium equation for all external actions on the considered
(REV),

P
e2E

me
i þ eijk xej � xaej

� �
f ek þ eijkxaej f

e
k

� �
¼ 0 )P

e2E
me

i þ eijkxej f
e
k

� �
¼ 0

ð9:53Þ

If we combine Eqs. (9.47) and (9.49) we obtain,

X
c2I

mða;bÞc
i xbj � xaj

� �
¼

X
e2E

me
i þ einmx

e
nf

e
m

� �
xaej �

X
c2I

eiklf
ða;bÞc
l xbj � xaj

� �
xck ð9:54Þ

We summarize below the set of equations that we derived by applying the virtual
work equation on an (REV) of particles that are in a state of static equilibrium under
the action of external forces and couples,X

e2E
f ei ¼ 0 ð9:55Þ
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X
e2E

me
i þ eijkx

e
j f

e
k

� �
¼ 0 ð9:56Þ

X
c2I

xbj � xaj
� �

f ða;bÞci ¼
X
e2E

xaej f
e
i ð9:57Þ

X
c2I

xbj x
b
k � xaj x

a
k

� �
f ða;bÞci ¼

X
e2E

f ei x
ae
j x

ae
k ð9:58Þ

X
c2I

xbj � xaj
� �

mða;bÞc
i þ eiklx

c
kf

ða;bÞc
l

� �
¼

X
e2E

me
i þ einmx

e
nf

e
m

� �
xaej ð9:59Þ

9.3 The Micromechanical Definition of Stress
and Couple Stress

We consider a strategy for a transition from the discrete medium to the continuum.
This is by far not a unique procedure, thus having always the character of a working
hypothesis. The mathematical limitations of such strategies are discussed in detail
by Froiio et al. [12].

For the computation of a mean value of the stress within the (REV) we follow a
standard procedure [16]: The analysis starts from the stress equilibrium equations
that apply for the continuum. We consider a small volume V of the continuum that
in the discrete is occupied by the (REV) and we assume the existence of a stress
field that satisfies the equilibrium equations on the considered volume and on its
boundary. We express the equilibrium, Eq. (4.33), in Cartesian coordinates, we
multiply these equations with xk, integrate over V, apply Gauss’ theorem and use
Eq. (4.34),

Z
VREV

@irij þ fj
� �

xkdV ¼ 0 )
Z

VREV

rkjdV ¼
Z

@VREV

xktjdSþ
Z

VREV

xkfjdV ¼ 0

ð9:60Þ

If the considered volume is a sphere with radius Re, then the surface integral on
the r.h.s. of Eq. (9.60) is of O R2

e

� �
, whereas the volume integral is of O R3

e

� �
. Thus,

as it was done already in the discrete medium analysis, the effect of volume forces
will be neglected, Z

VREV

rkjdV �
Z

@VREV

tjxkdS Re ! 0ð Þ ð9:61Þ
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We observe that the quantity

r̂ij ¼ 1
VREV

Z
VREV

rijdV ð9:62Þ

is by definition the volume-averaged stress.
From Eqs. (9.61) and (9.62) we get,

r̂ij � 1
VREV

Z
@VREV

tjxkdS ð9:63Þ

Note that according to some authors the above outlined stress averaging pro-
cedure can be traced to a reference of Love [17] on the work of Chree [18].

We juxtapose now Eqs. (9.61) and (9.57):

Z
@VREV

xktjdS ¼
Z

VREV

rkjdV $
X
e2E

xaek f
e
j ¼

X
c2I

xbk � xak
� �

f ða;bÞcj ð9:64Þ

This analogy between the continuum and the discrete medium suggests a for-
mula for the computation of the mean stress, that is evaluated by using microme-
chanical information inside the (REV),

r̂ij � 1
VREV

X
c2I

ðxbi � xai Þf ða;bÞcj ð9:65Þ

Equation (9.65) is a celebrated formula in granular Mechanics and Physics, that
according to Fortin et al. [19] was first applied for the definition of the mean stress
tensor in a granular medium in 1966 by Weber [20] and has been advocated since
for this purpose by many authors; cf. [21, 22].

Similarly we assume the existence of a couple-stress field that satisfies the
equilibrium equations for a Cosserat continuum, Eqs. (4.35) and (4.36). From the
corresponding equilibrium equations written in Cartesian form we derive,

Z
VREV

lkjdV ¼
Z

@VREV

mjxkdSþ
Z

VREV

eimjrimxkdV ð9:66Þ

We remark that if surface couples and couple stresses are zero, then Eq. (9.66)
reduces to a condition that implies symmetry of stress tensor. In general however,
with
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0 ¼
Z

VREV

@irij
� �

xkxldV ¼
Z

VREV

@i rijxkxl
� �

dV �
Z

VREV

rij@i xkxlð ÞdV )
Z

VREV

rkjxl þ rljxk
� �

dV ¼
Z

@VREV

tjxkxldS
ð9:67Þ

the last integral on the r.h.s. of Eq. (9.66) becomes,

Z
VREV

eimjrimxkdV ¼
Z

VREV

eimjr½im	xkdV ¼ �
Z

VREV

eimjr½mi	xkdV

¼ �
Z

VREV

eimjrmixkdV ¼
Z

VREV

eimjrkixmdV �
Z

@VREV

eimjtixkxmdS
ð9:68Þ

and with that

Z
VREV

lkjdV ¼
Z

@VREV

mjxkdSþ
Z

VREV

eimjrkixmdV �
Z

@VREV

eimjtixkxmdS ð9:69Þ

or

Z
VREV

lkj þ ejmixmrki
� �

dV ¼
Z

@VREV

mj þ ejmixmti
� �

xkdS ð9:70Þ

The tensor

l̂kj ¼
1

VREV

Z
VREV

lkj þ ejmixmrki
� �

dV ð9:71Þ

is called here the “mean transported couple stress”, computed over the volume
VREV . Equations (9.70), (9.71) and (9.59) juxtaposed suggest that,

l̂ij �
1

VREV

X
c2I

xbj � xaj
� �

mða;bÞc
i þ eiklx

c
kf

ða;bÞc
l

� �
ð9:72Þ

This formula was originally introduced by Chang & Liao [15] and later by
Bardet & Vardoulakis [6] and Tordesillas & Walsh [23]. This definition differs from
the one that was proposed by Oda & Iwashita [24] that was proposed in turn in
complete formal analogy to Eq. (9.65),
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~lkj �
1

VREV

X
c2I

xbk � xak
� �

mða;bÞc
j ð9:73Þ

The existence of the two definitions, Eqs. (9.72) and (9.73), explains the con-
troversy in relation to the statements that couple-stresses in granular media are: a)
only due to contact couples [24], an assumption that would support definition
(9.73), or b) that they are also generated in part also by the contact forces, as in
definition Eq. (9.72). We emphasize here that the definition of l̂ij, Eq. (9.72), is
derived following a procedure that is in complete analogy to the derivation of
Weber’s formula for stress, Eq. (9.62). This is not possible for the couple stress ~lij.
We will demonstrate below that l̂ij as a statically meaningful measure of the
transported to the grain-contacts couple stress, is also meaningful from an energetic
point of view.

9.4 Intergranular Dissipation

Rigid granular media are dissipative media in the sense that all energy supplied to
them by the external actions is dissipated. As stated by Cole and Peters [25] “… the
relationship between the contact motions and resisting forces define the micro-scale
properties of the medium…” In that sense central in our approach here are energy
dissipation considerations.

As is shown in Fig. 9.6, the contact of two homothetically rotating grains will
involve strong contact sliding and weak contact rolling, whereas the contact of two
antithetically rotating grains will involve strong contact rolling and weak contact
sliding. A basic hidden assumption made in earlier studies was that almost all
energy dissipation in granular media is localized at sliding contacts [26]. In general,
however, energy dissipation due to rolling cannot be excluded due to micro slip and
friction at the contact interface. In this context we like to refer the reader directly to
the discussion offered on the subject by Tordesillas and Walsh [23]. This point of
view is appreciated as a fact by many investigators, since in a number of recent
DEM simulations, energy dissipation is admitted to rolling contacts as well
[27–29].

Fig. 9.6 Two grain circuit
with sliding contact and
rolling contact respectively
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9.4.1 Grain Contact Energetics

We consider two homothetically rotating grains and for simplicity we set them to be
of equal radius Rg with a strong sliding contact, as seen in Fig. 9.7. The branch
vector that connects the centers of the two grains is,

ðK1K2Þi ¼ 2‘i ; ‘i ¼ Rgni , nknk ¼ 1 ð9:74Þ

The velocities of the centers of the grains (1) and (2) are denoted by vð1Þi and vð2Þi ,

and the grains are rotating homothetically with angular velocities wð1Þ
k and wð2Þ

k ,
respectively. At the midpoint Pc of the centre line ðK1K2Þ the velocities of the
grains are

vð1Þci ¼ vð1Þi þ eilkw
ð1Þ
l ‘k

vð2Þci ¼ vð2Þi � eilkw
ð2Þ
l ‘k

ð9:75Þ

Thus the relative rotation and relative velocity of grain (2) with respect to grain
(1) at the contact point are,

wð2;1Þc
i ¼ wð2Þ

i � wð1Þ
i ð9:76Þ

vð2;1Þci ¼ vð2Þci � vð1Þci ¼ vð2Þi � vð1Þi � eijk wð2Þ
j þwð1Þ

j

� �
‘k ð9:77Þ

Since the two grains are in contact, we assume that they interact with contact

forces and contact couples. Let f ð1;2Þci and mð1;2Þc
i be the force and the couple acted

on grain (1) by grain (2); their reactions are the contact force f ð2;1Þci and the contact

couple mð2;1Þc
i , acting on grain (2). These force- and couple pairs satisfy Newton’s

3rd law,

Fig. 9.7 Two-grain circuit: kinematic embedment
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f ð1;2Þci � f ð1Þci ¼ �f ð2Þci ) f ð1;2Þci ¼ �f ð2;1Þci

mð1;2Þc
i � mð1Þc

i ¼ �mð2Þc
i ) mð1;2Þc

i ¼ �mð2;1Þc
i

ð9:78Þ

The interface at the contact of the two grains is identified as an intergranular
surface. This is a continuum material band of vanishing thickness, whose bound-
aries share the motion of the two adjacent faces of the contact. In the terminology of
Tribology this interface is called the “third body”. As stated by Godet [30]:
“Interfaces, or third bodies can be defined in a material sense, as a zone which
exhibits a marked change in composition from that of the rubbing specimens or in a
kinematic sense, as the thickness across which the difference in velocity between
solids is accommodated”.

On the faces of this infinitesimal slip the reactions of the intergranular forces are
acting. On the face of the intergranular surface that touches point Pð2Þc and has the

outer unit normal ni, the force f ð1;2Þci is acting. On the opposite face of the inter-
granular surface that touches point Pð1Þc and has the outer unit normal �ni, the force

f ð2;1Þi is acting. The rate of work per unit volume, done by these forces at the
considered contact due to sliding, is (Fig. 9.8),

PðnsÞ ¼ 1
V

f ð1;2Þi vð2cÞi þ f ð2;1Þi vð1cÞi

� �
¼ 1

V
f ð1;2Þi vð2cÞi � vð1cÞi

� �
¼ 1

V
f ð1;2Þi vð2;1Þci ð9:79Þ

Similarly the rate of work of contact couples at the considered contact due to
(weak) rolling is (Fig. 9.9),

PðnrÞ ¼ 1
V

mð1;2Þc
i wð2Þ

i þmð2;1Þc
i wð2Þ

i

� �
¼ 1

V
mð1;2Þc

i wð2Þ
i � wð1Þ

i

� �
¼ 1

V
mð1;2Þc

i wð2;1Þ
i

ð9:80Þ

Fig. 9.8 Two-grain circuit:
strong sliding contact
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The total power of actions at grain contact is the sum of the contributions due to
sliding and rolling,

PðnÞ ¼ PðnsÞ þPðnrÞ ð9:81Þ

9.4.2 Continuum Embedment

We assume that particle spin and particle (centre) velocity are embedded into
continuous fields, such that

wð1Þ
i ¼ wi; wð2Þ

i � wi þ 2‘m@mwi ð9:82Þ

and

vð1Þi ¼ vi; vð2Þi � vi þ 2‘m@mvi ð9:83Þ

With

wð2;1Þc
i ¼ wð2Þ

i � wð1Þ
i ¼ 2‘m@mwi ð9:84Þ

and

vð2;1Þi ¼ vð2Þi � vð1Þi � eijk wð2Þ
j þwð1Þ

j

� �
‘k ¼ 2 @kvi � eijkwj þ eikj‘m@mwj

� �
‘k ð9:85Þ

Fig. 9.9 Two-grain circuit:
weak rolling sliding contact
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we observe that the relative spin and velocity can be expressed in terms of the
related Cosserat-continuum deformation measures; c.f. Equations (3.138) and
(3.139). With this notation Eqs. (9.84) and (9.85) become,

wð2;1Þ
i ¼ 2‘mKim ð9:86Þ

and

vð2;1Þci ¼ 2 Cki þ eiklKml‘mð Þ‘k ð9:87Þ

On the other hand, we assume that the force f ð1;2Þi and the couple mð1;2Þ
i are

generated by a stress field and a couple stress field, respectively, which are eval-
uated in turn at the centre of the considered grain. Thus

f ð1;2Þi

S
¼ rki �nkð Þ ; f ð2;1Þi

S
¼ rki þ nkð Þ ð9:88Þ

where S is a reference surface area, and with that

PðnsÞ ¼ S
V

� �
rkið�nkÞvð1cÞi þ rkinkv

ð2cÞ
i

� �
¼ 1

a
rkink vð2cÞi � vð1cÞi

� �
¼ 1

a
rkinkv

ð2;1Þ
i

ð9:89Þ

The specific surface

S
V
¼ 1

a
ð9:90Þ

is a free parameter that will be determined below with the requirement that the
power of contact actions at grain scale relates to the stress power in the underlying
Cosserat continuum. Due to Eq. (9.87) from Eq. (9.89) we get

PðnsÞ ¼ 1
a
rkink2 Cni þ einlKml‘mð Þ‘n ¼ 2Rg

a
rkinkð Þ Cninnð Þþ einl Kmlnmð Þ‘nð Þ ð9:91Þ

Let

k ¼ 2Rg

a
ð9:92Þ

With the notation

tðnÞi ¼ rkink ð9:93Þ
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and

CðnÞ
i ¼ Ckink; KðnÞ

i ¼ Kkink ð9:94Þ

we observe that the vector compound

�EðnÞ ¼ KðnÞ

CðnÞ þ l�KðnÞ

� �
ð9:95Þ

is a von Mises deformation-vector motor for all possible contact points of grain (1),
with unit normal on the contact plane n. The “moment” part of the kinematic motor
(9.95) works on the stress vector, since

PðnsÞ ¼ ktðnÞ � CðnÞ þ l� KðnÞ
� �

ð9:96Þ

In view of Eq. (9.71) we postulate the couple-stress field lðcÞij , called the contact
transported couple stress, such that,

lðcÞij ¼ lij þ ejlk‘lrik ð9:97Þ

and we define the moment vectors,

mðnÞ
i ¼ lkink ð9:98Þ

and

mðcnÞ
i ¼ lðcÞki nk ¼ lki þ eilm‘lrkmð Þnk ¼ mðnÞ

i þ eilm‘lt
ðnÞ
m ð9:99Þ

We observe that the compound

T ðnÞ ¼ tðnÞ

mðnÞ þ l� tðnÞ

� �
ð9:100Þ

is a von Misses action-vector motor for all possible contact points of grain (1).
With these remarks we compute the von Mises scalar product of the two motors

and claim that this is the total power of actions at a grain contact,

1
k
PðnÞ ¼ T ðnÞ � �EðnÞ ¼ tðnÞ � CðnÞ þ l�KðnÞ

� �
þ mðnÞ þ l� tðnÞ
� �

�KðnÞ ð9:101Þ

We showed already through Eq. (9.96) that the first term on the r.h.s of
Eq. (9.101) reflects the work done by the forces due to (strong) sliding, Eq. (9.96).
We will prove now that the 2nd term on the r.h.s. of Eq. (9.101) corresponds to the
work done by the couples at the considered contact due to (weak) rolling.
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Indeed, if we define after Eq. (9.80) that

PðnrÞ ¼ 1
V

mð1;2Þc
i wð1Þ

i þmð2;1Þc
i wð2Þ

i

� �
¼ S

V

� �
lðcÞki ð�nkÞwð1Þ

i þ lðcÞki nkw
ð2Þ
i

� �

¼ 1
a
lðcÞki nk wð2Þ

i � wð1Þ
i

� �
¼ 1

a
lðcÞki nkw

ð2;1Þ
i ¼ 2Rg

a
lðcÞki nk‘m@mwi

ð9:102Þ

we get

1
k
PðnrÞ ¼ mðnÞ þ l� tðnÞ

� �
�KðnÞ ð9:103Þ

and with that we recover Eq. (9.81).
We return to Eq. (9.101) and observe that mixed terms cancel out, leading

finally to,

1
k
PðnÞ ¼ tðnÞ � CðnÞ þmðnÞ �KðnÞ ð9:104Þ

or in Cartesian form,

1
k
PðnÞ ¼ rkiCli þ lkiKlið Þnknl ð9:105Þ

9.4.3 Fabric Averaging

Let n be the unit normal that characterizes an intergranular contact plane at contact
point Pc, as this was discussed in the previous sections. We select all such contact
normal vectors and transfer them parallelly to the centre of the unit sphere. This
mapping defines a point P0c on the unit sphere. The distribution of these points on
the unit sphere defines in turn an essential property of the fabric of the
contact-planes network. The simplest assumption is that the probability distribution
of the unit contact normal vectors is uniform. This assumption is rather crude as far
as granular media are concerned, and for realistic modeling cconsiderations it
should be replaced by suitable anisotropic probability distributions [31, 32].

We observe that the corresponding Cartesian coordinates of the position vector

OP0c
!

¼ n on the unit sphere are

n1 ¼ sin h cos/; n2 ¼ sin h sin/; n3 ¼ cos h ð9:106Þ

where r ¼ 1, h and / are the polar, spherical coordinates of point P0c. In case of
isotropy, it can be easily shown that following identities hold [33]:
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nih i ¼ 0

ninj
� � ¼ 1

4p

Z2p
0

Zp
0

ninj sin hdhd/ ¼ 1
3
dij

ninjnk
� � ¼ 0

ninjnknl
� � ¼ 1

3 � 5 dijdkl þ dikdjl þ dildjk
� � ¼ 1

15
dijkl

ninjnknlnm
� � ¼ 0

ninjnknlnmnn
� � ¼ 1

3 � 5 � 7 dindjklm þ djndklmi þ dkndlmij þ dlndmijk þ dmndijkl
� � ¼ 1

105
dijklmn

. . .

ð9:107Þ

We return to the expression for the power of contact forces and contact couples
at intergranular contact, Eq. (9.105), and compute its average. For

k ¼ 2Rg

a
¼ 3 ) a ¼ V

S
¼ 2

3
Rg ð9:108Þ

and

PðnÞ ¼ 3 rkiCli þ lkiKlið Þnknl ð9:109Þ

we get finally,

PðnÞ
D E

¼ P ¼ rijCij þ lijKij ð9:110Þ

where P is the power of internal actions in the Cosserat continuum, cf.
Equation (4.3).

Thus the particular choice of micromechanical variables at the level of inter-
granular contact has allowed us to recover the stress power of the Cosserat con-
tinuum as the isotropic average value of the work done by contact forces and
contact couples at the third body at grain contacts.

9.5 Stress- and Couple-Stress Invariants
for Isotropic Fabric

We define the scalar

tðnÞ ¼ tini ¼ rkinkni ð9:111Þ
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that is the normal component of the stress vector acting on a contact plane with unit
normal vector n.

The vector

tðtÞi ¼ ti � tðnÞni ¼ rkink � rklnknlni ð9:112Þ

is the corresponding shear stress vector, with

tðtÞi ni ¼ 0 ð9:113Þ

By introducing the decomposition of the stress tensor in spherical and deviatoric
part,

rij ¼ sij þ 1
3
rkkdij
 ; skk ¼ 0 ð9:114Þ

we get

tðnÞ ¼ sik þ 1
3
rmmdik

� �
nink ð9:115Þ

tðtÞj ¼ sik djk � njnk
� �

ni ð9:116Þ

By averaging over all probable normal-contact directions in the considered
(REV), from Eqs. (9.115), (9.116) and (9.107) we get the following statistical stress
invariants:

(a) The mean normal traction on contact

tðnÞ
D E

¼ p ¼ 1
3
rkk ð9:117Þ

(b) The mean of the square of the magnitude of the shear traction on contact,

tðtÞi tðtÞi
D E

¼ 1
3

4
5
skpskp � 1

5
skpspk

� �
ð9:118Þ

If we apply Eq. (9.118) for the symmetric part of the stress tensor, then the
average of the square of the shear stress magnitude is related to the usual shearing
stress intensity [34],

smean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

4
5
sðkpÞsðkpÞ � 1

5
sðkpÞsðpkÞ

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5
sðkpÞsðpkÞ

r
ð9:119Þ
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or

smean ¼
ffiffiffi
2
5

r
T ð9:120Þ

where

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
skpskp

r
ð9:121Þ

We recall that in case of a Boltzmann continuum the shearing stress intensity T
differs but little from the maximum shear stress,

0:87max smaxð Þ�T�min smaxð Þ ð9:122Þ

and is used extensively in the formulation of maximum shear stress criteria.

We repeat the above procedure for the contact couple-stress tensor, lðcÞij , that was
defined above through Eq. (9.97)

lðcÞij ¼ lij þRgejlkriknl ð9:123Þ

Let

mðcnÞ
j ¼ lðcÞij ni ¼ lijni þRgejlkrikninl ð9:124Þ

be the normal component and

mðcnÞ ¼ mðcnÞ
j nj ¼ lijninj þRgejlkrikninlnj ð9:125Þ

The 1st statistical moment of the contact couple-stress tensor lðcÞij is a measure
for the mean contact torsion,

lT ¼ mðcnÞ
D E

¼ lij ninj
� �þRgejlkrik ninlnj

� � ¼ 1
3
lkk ð9:126Þ

We observe that the mean torsion is transported unaltered from the stress field.
This allows us to decompose the contact couple-stress tensor into a spherical and a
deviatoric part as,

lðcÞij ¼ mðcÞ
ij þ lTdij ð9:127Þ

where

mðcÞ
ij ¼ lij þRgejlkriknl � lTdij ¼ mij þRgejlkriknl ð9:128Þ
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With

mðctÞ
j ¼ mðcÞ

ik djk � njnk
� �

ni ð9:129Þ

we can compute the 2nd statistical moment of the deviatoric contact couple-stress

tensor, lðcÞij ,

mðcÞ
mean ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðctÞ

s mðctÞ
s

D Er
ð9:130Þ

In analogy to Eq. (9.118) we have

mðcÞ
mean ¼

1
3

4
5
mðcÞ

kp m
ðcÞ
kp � 1

5
mðcÞ

kp m
ðcÞ
pk

� �
ð9:131Þ

or

MðcÞ ¼
ffiffiffi
5
2

r
mðcÞ

mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
6
mðcÞ

kp m
ðcÞ
kp � 1

6
mðcÞ

kp m
ðcÞ
pk

r
ð9:132Þ

that we call the rolling-contact couple-stress intensity.
Using the definition of the contact couple-stress, Eq. (9.123), we can express

mðcÞ
mean in terms of the couple-stress and stress deviators,

mðcÞ
mean ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðctÞ

s mðctÞ
s

D Er
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

mean þR2
gs

2
mean

q
ð9:133Þ

where

mmean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

4
5
mkpmkp � 1

5
mkpmpk

� �s
ð9:134Þ

We define the corresponding deviatoric couple-stress intensity

M ¼
ffiffiffi
5
2

r
mmean ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
6
mkpmkp � 1

6
mkpmpk

r
ð9:135Þ

and with this notation Eq. (9.132) becomes

MðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MþR2

gT
q

ð9:136Þ
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or explicitly,

MðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
6
mkpmkp � 1

6
mkpmpk

� �
þR2

g
4
6
skpskp � 1

6
skpspk

� �s
ð9:137Þ

The above introduced stress- and couple-stress invariants, can be used in the
formulation of plasticity based constitutive equations for granular media, to express
the ability of the material to provide resistance to external actions due to irreversible
interparticle slip, torsion and rolling, respectively. In case that someone wishes to
generalize plasticity models that incorporate in their formulation the effect of the 3rd

invariant as well, then one could consider the computation of appropriate 3rd order
“moments” of the deviators of the stress tensor rij and the contact couple stress

tensor lðcÞij .
At this point we remark that the present analysis is based on the use of the

transport laws for velocity and force of rigid-body mechanics in the realm of
Cosserat continuum approximation of the mechanics of granular assemblies. This
analysis has resulted in a drastic modification of our previous Cosserat plasticity
models for granular materials [34, 35]. Based on the early work of Besdo [36] on
Cosserat plasticity for ductile materials, in the aforementioned work no distinction
was made between sliding and rolling contacts. To this end an ad hoc definition of a
compound stress was introduced, that had the form,

~rij ¼ rij þ 1
R� eijkljlnl ð9:138Þ

The definition of this extra stress was inspired in turn from Schaefer’s [37]
analogy between Cosserat continuum theory and beam theory. On that basis stress
invariants were computed that resulted in a modified shearing stress intensity of the
form,

~T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 1

R�2 M
2

r
ð9:139Þ

that was used in turn in the formulation of single-yield surface plasticity theories.
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