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Foreword

The original work Théorie des corps déformables of the Cosserat brothers (Eugene
who was a mathematician and Francois who was an engineer) was published in
1909. It was based on differential geometry theory applied to mechanics. Extending
the concepts of Cauchy on continuum mechanics, the Cosserat brothers developed a
theory for continuous oriented bodies that consist not of material points, but also of
directions associated with each material point. They recognized the application
of their theory for representing the deformations of rods and shells; however, their
work was ignored for half a century. New interest in Cosserat continuum theory
arose with the rebirth of micromechanics in the 1960s. Different names have been
given to Cosserat theory (e.g. micropolar media, oriented media, continuum theo-
ries with directors, multipolar continua, microstructured or micromorphic continua).
The state of the art at this time was reflected in the collection of papers presented at
the historical IUTAM Symposium on the “Mechanics of Generalized Continua”, in
Freudenstadt and Stuttgart in 1967 (E. Kroner, ed, Springer-Verlag, Berlin, 1968).
There is no doubt that Cosserat continuum theory is mostly suitable for describing
the kinematics of granular media; this was clear in the minds of the scientists of this
first period, among whom Mindlin (Micro-structure in linear elasticity. Arch. Rat.
Mech. Anal, 10, 51-77, 1964) is the most prominent proponent. However, early
applications of Cosserat theory for the description of the mechanics of granular
media were less encouraging, as it appeared that Cosserat effects are negligible
when the dominant wavelength of the deformation field is large as compared to the
grain size.

New interest appeared in the 1980s when the link was made by H. B. Miihlhaus
and I. Vardoulakis between Cosserat continuum description and strain localization
in their seminal paper: The thickness of shear bands in granular materials
(Géotechnique, 37(3):271-283, 1987). Later, advanced experimental testing and
discrete element model simulations evidenced significant grain rotations inside the
shear band.

In the last 30 years, an important literature was published on Cosserat continua
with applications to geotechnics and geomechanics (e.g. borehole stability,
soil-structure interaction, layered and blocky rock mass, slope stability), structural
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geology and geophysics (e.g. mechanics of folding and faulting, fault mechanics),
structural mechanics (e.g. masonry structures) and more generally in applied
mechanics for representing the behaviour of heterogeneous and periodic materials
or structures. These developments were associated with studies on constitutive
modelling and advanced numerical models among which I. Vardoulakis and
co-workers made significant and innovative contributions. I. Vardoulakis also
brought clarifications in highly debated issues on the applicability of Cosserat
continuum theory to granular materials with respect to asymmetry of stress in
granular media, upscaling methods for defining stresses and couple stresses from
contact forces, micromechanical interpretation of stresses and couple stresses.

Despite the fact that Cosserat continuum models are becoming more and more
popular for applications in various fields of mechanics, the basic concepts of the
theory are rarely taught in graduate schools. Maybe this is due to the lack of a
comprehensive textbook clarifying the basic concepts of Cosserat continuum the-
ory. In 2009, Prof. Vardoulakis started to write this work on Cosserat continuum
mechanics and mechanics of granular media, emphasizing its sound mathematical
formulation based on continuum thermodynamics. An original use of the von Mises
motor mechanics was introduced, for the compact mathematical description of the
mechanics and statics of Cosserat continua. This book contains numerous examples
and exercises and addresses postgraduate students and researchers. 1. Vardoulakis
intended to teach these topics in several advanced graduate and doctoral pro-
grammes over the world. The first part of the textbook was almost complete in
September 2009 when Prof. Vardoulakis passed away in a tragic accident. With the
approval of his family, the book was prepared for publication in Springer series
“Lecture Notes in Applied and Computational Mechanics”. We believe that it will
be of great use for scientists and engineers for addressing advanced multi-scales
problems in mechanics.

Paris, France Jean Sulem
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Chapter 1 )
Introduction Check or

Abstract This chapter succinctly describes the need for a compact representation
in order to describe continua with higher degrees of freedom than the classical
translational ones.

There is a continuing discussion concerning the “origins” of the so-called
advanced-continuum theories, such as the Cosserat Theory. A footnote in a paper
by Mindlin reveals the learned opinion on the subject by M. A. Biot, who gives the
credit to Cauchy." At any rate as precursors of the Cosserat theory are mentioned in
the literature the theory of Lord Kelvin concerning the light-aether and the works of
W. Voight on the physics of crystalic matter [1, 2]. A historical note on the subject
can be found in the introduction of the CISM Lecture on “Polar Continua” by
Stojanovi¢ [3].

What is the major difference between classical continua and Cosserat continua?
Classical continuum mechanics is based on the axiom that the stress tensor is
symmetric. According to Schaefer [4], it is Hamel [5] who has named this statement
the Boltzmann axiom, since it is Boltzmann who has pointed first, already in the
year 1899, to the fact that the assumption about the symmetry of the stress tensor
has an axiomatic character. Thus, the Mechanics of continua with non-symmetric
stress tensor may be termed also as non-Boltzmann Continuum Mechanics. Such a
theory is the theory of the Cosserat continuum, that originates from the seminal
work of the brothers Eugéne and Francois Cosserat [6]. This work is a difficult
reading that was made known to the general continuum mechanics community
through the works of Sudria [7], published in 1935, and through the famous 1958
paper of late Professor Gilinther [8], who presented the subject using modern tensor
notation.

A 3D Boltzmann continuum is a continuous manifold of material points that
possess 3 degrees of freedom (dofs), those of displacement. The Boltzmann con-
tinuum is juxtaposed to the Cosserat continuum, that is in turn a manifold of
oriented rigid particles, called “triedres rigides” or rigid crosses, with 6 dofs,

Cauchy, A. L. (1851). Note sur 1’équilibre et les mouvements vibratoires des corps solides.
Comptes-Rendus, 32, 323-326.
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2 1 Introduction

namely 3 dofs of displacement and 3 dofs of rotation. This basic property of the
Cosserat continuum has prompted Schaefer [9] to propose the use of the von Mises
motor mechanics [10, 11], for the compact mathematical description of the
mechanics and statics of Cosserat continua. In 1967 Schaefer remarked “Heute, im
Abstand von mehr als 40 Jahren, muss man feststellen, dal von dieser
Motorrechnung nur in wenigen Féllen Gebrauch gemacht worden ist; sie ist fast in
Vergessenheit geraten”.> Schaefer’s complaint is still true today, more than
40 years after the publication of his paper. To this end we use here some basic
concepts of motor algebra [12, 13] and motor calculus [9, 14, 15] and analysis [14],
as applied to rigid body mechanics and to Cosserat continuum mechanics, with the
aim to make the analogy more transparent between the micromechanics of
rigid-granular media and Cosserat continuum mechanics. The analysis is restricted
here to infinitesimal particle displacements and rotations. Incorporation of finite
rotations [16] and introduction of non-Abelian motor calculus [17] lie outside the
scope of this textbook.

The present work is meant as an addendum to a standard Continuum Mechanics
course and is addressed to post graduate Students and Researchers. The reader must
have been exposed to the basic concepts and notions of Continuum Mechanics [18,
19]. Some sections in the present textbook are inspired by the book of Becker and
Biirger [19], that follows the German tradition of presenting the subject.

In terms of notation we use mainly Cartesian coordinates, bold face letters for
vectors and the Gauss-Einstein summation convention over repeated indices.
However, some sections are developed in general fixed-in-space curvilinear coor-
dinates, in order to illustrate some fine but important details of the mathematical
structure of the Cosserat continuum theory [8].

References

1. Voigt, W. (1887). Theoretische Studien iiber die Elastizitdtsverhdltnisse der Krystalle.
Abhandlungen der Mathematischen Classe der Koniglichen Gesellschaft der Wissenschaften
in Géttingen, 34, 3—100.

2. Voigt, W. (1894). Uber Medien ohne innere Krifte und iiber eine durch sie gelieferte
mechanische Deutung der Maxwell-Hertz’schen Gleichungen. Annalen der Physik, 288, 665—
672.

3. Stojanovié, R. (1970). Recent developments in the theory of polar continua. CISM Lectures.
Springer.

4. Schaefer, H. (1967). Das Cosserat-Kontinuum. Zeitschrift fiir Angewandte Mathematik und
Mechanik, 47, 485—-498.

5. Hamel, G. (1921). Elementare Mechanik. Zeitschrift fiir Angewandte Mathematik und
Mechanik, 1(3), 219-223.

6. Cosserat, E., & Cosserat, F. (1909). Théorie de corps déformables. Paris: Librairie
Scientifique A. Hermann et Fils.

2“T0day, at a distance of more than 40 years, it must be acknowledged that this motor mechanics
has only been used in a few cases, it has almost fallen into oblivion”.
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Chapter 2 )
Rigid-Body Mechanics and Motors ki

Abstract This chapter lays down the fundamental representation concepts that will
be used in the book thereafter. It eventually defines the concept of a “von Mises
motor”, which is a compound vector including force and moment vectors. This
compound representation of forces and moments in turn defines a geometric space/
representation, where all the balance laws are going to be formulated upon. It
continues by laying the basic theorems that will be used to formulate the Cosserat
continuum, together with the appropriate kinematic fields conjugate to the “motor”
vectors that are naturally called “kinematic von Mises motors”. Such a kinematic
motor is a compound vector including linear velocity and spin (angular velocity),
fully describing a rigid body motion in the new reduced geometric representation.

In the Mechanics literature we can find various ways of representing rigid-body
statics and kinematics. Starting from elementary geometric statements taken from
vector mechanics, we introduce here the concept of motor as applied to rigid body
mechanics with the aim to reach in later chapters a better understanding of the
micromechanics of Cosserat continua.

A motor is the synthesis of two words, moment and vector. The word was coined
by Clifford [1] in his Preliminary Sketch of bi-Quaternions (1873), and was used by
Richard von Mises [2, 3] in the sense given to it by Study [4] in his Geometrie der
Dynamen (1903). As also pointed out by Schaefer, the paper of von Mises is
another difficult to read reference. Note that a section on motor algebra, as an
algebra of duals, and its application to rigid-body mechanics can be found in the
textbook of Brand [5] and an introductory chapter related to the so-called dynams'
can be found in the more recent book of Talpaert [6].

'In German literature this is called Dyname, a term that stems from the Greek word dvvopig; in
French literature it is called rorseur.

© Springer International Publishing AG, part of Springer Nature 2019 5
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6 2 Rigid-Body Mechanics and Motors

2.1 Some Definitions from Vector Mechanics

2.1.1 Line Vectors

Geometrically, a vector is defined by the following two statements: (a) Every
ordered pair of points {A,B} in an Euclidian space defines a vector, denoted as

a = AB. (b) All ordered pairs of points that can be brought into congruence through
a parallel translation define the same vector. From this definition follows that all
vectors can be mapped on the set of pairs of points that result by connecting all
points P in space with a common origin O. This means that in the three dimensional
Euclidian space 'E® we have as many vectors as points, namely co°.

Thus, any vector r is represented by the point vector R = SP or, for fixed
Cartesian coordinates with the origin at point O, by the (3 x 1)-column of the
coordinates of the endpoint P(x;) (Fig. 2.1),

— X1
I'<—‘f|:{:OP:)Ciei<—> X2 (21)
X3

where e; are the Cartesian basis vectors.

Richard von Mises in his paper on Motor Calculus, [2, 3] has pointed to the
well-known difference between a vector and a beam,’ the latter being a term
originally introduced by Study [4]. The definition of a beam is as follows: (a) Every
ordered pair of points {A,B} in space defines a beam. (b) All ordered pairs of
points that can be brought into congruence through a parallel translation along their
axis (¢), define the same beam.

We recognize from this definition that a typical example of a beam is the
line-force, as this is used within the frame of rigid-body statics. Indeed, the force in
rigid-body statics is not a vector in the usual sense but a sliding vector, i.e. a
line-vector, denoted as F () that can slide along its axis or line of action (&). From
the definition follows that all beams can be generated, if we connect all points P in
space with points O that lie on one and the same plane (E); Fig. 2.1. This means in
turn that in ‘E> we have as many beams as points in space and points on a plane,
namely oo’.

As already mentioned above, a line force with axis (¢) is denoted as F©)_ For any
point A € (&) we define a fixed force, denoted as FA, that is attached to the point A

and corresponds to the ordered pair of points {A, B}; Fig. 2.2. Obviously F) asa
sliding vector is the totality of all these point-fixed forces,

2German: Stab.
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\ (8)

R=0P
(0]
(E)
Fig. 2.1 Vector and “beam”
(&) // ()
Fig. 2.2 Fixed force as a point difference
F) = {FA\A € (e) AB € (g) :|I3A| = ‘AB‘ = const.} (2.2)

We can always define a vector F, that can be brought into congruence with the
“pbeam” F), such that F®) C F. This vector F has a unique point vector repre-

sentative, f = OB’, that results by a parallel translation of any of the FA to the
origin. Alternatively f can be seen as the point-vector that results as the difference

between the point vectors OA and OB that define the endpoints of FA,

f=OB' =O0B—O0A = (b — a;)e; = fre; (2.3)

We consider now a sliding force F (&), with axis (&), and we select a represen-
tation of that force through the fixed force F, with endpoints the oriented pair
{A,B} € (¢) (Fig. 2.3). The moment of the force F(*) with respect to a point O is
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/

i (&)

0%y X X, X

Fig. 2.3 Definition of the moment of a force

the vector product of the position vector OA and the point force vector FA,
denoted as

MO = OA x F (2.4)

If f = OB’ is the point vector that is assigned to the fixed force FA, Eq. (2.3),
then the moment of the force F() with respect to point O is computed from the
vector product of the position vector of the point of attachment of FA Ry = O_A,

and the point vector f = OB’ that is assigned to the fixed force FA,

M° = OA x FA = Ry x f = eeiafi (2.5)

where {e|,e;,e3} is a right-handed Cartesian basis, a; and f; the Cartesian com-

ponents of the vectors Ry = OA and f =OB’, and ¢ is the corresponding
Cartesian permutation tensor,

Lif s (i, k) = eyel(1,2,3)
gjp =4 —1 if : (i,j,k) = cycl(2,1,3) (2.6)
0 else

It can be easily seen that the moment vector M© depends on the choice of point
O and is independent of the choice of the point A of attachment of the force, since:
(a) M° is normal to the plane (O,¢), (b) MP is oriented in such a way that the
system of vectors {Ra,f,M} is right-handed. (c) The magnitude of MP is com-
puted from the magnitude of the force, F,

F = IF = [F| = [F) = || = 1] = VA7 27)
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The distance ¢ of the reference point O from the axis (&) of the force is,
0= ‘OA‘ sin ¢ (2.8)

and,

[M°| = |OA|lf|sin ¢ = If|¢ (2.9)

The orientation and magnitude of the moment vector follow from the geometric
representation of it as a surface element vector, as shown in Fig. 2.4,

- - - é é &

[M°| =0 =0A x OB' = |a1 @ a (2.10)
h h f

|M°| = (OAO'B) = (OA)(OB) sin 0. (2.11)

2.1.2 Force-Couples

Let F = F®) and F' = F'*) be two forces with (&) and (¢') as their axes respec-
tively. For any two points A C (¢) and A’ C (¢'), the corresponding point-fixed
forces are denoted as FA C F®) and F'A' C F'®) and the corresponding force

vectors are F and F'. As shown in Fig. 2.5, we define a force-couple (F*, F'~') as a
set of opposite forces with parallel axes (&) and (¢')

F =—F, ()//() (2.12)

By selecting an arbitrary origin O, we can compute the moment of each of the
two forces that make up the considered force-couple as,

M° = OA x F* (2.13)

Fig. 2.4 The moment vector
as a surface element vector
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Fig. 2.5 Non-collinear
force-couple

(") /(e)

M® = OA’ x F'N (2.14)

We define the moment of the force-couple (F,—F) to be the sum of the
moments of its components. This is a vector that lies normal to the plane (g, &) of
the force-couple and does not depend on the choice of the origin O (Fig. 2.5),

M=M°+M° =R, x f+Ry x (—f) = (Ra —Ry) x f (2.15)
or
- SA
M =AAXF (2.16)
with
M= |M|=F¢ (2.17)

where F is the magnitude of the force F and / is the distance between the two
parallel axes. From Eq. (2.17) follows that with £ = 0 a co-linear couple of forces
has zero moment.

We remark that two force-couples are in equilibrium, if their moments are
opposite,

M +M,=0 & M, =-M, (218)
On the other hand two force-couples are equivalent, if their moments are equal,
M=M, & M|—M, =0 (219)

Based on these remarks, we conclude that the moments of two force-couples can
be added.
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2.2 Vector Statics

2.2.1 Reduction of a System of Forces

We start our consideration with a system of line forces {F LE, . } that are acting

on a given rigid body B in 'E* along their axes (¢;); Fig. 2.6. In order to reduce

these forces into a minimal set, we select an arbitrary point O and an arbitrary plane
(E) in space, such that the point O does not lie on the chosen plane (E).* The point
O and the plane (E) are called the reduction point and the reduction plane,
respectively.

We decompose the force F; into a force F I.O, that is attached to point O, and a
component F/ that lies on a line (&) C (E), that results as the intersection of the
plane (E) and the plane (IT) = (O, ¢;); Fig. 2.7. Line (&) intersects line (¢;) at point
O, and with that F/°" C F/. The axis of 1::"? is the line (&;) = (0OO’), thus I?lo CF;
In that sense, the decomposition of force F ; 1S unique,

7

i+ F, (2.20)

l

el

B =

The above procedure can be repeated for all forces of the considered system
{ﬁl,ﬁQ, .. }

Let F° be the resultant of all components F io, that are set to be attached to point
O (Fig. 2.8),

FP=%"F (2.21)

The resultant of all components F/ with axis in the plane (E) may be either a
single force F’ or a force-couple (ﬁ/A, —F“”B), such that, F" = —F'. As already
said, the moment M’ of a force-couple does not depend upon the choice of the

origin and is said to be a “free” vector, meaning that M’ is a vector, since its axis is
restricted only to be perpendicular to the plane (E),

M =BA x F'A (2.22)

Thus, as a result of the arbitrary choice of the reduction point O and of the
reduction plane (E), the system of forces {13 1,132, .. } is reduced into ether: (a) A

system of two skew forces, {I_*_: O F }, with the axis of F° passing through point O

This section is mostly inspired by the presentation of the subject, given by my Teacher, late
Professor Bitsakos (I'twpyikdémovroc K.X. xor Mmitodkoc Al, Teyxviky Mnyoviki B’,
T'pagpoocrtatiky, Ekd. Texvikod Empeinmpiov e EALGSog, 1967.).
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Fig. 2.6 System of line forces acting on a rigid body

(&)

Fig. 2.7 Decomposition of a force into a force passing through a point O and a force lying in a
plane (E)

‘EO
@ (b)

(E)

Fig. 2.8 Reduction of a force system into two a force passing through the reduction point O and
a a skew force or b a force-couple, lying in the reduction plane (E)
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and the axis of F’ lying in the plane (E), or (b) a system of a force FO and a couple
M, denoted as {Ij'“ O,M’}, with the axis of FO passing through point O and the
couple M’ being normal to the plane (E).

For the given system of forces {I_f 1, 12 2. .}, the above described reduction
strategy introduces an equivalence class of oo® reduced systems {I? O F } oor
{I:;” O, M'}; their multitude being determined by the multitude of points O and planes
(E) in 'E%.

The system of the two skew forces {1:5 O F } can be further reduced into a force
passing through point O and a force-couple as follows (Fig. 2.9): Let the axis of the

force F’ in the plane (E) be line (¢/). From point O we draw a line (¢”) that is
parallel to (¢') and along this line we add at point O the self-equilibrating

force-doublet (F”©, —F"°) such that the vectors that correspond to the forces F’
and F"° are equal (Fig. 2.9) to a vector F'. With this construction the original pair
of skew forces {F©, F(®)} is replaced by the resultant force,

SO0 = FO 4 F"0 (2.23)

that lies in the plane (&, ¢”) and is passing through point O, and the force-couple
(F',—F") that is made of the force F’ with axis line (¢') in the plane (E) and the

force —F"”, with axis line (¢”)//(¢), passing through point O. The moment M” of
this force-couple is a vector, that lies normal to the plane (E') = (O, &),

M" =00’ x F' (2.24)

(E)

Fig. 2.9 Further reduction of a system of two skew forces
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Note that in both cases the force that is attached to the reduction point O is equal
to the resultant force of the considered system,

$O = FO 4 O (2.25)
or
50 =F° (2.26)

The above considerations resulted in the following general theorem:

Given is a system of forces {F“ LFy, .. } that are acting on a rigid body, a plane
(E) and a point O outside this plane. The given system of forces can always be
reduced into a force that is passing through the point O and is equal to the resultant
force of the system, FO, and a force-couple M®) that is either normal to the plane
(E) (M® = M) or is normal to the plane (E') that is made of point O and the axis
of the resultant force in the plane (E) (M®) = M").

We note that if the resultant force and the resultant force-couple are coplanar,
then the vector product of the corresponding vectors vanishes,

S-M=0 (2.27)

In this case the original system of forces can be reduced into a single force as
indicated in Fig. 2.10.

In general a system of forces {F s, } is reduced into a single force, if there
exists a point O in space, such that the moment of these forces with respect to this
point vanishes (Fig. 2.11),

MO =3"0A; x FN =0 (2.28)

j/"‘n
Q
e

@) ' N (A) (A)
5 -F N _F
J\ [\ \

(e) () (8) (o) (Co)

Fig. 2.10 Synthesis of a coplanar system, consisting of a force and force-couple, into a single
resultant force
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Fig. 2.11 Geometric layout (&)
for the formulation of the '
equilibrium equations

In this case the system of forces is said to be in equilibrium, if in addition the
resultant force of that system vanishes,

S=> Fi=0 (2.29)

2.2.2 Transport Law of Forces: The Dynamic Motor

Let us consider a fixed force P acting at a point P of its axis (¢); Fig. 2.12. We
denote the corresponding point vector by F'. If we consider now a force that arises

through parallel translation of FP to another point Oy, resulting to the force FOr
with axis (&1)//(e), then

FO =F° (2.30)

The force FP can be replaced by the force FO and a co-planar force-couple
(F?, —F©°1) with moment,

M° =OP x F (2.31)

We note that for all points P’ C (¢) along the axis of F¥,
MP — PP xF =0 (2.32)
Thus, by construction the systems {FO1, M®'} are identical for all O; C (&) and
are all reducible to the original system {1_5 P MY = 0} for all P’ C (&). In this case

we say that the given force is transported from point P to point O;.
We may now select another reference point O, with,
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Fig. 2.12 The transport law of a line force

M% = 0,P x F* = (o;o1 + oTP) x FP = MO 1 0,0, x FO  (2.33)

The above results are summarized into the following transport law for a single
line force, Egs. (2.30) and (2.33),

FO =F% =F (2.34)

M® = M° + 0,0, x F% (2.35)

Equation (2.34) means equality of the force vectors that correspond to the point
vectors acting at arbitrary points O; C (¢1) and O, C (&) along the axes
(e1)//(e2). We remark that in the considered case, of the transport of a single line
force, we have always that,

F-M°=0 (2.36)

The vector-moment compound,

p= ( Af()) (2.37)

is called a proper von Mises motor, if the force F and the couple M° obey the
transport law, Eqgs. (2.34) and (2.35), and the normality condition, Eq. (2.36).
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Any system of forces acting on a rigid body can be reduced to a single resultant

force SO and a couple M (E) by the choice of a plane (E) and a point O outside that
plane. If we select a different reduction point, say point O, then the given system is

reduced to the force SO' that obeys the transport law, Eq. (2.30),
§Or =8%=§ (2.38)

and to the couple,4

MO =M® 1 0,0 x 5° (2.39)

We observe that in this case the normality condition, Eq. (2.36), does not apply
necessarily.
A compound of the two vectors,

p= ( A‘;o> (2.40)

will be called a von Mises motor, if the vectors S and M© fulfil the transport law,
Egs. (2.34) and (2.35). In particular the motor, defined above, is called a dynamic
motor.” We have shown that a system of forces acting on a rigid body is always
reducible into a dynamic motor.

2.2.3 Central Axis of a System of Forces and Axis
of a Motor

Consider a system of forces {F“ LFy, .. .} acting on a rigid body and let
{Fy;F5,...} be the corresponding system of (free) force vectors. Let the resultant
force vector be,

S=>F (2.41)

Following the above described procedure, the system may be reduced to a fixed
force SO attached to a point O and a couple M (E)Consider two points O; and O,.
According to Eq. (2.39), if we transport the force S to these points, then the
moments of the system of forces in reference to these points are,

“This is true because two force-couples can be added by adding their moments.
S Avvoyug, Greek for dynamic action.
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MO =M® 1 0,0 x5° (2.42)
M° = M® 1 0,0 x 5° (2.43)

Their difference is independent of M (B),

MO — MO = (ofo —070) x §° = 0,0, x§ (2.44)
Thus
M =M° +Ry x S (2.45)

We remark that the condition,
M = M (2.46)

implies either of the following two possibilities: (a) § = 0; i.e. the original system is
equivalent to a planar force-couple. (b) The line (0,0,) is parallel to the axis of
resultant force. With

(R21 X S) -S = RZI(S X S) =0 (247)
from Eq. (2.45) we get,
M .S =M .S (2.48)

Thus for a given system of forces {13 Ly, .}, besides their resultant force
S = >, F;, invariant with respect to changes in the position of the origin is also the
projection of the resultant moment vector on S.

Let e and s be unit vectors with the same direction as the resultant force vector

S and the point-difference vector Ry; = 0,01, respectively

S
s=—2_ Isl=1: VS §=85>0 2.49
— 2.49)
RlZ
— 2 1. VRn Ran=rn>0 2.50
r R R |r| 2-Rp=rn (2.50)

From Eq. (2.45) we get

§ X MO =5 x M® +5 x (Ry x §) =5 x M%' —s x (r x s)rnS (2.51)
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We assume now that the points O; and O, are on a plane (IT) that is normal to
S (Fig. 2.13). At point O; we attach a right-handed ortho-normal basis (s,r,n).
With
s X (rxs)=sx (—n)=—(-r)=r (2.52)
we get from Eq. (2.51)
s X M9 =5 x M?' —rr;pS =5 x M°* — R3S (2.53)

or

S x M9 =8 x M° —R,$? (2.54)
Consider the equation,
Ry, = %s x MO (2.55)
This allows to determine a point O, C (II) such that,
S x M% =0 (2.56)

This means that the moment of the considered system of forces with respect to

that point O, M = Zi O;A,- X F?", is a vector that is parallel to the resultant
S =", F;, i.e. also normal to the plane (IT). The same property holds for all points

Fig. 2.13 Construction of the
central axis

(Im
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along an axis (o) that is normal to the plane (IT) and passes through the point O,.
For all these points P C (o) the original system is reduced into a force resultant
S and a planar force-couple with its plane normal to S. The corresponding motor
has the property,
S P
P={ PC(ax):SxM =0 (2.57)
Such an axis (o) is called the central axis of the given system of forces or simply

the axis of the corresponding motor. From Eq. (2.55) we get the vector equation for
the axis (a) of the motor, Eq. (2.57):

- 1
0,0, xS:?(S x M°) x § (2.58)

2.3 Vector Kinematics

2.3.1 Rigid-Body Motion

We summarize here some of the basic definitions and theorems of finite rigid-body
kinematics that are proven in standard books of classical mechanics.

Definition A point of a body is called a fixed point, if after the application of the
motion this point is mapped onto itself.

Theorem 1 If a motion has four fixed points, that are not on the same plane, then
the motion is an identity mapping of all points onto themselves.

Theorem 2 If a motion has a fixed plane and the motion is not the identity
mapping, then this motion is not a real motion; it is a pseudo-motion that corre-
sponds to a reflection of all points of the considered body with respect to the given
fixed plane.

In other words if we exclude pseudo-motions we have,

Theorem 3 The position of all points of a rigid body is determined by the position
of three of its points, provided the points are not collinear.

Theorem 4 [f a motion possesses a fixed straight line, then this motion is a rotation
with respect to that line.

Theorem of Euler: Rotation about a single fixed point is equivalent to a rotation
about an axis that is passing through this point.

If no constraints are attached to the body, then it is said to be free. Free rigid
body kinematics are summarized in the famous,

Theorem of Chasles [7]: A rigid body can be displaced from one arbitrary
position to another by means of one translation and one rotation about an axis.
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In general this can be done in infinitely many ways, but the axes of rotation will
always be parallel and the angles of rotation equal, if the axes have the same sense.
By some authors [8] this theorem is originally attributed to Mozzi [9] and is
considered as the basis of the mechanical theory of screws [10].
If a body makes a translation and then a rotation about an axis parallel to the
translation, then the body is said to have made a rwist.

Theorem 5 A body can always be displaced from one arbitrary position to another
by means of a twist and this can be done in only one way.

2.3.2 Instantaneous Rigid Body Motion:
The Kinematic Motor

Let
OP = R(X,r) (2.59)

be the position vector of a material point X € B as function of time, measured with
respect to a fixed-in-space origin O. In time ¢ = ¢ + At the material point is moved
to a new position,

OP' = R(X,7) = R(X, 1+ Ar) ~ R(X, 1) + %—?At (2.60)

Since the body is rigid, the distance between two arbitrary points P and Q

remains constant. In general the symbol X will be omitted from the argument list of

the position vector, meaning that, if not otherwise explicitly stated, the vector R(z)

will always follow the same material point. In that sense the velocity of the material
point X, which at time ¢ was at point P, is given by

. OP'—OP dR
y = lim =

—_— = 2.61
At—0 At dt ( )

A rigid-body motion is called a translation, when the velocity is the same for all
points of the considered body. In this case all points of the body are displaced
equally during a given time interval (Fig. 2.14),

PP =dR =vdt v =constVX € B (2.62)

In general however, the velocity will be not the same for all points of a moving
rigid body. For example, if the rigid body is rotated around a fixed-in-space axis
(o), then all its material points will move along circles, with their centers on that
axis (Fig. 2.15). At the instantaneous position P of a material point at time ¢ we
introduce the corresponding polar basis vectors, e, and e,. The velocity vector is
then purely circumferential,
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Fig. 2.14 Translatory motion of a rigid body

Fig. 2.15 Rotation around a
fixed axis

VP = Vy€p (2.63)

where

(2.64)

Ve =T,

CU:E

r is the radial distance of the point P from the axis and o is its angular velocity or
spin.
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Fig. 2.16 Rotation around a
fixed point

In view of Euler’s Theorem, in case the motion is taking place around one fixed
point A, we consider that at any instant this motion will be a rotation around an
instantaneous axis (o), that will be passing through the fixed point A. If e, is the
unit vector along this axis of rotation, pointing in the positive sense, then according
to Fig. 2.16 we have,

r = (P/P) = |RAP| sinf = |ew X RAPl (265)
and
dRp = rdoe, (2.66)
Thus,
dRp = (ea, X RAP)dQD (267)

One can introduce an infinitesimal rotation vector de,
do = dpe,, (2.68)

and the spin vector w,
w=—=we, (2.69)

In that case, we get from Eq. (2.66),

dR
d—tp =w X RAp (270)

Vp =
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At this point it should be emphasized that the infinitesimal rotation d¢ and the
corresponding spin w = d¢/dt are vectors. This is not true however for finite
rotations.

In the most general case of a free rigid-body motion, we select an arbitrary point
M of the rigid body and we place a coordinate system A(x’) fixed on that point and
with its axes always parallel to the axes of the fixed-in-space coordinate system.
Since the point M is fixed relative to the system A(x}), the motion of the body
relative to that system is a rotation about A. The instantaneous relative motion will
be therefore an instantaneous rotation about an axis («) through A.

Let P be an arbitrary point of the considered body. The velocity v* of this point,
with respect to the fixed-in-space system O(x;), can be seen as the sum of the
velocity vA of point A, with respect to the fixed-in-space system O(x;), and the
relative velocity vAF of point P, with respect to point A,

e o (2.71)

Equation (2.71) is illustrated in Fig. 2.17, where the velocity decomposition is
shown for a plane rigid-body motion.

According to Eq. (2.70), the relative motion is a rotation around an axis () D A
with spin vector w,

v =w x Rypp (2.72)

Thus,

W=v24w x Rap=v*—Rpap x w=v>+Rps x w (2.73)

P s velocity plan
6'

Fig. 2.17 Plane rigid-body motion and velocity plan
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With,
Rea = Ra — R = PA (2.74)
we get,
yP =1 + PA xw (2.75)

According to Chasles’ theorem, if we select another reference point, say B, the
instantaneous axis of rotation (f§) will be parallel to the line (o) and for any
infinitesimal transition the angle of rotation d¢ will be also the same. This means in
turn that the spin vector is invariant to the selection of the reference point,

wB=wh =w (2.76)

With respect to reference point B, the velocity of the arbitrary point P is com-
puted in analogy to Eq. (2.75),

yP =B + PB xw (2.77)

If we subtract Egs. (2.77) and (2.75), and utilize Eq. (2.76), we get the
well-known transport-law for the velocity in rigid-body kinematics,

wB=wh =w (2.78)

vB = A L BA xw (2.79)

The compound of the two vectors,

k= (:/j) (2.80)

will be called a kinematic von Mises motor, if the vectors w® and v* fulfil the
transport law, Eqgs. (2.78) and (2.79). We have shown that the velocities of the
particles of a rigid body constitute a kinematic motor. We remark that in case of a
plane motion (Fig. 2.17) we have that,

w-vh =0 (2.81)

In this case K is a proper von Mises motor. However, as we see in the next
section, this not the only possibility.
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2.3.3 Central Axis of Rotation: Twist

The above reduction allows us to transfer the result concerning the central axis of a
system of forces directly to the characterization of rigid-body kinematics:

Theorem 6 The kinematic motor, Eq. (2.80), has in general a unique axis of
rotation (o), called the central axis of rotation, such that all points along this axis
move parallel to it and the resulting motion is a twist or proper helicoidal motion.

In analogy to Eq. (2.55) we get the vector equation for the central axis («) of the
motion,

- 1
0,0, XWZE(W x vO) x w (2.82)

The general twisting motion of a rigid-body is given by the velocity of trans-
lation of a point O along the central axis, say v© = V, and the angular velocity
vector w that defines in turn its axis of rotation. We use a coordinate system located
at the considered point O and let x; be the coordinate of any point P of the moving
body. Then the velocity at point P is,

vf = Vi — &jixjwi (2.83)

If we chose for example the translational velocity and the axis of rotation to be
both vertical, then

Vi=0nV
’ (2.84)
w; = 55(,0
and with that,
V1 = —&3X0 = —X0
V) = —&3Xj0 = +x1w (285)
V3 = \%4
The position of particles attached to a normal, circular helix is,
X| = a cos ¢
X, =asing (2.86)

X3 = bqb
and their velocity as the helix turns, becomes

Vi = jC,‘ (287)
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b
x, 4

a X
bd {
X
b
= e dl / X P(a,$)
__/’/-l = R / . \
( & ¢ N ( J -
NG P L - . a X,
S = ;
T— - - — \ //
N
Fig. 2.18 Velocity of particles attached to the helix, Eq. (2.86)
where .
V=X =—asing¢p=—asingpw
W=k = facosdpd = +acosPw (2.88)

V3 =X3 = b(jﬁ =bw
The velocity is decomposed in a horizontal and a vertical component (Fig. 2.18),
v=a-+b (2.89)
The component a is parallel to the O(x;,x,)—plane,
a—=vie +wne (2.90)

and is tangential to the circle O(a) at point P(a, ¢), pointing in the direction of
increasing ¢; its modulus is

la| = aw (2.91)
The axial component of the velocity is

b = bwes (2.92)

2.4 Motor Statics

2.4.1 Axiomatics

The statics of rigid bodies may be developed axiomatically and independently of
dynamics [5]. The axioms of rigid body statics are elegantly presented by using the
mathematical instrument of motor calculus.
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Axiom 1 (transmissibility of force): A force acting on a rigid body may be shifted
along its line of action (&) so as to act on any point of that line.

E:(&Z):(JB) WA,B € (&) (2.93)

since
MP =M*1 AB xF=M* VA,Bc (¢) (2.94)
Axiom 2 (addition of forces): Two forces acting on the same point A may be

replaced by a single one, acting at this point and equal to their vector sum.
If,”

E:(JA)AE(‘&'); M2 =Ry x F (2.95)
F = (A‘;,IA)A €(); M =Ry x F (2.96)
Then,
F+F ( AR ) A= ()00 (2.97)
M +M™* =Ry x (F+F') (2.98)

Rigid-body statics uses only Newton’s 3rd law, thus:

Axiom 3 (action and reaction): Rigid bodies interact by pairs of opposed forces.
In order to illustrate Axiom 3, let us consider the two rigid bodies, enumerated by
the index o = 1,2 and denoted as (1) and (2), respectively (Fig. 2.19). According
to Axiom 3, the two bodies interact with a pair of opposite forces (f? A _F A), acting
along a line (&), say realized at a point A € (&). We assume that F* is the force
acted upon body (1) by body (2), and —F* its reaction, i.e. the force acted upon
body (2) by body (1). Let P be a selected point,” say along the line that connects the
centroids K, of bodies (1) and (2). Transport of the interaction force-pair on point
P, produces the following pair of proper motors,

FOP <F‘”P >; FOP . 0P — g (2.99)

Note that in a rigorous but heavy presentation, in the expressions for the vector products one
should use the point vector f instead of the free vector F.

"The selection of the reduction point is arbitrary. However a general rule must be put down if one
wants to produce some useful result.
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P ‘u'{.‘P]
\\ ‘u-:lPJ
Fig. 2.19 Action and reaction between two rigid bodies
(2)p
@p_ (F . P agP _
F“Y*" = (M<2)P>’ F MY =0 (2.100)
where
FVP =F
_ (2.101)
MYP =MA L PA xF; MM =Ry x F
and
FPP = _F
_ (2.102)
M®@P = M®A L PA x (—F); M®* =R, x (—F)
Thus
M®P = _pP (2.103)
and with that also Newton’s 3rd law reads,
FOP — ()P (2.104)

The interaction force pair may by further transported to the centroids of the

considered particles,
(1)
F
FS = 2.105
o (M%l) 2109

(2)
K F
Fp = (M??) (2.106)
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where

F](DI) =F; MEI :M(I)PJr KTP x F (2.107)

FY = F, Mg =MCF 1 KpP x (-F) (2.108)

We note that the lines (¢) and KiP or K,P are in general skew. Thus, F Ilgl and
F' are in general non-coaxial motors.

Assume now that a system of motors is acting on a rigid body. The resultant
action is their motor sum,

F
FX =Y "FX= (MK) (2.109)
p
where
F=>)F,
P

2.110
P

This motor is in general equivalent to two skew line forces.

2.4.2 Equilibrium and Virtual Work Equation

Axiom 4 (static equilibrium): If the forces acting on a rigid body, initially at rest,
can be reduced to zero by means of axioms 1 and 2, the body will remain at rest.

F*=0& F=3) F,=0AM‘=) Mi=0 (2.111)
p p

Let 6xX be the kinematic motor for a virtual displacement of the considered rigid
body,

_K ow
SiK = (5vK (2.112)

where dw and SvX are the corresponding virtual spin vector and virtual velocity
vector of the centroid K, respectively.

The virtual power of the force and couple are defined as the corresponding von
Mises motor scalar product [2, 3],
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5W=EKO5I_€=<A5K>O(§:¥<)=F-5vK+MK-5w (2.113)

Let us consider the case where instead of point K a different reduction point was
chosen, say K. From Egs. (2.44) and (2.79) we get,

M¥ =MX + KK' xF (2.114)

K = oK + KK’ x ow (2.115)
From these expressions and Eq. (2.113) we obtain that,
oW =F- <5v‘<’ + KK’ x 5w> + (MK'+ KK’ ><F) - ow

| - / i (2.116)
=F - WX +F. <KK’ xéw) +M¥ - ow+ <KK’ xF) - ow

Since
F - (KK’ ><5w> :—<KK’ xF) - oW (2.117)

it follows that the value of the von Mises motor scalar product is invariant with
respect to changes in the position of the reduction point,

oW = F¥ 0 0® = FX o 61K (2.118)
Finally, we observe that from the virtual work equation,
owW=0 (2.119)

and for independent variation of dw and 6v¥ we get the equilibrium Eq. (2.111) and
conversely from the equilibrium Eq. (2.111) we get the virtual power Eq. (2.119).
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Chapter 3 )
Cosserat Continuum Kinematics Check for

Abstract This chapter derives the kinematic fields (deformation and deformation
rate tensors) in general curvilinear coordinates, before reducing them to the familiar
forms of Cosserat continuum in Cartesian coordinates. It showcases this way that
the motor calculus approach has the same information as the classical representation
as a limiting case, but can be used in a generic framework. It finishes with the
integrability, compatibility and discontinuity conditions for the considered
representation.

3.1 Motion and Deformation in General Coordinates

Let the position vector of a point in the three dimensional space be denoted as
(Fig. 3.1),

OP =R = Xe; (3.1)

where x' and e; are the underlying Cartesian coordinates of the position vector and
the Cartesian basis vectors, respectively. Let @i(i =1,2,3) denote fixed in space
general curvilinear coordinates, that are related to the Cartesian coordinates through
the transformation,

oy

X = Xi(@)k); w

£0 (3.2)

This transformation allows us to write the position vector as a function of the
curvilinear coordinates @' of the point P

R = R(®) (3.3)

and to introduce at any point in space the local covariant affine basis

OR 1o}
= i R, ('),i i
00 00

8i (3.4)

© Springer International Publishing AG, part of Springer Nature 2019 33
1. Vardoulakis, Cosserat Continuum Mechanics, Lecture Notes in Applied and
Computational Mechanics 87, https://doi.org/10.1007/978-3-319-95156-0_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95156-0_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95156-0_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95156-0_3&amp;domain=pdf

34 3 Cosserat Continuum Kinematics

Fig. 3.1 Cartesian and curvilinear coordinates of point in the plane

We assume that the basis vectors, g,,8,,83, in the given order build a
right-handed system.

Let a Cosserat continuum particle be located at point P(@i). This particle is seen
as a rigid body of infinitesimal dimensions and has the degrees of freedom of
rigid-body displacement and rigid-body rotation. We restrict here our analysis to
infinitesimal motions. The infinitesimal particle rotation is an axial vector and we
emphasize that this statement is not true for finite rotations, that are not considered
here.

The motion of the Cosserat particle is described by its rotation vector, that is in
turn described primarily by its contravariant components (Fig. 3.2),

Fig. 3.2 Dofs of a
2D-Cosserat particle and the
local affine covariant basis

vectors (g;,8,)

®’ = const.

®' = const.
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¥ =y'(0g (3:5)
and its displacement vector, that is described by its covariant components,

u = u;(®)g’ (3.6)
whefe g; and g' are the covariant and contravariant bases respectively at point
P(®").

For the compact description of the Cosserat continuum particle kinematics we
follow Schaefer’s suggestion [1] and we introduce the vector compound,

se=(£9)) - (2%)

It is important to note that the first entry in vector compound, Eq. (3.7), is a
contravariant vector and the second a covariant vector. This distinction will be lost
if we use Cartesian coordinates and we get the false impression that both entries are
of the same nature.

If the Cosserat continuum in the vicinity of a point P(®*) is not deforming, then
the motion in this neighbourhood is that of a rigid body. In this case we have that,

Y(O' +dO) =y(@) = dy=0 (3.8)

since in rigid-body mechanics the infinitesimal rotation vector is independent of the
point of reference. On the other hand, the infinitesimal displacement vector obeys
the transport law of rigid-body kinematics,

u(0' +dO) = u(0)+y(0) xdO'g, = du=y(@) xd®'g, (3.9)
Thus, the kinematic compound in the infinitesimal neighborhood of point

P(O®") is,

PN i _ lp(@)i) = wigi
K =K(©'+d0') = <u<@f>+x//<®f> x d@’g1> B ((ui+eszw"d®’)gi>
(3.10)

where ey, is the corresponding Levi-Civita 3rd-order fully antisymmetric tensor,

V8 i i (k1,m) = cycl(1,2,3)
Ciim = _\/g lf : (k7 l7 m) = cycl(2, 17 3)a 8= det(gl]) >0 (311)
0 else

and g;; is the covariant metric tensor, associated to the chosen covariant basis.
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With,

K —K(O +40) = V8 (3.12)
ug'

from Eq. (3.10) follows that the components of the two vector compounds K (@)
and K(®' +d@') are related as,

lpli — lpi

3.13
), = u; + egf*d@® (3.13)

This means that in case of a locally non-deforming continuum the above
introduced compound K of the two vectors ¥ and u, Eq. (3.7), is a motor in the
sense of von Mises. From Eq. (3.13) follows that the two motors K and K’ are
“equal” or “kinematically equivalent”. This fundamental kinematical property of
Cosserat continua has motivated their application to the mechanics of granular
media. In that case the single, rigid grain is seen as the smallest material unit.

In general the differential forms,

dy = (0" +dO') — y(O) (3.14)

du — (0') x d® g, = u(®' +dO') — (u(©') +y(0)dO'g)) (3.15)

will not vanish. In this case we will say that the neighborhood of the point P(@k ) is

deforming. In compact form the deformation is described by the absolute
differential,

dK(®') = K(0' +d®') — K(0') (3.16)

or by the differential compound,

u(®' +dO’) — (u(0©') +Y(0') x d®'g)) du +dO%g, x ¢
(3.17)
In view of Egs. (3.14), (3.15) and (3.17) we introduce the Pfaffian vector forms
K d®' = dy (3.18)
9.d0O" = du +dO*g, x (3.19)

These forms define in turn the two vectors,
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Ki =, (3.20)
and
yi=uitg Xy (3.21)

We recall that the gradient of a vector is expressed by means of its covariant
derivative,

v =V (3.22)
and
w; = uyg" (3.23)
where (),; denotes covariant differentiation of a vector; e.g.,
aij; = ajj — Fgak (3.24)

and

I, = {]2} (3.25)

are the Christoffel symbols of the second kind.
We notice also that the ith component of the vector product of two vectors is
computed
(x x y); = ewy! (3.26)
Thus, the 2nd term on r.h.s. of Eq. (3.21) becomes,
g x ¥ =g x g = Yreug' = —eny's (3.27)
From Egs. (3.20) and (3.22) we get that,
T (3.28)
and from Egs. (3.21), (3.23) and (3.27) we get that
Vi = (i — ewy')g" (3.29)

With
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K = K;*g; (3.30)

and

Yi = Vikgk (3.31)

The components of the above introduced deformation vectors define the corre-
sponding deformation tensors,

=, (3.32)

Vik = i — €y’ (3.33)

With

. , . k . k. _
dK(©") = (K’>d®’ = ("i g,f)d@’ = V8 N4 |40 (3.34)
Vi Y8 (Mk\i +ewny )g

the deformation that is induced by the vector fields, Eqs. (3.5) and (3.6), is best
illustrated if we introduce the tensor compound,

= K kgl ® ‘//kq‘gk ®g
H= (ngi ) = S (3.35)
Y8 ©8 (ugi+ea')gk @ g

In Cosserat continuum mechanics the compound H plays the role of a
generalized-displacement gradient.

Following Kessel [2], the above observations prompt the definition of a gradient
operator that is applied onto the kinematic motor K and produces the
generalized-displacement gradient,

; - i oo ok
K= (‘Pg;') = H=GradK = xmkg,f@g . (3.36)
ug (up + eV )g' © g

Thus from the 6 placements ' and u; (i=1,2,3) we have generated 18
deformations K;»k and y;. The tensor K'ik, Eq. (3.32), is called the infinitesimal

tensor of distortions; the components K‘(i()i) are called infinitesimal “torsions” and the

rest components are the infinitesimal “curvatures”. We call y,, Eq. (3.33), the
infinitesimal (relative) deformation tensor. Its symmetric part coincides with the
usual infinitesimal strain tensor,
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—_

i) = 5 (Ve + V) = &3 (3.37)
where

&ij = (uk“—l—ui‘k) (338)

N =

The antisymmetric part of y;, coincides with the relative rotation,

Viik] = %(Vik = Vi) = Vi — ik (3.39)
where
1
Wi = ) (Mi\k - uk|i) (3.40)
and
vy = —ep’ (3.41)

Let o* be the axial vector that corresponds to w;j,
k
(J)l'j = —ei,-kw (342)

Then the antisymmetric part of y; is indeed given in terms of the difference of
the two related axial vectors,

7 = e (@ = ") (3.43)

This property justifies the name relative deformation tensor that is given to y;.

3.2 Cosserat Kinematics in Cartesian Coordinates

3.2.1 Strain, Spin, Curvature and Torsion

Let x; be the Cartesian coordinates of a point of a rigid body before the motion and
x} the coordinates of the same point after the motion. We consider two neighbouring
points P(x;) and Q(y;) in the undeformed configuration of a Cosserat continuum,
such that y; = x; + dx;. The material line element that connects these two points is
given by the vector,
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P_Q = dx;e; (3.44)

The positions of points P and Q in the deformed configuration are computed as,

X = x4 u;
, (3.45)
Vi = X; +dx; + u; + Qjudx;
where 0; is the Cartesian differentiation operator,
0
ox (3.46)
Thus
dx§ = y; — x; = X + dx,- + Uu; =+ 6ju,-dxj — ()C,' + Ml') (3 47)
= dxi + @uidxj = ((3,] + @-ui)dxj '
The length of the line element before and after the deformation is
ds* = dx;dx;
ds? = dxidx; = (5,7 + @ui)dxj(éik + Ogu;)dxy (3.48)
= 5kjdxjdxk + (81(%‘ + 8juk + @uiakui)dxjdxk .
~ ds® + 2y dxidx;
where y; is the symmetric part of the relative deformation tensor,
1 1
V) =5 0+ 73) = 5 (O + i) (3.49)

that coincides in turn with common infinitesimal strain tensor in the Boltzmann
continuum,

Vi) = & (3.50)
where

&jj = (8,-14,- + 8,14,) (351)

N —

Let us now consider the antisymmetric part of the relative deformation tensor,

(Ou; — Qi) — e (3.52)

N =

1
il =5 (v =) =
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The antisymmetric part of the transposed displacement gradient is denoted as

wjj = % (Qu; — Ouuy) (3.53)
Thus
Vi) = Wy — @y (3.54)
where
Yy = —epy (3.55)

We may define the axial vector wy that corresponds to wy;,

1
W = —Esijkwij = Wi = g (3.56)

with
O = O gy =1 (3.57)
With this notation Eq. (3.56) becomes,
Vi = Wi — 05 = —&W + eeor = —ep (P — o) (3.58)
Summarizing the above results, we get from Egs. (3.49) to (3.58),
75 = &+ Wy — o) = &5 — e — ox) (3.59)
From the above equation we get,
Vi + i = i T Gk (3.60)
In Cartesian components, from Eq. (3.33) we get
O = 7j; + " (3.61)
From Eqgs. (3.47) we get,
Adx; = dx, — dx; = Qjuidx; = (y; + gy ) dx; (3.62)
and with Eq. (3.60) it reduces to the familiar linear form

Adxi = (Sji + sjikwk)dxj (363)
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Remark
In matrix notation Eq. (3.56) reads as,

0 owpn os 0 —&123003  —&132002
[wj] = |oa 0wy | = |—eu3ws 0 —&2310)
w31 w3y 0 —&10y  —&310) 0
0 —3 (00
= | ws 0 —w (3.64)
—wy W 0

Or in indicial notation

1
Wy = Esmkzakul (365)

Explicitly, in components we have,

1 1
0 = 5811(131(141 =5 (81230hu3 + €1320312) = 3 (Ohuz — Osuz) = w3 (3.66)
1 1
Wy = 582k18kul = 5(823183ul +£21361u3)§(83u1 — O1u3) = 013
| | | (3.67)
w3 = 5831(131(141 =5 (e31201U2 + €321 0h11) = 3 (O1up — Ohuy) = wy;
With,
8ug Buz 6141 81/!3 61,{2 61/{1
tu = | ——— —_——— — 3.68
rotu (8x2 8X3)e1 + (6X3 8x1 e2+ Bxl 8x2 ¢ ( )
we retrieve the well-known result,
1
0= we; = Erotu (3.69)
Note that,
8(1)—18 88u—18 OO0, = l8 aé‘u—le OrOpu; = 0
mm—zmklmkl—zkmlkm”l 2mklmkl 2kmlkm”l—

1
= — & Om Oty + Eemk[akamul =0 = uonOu=0 = 0,w,=0

2
(3.70)



3.2 Cosserat Kinematics in Cartesian Coordinates 43
or symbolically,
divw =0 (3.71)

Equation (3.71) follows directly from Eq. (3.69), since for any vector u holds
the identity,

divrotu =0 (3.72)
Note also that in general the divergence of the mean torsion is non-zero,

diviy = 9, = Ky # 0 (3.73)

3.2.2 2D Cosserat Kinematics

As an application we assume a 2D setting. In this case we have the following
placements [3],

u=ue|+uep

(3.74)
¥ =se;
The components of the relative deformation tensor are
T = O
T2 = Or +Yyp = Oy — &35 = Dy — (3.75)
721 = Oott1 + Yy = Douy — 21393 = Oour + .
V22 = Otz
Similarly, the components of the curvature tensor become,
ki =k =0; Ki3=01;=0y
Koyl = Kpp = 0, Koz = 821103 = 821p (376)
Kip = Kp =Kz =0
Introducing the infinitesimal strain tensor,
& = O
1
Elp = &1 = E (81u2 + 82141) (377)

& = Ohup
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and the infinitesimal background rotation tensor

w1 = 0
1
Wy = 5(32141 - 31142) = —&13W3 = —@
1 (3.78)
Wy = 5(31M2 — o) = —1303 = +
Wy =
we get,
P11 = €11
1
V12 = O1un i§32141 —Y=¢ent+(w—y)
1 (3.79)
Y21 = Ohuy iiallfﬁ +Y =g —(0—y)
V22 = Oty
Thus
V) = i (3.80)
and
1 1
Vg = 5(“/12 —72) = 5 (Oua — Y — (Oaur +¥))
1 (3.81)
:—(81u2 —82141) —lﬁzw—lp
2

We consider a line element Pb that is originally parallel to the x;-axis,
Eq. (3.44); Fig. 3.3. With
dx1 _ 1
e o
we get from Eq. (3.63),
Adxl o &11 &1 — W 1 . 811dx
{ Adx } o |:812 +w ) 0 dx = (e12 + w)dx (3.83)

Similarly for a line element ITR that is originally parallel to the x;-axis we get,

Adxl . €11 &1 — 0 o (821 — w)dy
{Ade } N |:812 +w (O0))) :| { 1 }dy - { 822dy (3'84)
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&ydy
X, +dx, R
(23— 0)dy
QI
/T (& +@)dx
X »
2 P Q gdx

X x, +dx,

Fig. 3.3 The deformation of a solid orthogonal element

In Fig. 3.3 we show the geometrical visualization of the deformation of the solid
orthogonal element {P—Q>,ﬁ>} , that is computed from Egs. (3.83) and (3.84).

From this figure it becomes clear that the diagonal terms of the relative deformation
matrix describe normal strains,

(PQ) = \/((1 +811)dx)2+((812+w)dx)2 ~ \/dx?(1+2¢ep1) =~ dx(1+ep)

(PQ) = (PQ) _ (1+en)dx —dx (3.85)
(PQ) ~ dx = &1
Similarly we get that
(PR") — (PR)
~ 3.86

(PR) &2 (3.86)
Angular strains are given by,
n ' D! (e12 +60)dx (821 — w)dy
5= PR) = ~ ¢ — ey =2
2 PR S aa T (ay T =2 =204 )

From Fig. 3.4 we see that in case where the strains vanish, ¢; = 0, the defor-
mation of the considered solid orthogonal element is a rigid-body rotation. In
Fig. 3.5 we see the relative rotation of the polar material point with respect to the
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&®
odx,
X +ox, R' R
Ql’
’/,1/'/|k @ dxl
X p !
i x, +dx,

Fig. 3.4 The rotation of a solid orthogonal element
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\
\

N\ A
<5 \; \\

\

-

® o ‘P
//

Fig. 3.5 Visualization of the relative spin

rotation of its neighbourhood, caused by the displacement field. In Fig. 3.6, for the
visualization of the curvature of the Cosserat deformation we consider the relative
rotation of the rigid crosses attached at points Q and R, with respect to the rigid
cross attached at point P,
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X, +dx,

\ b Ky,
X2 + — e b 134
P — Q

—Q., >

Xy X, x, +dx,

Fig. 3.6 Visualization of the curvature of the deformation

W(Q) P lﬂ(P) + K13Ax; W(R) ~ lﬁ(P) + K3Ax, (388)

Thus in 2D the curvature tensor is seen as a measure of the bend of the
neighbourhood of point P.

3.3 Exercises: Special Orthogonal Curvilinear
Coordinates

3.3.1 Polar Cylindrical Coordinates

The polar cylindrical coordinates of a point P(r,8,z), are related to its Cartesian
coordinates by the following set of equations (Fig. 3.7),

x=x'=0'cos® =rcos (0<0<2n)
y=x>=0"'sin® =rsin0 (3.89)

Z:x3:®3

for r € (0,00) and 0 € [0, 27).
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48
Fig. 3.7 Cartesian and polar x3 =2 A
cylindrical coordinates

P

R =% / X" =y

Prove that the deformation tensors in cylindrical polar cylindrical coordinates are

as follows,
u,

Ouy Ouy Ouy
a or o dr %I
— | 10u _up 10up y u 10u
Vul= 5% S+ % 9 (3.90)
Juy dup Jug
0z 0z 0z
Err Er0 &z
sym[y| = | eor €00 o
| & &0 &
i duy 1(10u, | Oup _wp\ 1 (0w  Ou
or Z(r a0 + or r) Z(OZ + ar (391)
— | 1(L0u 4 Oug _ up 10up | ur 1 (Oup 4 10u
- 2(r09+8r r) r89+r 2(az+r00)
1(0u, | Ou 1 (Oug  10u Oug
L 2(81 + Or) 2((?z + r@()) 0z
asym([y]
1 (Oug _ 10u, | up) _ 1 (0w _ Ouy
0 2([9r r60+r) lpz 2(3r 0z +lp0
— | —1(Qu _ 10u, 4 up 1(18u, _ 0uy
- 2(6r r 00 + r)+lpz 0 Z(r 00 82) lpr
_1fou _ Ou) _ _1(10u _ Ouy
2 (Dz i)r) l//9 2 (r 00 (71) + lﬁr 0
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O, Wy
or or

r 00 roor o0 r
oy, a2
0z 0z

[K] _ lal//r lﬁ@ 13% + ﬂ lalﬁz

3.3.2 Polar Spherical Coordinates

o,
or

r 00
oy,
0z

49

(3.93)

The polar spherical coordinates of a point be P(r, 0, ¢) are related to its Cartesian
coordinates by the following set of equations (Fig. 3.8)

x=x' = 0O'sin ®% cos @ = r sin b cos ¢

y=x>=0'sin®%sin®> = r sin 0 sin

7=x =0'cos® = r cos 0

for r € (0,00), 6 € [0,n) and ¢ € [0,2x).

X1

Fig. 3.8 Cartesian and polar spherical coordinates

(3.94)
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Prove that the deformation tensors in polar spherical coordinates are as follows,

symly] =
ou, L(10u 4 Juy _wy 1 (Ouy L Qu, Uy
or Z(r 00 + or r) 2\ or + rsinf d¢ r
1(Low o Juy _ up Low | w L(_L w4 104  cotd
2 (r 00 or r) r 00 + r 2 (r sin O¢ r 00 - U
1 (0uy 1O ) 1( 1 dw 4 194 cotd L0 | w un
2<‘r +rsin50¢ r) 2(rsin9(?¢+r09 r Ue rsin98¢+r+00t9r
(3.95)
asym[y] =
1 (0 1 du, 1 (Ouy 1 Ou, up
0 3G ) Y i(W*mTfp*T)*%
o A, duy 0
1 (G- 1% ) —y, 0 3 (458 - ol + =luy) +9,
1 (Ouy 1 Ou 4 ¥ 1(10u 1o cot§
*§<W*meﬁ+7>+‘//o 7§<7ﬁ7»-sint)ﬁ+%”¢) ¥, 0
(3.96)
N, Ny %Wy
ar or (gg/
_ 190, ¥y 10 o ¥, 19
K= | 5% Fo0 T T (3.97)
19, ‘/’tb 1 9y 1 d"’(ﬁ

My 1 Wy L ¥ o 1
rsin0 0¢ r rsin0 0¢ rtan()lp() rsin0 O¢ + r + rtanowo

3.4 Integrability Conditions and Compatibility Equations

3.4.1 Formulation in General Curvilinear Coordinates

Let (I') be a curve in space that is passing through points Py and P. Starting from
point Py we can compute the value of one of the Cosserat particle kinematic fields,
say the particle rotation, by means of a line integral that is evaluated along the
considered curve (I'). Thus from

p
WPy = (o) + [ waet (3.98)
Py
and Eq. (3.20) we get
'/’(PO) = '/’o
P

wp) =+ [ maet (359)

Py
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For uniqueness purposes we may require that the value of the Cosserat rotation
at point P, as computed from Eq. (3.99), is independent of the particular choice of
the curve (I') that joins the points Py and P; assuming that at point Py the value of
is known. According to the fundamental theorem of Tensor Analysis, the sufficient
and necessary condition for this integrability requirement is that

rotk, = 0 (3.100)

or in components,

.
J =’ =0 (3.101)

(1)
The first-order system J' is called the 1st incompatibility form [4].
With
Kij = K}f‘jg, (3.102)
we get

m m
J =il g =1, (3.103)

Thus, Eq. (3.101) yields the 1st set of compatibility equations [4],

0]

" = Mg, =0 (3.104)
Similarly from,

P P
u(P) =u(Po) + /u,de)" =uo+ /(yk — g X Y)dO* (3.105)

Py Py

and Eq. (3.4) we get,
P,
u(P) =uo+yy x (R—Ro) + / (¢ + (R — Ro) X K;)d®* (3.106)
Py

The integrability of Eq. (3.106) results to the following condition

(v + (R — Ro) x K1) =0 (3.107)
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or

™ (y;+ Ry x ke + (R — Ro) X Kyj) =0 (3.108)

Due to Egs. (3.101) and (3.4), Eq. (3.108) yields the following condition,

@
J =" (p,;+g xm)=0 (3.109)
()
The first-order system J' is called the 2nd incompatibility form. With
Yrj = Vkljgl (3.110)
and
g X Kk =g X K"gm = eljmK}(’"gl (3.111)
we get
o N
Ji=él (yk,‘j—l—e[jm;c}(”’)g =Ig (3.112)
Thus Eq. (3.109) yields [4],
@
I =" (Vkl\j +e1jm’€)<m) =0 (3.113)

(1)
The motion is called to be an incompatible one, if the “incompatibilities” I and
2
I, are not zero.
In view of the above derivations and following Kessel [2], we define the rotor of

the generalized-displacement gradient H,
1
_ ki - . K8 @8
H= <'<,- 8 ®g,§) = RotH := —¢" o R EATTY
Y8 ®& (sz|j + K ejml)gi g
and with that the compatibility Eqs. (3.104) and (3.113) become,
RotH =0 (3.115)

Indeed, with Eq. (3.36) we get formally that these newly defined differential
operators on the generalized-displacement gradient satisfy the well-known identity,

H=Gradk = RotGradK =0 (3.116)
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3.4.2 Compatibility Equations in Cartesian Coordinates

In Cartesian coordinates the compatibility conditions, Egs. (3.104) and (3.113)
become,

(1)
Ikl = Skpqapkql =0 (3117)

2)
Ipi gpjkaj'yki + 51”'1611 —Kjp = 0 (3 1 18)

Explicitly these compatibility equations read as follows,
(1)

L1 =0 = e1py0pkq1 = €12302K31 + €13203K21 = Chk31 — 3K

(1) (3.119)
Iy =0 = e1pyOpkp = €12302K3 + €132003 k0 = OhKk3p — 3K

and

(2)
L =0 =10y — Kii + 011k = Orysy — O3)y + Koo + K33

@) (3.120)
Iy = 0 = g1 0y — ka1 + 01k = 023 — €1320373 — K21

If x;; are the components of the gradient of a vector field i, then the com-
patibility Egs. (3.119) reduce to the differentiability conditions for the named vector
field,

(1)
I =0 =003y — 0300y,

(1) (3.121)
Iy = 0= 0,05y, — 0302y,

Similarly, if the y; are given by Eqs. (3.59), then the compatibility Egs. (3.120)
reduce to the differentiability conditions for the vector field u;,
2
Ii1 = 0 = 0 (Gsu1 — es;) — 03(Ohur — eauly) + 02y + O35
= 0205u1 — O30hu1 — Doy — O35+ Doy + O35 = D O3ur — O30,

(3.122)
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Finally in a 2D setting, the above compatibility conditions yield

(1)
I3 = &3p40pKg3 = e32100K13 + &31201 K23 (3.123)

= —OhK1i3+ 01k =0

(2)
Ly = &3k Oy — K13 = 31201791 +€3210271; — K13

=0 -0 —Kk13=0
o 1721 2711 13 (3.124)
Iy = &3k 010 — K23 = €31201 V0 + €32102715 — K23

=017 — Oaypp — K23 =0

3.5 Kinematical Compatibility Conditions for Stationary
Discontinuities

The mathematical treatment of discontinuity surfaces as applied to continuum
mechanics can be found in the textbooks of Thomas [5] and Vardoulakis and Sulem
[6].

Let [-] denote the jump of a quantity across a discontinuity surface Sp,
Z=z%" -z (3.125)

where ZT and Z~ are the one-sited limits of the (scalar, vector or tensor) function Z
on Sp, whose positive side is determined by the unit outward normal vector .

In the considered context we will be interested in the formulation of compati-
bility conditions across material discontinuity surfaces, i.e. discontinuity surfaces
that move attached always to the same material particles. In that sense we have to
introduce the time dependence in the argument list of the kinematic fields that
describe the motion of the particle by setting

i _ i @k,t
vi=v ( . ) (3.126)
u; = M,(@ ,t)
In Eulerian description the particle is moved with the velocity,
Ou, Ou;
Vi = 71,; Jru,-‘kvk = (gik - Mi\k)vk = % (3.127)
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We assume that across Sp the particle displacement and its 1st order derivatives
are continuous,

[ui] = 0; [%] =0; [uix] =0 = [uy]=0 (3.128)

From Eqgs. (3.127) and (3.128) we get that the velocity vector is continuous,
w]=0 (3.129)
This implies the following Maxwell conditions,
] = [vei] = bini (3.130)

With the velocity being continuous, the considered material discontinuity sur-
face Sp moves with the normal velocity of the particles that are attached to it,

c=v,=vn (3.131)
If we assume that the particle rotation is also continuous across Sp,
W] =0 (3.132)

then the corresponding kinematical compatibility conditions for the 1st order partial
derivatives of x//i are [3],

o' i i i
[m} = —Jie; M{} = I (3.133)
or due to Eq. (3.131),
oY’ i i 2
{at} = —Jvy; [w‘k} = Jing (3.134)
Let the rate of particle rotation be denoted as
i oy’ ki
w=2 + VY, (3.135)

From the compatibility conditions (3.134) and Eq. (3.135) follows that the jump
in particle spin must vanish [7],

w| = =2y, + Ainp =0 3.136
[w'] (3.136)
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This implies in turn the following Maxwell conditions,
[wﬂl} = d'n; (3.137)

Within the frame of a small strain theory, material time differentiation of the
deformation measures, Eqgs. (3.32) and (3.33), leads to the definitions of the cor-
responding rate-of-deformation measures denoted as: (a) The distortion-rate tensor

1

and (b) the rate of deformation tensor,
T = vy — g’ (3.139)

From the continuity requirements, Eqgs. (3.129), (3.130) and (3.136), (3.137) we
get the compatibility conditions for the rate of deformation measures,

(K] = d'n; (3.140)

1

and
[Ci] = b (3.141)

In certain cases we may be forced to consider the existence of strong disconti-
nuities of the particle rotation vector, that are identified as strong particle-rolling
discontinuities. This means that we may have to assume that,

W] =r+#0 (3.142)

In this case the corresponding geometrical compatibility conditions for the
distortions are rather involved expressions that account also for the curvature of the
discontinuity surface. The derivation of such compatibility equations for strongly
discontinuous fields can be found in [5] and will be omitted here.
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Chapter 4 )
Cosserat Continuum Statics Check or

Abstract In this chapter conservation considerations are firstly introduced. The
virtual work principle, together with equilibrium equations in generalized curvi-
linear coordinate systems, are briefed under the auspices of the new mathematical
representation, with working examples of how they reduce in cartesian, polar
cylindrical and spherical coordinate systems. Finally, the definition of the concept
of the traction motor—in accordance to the concept of the traction vector through
Cauchy’s tetrahedron—is detailed.

It is well known [1] that the statics of rigid bodies can be developed axiomatically
and independently of dynamics. Since rigid bodies interact by pairs of opposed
forces and couples, we keep from Newton’s laws only lex fertia. Along this line of
thought we introduce here the notions of stress and couple stress in Cosserat
continua by resorting to the principle of virtual work.

4.1 The Virtual Work Equation

We consider a Cosserat continuum B, that occupies a domain with volume V that

has the boundary OV. Body B is assumed to be in a state of stress in static

equilibrium. In order to formulate the equilibrium conditions we consider fields

Oy (@) and ou;(®%), that are defined uniquely at all points of the given body.

These fields will be called virtual particle rotation and virtual particle displacement

fields, respectively, and it will be assumed that they are sufficiently differentiable.
We define the virtual curvature and relative deformation tensors,

-k k
o = o (4.1)
S !
OV = 5uk‘i + e oY (4.2)
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We define fields o¥(©") and 1,(©"), through the so called virtual work of the

internal forces, that is in turn defined per unit volume of the considered Cosserat
continuum,

owin) = gk gy, + 1, dick (4.3)

We assume that ow(™ is an invariant scalar quantity. The tensor oy is a
covariant 2nd order tensor and the tensor dx* is a mixed co-contravariant 2nd order
tensor. For dw(™ to be invariant, ¢/ must be a full contravariant 2nd order tensor
and ,u’J a mixed, conte-covariant 2nd order tensor. Thus the quantities ¢ and p in

Eq. (4.3) are tensors and are called the stress- and couple-stress tensors,
respectively.

Remarks At this point we should remark that in some occasions in the literature
alternative but equivalent definitions for the virtual work of internal forces can be
found. For example one can start from the following definition [2],

owlint = G55, + il ok (4.4)
This definition is based on deformation measures that are simply the transposed
of the ones we have have introduced here,

SR = 0Wifs STy = Sugp + e’ (4.5)
Alernatively one may define the virtual work of internal forces as follows [3, 4],
owin) = k55, + i, ok, (4.6)

This definition is based on stress and deformation measures that are simply the
transposed of the ones we have introduced here.

We recall also that an intensive property (also called a bulk property) is a
physical property of a system that does not depend on the system’s size or the
amount of material (mass) in the system. By contrast, an extensive property of a
system does depend on the system size or the amount of material in the system.
From the point of view of continuum thermodynamics the stress-and couple stress
tensors are intensive quantities, that are dual in energy to the relative deformation
tensor and distortion tensor, respectively, that are in turn the corresponding
mechanical intensive quantities of the considered continuum.

We decompose additively the virtual relative deformation into symmetric and
antisymmetric part,

075 = 07y + OV (4.7)
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where
1
My =7 (75 + 073)
" (4.8)
Oy = 5 (075 — 07)
Let
1
1 k
Sy = 5 (Juy; — duys) = —eedr (4.10)

where dw* is the axial vector that corresponds to the non-symmetric part of the
virtual displacement gradient. Thus,

8y = Sty + e (0 — Sy*) (4.11)

Similarly, we decompose additively the stress tensor into symmetric and
antisymmetric part,

ol = (i) 4 glil (4.12)
where
o) = % (O'ij + aji)
| (4.13)
olil — 5 (Gij — O-ﬁ)

With this decomposition the virtual work of the internal forces, Eq. (4.3),
becomes,
Swiin — O'(ij)égij + O—[ii]gy[ij] + #?k5K;k

' ] o (4.14)
= 005+ oley (St — SY*) + il 1t

The antisymmetric part of the stress tensor is dual in work to the relative spin,
0[’7]5"/[,-]»] =21 (5(1)" — 51#") (4.15)

where ¢ is the axial vector that corresponds to the non-symmetric part of the stress
tensor.

1 . 1 . . N
1= Eeijkoﬂ‘ = Ee,-jko[’k] & oWt = kg (4.16)
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With this remark Eq. (4.14) becomes,
Swi) = ¢ se; + 267 (S0 — SY') + i, o (4.17)

This equation demonstrates that in a Cosserat continuum the virtual work of the
internal forces is defined in such a way that: (a) The symmetric part of the stress
tensor is dual to the strain. (b) The antisymmetric part of the stress tensor is dual to
the relative particle spin. For this reason we may call o¥! the “relative” stress tensor.
(c) The couple stress tensor is dual to the distortion tensor.

The work of the internal forces is defined as the integral of the work density
function ow(™ over the volume V,

owin) — / owlind gy (4.18)
(V)

For the formulation of the principle of virtual work, we must define also the
virtual work of the “external” actions. In particular we assume that on the Cosserat
continuum body three types of external actions are applied: (a) Volume forces f'dV,
where dV is the volume element. (b) Surface tractions #dS. (c) Surface couples
m;dS. In these expressions dS is the surface element. In general one may assume the
existence of body couples as well; this case will be disregarded here.

The bounding material surface 0V of a material volume V is seen as a two
dimensional, piecewise smooth particle manifold, with each particle of that mani-
fold possessing two vectorial degrees of freedom, the one of particle rotation and
that of particle displacement.

For clarity we use here for the description of the boundary conditions the natural
curvilinear coordinates of the surface. The position of any point P € 0V is given by
its surface coordinates o! and o?. The position of points in space inside and outside
that surface are described by their normal distance from it, that is given by the
coordinate o; i.e. the coordinate that is measured positive along the outward
normal to the surface. At the arbitrary point P(a' % 0) on the surface we can
define the corresponding covariant basis, (o, 2, %3), as is shown in Fig. 4.1. From
that basis we construct the corresponding contravariant basis (o', %, o). With this
notation we can express admissible sets of boundary conditions by assigning
continually a number of individual components of the kinematic and static vector
properties of the surface particles, the components themselves being defined with
respect to aforementioned covariant and contravariant surface vector bases. For
example, a set of admissible boundary conditions at point P(«!, %2, 0) could be the
following,

preavsfsmson= (020 ot (0% 2),0)

(4.19)
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Fig. 4.1 Local coordinates in az
a point at the bounding
surface

o!

The sets Sp and Sy are called here the Dirichlet and the Neumann set, respec-
tively. In the example given above by Eq. (4.19) in the neighbourhood of point
P(a!,02,0) and along the o*-surface lines (¢ = 1,2) at least locally tractions and
couples are prescribed, whereas normal to the surface the particle displacement and
spin are restricted. This example illustrates also the assumption, that if some
information, say xp3 = ps1, is given for a surface particle at P(a!',%?,0), no infor-
mation concerning ms3 = g3; can be given at this particle et vice versa. This is
exactly the mathematical meaning of the “empty slot” symbols X, used in the
corresponding matrices of Eq. (4.19). The corresponding entries to these empty
slots are called reactive constraints.

On the basis of the above definitions we define a functional that is called the
virtual work of external forces,

Swien) — /fiéuidv+ / (mi(S[//ithiéui)dS (4.20)

V) (Sv)

With these definitions we remark that the second integral on the r.h.s. of
Eq. (4.20) is a generalized integral of the Lebesgue type. In order to remove this
difficulty, we assume that the virtual kinematics vanish on the complementary part
of the boundary; i.e. we assume that,

onSp: oY =0Adu; =0 (4.21)

We assume that these data are continuously extended into V and on the disjoint
parts of the boundary. Thus, whatever the values of the reactive constraints are on
Sp, the functional, Eq. (4.20), can be continuously extended over the whole
boundary, and

5W(Ext) _ f’&u,dV 4 / (miélpi 4 t’5u1>dS (422)
V)

( (ov)
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where the second integral on the r.h.s. of Eq. (4.22) is a normal Riemann surface
integral.

On the basis of the above definitions, the principle of virtual work in a Cosserat
continuum is defined as follows:

Definition The system {017 , ,uf); i, ti,m,-} is called an equilibrium set, if, for any

choice of the virtual fields of particle displacement and rotation that satisfy
Eq. (4.21), the virtual work equation holds,

owen) = swiny (4.23)

From Eq. (4.23) and the definitions for the virtual work of internal- and external
forces, Eqgs. (4.17), (4.3) and (4.22), we obtain the following integral equation,

/ FioudV + / 1 ou;dS + / m;oy'ds = / (6™ 0y + 1 dict)dV (4.24)
v) (@v) @) V)

This is the virtual work equation for a Cosserat continuum in the absence of
body couples.

4.2 Equilibrium Equations

4.2.1 General Curvilinear Coordinates

We remark first that the density of the virtual work of the internal forces can be
written as follows,

swi™) = o™ (Sug; — ewdW') + w0yt
. . . . . (4.25)
= (0" 0w+ 1 00") (ol + g 00" ) — eno™ oy
With the notation,

q' = ™o+ 1, Sy* (4.26)

and with the use of Gauss’ theorem we get,

/ gl dvV = / q'n;dS (4.27)

Vv v
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and,

/ (0™ Sur + iy oy*) AV = / (0™ Sux + iy 69" )nidS (4.28)

Vv ov

With Eq. (4.28) the virtual work Eq. (4.24) becomes

/ FrEourdv + / *SurdS + / mpoy*ds = / (o™ oup + p' Y ) nidS

V) @) @v) v (4.29)
— / aﬁ‘éude — / (#?,‘i + eiklaik) sy'av
() v)
or
/ ‘7\1 514de+ / (“fkli +€i1k0ﬂ) 5Wkdv
% v) (4 30)

_ / (s — 1) SudS + / (s — my) Sy¥ds

(0v) (0v)

The test functions dux(®') and /¥ (@') can be chosen arbitrarily. In particular
they may be chosen in such a way that from Eq. (4.30) two sets of equations follow,

/ (a‘, +f ) SudV =0 WV CV

" (4.31)
/ (,Uf'k\,‘ +eilk6il) Wrkdv =0 vV cv

V)

and
/ (aikni — tk) dupdS =0 YoV C oV
o) (4.32)
(wen; — my) SYrds =0 VoV’ c v
(ov’)

These equations result finally to the following set of local stress equilibrium
equations,

i+ =0 VPO € (4.33)
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ok =& VPO € oV (4.34)

and local moment-stress equilibrium equations,
Wy +ema’ =0 VP(@) eV (4.35)

won; =my,  YP(@') € OV (4.36)

4.2.2 Cartesian Coordinates

We apply Egs. (4.33) to (4.36) for a Cartesian description, thus yielding

il = Iy (4.37)
Dok +fie =0 (4.38)
and
My i = My (4.39)
Oifliy + EimiTim = 0 (4.40)

We observe that the equilibrium Eqs. (4.37) and (4.38) are identical to the ones
holding for the Boltzmann continuum and that the equilibrium Egs. (4.37) and
(4.39) introduce the stress-and couple stress tensors as lineal densities for the
internal forces in the sense of Cauchy. Due to the moment equilibrium Eq. (4.40),
however, the stress tensor in a Cosserat continuum is in general non-symmetric.

As an example we apply the above equilibrium equations for a 2D setting, thus
yielding [5] (Fig. 4.2),

ty = onh +oany
) = o121 + OpN> (441)

m3 = [l131] + W3l

and (Fig. 4.3)

0oy 00

= = =0

8)61 + 8x2 +fl

0 0

o, 92 4 0 (4.42)
8)61 6)(2

0 0

ﬁ+ﬂ+612762] :0

Ox 1 Oox 2
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l, = Ol + 0y,
on l
=
oy 1, = oyn + 0,0,
Pr—

x O l

i )

X, =

ti

M3

67

3 = Myt 30,

Fig. 4.2 Stress and couple stress in the sense of Cauchy in 2D

0,, +0,0,,dx,

.’Gzl +0,0,,dx,

Oy, +0,0,,dx,

.
oy, +6,0,dx,

Fig. 4.3 Stress and moment stress equilibrium in 2D

My~

=

9

Hyy + 8y,

oy,

[ T ot O, 143,

4.2.3 Exercises: Special Orthogonal Curvilinear

Coordinates

4.2.3.1 Polar Cylindrical Coordinates

Prove that the equilibrium equations for a Cosserat continuum in terms of physical
components in polar, cylindrical coordinates are the following:

do,, 100y 1 d0 B
or "o Ty omt g =0
60}9 1 80'99 1 8GZQ
2000y - = = 4.43
o T ap (oo ton)t 5, Tf=0 (4.43)
0o,, 10ap, 1 00, B
or r 00 + r o + 0z =0
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and

ou 10py,  Ou, 1

—omr _Zmor —rar (.. — _ D, =
ar + r 80 + az + r (:ulr .“06) + o()Z JZO + 0

Oprg | 1019 Oy 1
0 4 2 - =G4+ D) =0 4.44
or + r 00 + oz + P (:ur() =+ :u(?r) + 0 or; + Dy ( )

oy, 10y, O, 1
= - - N - 9 — 0or + P, =0
or r 00 0z +r'urz+69 or +

In the above equations with ®@,, ®y and ®, we denote the components of body
couples.

4.2.3.2 Polar Spherical Coordinates

Prove that the equilibrium equations for a Cosserat continuum in terms of physical
components in polar, cylindrical coordinates are the following:

0o, 1004, 1 0Oaggr cotl 1
; v+ = (20, — 04y — -0
ar Tr o0 rsmoap - 0T — (200 — 999 — o00) +/,

00,9 1 Jopy 1 804)9 1 cotf
_ —(2 _— — =0
or + r 00 rsinf O¢ + r( or0 + 00r) + r (J% GM) +fo
80’,~¢ 1 869¢ 1 (%M, 1 cotf
_ - - =0
or + r 00 rsinf 0¢ + r (Urd’ + 0‘7)’) + r (694) + 04)0) +fo
(4.45)
o, 10uy, 1 Ouy  cotd 1 B
or +; 00  rsinf 0¢ Tﬂg,+;(2urr—u¢¢—,1199)4-64)9—694,4—(1),—0
Oprg 1 pogg 1 Ouge |1 cot 0 B
or 700 ' rsin0 0¢ +;(2:ur(-)+:u9r)+T(Nﬁﬂ_ﬂq&p)"'o—rd)_o_(ﬁ_’_@ﬂ*o
Ot 1 Optgy 1 Ougy

cot 6
—(2 r — Orf Oy =
or r 00 rsinf 0 + r( #rd’_‘—ﬂd’r)_‘_ r (ﬂg¢+ﬂ¢9)+08 9r0+ Py =0

(4.46)
4.3 The Traction Motor

In view of Egs. (4.34) and (4.36) we consider the traction and the couple that are
acting on an infinitesimal oriented surface element ndS located at point P(©'),

t= tig,- = okinkg,- (4.47)
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m=mg = ,uﬁ-nkgi (4.48)

For the compact description of the Cosserat continuum statics we introduce the
vector compound,

100~ (1 01 ) = (mimong) = (eiommgr) 449

This prompts to introduce the stress compound

ki
;=(2&®%) (4.50)
- g ®g
Such that,
T=3"-n (4.51)

This is true, because we recall that the definition of the inner product of the
tensor product with a vector obeys the relations [6],

(@a®@b)-c=alb-c), a-(bxc)=(a-b)c (4.52)

Thus indeed,

i
078, ®

' on= kgi & g
g @8y

; A ; : (4.53)
_ (e g\ _ (mgd | _ [me _
win(g ©g) - g 1rngis; g -
where 52 is the only Kronecker delta,
1 if k=1
sl
g"gék{o if k#1 (4.54)

We consider now the virtual displacement and deformation compounds,
B i _ _ i o k qk )
oK = <5l// gl’) = 0H = GradoK = V8 (?g. = <5Kkgk ®g;>
ou;g (l/t,-‘k + ey )g‘ ®g 5Vkig &g
(4.55)
We observe that the above defined invariant virtual work of internal forces,

Eq. (4.3), can be written as a von Misses scalar product of the related static and
kinematic tensor compounds,
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swin) = ¥ o 6H
_ o gk ®g; o 5K}jgl®g.i (4.56)
g g S8l @ g’
= 0"y(g ©08): (&' ®g))+ ok (g 2g): (& wg)

We recall that for two second order tensors a scalar product may be defined in
the following manner [6],

@®b): (c®d) =(a c)(b-d) (4.57)

With that Eq. (4.56) reduces to Eq. (4.3), since

&g : o) =(g&)(g &) =00

. . ; (4.58)
(28 : (g 0g) = (88 (e &) = 3]
and with that from Eq. (4.56) we get in fact that,
owin) = 645y,8,67 + kol 5,01 = oMoy + o] (4.59)

Note also that the above re-defined von Mises scalar product is commutative,
since

1nt _ ﬁ
gl ® g o oligy @ g,
g ©g pig g (4.60)

i (g @g) (g ®g') +0y0" (g ’®gj) (g ®g)
1] 1618} + 07,04 8,0] = o] il + 507

I
HM

0
0

ie.,

swi =% o 6H =0Ho X (4.61)

If the Cosserat continuum in the vicinity of a point P(®F) and for surface
elements in an arbitrary direction n is behaving like a rigid body, then the traction
t(n;, ®') is a line vector and m(n;, ®') is the corresponding couple that satisfy the
following “transport” law [7],

t(n;, ® +dO’) =t(n;,®’) = dt =
m(nj, ® +d0’) = m(n;, ®') +t(nj, ®’) x d®*g, = dm = t(n;, ®’) x dO*g,
(4.62)
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Thus,
. A t(n;, ©’
I' = I(, ©' +d0) = A
m(nj, @) +t(n;, ®') x dOg;
| ' (4.63)
B t'(n;, ©')g;
\ (mi(ny, ©) + et (nj, ©7)dO') ¢!
With,
, t/i .
I <m;gf> (4.64)
We get
t/i _ l‘i
(4.65)

m; =m;+ eikltkd(al

This means that in case of a rigidified continuum domain the above introduced
generalized-traction vector compound T, consisting of the two vectors ¢ and m, is a
motor in the sense of von Mises. We call T the traction motor. We observe that with
Eq. (4.65) the two motors T(®') and T' = T(®' + d®") are “equal” or “statically
equivalent”. This fundamental statical property of Cosserat continua enforces fur-
ther their application to the mechanics of granular media, if again the single (rigid)
grain is seen as the smallest material unit.

In general the differential forms,

dt =t(®' +dO") — (@) (4.66)
dm —(0") x d®'g, = m(0* +-dO") — (m(0®') +¢(0")dOg,) (4.67)

will not vanish. In compact form this is described by the non-vanishing absolute
differential vector compound,

N HO®' +dO) — (O
dL{m, ©) = (m((af +dO’) — (m(0') +1(®) x d@"gk)>
dt
- (dm +d®kgk X t> (4.68)

In analogy to kinematics, we introduce the Pfaffian vector forms

0:d®' = dt (4.69)
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,dO® = dm +dO*g, xt (4.70)

These forms define in turn the two vectors,

6, =t; (4.71)
and
W=m;+g; xt (4.72)
with,
t=t e (4.73)
and
m; = mk\igk (4-74>

Thus in a given direction n we get

0i = O-mf\inmgk (4.75)
and
B = (#rflkh + eilkaml> nmg* (4.76)
With
. o . O'.V'.ﬁlfgk .
dT(n;,®") = de' = N & |md®' (4.77)
H; (#’T’k‘i + eia™ )g
and according to Kessel [8], we define the divergence of the stress compound as,
g, @ g. J{c'llkg i
= ( Kok gi-) = Divk := ‘ o\ (4.78)
= Wi ®8 = (,u.,-‘k + eino )g’

From Egs. (4.33), (4.35) and the definition Eq. (4.78), equilibrium is expressed
in compact form as,

DivE = (‘f;gi) (4.79)
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Note that for non-equilibrium stress- and couple-stress states we have to abandon
the realm of statics and re-formulate the governing equations within the frame of
Cosserat continuum dynamics.

4.4 Statical Compatibility Conditions for Stationary
Discontinuities

Within the frame of a small deformation theory, we neglect geometric correction
terms and the continued equilibrium across a material discontinuity surface is
expressed in terms of the material time derivatives of the Cauchy-type stress and
couple-stress tensors [4],

[6*]n; =0 (4.80)

and
[, Jn; =0 (4.81)
Following standard techniques, further compatibility equations can be derived

from the above discussed differential equilibrium equations, as explained in stan-
dards texts [4, 9].
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Chapter 5 ®
Cosserat Continuum Dynamics Skl

Abstract In this chapter the conservation (balance) laws for mass, linear and
angular momentum are presented. It is shown that the Cosserat continuum differs
from the Boltzmann continuum only in the angular momentum balance equation.
Examples of how momentum balance laws can be applied to cartesian and polar
coordinate systems are also presented.

The equations that describe mass balance and balance of linear momentum in a
Cosserat continuum are the same as the ones holding for a Boltzmann continuum [1].
The difference between the two types of continua arises while considering the action
of the extra dofs of the Cosserat continuum, i.e. in the formulation of the momentum
balance- and energy balance equations [2]. For completeness we derive here also the
equations that describe balance of mass and balance of linear momentum.

5.1 Balance of Mass

The material particle of the Cosserat continuum is equipped with a linear particle
velocity

. Du
= 5.1
Dr (5.1)
where
D' Oul P
Dr = E + UV (5'2>
We remark that from Eq. (5.2)
- » ou' . ou <
k i i i i
y ((3,{—14",{) :Ejv =3 —&—O(u“k) (5.3)
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This means that within a small deformation theory we have the following
approximation,

. . 0
Vi ou'; O = B (5.4)

The mass of the particle is,

dm = pdV (5.5)

where density p(@)i, t) is the mass density at the considered point.
The total mass of a body B at a given time ¢ is,

M(t) = / pdv (5.6)
v)

Mass balance is expressed by the requirement,

aMm
— =0
dt

We recall Reynolds’ transport theorem [1],

S(t) = / s(@k,t)dV:>§: / (5,s+(svi)‘i) av (5.8)
) (V)

Thus, from Egs. (5.6) and (5.7) follows that mass balance is expressed as

/ (90 -+ (pv'),=0)av =0 W' cv (5.9)
)

If we assume that mass balance holds for any subdivision of the considered body,
then from Eq. (5.9) we get the following local form for the mass balance equation,

P A |
5’; +(pv),=0 VP(®) eV (5.10)

or,

p= *pvfi (5.11)
where

. dp
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is the material time derivative of the density and

P = Pk (5.13)

Remark Note that if Eq. (5.10) holds, then Reynolds’ transport theorem, Eq. (5.8),
applied for the global quantity

S(t):/sdm:/psdv (5.14)
(B) v)
yields,
ds
i /p&dV (5.13)
)

where § is the material time derivative of the specific quantity s(@k, 1).
This is because,

dsS i i i
i / (3,(ps) + (psv )Ii) dv = / (s(@,p + (pv )‘l) +p(Os+v s|i)) dv
v) v)
(5.16)
5.2 Balance of Linear Momentum
The total force that is acting on a body B at a given time 7 is,
Fi(t) = / flav + / tds (5.17)
v) (ov)
The total linear momentum of the consider body is,
I'(t) = / pvidv (5.18)
(V)
Balance of linear momentum is expressed as,
dr .
=F (5.19)

e
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From Reynolds’ transport theorem we get that,

dt  d

a_a i Pk
yrimrl B dv / p(@,v +v vA‘k) av (5.20)

v) )
Thus from Egs. (5.17) to (5.20) we get,
/ p(a,v" +vkv?|k) v = / flav + / fds (5.21)
v) () (V)

We assume that the linear momentum balance holds for any subdivision of the
considered body. If we apply Eq. (5.21) in particular for the elementary tetrahedron
under suitable mathematical restrictions [3] the volume integrals tend to zero and
the remaining surface integral yields Cauchy’s theorem, Eq. (4.34),

iny =1 VYP(@™) € 9V (5.22)
From Egs. (5.21), (5.22) and Gauss’ theorem we get
/ p(@,vi+vf|kvk) dv = / fidv + / M ndsS
(v (ov")

V)
— / flav + / agdv W' CV
(V) V)

(5.23)

We observe that the material time derivative of the velocity coincides with the
particle acceleration,

- Dy ) )
a = D‘; =o' —i—vf‘kvk (5.24)

From Egs. (5.23) and (5.24) we get the dynamic equations,

i i Dv'
Ufk +f = pE (525)
In Cartesian coordinates the above dynamic equations become,
Dv;
Oowi +f; = p— 5.26
ko +fi = p o (5.26)

We observe that if we assume that the particle acceleration is vanishing, then
Egs. (5.25) and (5.26) reduce to the static equilibrium Eqgs. (4.33) and (4.38),
respectively.
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5.3 Balance of Angular Momentum

The total moment of the forces and couples acting on a body B at a given time 7 is,

M = / R xtdS + /mdS (5.27)
V) av)

/ R x fdV +
( V)

( (

where R is the position vector.
On the other hand, the total angular momentum is

L= R x (pv)dV + / pbdv (5.28)
™) 4%

where p0 is the angular momentum of the spinning polar material point.
Balance of angular momentum is expressed as,

dL
—=M 5.29
o (5:29)
Assuming that mass balance is holding, we have that,
dL d Dy Do
= R = R — — .
& p(Rxv+0)dv / ( X th>dV+ / P Dy dv  (5.30)
v) v) v)

5.3.1 Cartesian Coordinates

We consider the 1st term on the r.h.s. of Eq. (5.27), and evaluate its components for
convenience in a Cartesian description,

/ (RXt)idS: / Siijjlde: / SiijjO'mknmdS

(ov) (V) (aV)
= / Sijkam (xjamk) dv = / Eijk (5mj0’mk + XjamO'mk) av (531)
v)

V)
/ (gijkajk -+ SiijjamO'mk) dv
v)
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Let,
t =te, ZESUkO'jk (532)
and with that Eq. (5.27) becomes
Mi = / 2tl*dV+ / SiijjamO'mde+ / eijkxjﬁ(dV+ / ‘Ltkil’lde

) ) ) (av)

= / (28 + Ot )dV + / (€55 (OmOmi + i) ) AV
(V) v)

(5.33)

By combining Egs. (5.29), (5.30) and (5.33) we obtain

DO . D
P dV = / (26 + Do) AV + / (a,-,-kx,- (amamk tfi— p%) )dV

v) v) %)

(5.34)

If we assume that balance of linear momentum holds, then the last term on the r.
h.s. of Eq. (5.34) is vanishing, thus yielding,

DO,
/ o2y = / (217 + ety )V (5.35)

v) )

The local form of Eq. (5.35) is

DO,
Octyi + €O = p 4 (5.36)
cf. Eq. (4.40).
5.3.2 Exercise: General Curvilinear Coordinates
Prove that in curvilinear coordinates Eq. (5.36) becomes,
. . DO
Wi+ eaa” = p —* (5.37)

Dt
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Proof From
M = / ejpx/t*ds + / eix'frav+ / mdS + / ®,dV (5.38)
(V) (V) (ov) V)
where for completeness we considered the action of body couples as well. Thus,

Mi: / eijkxjolknldSJr /e,jkx{fdeJr / /ﬂ,n,dSJr /CD,dV
(8Vv) v) (oV) v)

' (5.39)
= / ('ujl|J + eAijijk + ®; + e,-jkxj (O'Ik‘l +fk)> av
v)
and
L= / e,.jkxjpvde—I— / p0,dV (5.40)
V) )
Then from Eq. (5.29) we get,
. ) DO; . DV
J Lk DY . I _
/ (,u,l.lj + e + @ — p Dr + ejex’ (0..1 +ff—p Dr >> dv =0 (541)
v)
In view of Eq. (5.25) we get Eq. (5.37).
g.e.d.

5.4 The Micro-morphic Continuum

For the identification of the angular momentum of the spinning polar material
particle we follow a demonstration by Becker and Biirger [2] by resorting to the
so-called micro-morphic continuum interpretation. The term “micro-morphic” was
introduced by Eringen [4]. A volume element of a micro-morphic medium consists
of micro-elements which undergo micro-motions and micro-deformations. Note
that micro-polar media are a subclass, in which the micro-elements behave like
rigid bodies.

In this case we assign to the material polar particle (or macro-particle) of the
continuum the average properties of a Representative Elementary Volume (REV);
that is of an assembly of sub-particles, as shown in Fig. 5.1. The (REV) may consist
of N sub-particles (or micro-particles).
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Fig. 5.1 The microstructure
of an (REV) with
sub-particles sharing a
rigid-body motion

We use here Cartesian notation. The spatial position of the polar macro-particle
is identified with the position of the center of mass S(x;) of the sub-particles in the
(REV). The velocity v; of the center of mass S(x;) is defined as the velocity of the
particle itself,

Vi = X; (5.42)

The sub-particle at position P(x; +y;) has the mass /m = pp\7, where p), is the

sub-particle mass density and V is its volume.
The sub-particle has a velocity that is composed of the velocity of the center of
mass and the deviation from that,

w(P) = () + 7 (5.43)
The total mass of the macro-particle is the sum of the masses of its constituents,

m=""iny (5.44)

The linear- and angular momentum of the macro-particle are computed as
follows,

ii = my; (545)

dy = mejx;v; + Z (megyivy) y (5.46)
N
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The volume of the material (REV) is V and the total volume of the sub-particles
inside the (REV) is

V=Y Wy (5.47)

The volume fraction

¢ = =1-= (5.48)
is the porosity of the (REV). The density of the macro-particle is'
Sy Sy YV
_ N N N

VoSV v
N

p — (1= ¢)p, (5.49)

Similarly we introduce the linear momentum of the macro-particle,

my;

Vv

= pv; (5.50)

Si =

and its angular momentum
dy 1 . -
Dk = V = P&jiXiVj + V EN (ma,-jkyl-vj)N (551)

The relative velocity ¥; of the sub-particle at position P(x;+ y;) with respect to
the center of mass S(x;) is assumed to be a function of its position inside the
(REV) and of time. We expand this function in a Taylor series in the vicinity of the
center of mass S(x;) of the REV by setting

vi 2 vii(0)y; + ik Oy + - (5.52)

We can develop a special theory, if we consider only the linear term in the series
expansion, Eq. (5.52),

\N/,‘ ~ Vij(l‘)yj (553)

This assumption is interpreted as a statement for local homogeneity of the
micro-deformation; i.e. of the deformation inside the (REV). In this case from
Egs. (5.51) and (5.53) we get,

'If the particles consist of different substances then we should replace p, with an average particle
density <p, > in Eq. (5.49).
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D, = psijkxivj(t) + gijk-[ilvjl(t) (554)
where Jj; is the inertia tensor of the (REV) with respect to its center of mass,
Ty = iz (myiyi)y = p lz %) (5.55)
V& Py ~ N

For simplicity we assume that on the (REV) only volume external forces are
acting. In this case the moment per unit volume of external forces acting on the
(REV) is,

I = egexif + e (5.56)

where,

Qz

(5.57)

<§z

"y 30D
“vo i

<|>—‘ <|

If we integrate Eq. (5.56) over the volume of the continuum body B, we get the
expression for the total moment of body forces acting on B,

M) = / e dV = / sixfidV + / siifidV (5.58)
V) V) (V)

In view of Eq. (5.27) we recognize the 1st term on the r.h.s. of Eq. (5.58), as the
moment of body forces. The 2nd term is the contribution of body-couples, that were
systematically ignored in the previous derivations, since there was no real moti-
vation to introduce such body-couples until this point in the demonstration. Thus
we introduce here body couples,

D = eifi (5.59)
and Eq. (5.58) becomes,
ko= ixifidV + | OpdV (5.60)
V) )

With this background we may re-write the linear- and angular momentum
equations for the considered special micro-morphic continuum; these are,
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d
% pvidV = / fidV+ - (5.61)
) )
d
E / Dde = / Sijkxi]j'dV—F / <I>de—|— (562)
) ) )

where the dots stand for the actions of surface tractions and surface couples.
Equation (5.62) with (5.54) becomes,

(paijkxivj + siijilvj,)dV = / sl;jkxlf,-dV+ / OrdV + - -- (563)
v) v) V)

d

The balance equations for the Cosserat continuum can be derived from
Eq. (5.63) if we set,

Vi = b = —sijkwk (564)

=

where

Dy

This assumption means that the considered macro-element is a swarm of v
sub-particles that they all share a rigid body motion: The center of mass of these
sub-particles is translated by the velocity v; and at the same time all the
sub-particles rotate around an instantaneous axis with director n; and have an
angular velocity w, such that,

Wp = mw (5.66)

Thus, the spin and the velocity of a sub-particle inside the (REV) is given by the
von Mises motor that characterizes the rigid-body motion of the sub-particles,

(V(P) = v’?g)ﬁ t(filp Ry > = <v,- N ;:jwkyj) (5.67)

In this case we have that
egedivii = et (—&mWm) = JomWm = pOx (5.68)

With these results we return to the momentum balance Eq. (5.35), that is written
now as follows,
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Dwy,
/ inm%dV: / (1 + Oty + ©;)dV (5.69)
@) )

Its local form reads,

Dw,,
Oplipi + ekpgOpg + P = pJim Dr (5.70)

In general curvilinear coordinates the dynamic Eq. (5.70) takes the following
form,

m

Dw
N{)k\p + e1pg0” + O = pJion D (5.71)

5.5 Exercises: Dynamic Equations in Plane Problems

5.5.1 Cartesian Coordinates

Prove that the dynamic equations in-plane Cartesian coordinates are (Fig. 5.2):

0oy 00y Dv,

6x1 + 8)62 —PE

5.72
80'12 80’22 N DV2 ( )
Oxy Oxp —f Dt
Opys | Opxs Dws
Itz | O3 4 Gy gy = pI 2 5.73
8X1 8x2 12 2 P Dt ( )
iy + 8, iy,
0,, +0,0,,dx, l {
0y +0,0;,dx, Oy
I =g
s oy + 80,0, i
S l v, T_, N_. e 1 M, [ Hyy + Oy,
oy, v/ oy, +6,0,dx, — W,
Ty 12
O—a?— a. 1'—
x2 lo—% N l
Hy
5

Fig. 5.2 Dynamic equilibrium in a Cosserat medium in Cartesian coordinates
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df
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fTr'lE? \ "}_3 U{Trl; @
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Fig. 5.3 Dynamic equilibrium in a Cosserat medium

where the assumption is made that the micro-inertia tensor is isotropic,

T = J8; (5.74)

5.5.2 Plane, Polar Coordinates

Prove that in the absence of body forces and body couples the dynamic equations in
physical components and in plane polar coordinates are (Fig. 5.3),

do,, 100y 1 Dv,

o Tro0 T rlom T ow) =P, 575)
0o, 1009 1 Dvy '
o + 700 + ;(O-r6+0-9r) = pE

851;2 + %8;52 + %.urz +0,0— 09 = PJDZ;;Z (5.76)

References

1. Vardoulakis, 1., & Sulem, J. (1995). Bifurcation analysis in geomechanics. Blackie Academic
& Professional.

2. Becker, E., & Biirger, W. (1975). Kontinuumsmechanik. In H. Gortler (Ed.), Leitfdden der
angewandten Mathematik und Mechanik (p. 229). Springer.

3. Gurtin, M. E., & Martins, L. C. (1976). Cauchy’s theorem in classical physics. Archive for
Rational Mechanics and Analysis, 60, 305-324.

4. Eringen, A. C. (1965). Theory of micropolar continua. In Proceedings of the 9th Midwestern
mechanics conference. Madison: Wiley.



Chapter 6 )
Cosserat Continuum Energetics e

Abstract In this chapter the energy and entropy balance laws for a Cosserat
continuum are presented. It is shown that the higher-order continuum introduces
additional terms in the local dissipation of a system.

6.1 Energy Balance Equation

The total energy E(#) of a continuum body B is split into two parts: one part that
depends on the position of the observer, that is called the kinetic energy K () of the
considered body, and another part that does not depend on the observer, called the
internal energy U(?),

E(t)=K()+U(1) (6.1)

The kinetic energy of a Cosserat continuum consists of the contribution that is
due to the translationary motion of the particles,

1
Evkvkdm (6.2)

and of the contribution that is due to their spin,

1
Ewkadm (6.3)

Thus the total kinetic energy is computed as,

1 1
K(r) = / 0 (E Ve + gwk0k> dv (6.4)
V)
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90 6 Cosserat continuum energetics

The internal energy is given by means of a specific internal energy density
function, e(@i , t),

Ut)= [ edm= [ pedV (6.5)
by

The 1st Law of Thermodynamics requires that the change of the total energy of a

material body B is due to two factors: (a) the power W(®) of all external forces
acting on B in the current configuration, and (b) the non-mechanical energy Q,
which is supplied per unit time to B from the exterior domain; i.e.:

dE

—= w40 (6.6)

By eliminating dE/dt from Egs. (6.1) and (6.6) we arrive to the fundamental
energy balance equation

U dK .
— + o w40 (6.7)

According to Truesdell and Toupin [1] the first formulation of the Energy
Balance Law, Eq. (6.7), is due to Duhem [2].
The work of external forces is computed as follows,

wien) = / (tvi + mwk) dS + / (F vi + @wk)dv (6.8)
(V) v)

The influx of energy in the form of heat flow is defined through a heat-flow
vector ¢' (@k, t), that is taken positive if heat flows into the considered body,

0=- / q"mids (6.9)
(@v)

We introduce into Eq. (6.8) the stress- and couple-stress tensors, according to
Egs. (4.34) and (4.36),

Wlen) — / (0™ vy + sl h ) midS + / (Fve+Dewh)av (6.10)
(ov) v)
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and we apply Gauss’ theorem,

wien — / (ot +£*)veav + / (R + @) wav + / (" v+ i )av

V) V) (v)
(6.11)

Similarly from Eq. (6.9) we get
0=- / qpav (6.12)

V)

The Lh.s. of Eq. (6.6) is computed by means of Egs. (6.1) to (6.5) and Reynolds’
transport theorem

dE 1D, , 1D, , de
— = —— av —— (W0 )dV —dVv 6.13
di /pth(”") +/p2Dt(W k) +/pdt (6.13)
v) v) v)
We remark that the following relations hold,
1D (Fue) 1D (Feu') Dk DV (6.14)
—— (V') ==— (ViguV') = guv — = vk — .
2 Dt b 2 Dt 8u 8u Dt "Dt
DO Dwk
POk k= 9,2 (6.15)
Dt Dt
the latter will be demonstrated below. Thus,
1D 1 /DO, Dwk DOy
20w =2 [ =2k g, ) = =X 6.16
2o () 2<th+th) " Dr (6.16)
By combining Egs. (6.6), (6.11) with (6.16) we get
DV DO De
v) (v) (V)
— / (o’ﬁ‘ +fk)vkdv+ / (,uf,(‘i—kqﬁk)wkvar / (Gikvk\f-ﬂlfkwﬁ,-)d‘/— / ¢av
V) v) () ()

(6.17)
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or
De w  x D* i DO\
/pEdVZ / <‘7\i +f —PE>deV+ / (M,k‘i-i-@k—pﬁ wdv
v) v) (%) (6.18)
+ / (a"kvk‘i—l—,ufkwﬁi)dV— qﬁde
v) v)

We assume that linear- and angular momentum balance equations, Eqgs. (5.25)
and (5.37), are holding. In this case we get from Eq. (6.18),

De : .
/ pEdV = / (o"k (Vi — eamw™) + :u%kwﬁi - Qﬁk)dv (6.19)

v) )
In accordance to Egs. (3.138) and (3.139) we define the rate of distortion tensor

KF=wk (6.20)

. ‘i
and the relative rate of deformation tensor,
/
Ty = Vk|i + eiw (621)

With this notation and in accordance to Eq. (4.3) we define the stress power in a
Cosserat continuum as,

P=c"Ty+ i K* (6.22)
Notice that in accordance to Eq. (4.14) the stress power can be split as follows,
P =Ty +21 (& — w') + i K (6.23)

With this definition, from Eq. (6.19) we obtain the following local form of the
energy balance equation,

De
pE =pP_ ‘lﬁk (6.24)

Remark In order to have the above derivation complete we must prove the validity
of Eq. (6.15); cf. Becker and Biirger [3]. We use Cartesian coordinates and
Egs. (5.55) and (5.68) as starting points,

Hk = ]]tmwm (625)
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where J; is the (symmetric) inertia tensor referred the unit of mass

| 1 N i
Jp=—Ju= —Z (myy)y; i = pJy (6.26)
o mes
In view of the L.h.s. of Egs. (6.15), (6.25) and the symmetry of the moment of

inertia tensor we get,

DO, DJ; Dw DJ; Dw
DT ( Dt o Dtm> Wk = W+
6.27
—w D‘Iljm w,, 4+ Dwm £ ( )
“pr " pr Tmkk

In a Cosserat continuum the particles move like rigid bodies. This means that for
a fixed coordinate system, the inertia tensor is,

(1) = Qin(1) Qjm (1),,,(0) (6.28)

The proper orthogonal tensor Q;;(¢) describes the (finite) rotation of the particle
between its configuration at time # = 0 and time ¢ > O.
We recall that Q;;(¢) fulfills the orthogonality conditions,

OuQi = o, OuQii = ou (6.29)

Thus,

D . .
Dy = QinQind () + Qin (1) Qjn (1), (0) (6.30)

If we take the current configuration as reference configuration, then Eq. (6.30)
yields

EJ,} = QinéjmJnm + 5ianmJnm = Qianj + Qjm],’m (631)

or
D * * *
Btjij = Q,-anj — J0n Qi (6.32)
where the tensor

Qu = Ou (6.33)
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is antisymmetric and has the angular velocity vector wy as an axial vector,

0 —W3 wo
[Q] = w3 0 —Wq (634)
—W3 w1 0
or
Qij = —&jWk (635)
Thus,
D * * *
EJI'J' = _sinkwk‘]nj + smjkwaim (636)
and
0 Dr w; = w; <_8imkaij + smjkwk]im)wj (637)
= EmikWiWid Wi + EmiiWiWid Wi = 2 (Emixwiwg) = 0
q.e.d.

6.2 Stress Power in Micro-morphic Media

At this point we would like to make a reference to the more general formulation of
the stress power that applies for a micro-morphic medium [4]; cf. Sect. 5.4. In this
context we define the following kinematic variables:

The rate of macro-deformation,

(O + o) (6.38)

N =

D =
the micro-deformation vy, the rate of relative deformation,
Iy = 0wk — vy (6.39)
and the rate of micro-deformation gradient,
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Based on these definitions we define the stress power as follows,

The tensor t;; is called the macro-stress, the tensor w;; is the relative stress and
the tensor ijk is the double stress [5].

We specialize now the micro-deformation so as to correspond to a rigid-body
rotation [cf. Eq. (5.64)],

Vij = lﬁlj = —&jjkWk (6.42)

and with that,
Kijx = Ovir = —euOw; = —ejuKy (6.43)

In that case from Eq. (6.41) we get,

P = ‘C,'jD,’j + OCijrij + ,ul-ij,'jk

= ‘E,'jD,‘j + Olij (8,-\/,- — lﬁl]) — sjk,uiijil

(6.44)
= 1;iDj; + o5 (Dij + W+ Sijka) - 8jkl.uiijil
= (i + o)) Dy + ey (Wi + ijown) — bt Kn
where W; is called the macro-spin
1
Wij = 5 (9vi — Ow)) (6.45)

If we compare Egs. (4.14) and (6.44), we obtain the following identification
among the stress fields defined in the micro-morphic and the Cosserat continuum,
respectively,

() = Tij + (i)
) = oy (6.46)
Hip = —&jka Hijk

If we assume also that,

o) = 0 (6.47)

this identification allows us to write the stress power for a Cosserat continuum as
follows,
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where R;; is the relative spin
R = Wi + gjipwi (6.49)

This means that in a Cosserat continuum, the macro-stress coincides with the
symmetric part of the true (equilibrium) stress and works on the rate of deformation.
The relative stress coincides with the antisymmetric part of the true stress and works
on the relative spin. Finally, the couple stresses of the micromorphic medium
collapse to the true (equilibrium) couple stresses, that work in turn on the rate of
distortion.

6.3 Entropy Balance

Let H be the total entropy of the considered material body B in the current
configuration

H(1) = / psdV (6.50)
\4

In Eq. (6.50) s = s(xx, t) is the specific entropy. Let also T = T (x;, 1) > 0 be the
absolute temperature. We define further the following quantities: (a) The Helmholtz
free energy as that portion of the internal energy, which is available for doing
mechanical work at constant temperature

f=e—sT (6.51)

and (b) the local dissipation function,

Df DT
Diye =P —p| = +5— 6.52
! P (Dt s Dt) (652)
With the above definitions the energy balance Eq. (6.24) becomes,
Ds k

This equation is the balance law for local entropy production. The entropy
balance law, Eq. (6.53), is further worked out by introducing appropriate consti-
tutive assumptions concerning the Helmholtz free energy function, the local dis-
sipation function and the law of heat conduction that are compatible with the
underlying Cosserat structure of the medium.
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Chapter 7 )
Cosserat-Elastic Bodies Check or

Abstract This chapter explores certain classes of materials. It begins with linear
elastic bodies, laying down the basic concepts for linear isotropic elasticity.
Examples are following, including bending of a beam, annular shear and torsion of
a sphere of Cosserat elastic material.

7.1 Linear, Isotropic Cosserat Elasticity

For an elastic Cosserat material that is stressed under isothermal conditions, the
energy balance Eq. (6.24) provides the means to compute the rate of the internal
energy density function.

In Cartesian coordinates we have,

De
P, = Ol T 1K (7.1)

Within the frame of a small-deformation theory we assume that the density
remains practically constant,

p _4av P o ©
L - = ~ 1 —¢y) ~ 7.2
p(o) dV(O) p 1+ P P ( Pkk) p ( )

where p(*) is the density of the material in the initial, unstrained configuration.
Thus for small deformations we get,

Dy;
Y s O
Ly =5, ~ 9
(7.3)
DK,']'
Kij = Di ~ G,K,-j
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and
De oy De
We assume that the elastic energy density,
we) = pOe (7.5)
is a function of the 18 kinematic variables, Vij and xy;,
wieh) — F(y,;,-, ;cij) (7.6)
Then from Egs. (7.6) and (7.4) we get that

aw(el) aw(el)
Oij =—FJ 5 Hj=—F
T Oy T Oy

Within the frame of linear elasticity, we assume that w() = F(y;, x;) is

homogeneous of degree 2 with respect to its arguments.
From

Sy = 97 T Ol i (7:8)
we get that the elastic strain energy is split into three terms, as
e el el el
W = w} )(V@j)) +wh )(V[ij]) + i () (7.9)

A simple elasticity model arises if we assume that the Ist term on the r.h.s. of
Eq. (7.9) reflects Hooke’s law for linear, isotropic, elastic materials [1],

el 1
WE )_—5‘7(&)8& = (7.10)
@ _ 1 . % 11
Wl 2 lgmmgnn Gsmn‘gmna j‘ 1 _ 2v (7 )

where G and v are the elastic shear modulus and Poisson’s ratio, respectively.
Equations (7.10) and (7.11) are yielding,

owe) gl y
o) = a—s,, = 1‘ = 2G<8ij + mgkk(sij) (7.12)
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We notice also that both, i and Vjjj)» are antisymmetric tensors of 2nd order.
Both are possessing axial vectors, say

Ol = Ertys Vi) = Gk (7.13)

where
7= o — Yy (7.14)

Isotropy calls for proportionality between the axial vector of the antisymmetric
stress and the antisymmetric part of the deformation, thus yielding

i =2mGy; (> 0) = oy =2mGyy (7.15)
and with that
el 1 * ok
wht) = 2 91 = MG = MGV (7.16)

The couple stress tensor and the gradient of the Cosserat rotation i/, are also
decomposed additively into symmetric and antisymmetric parts,

1 =t F R Ky = K K (7.17)

Then the isotropic linear-elastic law for the couple stress reads,

9 (el)
Hap = 3W( = GO (1 + mdyrcia), 1 >0

ow (3 i (7.18)
Hiyg) = iy = Gk, 13 >0

where / is a material constant with the dimension of length, called also material or
internal length. Thus

Wg A = ng( (mn) K (mn) + M2 K (mm) K (nn) + ﬂ@K[U]K[U]) (719)

Note that the general anisotropic Cosserat elasticity can be found in a paper by
Kessel [2].

7.2 A 2D Linear, Isotropic Cosserat-Elasticity Theory

Here we summarize some results from the paper of Schéfer [3], that pertain to a
proposition for a simple two-dimensional, linear elasticity theory for isotropic
materials of the Cosserat type. This is a theory of plane stress states.
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First we assume that the symmetric part of the stress tensor is related to the
symmetric part of the deformation tensor (i.e. to the symmetric part of the dis-
placement gradient, that is identified with the infinitesimal strain tensor), through
the usual equations of plane-stress, isotropic Hooke elasticity,

&1 = é(ﬂu — Vo)
& = é (022 - V011) (7-20)
1
&12 = %0(12)
where
& = % (uiy+ u;,) (7.21)

The antisymmetric parts of the relative deformation and of the stress are also
linked by a linear relation,
1

Yz = Z_GCGM’ G.=mG>0 (7.22)

where according to Eqgs. (3.81) and (4.13)

1
(V2 —71) =0 — ¥

Y2 = B
1
2

(7.23)

Ol12] = (612 — 021)

Due to the isotropy requirement we assume that the couple stresses are linked to
the curvatures by means of only one additional material constant,

where
K13 = Oy = 01y

(7.25)
K23 = Oofy = Dby

7.3 Examples of Elementary Cosserat Elasticity
B.V. Problems

7.3.1 Pure Bending of a Cosserat-Elastic Beam

We consider a beam with rectangular cross section, as shown in Fig. 7.1. The only
stresses that are considered are the axial stress oy, and the couple stress p,.
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xx

h

i ? e "
_"—‘ = dz# ‘

Fig. 7.1 Pure bending of a Cosserat beam: stresses on fiber

Motivated by the classical beam theory we apply a semi-inverse approach and

assume that [3],
Oxx = €T Hyy = ¢

where ¢ and ¢ are positive constants to be determined.
In the considered case the only significant equilibrium equations are,

dou _ . Oky _
Ox T Ox

0

Thus the stress fields, Eqs. (7.26), are equilibrium fields.
The elasticity equations and the ansatz (7.26) yield,

1 c
SXX:EUXX:EZ

The only surviving compatibility condition in the considered case is,

(2)
121 = — Kxyy = 0

0z
which in turn yields a restriction for the introduced constants,

c ¢ . D
———==0 = c¢=—=c
E D E

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

Note that in the paper by Schéfer [3] we find the derivation of stress functions

that satisfy equilibrium and compatibility conditions.
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We normalize the material constant D by the Young’s modulus, by setting.

1
D=_—_E 7.32
where £ is a micro-mechanical length that is in most cases considered to be small, if
compared with the typical geometric dimension of a structure. As we will see

below, the factor 1/12 is put for convenience in the computation.
With this remark from Egs. (7.29) and (7.32) we get

1
Iy = ﬁEezxxy (7.33)
and
Ky = % (7.34)

As in classical beam bending theory, from Fig. 7.2 we read

Oedx  dx &y 1

=>—=—=

z R Z R

- (7.35)
E R

where R is the radius of curvature of the beam.

: K
K ©
R dy, \R
e
v '
dz ) \)L-_' ] )r
z x 0,u.dx | |
! ; dx :
—
x 3
X+

Fig. 7.2 Pure bending: exploitation of the Euler-Bernoulli hypothesis
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On other hand, from Egs. (7.35) and (7.34) we get

o, 1
o == dv=Rdy, (7.36)

The total bending moment that is taken by the rectangular cross-section of the
beam is computed as

h/2 h/2 h/2 h/2
M= / Ozbdz + / f,bdz = cb / Pdz+¢b / dz
—h/2 ~h/2 ~h/2 ~h/2 (7.37)

bR bh>  bh , 0N?

where [ is the surface moment of inertia of the rectangular cross-section of the
beam,

bh?
Then from Eq. (7.37) we get
!
M= % (7.39)

where

I'= 1<1 + <£>2> (7.40)

This is a typical result of Cosserat elasticity theory, meaning that a structure
made of Cosserat elastic material is stiffer then the corresponding classical elastic
structure. The smaller the structure is, the larger is the effect of the material length to
the bending stiffness.

7.3.2 Annular Shear of a Cylindrical Hole
in Cosserat-Elastic Solid

7.3.2.1 Background

The problem of annular shear of a cylindrical hole in Cosserat-elastic solids has
been analyzed first by Besdo [6]. Bogdanova-Bontcheva and Lippmann [7],
Unterreiner and Vardoulakis [8] analyzed the same problem within the frame of
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Cosserat elastoplasticity. Controlled interface shear tests on granular materials were
performed in the annular shear apparatus ACSA of CERMES/ENPC [4]; Fig. 7.3.
When a granular material is sheared against a rough boundary, zones of localized
deformation are observed at the interface; Fig. 7.4. The boundary localization
phenomenon in the annular shear apparatus was simulated numerically by Zervos
et al. [5] by using the Contact Dynamics method (Fig. 7.5). More recently Mohan
et al. [9] have tackled this problem semi-analytically/numerically by utilizing the
elasto-plastic model of Miihlhaus and Vardoulakis [10]. We quote from this paper
[9]: “...Experiments on viscometric flows of dense, slowly deforming granular
materials indicate that shear is confined to a narrow region, usually a few grain
diameters thick, while the remaining material is largely undeformed.”. In this
section we address the problem analytically by using Cosserat elasticity in order to
demonstrate that even the simplest Cosserat model will allow the formation of such
“boundary layers”.

Fig. 7.3 Plane-strain
Couette-type annular shear
apparatus for sand [4]

Fig. 7.4 Interface
localization in granular
material realized in the
annular shear apparatus [4]
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Initial State

Total Displacements

Fig. 7.5 Contact dynamics simulation of interfacial localization [5]

7.3.2.2 Problem Statement

We consider a cylindrical hole of radius R under the action of internal shear as
shown in Fig. 7.6. Axial symmetry yields the following equilibrium equations,

dO‘rg 1
2000+ 00) = 41
o T (e0toe) =0 (7.41)
du,, 1
drz + L +06,9—09, =0 (7.42)

We note that for Boltzmann continua the considered problem is isostatic; i.e. for
the determination of the stress field one does not need to specify the constitutive
equation. Indeed in that case the only valid equilibrium equation is,

do,y 2
Z6,0=0 7.43
dr ra 0 ( )



108 7 Cosserat-Elastic Bodies

10
@
0 =3
gIT.
l—-/ frz + : I; 1
rit ~ o -
dr  dg e d6
r 2 Yot S diaat
/ =3 Ly \J/’;’/ e
B Ur‘é} B
N
/:/ ‘. ‘/Ufh
| :9 |
r+dr r r+dr
Fig. 7.6 Cylindrical hole in plane strain annular shear
The boundary conditions for the classical problem are,
r=R: og==1 (7.44)
r—oo: o <oo (7.45)

These b.c. admit the solution

N -2
Grg = T(E) (7.46)

As mentioned, the problem of a cylindrical cavity under annular shear is isostatic
(Figs. 7.7 and 7.8). In this case principal stresses exist and their trajectories are
logarithmic spirals,

(al):r:Rexp(Qcot(g», x=rcos(0+6y), y=rsin(6+0)

(6*):r=Rexp (—Qcot(:%n)), x=rcos(—0+0y), y=rsin(—0+0p)
(7.47)

In the case, however, of a Cosserat continuum, none of the above holds. The
problem is not isostatic, the solution depends on the constitutive assumptions made
for the stresses and the couple stresses and a boundary layer is forming close to the
cavity wall, where Cosserat effects are dominant. Indeed in case of a Cosserat
continuum, we get the following expressions for the deformation measures,
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Fig. 7.7 Stress state at the cavity lips in case of a Boltzmann continuum

Fig. 7.8 Principal stress trajectories in case of Boltzmann continuum, indicating the isostaticity of
the considered problem

0 -
symly] = | eor Goo o | = |1 (% — 1) 0 0 (7.48)
Sar &0 &z 0 0 0

0
asymy] = | —1 (% 4 w) 4y 0 0 (7.49)
0
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N,

9
0
0

o
3

0
i = |o (7.50)
0

S OO

These expressions are combined here with the constitutive equations of linear
isotropic Cosserat elasticity and provide the following set of generalized
stress-strain relationships,

du u
0(rg) = 2Ge = G(d_re - TH> (751)
B _ duy  up
o0 = 21 Gy = MG PP 2y, (7.52)

and couple-stress-curvature relationships

1 dy
2 2
Hr) = GORm =5 GO (7.53)
= G/? ! G1* v, .
Hirg = N3K[r7 = 5 M3 dr
Thus
_ o duo up
00 = 0(,0)+ 030 = G (1 ‘Hﬁ)g -(1- ’71)7 —2my. (7.54)
and
1 dy

Hrz = Kirg) + Hirg = Eng(l + ’13) d}"z (755)

Introducing the above set of constitutive equations into the equilibrium
Egs. (7.41) and (7.42) we get a set of two coupled differential equations for the
particle displacement in tangential direction uy and for the particle rotation, .,

d2u0 + lduo Uup o dlﬁz
dr? rdr 2 dr

(7.56)

and

42 1d dug u
o e =) 7
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where

M M
= . b=4 7.58
¢ L+m L+, ( )

For n; = 0 (a = b = 0) the stress tensor is symmetric and Egs. (7.56) and (7.57)
become decoupled,

d2u9 ldue up
B 7.5
dr? + rdr r? (7.59)

d? 1d
Ve, ldv._

= 7.60
dr? rdr ( )
The solution of Egs. (7.59) and (7.60) is,
1
ug = Csr+ C4; (7.61)
Y,=Ci+Clnr (7.62)

The boundedness condition at infinity for the particle rotation angle y, and for
the circumferential displacement uy is fulfilled, if C; = 0 and C; = 0. The solution
for C; # 0 is physically meaningless, thus we accept the solution

C
wp=—; Y, =0 (7.63)

7

The integration constant Cy4 is determined from the boundary condition for the
shear stress,

r=R: aggy=1 (7.64)
Thus
R T

In the uncoupled case (1, =0), the valid solution for the displacement,
Eq. (7.65), together with the constitutive equation for the symmetric part of the
stress, Eq. (7.51), yield the classical solution, Eq. (7.46).

In the general case (n; > 0), Eqgs. (7.57) and (7.56) yield

2 (dzlllz N ld_‘ﬁz> . =0 (7.66)

dr? r dr
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where ¢ > 0 and,

>0 (g, >0) (7.67)

Let
p
p=ny (7.68)

the general solution of Eq. (7.66) is given in terms of Oth-order modified Bessel
functions

¥, = Cily(p) + C2Ko(p) (7.69)
and from that
d
=) - e lKp) (7.70)

The extra boundary conditions are given in terms of the particle rotation and/or
of the couple stress. In order to introduce these extra boundary conditions within the
Cosserat continuum description, we resort to the concept of ortho-fiber [11]. An
ortho-fiber is a rigid bar of length ¢ aligned normally to the surface of the con-
sidered Cosserat continuum body and it is pointing outwards. On the end of this
fiber we assume either displacements or tractions are applied thus giving to the
surface actions the meaning of v. Mises motors (Fig. 7.9). Accordingly we assume
here that at the cavity wall the shear stress and the couple stress are prescribed and
at infinity the particle displacement and rotation must vanish,

() e
s (-0 o

t 7\ @f\

I =
“\T Tl

Fig. 7.9 Shear traction applied on an ortho-fiber at distance ¢, resulting into a surface traction and
a surface couple when transported to the surface
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The sign of the surface couple in Eq. (7.71) results as follows: as shown in
Fig. 7.9 the shear traction of magnitude 7 is assumed to be applied on an ortho-fiber
of length ¢/, thus yielding an equivalent set of surface actions, a surface traction and
a surface couple. If the surface traction is positive then the surface couple must be
negative.

For large argument p we have the following asymptotic expression for the
solution, Eq. (7.69)

Y. =G e;l%pp) + Cz\/%exp(—p) (7.73)

From Eqs. (7.72), (7.71) and (7.73) we get

e”ci+e e =0 (p*>1)

(7.74)
Li(pr)er + Ki(pg)er = —1
where
C; R
G=-—1 xp (=L2; pp=ny (7.75)
(I+nm)n G ¢

The solution of the system of linear Egs. (7.74) takes the following form,

0 (¢~ o)
‘= = p" — 00
Ki(pg) — Ii(pr)e2*
1 1 (7.76)
€ = —— — pF—
Koo~ e ™ Kilp) )
This means that the valid solution here is the logarithmic one (C; = 0)
Y. = CKo(p) (7.77)
and with that
My = —Q%Gﬂz(l +n3)K1(p) (7.78)

The b.c. at the cavity wall, Eq. (7.71) for the couple-stress yields,

&= (%) & (2) 779

and with that (Fig. 7.10)
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Fig. 7.10 Boundary particle
displacement and rotation

v () >0 0

For small values of the internal length 0 <nf < R we have the following
asymptotic solution for the particle rotation.

v, ~ 4(%) (%) \/p%e(ﬂm (7.81)

This means that the particle rotations are confined in a boundary layer and they
decay faster than exponentially with the radial distance from the cavity wall. On the
other hand, we observe that the particle rotation depends linearly on the ratio of the
“roughness” length scale ¢’ to the material length scale ¢, and on the ratio of
first-order imposed hoop displacement to the radius of the cavity.

Equation (7.56) becomes,

d*ug  ldup up d
dr? + rdr r? dr o(p) ’ at2 ( )

or
1 l
uyg = C3r+ C4——26lC2ﬁK1(p) (783)
r
As already explained above, the only meaningful solution is the one for C;3 = 0,
thus

C (K(p)
1+n,nKi(pg)

1
up = Cs~ 2 (7.84)
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where
4n, 1 al
C=0Cop —— 7.85
Yon(L ) Ki(pr) R £ (7:53)
The b.c. at the cavity wall, Eq. (7.71), for the shear stress yields,
1 1 Ko(pg)
Cy = —u+CR? (2 —+ —Kolp 7.86
L+npg  Ki(pg) (x) (7.86)
and with that
wp ~ u) — iy (7.87)
In this expression with uf)()) we denote the classical solution Eq. (7.65)
0) R T
=—u—; =—R 7.88
1y wsou=o ( )

and uy is the perturbation that stems from the Cosserat terms,

,;()zc_é(é_F 2 (p_R_ @e(ﬂﬂk))>
n\p l+m\p Vop (7.89)

Ct M 1 & /

n n*(14+n;3)Ki(pr) G

The perturbation for the displacement contains both hyperbolically and expo-
nentially decaying terms, it is proportional to the classical solution, Eq. (7.65), and
it scales linearly with the interfacial length scale, ¢/,

. (R [V
Up = ”5)0) —Up = —u <7 + C(ﬁ)f(ﬂm P)) (7.90)

7.3.3 Sphere Under Uniform Radial Torsion

We consider a spherical body of radius R made of linear-elastic, isotropic
Cosserat-type material, that is subjected on its surface to uniform radial-torsional
loading of intensity u,,.(R) = m (Fig. 7.11). We want to analyze its state of stress
and the deformation that this object suffers. In the considered setting the defor-
mations, distortions and torsions are given in polar spherical coordinates as follows:
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Fig. 7.11 Sphere under P L

uniform surface torsion / % H (R)=m

0 0 0
asymlyJ=10 0 , (7.91)
0 —y, 0
W0 0
Kl=]0 % o0 (7.92)
0 0 &
ty 00
W=10 my O (7.93)
0 0 hyy

The only significant stress and couple-stress components are (Fig. 7.12):

oop = mGY,; g0 = —mGY, (7.94)
Fig. 7.12 Stress state in the
element of a sphere under
uniform torsion
Moy
/_,_,-H
\ Koo
X
O ——26¢0
Moo

0



117

7.3 Examples of Elementary Cosserat Elasticity B.V. Problems

Ky = ng ((l +’12)d;1€.r +27’2 %)
(7.95)

ay, v,
o = gy = GO (112 i (1 +2172)7>

The governing equilibrium equation is:

dp,, 1

o 7 (2t — Hpg — Hop) + g0 — Top = O (7.96)
r r

The solution that is acceptable (as being regular at the origin) is (Fig. 7.13):

p cosh p — sinh p r
b= C¥lp) w=PERLINRE T (197)

In this case the torsion is also confined in a boundary layer. For example the

solution for the isotropic part of the torsion reads,
d

1 1
ur =5 (M + fop + Hgg) = 3 GE(1+3n) —
3 3 dr r (7.98)
sinh p 3 '
M = S +0(p’)

Remark Following the seminal paper by Giinther [12] a number of papers
appeared, such as the ones by Grioli [13], Toupin [14], Mindlin and Tiersten [15],
that dealt with the so-called media with couple-stresses. In this theory we assume

v,
0.81
.“

0.61
|
0.41

0.21

1 18 20

12 14

-

Fig. 7.13 Torsional boundary layer solution
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that the relative particle spin is zero, meaning that the particle rotation coincides
with the antisymmetric part of the displacement gradient. Such a theory is called
also the restricted Cosserat continuum or pseudo Cosserat continuum [1] theory. In
the original work of the Cosserat brothers, this special case is related to what they
call the triédre cache. This theory, although widely used, has led to severe math-
ematical difficulties, since the isotropic part of the couple-stress remains indeter-
minate [16, 17] and cannot be determined by the boundary conditions. It is usually
set arbitrarily equal to zero. This observation has lead to some controversies that we
believe that have been resolved recently by Froiio et al. [11], who have shown, by
using the concept of ortho-fiber, that such a restricted Cosserat continuum is
incapable to absorb boundary conditions that refer to the torsional dof. In other
words, the above example of the sphere under uniform torsion illustrates clearly the
ability of the true Cosserat continuum theory to provide a unique solution for the
torsion and the mean torsion!
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Chapter 8 )
Cosserat Fluids Check or

Abstract This chapter moves from linear elastic solids to Cosserat fluids, show-
casing the versatility of the approach. It presents the Navier-Stokes equations,
generalized for an incompressible, linear viscous Cosserat fluid. Following this,
examples are given, including shear flow and shallow flow slide of a granular fluid.

In the literature there is a number of publications concerning the Cosserat contin-
uum generalization of the constitutive equations for simple fluids [1-3]. Here we
consider the incompressible, linear Cosserat fluid.

8.1 Constitutive Equations

Let the Cartesian coordinates of the particle velocity and spin be v;(x,?) and
wi(xg, ) and let,

1
Dij = 5 (8,‘\/]' + 6jv,~) (81)

Wi = = (9vi — Ovy) (8.2)

N —

denote the classical rate-of-deformation and vorticity tensors, respectively. Note
that the axial vector that is related to the spin tensor is computed as follows,

. . 1
Wy =—gpix < = Esiklakvl (8.3)

The rates of relative deformation- and distortion tensors are,

L = O — emwr (8.4)
Kij = (9,'Wj (85)
© Springer International Publishing AG, part of Springer Nature 2019 121

1. Vardoulakis, Cosserat Continuum Mechanics, Lecture Notes in Applied and
Computational Mechanics 87, https://doi.org/10.1007/978-3-319-95156-0_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95156-0_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95156-0_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95156-0_8&amp;domain=pdf

122 8 Cosserat Fluids

We decompose the rate of deformation-and the rate of distortion tensors into
spherical and deviatoric part,

1 1
Dy = 3Ddy +Dj Ky = Kudy +K; (8.6)

The constitutive equations for the stress and couple-stress for a linear, incom-
pressible Cosserat fluid are,

ajj = —pdij+ 2uDj; + 2 e (x — wi) (8.7)
1 = coKuedij + clK'(lj) + CQK{ﬁ] (8.8)

Due to the incompressibility constraint,
Dy =0 (8.9)

the fluid pressure p is kinematically undetermined; it is determined by the boundary
conditions of any given problem. For the same reason the rate-of-deformation
tensor collapses to its deviator

D; =Dj; (8.10)
The constitutive Eq. (8.7) can be written also in the following form,

O','j = —p5ij + 2,LtDij — 2,uc (le + s,-jkwk)
= —p0ij + 20l ) + 2.y (8.11)

= —pdi+ (14 p) Uy + (1 — pe) i
If the particle spins as its neighbourhood, then Egs. (8.11) collapse to those of a
classical (Boltzmann) incompressible Newtonian fluid. Thus, in Egs. (8.7) or

(8.11), the constitutive parameter p > 0 is identified as the classical (macroscopic)
fluid viscosity,

O'(,-j) = 2,LLD;J- (812)

The viscosity parameter p,. is an extra material parameter that accounts for the
relative spin of the Cosserat fluid particle with respect to background vorticity that
is due to the particle velocity,

Tl = 2H etk (D — W) (8.13)
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Since there is an axial vector assigned to the antisymmetric part of the stress
tensor, Eq. (4.16), the extra constitutive Eq. (8.13) is a linear vector relation,

l‘;: = 2/.LC((,'L)/< — Wk) (814)
We can normalize this extra viscosity by the macroscopic viscosity and write,
. =ou (a>0) (8.15)

The constitutive equations for the couple-stress tensor can be also written as
follows,

1 1 1
,u,:]- =\ Co— gcl Kkkéij'F E(Cl +02)K,’j+ + E(Cl — Cz)K,-j

/
= CTakaéij + c38,-wj + cB(?jw,»

(8.16)

They introduce three additional gyro-viscosity coefficients, which are taken
proportional to the square of a material length parameter /,

cr =yl cg=ppl 5 ey =l (3,8, >0) (8.17)

Note that the above constitutive equations are proposed for the description of
granular flow problems, where the material length is set equal to the (mean) grain
diameter [4].

In summary, if we choose as primary kinematic variables the rate of relative
deformation and the rate of distortion, then the constitutive equations for an
incompressible, linear Cosserat fluid are the following,

0 = —pdyj + (4 u )Ty + (1 — 1) i
1y = crKudyj + caKyj + cKji (8.18)
Fkk =0

8.2 Cosserat Generalization of the N.-S. Equations

We consider the dynamic Eq. (5.26) for the stresses,

ka
— = 00; 8.19
p Dr Oik + P&k ( )
where p is the fluid density and gy is the gravity acceleration. We introduce into the
dynamic Eq. (8.19) the constitutive Eq. (8.7) and utilize Eqgs. (8.1)—(8.10), thus
yielding,
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ka

Dy = O+ 0O+ 9evi)) + Or(pe (O = Devi) = 2eaawn)) + pge (8.20)

P

For constant viscosities, Eq. (8.20) becomes,
D\/k
Py = —Okp + W(0:0vi + 0i0kvi) + 1 ((:0v — B:Okv;) — 2ewOrwy) + pgr (8.21)

From the incompressibility condition, Eq. (8.9), we get
Dy=0w=0 = 0;0wv;=00vi=0 (822)
Thus from Eqgs. (8.21) and (8.22) we obtain,

Dvi
Pt Op — pgi = (4 1) V2vi+ 2t Opwy (8.23)

In Chapman-Cowling bold letter notation Eq. (8.23) reads as follows,
Dv 2
P, TEradp —pg = (-t p) Vv + 2pcrotw (8.24)

Equations (8.23) or (8.24) can be viewed as the Cosserat continuum general-
ization of the Navier-Stokes equations. Indeed for y. — 0 they reduce to the N.-S.
equations for an incompressible Newtonian fluid

Dy;
P + 0P — pgi = KV, (8.25)

We recall that the N.-S. equations are already a singular perturbation of the Euler
equations for an ideal, incompressible fluid, that can be derived from Eq. (8.25) by
setting v = 0,

Dv;
— 4+ 0p—pgi=0 8.26
Py 0P —ps8 (8.26)

If we apply the rot-operator on both sides of Eq. (8.23) we get,

i

Dt

p—— = (1) V20i + 1 (VWi — D dwr ) (8.27)

In bold notation Eq. (8.27) takes the form,

i
p?(;) = (u+ 1) V2 + . (V2w — grad div w) (8.28)
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This is a generalized vorticity diffusion equation with a source/sink term that is
due to the particle spin. Note that, as already stated in Sect. 3.2.1, the last term on
the r.h.s. of Eq. (8.27), can be interpreted as the gradient of the mean torsion. It is
obvious that this term is in general non-zero. For u. = 0 Eq. (8.27) or (8.28) reduce
to the vorticity diffusion equation of classical Fluid Dynamics,

Do,
Dt

p—— = uVia; (8.29)

The second equation is derived from the dynamic Egs. (5.70) for the
couple-stresses in the absence of body couples, for constant viscosities and for
isotropic micro-inertia tensor,

DW,'
Dt

pJ = 8k,ukl- + &0 (8.30)

Introducing in this equation the constitutive equations for the couple-stresses,
Eq. (8.16), and for the antisymmetric part of the stress, Eq. (8.13), we obtain the
following,

Dw .
pJ?tk = CBVZW]( + (CT + CB/)8k81W1 + 4/16(601( — Wk) (8.31)

or symbolically,
Dw 2 / :
p]E = cpVPw + (cr + cj) grad divw + 2 rotv — 4p.w (8.32)

Equation (8.31) or (8.32) is the diffusion equation for the particle vorticity with a
source/sink term that expresses the weak coupling to the generalized N.-S.
Equations (8.27) or (8.28). From Eqs. (8.27) and (8.31) we observe that for van-
ishing macroscopic viscosity (¢t — 0), not only the classical spin but also the
Cosserat spin are sustained for “long” time intervals.

8.3 Shear Flow of a Cosserat Fluid

8.3.1 Kinematics and Statics of Forming Boundary Layers

As shown in Fig. 8.1, we consider a “long” layer of Cosserat fluid, confined
between two “rough®“plates, at distance H apart. Through appropriate boundary
conditions, to be specified below, we assume that a steady, laminar shear flow is
established. The only two significant kinematic variables of this problem are the
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s %5 =Y
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Hl |
p
w; =w(y) oy l l/”:)
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v :v(y) —.l Iﬂ% — T
13
0 | - |

Fig. 8.1 A Cosserat-fluid shear layer

particle velocity in the long, x; — direction and the particle spin in the x3— direction,
perpendicular to the plane of shear. Both fields are assumed to be functions only of

X2=Y,
vi =v(y) (8.33)
ws = w(y) (8.34)

From Egs. (8.1), (8.2), (8.33) and (8.34) we get the following expression for the
rate-of-deformation tensor,

0 %v’ 0
[D] = [D’] = %v’ 0 O (8.35)
0 0 O
where
d
I— JE—
()= e (8.36)

The flow is isochoric and the only significant component of the classical vor-
ticity tensor is @y = —m; = O,

0
0 (8.37)
0
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Similarly, from Eqgs. (8.4) and (8.5) we get the following matrix representations
of the rate of relative deformation-and distortion tensors

0 —-w 0
I=(v+w 0 0 (8.38)
0 0 0
0 0 O
Kl=(0 0 w (8.39)
0 0 O

From Egs. (8.18), (8.38) and (8.39) we obtain the expressions for the non-zero
stress and couple-stress components,

011 = 022 = 033 = =P (8.40)
g2 = (0= p)v = 2pw (8.41)
oo = (u+ p)v' + 2w (8.42)
and
U3 = cpw’ (8.43)

Thus the symmeric and antisymmetric parts of the stress are,
o) = W' (8.44)
oz = =4V +2w) (8.45)

Here gravity forces are either considered as being negligible or they are acting in
the x3— direction, normal to the plane of deformation, as is the case in an
Couette-Hatschek type of apparatus (cf. Fig. 7.3). For shear-flow and in the absence
of gravity forces and body couples, the equilibrium Egs. (4.42) read,

oy 0 = o0y =1=const. (8.46)
—g—i =0 = p=const. (8.47)
Opins

—— +on—01=0 (8.48)
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The pressure p is determined from the boundary condition for the normal stress
that is applied on the upper plate,

onp(H)=-0 (6>0) = p=0c=const (8.49)

Equations (8.46) and (8.42) yield,

Y=t gt (8.50)
[T N TE ST
Similarly for constant gyro-viscosity from Egs. (8.48) and (8.43) we get
g = 2p.(V +2w) =0 (8.51)

The governing equation is derived by elimination of V' from Egs. (8.50) and
(8.51), resulting to,
He He

uw =2 ———r1 8.52
K+ U, M+ e ( )

cgw’ —4

If we scale the y— coordinate with the geometric length that characterizes the
boundary-value problem at hand; i.e. with layer thickness H,

5= \/E% (8.53)
Equation (8.52) becomes,
2 o T
Cod—jzzW”_ 1+ocW:1+a; (8.54)

The parameter o is the viscosity ratio, that was introduced already above by
Eq. (8.15). The dimensionless group,

CB

C():ﬁ

(8.55)

is called the Cosserat number of the flow [3]. We note that with Eq. (8.17) the
Cosserat number is in fact the square of a non-dimensional material length of the
Cosserat fluid. The reference dimension of the domain H is assumed to be suffi-
ciently “large”, if compared to this micromechanical length parameter, and with that
Co is a small number.

Equation (8.54) belongs to the set that is known to describe the formation of two
boundary layers at y = 0 and y = H [5]. Accordingly we use here terminology that
considers the two asymptotic solutions of this equation, one, called the outer
approximation and holding away from the boundaries and another called the inner
approximation and holding close to the boundaries.
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With Co — 0 we get from Eq. (8.54) the outer approximation,

1
w e o) = —Ei (8.56)
From Egs. (8.50) and (8.56) we recover Newton’s law,
dv 1
— - 8.57
o (8.57)

In classical theory from Eq. (8.57) and Stoke’s non-slip boundary condition we
obtain the classical linear profile, as the corresponding outer approximation for the
particle velocity,

vyl = 5y, (8.58)
u
Note that,
d)(()ul) — _ld\)(()m) — _11 = const (8 59)
o 2dy 2p - .

is the only significant component of the background vorticity in the classical fluid.
Thus the outer approximation for the particle spin, Eq. (8.56) takes the form,

W(()ut) — O'J(()ut) — _%V(fm’) (860)

This means that away from the boundaries of the shear layer the fluid particles
rotate as their neighbourhood.

The exact solution is obtained by the scaling of the y— coordinate with the
material dimension

Y =12 % (8.61)
where

Lu+p 114«
2 =_ Cep=— 02 8.62
cC 2 BTy b (8.62)

With this transformation Eq. (8.52) becomes,
d2

Y wtw® =0 (8.63)

dy*Z
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The exact, general solution of this equation is,
w = w(®) 4 C; sinh y* + C| cosh y* (8.64)

The integration constants C; and C, must be determined from boundary con-
ditions that refer to the spin. We note first that Stoke’s classical non-slip condition
applies to the particle velocity, and is expressed by taking all components of the
particle velocity at a boundary equal to zero. As we saw clearly in Sect. 2.3.2, the
velocity and the spin of a rigid particle are coupled through the well known
transport law of rigid-body dynamics. Thus, one important implication of Stoke’s
non-slip condition is that, within the realm of Cosserat Continuum Fluid
Mechanics, we must equally apply the corresponding non-spin boundary condition.
Actually the non-spin boundary condition will imply the non-slip condition for the
particle that adheres to a rough boundary. This condition is called in the literature
hyper-stick or adherence condition.

In the considered boundary value problem the particle non-spin boundary con-
ditions are,

w(0) =0 Aw(H) =0 (8.65)

These boundary conditions are yielding the following exact solution (Fig. 8.2),

It sinhy* + sinh(H* — y*)
=—=—(1=f ; f= 8.66
W= =) s f T (8.66)
.“. =
— approximate
exact
U T T T T T 1
0 0.2 0.4 0.6 0.8 1 1.2

Fig. 8.2 Particle spin distribution for « = 1.; Eqs. (8.66) and (8.71)
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For relatively large values of the dimensionless layer thickness,
H
H =2~ (8.67)
le
we get from Eq. (8.66) that close to the boundary at y = O the exact solution is
approximated as,

o sinh y* + sinh H* cosh y* — sinh y* cosh H*
B sinh H* (8.68)
~ cosh y* —sinhy" = ¢’ =f

Similarly close to the boundary y = H we get,

. sinh y* 4+ sinh H* cosh y* — sinh y* cosh H*
r= sinh H*

__ sinh y* %(ey* + e’y*)
~ sinh H* (efl" +e7H")

(8.69)

o H =) _ =
=1 ~ e _fH
2

From the above considerations we obtain the following asymptotic form for the
considered function

frfi+f=e? +e ) o<y <H (8.70)
and with that,

w A wlo) (1 — (efy* + fw*im)) (8.71)

The difference between the two asymptotic solutions,
1% at a distance from the boundaries,

wilour) _ w’, is less then

4y
dy ~ 461 ~ 320, 8.72
bl 7 (8.72)

that determines in turn the conventional thickness of the boundary layers. The
material length parameter /. is set proportional to the grain size. In Fig. 8.3 we
plotted this result as a function of the viscosity parameter o and for two typical
values of the viscosity parameter 5. Experimental observations suggest that a shear
boundary layer in granular media has about half the thickness of the “shear-band”,
which in turn is about 10 to 15 grain diameters thick [6]. This gives rise to suggest
that the parameter f§ should be of the same order as the parameter o.
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Fig. 8.3 Estimate of the boundary layer “thickness”

From Egs. (8.50) and (8.66) we get,

/ T o *
=—(1
' u<+1+°<f>

8 Cosserat Fluids

(8.73)

Similarly from Eq. (8.73) we get that the shear rate V' is practically constant

away from the boundaries (Fig. 8.4),

‘o
-
PP S A A A A A

PR A

Fig. 8.4 Shear rate profile for o = 1.; Eq. (8.73)
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Vo /(o) — vl _t
H pu

(8.74)

Close to the boundaries the shear rate assumes a value that is higher than v/ (©*)
in proportion to the Cosserat viscosity ratio o; e.g. close to the boundary y = 0 we
have that

. 142
! s / (out) 1 x -y ~ /(out) ( 2 2% o(v* 8.75
V oAy (+1+ae > v (1+a (y)) (8.75)

As is shown in Fig. 8.5, the velocity profile is linear in the core of the shear-layer
and convex inside the boundary layers (Fig. 8.5),

) ;f—@ (y* s ((1=e) = (e - e-“’*-”))) (8.76)

Finally, from Eqgs. (8.43) and (8.66) we get also the corresponding expression
for the couple stresses that are acting on planes parallel to the shear-layer axis
(Fig. 8.6),

1 1 . .
fo3 = Pul*v' = Efﬁng*/ ~ —Efﬁ£2 (e_y —e )) (8.77)

Thus couple stresses exist practically inside the two boundary layers.

0 0.2 0.4 0.6 0.8 1

Vv
H

Fig. 8.5 Typical, locally convex/linear velocity profile, computed for o = 1.; Eq. (8.76)
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Fig. 8.6 Dimensionless couple-stress distribution for o = 1.; Eq. (8.77)

8.3.2 Dissipation

We recall that according to Eq. (6.23) the stress power in a Cosserat continuum can
be split as follows,

P = 0D+ 2t (@ —wi) + MKy (8.78)

In the considered example we have,

P= 20’(12)D12 + 2[; (603 — W3) + H23K23 (879)
where
* . . 1 /
2l3 =012 — 021 w3:w:—§v (880)
Thus,
P= ,u(v’2+oc(v'+2w)2+ﬁ(€w')2) (8.81)

From Eqgs. (8.73), (8.66) and (8.77) we have,
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, T o,
=—11

' u<+1+0€f>
1+207

Ty ;f* (8.82)

1
EW/ — Eﬁzgf*l
u

V42w =

From these expressions and the exponential decay of the distribution function f*
away from the boundaries, Eq. (8.70), we obtain the following asymptotic expre-
sion for the stress power inside the shear layer (Fig. 8.7),

2

P~ plov) (1 Jrzl%'ioC (e*y* - e<”*y*))> ;oplon =T (8.83)
u

We assume that all stress power is dissipated in heat. From the above discussion
we conclude that the Ist term on the r.h.s. of Eq. (8.83) gives practically constant
dissipation across the shear layer, whereas the contribution of the other terms is
confined inside the two boundary layers. To see the effect of that, we derive first the
heat equation starting from first principles.

We assume that the free energy of the fluid is only a function of the absolute
temperature 7, thus

De . DT

— =jc— 8.84
b ' Dr (8.84)
5 1559
_hY 1
N
125
10 4
"‘?5—3
59
2.5 4
U_ T T T T 1
0 0.5 1 1.5 2 2.5
P P

Plewn

Fig. 8.7 Stress power distribution that is produced and is dissipated inside the Cosserat-fluid
shear layer, for o = 1.; Eq. (8.83)
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where c is the specific heat of the medium and j = 4.184 J‘C’Z;e is the mechanical
equivalent of heat, that appears in any equation that is related to the 1st Law and
expresses the conversion of mechanical work into heat.

In addition, we adopt Fourier’s law for isotropic heat conduction,

qi = —jkrO;T (8.85)

where kr is the Fourier coefficient for heat conduction of the medium.
From the constitutive Egs. (8.84) and (8.85) and the energy balance Eq. (6.24)
we get,

DT
pic =P — jOi(kpOT) (8.86)

For constant Fourier coefficient, the heat conduction equation for steady state
conditions is,

&PT 1
—+ —P=0 8.87
dy? +ij (8.87)

y== (8.88)
and the temperature with the temperature at the boundaries, say Ty,
* T * *
"=— = T0)=T(1)=1 (8.89)

Ty

In terms of these dimensionless dependent variables the governing heat equation
for steady heat production, Eq. (8.87), becomes

a’T* o . -
1+2 ( =y —(H"—y )) =0 8.90
pr +Gr< + T\ +e (8.90)
were the dimensionless group,
2H?
r=— 8.91
wkeTo (®:51)

is called the Gruntfest number. The analytic solution of Eq. (8.90) is,

T =T"+T" (8.92)
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where T* is the classical parabolic solution holding also for classical (Boltzmann)
Newtonian fluids,

- 1
T =1+ EGry(l -9) (8.93)

and T* is the superimposed boundary layer solution that is due to the Cosserat
effects,

T = %Gr* ((1=e)+ (e —etr)) (8.94)

The dimensionless group Gr* is a Gruntfest number that is refered to material
length scale,

200 [0\ 20 T3P
Gri=Gr— =] = 8.95
" rl—l—oc(H) 1+ o wikp Ty ( )

This number governs also the extra heat that is produced at the boundary layers
and will result into a net increase of the core temperature by,

1 200 7242
Ty=-"""

(8.96)

Note that if we set, £ = D,, then AT is in principle a measurable quantity. Note
that according to Eq. (8.96) AT scales with the square of the particle size and the
applied shear stress.

8.4 An Energy Consistent Granular Flow Model

8.4.1 Rate-Dependent Viscosity Functions

We consider the constitutive equations for an incompressible Cosserat fluid, dis-
cussed in Sect. 8.1, Egs. (8.18). Based on this model we compute the stress power
that is assumed to be totally dissipated in heat,

Dipe =P = uI'? + ,uclf + cTKzT + cBK%; + c};Ké/ (8.97)

where we define the following invariants,
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I? =Tl + Dl = T2l ) = 20 Dy >0
I7 =TIk — Dl = T2l = 20 Ty >0
K;=K2 >0 (8.98)

Kj = KKy >0
K3 = KuKyz >0
The last inequality follows directly from the polar decomposition of the dis-

tortion tensor: Assuming that K;; is regular, K,]| # 0, then its left polar decom-
position reads

Kl =[sllo] : [S=18" ; |ol==1 (8.99)

Thus
KK = [S)[Ql0]" 1] =[S = #[K|[K] >0 (8.100)

These remarks prompt to make the following constitutive assumptions con-
cerning the viscosity functions,

u=H@)  p=hHT)

8.101
cr=f(Kr) 5 cs=fs(Kg) ; ¢z =/fs(Kp) ( )

such that,

_aDlac
H="or

, etc.

For the considered case of shear flow, we get from Eqs. (8.38) and (8.39) that
FS = |V,| ; l—‘(, = ‘v/—|—2w| (8102)

and

KT = KBr =0 ] KB = |W,| (8103)

Thus, an energy consistent model for rate-dependent viscosities in shear flows of
an incompressible Cosserat fluid is the following,

w=A1) 5 e =hH0V+2w]) (8.104)

and

cp = fa(|w']) (8.105)
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In order to make this model more realistic and closer to the theme of these Notes,
we adopt here some findings that apply to granular flows.

The shearing resistance of a granular medium is pressure sensitive. From the
point of view of a classical continuum the shear stress obeys formally a friction law,

O(12) = p tan (8.106)

where @, is the so-called Coulomb friction angle of the granular medium. In
particular in shallow, rapid granular flows it is observed and/or computed using
DEM that the friction is rate dependent [4]. The granular medium at rest possesses a
static friction coefficient, tan ¢, while, if sheared at relative high shearing-rates, it
gets fluidized and the internal friction increases from its static value to an
asymptotic value, that we call the dynamic friction coefficient, tan ¢4, > tan ¢, [7].
A simple law that interpolates between these two extreme values is an exponential
law of the form,

tan ¢, = tan @, — (tan @, — tan @, )e " (8.107)
where I is the “inertial number” of the flow, defined as

L=T.,/|>0 (8.108)

T. is a characteristic time factor, that is reflecting inertia effects at grain scale,

.= [P (8.109)
g

In the above definition D, is the grain size and g is the acceleration of gravity.
Note that for small values of the inertial number, Eq. (8.107) is approximated by
a linear law, as was suggested by Da Cruz et al. [8],

tan @, = tan ¢, + (tan ¢, — tan @)1 + O(I?) (8.110)

Equation (8.107) is a visco-plastic constitutive law, since rate effects become
apparent above the given threshold placed by the static friction. In order to keep the
model consistent with the assumptions that hold for a fluid, we adapt here this law
so as to describe a granular fluid by setting tan ¢, = 0, thus yielding the following
constitutive equation for the mobilized friction coefficient,

tan ¢, = tan @, (1 —e™") (8.111)
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This assumption together with Eq. (8.106) leads to the following constitutive
law for a pressure- and rate-dependent viscosity,

pt = pT. tan @, 1" (1) (8.112)

where

(1) = (8.113)

It is obvious that the constitutive Eq. (8.112) is consistent with the energy
requirement, placed above by Eq. (8.104), since

I, =TT, (8.114)

Moreover from this exercise we gain an insight about the probable form for the
other two viscosity functions that are needed to close the problem. For example we
may introduce two more inertial numbers,

I =TJT.=T.V +2w| (8.115)
Iy = D,T.Kp = D, T.|w| > 0 (8.116)

These inertial numbers together with the one originally defined for granular
flows, Eq. (8.114), are proportional to the above discussed rate-of-deformation and
distortion invariants, Eqs. (8.102) and (8.103). With this choice we may test as a
minimal set the following viscosity functions,

te = pT.tan @g, 1" (1) (8.117)
CB :PTCD§ tan q)dn:u’*(IB) (8118)

In the next section we will apply this model to a standard steady shallow
granular flow problem.

8.4.2 Steady, Shallow Flow-Slide of a Granular Fluid

We consider the problem of a steady gravitational flow of an incompressible
Cosserat fluid, down an incline of infinite extend at constant slope angle 0
(Fig. 8.8). As in Sect. 8.3 and in the previous subsection, we assume here that the
only two significant kinematic variables of this problem are the particle velocity in
the x| — direction of the slope and the particle spin in the x3— direction, perpen-
dicular to the plane of the incline. Again, both fields are assumed to be functions
only of x, = y, and accordingly the set of constitutive Egs. (8.40) to (8.45), and the
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Fig. 8.8 Flow slide down an
incline of infinite extend

moment stress equilibrium Eq. (8.48) also hold. Since we consider here a
gravity-driven flow problem, we have to resort to the stress equilibrium Egs. (4.42),
which in the presence of gravity and for a granular fluid with density p yield,

0
go21 +pgsind=0 = oy =1(0) — pg sin Oy
dy
5 (8.119)
—8—p—pg cos0 =0 = p=p(0)—pgcosly
y

The integration constants in Eqs. (8.119) follow directly from the condition that

the upper boundary of the flow-slide at y = H is stress-free; thus

021(H)=0 = g2 =pgsinf(H—y) (8.120)
on(H)=0 = p=pgcosO(H—y) (8.121)

From the constitutive Eq. (8.42), the above introduced constitutive assumtions
for the rate-dependent viscosities and Eq. (8.120) we get,

WI)TY + 1 (I)T.(V +2w) = A(0) (8.122)
where
PR L (8.123)
tan Pin

We assume that

/

V>0 , V4+2w>0 , w>0 (8.124)
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These assumptions must be checked a posteriori (Figs. 8.2, 8.4 and 8.6). By
utilizing these inequalities, we get from Eqs. (8.122), (8.113) and the equilibrium

Egs. (8.48), (8.43) and (8.45) the following non-linear ordinary differential equa-
tions for the kinematic variables of the problem at hand,

(1 - e—Tv"’) + (1 - e—TvW”W)) .y (8.125)

1d , ,
D ——( (1— *DfoW)) —2(1— *T«(V“W)) -0 8.126
¢pdy p ¢ e ( )

Next we try some analytical treatment of this set of equations.

8.4.2.1 Outer Approximation

Equation (8.126) describes again a boundary layer problem. The outer approxi-
mation of the solution for this problem follows from this equation by neglecting the
term that is multiplied by D,, thus yielding

1
1- exp(—TC <v<””’)'+2w(0’”))> =0 = w= —Ev“”‘”) (8.127)

cf. Equation (8.60). This result and Eq. (8.125) yield,

1 1
- exp(—ch("”’)') =) = ew = Fcln(l - /1) (8.128)

Thus, as expected, the outer solution is again linear across the shear-layer. If we
utilize the definition of the time factor 7., Eq. (8.109), we get the following
expression for the velocity gradient across the flow slide,

VH 8
— =~ [=Fy(/ 12
i~ ) (8.129)

where vy is the flow-velocity vy at the top of the flow-slide, and Fj is a function of
the parameter A,

Fo=—In(1-2) (8.130)

The parameter 0 <A< 1, depends according to Eq. (8.123) on the dynamic
friction and on the slope angle. We note however that for A =1 (0 = ¢ ,) the
present model breaks down.
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As is done in the pertinent literature, the flow velocity is expressed in terms of
the Froude number that refers to the grain size [7],

VH
Frp = (8.131)
gD,

In this case Eq. (8.129) yields a linear relation between Frp and the dimen-
sionless flow-height, normalized by the grain size,

H
Frp ~ Fo()v)D— (8.132)
g

8.4.2.2 Shallow Flow-Slides

In order to investigate the effect of the forming boundary layer at the base of the
flow slide, we return to the moment equilibrium Eq. (8.126). With,

1

=—— 8.133)
pdy  H-—y (
in a first step of approximation this equation yields,
1 ,
D (Tc.w” - TL.W’) n 2(1 e z) -0 (8.134)
H—y
Equation (8.125) can be solved for w, yielding
1 1 2—-4
Tw= —Eln((Z—i)e"’— 1) = —2<ln(l —i)—i—l_iq) (8.135)
where,
g=T (8.136)
With this notation from Eq. (8.134) we get,
—2(q" —Lq’ +2(1—e7-2)=0 (8.137)
c H _ y
where,
122
{, =1\/=——D (8.138)
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We rescale the y— coordinate according to Eq. (8.61) and we set
s=H"—y" (8.139)

With this transformation the governing Eq. (8.137) becomes,

d’q  ldgq
adq %9 4 _ (1= =0 8.140
P (5140
We set,
such that,
efq(m”) —1-) o q(out) =—1In(1-24) (8.142)

cf. Equation (8.128). Thus
_+___(1_,1)(1_e*q):o (8.143)

Its linearized version,

&g 1dg By
L2 - g = 144
2 Ty UmAHa=0 (8.144)

admits an analytic solution in terms of modified Bessel functions,
q= Cll()(\/l —/1S)+C2K()(V1 —/15‘) (8145)

At the top of the flow-slide (y = H) we assume that the couple stress 5 is zero,
which according to Egs. (8.43), (8.135) and (8.139) yields

d
y=H= s5=0:w =0 A ) (8.146)
ds s=0
With,
d
d—q — _CiKi (\/1 - is) ey (\/1 - is) (8.147)
S

the condition at the free boundary leads to C; = 0, thus,

q= czlo(ms) (8.148)
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At the base of the flow-slide (y = 0) we apply the no-spin boundary condition,
which according to Eqgs. (8.135) and (8.136) reads,

1-4

Io (\/ﬁ(H* —y*))
In(l — 4)

q= 8.150
1=5375 (VT — 2H") (8.150)
and with that,
1 IO(Vl—i(H*—y*))
g=-In(l-2)1- -
2=4 (V=)
1
~—In(l-2)(1—s—eVI™? 151
n( l)( ¢ ) (8.151)
From Eq. (8.151) we get
dv* T
=q0") ; V' =v2-"° 8.152
& =407 o vi=VaE (8.152)

The solution for the velocity is obtained by integrating Eq. (8.152) and by
utilizing the non-slip condition at the base of the flow-slide,

y=0: v=0 (8.153)

The predicted solution corresponds to concave/linear velocity profile across the
flow-slide, as is shown in Fig. 8.9,

1 1—e Vi
vi=—In(1-2)(1- " 8.154
=Dt = ) (8.154)

From Eq. (8.154) we get further the following relation between Froude number
and flow-height,

H\ H
FID ~ F1 (/1,—) —_— (8155)
Dg Dg



146 8 Cosserat Fluids

10 -
y
S -
64
44
0 Ll Ll L T 1
0 0.2 0.4 0.6 0.8 1
Vv
Vi

Fig. 8.9 Predicted locally concave/linear velocity profile across the flow-slide thickness,
(A =0.5); Eq. (8.154)

where

Vi
Fre—mm(1—s|1--1 1=¢ Ds (8.156)
L 2-7 V2-if '

We note that for large values of H/D,, Eq. (8.155) tends to a line that is parallel
to the one we obtained by utilizing the outer approximation. Deviations from
linearity hold for relatively small values for H/D,, where the boundary layers
influence the solution. In Fig. 8.10 we compare the outer solution, Eq. (8.132) and
the Cosserat-approximate solution, Eq. (8.155). From this figure one can see clearly
that consideration of the boundary layer that is forming at the base of the flow-slide
provides more conservative estimates for the top flow-velocity. It is however
important to notice that for high values of the Froude number, the steady solution is
linearly unstable and that stability must be investigated before adopting such a
result.
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Fig. 8.10 Normalized flow-velocity as function of the normalized flow-height. Comparison
a classical (outer) solution. b Cosserat solution (4 = 0.9)

8.4.2.3 Exercise: Flow-Slide with Basal Slippage

If we evaluate the basal stresses and couple-stress from the previously analyzed
problem, they take the following form,

022(0) = —69 = —p(0) = —pgH cos 0
021(0) = —19 = 1(0) = pgH sin0 (8.157)
H23(0) = —my = —7ol!

As can be seen from Fig. 8.11, the appearance of the couple stress at the base of
the flow-slide may be interpreted as a surface roughness effect [9]. This can be
envisioned by letting the shear stress 7, to be applied at a distance ¢’ away from the
theoretical base and its effect being transported to the base through a series of rigid
ortho-fibers that are continuously attached to the basal surface.

Following these remarks, the previously discussed problem can be solved for an
alternative set of boundary conditions at the base of the slide, that will allow in turn
for slippage to occur. First we prescribe the basal couple stress as function of the
basal shear stress, Eq. (8.157). This is a Neumann-type boundary condition for the
particle spin. Thus, it allows for the particles to rotate at the basal plane. In this case
it is not physically sound to assume the non-slip condition, since the rigid-body
rotation of the particle that finds itself at the basal plane will impose a velocity on
that particle (Fig. 8.12),

v(0) = — =% w(0) (8.158)
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"
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L o
Fig. 8.11 Mechanical interpretation of the basal stress-and couple-stress boundary conditions as a
surface roughness effect

Q

Fig. 8.12 Sphere rolling down a planar incline. The velocity of the sphere is directly linked to its
rotation. Basal friction may include rolling resistance due to existence of asperities and other
surface roughness agents

Let,

V= j— < (8.159)
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Fig. 8.13 Particle spin profile with basal rolling and convex particle velocity profile with basal
slippage (1 = ' = 0.485); Eqs. (8.161) and (8.162)

As an exercise one is asked here to determine the solution of this boundary value
problem in terms of particle velocity and spin. Using the notation of the previous
section, one should check as intermediate results that the following equations hold,

In(1 — 7
g~ —In(l1—7)— %exp(—\/l - )Ly*) (8.160)
1n(1—74) 12— iln(1—2) .
Towm 5= + 57— mexp(—\/l—,ly) (8.161)
a1 2—-4 .,
o2 =407 (8.162)

Compare your results with the ones depicted in Fig. 8.13.
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Chapter 9 M)
Mechanics of Discrete Granular Media Check or

Abstract This chapter links the Cosserat continuum with discrete granular media.
Through a discrete modelling approach, it presents a homogenisation method based
on intergranular energetics and fabric averaging.

We consider here the basic statics and kinematics of discrete media, consisting of
rigid grains in semi-permanent contact. The usually irregular in shape grains will be
pictured as circles and the mutual grain (multiple) contacts as single point contacts.
This picture retains the main topological properties of the thought configuration of a
granular medium. Knowledge concerning shape and size of grains, the nature of
their contacts and the description of their packing in 3D space will always be
incomplete. Having this in mind, we try here to not overdo with graph-theoretical
and statistical physics considerations, and notations as well as the related jungle of
assumptions. In principle we will try to keep our set of assumptions to a bare
minimum. In this section we use Cartesian notation throughout.

9.1 Compatibility in the Discrete Setting

Let us consider two particles (p,) and (pg) in contact at point P, (Fig. 9.1). We

denote with w(*) the spin of the particle (p,) and with vX« the velocity of the
centroid K, of particle (p,). All points of (p,) including the contact point P, share
its rigid body motion, thus their motion is given by the corresponding kinematic

particle motor,
_ (2)
5 w
k) = ( b ) (9.1)

such that
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Fig. 9.1 Relative velocity of two grains in contact

P — pKe 4@ 5 K P, (9.3)

We observe that this property of the discrete particles is in harmony with local
Cosserat continuum kinematics, as this is expressed above by Egs. (3.8) and (3.9).
In Cartesian components Eq. (9.3) reads

v = g (3 = ) 9.4)

Similarly for particle ps we have,
W = o (o) 0.5

These expressions allow us to compute the relative motion between two
neighboring particles in contact; i.e. their relative spin

Bo) _ (B _ (@) (9.6)

B.a)c _ V([f)c _ v(a)c N

. . . (9.7)
Pl o () (5 =)~ =)

Let us consider an open line of N-grains in sequential contact, usually termed
also a granular column (Fig. 9.2). If we apply Eqgs. (9.6) and (9.7) consecutively,
then we get the following expressions for the difference in rotation and displace-
ment between two grains in “remote” contact,
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Fig. 9.2 Open line of
homothetically rotating grains

AWZN ) _ WI(N) _ Wl(l) _ nga,ocﬂ) 9.8)
a=1
and
N—1
AVSN,I) _ ”SM _ ul(l) _ <vl(a,a+1)c — <x;(1+ La) xz(a,a—l))wjga)> (9.9)
a=1
where x{"”° = x! and X"V TV = .

Following a remark by Satake [1], Egs. (9.8) and (9.9) are seen as the discrete
manifestation of the line integrals, Eqs. (3.99) and (3.105), holding for a Cosserat
continuum:

Py

AYPP) = yi(py) —yi(Py) = / KidOF — AW D = Wi — i)

Py
= i wi (9.10)

o

and
Py
AMEPZ’PI) = M,‘(Pz) — ui(Pl) = f (yik — eikll//l)de)k
o h (9.11)

1
AévEN"l) = 5u§N) — 5u§l) = (5\/5“‘““” — &y (x,i(Hl"“) — x,i(m’“l))éw(.”))

J
=1
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With the symbol < we depict here an observed analogy between the continuum-
and the discrete mathematical description. Satake’s analogy that is displayed above
allows us to identify:

1. The Cosserat continuum rotation as that kinematical property of the continuum
that is meant to reproduce the particle rotation.

2. The relative deformation of the Cosserat continuum as measure for relative or
inter-particle displacement.

3. The distortions of the Cosserat continuum as the measure for the relative
inter-particle rotation.

The discrete and the continuous realization of the relative displacement and
relative rotation between two points are given by Eqgs. (9.10) and (9.11). If these
relative motions are path independent, then we are dealing with “compatible”
deformations. In particular the relative motions in a compatible deformation should
vanish, if evaluated in a closed loop. This is not always the case in granular media.
To demonstrate this statement we consider the paradigm of the planar, 3-grain
circuit of Fig. 9.3.

For simplicity we assume that the “grains” in Fig. 9.3 are indeed circular rods of
equal radius R, and that grains (1) and (2) are spinning homothetically, grain (3) is
spinning antithetically, all with the same strength dw. We see immediately that this
constellation provides two pure rolling contacts (rc) at ¢; and c3, and a pure sliding
contact (sc) at ¢;. We note that the relative displacement between two neighboring
grains is null across pure rolling contacts. For the virtual motion of this circuit that
is shown in Fig. 9.3 we compute,

AW =0, Aol =20w;  Aowi? = 26w
= Y am =0 (9.12)

cycl

So \/@ ‘1 3 -

Fig. 9.3 Three-particle assembly of two homothetically and one antithetically rotating particle,
forming two rolling contacts and one sliding contact
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and

AV = Reow; Aol = Ryow;  AOWP = —Row
= A = Row £0 (9.13)

cycl

AP = 0; A0 = —Bow; AV = — V3R Gw

cycl

This means that incorporation of antithetically rotating particles into our con-
sideration, would mean to extend the Cosserat model to incompatible deformations,
as was the case for example in Giinther’s [2] interpretation of Kroner’s [3] theory of
dislocations. Note that in the terminology of granular Physics, if the grains in a
network can rotate without sliding on each other, then the network is called dy-
namically unfrustrated, since it can deform freely under shear and behaves like a
dry fluid. A sufficient condition for “non-frustration” in 3D is that all closed circuits
of grains in contact are even [4]. This means in turn that solid granular matter differs
from granular fluid in the aspect that in solid granular mater sliding is the rule and
rolling the exception. What we call in granular solid Mechanics compatibility is
called in granular fluid Physics frustration. As we will discuss next, the transition
from a fully frustrated to a partially unfrustrated system is an instability, that is
related in granular Mechanics with shear-banding. This observation allows also to
view shear banding as a granular solid-fluid phase transition. To this end we recall
an early statement by Oda and Kazama [5], who remarked that: “... that a shear
band grows through buckling of columns together with rolling at contacts; it can be
said that the thickness of a shear band is determined by the number of particles
involved in a single column”. Indeed, from the micro-mechanical point of view an
important structure that appears to dominate localized deformation in 2D DEM
simulations is the formation and collapse (buckling) of grain columns, as this was
demonstrated experimentally by Oda and was given a simple structural mechanics
description by Satake [6]. These load-carrying columns belong to the so-called
competent grain fraction, a concept first introduced by Dietrich [7] and later used in
continuum shear-banding analyses by Vardoulakis [8]. In later years the existence
of the bimodal character of the contact-forces network in granular media was
filtered-out from numerical CD simulations, by Radjai and co-workers [9, 10]. The
length of these buckling granular columns reflects more or less the current shear
band thickness. Recently Tordesillas [11] picked on this matter and pointed that
“One such unjamming mechanism is the buckling of force chains and associate
growth of surrounding voids ... This mechanism is characteristically non-affine”.
The term non-affine in connection to an open line of grains is, in our understanding,
not outside Giinther’s original idea of incompatible deformations and Satake’s
integrability and dislocation concepts. This can be seen in Fig. 9 of Ref. [11], where
we observe that the line of grains that caries non-affine deformation information
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includes antithetically rotating grains. To our understanding, the essential feature
here is the incompatibility of grain rotation across a grain contact that is leading to
the possibility of an internal instability in the form of the total plastic yielding of an
internal (frictional) hinge. Thus, shear-banding as the manifestation of an internal
instability in the sense of Oda should include the formation of plastic hinges
between grains that belong to the strong force network. Note that in terms of
continuum mechanics, the formation of plastic hinges aligned more or less in a
granular surface [12] inside a shear band, means the appearance of finite jumps (i.e.
strong discontinuities) in the particle spin.

9.2 Equilibrium in the Discrete Setting

9.2.1 Definitions

Following Bardet and Vardoulakis [13] we consider a Representative Elementary
Volume (REV) that consists of N sub-particles (“grains”), some of which are
subjected to external forces or couples, applied from the exterior of the considered
(REV); Fig. 9.4. The nparticles inside the (REV) are grouped in the set
B = {p.a=1,...,N}. The forces and couples acting on the particles of B are
reduced at M points that form the set of “contact” points, C = {P;Jc = 1,...,M}.
The subset / C C contains the contact points between two particles of B, whereas
the subset £ C C contains the points where external actions are applied,

I={P,...,Py}, E={Puy,.,,...Pu}

(9.15)
C=IUE, g=INE

S

\\\__'_F p>
Poo P 1N

~O o

(REV) b NPeE,
g /

}'/

Fig. 9.4 (REV) containing set B of particles in contact among each other and other exterior
particles
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Sets I, E, and C, denote the contact points on particle p, corresponding to

internal actions, external actions and all actions. Sets C,, I,, E,, I, E and C are
related as follows:

C: Ucc}” Cg(:Ia(UEO(

P+EB

1=J5 (9.16)
P.€B

E= U E,
P+EB

The intersections of I, and E, are either empty or reduced to a single (contact)
point,

EamE/}:@ (Ot#ﬁ)

LNl ={ciel}tor. g (o#p) (9.17)

9.2.2 Equilibrium of the Single Particle

The mechanical action on particle (p,) from one of its neighbors is reduced to the
contact action motor which consists of a line force vector and a couple, that are
transported at the “contact” point P, (Fig. 9.5),

e F(O()P(.
Floe — (Mwm) (9.18)

This is because particles in granular assemblies are not necessarily convex and
they interlock. As explained by Froiio et al. [12], the selection of the “contact” point
P, is rather arbitrary, a fact that is very well reflected in the transport properties of
the contact action motor, Eq. (9.18).

Fig. 9.5 The intergranular
contact motor

B(i next neighbor
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For easy computation of the resulting forces and couples we may use again
Cartesian notation for the related vectors

F(IX)PC :f(“)fei (919)

M®Pe — mg“)"ei m ¢ = m® (P.) (9.20)

I’ 1 1

The resultant of force acting on particle (p,) is

F® =3 FeF (9.21)

ceC,

We transport all forces and moments acting on (p,) to its “centre” K,', thus
obtaining the total particle motor,

P — ( Af(i’;i{) (9.22)
with
FO = [0, ) = 3 e (9.23)
ceC,
MO — (9.24)
m® =m®(K,) = > (e (5~ )1 (9:25)
ceC,

Zand the position vectors

RKq = x?‘e,-, RPL- = xfei (9.26)
Equilibrium for particle (p,) is expressed by
F% =0 (9.27)

Let 5k® be the kinematic motor for a virtual motion of the particle (p,),

_ (@)
(0 _ [ Ow >
ok <5VK°‘ ) (9.28)

"Point K,, could be the centroid of the grain.
Note that in this equation summation of repeated lower indices is meant!



9.2 Equilibrium in the Discrete Setting 159
where
ow = (3wl@e,~, i = 5vl(.“)e,~ (9.29)

are the virtual spin vector of the particle and the virtual velocity vector of the centre
K, of particle p,, respectively.

The virtual power of the total force and total couple acting on particle (p,) for
the considered virtual motion is computed as the corresponding von Mises motor
scalar product [14],

W = F® o 5k = F®) . 5pKs 4 MKs . 5p(*) (9.30)

Note that the von Mises motor scalar product is invariant of the choice of the
particular selection of the reference point K,,.
The virtual power equation for particle (p,) expressing equilibrium reads,

oW =0 (9.31)

With Eq. (9.23) in Cartesian form, Eq. (9.31) becomes

Z (fi(m)c 5vl§o¢) i (m<> e (x; _ x;) fk(u)c) 5W§“>) _0 (9.32)

ceC,

Obviously, a particle assembly inside an (REV) is in equilibrium, if each
sub-particle is in equilibrium. Then Eq. (9.32) holds for all grains in B, thus
equilibrium for the assembly is expressed by

D07 (Ao 4 (mf e (i — ) )owl) =0 (933)

a€EB ceC,

The double sum over C, and B can be split into two separate sums, one over
I and one over E, respectively. In addition we observe that for any two grains (p,)
and (pg) in contact at point P, we have from Newton’s 3™ law that,

f;(“aﬁ)c

(9.34)
@e _ _ppBle B _ _ (Be

i i

f;(o‘)" — _f;(ﬁ)‘ = fl(yﬁ)c — _f;(/f.a)c
mgoz.ﬁ)c m®e

i i

Thus from Eq. (9.33) we get an equivalent expression that can be written as a
virtual power equation,

oWt — gyylex) (9.35)
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where

swint _ Z (fi<“’ﬁ)c (5\/1(.“)" - 5v§ﬁ)c) +m ’ﬁ <5w - 5W§ﬁ))> (9.36)

cel

5W(ext) — Z (fi(g)évl(e) +m1(€)5wz(€)) (937)

eck

9.2.3 Equilibrium Conditions for Compatible
Virtual Kinematics

In order to evaluate the above expressions, Egs. (9.35) to (9.37), we set the virtual
spin of a particle to be a linear function, and the virtual velocity of the centre of the
particle to be a bi-linear form of the coordinates of the position of its centre,

(
5Wl(ﬁ) — ot ﬁl, (9.38)

%) _ a; + b,jx + c,jkx X}
B _

— al+blj-x +cljkxﬁ f (939)

Svt
St
where a;, f; and a;, byj, c; are arbitrary coefficients. This bilinear expansion of the
virtual velocity field has been used in the past by Chang & Liao [15] and was
adopted later by Bardet & Vardoulakis [13]. Its justification, however, is supplied
here as a consistency requirement by the consideration of the transport law for the
particle velocity, Eq. (9.4).

If we introduce the particular realizations, Eqs. (9.38) and (9.39) in Egs. (9.6)
and (9.7) we get,

! J

ol = B, (x](f _ xq) (9.40)

Sv (/)’x _ sz( xj@f + cijk (x X, — X; xk) — &k (xf - XZ)

+8ykﬁjl((x2 xk)xz _ xk —X,f)xf) (9.41)
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Similarly,

0§ = 5v§“) + Sijkéwj(‘i) (x]i - XZe) (9.42)
= @i+ byxl + e + ey (o — x7) + e (g — 1)

where x7 is the position of the centre of particle p,, where contact e takes place.

From Egs. (9.36) and (9.41) to (9.42) we get the following expressions for the
virtual power of internal and external actions in and on the considered (REV),

W(int) _ blj Z‘f;(dﬁ)c‘ ()C][-; _ xj:x)

cel
+ Cijk Zf(“’ﬂ (x X, — x_;‘xZ)
cel
— o> e (xf - XZ)
cel
+ Bji Z (sijkfi(“‘mc (xf (xk — x,f) —x7 (xz — x,f)) + m;“"ﬁ)c (xf — x?‘))
cel
(9.43)
and
ext _ asz +bny;e ae
ecE ecE
+ Ciik Zfexozexlo{te
<t (9.44)
+ o Z (mf + Sijkfie (xi — x,fe)) .
eckE
B (s -+ et (5 — ) )
cel

The virtual power Eq. (9.35), with Eqgs. (9.43) and (9.44), applies for arbitrary
choice of the coefficients a;, by, cjix, o, BU Thus, by independent variation of these

coefficients we get the following set of algebraic equations:

> =0 (9.45)

ecE

3 (xf s ) e = 37 e (9.46)

cel ecE

Z fi(x.,m (xﬁx]/j x]‘?‘x,i‘) _ Z fexrexe (9.47)

cel ecE
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Zajk(xﬁ—x) (@B Zm (9.48)

ccl ecE
Z (s,-klf;“’ﬁ)e(xf (x,‘( —xf) —xf(xi _XZ)) +m (a e (x % )) Zm
cel ecE
(9.49)
where
i = i e (x5 )1 (9:50)

is the moment that results by transporting the external contact force and couple
from point P, on particle p, to its centre K,.

Equation (9.45) is expressing the equilibrium of external forces that are applied
to the whole assembly of particles in the considered (REV). From Eq. (9.46) we get

Z it (xf} _ x;)fk(a,ﬁ)c _ Z Sijkxjc'{ef/f (9.51)

cel ecE

and with that Eq. (9.48) transforms into

> (m +aep) = 0 (9.52)

ecE

or to the moment equilibrium equation for all external actions on the considered
(REV),

) (m +s,,k( )fk . fk) —0=
> (m +P,]kx“fk> 0

ecE

(9.53)

If we combine Egs. (9.47) and (9.49) we obtain,

S (d =) = (g — (o — ) (9.54)

cel ecE cel

We summarize below the set of equations that we derived by applying the virtual
work equation on an (REV) of particles that are in a state of static equilibrium under
the action of external forces and couples,

> =0 (9.55)

ecE
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> (m + G fi ) =0 (9.56)

ecE
> (xf — ) =) xXfy (9.57)
cel ecE
> (xﬁXf xj‘XZ)f(” = fex (9.58)
cel ecE
Z (x]ﬁ - x]) (mﬁ‘“'ﬁ e 4 Siklxzfl(aﬁ >C) = Z (mf + Sinmx;f;)xfe (9.59)
cel ecE

9.3 The Micromechanical Definition of Stress
and Couple Stress

We consider a strategy for a transition from the discrete medium to the continuum.
This is by far not a unique procedure, thus having always the character of a working
hypothesis. The mathematical limitations of such strategies are discussed in detail
by Froiio et al. [12].

For the computation of a mean value of the stress within the (REV) we follow a
standard procedure [16]: The analysis starts from the stress equilibrium equations
that apply for the continuum. We consider a small volume V of the continuum that
in the discrete is occupied by the (REV) and we assume the existence of a stress
field that satisfies the equilibrium equations on the considered volume and on its
boundary. We express the equilibrium, Eq. (4.33), in Cartesian coordinates, we
multiply these equations with xi, integrate over V, apply Gauss’ theorem and use
Eq. (4.34),

/ (8,-%- +]§~)xde =0 = / O'kjdV = / thde+ / Xk]SdV =0

Vrev Vrev OVrey Vrev

(9.60)

If the considered volume is a sphere with radius R,, then the surface integral on
the r.h.s. of Eq. (9.60) is of O(Rg), whereas the volume integral is of O(Rg). Thus,
as it was done already in the discrete medium analysis, the effect of volume forces
will be neglected,

/ ijdV ~ / tjxde (R8 — O) (961)

Vrev OVgev
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We observe that the quantity

1
Vrev

Vrev

is by definition the volume-averaged stress.
From Egs. (9.61) and (9.62) we get,

1
Gy~ / 1S (9.63)
Vrev

OVgey

Note that according to some authors the above outlined stress averaging pro-
cedure can be traced to a reference of Love [17] on the work of Chree [18].
We juxtapose now Egs. (9.61) and (9.57):

/ xt;dS = / A Zx,f“]f = Z (xf - x‘,f)fi(x"/j)c (9.64)

p ecE cel
9Vgev Vrev

This analogy between the continuum and the discrete medium suggests a for-
mula for the computation of the mean stress, that is evaluated by using microme-
chanical information inside the (REV),

) 1 B)e
Gy & X, —X; ’ 9.65
y VREV Cze; ( )f] ( )

Equation (9.65) is a celebrated formula in granular Mechanics and Physics, that
according to Fortin et al. [19] was first applied for the definition of the mean stress
tensor in a granular medium in 1966 by Weber [20] and has been advocated since
for this purpose by many authors; cf. [21, 22].

Similarly we assume the existence of a couple-stress field that satisfies the
equilibrium equations for a Cosserat continuum, Egs. (4.35) and (4.36). From the
corresponding equilibrium equations written in Cartesian form we derive,

/ //‘kjdv: / mjxde+ / Sim,'O'imxde (966)

Vrev OVrey Vrev

We remark that if surface couples and couple stresses are zero, then Eq. (9.66)
reduces to a condition that implies symmetry of stress tensor. In general however,
with
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0= / (&al;,-)xkxldV = / (9i(0'ijka[)dV — / a,;;Bi(xkxl)dV =

Vrev Vrev Vrey ( 9. 67)

/ (aijl + cr[jxk)dV = / tixxdS

VRV OVrey
the last integral on the r.h.s. of Eq. (9.66) becomes,
/ gimjoimxkdv = / gimjo_[im]xkdv = - / gimjo[mi]xkdv

Vrev Vrev VrEv ( 9. 68)

= - / EimiOmiXydV = / EimjOkiXmdV — / EimiltiXpXmdS
Vrev VrEv OVrev

and with that

/,ukjdV: / mxdS + / EimjOkiXmdV — / EimjtiXeXmdS  (9.69)

Vrev OVrey Vrev OVgev
or
/ (,ukj + sj,,,,-xmak,-)dv = / (mj + sjmixmt,-)xde (9.70)
Vrev OVgev
The tensor
~ 1
My =—— (,ukj + sj,,,,-xmak,-)dV (9.71)
Vrey
Vrev

is called here the “mean transported couple stress”, computed over the volume
Vrkev. Equations (9.70), (9.71) and (9.59) juxtaposed suggest that,

~ 1 o c cpela,p)c
g () () o

VeV <

This formula was originally introduced by Chang & Liao [15] and later by
Bardet & Vardoulakis [6] and Tordesillas & Walsh [23]. This definition differs from
the one that was proposed by Oda & Iwashita [24] that was proposed in turn in
complete formal analogy to Eq. (9.65),



166 9 Mechanics of Discrete Granular Media

1
e B ()e
Ty ~ Ve E (xk - x,f)mj (9.73)

cel

The existence of the two definitions, Egs. (9.72) and (9.73), explains the con-
troversy in relation to the statements that couple-stresses in granular media are: a)
only due to contact couples [24], an assumption that would support definition
(9.73), or b) that they are also generated in part also by the contact forces, as in
definition Eq. (9.72). We emphasize here that the definition of ,&ij, Eq. (9.72), is
derived following a procedure that is in complete analogy to the derivation of
Weber’s formula for stress, Eq. (9.62). This is not possible for the couple stress fi;;.
We will demonstrate below that ji; as a statically meaningful measure of the
transported to the grain-contacts couple stress, is also meaningful from an energetic
point of view.

9.4 Intergranular Dissipation

Rigid granular media are dissipative media in the sense that all energy supplied to
them by the external actions is dissipated. As stated by Cole and Peters [25] “... the
relationship between the contact motions and resisting forces define the micro-scale
properties of the medium...” In that sense central in our approach here are energy
dissipation considerations.

As is shown in Fig. 9.6, the contact of two homothetically rotating grains will
involve strong contact sliding and weak contact rolling, whereas the contact of two
antithetically rotating grains will involve strong contact rolling and weak contact
sliding. A basic hidden assumption made in earlier studies was that almost all
energy dissipation in granular media is localized at sliding contacts [26]. In general,
however, energy dissipation due to rolling cannot be excluded due to micro slip and
friction at the contact interface. In this context we like to refer the reader directly to
the discussion offered on the subject by Tordesillas and Walsh [23]. This point of
view is appreciated as a fact by many investigators, since in a number of recent
DEM simulations, energy dissipation is admitted to rolling contacts as well
[27-29].

Fig. 9.6 Two grain circuit
with sliding contact and
rolling contact respectively
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9.4.1 Grain Contact Energetics

We consider two homothetically rotating grains and for simplicity we set them to be
of equal radius R, with a strong sliding contact, as seen in Fig. 9.7. The branch
vector that connects the centers of the two grains is,

(Kle)i = 26, N é,‘ = Rgl’li , NNy = 1 (974)

1) (
and the grains are rotating homothetically with angular velocities W]((l) and w,(cz),
respectively. At the midpoint P, of the centre line (K;K;) the velocities of the

grains are

)

The velocities of the centers of the grains (1) and (2) are denoted by v, ” and v

(9.75)

Thus the relative rotation and relative velocity of grain (2) with respect to grain
(1) at the contact point are,

WQ’I)C = W(Z) — W(l) (976)

V(z"l)C = V(Z)c — V(.I)C = vl@) — Vgl) — gijk (W(2> +W(1))€k (977)

j J

Since the two grains are in contact, we assume that they interact with contact
forces and contact couples. Let fl-<1"2)c and mfl"z)c be the force and the couple acted

on grain (1) by grain (2); their reactions are the contact force fi(z’1>C and the contact
2.1

couple m;’°, acting on grain (2). These force- and couple pairs satisfy Newton’s

3rd law,

Fig. 9.7 Two-grain circuit: kinematic embedment
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(2,1)c

A e A A/ (9.78)
m(l.Z)c m(l)c _ _m@)c N m(1,2)c _ _m§2,1)c

i i 1 i i

The interface at the contact of the two grains is identified as an intergranular
surface. This is a continuum material band of vanishing thickness, whose bound-
aries share the motion of the two adjacent faces of the contact. In the terminology of
Tribology this interface is called the “third body”. As stated by Godet [30]:
“Interfaces, or third bodies can be defined in a material sense, as a zone which
exhibits a marked change in composition from that of the rubbing specimens or in a
kinematic sense, as the thickness across which the difference in velocity between
solids is accommodated”.

On the faces of this infinitesimal slip the reactions of the intergranular forces are

acting. On the face of the intergranular surface that touches point sz) and has the
outer unit normal n;, the force fi<1’2)c is acting. On the opposite face of the inter-
granular surface that touches point Pg.l) and has the outer unit normal —n;, the force

ﬁ(2’1> is acting. The rate of work per unit volume, done by these forces at the
considered contact due to sliding, is (Fig. 9.8),

1 C c 1 C c 1 ,1)e
PO = o (f“’”vlg CUNG >) _ Lo (V(z )0 >) = Luaene g 99

i % i i 1% i i

Similarly the rate of work of contact couples at the considered contact due to
(weak) rolling is (Fig. 9.9),

— m w;

1 c c 1 c 1 c
plv) V(mlgl,z) w® 4D l<z>) = o1 (ng2> —WE')) = {122

Fig. 9.8 Two-grain circuit:
strong sliding contact




9.4 Intergranular Dissipation 169

Fig. 9.9 Two-grain circuit:
weak rolling sliding contact

The total power of actions at grain contact is the sum of the contributions due to
sliding and rolling,

p — plns) 4 plar) (9.81)

9.4.2 Continuum Embedment

We assume that particle spin and particle (centre) velocity are embedded into
continuous fields, such that

WD e w® i+ 20,0 (9.82)
and
Vl(” =, VEZ) A Vi + 241, OV (9.83)
With
WZ(ZJ)C _ Wz@ _ wgl) = 20,0,W; (9.84)
and

G C vl(l) — Sijk (ngz) + wj(-l))ﬁk = Z(Bkv,- — gpwj + 8ikj€,,18mwj)€k (9.85)
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we observe that the relative spin and velocity can be expressed in terms of the
related Cosserat-continuum deformation measures; c.f. Equations (3.138) and
(3.139). With this notation Egs. (9.84) and (9.85) become,

w =20, K (9.86)
and
VSZ’I)C = Z(Fki =+ Silelem)gk (987)
(1,2)

On the other hand, we assume that the force fi(l’z) and the couple m; '~ are
generated by a stress field and a couple stress field, respectively, which are eval-
uated in turn at the centre of the considered grain. Thus

702 @)

S = aki(—nk) s lS = O'ki(—‘rl’lk) (988)

where S is a reference surface area, and with that

S c ¢ 1 c c 1
P<m) = <‘—/> (ak,-(—nk)vl(l ) + ak,-nkvgz )) = —ONg (ng ) — vl(.l )) = —O'kil’lkvgz‘l)
a a

The specific surface

(9.90)

1
a

<lw

is a free parameter that will be determined below with the requirement that the
power of contact actions at grain scale relates to the stress power in the underlying
Cosserat continuum. Due to Eq. (9.87) from Eq. (9.89) we get

P = éakinkz(rni + &Kol ) by = 2% (o) (Fninn) + &int (Kt )€n) (9.91)
Let
P (9.92)
With the notation

l‘(”> = ONg (993)
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and
' = D, K™ = Ky (9.94)

we observe that the vector compound

_ (n)
(n) _ K
BT = (r<"> +1x K<">> (9.95)

is a von Mises deformation-vector motor for all possible contact points of grain (1),
with unit normal on the contact plane n. The “moment” part of the kinematic motor
(9.95) works on the stress vector, since

P(ns) _ )1(11) . (1"(”) +1x K(")) (996)

(c)

In view of Eq. (9.71) we postulate the couple-stress field y;;", called the contact

transported couple stress, such that,

()

My~ = + eﬂkﬂlaik (9.97)

and we define the moment vectors,

m" = (9.98)
and

(cn) ()

— e )
mp " =My

ny = (,uk,- + eilmﬁlakm)nk = mfn + Si/mfllgl) (999)

We observe that the compound

(n)
(n) _ t
= (m(ﬂ) LIx t(”>> (9.100)

is a von Misses action-vector motor for all possible contact points of grain (1).
With these remarks we compute the von Mises scalar product of the two motors
and claim that this is the total power of actions at a grain contact,

1 _
2P = ) o ) — 4 (rm) 1Ix K<n)) n (m<n> TIx t<">) K™ (9.101)
A

We showed already through Eq. (9.96) that the first term on the r.h.s of
Eq. (9.101) reflects the work done by the forces due to (strong) sliding, Eq. (9.96).
We will prove now that the 2nd term on the r.h.s. of Eq. (9.101) corresponds to the
work done by the couples at the considered contact due to (weak) rolling.
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Indeed, if we define after Eq. (9.80) that

1 c c S c ¢
plr) — = (ml(l,z) WZ@) +m§2,1) Wl(z)) _ <_) ( /<<i>(_”k)W§1) +ﬂ1(a')”kW§2>>

v v
1 1 2R,
L (o <) = L~ 2 000
a a a
(9.102)
we get
1
P = (m<"> I x t<">) K™ (9.103)

and with that we recover Eq. (9.81).
We return to Eq. (9.101) and observe that mixed terms cancel out, leading
finally to,

1
7p(ﬂ) =) .70 () g (9.104)

or in Cartesian form,

1
1P<") = (oul + 1 Kii) ey (9.105)

9.4.3 Fabric Averaging

Let n be the unit normal that characterizes an intergranular contact plane at contact
point P., as this was discussed in the previous sections. We select all such contact
normal vectors and transfer them parallelly to the centre of the unit sphere. This
mapping defines a point P on the unit sphere. The distribution of these points on
the unit sphere defines in turn an essential property of the fabric of the
contact-planes network. The simplest assumption is that the probability distribution
of the unit contact normal vectors is uniform. This assumption is rather crude as far
as granular media are concerned, and for realistic modeling cconsiderations it
should be replaced by suitable anisotropic probability distributions [31, 32].

We observe that the corresponding Cartesian coordinates of the position vector

OP, = n on the unit sphere are
ny =sinf cos¢p; ny, =sinf sing; n3 =cosb (9.106)

where r = 1, 0 and ¢ are the polar, spherical coordinates of point P/. In case of
isotropy, it can be easily shown that following identities hold [33]:
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(i) =0

2n

nnj> //nnjsmﬁdedqb—— i
(mimjne) =
1 .
(ninjngny) = (5q0kz + 00 + 0ady) = Ebijk]
<n, nkn,nm> 0
1 1
<n n]nknlnmnn> = m (5tn5/k1m + 5/n5klmz + 5/(115["11] + blnémuk + 51111151]/([) 105 51jklmn
(9.107)

We return to the expression for the power of contact forces and contact couples
at intergranular contact, Eq. (9.105), and compute its average. For

z:%%:3 = azgzg& (9.108)
and
PY =3 (0T + K )meny (9.109)
we get finally,
<P<">> = P = oyl + 1Ky (9.110)

where P is the power of internal actions in the Cosserat continuum, cf.
Equation (4.3).

Thus the particular choice of micromechanical variables at the level of inter-
granular contact has allowed us to recover the stress power of the Cosserat con-
tinuum as the isotropic average value of the work done by contact forces and
contact couples at the third body at grain contacts.

9.5 Stress- and Couple-Stress Invariants
for Isotropic Fabric

We define the scalar

t(") = tin; = ONEh; (9111)
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that is the normal component of the stress vector acting on a contact plane with unit

normal vector n.
The vector

tft) =t — ", = aung — oymn; (9.112)
is the corresponding shear stress vector, with
;=0 (9.113)

By introducing the decomposition of the stress tensor in spherical and deviatoric
part,

1
Ojj = Sij+ gakk(siji y Sk =20 (9-114)
we get
(n) 1
=\ sik + go—mmaik ning (9115)
l]@ = Sik (51 — njnk)ni (9116)

By averaging over all probable normal-contact directions in the considered
(REV), from Egs. (9.115), (9.116) and (9.107) we get the following statistical stress
invariants:

(a) The mean normal traction on contact

1
<z<n>> =p=30u (9.117)

(b) The mean of the square of the magnitude of the shear traction on contact,

1/4 1
<t,<(t)f,@> =3 <55kpskp - 55k1>5pk> (9.118)

If we apply Eq. (9.118) for the symmetric part of the stress tensor, then the
average of the square of the shear stress magnitude is related to the usual shearing
stress intensity [34],

1 /4 1 1
Tmean = \/ 3 (5 S(kp) S (kp) — 5S<kp>s<pk>> =\ 55500 (9.119)
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or
2
Tmean = A/ =T (9.120)
5
where
1
T= Eskpskp (9.121)

We recall that in case of a Boltzmann continuum the shearing stress intensity T
differs but little from the maximum shear stress,

0.87max (Tmax ) < T < min(Tmay) (9.122)

and is used extensively in the formulation of maximum shear stress criteria.
)

We repeat the above procedure for the contact couple-stress tensor, /JSJ-C , that was
defined above through Eq. (9.97)
ﬂl(]C) = W+ Reejioim (9. 123)
Let
m;cn) = ,ul(f>nl = Wi —l—Rgsﬂkaikninl (9124)
be the normal component and
m\ = m](m>nj = pynin; + Reginagnimn; (9.125)

(o)

The 1st statistical moment of the contact couple-stress tensor y;~ is a measure

for the mean contact torsion,

, 1
Up = <m(‘”)> = u,j<n,nj> +Rg8j,k0'ik<n,-n,nj> = §:ukk (9.126)

We observe that the mean torsion is transported unaltered from the stress field.
This allows us to decompose the contact couple-stress tensor into a spherical and a
deviatoric part as,

w = m) + s (9.127)

where

) = Hij +Rg8jlk6iknl — ,uTéij = mjj —|—Rg8jlk6ikn1 (9128)

my’ =
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With
(ety _ (o) (5 o ) . (9 129)
m; = my’(0; ning ) n; .

we can compute the 2nd statistical moment of the deviatoric contact couple-stress
()

tensor, M~

m¢ = <m§a)m§“) > (9.130)

mean

In analogy to Eq. (9.118) we have

1 4 C C 1 C C
mgpfe)an = § <§ ml<cp)ml<(p) - gml(cp>m[(7k>) (9131)
or
. 5 4 o o 1 o
M© = \/:m,(ne)an = \/gm,((p)m,((p) — gm,ip)m,()k) (9.132)

that we call the rolling-contact couple-stress intensity.
Using the definition of the contact couple-stress, Eq. (9.123), we can express

mf,ﬁgan in terms of the couple-stress and stress deviators,

mgrigan = <m§¢")m§¢'f)> = m%neun + Rgrgaean (9 133)

where
1/4 1
Mypean = \/3 (5 MMy — Smkpmpk> (9134)
We define the corresponding deviatoric couple-stress intensity
5 4 1
M= \/;mmean = \/6mkpmkp — gmk,,mpk (9135)

and with this notation Eq. (9.132) becomes

M€ = /M+RT (9.136)
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or explicitly,

4 1 4 1
M(C) = \/(E My My — gmk,,mpk> +R§ <6 SkpSkp — gskl,spk> (9137)

The above introduced stress- and couple-stress invariants, can be used in the
formulation of plasticity based constitutive equations for granular media, to express
the ability of the material to provide resistance to external actions due to irreversible
interparticle slip, torsion and rolling, respectively. In case that someone wishes to
generalize plasticity models that incorporate in their formulation the effect of the 3™
invariant as well, then one could consider the computation of appropriate 3™ order
“moments” of the deviators of the stress tensor ¢;; and the contact couple stress
(©
i -

At this point we remark that the present analysis is based on the use of the
transport laws for velocity and force of rigid-body mechanics in the realm of
Cosserat continuum approximation of the mechanics of granular assemblies. This
analysis has resulted in a drastic modification of our previous Cosserat plasticity
models for granular materials [34, 35]. Based on the early work of Besdo [36] on
Cosserat plasticity for ductile materials, in the aforementioned work no distinction
was made between sliding and rolling contacts. To this end an ad hoc definition of a
compound stress was introduced, that had the form,

tensor u

. 1
cij =05+ R Gkt (9.138)

The definition of this extra stress was inspired in turn from Schaefer’s [37]
analogy between Cosserat continuum theory and beam theory. On that basis stress
invariants were computed that resulted in a modified shearing stress intensity of the
form,

1

T _ 2
T=\T+

M2 (9.139)

that was used in turn in the formulation of single-yield surface plasticity theories.
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