### CAUSES OF INCOMPATIBILITY BETWEEN DESIGN AND CONSTRUCTION IN BUILDING CONSTRUCTION

By

MUSTAFA KAMAL KHAN (2009 – NUST – MS PhD – CE&M – 12)

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

**Construction Engineering and Management** 



DEPARTMENT OF CONSTRUCTION ENGINEERING AND MANAGEMENT NATIONAL INSTITUTE OF TRANSPORTATION (NIT) SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING (SCEE) NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY (NUST) SECTOR H-12, ISLAMABAD, PAKISTAN. (2012) Certified that the contents and form of thesis titled " CAUSES OF INCOMPATIBILITY BETWEEN DESIGN AND CONSTRUCTION IN BUILDING CONSTRUCTION " submitted by Mustafa Kamal Khan have been found satisfactory for the requirement of the degree.

Supervisor:

Associate Professor (Dr. Hamza Farooq Gabriel, Ph.D.)

### DEDICATED

### ТО

# MY FAMILY, TEACHERS, FRIENDS AND COLLEAGUES

# **ACKNOWLEDGEMENTS**

I am thankful to All Mighty Allah, who gave me strength and patience to complete my research. I am extremely grateful to <u>Dr. Hamza Farooq Gabriel</u>, <u>Ph.D.</u>, Advisor and Committee Member, whose countless inspiration and guidance helped me complete my research work. I am also extremely grateful to committee members, Dr. Rafiq Muhammad Choudhry (Deptt. Head), Dr. Muhammad Irfan and Eng. Zia Ud Din for their support and assistance in concluding my thesis.

I owe my special thanks to those representatives of the clients, consultants and contractors who participated in the survey, shared their experience and cooperated in completing my thesis. I would like to take this opportunity to pay my gratitude to Construction Engineering and Management faculty who remained extremely helpful. In the end, I pay my earnest gratitude with sincere sense of respect to my family for their unending support, encouragement, prayers and patience.

(Mustafa Kamal Khan)

# TABLE OF CONTENTS

| AC   | KNOWLE                                           | DGEMENTS                                                       | iv   |
|------|--------------------------------------------------|----------------------------------------------------------------|------|
| TA   | BLE OF CO                                        | ONTENTS                                                        | v    |
| LIS  | T OF TAB                                         | LES                                                            | viii |
| LIS  | T OF FIGI                                        | JRES                                                           | ix   |
| AB   | STRACT                                           |                                                                | x    |
|      | pter 1                                           |                                                                |      |
|      | •                                                | ION                                                            |      |
|      |                                                  |                                                                |      |
| 1.1  |                                                  | DUCTION                                                        |      |
|      |                                                  | ackground                                                      |      |
|      |                                                  | compatibilities Between Design and Construction Phases         |      |
|      |                                                  | compatibilities Pertaining to Architecture, Structure, Materia |      |
|      | -                                                | uality                                                         |      |
|      |                                                  | auses of Incompatibilities                                     |      |
| 1.2  |                                                  | EM STATEMENT                                                   |      |
| 1.3  |                                                  | RCH OBJECTIVES                                                 |      |
| 1.4  |                                                  | RCH SIGNIFICANCE                                               |      |
| 1.5  |                                                  | OF THE THESIS                                                  |      |
| 1.6  |                                                  | NIZATION OF THE THESIS                                         |      |
| 1.7  | SUMM                                             | ARY                                                            | 7    |
| Cha  | pter 2                                           |                                                                | 8    |
| LIT  | ERATURI                                          | E REVIEW                                                       |      |
| 2.1. | INTRO                                            | DUCTION                                                        |      |
| 2.2. | TRADI                                            | FIONAL METHOD OF PROCUREMENT                                   |      |
|      | 2.2.1 In                                         | troduction                                                     |      |
|      | 2.2.1.1                                          | Design Phase                                                   | 10   |
|      | 2.2.1.2                                          | Bid (or Tender) Phase                                          | 10   |
|      | 2.2.1.3                                          | Construction Phase                                             | 11   |
|      | 2.2.2 Pr                                         | oject Participants and Their Contractual Relationships &       |      |
|      | R                                                | esponsibilities                                                | 11   |
|      | 2.2.2.1                                          | Client                                                         | 12   |
|      | 2.2.2.2                                          | Consultant                                                     | 12   |
|      | 2.2.2.3                                          | Contractor                                                     | 14   |
|      | 2.2.2.4                                          | Subcontractors and Suppliers                                   | 15   |
| 2.3  | INCOMPATIBILITY BETWEEN DESIGN & CONSTRUCTION IN |                                                                | Ν    |
|      | BUILDI                                           | NG CONSTRUCTION                                                | 15   |

|     | 2.3.1           | General                                                      | . 15 |
|-----|-----------------|--------------------------------------------------------------|------|
|     | 2.3.2           | Incompatibilities between Design and Construction            | . 16 |
|     | 2.3.3           | Adverse Effects of Incompatibility in Building Construction  | . 16 |
|     | 2.3.4           | Causes of Incompatibilities Through Literature Review        | . 16 |
|     | 2.3.5           | Selection of Causes for Construction Industry of Pakistan    | . 19 |
|     | 2.3.6           | Grouping of Causes of Incompatibility                        | . 19 |
| 2.4 | SUM             | IMARY                                                        | . 19 |
| Cha | pter 3          |                                                              | . 20 |
| RES | SEARC           | H METHODOLOGY                                                | . 20 |
| 3.1 | INTE            | RODUCTION                                                    | . 20 |
| 3.2 | RESEARCH DESIGN |                                                              | . 20 |
| 3.3 | THE             | SURVEY DESIGN PROCESS                                        | . 22 |
|     | 3.3.1           | Identification of Research Unit of Analysis                  | . 22 |
|     | 3.3.2           | Sampling                                                     |      |
|     | 3.3.3           | Design of a Research Instrument                              | . 24 |
|     | 3.3.3           | .1 Selection of Measurement Scale                            | . 24 |
|     | 3.3.3           | .2 Attitude Measurement                                      | . 24 |
|     | 3.3.3           | .3 Ranges of Response Category                               | . 24 |
|     | 3.3.3           | .4 Pilot Study                                               | . 25 |
|     | 3.3.3           | .5 Layout of a Questionnaire                                 | . 25 |
|     | 3.3.4           | Data Collection                                              | . 26 |
|     | 3.3.4           | .1 Full Scale Survey                                         | . 26 |
|     | 3.3.5           | Strategy For Data Analysis                                   | . 27 |
| Cha | pter 4          |                                                              | . 28 |
| DA  | TA ANA          | ALYSIS AND RESULTS                                           | . 28 |
| 4.1 | INTI            | RODUCTION                                                    | . 28 |
| 4.2 | DEF             | INING VARIABLES                                              | . 28 |
|     | 4.2.1           | Causes in Each Category                                      | . 28 |
| 4.3 | REL             | IABILITY ANALYSIS                                            |      |
|     | 4.3.1           | Data Reliability of Causes and Categories of Incompatibility | . 34 |
| 4.4 | DES             | CRIPTIVE ANALYSIS                                            | . 34 |
|     | 4.4.1           | Type of the Projects                                         | . 34 |
|     | 4.4.2           | Type of the Respondents                                      | . 34 |
|     | 4.4.3           | Ranking of Causes of Incompatibilities                       | . 34 |
|     | 4.4.4           | Rank Agreement Factors (RAF) & Percentage Agreement (PA)     | . 43 |
| 4.5 | SUM             | IMARY                                                        | . 46 |
| Cha | pter 5          |                                                              | . 47 |
| CO  | NCLUS           | IONS AND RECOMMENDATIONS                                     | . 47 |
| 5.1 | CON             | CLUSIONS & RECOMMENDATIONS                                   | . 47 |
|     | 5.1.1           | Conclusions                                                  |      |

| 5.1.2 Rec     | commendations                           | 48 |
|---------------|-----------------------------------------|----|
| 5.2 FUTURE    | DIRECTIONS                              | 49 |
| REFERENCES    |                                         | 51 |
| APPENDIX: I   | LIST OF RESPONDENTS WORKING IN BUILDING |    |
|               | CONSTRUCTION                            | 55 |
| APPENDIX: II  | QUESTIONNAIRE COVERING LETTER           | 64 |
| APPENDIX: III | QUESTIONNAIRE                           | 66 |
| APPENDIX: IV  | RELIABILITY ANALYSIS IN SPSS VER.17.0   | 71 |

# **LIST OF TABLES**

| Table 3.1: Categories of Causes                                              | . 26 |
|------------------------------------------------------------------------------|------|
| Table 4.1 : Design Phase Related Causes                                      | . 29 |
| Table 4.2 : Tendering Phase Related Causes                                   | . 30 |
| Table 4.3 : Construction Phase Related Causes                                | . 31 |
| Table 4.4 : Overall Project Phase Related Causes                             | . 32 |
| Table 4.5: Guideline for Assessing Reliability Results                       | . 33 |
| Table 4.6:         Cronbach's Alpha Values for Categories of Incompatibility | . 34 |
| Table 4.7: Number and Percentage of Respondents                              | . 35 |
| Table 4.8: Number and Percentage of Respondents in Different Experience      |      |
| Categories                                                                   | . 36 |
| Table 4.9: RII and Ranking of Causes for Design Phase                        | . 38 |
| Table 4.10:    RII and Ranking of Causes for Tendering Phase                 | . 39 |
| Table 4.11: RII and Ranking of Causes for Construction Phase                 | . 40 |
| Table 4.12: RII and Ranking of Causes for Overall Project Phase              | . 41 |
| Table 4.13: RII and Ranking for each Category                                | . 42 |
| Table 4.14:         Overall Ranking of Categories of Incompatibilities       | . 42 |
| Table 4.15:         Percentage Agreement (PA) between Client and Consultant  | . 44 |
| Table 4.16: Percentage Agreement (PA) and Percentage Disagreement (PD)       |      |
| between all Stakeholders                                                     | . 45 |
| Table 5.1: Six Most Important Causes based on Overall Ranking                | . 47 |

# **LIST OF FIGURES**

| Figure 2.1:  | Traditional Design-Bid-Build Procurement Method          | 9    |
|--------------|----------------------------------------------------------|------|
| Figure 2.2:  | Project Members for Construction Undertaking             | . 12 |
| Figure 3.1:  | Research Methodology Flow Chart                          | . 21 |
| Figure 3.2:  | Research Survey Design Process                           | . 22 |
| Figure 4.1:  | Percentage of Respondents                                | . 35 |
| Figure 4.2:  | Number of Respondents in Different Experience Categories | . 36 |
| Figure 4.3 : | Percentage Agreement (PA) between Key Stake Holders      | . 45 |

### **ABSTRACT**

Building construction projects are started with the ambition to transform the customer requirements into best serving products requiring minimum alterations or additions during the course of construction. However, requirements defined during the design phase change during construction phase (Alarcon et al. 1998). These changes cause incompatibilities between the design and construction phases. The most common changes or incompatibilities are made in the architectural details, structural details, materials and quality. The result of these changes is rework (Undurrage 1996), change orders, construction delays, cost over-runs, etc. Situations like these cause reduction in investment and potential growth of the building construction.

Keeping in view the importance of the building construction and consequences of incompatibilities as explained above, it was decided to carry out a research in this field to study the causes of incompatibilities and their ranking in the building construction industry of Pakistan.

This study included feedback in the form of questionnaire survey from two hundred and eighty one (281) respondents including clients, consultants and contractors connected with building construction constructed using the traditional procurement method. Though most of the respondents are currently working in the twin cities (Rawalpindi/Islamabad), however some of them are working in other parts of the country as well. In addition, many of them have past experience of working in other parts of the country.

From a detailed study of past literature review of international studies, a list of sixty five (65) causes of incompatibilities were outlined which were further grouped in four (04) categories. After obtaining data from the field survey, reliability test of data was conducted in order to confirm the authenticity of the field data. Next the individual ranking of each cause was ascertained using Relative Importance Index for clients, consultants and contractors. Overall ranking for each category was also calculated. Percentage mutual agreement between the three stake holders was also established in order to know the degree of agreement in their views about the causes of incompatibilities. The present study established Design Phase and Construction Phase as the most important categories which cause incompatibilities between the design and construction in building construction. It was concluded that six most important causes on the basis of overall ranking belong to the Design and Construction Phases. The six most important causes include "Data provided to the designer is incomplete", "Too little time given to the designer for completion of design documents", "Approving authorities do not check that structure is designed according to building bye-laws, codes & govt. rules", "Owner proposes changes due to financial problems", "Contractor's lack of skilled manpower" and "Approving authorities do not check that structure is constructed according to the approved building plans".

At the end of this study, some recommendations were made in order to eliminate the major causes of incompatibility in building construction of Pakistan in order to achieve the potential benefits which are planned at the start of a project.

### **Chapter 1**

### **INTRODUCTION**

### **1.1 INTRODUCTION**

#### 1.1.1 Background

Construction industry has become one of the most important industries of any country (Fisk 1997). Performance and success of this sector is very important for a country's economic uplift and financial growth (Ali and Goraya 1998). The management of construction is an enterprise that involves many people with diverse interests, talents and backgrounds. The owner, the design professional and the contractor comprise the primary triad of parties, but others, such as subcontractors, material suppliers, bankers, insurance & bonding companies, attorneys and public agency officials, are vital elements of the project team whose interrelated roles must be coordinated to assure a successful project (Bennett 2003).

The construction industry can be broken down into two very broad categories, i.e. general building construction and engineered construction. With the general building construction, projects such as residential, commercial, institutional and industrial buildings are included. Engineered construction sometimes called engineering construction, is characterized by designs prepared by engineers rather than architects, the provision of facilities usually related to the public infrastructure and thus owned by public-sector entities (Bennett 2003).

Building construction consumes 40% of global energy, generates 5-15% of GDP, and provides 5-10% of employment (EFEI 2011). At the same time, it consumes 40% of the world's raw materials (NIBS 2007). In a developing country like Pakistan, building construction plays a key role in the overall development of the country. It provides employment to a huge bulk of population (Haseeb et al. 2011), brings foreign investment and creates economic activities, provides housing to the nation, contributes in the growth of other industries by using raw materials from them and helps in the circulation of money within the country. In the recent past, this industry brought a lot of foreign investment into the country and it has the

potential to bring further investment. It is evident that building industry has an important role in the life of the entire nation. It is also worth mentioning here that the shortage of housing units has increased from 4.3 million in 1998 to an estimated 7.6 million in 2009, with simultaneous increase in the annual depletion of housing stock from 0.3 million in 1998 to 1.28 million in 2009 in Pakistan (World Bank 2010). With the increase in population, the demand for more housing units, educational and health facilities, offices, entertainment centers, etc. is increasing year by year. The cost of construction has also increased many folds during the recent years especially due to inflation. It is therefore imperative that the parties involved in the building construction industry make every possible effort to complete building projects within the planned budget, schedule, cost and quality. Otherwise, the consequences will be rework, cost overrun, schedule overrun, defects, etc.

#### **1.1.2** Incompatibilities between Design and Construction Phases

Various researchers have concluded that variations and changes are common to all types of projects (Thomas et al. 2002). Even if carefully planned, it is likely that there will be changes to the scope of the contract as the work progresses (Harbans 2003). In building projects, customer requirements, constructive aspects and quality standards defined during the design phase change and differ altogether from the ones which finally become part of the constructed facility. Changes normally occur in:

- Architectural details
- Structural details
- ✤ Material
- ✤ Quality
- Electrical and Plumbing details
- Project time / project schedule
- Project cost
- Construction methods, etc.

These changes cause incompatibilities between the design and construction phases. All of these incompatibilities and changes have far reaching effects on building construction projects. These incompatibilities may result in:

- Rework
- ✤ Addition or deletion of tasks in the project program
- Changes in quality of construction, cost overrun or schedule overrun
- Changes in construction methods
- Design and construction defects, etc.

### 1.1.3 Incompatibilities Pertaining to Architecture, Structure, Material & Quality

Among the incompatibilities mentioned in the previous sub-section, those pertaining to architectural details, structural design details, material, electrical and plumbing details, and quality are more common in building construction projects and these are the focus of the present study as well. These incompatibilities include changes in the:

- Storey heights
- Sizes of rooms
- False ceiling height
- Roof slab levels of adjacent rooms
- ✤ Layout of rooms
- Location and thickness of walls
- Location and size of doors and windows
- Alignment of walls and columns
- Elevation of the building
- Location of underground and overhead water tanks
- Plinth level from the ground surface
- Thickness of slabs
- Location of beams and columns
- Depth of beams
- Foundation level from the ground surface
- Foundation types and sizes
- Reinforcement detailing

- Quality of building materials like concrete, bricks, tiles, paints, wood, etc.
- ✤ Quality of workmanship
- Insulating materials
- Size and type of plumbing pipes and accessories
- ✤ Type of electric cables and accessories, etc.

### 1.1.4 Causes of Incompatibilities

The incompatibilities mentioned in the previous sub-section are caused due to many reasons, yet some of the more common causes include:

- Lack of proper project planning / analysis of owner requirements at the project start
- ✤ Incorrect or inadequate geotechnical reports
- Drawings lacking details or showing incorrect references etc.
- Workability issues like congestion of steel in joints etc. resulting in failure to achieve desired strength or quality
- The consultant specifies the incorrect material
- For buildings like hotels, labs, etc., architects / engineer, who are expert in the design of these buildings are not hired
- Owner chooses material which is not sufficient for the purpose intended
- Owner recommended changes during construction (when bureaucracy changes, then new bureaucracy proposes changes)
- ✤ Lack of contractor experience and lack of construction supervision
- Contractor's quality control and workmanship is poor
- The contractor / subcontractor uses substandard material in an effort to reduce cost
- Lack of checking by the approving authorities
- ✤ Inflation
- Shortage of material and labor

It is also interesting to note that sometime construction defects also turn out to be the cause of incompatibilities. For example, if foundation is designed for an assumed bearing capacity of soil and foundation settles during construction, the result will be redesigning of foundation according to the actual bearing capacity of soil. Similarly if low quality plumbing pipes or toilet accessories are used, they may require replacement with different type of items. Construction defects which are likely to be caused by these incompatibilities include settlement of floors, cracks in floor tiles, settlement of foundations, cracks in walls and roofs, lack of ventilation resulting in humidity and smell in the atmosphere, water seepage and leakage, cracks around doors and windows, doors and windows not properly shutting or opening, paint peeling off, faulty drainage, defective plumbing, leaking overhead water tanks, leakage from underground water tank which is located close to column / wall foundation causing floor and foundation settlement, white layer of salts depositing on walls, insect infestation, faulty wiring, improper jointing in brick masonary elements, etc.

### **1.2 PROBLEM STATEMENT**

In most of the building projects in Pakistan, incompatibilities between design and construction phases occur. These incompatibilities include differences in the architectural details, structural details, material, time, cost and quality between the design and construction phases. These incompatibilities create obstructions in achieving the goals that are set at the start of the project. In this regard, research has been done internationally, however in Pakistan, very little research has been carried out and it pertains mostly to time and cost over-runs. There is need for thorough effort to be done in order to identify the causes which result in incompatibilities pertaining to architecture, structural details, material and quality in Pakistan's building construction environment. Further, these causes must be ranked and the most important causes in building construction projects should be studied in detail to apply counter measures and enhance the efficiency of building construction process.

### **1.3 RESEARCH OBJECTIVES**

The main objectives of the research are:

a. To list down major causes of incompatibilities between design and construction in building construction through review of international and national

level literature and then updating the list of those causes with respect to building construction industry of Pakistan.

b. To ascertain ranking of those causes from the perspective of three major stake holders i.e. client, consultant & contractor as well as over-all ranking.

c. Address important causes of incompatibilities for improving efficiency of building construction industry.

### **1.4 RESEARCH SIGNIFICANCE**

The construction industry of Pakistan contributed 2.3 percent of the total GDP of Pakistan in 2009-10. This represented a growth of 15.3% in 2009-10 and a decline of 11.2% in 2008-09 (SBP 2010). About 6.6% of the estimated employed labor force of 52.71 million is employed in the construction industry (FBS 2010). A huge portion of this labor force works in the building construction. With an increase in the urban population and increase in the demand for more buildings, it is important that buildings are completed within the assigned budget and schedule. Unfortunately, the desired project objectives are not achieved due to issues like rework, cost-overrun, time overrun, etc. Most of these problems have their origin in the incompatibilities between design and construction phases. It is therefore need of the time to carry out research in this field, identify the important causes in this regard and find out ways and means to eliminate the effect of those causes. This will consequently eliminate the incompatibilities and ensure completion of building construction projects in Pakistan within the planned budget, schedule and quality standards.

### **1.5 SCOPE OF THE THESIS**

The scope of this research is related to identifying the important causes of incompatibility between design and construction, in building construction of Pakistan. A field survey from 281 clients, consultants and contractors from the building construction industry was conducted. The purpose was to acquire feedback on causes of incompatibility between design and construction of building construction using traditional procurement method. Most of the respondents were taken from Rawalpindi & Islamabad, however professionals currently working in

other parts of the country were also included in order to cater for the variations in causes of incompatibility due to geographical factors.

### **1.6 ORGANIZATION OF THE THESIS**

Chapter 1 provides background of construction industry and problem statement that developed the need of this research along with the study objectives, its significance and scope.

Chapter 2 is devoted to literature review. This chapter is divided into two parts. The first part provides brief overview of the traditional procurement method and the role of client, consultant and contractor. The second part throws light on the incompatibilities between design and construction, and their causes. Importance of different causes in the view of various authors is also discussed. Finally a list of causes is made out of literature review peculiar to the environment of Pakistan.

Chapter 3 is concerned with the research methodology employed in the study. The process of survey design, selecting a study sample, development of a questionnaire for data gathering and conducting full scale survey is presented for ranking of causes through statistical tools.

Chapter 4 describes the data analysis and results. The purpose of this analysis was to determine the ranking of various causes targeted in the questionnaire survey.

Chapter 5 is concerned with the conclusions and future recommendations drawn from key research findings. Future directions are also identified.

Survey questionnaire used for survey is available in the appendices. The appendices also contain copies of the reliability tests done using Statistical Package for the Social Sciences (SPSS Ver. 17.0).

### **1.7 SUMMARY**

Brief summary of the research is introduced in this chapter. Starting by reviewing the past literature that developed a need of this research is highlighted. Significance and important aims & objectives are presented. Scope with outline of the thesis chapters is also discussed.

### Chapter 2

### LITERATURE REVIEW

### 2.1. INTRODUCTION

This chapter is designed to provide an overview of the survey of the literature. It is divided into two parts. The first part of this chapter provides brief overview of the traditional method of procurement for building construction projects in Pakistan. The relationships and responsibilities of the key stakeholders playing active role in this method i.e. clients, consultants and contractors are elaborated in detail in the sections to follow. The second part of the chapter throws light on the incompatibilities between design and construction in building construction.

### 2.2. TRADITIONAL METHOD OF PROCUREMENT

### 2.2.1 Introduction

A construction project is defined as a planned undertaking to construct a facility or group of facilities. The construction of a new project normally starts with the preliminary studies about the possibility and practicality of the proposed project in order to assess the benefits and risks associated with it. All possible options are considered and evaluated in search of the best possible option. The client/owner/principal may be a public sector organization, an autonomous body or any private owner that funds the construction project and will own the completed facility (Eldosouky 2001). After completing the feasibility studies, the next step is to define an organization structure for the construction project. Organization structures for construction projects are a framework of contractual and communication relationships between project players. The organization structures are defined using project procurement systems. Different procurement systems are normally used for the construction projects categorized as traditional and non-traditional procurement systems.

The traditional method of procurement also known as "design-bid-build" is called 'traditional' because it has been the approach of choice for owners of most construction projects during many centuries. The client, consultant and contractor are the three main parties that form the structure of the traditional delivery method as shown in the figure 2.1 (reproduced from Bennett 2003). With this method, the owner contracts with a design organisation to perform preliminary planning, carry out design work and prepare contract documents. Following the completion of this phase, a construction organisation is selected, based upon the owner's criteria, and the owner enters into a contract with the successful contractor for the assembly of the project elements in the field. In this method, the contract for the design work is separate from that for the construction work (Bennett 2003). The contract price paid to the contractor may be in the form of a lump sum, a schedule of prices, or a mixture of both. It may even be, wholly or in part, cost-plus.

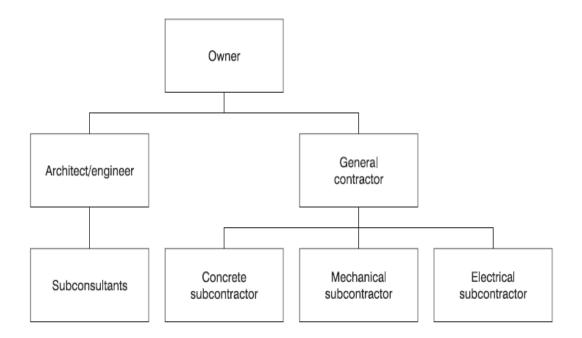



Figure 2.1: Traditional Design-Bid-Build Procurement Method (Bennett 2003)

There are three main sequential phases to the traditional procurement method, 1) Design phase, 2) Bidding (or tender) phase and 3) Construction phase.

### 2.2.1.1 Design Phase

In this phase the owner hires an architect (or engineer) to act as his consultant to design and produce tender documents on which various general contractors will in turn bid, and ultimately be utilized to construct the project. For building projects, the architect will work with the owner to identify the owner's needs, develop a written program documenting those needs and then produce a conceptual or schematic design. This early design is then developed, and the architect will usually bring in other professionals including mechanical, electrical, and plumbing engineers (MEP engineers), a fire engineer, structural engineer, sometimes a civil engineer and often a landscape architect to complete documents (drawings and specifications). These documents are then coordinated by the consultant and put out for tender to various general contractors (wikipedia).

#### 2.2.1.2 Bid (or Tender) Phase

In this phase the consultant puts out the tender documents to various general contractors. Bids (tenders) can be "open", in which any qualified bidder may participate, or "select", in which a limited number of pre-selected contractors are invited to bid. The various general contractors bidding on the project obtain copies of the tender documents, and then put them out to multiple subcontractors for bids on sub-components of the project. Sub-components include items such as the concrete work, structural steel frame, electrical systems, and landscaping. Questions may arise during the tender period, for which clarifications or addenda are issued. From these elements, the contractor compiles a complete "tender price" for submission by the closing date and time. Once bids are received, owner's consultant typically reviews the bids, seeks any clarifications required of the bidders, ensures all documentation is in order (including bonding if required), and advises the owner as to the ranking of the bids. If the bids fall in a range acceptable to the owner, the owner discusses the suitability of various bidders and their proposals. The owner is not obligated to accept the lowest bid, and it is customary for other factors including past performance and quality of other work to influence the selection process. The project is usually awarded to the lowest bid by a qualified general contractor. In the event that all of the bids are in excess of the goals of the owner, the owner may elect to reject all bids. The following options become available, either abandon the project, revise the design making the project smaller or more efficient, or select the lowest qualified bid's general contractor to assist the architectural team / consultant with cost reduction (wikipedia).

#### 2.2.1.3 Construction Phase

After the project has been awarded, the construction documents may be updated to incorporate addenda or changes and they are issued for construction. The necessary approvals (such as the building permit) must be achieved from all jurisdictional authorities for the construction process to begin. In most instances, almost every component of a project is supplied and installed by sub-contractors. The general contractor often provides work with its own forces, but it is not uncommon for a general contractor to limit its role to management of the construction process and daily activity on a construction site.

The consultant acts as the owner's agent to review the progress of the work and to issue site instructions, change orders or other documentation necessary to the construction process (wikipedia). It is important that the consultant must coordinate all parties involved in the project in the most efficient way and exercise the authority and powers in a fair manner in the interest of the project.

### 2.2.2 Project Participants and Their Contractual Relationships & Responsibilities

The main participants involved on building construction projects are clients, architects & engineers (working as consultants), main contractors and subcontractors. Relationship between the various parties can be seen in figure 2.2 (reproduced from Schexnayder and Mayo 2003).

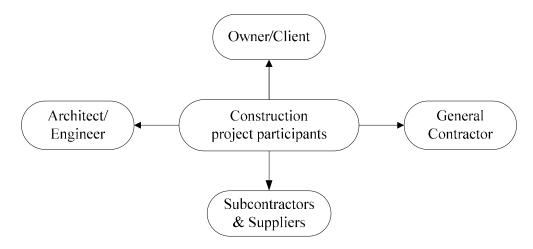



Figure 2.2: Project Members for Construction Undertaking (Schexnayder and Mayo 2003)

The roles and responsibilities of clients, consultants, main contractors and subcontractors have been explained in the succeeding sections.

### 2.2.2.1 Client

The client/owner/principal may be a public sector organization, an autonomous body or any private owner that funds the construction project and will own the completed facility (Eldosouky 2001). The client defines the purpose/need and scope of the work and retains the overall control of the construction project. In the traditional delivery method, the client is under contractual obligations with the design consultant and with the contractor. There is no contractual relationship between consultant and contractor, however, a communication link exists between the two key project participants.

### 2.2.2.2 Consultant

Consultants, generally are designers/architects or engineers (private or public organization). The term 'design professional' is also used to refer to the architect and engineer as they perform their planning, design and construction liaison tasks on a construction project. In addition, it is common to use the words architect-engineer, architectural-engineering firm or A/E, for the party engaged to carry out these tasks (Bennett 2003). The consultants are selected by the owner

through competitive selection process based on knowledge and experience. In design-bid-build, the owner generally designates the consultant to oversee the construction work at site. He / she is full incharge of designing and supervising the project on behalf of the client. He / she should be well trained in quality and workmanship requirements and be able to assess quality of construction work. The consultant also verifies the progress payments submitted by the general contractor. The consultant also provides technical advice and solutions to the client and contractor on the potential project problems (Sengupta & Guha 2002, Schexnayder & Mayo 2003). If the consultant hired by the owner has in-house planning and design staff, he would perform all the required planning and design work with his own staff, otherwise he may award the task of planning and designing to design organizations / designer through competitive process and with due knowledge of the owner.

Main responsibilities of the consultant are appended below (Eldosouky 2001):

- Realizing the project defined at sanction
- Overseeing the client's diverse interests
- Selecting a suitable contract strategy
- Preparation of tender documents
- Forecasting project cash flow
- Pre-tender evaluation of contractor
- Evaluation of bids
- Recommendation for selection of contractor
- Approval of contractor's plan
- Coordinating of design and construction
- Review of shop drawings
- Construction quality assurance
- Issuance of variation orders
- Assessment of variations and claims
- Evaluation of completed work
- Certification of contractor's payment requests
- Solving problems with local authorities and inhabitants

Public relations

Final inspection of work

### 2.2.2.3 Contractor

The general contractor is responsible for all works on the project whether constructed by the firm's own forces or by subcontractors. The contractor is responsible for and is involved in all work performed on site, however he is not involved in the design process. He is responsible to control the construction costs, keep the project on schedule and interact with all project members on all matters and issues. The contractor would seek the most efficient use of his resources using construction management techniques (Eldosouky 2001).

Main responsibilities of the contractor are appended below (Eldosouky 2001):

- ✤ Success of the contract
- Ensuring maximum cooperation of site staff in all matters affecting the efficiency, economy and smooth running of the construction operation
- Reviewing possibilities of design changes to suit particular methods of working which will result in cost savings
- Reviewing any requirement for additional resources
- Identifying and dealing with problems arising at site level which will result in delays or increase in cost
- Ensuring compliance with contract documents and the Engineer's instructions
- Organization and deployment of the contractor's site staff, plant, labor and all other resources
- Operating and maintaining the site testing laboratory
- ✤ Billing
- Providing and updating all the programmes, budgets, expenditures and other records required by the Consultant
- ✤ Administering purchases for the supply of materials and services
- Coordination of subcontractors work
- Protection of persons and property on, and adjacent to the construction site

#### 2.2.2.4 Subcontractors and Suppliers

Sub-contractors are also called specialty contractors. The contractors mostly sub-contract a large portion of work to the sub-contractors under a contract. Subcontractors may be electrical, mechanical, steel fabrication, dry wall, painting and carpeting works specialists. They have no links with other project members. On the building projects, 10 to 15 subcontractors are generally required. On the other hand, suppliers in the construction industry provide construction materials and have a contract with the contractors and subcontractors. They assist the general contractors in preparing the bids, shop drawings and fabrications. Material suppliers may be electrical whole sellers, lumberyards, ready mixed concrete suppliers, plumbing supply stores etc. The project quality is highly dependent on quality of the suppliers used by the contractors.

# 2.3 INCOMPATIBILITY BETWEEN DESIGN & CONSTRUCTION IN BUILDING CONSTRUCTION

### 2.3.1 General

Every building construction project is started with the objective of completing it according to the details set in the contract. Every possible effort is made to include the owner's requirements in the design and to produce a final outcome which is up to the expectations of the owner. However, in building projects, customer requirements, constructive aspects and quality standards defined during the design phase may change and differ altogether from the ones which finally become part of the constructed facility. Incompatibilities or changes between design phase and construction phase appear as soon as the construction work starts or even after the award of work.

A construction program, or project plan, consists of a series of inter-related and sometimes inter-dependent activities or processes. Each process requires a set of inputs and produces a set of outputs. Outputs from one process may be inputs to another process. At the start of a project, many input parameters are uncertain and assumptions have to be made. Variations in any of the preexisting conditions, assumptions or requirements during execution will lead to changes from the baseline project plan (Sun and Meng 2009). Normally, these changes occur in architectural details, structural details, material, quality, project time / project schedule, project cost, construction methods, etc. These changes from the baseline project plan are in fact the incompatibilities which occur between design and construction phases.

### 2.3.2 Incompatibilities between Design and Construction

In this study the main focus is on the causes of those incompatibilities which pertain to architectural details, structural design details, material and quality.

#### 2.3.3 Adverse Effects of Incompatibility in Building Construction

The result of these changes / incompatibilities is addition or deletion of tasks, rework, changes in quantities, delays in start and completion of tasks, cost overruns and occurrence of construction defects.

The resulting consequences of these incompatibilities can be so significant that the project participants may fail in achieving the intended purpose for the completed facility. Overall, these may result in loss of revenue due to delayed handing over of the facility because otherwise the owner would have shifted to the building from a rentable space, or may have used the building for renting purpose or other purpose. In some cases the incompatibility may cause the contractor higher overhead cost because of longer work period, higher material costs due to inflation and labor cost increases.

#### 2.3.4 Causes of Incompatibilities Through Literature Review

A detailed literature review was carried out in order to ascertain the past studies on the topic of causes of incompatibility. This includes international research work on the said topic. Internationally, some research has been carried out in order to ascertain the important causes of incompatibility between design and construction in building construction. Different researchers have carried out research with their own methodologies in order to rank these causes. The purpose of these studies was mostly to enlist various causes and find their ranking.

According to Clough and Sears (1994), these changes or incompatibilities result from various sources, which include the performance of construction parties,

resources availability, environmental conditions, involvement of other parties and contractual relations.

Arain and Assaf (2007) studied potential sources of disagreements at the project design and construction interface in large building projects in Saudi Arabia and observed that the contractor's lack of comprehension of drawing details and specifications, involvement of contractor as consultant, time limitation in the design phase, design complexity and participants' honest wrong beliefs were considered as the most important sources of the project design and construction interface problems. On the other hand, project management as professional service, weather conditions, unforeseen problems and involvement of the contractor in design phase were least important sources of problems between professionals at the project design and construction interface.

Study carried out by Arain and Pheng (2005) suggested that change in plans or scope by owner, unforeseen problems, defective workmanship, change in specifications by owner and safety considerations are the most important causes of variation orders for institutional buildings in Singapore. The study recommended the involvement of professionals during the design and construction phases, clear and thorough project brief, frequent communication among professionals, involvement of a project manager from an independent firm to manage the project and involvement of owner during the design phase for controlling the most important causes of variation orders.

In a study carried out by Assaf and Al-Hammad (1988) in Saudi Arabia, it was revealed that most of the design inputs were completed abroad where the designer does not have the statistical data or enough knowledge of the environmental, social and cultural factors which could affect building projects in Saudi Arabia. In addition, contractors in Saudi Arabia were not familiar with resources available and other related issues.

Mendelsohn (1997) observed that probably 75% of the problems encountered on site were generated at the design phase. This is not to say that contractors do not create a slew of problems of their own but that these problems were often compounded by inherent design flaws. If one were to seriously consider ways to reduce problems on site, an obvious place to begin with is to focus on what the project team can do to eliminate these problems at the design phase.

Study carried out by Fredrickson (1998) was for design-build projects, however as noted by him on each project, client and design-construct delivery team has unique design needs. There is no "one size fits all" way of identifying the right design approach to a particular project. However, the guidelines adopted from previous projects can help to assist a project delivery team to determine how the design should be handled that can greatly improve the project's chances of success.

Mendelsohn (1997) further investigated and suggested that a designer has a conceptual mind and a contractor has a concrete mind. One relates to intangibles and the other relates to tangibles.

According to Oyewobi et al. (2011) and Alarcon et al. (1998) design defects are detected during the execution phase of the projects which consequently leads to rework. The problems associated with the designs are mainly incomplete design drawings requiring a great amount of specifications. Specifications are difficult to handle and sometimes are ignored. Very often design documents have inconsistencies, errors and omissions, or simply lack of clarity in the presentation. This implies that those that should carry out the work do not have the necessary information or have the wrong information to do the job which may cause total rework or outright cancellation. Second, there is a lack of standards in the designs, and lack of suitability for the existing technology. In many projects of similar characteristics, or of the same type, the designs used are completely different with the consequent loss of efficiency in the construction phase. Third, an important proportion of the problems detected during construction are due to lack of constructability of the designs. Details not defined in the designs become problems that have to be solved by the contractor on site. Usually the problems are detected just before starting construction of the specific task and sometimes even after the task has been accomplished.

Che et al (2010) postulated that change of plan by owner, substitution of materials by owner and changes of design by consultant were the main causes of change orders in building projects in the states of Selangor Malaysia.

Al-Hammad (2000) observed that owners underestimate the construction costs for a project and demand higher quality and more detailed work.

### 2.3.5 Selection of Causes for Construction Industry of Pakistan

After going through the detailed study of international as well as national level studies a list of causes was outlined. During this process, it was ensured that maximum causes should form part of the list so that maximum dimension causing incompatibilities in building projects could be explored. These causes were downsized by elimination to the least applicable to suit the building construction industry of Pakistan. Towards the end a total of sixty five (65) causes were selected for the field survey.

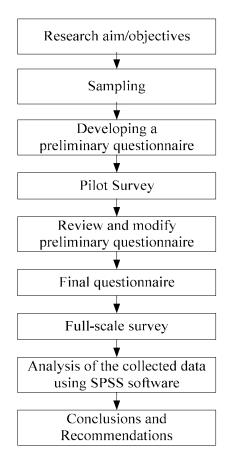
#### 2.3.6 Grouping of Causes of Incompatibility

In order to ease the analysis part, grouping of these indicators was carried out. So, in this study sixty five (65) causes were grouped in four (04) categories.

### 2.4 SUMMARY

In this chapter, first an overview of the traditional method of procurement for construction industry in Pakistan was presented. The role of the key stakeholders playing active role in this method i.e. clients, consultants and contractors was also presented along with their relationships and responsibilities. Next the incompatibilities between design and construction phase in building construction were explained in the light of the work done by many researchers. The next chapter discusses the research methodology developed for this research.

### Chapter 3


## **RESEARCH METHODOLOGY**

### **3.1 INTRODUCTION**

The purpose of this chapter is to discuss the methodology used for this study in order to achieve research aim and objectives that were introduced in Chapter 1. Based on research questions, survey method is chosen as a research strategy. The whole survey design process is extensively elaborated. The construction of a questionnaire, collection of data through field survey and data analysis strategy is also presented.

### **3.2 RESEARCH DESIGN**

Research strategy defines the layout/design showing how the researchers are going to carry out their study to achieve and answer research questions (Saunders et al. 2003). It comprises of sampling and questionnaire development, data collection sources and considering research constraints. The research strategy is selected on the basis of research aim/objectives. Three different approaches are considered acceptable for the research in construction management. These are: quantitative methods, qualitative methods and combination of both quantitative and qualitative commonly known as 'mixed mode approaches'. Quantitative research methods use deductive approach and are associated with collection of data and statistical analysis. On the other hand, using inductive approach, qualitative methods draw the results from interviews or observations rather than using statistical procedures (Amjad 2004-2005). Association of Researchers for Construction Management (ARCOM) proceeding from period 1991-2001 reveals that qualitative and mixed mode approaches have increased slightly. Root et al. (1997) argued that the choice between quantitative or qualitative methods is highly dependent on the research aim/objectives. Based on the above, the aim of this research was to rank the causes of incompatibility in building construction by evaluating the input from client, consultant and contractor. Quantitative approach



was used for this research and survey method is selected for data collection. The research was carried out following the steps shown in figure 3.1.

Figure 3.1: Research Methodology Flow Chart

To carry out the study, a questionnaire was developed including the causes of incompatibilities. Pilot study was taken in to consideration and carried out for purpose of the questionnaire validation, refinement and improvement. Having done a feasibility survey, full scale survey was conducted from owners, consultants and contractors working in building industry to get their feedback on (65) causes grouped in (04) categories. Finally, reliability analysis was done on the collected data and relative importance index was calculated for each cause to find their ranking.

### **3.3 THE SURVEY DESIGN PROCESS**

Survey is defined as "data collected from number of cases/projects through systematic measurement and then analyzed to yield the results (Marsh 1982). Trochim (1997) and Bryman (2004) argued that in applied social research, surveys are mostly carried out by questionnaire and interview surveys. Bryman (2004) referred surveys as cross-sectional studies and explained that the data collected from the surveys are generally quantitative in nature and can be used to correlate two or more variables. Trochim (1997) suggests that several issues should be kept in mind when a survey is chosen as a research strategy: a) population, b) sampling and c) question issues. The survey design selected for this research is shown in the Figure 3.2 (adopted from Shuwei 2009).

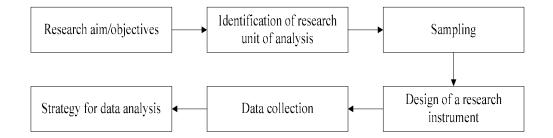



Figure 3.2: Research Survey Design Process (Shuwei 2009)

### 3.3.1 Identification of Research Unit of Analysis

The identification of unit of analysis is the central part of the survey design process and concerned with the data to be collected (Shuwei 2009). De Vaus (2002) has highlighted the importance of unit of analysis and argued that it is directly associated with the aim/objectives of the research. In this research, each respondent has been taken as one case and opinion of each key stake holder i.e. owner, consultant and contractor is included in the study.

### 3.3.2 Sampling

In this research, survey was conducted from clients, consultants and contractors. Based on valid individual and company registrations maintained by Pakistan Engineering Council (PEC) up to 2011, there are 485 consultants and

around 30500 contractors registered with Pakistan Engineering Council. The number of architects registered with Pakistan Council of Architects and Town Planners (PCATP) is 3100. As for the clients, 540 public organizations are listed with Public Procurement Regulatory Authority (PPRA). The sample size for each of these target populations was calculated using the following equation (Arain & Pheng 2005; Kish 1995):

n = n' / (1 + n' / N) .....(3.1) Where:

n' = Sample size from infinite population =  $S^2 / V^2$ 

- n = Sample size from finite population
- N = Total population
- V = Standard error of sample population equal to 0.05 for the confidence interval 95%

 $S^2$  = Standard error variance of population elements,  $S^2$  = P (1 – P); maximum at P = 0.5

 $n' = S^2 / V^2 = (0.5)^2 / (0.05)^2 = 100 \qquad (3.2)$ 

1) For clients:

N = 540n = 100 / (1 + 100 / 540) = 84

2) For consultants:

N = 485 + 3100 = 3585

n = 100 / (1 + 100 / 3585) = 97

3) For contractors:

N = 30500

$$n = 100 / (1 + 100 / 30500) = 100$$

Sample sizes calculated for the target populations were 84 clients, 97 consultants and 100 contractors.

#### 3.3.3 Design of a Research Instrument

Based on the research aim/objectives i.e. to rank causes of incompatibilities for building construction industry of Pakistan, a questionnaire was developed for full scale survey based on thorough past review of literature, researcher experience on the building projects and after conducting a pilot survey. Measurement scale selection, attitude measurement and ranges of response category were taken in to consideration for the design of questionnaire. The Arain et al. (2006) questionnaire was adopted which consisted of 45 causes grouped into 3 categories. Based on the discussion with building experts, additional questions were added.

### 3.3.3.1 Selection of Measurement Scale

Measurement scale is generally divided in to four different levels, namely nominal, ordinal, interval and ratio (Reaves 1992 and Trochim 1997). In this research, client's, consultant's and contractor's perceptions were to be measured, so it was suitable to select the ordinal scale (also called ranking scale) for its measurement.

#### 3.3.3.2 Attitude Measurement

Oppenheim (1992) argued that people's perception about some specific issue goes from low, through neutral to a degree of high level. Attitude measurement is suitable for measuring individuals' perception or feelings, called an attitude scale by Bell (2005). De Vaus (2002) and Saunders et al. (2003) have named attitude scale as numeric rating scale and semantic differential rating scale. There are four commonly used methods of attitude scaling in social research: the Bogardus, Thurstone, Likert and Guttmann (cumulative) scales (Oppenheim 1992; Trochim 1997 and De Vaus 2002). Among them, Likert scale is widely used as it provides better reliability and less laborious (Oppenheim 1992, De Vaus 2002). Therefore, Likert scale was selected to take opinion of the key stake holders i.e. client, consultant and contractor in this research.

### 3.3.3.3 Ranges of Response Category

Several researchers have recommended 7-point scale (Alwin 1997 and De Vaus 2002); however, the fine distinctions can confuse and requires precision with

greater accuracy (Shuwei 2009). Therefore, based on the above, five point scale was adopted for the survey questionnaire to get feedback on each indicator and defined scales as 1 for Not Important (or not sure or never used), 2-Slightly Important, 3-Moderately Important, 4-Very Important and 5-Extremely Important to show their attitude towards each indicator contributing incompatibility in building construction of Pakistan.

### 3.3.3.4 Pilot Study

The purpose of a pilot survey also known as feasibility survey is to test a questionnaire for its reliability, consistency and validity (Thompson 2010). De Vaus (2002) argued that while conducting a pilot survey, the emphasis should take on checking whether any problem exists with the questionnaire items, how long it will take to fill in and whether respondents are interested in filling the questionnaire. Another important issue is how many pilot surveys be carried out. Shuwei (2009) believed that the number of pilot studies depends on research aim/objectives, size of the research study and available resources (time and money). For this purpose, the questionnaire was presented to 2 clients, 6 consultants and 7 contractors followed by interviews with each participant. Each of the respondents had more than 15 years of experience in building construction. Interviews were conducted face to face, ensuring a 100 per cent response rate. The questionnaire was amended by incorporating feedback of the experts to make it suitable in accordance with the building construction industry of Pakistan. As suggested by Saunders et al. (2003), the questionnaire was also thoroughly discussed with colleagues and friends to pick any error and obtain the face validity of a questionnaire. After that, the questionnaire was refined and ready for carrying out a full scale survey. In the next section, questionnaire layout is presented.

### 3.3.3.5 Layout of a Questionnaire

Shuwei (2009) suggested that the survey questionnaire should be clear, precise and attractive for the respondents to fill in and return it. In this research, the questionnaire was developed in easy and understandable form keeping in view the context of Pakistani building construction industry environment. A cover letter and survey instructions were prepared to ensure that all participants understood that

their responses would be anonymous. The final questionnaire had an introduction of the respondent covering his / her name, qualification, designation, working experience in the building construction industry, organization and the group which they represent (client, consultant and contractor). This was followed by four sections: design phase; tendering phase; construction phase; and overall project phase as given in Table 3.1. In the design phase, 20 major causes were identified, of which 5 were adopted from Arain et al. (2006) and the remainder were incorporated from the input of experts in the pilot survey. The tendering phase was newly added to the questionnaire and was not in the Arain et al. (2006) questionnaire. It included 7 major causes. In the construction phase, 24 major causes were identified, of which 6 were adopted from Arain et al. (2006) and the remainder were incorporated from the input of experts in the pilot survey. In the Overall project phase, 14 major causes were identified, of which 8 were adopted from Arain et al. (2006) and the remainder were incorporated from the input of experts in the pilot survey. Finally, each questionnaire incorporated a five-point Likert-type scale (from 1 = "Not Important" to 5 = "Extremely Important") facilitating statistical analysis of the information.

**Table 3.1: Categories of Causes** 

| Sr. No. | Categories of Causes  |
|---------|-----------------------|
| 1       | Design Phase          |
| 2       | Tendering Phase       |
| 3       | Construction Phase    |
| 4       | Overall Project Phase |

Respondent from each stake holder group was requested to give input against each cause in the questionnaire.

#### 3.3.4 Data Collection

#### **3.3.4.1 Full Scale Survey**

Since most of the respondents were accessible to the researcher, it was decided to deliver questionnaires to the respondents personally. Bell (2005) argued

that delivering questionnaires to respondents by hand have distinct advantages. Respondents can get a better understanding of the research purpose, questionnaires can be filled through face to face communication, any difficulty in the questionnaires can be sort out easily and high response rate can be obtained. Therefore, clients, consultants and contractors working in Islamabad and Rawalpindi region were visited personally and questionnaires were delivered to them. In addition, representative samples of owners, consultants and contractors working in other cities were accessed through telephone and delivered questionnaires to them through email or postal mail. In total 300 hard copy questionnaires were distributed, resulting in 283 questionnaires being collected. This included 85 clients, 98 consultants and 100 contractors. Two questionnaires were not complete, which were discarded and considered invalid to prevent a distortion of the results from the data set. The sample size for the data analysis was thus 281. Of the 281 respondents hereinafter called the sample, in terms of building construction experience, 41.64% had experience between 0 to 10 years, 33.81% had experience between 11 to 20 years, 14.95% had experience between 21 to 30 years and the rest 9.61% had more than 30 years experience. 78% of the respondents had an advanced degree, 9% were diploma holder, 8% had simple bachelor's degree and the rest 5% had secondary education.

#### 3.3.5 Strategy for Data Analysis

The survey data collected for this research was an ordinal one and used a Likert scale; Cronbach's Alpha coefficient method was used to check the reliability of the collected data. Further the formula of Relative Importance Index (RII) was used to rank the cause for each stake holder. Overall ranking of categories of causes was also determined. The Rank Agreement Factor (RAF) and Percentage Agreement (PA) were further used to see the percentage of disagreement and agreement between the three stake holders regarding ranking of (04) categories of incompatibilities. The analysis and results are presented in Chapter Four.

## Chapter 4

# **DATA ANALYSIS AND RESULTS**

#### 4.1 INTRODUCTION

In this chapter, detailed analysis of the collected data is presented. In this connection, the most comprehensible and popular software for practical statistical analysis SPSS Ver.17.0 (Statistical Package for the Social Sciences) was used. In this research, the client, consultant and contractor gave their perceptions about causes of incompatibility in building construction. Different statistical tests such as Reliability, calculation of Relative Importance Index (RII) for ranking of factors and Percentage Agreement between the three parties was done in order to drive the overall ranking of causes. Six most important causes based on overall ranking are also listed.

### 4.2 DEFINING VARIABLES

First of all, for conducting reliability analysis on SPSS, causes of incompatibility were encoded in SPSS. The following sections will provide detail about the codes used for each cause.

#### 4.2.1 Causes in each Category

Among each category, there were numerous causes that were attributing towards that particular category. In order to be able to recognize the causes in the software easily, the codes for the causes were abbreviated taking into account the particular category to which they belong. The tables in the following sections show the causes and their relevant codes. Table 4.1 shows the causes in the Design Phase and the corresponding codes for those causes as given below:

| Sr.<br>No. | Cause                                                                                                             | Code |
|------------|-------------------------------------------------------------------------------------------------------------------|------|
| 1          | Contractor is not involved in the design conceptual phase                                                         | DS1  |
| 2          | Contractor is not involved in the design development phase                                                        | DS2  |
| 3          | Data provided to the designer is incomplete                                                                       | DS3  |
| 4          | Data provided to the designer is incorrect                                                                        | DS4  |
| 5          | Data provided to the designer is late                                                                             | DS5  |
| 6          | Lack of human resources with the designer                                                                         | DS6  |
| 7          | Designer busy in too many assignments                                                                             | DS7  |
| 8          | Lack of designer's knowledge of building bye-laws, codes & govt. rules                                            | DS8  |
| 9          | Lack of designer's knowledge of constructability of proposed design                                               | DS9  |
| 10         | Lack of designer's knowledge of availability of materials for construction                                        | DS10 |
| 11         | Lack of designer's knowledge of engineering design techniques & softwares                                         | DS11 |
| 12         | Lack of designer's knowledge of engineering drafting                                                              | DS12 |
| 13         | Lack of designer's knowledge of suitability of materials for construction                                         | DS13 |
| 14         | Frequent replacement of designer by the owner                                                                     | DS14 |
| 15         | Personal and social problems of the designer                                                                      | DS15 |
| 16         | Lack of reward, delayed payment or low payment to the designer by the owner                                       | DS16 |
| 17         | Too little time given to the designer for completion of design documents                                          | DS17 |
| 18         | Lack of project planning & rigorous analysis of requirements of owner at the project start                        | DS18 |
| 19         | Frequent changes in the proposed design due to owner dissatisfaction                                              | DS19 |
| 20         | Approving authorities do not check that structure is designed according to building bye-laws, codes & govt. rules | DS20 |

Table 4.1 : Design Phase Related Causes

Table 4.2 lists the causes in the Tendering Phase and the corresponding codes for those causes as given below:

| Sr.<br>No. | Cause                                                                                                                             | Code |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|------|
| 1          | Incomplete or inaccurate design documents un-intentionally provided with bidding documents                                        | TSC1 |
| 2          | Incomplete or inaccurate design documents intentionally provided with bidding documents                                           | TSC2 |
| 3          | Contract type                                                                                                                     | TSC3 |
| 4          | Contractor did not consider that the design is exotic, complex or difficult to build, and he does not have the required expertise | TSC4 |
| 5          | Selection of contractor on the basis of lowest bid                                                                                | TSC5 |
| 6          | Amount of Performance security / retention money                                                                                  | TSC6 |
| 7          | Absence of third party validation during defect liability period                                                                  | TSC7 |

 Table 4.2 : Tendering Phase Related Causes

Table 4.3 lists the causes in the Construction Phase and the corresponding codes for those causes as given below:

| Sr.<br>No. | Cause                                                                                                                    | Code |
|------------|--------------------------------------------------------------------------------------------------------------------------|------|
|            | Owner proposes changes because he had planned to make changes during construction from the beginning                     | CN1  |
|            | Owner proposes changes during construction due to sudden changes in his requirements / expectations                      | CN2  |
|            | Owner proposes changes during construction due to change in ownership                                                    | CN3  |
| 4          | Owner proposes changes to assert his authority and make undue interference in construction                               | CN4  |
| 5          | Owner proposes changes due to financial problems                                                                         | CN5  |
| 6          | Slowness in decision making process by owner                                                                             | CN6  |
| 7          | Changes in building codes, bye-laws & govt. rules                                                                        | CN7  |
| 8          | Delayed revision of drawings by designer                                                                                 | CN8  |
| 9          | Drawings not properly stamped or certified by designer                                                                   | CN9  |
| 10         | Custody and supply of drawings at site                                                                                   | CN10 |
| 11         | Delayed approval of drawings by owner or consultant                                                                      | CN11 |
| 12         | Material changes due to shortage of particular material in the market                                                    | CN12 |
| 13         | Material changes due to procurement delays by contractor                                                                 | CN13 |
| 14         | Contractor does not follow recommended construction methods and does not use proper construction equipment               | CN14 |
|            | Contractor's lack of skilled manpower                                                                                    | CN15 |
| 16         | Contractor's lack of comprehension of drawing details                                                                    | CN16 |
| 17         | Contractor's lack of coordination and management during construction                                                     | CN17 |
|            | Contractor's-staff facing lack of tools, equipment, etc. for measurement, alignment, angular adjustment at corners, etc. | CN18 |
| 19         | Contractor and his staff focusing on other projects                                                                      | CN19 |
| 20         | Designer's lack of awareness / interest about ongoing construction process                                               | CN20 |
| 21         | Unanticipated weather conditions                                                                                         | CN21 |
|            | Unforeseen problems and differing site conditions                                                                        | CN22 |
| 23         | Timing of the proposed changes, i.e. whether at the start or at the end of construction                                  | CN23 |
|            | Approving authorities do not check that structure is constructed according to the approved building plans                | CN24 |

 Table 4.3 : Construction Phase Related Causes

Table 4.4 lists the causes in the Overall Project Phase and the corresponding codes for those causes as given below:

| Sr.<br>No. | Cause                                                             | Code |
|------------|-------------------------------------------------------------------|------|
| 1          | Economic situation of the country                                 | PR1  |
| 2          | Nationality of participants                                       | PR2  |
| 3          | Organizational structure of owner, consultant and contractor      | PR3  |
| 4          | Lack of communication and coordination between parties            | PR4  |
| 5          | Lack of mutual respect between parties                            | PR5  |
| 6          | Conflicts and legal disputes b/w various parties                  | PR6  |
| 7          | Participant's honest wrong belief                                 | PR7  |
| 8          | Corruption / Fraudulent practices                                 | PR8  |
| 9          | Lack of an experienced consultant or his lack of interest in work | PR9  |
| 10         | Frequent replacement of consultant during construction            | PR10 |
| 11         | Appointment of contractor as consultant                           | PR11 |
| 12         | Appointment of designer as consultant                             | PR12 |
| 13         | Design firm or contractor firm goes bankrupt or is black-listed   | PR13 |
| 14         | Withdrawal of licenses and permits                                | PR14 |

Table 4.4 : Overall Project Phase Related Causes

Before calculating Relative Importance Index (RII) and Percentage Agreement (PA) between the three stake holders, reliability of the collected data was assessed. This is discussed in the next section.

#### 4.3 RELIABILITY ANALYSIS

Repeating any measurement that produces the same result is considered a reliable measurement (Gaur & Gaur 2009). Leech et al. (2005) argued that the reliability test is done to check whether each item in the scale is free from error of measurement. Hinton et al. (2004) have also defined reliability as a questionnaire tested to study any topic at different times and across different populations, if produces same results, the questionnaire is a 'reliable one'.

Different methods are used to assess the reliability. Test-retest method is used to ideally measure the reliability. In this method, the measurement is done on the same object twice and results are compared. If the results are same, the measurement is reliable. However, practically this method is quite difficult to establish the reliability (Hinton et al. 2004).

In SPSS, widely used methods for assessing reliability include Cohen's Kappa Coefficient for categorical data and Cronbach's Alpha for continuous data (Likert-scale type items). Among them, Cronbach's Alpha is most popular method (Hinton et al. 2004 and Leech et al. 2005). Hinton et al. (2004) explained that Cronbach's Alpha value range from 0 (un-reliable) to 1 (reliable) with 0.75 being considered the most sensible value. They have also provided a guide line to assess the reliability of any data as shown in the Table 4.5.

a.0.9 & aboveExcellent reliabilityb.0.7 to 0.9High reliabilityc.0.5 to 0.7Moderate reliabilityd.0.5 and belowLow reliability

 Table 4.5: Guideline for Assessing Reliability Results

In reliability analysis, un-dimensionality i.e. correlation of each item with the total scale can be checked as well. De Vaus (2002) and Hinton et al. (2004) argued that if the item-to scale coefficient is below 0.3, the item should be removed. Since the data gathered was based on Likert-scale; therefore Cronbach's Alpha method was used to check the reliability in this research. The summary of the reliability analysis conducted on SPSS is presented here and full results can be seen in the appendices.

#### 4.3.1 Data Reliability of Causes and Categories of Incompatibility

Cronbach's Alpha values for both causes and categories of incompatibilities were found through SPSS. It is observed that all the values were above 0.3, thus all the causes in each category were retained. Cronbach's Alpha values for each cause are given in appendices for client, contractor and consultant. Cronbach's Alpha values for the four categories are given in Table 4.6.

Table 4.6: Cronbach's Alpha Values forCategories of Incompatibility

| Sr.<br>No. | Causes of Incompatibility | Client | Consultant | Contractor |
|------------|---------------------------|--------|------------|------------|
| 1          | Design Phase              | 0.922  | 0.903      | 0.933      |
| 2          | Tendering Phase           | 0.862  | 0.756      | 0.870      |
| 3          | Construction Phase        | 0.938  | 0.929      | 0.970      |
| 4          | Overall Project Phase     | 0.941  | 0.904      | 0.957      |

#### 4.4 DESCRIPTIVE ANALYSIS

Questionnaires were delivered to three hundred (300) professionals, out of which two hundred and eighty one (281) valid responses were collected.

#### 4.4.1 Type of the Projects

Professionals who have worked in the building construction industry were included in the questionnaire survey.

#### 4.4.2 Type of the Respondents

All the three key stake holders i.e. client, consultant and contractors were consulted as part of field survey. This helped to ascertain the perspective of each stake holder regarding causes of incompatibility in Building Construction in Pakistan. The number and percentage of respondents is given in Table 4.7.

| Respondent Type                    | Client | Consultant | Contractor |
|------------------------------------|--------|------------|------------|
| Number of Respondents              | 84     | 97         | 100        |
| Percentage of Total<br>Respondents | 29.9%  | 34.5%      | 35.6%      |
| Total Respondents                  |        | 281        |            |

Table 4.7: Number and Percentage of Respondents

A graphical representation of the number and percentage of respondents is shown in the figure 4.1:

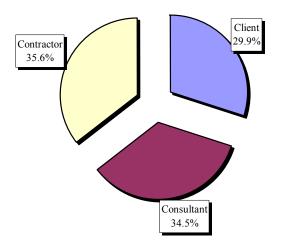



Figure 4.1: Percentage of Respondents

Majority of the respondents had experience in the range 0 - 20 years with about 58% respondents having experience more than 10 years.

Table 4.8 shows the number of respondents and their percentages in different categories of experience:

|            |              | Client | Consultant | Contractor | Total<br>Number | Percentage |
|------------|--------------|--------|------------|------------|-----------------|------------|
|            | 0 – 10       | 35     | 43         | 39         | 117             | 42%        |
| <b>F</b>   | 11 – 20      | 35     | 30         | 30         | 95              | 34%        |
| Experience | 21 - 30      | 9      | 13         | 20         | 42              | 15%        |
|            | More than 30 | 5      | 11         | 11         | 27              | 10%        |

Table 4.8: Number and Percentage of Respondents in DifferentExperience Categories

A graphical representation of the relationship between respondents and their experience in the building construction industry is shown in figure 4.2:

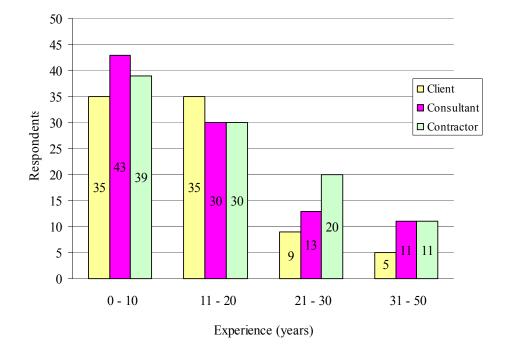



Figure 4.2: Number of Respondents in Different Experience Categories

#### 4.4.3 Ranking of Causes of Incompatibilities

One of the objectives of this study was to rank the causes of incompatibilities. A number of researchers (Chan and Kumaraswamy 1997) have used the Relative Importance Index (RII) method to determine the relative importance of attributes. The same method was used and the respondent's input from the five-point scale in the questionnaire was transformed to relative importance index for each cause of incompatibility to determine the rank of that cause for each stakeholder. The formula for Relative Importance Index (RII) is:

$$RII = \sum_{i=1}^{N} \frac{1}{A \times N}$$
(4.1)

Where w = weighting as assigned by the each respondent in a range from 1 to 5, where 1 implies Not Important and 5 implies Extremely Important; A = the highest weight (5); N = the total number in the sample.

These rankings made it possible to cross-compare the relative importance of factors as perceived by the three groups of respondents. According to Chan and Kumaraswamy (1997), the mean and standard deviation of each individual factor are not suitable statistics to assess the overall ranking because they do not reflect any relationship between them.

The RII and respective ranking corresponding to client, consultant and contractor for (i) each cause of incompatibility and (ii) each category of causes computed as per the field survey of 84 clients, 97 consultants and 100 contractors are given in the tables in the succeeding sections. The values of overall RII and the respective ranking were also calculated by taking the weighted average of the values of RII for the three stakeholders.

Table 4.9 shows the RII and ranking of causes for the design phase for the three stakeholders alongwith the overall RII and ranking as given below:

| Cause                                                                                                                  |      | ient | Consultant |      | Contractor |      | Overall |      |
|------------------------------------------------------------------------------------------------------------------------|------|------|------------|------|------------|------|---------|------|
| Design Phase                                                                                                           | RII  | Rank | RII        | Rank | RII        | Rank | RII     | Rank |
| Contractor is not involved in the design conceptual phase                                                              | 0.46 | 56   | 0.43       | 61   | 0.52       | 30   | 0.46    | 56   |
| Contractor is not involved in the design development phase                                                             | 0.52 | 47   | 0.45       | 58   | 0.50       | 36   | 0.48    | 51   |
| Data provided to the designer is incomplete                                                                            | 0.75 | 1    | 0.74       | 1    | 0.66       | 3    | 0.72    | 1    |
| Data provided to the designer is incorrect                                                                             | 0.66 | 16   | 0.62       | 22   | 0.45       | 49   | 0.58    | 26   |
| Data provided to the designer is late                                                                                  | 0.64 | 25   | 0.64       | 17   | 0.57       | 17   | 0.62    | 17   |
| Lack of human resources with the designer                                                                              | 0.69 | 10   | 0.65       | 14   | 0.60       | 6    | 0.64    | 12   |
| Designer busy in too many assignments                                                                                  | 0.62 | 29   | 0.59       | 28   | 0.49       | 43   | 0.56    | 29   |
| Lack of designer's knowledge of building bye-laws, codes & govt. rules                                                 | 0.56 | 41   | 0.58       | 30   | 0.40       | 62   | 0.52    | 43   |
| Lack of designer's knowledge of constructability of proposed design                                                    | 0.43 | 61   | 0.54       | 43   | 0.52       | 28   | 0.52    | 44   |
| Lack of designer's knowledge of availability of materials for construction                                             | 0.60 | 34   | 0.57       | 34   | 0.52       | 30   | 0.56    | 32   |
| Lack of designer's knowledge of engineering design techniques & softwares                                              | 0.54 | 44   | 0.51       | 45   | 0.43       | 55   | 0.49    | 48   |
| Lack of designer's knowledge of engineering drafting                                                                   | 0.49 | 51   | 0.51       | 47   | 0.47       | 46   | 0.49    | 46   |
| Lack of designer's knowledge of suitability of materials for construction                                              | 0.60 | 34   | 0.55       | 41   | 0.51       | 34   | 0.54    | 39   |
| Frequent replacement of designer by the owner                                                                          | 0.56 | 41   | 0.58       | 30   | 0.51       | 34   | 0.55    | 34   |
| Personal and social problems of the designer                                                                           | 0.47 | 55   | 0.48       | 51   | 0.47       | 46   | 0.48    | 51   |
| Lack of reward, delayed payment or low payment to the designer by the owner                                            | 0.72 | 3    | 0.67       | 13   | 0.58       | 14   | 0.65    | 10   |
| Too little time given to the designer for completion of design documents                                               | 0.71 | 7    | 0.73       | 2    | 0.58       | 14   | 0.68    | 5    |
| Lack of project planning & rigorous analysis<br>of requirements of owner at the project start                          | 0.73 | 2    | 0.67       | 10   | 0.60       | 6    | 0.66    | 8    |
| Frequent changes in the proposed design due to owner dissatisfaction                                                   | 0.72 | 3    | 0.65       | 14   | 0.50       | 38   | 0.62    | 18   |
| Approving authorities do not check that<br>structure is designed according to building<br>bye-laws, codes & govt rules |      | 10   | 0.72       | 3    | 0.69       | 1    | 0.71    | 2    |

 Table 4.9: RII and Ranking of Causes for Design Phase

Table 4.10 shows the Relative Importance Index and ranking of causes for the Tendering phase for the three stakeholders alongwith the overall RII and ranking as given below:

| Cause                                                                                                                                   |      | Client |      | Consultant |      | Contractor |      | Overall |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|------|--------|------|------------|------|------------|------|---------|--|
| Tendering Phase                                                                                                                         | RII  | Rank   | RII  | Rank       | RII  | Rank       | RII  | Rank    |  |
| Incomplete or inaccurate design documents<br>un-intentionally provided with bidding<br>documents                                        |      | 38     | 0.46 | 55         | 0.45 | 49         | 0.47 | 53      |  |
| Incomplete or inaccurate design documents intentionally provided with bidding documents                                                 |      | 32     | 0.56 | 37         | 0.50 | 38         | 0.55 | 36      |  |
| Contract type                                                                                                                           | 0.59 | 38     | 0.50 | 49         | 0.39 | 63         | 0.48 | 50      |  |
| Contractor did not consider that the design is<br>exotic, complex or difficult to build, and he<br>does not have the required expertise |      | 34     | 0.60 | 27         | 0.52 | 30         | 0.57 | 27      |  |
| Selection of contractor on the basis of lowest bid                                                                                      | 0.51 | 48     | 0.62 | 24         | 0.61 | 5          | 0.60 | 23      |  |
| Amount of Performance security / retention money                                                                                        | 0.62 | 29     | 0.58 | 29         | 0.51 | 33         | 0.57 | 28      |  |
| Absence of third party validation during defect liability period                                                                        | 0.56 | 41     | 0.58 | 32         | 0.53 | 26         | 0.56 | 31      |  |

 Table 4.10:
 RII and Ranking of Causes for Tendering Phase

Table 4.11 shows the RII and ranking of causes for the Construction phase for the three stakeholders alongwith the overall RII and ranking as given below:

| Cause                                                                                                         |      | ent  | Consultant |      | Contractor |      | Overall |      |
|---------------------------------------------------------------------------------------------------------------|------|------|------------|------|------------|------|---------|------|
| Construction Phase                                                                                            | RII  | Rank | RII        | Rank | RII        | Rank | RII     | Rank |
| Owner proposes changes because he had planned to make changes from the beginning                              | 0.44 | 59   | 0.57       | 33   | 0.60       | 6    | 0.56    | 29   |
| Owner proposes changes during construction due to sudden changes in his req. / expec.                         | 0.45 | 57   | 0.56       | 37   | 0.48       | 45   | 0.52    | 42   |
| Owner proposes changes during construction due to change in ownership                                         | 0.40 | 62   | 0.44       | 60   | 0.56       | 20   | 0.47    | 54   |
| Owner proposes changes to assert his authority and make undue interference                                    | 0.26 | 65   | 0.38       | 64   | 0.50       | 36   | 0.40    | 64   |
| Owner proposes changes due to financial problems                                                              | 0.69 | 10   | 0.68       | 9    | 0.69       | 2    | 0.69    | 3    |
| Slowness in decision making by owner                                                                          | 0.64 | 25   | 0.69       | 7    | 0.53       | 26   | 0.63    | 13   |
| Changes in codes, bye-laws & govt. rules                                                                      | 0.48 | 53   | 0.47       | 54   | 0.41       | 59   | 0.45    | 59   |
| Delayed revision of drawings by designer                                                                      | 0.69 | 10   | 0.62       | 23   | 0.56       | 19   | 0.61    | 20   |
| Drawings not properly stamped or certified by designer                                                        | 0.51 | 48   | 0.45       | 56   | 0.45       | 49   | 0.46    | 56   |
| Custody and supply of drawings at site                                                                        | 0.45 | 57   | 0.48       | 52   | 0.45       | 52   | 0.46    | 55   |
| Delayed approval of drawings by owner or consultant                                                           | 0.67 | 15   | 0.55       | 42   | 0.49       | 40   | 0.55    | 38   |
| Material changes due to shortage of particular material in the market                                         | 0.66 | 16   | 0.63       | 21   | 0.59       | 12   | 0.62    | 16   |
| Material changes due to procurement delays by contractor                                                      | 0.66 | 16   | 0.63       | 20   | 0.56       | 20   | 0.61    | 21   |
| Contractor does not follow recommended construction methods                                                   | 0.65 | 21   | 0.69       | 8    | 0.49       | 40   | 0.62    | 15   |
| Contractor's lack of skilled manpower                                                                         | 0.68 | 14   | 0.72       | 4    | 0.59       | 12   | 0.67    | 6    |
| Contractor's lack of comprehension of drawing details                                                         | 0.71 | 7    | 0.70       | 5    | 0.60       | 10   | 0.67    | 7    |
| Contractor's lack of coordination and management during construction                                          | 0.66 | 16   | 0.56       | 40   | 0.40       | 61   | 0.53    | 41   |
| Contractor's-staff facing lack of tools etc.                                                                  | 0.65 | 21   | 0.65       | 16   | 0.58       | 14   | 0.63    | 14   |
| Contractor & his staff focusing on other projs                                                                | 0.64 | 25   | 0.57       | 34   | 0.47       | 46   | 0.55    | 36   |
| Designer's lack of awareness / interest about ongoing construction process                                    | 0.61 | 32   | 0.64       | 18   | 0.55       | 22   | 0.61    | 22   |
| Unanticipated weather conditions                                                                              | 0.51 | 48   | 0.51       | 45   | 0.44       | 54   | 0.49    | 49   |
| Unforeseen problems / diff. site conditions                                                                   | 0.63 | 28   | 0.61       | 26   | 0.54       | 23   | 0.59    | 24   |
| Timing of the proposed changes                                                                                | 0.62 | 29   | 0.52       | 44   | 0.54       | 24   | 0.54    | 40   |
| Approving authorities do not check that the structure is constructed according to the approved building plans |      | 3    | 0.69       | 6    | 0.65       | 4    | 0.68    | 4    |

 Table 4.11: RII and Ranking of Causes for Construction Phase

Table 4.12 shows the RII and ranking of causes for the Overall Project phase for the three stakeholders alongwith the overall RII and ranking as given below:

| Cause                                                              |      | Client |      | Consultant |      | Contractor |      | Overall |  |
|--------------------------------------------------------------------|------|--------|------|------------|------|------------|------|---------|--|
| Overall Project Phase                                              | RII  | Rank   | RII  | Rank       | RII  | Rank       | RII  | Rank    |  |
| Economic situation of the country                                  | 0.72 | 3      | 0.67 | 11         | 0.60 | 6          | 0.66 | 9       |  |
| Nationality of participants                                        | 0.37 | 64     | 0.38 | 65         | 0.38 | 65         | 0.37 | 65      |  |
| Organizational structure of owner, consultant and contractor       | 0.53 | 46     | 0.47 | 53         | 0.41 | 59         | 0.46 | 56      |  |
| Lack of communication and coordination between parties             | 0.65 | 21     | 0.57 | 34         | 0.49 | 40         | 0.56 | 32      |  |
| Lack of mutual respect between parties                             | 0.57 | 40     | 0.50 | 48         | 0.52 | 28         | 0.52 | 45      |  |
| Conflicts and legal disputes b/w various parties                   | 0.60 | 34     | 0.49 | 50         | 0.44 | 53         | 0.49 | 47      |  |
| Participant's honest wrong belief                                  | 0.54 | 44     | 0.56 | 37         | 0.54 | 24         | 0.55 | 35      |  |
| Corruption / Fraudulent practices                                  | 0.71 | 7      | 0.62 | 24         | 0.57 | 18         | 0.62 | 18      |  |
| Lack of an experienced consultant or his lack of interest in work  | 0.66 | 16     | 0.67 | 11         | 0.59 | 11         | 0.65 | 11      |  |
| Frequent replacement of consultant during construction             | 0.65 | 21     | 0.64 | 18         | 0.49 | 43         | 0.59 | 24      |  |
| Appointment of contractor as consultant                            | 0.40 | 62     | 0.45 | 58         | 0.39 | 63         | 0.43 | 63      |  |
| Appointment of designer as consultant                              | 0.49 | 51     | 0.45 | 56         | 0.42 | 58         | 0.45 | 60      |  |
| Design firm or contractor firm goes bankrupt<br>or is black-listed | 0.44 | 59     | 0.42 | 63         | 0.43 | 55         | 0.43 | 62      |  |
| Withdrawal of licenses and permits                                 | 0.48 | 53     | 0.43 | 62         | 0.42 | 57         | 0.43 | 61      |  |

 Table 4.12: RII and Ranking of Causes for Overall Project Phase

Relative Importance Index and ranking were also calculated for each category by taking the sum of RII of causes and diving by the number of causes in that category. Table 4.13 shows the Relative Importance Index and ranking of each category of incompatibilities as given below:

| CATECODY              | CLI   | ENT  | CONSULTANT |      | CONRACTOR |      |
|-----------------------|-------|------|------------|------|-----------|------|
| CATEGORY              | RII   | RANK | RII        | RANK | RII       | RANK |
| Design Phase          | 0.608 | 1    | 0.595      | 1    | 0.526     | 2    |
| Tendering Phase       | 0.582 | 3    | 0.556      | 3    | 0.499     | 3    |
| Construction Phase    | 0.588 | 2    | 0.584      | 2    | 0.528     | 1    |
| Overall Project Phase | 0.558 | 4    | 0.523      | 4    | 0.476     | 4    |

Table 4.13: RII and Ranking for each Category

The values of overall RII and the respective ranking for each category were also calculated by taking the weighted average of RII for the three stakeholders for that category. Table 4.14 shows the overall ranking (weighted) of categories of incompatibilities:

| CATEGORY              | OVER ALL RII | OVER ALL RANKING |
|-----------------------|--------------|------------------|
| Design Phase          | 0.576        | 1                |
| Tendering Phase       | 0.543        | 3                |
| Construction Phase    | 0.567        | 2                |
| Overall Project Phase | 0.514        | 4                |

Table 4.14: Overall Ranking of Categories of Incompatibilities

#### 4.4.4 Rank Agreement Factors (RAF) & Percentage Agreement (PA)

Rank Agreement Factors were next computed using formula and methodology described by Okpala and Aniekwu (1988) to quantitatively measure the agreement in ranking between groups of project key stake holders i.e. client, consultant and contractor. This shows the average absolute difference in the rank of factors. The RAF can range from 0, indicating perfect agreement, to a higher value indicating increasing disagreement. The percentage disagreement and Percentage Agreement are also calculated through formulae. Formulae related to these calculations are as under:

Absolute Difference (Di) = | Ri1 - Ri2 |..... (4.2) Where Ri1 = Ranking of First Group; Ri2 = Ranking of Second Group

Percentage Disagreement (PD) = RAF / RAFmax or (Di/N) / Dmax/N.....(4.5) Percentage Agreement (PA) = 100% - PD......(4.6)

The above formulae were used to establish the percentage agreement between the three key stake holders i.e. client, consultant and contractor regarding ranking of categories of incompatibility. Table 4.15 shows the calculations and the results for Percentage Agreement between Client and Consultant:

| FACTOR |        |                 | RII                 | ADS | FOR I |     |     |
|--------|--------|-----------------|---------------------|-----|-------|-----|-----|
| NO     | FACTOR | CLIENT<br>(Ri1) | CONSULTANT<br>(Ri2) | ABS | Ri1   | Rj2 | ABS |
| 1      | DS     | 1               | 1                   | 0   | 1     | 4   | 3   |
| 2      | TSC    | 3               | 3                   | 0   | 3     | 2   | 1   |
| 3      | CN     | 2               | 2                   | 0   | 2     | 3   | 1   |
| 4      | PR     | 4               | 4                   | 0   | 4     | 1   | 3   |
|        |        |                 | Di=                 | 0   | Dm    | ax= | 8   |

 Table 4.15:
 Percentage Agreement (PA) between Client and Consultant

Using equation 4.4, the RAF and RAFmax are calculated as follows:

Rank Agreement Factor (RAF) = 0 / 4 = 0.0Rank Agreement Factor Maximum (RAFmax) = 8 / 4 = 2.0Percentage Disagreement = 0.0 / 2.0 = 0.0 %Percentage Agreement = 100.0 - 0.0 = 100.0 %

Using the above mentioned procedure, the Percentage Disagreement (PD) and Percentage Agreement (PA) between other stakeholders were also calculated.

The Percentage Agreement (PA) and Percentage Disagreement (PD) for the three stakeholders are shown in Table 4.16 given below:

| rercentage Disagreement (PD) between an Stakeholders |              |           |
|------------------------------------------------------|--------------|-----------|
| STAKEHOLDER                                          | DISAGREEMENT | AGREEMENT |
| CLIENT AND CONSULTANT                                | 0.00         | 100.00    |
| CONSULTANT AND<br>CONTRACTOR                         | 25.00        | 75.00     |
| CLIENT AND CONTRACTOR                                | 25.00        | 75.00     |

# Table 4.16: Percentage Agreement (PA) andPercentage Disagreement (PD) between all Stakeholders

The overall results of Percentage Agreement (PA) between the three key stake holders, client, consultant and contractor are plotted in figure 4.3:

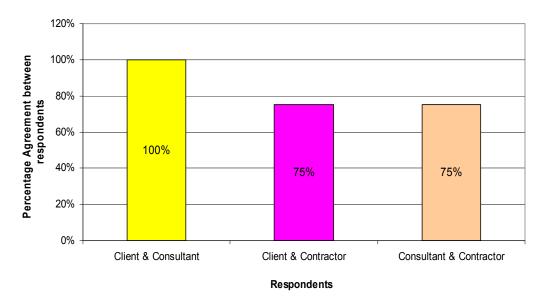



Figure 4.3 : Percentage Agreement (PA) between Key StakeHolders

After obtaining the Percentage Agreement (PA) between the three stake holders about the causes of incompatibilities, it was observed that there was maximum (100%) agreement between consultant & contractor. The Percentage Agreement (PA) between client & consultant and client & contractor was (75%). This implies that the results obtained from RII for ranking of each category for each stake holder holds good percentages of mutual agreement between each other.

### 4.5 SUMMARY

In this chapter, detailed statistical analysis has been presented. The data analysis carried out includes: reliability test, relative importance index (RII), rank agreement factor (RAF) and percentage Agreement (PA) thus presenting a final ranking of causes and categories of incompatibility. In the next chapter, the conclusions and recommendations are made based on the basis of results.

# Chapter 5

# CONCLUSIONS AND RECOMMENDATIONS 5.1 CONCLUSIONS & RECOMMENDATIONS

#### 5.1.1 Conclusions

The results obtained from the analysis of data in chapter four indicate that, on the basis of overall ranking, the categories of incompatibilities were ranked as follows:

- 1. Design Phase ranked no. 1
- 2. Construction Phase ranked no. 2
- 3. Project related ranked no. 3
- 4. Tendering Phase ranked no. 4

Further, study of top two ranking categories was conducted in order to assess the most important causes in these categories. It was observed that six most important causes, on the basis of overall ranking, belong to the Design and Construction Phases as given in Table 5.1:

| Table 5.1: | Six Most Im | portant Causes | Based on | Overall Ranking |
|------------|-------------|----------------|----------|-----------------|
|            |             |                |          |                 |

| CATEGORY     | CAUSE                                                                                                                       | OVERALL<br>RANK |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------|
|              | Data provided to the designer is incomplete                                                                                 | 1               |
| DESIGN       | Too little time given to the designer for completion of design documents                                                    | 5               |
| PHASE        | Approving authorities do not check that the structure<br>is designed according to building bye-laws, codes &<br>govt. rules | 2               |
|              | Owner proposes changes due to financial problems                                                                            | 3               |
| CONSTRUCTION | Contractor's lack of skilled manpower                                                                                       | 6               |
| PHASE        | Approving authorities do not check that the structure<br>is constructed according to the approved building<br>plans         | 4               |

#### 5.1.2 Recommendations

Some recommendations are enlisted based on the research findings and conclusions. These will help to reduce incompatibilities in building construction process and will enhance the efficiency of Building Construction Industry of Pakistan. The recommendations for the design phase are as follows:

1. As for the data provided to the designer, it is recommended that all data required by the design team must be provided at the initial stage of the project to the design team in order to enable them to prepare design drawings and specifications which are according to standards, up to the desired satisfaction of the client and consultant and are easily understandable by the site supervisory staff. Data including 1) Layout plan of the site showing location, size and distances of all buildings, 2) Soil investigation report indicating bearing capacity of soil, depth of underground water table, type of soil, recommendation for depth and type of footing, etc., 3) Contour sheet showing the level of ground at different locations, 4) Purpose and type of the proposed building, and all other data required by the designers need to be provided at the early stage.

2. Second, the designers must be paid commensurate with their efforts. If they are not paid well, they may provide design drawings lacking a lot of details.

3. Third, the designers should be given sufficient time to prepare the drawings and specifications.

4. Lastly, the approving authorities should not only check all drawings and specifications used for construction.

The recommendations for the construction phase are as follows:

1. As for the changes proposed by owner due to owner's financial problems, it is recommended that the owners must ensure that they would be able to arrange required financial resources for the project during the entire project execution phases keeping in view all risks like inflation, personal financial problems, overall economy of the country, strikes, etc., so the incompatibilities due to lack of funds could be minimized. It is therefore recommended that timely supply of funds by the owners must be ensured at the beginning of the project or the scope of the project must be determined keeping in view the available funds and all future risks.

2. Second, prequalification of contractors need to be done taking into account their past performance, projects completed, their financial soundness, qualified engineers employed, utilization of required skilled labor force and equipment fleet.

3. Third, the approving authorities need to check all drawings and specifications used for construction and supervise on-site construction activities. Results showed that vigilant role by the approving authorities will ensure minimizing incompatibilities.

In addition, some recommendations and suggestions which were pointed out by the respondents are also listed below:

1. Thorough site investigation must be conducted as part of the initial stage of project planning exploring all sorts of risks relevant to underground water table, rock, slush, fill material, expansive or collapsing soils, underground streams, possibility of caves, etc. (if any). In addition, the exact location of underground services and utilities should also be confirmed to avoid any problem during construction.

2. The services of a public health engineer must be hired in order to design the plumbing system in a building. Proper plumbing drawings showing location of the entire piping must be produced for construction and should remain available throughout the service life of the building.

3. During the very early stages of project planning, the owner of the building must involve structural engineer, architect, public health engineer, fire safety engineer, geotechnical engineer to thoroughly discuss all the risks involved and bring all his future needs and requirements to the knowledge of all others, so that they could prepare drawings which portray the owner's desires as far as possible.

#### 5.2 FUTURE DIRECTIONS

The scope of this study was to enlist and rank the causes of incompatibilities for building construction in Pakistan, however during the present

work it was felt that if future study is carried out in the following areas, it might help and prove beneficial to the building construction industry:

- 1. Role of consultant in causing incompatibilities
- 2. Role of traditional procurement method in creating incompatibilities
- 3. Ways and means used by the construction professionals to handle the incompatibilities faced by them in the building construction
- 4. Role of technical training provided by different institutes in reducing the incompatibilities

#### <u>REFERENCES</u>

- Al-Hammad, A.M. (2000). "Common Interface Problems Among Various Construction Parties." J. Perform Const. Facil., 14(2).
- Alarcon, L.F. and Mardones, D.A. (1998). "Improving The Design-Construction Interface." *Proceedings IGLC*, Guaruja, Brazil.
- Ali, M. M., and Goraya, R. A. (1998). "Causes of delay in the construction industry of Pakistan." *Pakistan Engineering Congress*, Lahore, Pakistan, (558), 309-315.
- Alwin, D. F. (1997). "Feeling Thermometers versus 7-Point scales, which are better?" Sociological Methods and Research, 25(3), 318-340.
- Amjad, A. A. (2004-2005). "Cost Benefit Analysis for construction projects." *IEP-SAC Journal*, 85-90.
- Ankrah, N. A., and Proverbs, D. "A framework for measuring construction project Performance overcoming key challenges of performance measurement." 21st Annual ARCOM Conference, SOAS, University of London, 959-969.
- Arain, F. M., Pheng, L. S., and Assaf, S. A., (2006), "Contractors' Views of the Potential Causes of Inconsistencies between Design and Construction in Saudi Arabia" J. Perform. Const. Facil. 1(74)
- Arain, F.M. and Pheng, L.S. (2005). "How design consultants perceive potential causes of variation orders for institutional buildings in Singapore", J. Arch. Eng. Design Manage., 1(3), 163-178.
- Arain, F.M. and Assaf, S.A. (2007). "Consultant's Prospects of the Sources of Design and Construction Interface problems in Large Building Projects in Saudi Arabia." *JKAU: Envi. Design Sci.*, 5(2), 15-37.
- Assaf, S.A., and Al-Hammad, A.M. (1988). "The effect of economic changes on construction cost." *American Association of Cost Engineers Transactions*, Morgantown West Virginia, 63-67.
- Bell, J. (2005). "Doing your research project: a guide for first time researchers in education, health and social science." Maidenhead Open University Press.
- Bennett, F. L. (2003). "The Management of Construction: A Project Life Cycle Approach." Butterworth-Heinemann, Linacre House, Jordan Hill, Oxford.

- Bryman, A. (2004). "Social research methods." Oxford, Oxford University Press, London, UK.
- Clough, R.H. and Sears G.A. (1994). "Construction Contracting." (6th edition), John Wiley & Sons Inc, New York.
- Chan, D.W.M. and Kumaraswamy, M.M (1997). "A comparative study of causes of time overruns in Hong Kong construction projects." *Int. J. Proj. Manage.*, 15(1), 55-63.
- Che, A.A.I., Rakmat, R.A.O.K. and Yusof, M.A., Mohammad, N., (2010). "Investigation on the causes of variation orders in the Construction of building project – a study in the state of Selangor, Malaysia." J. Build. Perfor., 1(1).
- De Vaus, D. (2002). "Surveys in Social Research." Routledge, London, UK.
- European Forum on Eco-Innovation (EFEI). (2011). "Achieving Green Growth: Role of Building & Construction Sector." 11th European Forum on Eco-Innovation, Working with Emerging Economies for Green Growth, Inhee Chung, ERM Korea.
- Eldosouky, A.I. (2001). "Principles of Construction Project Management." Tanta University Press, Egypt.
- Federal Bureau of Statistics (FBS). (2010). "*Pakistan Statistical Year Book-2010*." Statistics Division, FBS, Government of Pakistan.
- Fisk, E. R. (1997). "Construction Project Administration." (5th edition), Prentice Hall, New Jersey.
- Fredrickson, K. (1998). "Design guidelines for design-build projects." J. Manage. Eng., 14(1), 77-80.
- Gaur, A. S., and Gaur, S. S. (2009). "Statistical methods for practice research: A guide to data analysis using SPSS." Sage Publications, New Delhi, India.
- Harbans, S.K.S. (2003). "Valuation of Varied Work: A Commentary." *In: Bulletin Ingénieur*, The Board of Engineers Malaysia, 20(3), 32-42

- Haseeb, M., Xinhailu, Bibi, A., and Rabbani, W. (2011). "Hazard Risk Analysis And Management In Construction Sector Of Pakistan." *Int. J. Eco. Res.*, 2(4), 35-42
- Hinton, P. R., Brownlow, C., McMurray, I., and Cozens, B. (2004). "SPSS Explained." Routledge, New York, USA.
- Kish, L. (1995). "Survey Sampling." (65th edition), John Wiley and Sons Inc., New York.
- Leech, N. L., Barrett, K. C., and Morgan, G. A. (2005). "SPSS for Intermediate Statistics: Use and Interpretation." Lawrence Erlbaum Associates Publishers.
- Marsh, C. (1982). "The Survey Method, The contribution of surveys to sociological Explanation." Allen and Unwin.
- Mendelsohn, R. (1997). "The constructability review process: A constructor's perspective", J. Manage. Eng., 13(3): 17-19.
- National Institute of Building Sciences (NIBS). (2007). "Transforming the Building Supply Chain Through Open and Interoperable Information Exchanges." *National Building Information Modeling Standard*, National Institute of Building Sciences, United States, Ver. 1(1).
- Okpala, D.C., and Aniekwu, A.N. (1988). "Causes of High Costs of Construction in Nigeria." J. Const. Eng. Manage., 114(2).
- Oppenheim, A. N. (1992). "Questionnaire design, interviewing and attitude measurement." New Edition, Printer Publishers, London and New York.
- Oyewobi, L.O., Ibironke O.T., Ganiyu B.O. and Ola-Awo, A.W. (2011). "Evaluating rework cost - A study of selected building projects in Niger State, Nigeria." *Department of Quantity Surveying, Federal University of Technology*, Minna, Niger State, Nigeria.
- Pakistan Council of Architects and Town Planners (PCATP). (2012). <www.pcatp.org.pk> Accessed in Jan. 2012.
- Pakistan Engineering Council (PEC). (2012). <www.pec.org.pk> Accessed in Jan. 2012.

- Pakistan Procurement Regulatory Authority (PPRA). (2012). <www.ppra.gov.pk> Accessed in Jan. 2012.
- Reaves, C. C. (1992). "Quantitative research for the behavioral sciences." John Wiley and Sons Inc. Singapore.
- Root, D., Fellows, R., and Hancock, M. (1997). "Quantitative versus Qualitative or Positivism and Interactionism- A reflection of ideology in the current methodological debate." J. Const. Proc., 3(2), 33-44.
- Saunders, M., Lewis, P., and Thornhill, A. (2003). "Research methods for business students." Harlow FT Prentice Hall.
- State Bank of Pakistan (SBP). (2010). "Economic Survey 2009-10." SBP, Islamabad, Pakistan.
- Sun, M. and Meng, X. (2009). "Taxonomy for change causes and effects in construction projects." Int. J. Proj. Manage., 560–572.
- Schexnayder J.C., and Mayo E.R. (2003). "Construction Management Fundamentals." The McGraw-Hill Companies.
- Sengupta, B., and H.Guha. (2002). "Construction Management and Planning." Tata McGraw-Hill Publishing Company Limited, New Delhi, India.
- Shuwei, W. (2009). "The impact of collaborative working on construction project performance," University of Northumbria, Newcastle.
- Thomas, H.R., Horman, M.J., De Souza, U.E.L. and Zavřski, I. (2002). "Reducing Variability to Improve Performance as a Lean Construction Principle." *J. Eng. Manage.*, 128(2), 144-154
- Thompson, K. N. (2010). "Serrent leadership: An effective Model for Project Management."
- Trochim, W. M. K. (1997). "The Research methods knowledge base."
- Undurraga (1996). "Construction Productivity and Housing Financing," Seminar and Workshop Interamerican Housing Union, D.F., Mexico
- World Bank. (2010). "Expanding housing finance to the Underserved in South Asia." Washington, DC.
- Wikipedia (2012). "Design-bid-build Delivery Method", Wikipedia, <www.wikipedia.org> Accessed in Jan. 2012.

# APPENDICES

# APPENDIX: I LIST OF RESPONDENTS WORKING IN BUILDING CONSTRUCTION

| Sr. | Client Name                                        | Designation               |
|-----|----------------------------------------------------|---------------------------|
| No. | Client Name                                        | Designation               |
| 1   | Export Display Centre, Chamber of Comm., G-8, Ibd. | Supervisor                |
| 2   | Works Directorate, CDA, Islamabad                  | Project Director          |
| 3   | Works Directorate, CDA, Islamabad                  | Assistant Director        |
| 4   | Works Directorate, CDA, Islamabad                  | Deputy Director           |
| 5   | Works Directorate, CDA, Islamabad                  | Assistant Director        |
| 6   | ICT, Police Headquarters, Islamabad                | Asstt. Executive Engineer |
| 7   | NUST, Islamabad                                    | Executive Engineer        |
| 8   | NUST, Islamabad                                    | Assistant Director        |
| 9   | Sector Development Directorate, CDA, Islamabad     | Project Director          |
| 10  | Masjid Iman, Rawal Town, Islamabad                 | Coordinator               |
| 11  | F-9 Park, PMO, CDA, Islamabad                      | Project Director          |
| 12  | Arts and Crafts Village, PMO, CDA, Islamabad       | Assitant Director         |
| 13  | Pak Army, MES, Rawalpindi                          | Project Officer           |
| 14  | Sector Development Directorate, CDA, Islamabad     | Project Director          |
| 15  | F-9 Park, PMO, CDA, Islamabad                      | Project Diretor           |
| 16  | PARC, Islamabad                                    | Executive Engineer Civil  |
| 17  | Pak Army, Kharian Cantt.                           | Project Officer           |
| 18  | C&W Dept., Government of Punjab                    | Executive Engineer        |
| 19  | C&W Dept., Government of Punjab                    | Executive Engineer        |
| 20  | C&W Dept., Government of Punjab                    | Executive Engineer        |
| 21  | C&W Dept., Government of Punjab                    | Executive Engineer        |
| 22  | Pak Army, Rawalpindi                               | Project Incharge          |
| 23  | ICT, Police Headquarters, Islamabad                | Sub-Divisional Officer    |
| 24  | ICT, Police Headquarters, Islamabad                | Sub-Divisional Officer    |
| 25  | ICT, Police Headquarters, Islamabad                | Sub-Divisional Officer    |
| 26  | ICT, Police Headquarters, Islamabad                | Sub-Divisional Officer    |
| 27  | Sector Development Directorate, CDA, Islamabad     | Assistant Director        |
| 28  | Pakistan Telecommunication Authority, Islamabad    | Deputy Director           |
| 29  | ICT, Diplomatic Enclave, Islamabad                 | Coordinator               |
| 30  | Sector Development Directorate, CDA, Islamabad     | Assistant Director        |
| 31  | C&W Dept., Government of Punjab                    | Sub-Divisional Officer    |
| 32  | C&W Dept., Government of Punjab                    | Sub-Divisional Officer    |
| 33  | ICT, Diplomatic Enclave, Islamabad                 | Coordinator               |
| 34  | PARC, Islamabad                                    | Sub-Divisional Officer    |
| 35  | F-9 Park, PMO, CDA, Islamabad                      | Assistant Director        |
| 36  | S&C Dte., CDA                                      | Assistant Director        |
| 37  | S&C Dte., CDA                                      | Assistant Director        |
| 38  | S&C Dte., CDA                                      | Deputy Director Director  |
| 39  | Pakistan Institute of Medical Sciences, Islamabad  | Sub-Divisional Officer    |

| Sr.<br>No. | Client Name                                       | Designation            |
|------------|---------------------------------------------------|------------------------|
|            | Pakistan Institute of Medical Sciences, Islamabad | Project Manager        |
| 41         | Capital Hospital, CDA                             | Assistant Director     |
| 42         | Capital Hospital, CDA                             | Administrator          |
| 43         | Said Pur Village Dte., CDA                        | Assistant Director     |
| 44         | Said Pur Village Dte., CDA                        | Assistant Director     |
| 45         | Said Pur Village Dte., CDA                        | Deputy Director        |
| 46         | Said Pur Village Dte., CDA                        | Director               |
| 47         | RDA - Works Division, Rawalpindi                  | Sub-Engineer           |
| 48         | RDA - Works Division, Rawalpindi                  | Sub-Engineer           |
| 49         | SECP, Islamabad.                                  | Project Engineer       |
| 50         | Special Projects Directorate, CDA, Islamabad      | Project Director       |
| 51         | Special Projects Directorate, CDA, Islamabad      | Assistant Director     |
| 52         | Special Projects Directorate, CDA, Islamabad      | Deputy Director        |
| 53         | Special Projects Directorate, CDA, Islamabad      | Assistant Director     |
| 54         | Ali Pur Farash, Model Village, CDA                | Assistant Director     |
| 55         | Ali Pur Farash, Model Village, CDA                | Assistant Director     |
| 56         | Ali Pur Farash, Model Village, CDA                | Assistant Director     |
| 57         | Ministry of Housing and Works, Islamabad          | Assistant Manager      |
| 58         | High Court, Islamabad                             | Coordinator            |
| 59         | Pakistan Housing Authority, Islamabad             | Assistant Manager      |
| 60         | Comsats, Islamabad                                | Site Engineer          |
| 61         | Faisal Masjid, Islamabad                          | Assistant Director     |
| 62         | Pakistan Telecommunication Authority, Islamabad   | Assistant Director     |
| 63         | Parliament Lodges, Islamabad                      | Assistant Director     |
| 64         | Parliament Lodges, Islamabad                      | Deputy Director        |
| 65         | Parliament Lodges, Islamabad                      | Assistant Director     |
| 66         | Working Women Hostel, G-6, Islamabad              | Coordinator            |
| 67         | CDA Model School, I-9, Islamabad                  | Assistant Director     |
| 68         | CDA Model School, I-9, Islamabad                  | Coordinator            |
| 69         | Enquiry Office, Margalla Town, Islamabad          | Town Committee         |
| 70         | Rawal Dam Rest House, Islamabad                   | Assistant Director     |
| 71         | Rawal Dam Rest House, Islamabad                   | Assistant Director     |
| 72         | Enquiry Office, Margalla Town, Islamabad          | Assistant Director     |
| 73         | S&C Dte., CDA                                     | Deputy Director        |
|            | Judges Colony, F-5, Islamabad                     | Assistant Director     |
| 75         | Judges Colony, F-5, Islamabad                     | Assistant Director     |
| 76         | PARC, Islamabad                                   | Sub-Divisional Officer |
| 77         | NADRA, Islamabad                                  | Assistant Manager      |
| 78         | Cultural Complex, Near Shakarparian, Islamabad    | Assistant Director     |
| 79         | Islamabad Cultural Club, F-9 Park, Islamabad      | Assistant Director     |
| 80         | Cultural Complex, Near Shakarparian, Islamabad    | Deputy Director        |
| 81         | Islamabad Cultural Club, F-9 Park, Islamabad      | Deputy Director        |
| 82         | Ladies Club, G-10, Islamabad                      | Sub-Engineer           |
| 83         | Ladies Club, G-10, Islamabad                      | Assistant Director     |
| 84         | Ladies Club, G-10, Islamabad                      | Deputy Director        |

# (CONSULTANTS)

| Sr.<br>No. | Consultant Name                                      | Designation                              |
|------------|------------------------------------------------------|------------------------------------------|
|            | Structures Dte, CDA, Islamabad                       | Deputy Director                          |
| 2          | Parliament Lodges Dte., CDA, Islamabad               | Deputy Director                          |
| 3          | Global Engineering Services                          | Principal Engineer                       |
| 4          | Structures Dte, CDA, Islamabad                       | Deputy Director                          |
| 5          | Building Control Dte-II., CDA, Islamabad             | Deputy Director                          |
| 6          | National Police Academy Dte., CDA, Islamabad         | Deputy Director                          |
| 7          | NESPAK, Islamabad                                    | Consultant                               |
| 8          | Pak. PWD, Islamabad                                  | Assistant Exe. Engineer                  |
| 9          | Maintenance Dte., CDA, Islamabad                     | Director                                 |
| 10         | Moth Macdonald, PHED Dept., Lahore                   | Junior Engineer                          |
| 11         | Services Dte., CDA, Islamabad                        | Deputy Director                          |
| 12         | Engineering Project Development Consultant Pvt. Ltd. | Chairman                                 |
| 13         | University of South Asia, Lahore                     | Project Manager                          |
| 14         | Building Control Dte-III, CDA, Islamabad             | Deputy Director                          |
| 15         | Works Dte, CDA, Islamabad                            | Assistant Director                       |
| 16         | Barqaab, Lahore                                      | Consultant                               |
| 17         | Barqaab, Lahore                                      | Architect                                |
| 18         | Parks Dte., CDA, Islamabad                           | Deputy Director                          |
| 19         | University of South Asia, Lahore                     | Assistant Engineer                       |
| 20         | Bari Imam Complex Dte, CDA, Islamabad                | Deputy Director                          |
| 21         | Bari Imam Complex Dte, CDA, Islamabad                | Assitant Director                        |
| 22         | Works Dte, CDA, Islamabad                            | Deputy Director                          |
| 23         | Tulip Residency, Karachi                             | Resident Engineer,                       |
| 24         | NESDAK Jalamahad                                     | Supervisor                               |
|            | NESPAK, Islamabad<br>NESPAK, Islamabad               | Engineer                                 |
|            |                                                      | Engineer                                 |
|            | Special Projects Dte., CDA, Ibc                      | Deputy Director<br>Lecturer, Independent |
|            | University of South Asia, Lahore                     | Designer                                 |
|            | Special Projects Dte., CDA, Islamabad                | Deputy Director                          |
|            | Special Projects Dte., CDA, Islamabad                | Deputy Director                          |
|            | DESIGNMEN Consulting Engineers Pvt. Ltd.             | Director (Technical)                     |
| 31         | Sports and Culture Dte., CDA, Islamabad              | Additional Director                      |
|            | DESIGNMEN Consulting Engineers Pvt. Ltd.             | Director                                 |
| 33         | ERRA, Azad Kashmir                                   | Project Engineer                         |
|            | ERRA, Azad Kashmir                                   | Project Engineer                         |
| 35         | Aiwan-e-Sadr Dte., CDA, Islamabad                    | Director                                 |
| 36         | Secretariat Block Dte., CDA, Islamabad               | Deputy Director                          |
| 37         | NESPAK                                               | Consultant                               |
| 38         | Multinational Engineering Consultants (MEC)          | Designer                                 |
| 39         | Multinational Engineering Consultants (MEC)          | Designer                                 |
| 40         | DESIGNMEN Consulting Engineers Pvt. Ltd.             | Consultant                               |

| Sr.<br>No. | Consultant Name                                 | Designation                 |
|------------|-------------------------------------------------|-----------------------------|
| 41         | CDM Smith Inc., Islamabad                       | Architect                   |
| 42         | CDM Smith Inc., Islamabad                       | Architect                   |
| 43         | CDM Smith Inc., Islamabad                       | Architect                   |
| 44         | Structures Dte (Bldgs), CDA, Islamabad          | Assistant Director          |
| 45         | Structures Dte (Bldgs), CDA, Islamabad          | Assistant Director          |
| 46         | CITE, Islamabad                                 | Architect                   |
| 47         | CITE, Islamabad                                 | Architect                   |
| 48         | UET, Taxila                                     | Independent Designer        |
| 49         | Ghani Associates, Islamabad                     | Consultant                  |
| 50         | Ghani Associates, Islamabad                     | Design Engineer             |
| 51         | Structures Dte (Bldgs), CDA, Islamabad          | Deputy Director             |
| 52         | Architecture Dte., CDA, Islamabad               | Director Architecture       |
| 53         | Architecture Dte., CDA, Islamabad               | Architect                   |
| 54         | Architecture Dte., CDA, Islamabad               | Architect                   |
| 55         | Modern Consulting Engineers                     | Design Engineer             |
| 56         | Modern Consulting Engineers                     | Design Engineer             |
| 57         | Arch Vision Plus, Karachi                       | Project Architect           |
| 58         | Arch Vision Plus, Karachi                       | Managing Director           |
| 59         | Design Tech, Karachi                            | Chief Structural Engineer   |
| 60         | Design Tech, Karachi                            | Structural Engineer         |
|            | Design Tech, Karachi                            | Structural Engineer         |
| 62         | TAG International, Lahore                       | Structural Engineer         |
| 63         | TAG International, Lahore                       | Structural Engineer         |
| 64         | University of South Asia, Lahore                | Assistant Professor         |
|            | PCA, Lahore                                     | Senior Engineer             |
|            | University of South Asia, Lahore                | Assistant Professor         |
|            | University of South Asia, Lahore                | Dean Engineering Dept.      |
|            | Pak. PWD, Islamabad                             | AEE Civil                   |
| 69         | Pak. PWD, Islamabad                             | AEE Civil                   |
|            | Moeen Mian Associates                           | Chief Executive             |
| 71         | Moeen Mian Associates                           | Design Engineer             |
| 72         | Moeen Mian Associates                           | Design Engineer             |
| 73         | Pak. PWD, Islamabad                             | SubEngineer                 |
| 74         | Pak. PWD, Islamabad                             | SubEngineer                 |
|            | Pak. PWD, Islamabad                             | SubEngineer                 |
| 76         | A.N. Associates                                 | Chief Executive             |
| 77         | A.N. Associates                                 | Design Engineer             |
|            | A.N. Associates                                 | Design Engineer             |
|            | Structures Dte. CDA, Islamabad                  | D.D.G                       |
|            | MKN Engineering Consultant                      | Designer                    |
|            | MKN Engineering Consultant                      | Designer                    |
| 82         | National Forensic Science Laboratory, Islamabad | Consultant / Proj. Director |
|            | Tariq & Saad Associates                         | Design Engineer             |
| 84         | M.I. Associates                                 | Consultant                  |

| Sr.<br>No. | Consultant Name                               | Designation         |
|------------|-----------------------------------------------|---------------------|
| 85         | M.I. Associates                               | Design Engineer     |
| 86         | Waseem Associates                             | Designer            |
| 87         | Waseem Associates                             | Designer            |
| 88         | Loya Associates Consulting Engineers, Karachi | Cooridnator         |
| 89         | Loya Associates Consulting Engineers, Karachi | Design Engineer     |
| 90         | Loya Associates Consulting Engineers, Karachi | Design Engineer     |
| 91         | Structures Dte CDA, Islamabad                 | Consultant          |
| 92         | Graffitec, Islamabad                          | Director            |
| 93         | Graffitec, Islamabad                          | Design Engineer     |
| 94         | Graffitec, Islamabad                          | Design Engineer     |
| 95         | Zeeshan Ahmed Engineering Services (Pvt) Ltd. | Designer            |
| 96         | BCS Dte., CDA, Islamabad                      | Deputy Director     |
| 97         | Structures Dte (Bldgs), CDA, Islamabad        | Director Structures |

# (CONTRACTORS)

| Sr.<br>No. | Contractor Name                      | Designation             |
|------------|--------------------------------------|-------------------------|
| 1          | KKP, Margalla Hotel                  | Site Engineer           |
| 2          | KKP, Margalla Hotel                  | Project Engineer        |
| 3          | Shahid Builders Pvt. Ltd.            | Construction Manager    |
| 4          | Shahid Builders Pvt. Ltd.            | Site Engineer           |
| 5          | Shahid Builders Pvt. Ltd.            | Site Supervisor         |
|            | Rapid Construction Pvt. Ltd.         | Site Engineer           |
| 7          | Rapid Construction Pvt. Ltd.         | Project Manager         |
|            | Rapid Construction Pvt. Ltd.         | Planning Engineer       |
|            | Tameer Associates                    | Director Projects       |
|            | National Construction Ltd.           | General Manager (E)     |
| 11         | Fast Associates                      | Executive Manager       |
| 12         | Fast Associates                      | Site Engineer           |
| 13         | Fast Associates                      | Project Engineer        |
| 14         | Arif Enterprises                     | Site Engineer           |
| 15         | Arif Enterprises                     | Planning Engineer       |
| 16         | Arif Enterprises                     | Project Engineer        |
| 17         | Guarattee Engineers                  | Sr. Electrical Engineer |
|            | Corps of Engineers / CWO / AWT / AGA | Sr. Executive Engineer  |
| 19         | FWO                                  | Project Manager         |
| 20         | Self Employed                        | Manager                 |
|            | Descon Engineering Ltd.              | Planning Manager        |
|            | Bawaqar                              | Chief Engineer          |
|            | Bawaqar                              | Site Engineer           |
|            | Bawaqar                              | Site Supervisor         |
| 25         | Rawail Builders                      | Director                |
| 26         | Rawail Builders                      | Contracts Engineer      |
| 27         | Rawail Builders                      | Site Engineer           |
| 28         | Rawail Builders                      | Site Engineer           |
|            | ECM Pvt. Ltd.                        | Managing Director       |
| 30         | ECM Pvt. Ltd.                        | Site Supervisor         |
| 31         | ECM Pvt. Ltd.                        | Site Engineer           |
| 32         | Greenways Engineers                  | Chief Engineer          |
|            | Greenways Engineers                  | Planning Engineer       |
|            | Greenways Engineers                  | Site Engineer           |
|            | Greenways Engineers                  | Site Supervisor         |
|            | Bright Business Links                | Managing Director       |
|            | Bright Business Links                | Director                |
|            | Bright Business Links                | Contracts Manager       |
| -          | Ali Ahmad Shigri                     | Director                |
|            | Ali Ahmad Shigri                     | Site Engineer           |
| 41         | Ali Ahmad Shigri                     | Site Supervisor         |
|            | ALDO Enterprises                     | Director                |
|            | ALDO Enterprises                     | Site Engineer           |
|            |                                      |                         |

| Sr.<br>No. | Contractor Name                    | Designation                |
|------------|------------------------------------|----------------------------|
| 44         | ALDO Enterprises                   | Site Engineer              |
| 45         | Hayat Brothers                     | Managing Director          |
| 46         | Hayat Brothers                     | Site Engineer              |
| 47         | Hayat Brothers                     | Site Engineer              |
| 48         | Neva Enterprises                   | Director                   |
| 49         | Wahab Traders                      | Managing Director          |
| 50         | Wahab Traders                      | Site Engineer              |
| 51         | Wahab Traders                      | Planning Engineer          |
| 52         | Khattak & Brothers                 | General Manager            |
| 53         | Khattak & Brothers                 | Site Engineer              |
| 54         | Khattak & Brothers                 | Planning Engineer          |
| 55         | Utopia Construction Company        | Managing Director          |
|            | Utopia Construction Company        | Site Engineer              |
|            | Utopia Construction Company        | Site Engineer              |
| 58         | Rafi Tariq Pvt. Ltd                | Director                   |
|            | Rafi Tariq Pvt. Ltd                | Planning Engineer          |
|            | Rafi Tariq Pvt. Ltd                | Site Engineer              |
| 61         | S & S Associates                   | Director                   |
| 62         | S & S Associates                   | Site Engineer              |
| 63         | S & S Associates                   | Site Engineer              |
| 64         | Confidential                       | Chief Engineer             |
| 65         | Confidential                       | Site Engineer              |
| 66         | Matracon Pakistan Private Limited. | Project Engineer / Manager |
| 67         | Matracon Pakistan Private Limited. | Project Engineer           |
| 68         | Matracon Pakistan Private Limited. | Planning Engineer          |
|            | Shabir and Co.                     | Site Supervisor            |
|            | Shabir and Co.                     | Site Supervisor            |
|            | Shabir and Co.                     | Site Supervisor            |
|            | Spart Private Limited              | Site Incharge              |
| 73         | Spart Private Limited              | Site Supervisor            |
|            | Spart Private Limited              | Site Engineer              |
| 75         | Sheikh Muhammad Nazir and Company  | Managing Director          |
| 76         | Sheikh Muhammad Nazir and Company  | Site Engineer              |
|            | Sheikh Muhammad Nazir and Company  | Site Engineer              |
|            | Sheikh Muhammad Nazir and Company  | Site Engineer              |
|            | Rasool Constructors                | Director                   |
| 80         | Rasool Constructors                | Site Engineer              |
|            | Rasool Constructors                | Site Engineer              |
|            | Rasool Constructors                | Site Supervisor            |
|            | Zafarullah Butt Traders            | Director                   |
|            | Zafarullah Butt Traders            | Project Engineer           |
|            | Zafarullah Butt Traders            | Project Engineer           |
|            | Zafarullah Butt Traders            | Contracts Manager          |
| 87         | AAJ Sons Pvt. Ltd.                 | Project Engineer           |

| <mark>Sr.</mark><br>No. | Contractor Name               | Designation     |
|-------------------------|-------------------------------|-----------------|
| 88                      | AAJ Sons Pvt. Ltd.            | Site Supervisor |
| 89                      | AAJ Sons Pvt. Ltd.            | Site Engineer   |
| 90                      | AAJ Sons Pvt. Ltd.            | Site Engineer   |
| 91                      | Johnsons Construction Compnay | Site Engineer   |
| 92                      | Johnsons Construction Compnay | Site Engineer   |
| 93                      | Johnsons Construction Compnay | Site Engineer   |
| 94                      | Habib Rafiq Limited (HRL)     | Site Engineer   |
| 95                      | Pir Muhammad and Company      | Director        |
| 96                      | Pir Muhammad and Company      | Site Engineer   |
| 97                      | Khyber Grace Private Limited  | Director        |
| 98                      | Khyber Grace Private Limited  | Site Engineer   |
| 99                      | CEMCON Pvt. Ltd.              | Director        |
| 100                     | CEMCON Pvt. Ltd.              | Site Engineer   |

#### **<u>APPENDIX: II</u>** QUESTIONNAIRE COVERING LETTER



# SCHOOL OF CIVIL & ENVIRONMENTAL ENGINEERING (SCEE)

Dear Sir,

The undersigned has been assigned to conduct a study of "Causes of Incompatibility between Design and Construction in Building Construction" for partial fulfillment of the requirement for the degree of Master of Engineering in "Construction Engineering and Management" from NUST, H-12, Islamabad. The objectives of the study are:

a) To identify the important causes of incompatibility between design and construction in building construction.

b) Recommend ways and means to eliminate and reduce the effect of these causes.

The questionnaire has been designed for traditional procurement method only – one mostly followed in Pakistan, i.e. where designing & construction are carried out by separate teams of designers and contractors.

Just to recall, the incompatibilities between design and construction are the differences in architectural details, structural design details, project time, project cost material, quality, etc. between the design phase and the construction phase. However, it may please be noted that this study focuses purely on those causes of incompatibilities which pertain to architecture, structural design, electrical and plumbing, material and quality.

The survey form is attached with this letter. You are requested to take few minutes from your precious time and fill the form as per your experience / observation of building construction industry in Pakistan. The information provided by you will be of high value and will be kept confidential.

All information provided in this regard will only be used for academic purposes and will be kept confidential.

Thanks for your support and cooperation in advance. Yours Sincerely, Mustafa Kamal Khan Post Graduate Student- Construction Engineering & Management Cell. No: 0301-5553333 Email: immkkhan@yahoo.com

> Dr. Hamza Farooq Gabriel BSc Civil Engg (UET, Lahore) | MSc Civil Engg (B'ham, UK) | PhD (CSturt, Australia) Associate Professor NUST Institute of Civil Engineering (NICE) School of Civil & Environmental Engineering (SCEE) National University of Sciences & Technology (NUST) NUST Islamabad Campus Sector H - 12 Islamabad, ICT - 44000

School of Civil & Environmental Engineering (SCEE), National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, Pakistan Tel No: +92-51-90854000, 90854007, 90854013 Email: scee@nust.edu.pk

#### QUESTIONNAIRE **APPENDIX: III**

# **GENERAL INFORMATION**

<u>MS RESEARCH THESIS QUESTIONNAIRE</u> Causes of Incompatibility between Design and Construction in Building Construction

| GENERAL INFORMATION (NOT TO BE PUBLISHED)             |  |  |  |  |
|-------------------------------------------------------|--|--|--|--|
| Name                                                  |  |  |  |  |
| Qualification                                         |  |  |  |  |
| Experience in Building Construction Industry (Years)  |  |  |  |  |
| Name of Organization / Department / Firm /<br>Company |  |  |  |  |
| Designation                                           |  |  |  |  |
| Type of job (Client / Consultant / Contractor)        |  |  |  |  |

The causes of incompatibility are categorized on a five-point Likert scale as follows:

| Degree of  | 5 = Extremely | 4 = Very  | 3 = Moderately | 2 = Slightly | 1 = Not   |
|------------|---------------|-----------|----------------|--------------|-----------|
| Importance | Important     | Important | Important      | Important    | Important |

You are required to tick or check the desired category.

# **DESIGN PHASE**

| Sr. | Sr.<br>No. Causes of Incompatibility                                                                                  |   | • | - | e of<br>ance |   |  |
|-----|-----------------------------------------------------------------------------------------------------------------------|---|---|---|--------------|---|--|
| No. |                                                                                                                       | 5 | 4 | 3 | 2            | 1 |  |
| I.  | Design Phase                                                                                                          |   |   |   |              |   |  |
| 1   | Contractor is not involved in the design conceptual phase                                                             |   |   |   |              |   |  |
| 2   | Contractor is not involved in the design development phase                                                            |   |   |   |              |   |  |
| 3   | Data provided to the designer is incomplete                                                                           |   |   |   |              |   |  |
| 4   | Data provided to the designer is incorrect                                                                            |   |   |   |              |   |  |
| 5   | Data provided to the designer is late                                                                                 |   |   |   |              |   |  |
| 6   | Lack of human resources with the designer                                                                             |   |   |   |              |   |  |
| 7   | Designer busy in too many assignments                                                                                 |   |   |   |              |   |  |
| 8   | Lack of designer's knowledge of building bye-laws, codes & govt. rules                                                |   |   |   |              |   |  |
| 9   | Lack of designer's knowledge of constructability of proposed design                                                   |   |   |   |              |   |  |
| 10  | Lack of designer's knowledge of availability of materials for construction                                            |   |   |   |              |   |  |
| 11  | Lack of designer's knowledge of engineering design techniques &                                                       |   |   |   |              |   |  |
|     | softwares                                                                                                             |   |   |   |              |   |  |
| 12  | Lack of designer's knowledge of engineering drafting                                                                  |   |   |   |              |   |  |
| 13  | Lack of designer's knowledge of suitability of materials for construction                                             |   |   |   |              |   |  |
| 14  | Frequent replacement of designer by the owner                                                                         |   |   |   |              |   |  |
| 15  | Personal and social problems of the designer                                                                          |   |   |   |              |   |  |
| 16  | Lack of reward, delayed payment or low payment to the designer by the owner                                           |   |   |   |              |   |  |
| 17  | Too little time given to the designer for completion of design documents                                              |   |   |   |              |   |  |
| 18  | Lack of project planning & rigorous analysis of requirements of owner at the project start                            |   |   |   |              |   |  |
| 19  | Frequent changes in the proposed design due to owner dissatisfaction                                                  |   |   |   |              |   |  |
| 20  | Approving authorities do not check that structure is designed according to the building bye-laws, codes & govt. rules |   |   |   |              |   |  |

### **TENDERING PHASE**

| Sr.  | Causes of Incompatibility                                                                                                         |  | Degree of<br>Importance |   |   |   |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------|--|-------------------------|---|---|---|--|--|--|
| 110. | NO. 5                                                                                                                             |  |                         | 3 | 2 | 1 |  |  |  |
| II.  | Tendering Phase                                                                                                                   |  |                         |   |   |   |  |  |  |
| 21   | Incomplete or inaccurate design documents un-intentionally provided with bidding documents                                        |  |                         |   |   |   |  |  |  |
| 22   | Incomplete or inaccurate design documents intentionally provided with bidding documents                                           |  |                         |   |   |   |  |  |  |
| 23   | Contract type                                                                                                                     |  |                         |   |   |   |  |  |  |
| 24   | Contractor did not consider that the design is exotic, complex or difficult to build, and he does not have the required expertise |  |                         |   |   |   |  |  |  |
| 25   | Selection of contractor on the basis of lowest bid                                                                                |  |                         |   |   |   |  |  |  |
| 26   | Amount of Performance security / retention money                                                                                  |  |                         |   |   |   |  |  |  |
| 27   | Absence of third party validation during defect liability period                                                                  |  |                         |   |   |   |  |  |  |

# **CONSTRUCTION PHASE**

| Sr.<br>No. | Causes of Incompatibility                                                                                 |   |   | gree<br>orta | e of<br>ince |          |
|------------|-----------------------------------------------------------------------------------------------------------|---|---|--------------|--------------|----------|
| 10.        |                                                                                                           | 5 | 4 | 3            | 2            | 1        |
| III.       | Construction Phase                                                                                        |   |   |              |              |          |
| 28         | Owner proposes changes because he had planned to make changes                                             |   |   |              |              |          |
|            | during construction from the beginning                                                                    |   |   |              |              |          |
| 29         | Owner proposes changes during construction due to sudden changes in his requirements / expectations       |   |   |              |              |          |
| 30         | Owner proposes changes during construction due to change in ownership                                     | 1 |   |              |              |          |
| 31         | Owner proposes changes to assert his authority and make undue interference in construction                |   |   |              |              |          |
| 32         | Owner proposes changes due to financial problems                                                          |   |   |              |              |          |
| 33         | Slowness in decision making process by owner                                                              |   |   |              |              |          |
| 34         | Changes in building codes, bye-laws & govt. rules                                                         |   |   |              |              |          |
| 35         | Delayed revision of drawings by designer                                                                  |   |   |              |              | <u> </u> |
| 36         | Drawings not properly stamped or certified by designer                                                    |   |   |              |              | 1        |
| 37         | Custody and supply of drawings at site                                                                    |   |   |              |              | 1        |
| 38         | Delayed approval of drawings by owner or consultant                                                       |   |   |              |              | 1        |
| 39         | Material changes due to shortage of particular material in the market                                     |   |   |              |              | L        |
| 40         | Material changes due to procurement delays by contractor                                                  | ] |   |              |              |          |
| 41         | Contractor does not follow recommended construction methods and does                                      |   |   |              |              | 1        |
| •••        | not use proper construction equipment                                                                     |   |   |              |              |          |
| 42         | Contractor's lack of skilled manpower                                                                     |   |   |              |              |          |
| 43         | Contractor's lack of comprehension of drawing details                                                     |   |   |              |              |          |
| 44         |                                                                                                           |   |   |              |              |          |
| 45         | Contractor's-staff facing lack of tools, equipment, etc. for measurement,                                 |   |   |              |              | 1        |
|            | alignment, angular adjustment at corners, etc.                                                            |   |   |              |              |          |
| 46         | Contractor and his staff focusing on other projects                                                       |   |   |              |              |          |
| 47         | Designer's lack of awareness / interest about ongoing construction process                                |   |   |              |              |          |
| 48         | Unanticipated weather conditions                                                                          |   |   |              |              |          |
| 49         | Unforeseen problems and differing site conditions                                                         |   |   |              |              |          |
| 50         | Timing of the proposed changes, i.e. whether at the start or at the end of construction                   |   |   |              |              |          |
| 51         | Approving authorities do not check that structure is constructed according to the approved building plans |   |   |              |              |          |

# **OVERALL PROJECT PHASE**

| Sr.<br>No. | ( auses of Incompatibility                                        |  | Degree of<br>Importance |  |  |   |  |  |  |
|------------|-------------------------------------------------------------------|--|-------------------------|--|--|---|--|--|--|
| INO.       | o.                                                                |  |                         |  |  | 1 |  |  |  |
| IV.        | Overall Project Phase                                             |  |                         |  |  |   |  |  |  |
| 52         | Economic situation of the country                                 |  |                         |  |  |   |  |  |  |
| 53         | Nationality of participants                                       |  |                         |  |  |   |  |  |  |
| 54         | Organizational structure of owner, consultant and contractor      |  |                         |  |  |   |  |  |  |
| 55         | 55 Lack of communication and coordination between parties         |  |                         |  |  |   |  |  |  |
| 56         | 56 Lack of mutual respect between parties                         |  |                         |  |  |   |  |  |  |
| 57         | 57 Conflicts and legal disputes between various parties           |  |                         |  |  |   |  |  |  |
| 58         | 58 Participant's honest wrong belief                              |  |                         |  |  |   |  |  |  |
| 59         | Corruption / Fraudulent practices                                 |  |                         |  |  |   |  |  |  |
| 60         | Lack of an experienced consultant or his lack of interest in work |  |                         |  |  |   |  |  |  |
| 61         | Frequent replacement of consultant during construction            |  |                         |  |  |   |  |  |  |
| 62         | Appointment of contractor as consultant                           |  |                         |  |  |   |  |  |  |
| 63         | Appointment of designer as consultant                             |  |                         |  |  |   |  |  |  |
| 64         | Design firm or contractor firm goes bankrupt or is black-listed   |  |                         |  |  |   |  |  |  |
| 65         | Withdrawal of licenses and permits                                |  |                         |  |  |   |  |  |  |

Comments (if any):

# APPENDIX: IV RELIABILITY ANALYSIS IN SPSS VER.17.0

#### FOR CONSULTANT

#### 1. Design Phase related Indicators

| Case Processing Summary |             |    |       |  |  |  |  |
|-------------------------|-------------|----|-------|--|--|--|--|
|                         |             | Ν  | %     |  |  |  |  |
| Cases                   | Valid       | 97 | 100.0 |  |  |  |  |
|                         | Excluded(a) | 0  | .0    |  |  |  |  |
|                         | Total       | 97 | 100.0 |  |  |  |  |

a Listwise deletion based on all variables in the procedure.

#### Reliability Statistics

| Cronbach's Alpha | Cronbach's Alpha Based on Standardized Items | N of Items |
|------------------|----------------------------------------------|------------|
| .903             | .898                                         | 20         |

|                |       |         | Summary | y Item Stat | istics    |          |       |
|----------------|-------|---------|---------|-------------|-----------|----------|-------|
|                |       |         |         |             | Maximum / |          | N of  |
|                | Mean  | Minimum | Maximum | Range       | Minimum   | Variance | Items |
| Item Means     | 2.976 | 2.149   | 3.716   | 1.568       | 1.730     | .206     | 20    |
| Item Variances | 1.558 | .902    | 2.799   | 1.897       | 3.104     | .226     | 20    |

|                                        |          | Item-10tal      |             |             |            |
|----------------------------------------|----------|-----------------|-------------|-------------|------------|
|                                        | Scale    |                 |             |             | Cronbach's |
|                                        | Mean if  |                 | Corrected   | Squared     | Alpha if   |
|                                        | Item     | Scale Variance  | Item-Total  | Multiple    | Item       |
|                                        | Deleted  | if Item Deleted | Correlation | Correlation | Deleted    |
| Ds - contractor is not involved in the | 57.3784  | 219.964         | 069         | .933        | .913       |
| design conceptual phase                | 57.5784  | 219.904         | 009         | .935        | .915       |
| Ds - contractor is not involved in the | 57.2703  | 218.364         | 022         | .936        | .911       |
| design development phase               | 57.2705  | 218.304         | 022         | .930        | .911       |
| Ds - data provided to the designer is  | 55.8108  | 201.279         | .596        | .635        | .897       |
| incomplete                             | 55.8108  | 201.279         | .390        | .055        | .097       |
| Ds - data provided to the designer is  | 56.4054  | 185.614         | .761        | .858        | .891       |
| incorrect                              | 30.4034  | 165.014         | .701        | .030        | .091       |
| Ds - data provided to the designer is  | 56.3378  | 184.090         | .803        | .804        | .890       |
| late                                   | 30.3378  | 164.090         | .805        | .004        | .890       |
| Ds - lack of human resources with the  | 56.2568  | 203.919         | .464        | .491        | .900       |
| designer                               | 30.2308  | 205.919         | .404        | .491        | .900       |
| Ds - designer busy in too many         | 56.5811  | 198.548         | .584        | .658        | .897       |
| assignments                            | 30.3811  | 198.348         | .384        | .038        | .897       |
| Ds - lack of designer's knowledge of   |          |                 |             |             |            |
| building bye-laws, codes & govt.       | 56.6216  | 183.170         | .728        | .849        | .892       |
| Rules                                  |          |                 |             |             |            |
| Ds - lack of designer's knowledge of   | 56 0100  | 216.210         | 021         | 202         | 011        |
| constructability of proposed design    | 56.8108  | 216.210         | .031        | .303        | .911       |
| Ds - lack of designer's knowledge of   |          |                 |             |             |            |
| availability of materials for          | 56.6757  | 193.921         | .697        | .719        | .894       |
| construction                           |          |                 |             |             |            |
| Ds - lack of designer's knowledge of   | 56.0505  | 106 470         | 700         | 000         | 001        |
| engg. Design techniques & softwares    | 56.9595  | 186.478         | .788        | .888        | .891       |
| Ds - lack of designer's knowledge of   | 56 0720  | 107 752         | 017         | 0.57        | 000        |
| engineering drafting                   | 56.9730  | 187.753         | .817        | .857        | .890       |
| Ds - lack of designer's knowledge of   |          |                 |             |             |            |
| suitability of materials for           | 56,7703  | 192.097         | .656        | .707        | .895       |
| construction                           |          |                 |             |             |            |
| Ds - frequent replacement of designer  | 56 (0) ( | 100 000         |             | 000         | 000        |
| by the owner                           | 56.6216  | 192.238         | .731        | .800        | .893       |
| Ds - personal and social problems of   |          | 004             |             |             | 0000       |
| the designer                           | 57.1216  | 204.437         | .501        | .660        | .899       |
| Ds - lack of reward, delayed payment   | 56.1892  | 201.142         | .493        | .597        | .899       |
| · · · · · · · · · · · · · · · · · · ·  |          |                 |             |             |            |

|                                                                                                                      | Scale<br>Mean if<br>Item<br>Deleted | Scale Variance if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if<br>Item<br>Deleted |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|----------------------------------------|------------------------------------|-------------------------------------------|
| or low payment to the designer by the<br>owner<br>Ds - too little time given to the                                  |                                     |                                |                                        |                                    |                                           |
| designer for completion of design documents                                                                          | 55.8919                             | 201.961                        | .545                                   | .716                               | .898                                      |
| Ds - lack of project planning and<br>rigorous analysis of requirements and<br>need of the owner at the project start | 56.1622                             | 196.275                        | .624                                   | .667                               | .896                                      |
| Ds - frequent changes in the proposed<br>design due to owner dissatisfaction<br>Ds – approving authorities do not    | 56.2568                             | 196.385                        | .630                                   | .736                               | .896                                      |
| check that structure is designed<br>according to building bye-laws, codes<br>& govt. Rules                           | 55.9189                             | 208.185                        | .282                                   | .526                               | .904                                      |

# 2. Tendering Phase related Indicators

|                  | <b>Reliability Statistics</b>                |            |
|------------------|----------------------------------------------|------------|
| Cronbach's Alpha | Cronbach's Alpha Based on Standardized Items | N of Items |
| .765             | .765                                         | 7          |

| Summary Item Statistics |       |         |         |       |                      |          |            |  |
|-------------------------|-------|---------|---------|-------|----------------------|----------|------------|--|
|                         | Mean  | Minimum | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |  |
| Item Means              | 2.782 | 2.284   | 3.095   | .811  | 1.355                | .085     | 7          |  |
| Item Variances          | 1.371 | .553    | 2.308   | 1.755 | 4.177                | .552     | 7          |  |

| Item-Total Statistics                                                                                                                           |                                     |                                   |                                        |                                    |                                           |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|----------------------------------------|------------------------------------|-------------------------------------------|--|--|
|                                                                                                                                                 | Scale<br>Mean if<br>Item<br>Deleted | Scale Variance<br>if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if<br>Item<br>Deleted |  |  |
| Tsc - incomplete or inaccurate design<br>document un-intentionally provided<br>with bidding documents<br>Tsc - incomplete or inaccurate design  | 17.1892                             | 21.690                            | .388                                   | .213                               | .758                                      |  |  |
| document intentionally provided with                                                                                                            | 16.6622                             | 18.117                            | .689                                   | .567                               | .685                                      |  |  |
| bidding documents<br>Tsc - contract type                                                                                                        | 16.9865                             | 18.315                            | .557                                   | .338                               | .722                                      |  |  |
| Tsc - contractor did not consider that<br>the design is exotic, complex or<br>difficult to build and he does not<br>have the required expertise | 16.4730                             | 18.143                            | .635                                   | .516                               | .699                                      |  |  |
| Tsc - selection of contractor on the basis of lowest bid                                                                                        | 16.3784                             | 25.225                            | .280                                   | .143                               | .770                                      |  |  |
| Tsc - amount of performance security / retention money                                                                                          | 16.5541                             | 23.867                            | .452                                   | .445                               | .747                                      |  |  |
| Tsc - absence of third party<br>validation during defect liability<br>period                                                                    | 16.5946                             | 23.587                            | .448                                   | .429                               | .746                                      |  |  |

### **Item-Total Statistics**

#### 3. Construction Phase related Indicators

|                  | <b>Reliability Statistics</b>                |            |
|------------------|----------------------------------------------|------------|
| Cronbach's Alpha | Cronbach's Alpha Based on Standardized Items | N of Items |
| .929             | .929                                         | 24         |

Maximum / Minimum Minimum Maximum N of Items Mean Range Variance Item Means 2.918 1.919 3.581 1.662 1.866 .220 Item Variances 1.999 1.317 2.932 .100

.682

1.411

|                                                                                                                        | Item-Total Statistics               |                                |                                        |                                    |                                           |  |  |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|----------------------------------------|------------------------------------|-------------------------------------------|--|--|
|                                                                                                                        | Scale<br>Mean if<br>Item<br>Deleted | Scale Variance if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if<br>Item<br>Deleted |  |  |
| Cn - owner proposes changes<br>because he had planned to make<br>changes during construction from the<br>beginning     | 67.1757                             | 293.051                        | .426                                   | .601                               | .929                                      |  |  |
| Cn - owner proposes changes during<br>construction due to sudden changes<br>in his requirements / expectations         | 67.2297                             | 302.700                        | .163                                   | .357                               | .932                                      |  |  |
| Cn - owner proposes changes during<br>construction due to change in<br>ownership                                       | 67.8514                             | 292.731                        | .329                                   | .374                               | .931                                      |  |  |
| Cn - owner proposes changes to<br>assert his authority and make undue<br>interference in construction                  | 68.1216                             | 297.478                        | .279                                   | .491                               | .931                                      |  |  |
| Cn - owner proposes changes due to<br>financial problems                                                               | 66.6216                             | 281.471                        | .671                                   | .722                               | .925                                      |  |  |
| Cn - slowness in decision making process by the owner                                                                  | 66.5946                             | 280.710                        | .619                                   | .679                               | .926                                      |  |  |
| Cn - changes in building codes, bye-<br>laws & govt. Rules                                                             | 67.7027                             | 284.376                        | .536                                   | .666                               | .927                                      |  |  |
| Cn - delayed revision of drawings by designer                                                                          | 66.9324                             | 274.283                        | .832                                   | .859                               | .922                                      |  |  |
| Cn - drawings not properly stamped<br>or certified by designer                                                         | 67.7703                             | 280.590                        | .639                                   | .861                               | .925                                      |  |  |
| Cn - custody and supply of drawings at site                                                                            | 67.6486                             | 283.382                        | .684                                   | .831                               | .925                                      |  |  |
| Cn - delayed approval of drawings by owner or consultant                                                               | 67.3108                             | 277.614                        | .693                                   | .741                               | .924                                      |  |  |
| Cn - material changes due to shortage<br>of material in the market                                                     | 66.9054                             | 287.950                        | .616                                   | .876                               | .926                                      |  |  |
| Cn - material changes due to<br>procurement delays by the contractor<br>Cn - contractor does not follow                | 66.8919                             | 284.372                        | .693                                   | .881                               | .925                                      |  |  |
| recommended construction methods<br>and does not use proper construction<br>equipment                                  | 66.6081                             | 278.296                        | .724                                   | .845                               | .924                                      |  |  |
| Cn - contractor's lack of skilled<br>manpower                                                                          | 66.4595                             | 275.731                        | .807                                   | .920                               | .923                                      |  |  |
| Cn - contractor's lack of<br>comprehension of drawing detail                                                           | 66.5405                             | 274.060                        | .754                                   | .878                               | .923                                      |  |  |
| Cn - contractor's lack of coordination<br>and management during construction<br>Cn - contractor's-staff facing lack of | 67.2432                             | 276.680                        | .655                                   | .695                               | .925                                      |  |  |
| tools, equipment, etc. For<br>measurement, alignment, angular<br>adjustment at corners, etc.                           | 66.8108                             | 287.964                        | .493                                   | .744                               | .928                                      |  |  |
| Cn - contractor and his staff focusing on other projects                                                               | 67.1892                             | 284.594                        | .677                                   | .716                               | .925                                      |  |  |
| Cn - designer's lack of awareness /<br>interest about on-going construction<br>process                                 | 66.8649                             | 286.420                        | .558                                   | .745                               | .927                                      |  |  |
| Cn - un-anticipated weather conditions                                                                                 | 67.4730                             | 285.102                        | .520                                   | .751                               | .927                                      |  |  |
| Cn - unforeseen problems and differing site conditions                                                                 | 66.9865                             | 297.767                        | .387                                   | .668                               | .929                                      |  |  |
| Cn - timing of the proposed changes<br>i.e. Whether at the start or at the end<br>of construction                      | 67.4324                             | 278.961                        | .731                                   | .766                               | .924                                      |  |  |
| Cn – approving authorities do not<br>check that structure is constructed<br>according to approved building plans       | 66.5676                             | 296.386                        | .277                                   | .534                               | .931                                      |  |  |

**Summary Item Statistics** 

24

24

|                  | Reliability Statistics                       |            |
|------------------|----------------------------------------------|------------|
| Cronbach's Alpha | Cronbach's Alpha Based on Standardized Items | N of Items |
| .904             | .903                                         | 14         |

| Summary Item Statistics |       |         |         |       |                      |          |            |  |  |  |
|-------------------------|-------|---------|---------|-------|----------------------|----------|------------|--|--|--|
|                         | Mean  | Minimum | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |  |  |  |
| Item Means              | 2.616 | 1.878   | 3.351   | 1.473 | 1.784                | .238     | 14         |  |  |  |
| Item Variances          | 1.534 | 1.142   | 2.111   | .969  | 1.849                | .075     | 14         |  |  |  |

| Item-Total Statistics                                                            |                                     |                                   |                                        |                                    |                                           |  |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|----------------------------------------|------------------------------------|-------------------------------------------|--|--|--|--|
|                                                                                  | Scale<br>Mean if<br>Item<br>Deleted | Scale Variance<br>if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if<br>Item<br>Deleted |  |  |  |  |
| Pr - economic situation of the<br>country                                        | 33.2703                             | 116.583                           | .642                                   | .600                               | .896                                      |  |  |  |  |
| Pr - nationality of participants                                                 | 34.7432                             | 119.070                           | .546                                   | .625                               | .899                                      |  |  |  |  |
| Pr - organizational structure of<br>owner, consultant and contractor             | 34.2703                             | 123.926                           | .301                                   | .576                               | .909                                      |  |  |  |  |
| Pr - lack of communication and coordination between parties                      | 33.7703                             | 110.399                           | .776                                   | .774                               | .890                                      |  |  |  |  |
| Pr - lack of mutual respect between parties                                      | 34.1081                             | 112.372                           | .665                                   | .762                               | .895                                      |  |  |  |  |
| Pr - conflicts and legal disputes<br>between various parties                     | 34.1486                             | 112.073                           | .741                                   | .767                               | .891                                      |  |  |  |  |
| Pr - participant's honest wrong belief<br>Pr - corruption / fraudulent practices | 33.8108<br>33.5270                  | 119.361<br>126.609                | .565<br>.233                           | .620<br>.572                       | .899<br>.910                              |  |  |  |  |
| Pr - lack of an experienced consultant<br>or his lack of interest in work        | 33.2703                             | 115.049                           | .677                                   | .683                               | .894                                      |  |  |  |  |
| Pr - frequent replacement of<br>consultant during construction                   | 33.4459                             | 116.387                           | .601                                   | .639                               | .897                                      |  |  |  |  |
| Pr - appointment of contractor as consultant                                     | 34.3649                             | 111.934                           | .639                                   | .694                               | .896                                      |  |  |  |  |
| Pr - appointment of designer as<br>consultant                                    | 34.3514                             | 113.026                           | .710                                   | .766                               | .893                                      |  |  |  |  |
| Pr - design firm or contractor firm<br>goes bankrupt or is black-listed          | 34.5135                             | 113.541                           | .655                                   | .603                               | .895                                      |  |  |  |  |
| Pr - withdrawal of licensed and permits                                          | 34.4865                             | 115.431                           | .661                                   | .568                               | .895                                      |  |  |  |  |

### FOR CONTRACTOR

# 1. Design Phase related Indicators

#### **Case Processing Summary**

|       |             | Ν   | %     |
|-------|-------------|-----|-------|
| Cases | Valid       | 100 | 100.0 |
|       | Excluded(a) | 0   | .0    |
|       | Total       | 100 | 100.0 |

a Listwise deletion based on all variables in the procedure.

#### **Reliability Statistics**

| Cronbach's Alpha | Cronbach's Alpha Based on Standardized Items | N of Items |
|------------------|----------------------------------------------|------------|
| .933             | .934                                         | 20         |

|                | Summary Item Statistics |         |         |       |                      |          |            |  |  |
|----------------|-------------------------|---------|---------|-------|----------------------|----------|------------|--|--|
|                | Mean                    | Minimum | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |  |  |
| Item Means     | 2.631                   | 1.975   | 3.450   | 1.475 | 1.747                | .142     | 20         |  |  |
| Item Variances | 1.734                   | .818    | 2.705   | 1.887 | 3.307                | .253     | 20         |  |  |

#### 4. Project related Indicators Reliability Statistic

|                                                                                                                                 |                                     | Item-Total                     | Statistics                             |                                    |                                           |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|----------------------------------------|------------------------------------|-------------------------------------------|
|                                                                                                                                 | Scale<br>Mean if<br>Item<br>Deleted | Scale Variance if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if<br>Item<br>Deleted |
| Ds - contractor is not involved in the                                                                                          | 50.0500                             | 297.279                        | .142                                   | .997                               | .939                                      |
| design conceptual phase<br>Ds - contractor is not involved in the<br>design development phase                                   | 50.1250                             | 300.266                        | .089                                   | .997                               | .940                                      |
| Ds - data provided to the designer is incomplete                                                                                | 49.3250                             | 275.251                        | .769                                   | .922                               | .928                                      |
| Ds - data provided to the designer is incorrect                                                                                 | 50.3750                             | 266.804                        | .683                                   | .948                               | .929                                      |
| Ds - data provided to the designer is late                                                                                      | 49.7750                             | 262.230                        | .873                                   | .948                               | .925                                      |
| Ds - lack of human resources with the designer                                                                                  | 49.6250                             | 287.676                        | .449                                   | .877                               | .933                                      |
| Ds - designer busy in too many<br>assignments<br>Ds - lack of designer's knowledge of                                           | 50.2000                             | 282.010                        | .604                                   | .899                               | .931                                      |
| building bye-laws, codes & govt.<br>Rules                                                                                       | 50.6500                             | 268.644                        | .741                                   | .956                               | .928                                      |
| Ds - lack of designer's knowledge of<br>constructability of proposed design<br>Ds - lack of designer's knowledge of             | 50.0250                             | 272.333                        | .684                                   | .917                               | .929                                      |
| availability of materials for<br>construction                                                                                   | 50.0500                             | 281.844                        | .751                                   | .885                               | .929                                      |
| Ds - lack of designer's knowledge of<br>engg. Design techniques & softwares                                                     | 50.4750                             | 265.743                        | .765                                   | .971                               | .927                                      |
| Ds - lack of designer's knowledge of<br>engineering drafting<br>Ds - lack of designer's knowledge of                            | 50.3000                             | 267.497                        | .812                                   | .953                               | .926                                      |
| suitability of materials for<br>construction                                                                                    | 50.1000                             | 277.067                        | .576                                   | .857                               | .931                                      |
| Ds - frequent replacement of designer by the owner                                                                              | 50.1000                             | 267.733                        | .836                                   | .955                               | .926                                      |
| Ds - personal and social problems of<br>the designer<br>Ds - lack of reward, delayed payment                                    | 50.3000                             | 279.036                        | .537                                   | .762                               | .932                                      |
| or low payment to the designer by the owner                                                                                     | 49.7250                             | 288.204                        | .511                                   | .845                               | .932                                      |
| Ds - too little time given to the<br>designer for completion of design<br>documents                                             | 49.7250                             | 273.281                        | .754                                   | .961                               | .928                                      |
| Ds - lack of project planning and<br>rigorous analysis of requirements and<br>need of the owner at the project start            | 49.6250                             | 266.548                        | .815                                   | .961                               | .926                                      |
| Ds - frequent changes in the<br>proposed design due to owner<br>dissatisfaction                                                 | 50.1500                             | 270.490                        | .782                                   | .900                               | .927                                      |
| Ds – approving authorities do not<br>check that structure is designed<br>according to building bye-laws,<br>codes & govt. Rules | 49.1750                             | 296.148                        | .296                                   | .815                               | .935                                      |

| <b>I</b> ( <b>T</b> ( <b>I</b> | G1 1. 1.   |
|--------------------------------|------------|
| Item-Total                     | Statistics |

# 2. Tendering Phase related Indicators

#### **Reliability Statistics**

| Cronbach's Alpha | Cronbach's Alpha Based on Standardized Items | N of Items |
|------------------|----------------------------------------------|------------|
| .870             | .877                                         | 7          |

|                |       | Summary Item Statistics |         |       |                      |          |            |  |  |
|----------------|-------|-------------------------|---------|-------|----------------------|----------|------------|--|--|
|                | Mean  | Minimum                 | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |  |  |
| Item Means     | 2.493 | 1.950                   | 3.025   | 1.075 | 1.551                | .111     | 7          |  |  |
| Item Variances | 1.492 | .804                    | 2.461   | 1.656 | 3.059                | .394     | 7          |  |  |

#### **Summary Item Statistics**

| Item-Total Statistics                                                                                                                           |                                  |                                   |                                        |                                    |                                           |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|----------------------------------------|------------------------------------|-------------------------------------------|--|--|--|--|--|
|                                                                                                                                                 | Scale Mean<br>if Item<br>Deleted | Scale Variance<br>if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if<br>Item<br>Deleted |  |  |  |  |  |
| Tsc - incomplete or inaccurate<br>design document un-intentionally<br>provided with bidding documents<br>Tsc - incomplete or inaccurate         | 15.2000                          | 28.472                            | .651                                   | .699                               | .854                                      |  |  |  |  |  |
| design document intentionally                                                                                                                   | 14.9750                          | 26.846                            | .727                                   | .692                               | .843                                      |  |  |  |  |  |
| provided with bidding documents<br>Tsc - contract type                                                                                          | 15.5000                          | 32.051                            | .578                                   | .501                               | .861                                      |  |  |  |  |  |
| Tsc - contractor did not consider<br>that the design is exotic, complex or<br>difficult to build and he does not<br>have the required expertise | 14.8750                          | 30.215                            | .721                                   | .550                               | .842                                      |  |  |  |  |  |
| Tsc - selection of contractor on the basis of lowest bid                                                                                        | 14.4250                          | 31.892                            | .707                                   | .531                               | .846                                      |  |  |  |  |  |
| Tsc - amount of performance<br>security / retention money                                                                                       | 14.9000                          | 31.887                            | .697                                   | .513                               | .847                                      |  |  |  |  |  |
| Tsc - absence of third party<br>validation during defect liability<br>period                                                                    | 14.8250                          | 34.712                            | .531                                   | .444                               | .867                                      |  |  |  |  |  |

#### **Item-Total Statistics**

# 3. Construction Phase related Indicators

#### **Reliability Statistics**

| Cronbach's Alpha | Cronbach's Alpha Based on Standardized Items | N of Items |
|------------------|----------------------------------------------|------------|
| .970             | .969                                         | 24         |

|                |       | Summary Item Statistics |         |       |                      |          |            |  |  |  |
|----------------|-------|-------------------------|---------|-------|----------------------|----------|------------|--|--|--|
|                | Mean  | Minimum                 | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |  |  |  |
| Item Means     | 2.639 | 2.000                   | 3.425   | 1.425 | 1.713                | .134     | 24         |  |  |  |
| Item Variances | 1.474 | .656                    | 2.728   | 2.072 | 4.156                | .239     | 24         |  |  |  |

|                                                                                                                    |                                  | item-rotai                     | Statistics                             |                                    |                                           |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|----------------------------------------|------------------------------------|-------------------------------------------|
|                                                                                                                    | Scale Mean<br>if Item<br>Deleted | Scale Variance if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if<br>Item<br>Deleted |
| Cn - owner proposes changes<br>because he had planned to make<br>changes during construction from<br>the beginning | 60.9250                          | 481.610                        | .581                                   |                                    | .970                                      |
| Cn - owner proposes changes<br>during construction due to sudden<br>changes in his requirements /<br>expectations  | 60.5500                          | 468.254                        | .612                                   |                                    | .970                                      |
| Cn - owner proposes changes<br>during construction due to change<br>in ownership                                   | 60.8250                          | 455.071                        | .846                                   |                                    | .968                                      |
| Cn - owner proposes changes to<br>assert his authority and make undue<br>interference in construction              | 59.9000                          | 457.426                        | .776                                   |                                    | .969                                      |
| Cn - owner proposes changes due to<br>financial problems                                                           | 60.7000                          | 451.959                        | .868                                   |                                    | .968                                      |
| Cn - slowness in decision making process by the owner                                                              | 61.2750                          | 465.179                        | .821                                   |                                    | .968                                      |
| Cn - changes in building codes,<br>bye-laws & govt. Rules                                                          | 60.5250                          | 441.333                        | .848                                   |                                    | .968                                      |
| Cn - delayed revision of drawings by designer                                                                      | 61.0750                          | 455.404                        | .906                                   |                                    | .967                                      |
| Cn - drawings not properly stamped<br>or certified by designer                                                     | 61.1000                          | 468.246                        | .705                                   | -                                  | .969                                      |
| Cn - custody and supply of drawings at site                                                                        | 60.8750                          | 449.651                        | .833                                   |                                    | .968                                      |
| Cn - delayed approval of drawings                                                                                  | 60.4000                          | 465.579                        | .677                                   |                                    | .969                                      |

|                                                                                                                                        | Scale Mean<br>if Item<br>Deleted | Scale Variance<br>if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if<br>Item<br>Deleted |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|----------------------------------------|------------------------------------|-------------------------------------------|
| by owner or consultant<br>Cn - material changes due to<br>shortage of material in the market                                           | 60.5500                          | 452.767                           | .784                                   |                                    | .969                                      |
| Cn - material changes due to<br>procurement delays by the<br>contractor                                                                | 60.8750                          | 478.215                           | .604                                   |                                    | .970                                      |
| Cn - contractor does not follow<br>recommended construction methods<br>and does not use proper<br>construction equipment               | 60.4000                          | 454.041                           | .890                                   |                                    | .968                                      |
| Cn - contractor's lack of skilled<br>manpower                                                                                          | 60.3500                          | 455.874                           | .838                                   |                                    | .968                                      |
| Cn - contractor's lack of<br>comprehension of drawing detail<br>Cn - contractor's lack of                                              | 61.3250                          | 467.866                           | .662                                   | -                                  | .969                                      |
| coordination and management<br>during construction                                                                                     | 60.4250                          | 480.148                           | .599                                   |                                    | .970                                      |
| Cn - contractor's-staff facing lack<br>of tools, equipment, etc. For<br>measurement, alignment, angular<br>adjustment at corners, etc. | 61.0000                          | 462.821                           | .826                                   |                                    | .968                                      |
| Cn - contractor and his staff focusing on other projects                                                                               | 60.5750                          | 451.892                           | .842                                   |                                    | .968                                      |
| Cn - designer's lack of awareness /<br>interest about on-going construction<br>process                                                 | 61.1500                          | 455.515                           | .853                                   |                                    | .968                                      |
| Cn - un-anticipated weather<br>conditions                                                                                              | 60.0750                          | 489.353                           | .274                                   |                                    | .972                                      |
| Cn - unforeseen problems and differing site conditions                                                                                 | 60.3250                          | 477.558                           | .536                                   |                                    | .970                                      |
| Cn - timing of the proposed changes<br>i.e. Whether at the start or at the end<br>of construction                                      | 60.6250                          | 468.240                           | .764                                   |                                    | .969                                      |
| Cn – approving authorities do not<br>check that structure is constructed<br>according to approved building<br>plans                    | 60.6500                          | 446.131                           | .925                                   |                                    | .967                                      |

# 4. **Project related Indicators**

|                  | Reliability Statistics                       |            |
|------------------|----------------------------------------------|------------|
| Cronbach's Alpha | Cronbach's Alpha Based on Standardized Items | N of Items |
| .957             | .958                                         | 14         |

| _              | Summary Item Statistics |         |         |       |                      |          |            |  |  |
|----------------|-------------------------|---------|---------|-------|----------------------|----------|------------|--|--|
|                | Mean                    | Minimum | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |  |  |
| Item Means     | 2.380                   | 1.875   | 3.000   | 1.125 | 1.600                | .143     | 14         |  |  |
| Item Variances | 1.714                   | .763    | 2.400   | 1.637 | 3.144                | .201     | 14         |  |  |

|                                                                      | Item-Total Statistics            |                                |                                        |                                    |                                        |  |  |  |  |  |
|----------------------------------------------------------------------|----------------------------------|--------------------------------|----------------------------------------|------------------------------------|----------------------------------------|--|--|--|--|--|
|                                                                      | Scale Mean<br>if Item<br>Deleted | Scale Variance if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if Item<br>Deleted |  |  |  |  |  |
| Pr - economic situation of the<br>country                            | 30.3250                          | 186.328                        | .767                                   | .907                               | .954                                   |  |  |  |  |  |
| Pr - nationality of participants                                     | 31.4500                          | 190.869                        | .765                                   | .958                               | .954                                   |  |  |  |  |  |
| Pr - organizational structure of<br>owner, consultant and contractor | 31.2750                          | 191.128                        | .777                                   | .896                               | .954                                   |  |  |  |  |  |
| Pr - lack of communication and coordination between parties          | 30.8750                          | 182.317                        | .847                                   | .944                               | .952                                   |  |  |  |  |  |
| Pr - lack of mutual respect between parties                          | 30.7250                          | 184.820                        | .687                                   | .894                               | .957                                   |  |  |  |  |  |

### 77

|                                                                         | Scale Mean<br>if Item<br>Deleted | Scale Variance<br>if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if Item<br>Deleted |
|-------------------------------------------------------------------------|----------------------------------|-----------------------------------|----------------------------------------|------------------------------------|----------------------------------------|
| Pr - conflicts and legal disputes<br>between various parties            | 31.1250                          | 180.625                           | .880                                   | .978                               | .951                                   |
| Pr - participant's honest wrong<br>belief                               | 30.6500                          | 193.362                           | .727                                   | .876                               | .955                                   |
| Pr - corruption / fraudulent practices<br>Pr - lack of an experienced   | 30.5000                          | 200.410                           | .606                                   | .725                               | .958                                   |
| consultant or his lack of interest in work                              | 30.3750                          | 183.933                           | .801                                   | .933                               | .953                                   |
| Pr - frequent replacement of consultant during construction             | 30.9000                          | 181.118                           | .883                                   | .926                               | .951                                   |
| Pr - appointment of contractor as consultant                            | 31.3750                          | 186.804                           | .742                                   | .964                               | .955                                   |
| Pr - appointment of designer as consultant                              | 31.2500                          | 184.038                           | .804                                   | .898                               | .953                                   |
| Pr - design firm or contractor firm<br>goes bankrupt or is black-listed | 31.1750                          | 192.404                           | .628                                   | .938                               | .957                                   |
| Pr - withdrawal of licensed and permits                                 | 31.2250                          | 179.922                           | .868                                   | .950                               | .952                                   |

# FOR CLIENT1.Design I

# Design Phase related Indicators Case Processing Summary

|       |             | Ν  | %     |
|-------|-------------|----|-------|
| Cases | Valid       | 84 | 100.0 |
|       | Excluded(a) | 0  | .0    |
|       | Total       | 84 | 100.0 |

a Listwise deletion based on all variables in the procedure.

| Reliability Statistics |                                              |            |  |  |  |  |  |
|------------------------|----------------------------------------------|------------|--|--|--|--|--|
| Cronbach's Alpha       | Cronbach's Alpha Based on Standardized Items | N of Items |  |  |  |  |  |
| .922                   | .917                                         | 20         |  |  |  |  |  |

|                |       | Summary Item Statistics |         |       |                      |          |            |  |
|----------------|-------|-------------------------|---------|-------|----------------------|----------|------------|--|
|                | Mean  | Minimum                 | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |  |
| Item Means     | 3.039 | 2.158                   | 3.737   | 1.579 | 1.732                | .246     | 20         |  |
| Item Variances | 1.615 | .579                    | 3.117   | 2.538 | 5.384                | .290     | 20         |  |

| Item-Total Statistics                                                             |                                  |                                |                                        |                                    |                                        |  |  |  |
|-----------------------------------------------------------------------------------|----------------------------------|--------------------------------|----------------------------------------|------------------------------------|----------------------------------------|--|--|--|
|                                                                                   | Scale Mean<br>if Item<br>Deleted | Scale Variance if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if Item<br>Deleted |  |  |  |
| Ds - contractor is not involved in the design conceptual phase                    | 58.4737                          | 269.708                        | 281                                    |                                    | .933                                   |  |  |  |
| Ds - contractor is not involved in the design development phase                   | 58.2105                          | 264.509                        | 129                                    |                                    | .932                                   |  |  |  |
| Ds - data provided to the designer is incomplete                                  | 57.0526                          | 237.830                        | .620                                   |                                    | .918                                   |  |  |  |
| Ds - data provided to the designer is incorrect                                   | 57.4737                          | 224.263                        | .637                                   |                                    | .918                                   |  |  |  |
| Ds - data provided to the designer is late                                        | 57.5789                          | 230.702                        | .692                                   |                                    | .916                                   |  |  |  |
| Ds - lack of human resources with<br>the designer                                 | 57.3158                          | 234.561                        | .700                                   |                                    | .916                                   |  |  |  |
| Ds - designer busy in too many assignments                                        | 57.6842                          | 233.450                        | .660                                   |                                    | .917                                   |  |  |  |
| Ds - lack of designer's knowledge<br>of building bye-laws, codes &<br>govt. Rules | 58.0000                          | 222.556                        | .826                                   |                                    | .913                                   |  |  |  |
| Ds - lack of designer's knowledge<br>of constructability of proposed<br>design    | 58.6316                          | 237.912                        | .635                                   |                                    | .918                                   |  |  |  |
| Ds - lack of designer's knowledge                                                 | 57.7895                          | 224.398                        | .818                                   |                                    | .913                                   |  |  |  |

#### -Total Statistic

|                                                                           | Scale Mean<br>if Item<br>Deleted | Scale Variance if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if Item<br>Deleted |
|---------------------------------------------------------------------------|----------------------------------|--------------------------------|----------------------------------------|------------------------------------|----------------------------------------|
| of availability of materials for                                          |                                  |                                |                                        |                                    |                                        |
| construction                                                              |                                  |                                |                                        |                                    |                                        |
| Ds - lack of designer's knowledge                                         |                                  |                                |                                        |                                    |                                        |
| of engg. Design techniques & softwares                                    | 58.1053                          | 226.544                        | .763                                   | •                                  | .914                                   |
| Ds - lack of designer's knowledge                                         | 58,3158                          | 229.228                        | .822                                   |                                    | 014                                    |
| of engineering drafting                                                   | 58.3158                          | 229.228                        | .822                                   |                                    | .914                                   |
| Ds - lack of designer's knowledge                                         |                                  |                                |                                        |                                    |                                        |
| of suitability of materials for                                           | 57.7895                          | 224.953                        | .804                                   | •                                  | .913                                   |
| construction                                                              |                                  |                                |                                        |                                    |                                        |
| Ds - frequent replacement of<br>designer by the owner                     | 58.0000                          | 238.444                        | .479                                   |                                    | .921                                   |
| Ds - personal and social problems                                         |                                  |                                |                                        |                                    |                                        |
| of the designer                                                           | 58.4211                          | 252.368                        | .336                                   |                                    | .923                                   |
| Ds - lack of reward, delayed                                              |                                  |                                |                                        |                                    |                                        |
| payment or low payment to the                                             | 57.2105                          | 240.842                        | .608                                   |                                    | .919                                   |
| designer by the owner                                                     |                                  |                                |                                        |                                    |                                        |
| Ds - too little time given to the                                         |                                  |                                |                                        |                                    |                                        |
| designer for completion of design                                         | 57.2632                          | 230.427                        | .704                                   |                                    | .916                                   |
| documents                                                                 |                                  |                                |                                        |                                    |                                        |
| Ds - lack of project planning and                                         |                                  |                                |                                        |                                    |                                        |
| rigorous analysis of requirements<br>and need of the owner at the project | 57.1579                          | 233.474                        | .737                                   |                                    | .916                                   |
| start                                                                     |                                  |                                |                                        |                                    |                                        |
| Ds - frequent changes in the                                              |                                  |                                |                                        |                                    |                                        |
| proposed design due to owner                                              | 57.2105                          | 229.398                        | .758                                   |                                    | .915                                   |
| dissatisfaction                                                           | 07.2100                          | 227.570                        | .,                                     | •                                  | ., 10                                  |
| Ds - approving authorities do not                                         |                                  |                                |                                        |                                    |                                        |
| check that structure is designed                                          | 57.3158                          | 245,895                        | .395                                   |                                    | .922                                   |
| according to building bye-laws,                                           | 57.5138                          | 245.695                        | .393                                   |                                    | .922                                   |
| codes & govt. Rules                                                       |                                  |                                |                                        |                                    |                                        |

# 2. Tendering Phase related Indicators

#### **Reliability Statistics**

| Cronbach's Alpha | Cronbach's Alpha Based on Standardized Items | N of Items |
|------------------|----------------------------------------------|------------|
| .862             | .837                                         | 7          |

|                | Summary Item Statistics |         |         |       |           |          |            |  |
|----------------|-------------------------|---------|---------|-------|-----------|----------|------------|--|
|                |                         |         |         |       | Maximum / |          |            |  |
|                | Mean                    | Minimum | Maximum | Range | Minimum   | Variance | N of Items |  |
| Item Means     | 2.910                   | 2.526   | 3.105   | .579  | 1.229     | .039     | 7          |  |
| Item Variances | 2.020                   | .708    | 2.608   | 1.901 | 3.686     | .447     | 7          |  |

|                                                                                                                                                 |                       | Item-Tota       | l Statistics            |                     |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|-------------------------|---------------------|-----------------------------|
|                                                                                                                                                 | Scale Mean<br>if Item | Scale Variance  | Corrected<br>Item-Total | Squared<br>Multiple | Cronbach's<br>Alpha if Item |
|                                                                                                                                                 | Deleted               | if Item Deleted | Correlation             | Correlation         | Deleted                     |
| Tsc - incomplete or inaccurate<br>design document un-intentionally<br>provided with bidding documents                                           | 17.4211               | 36.480          | .771                    | .916                | .821                        |
| Tsc - incomplete or inaccurate<br>design document intentionally<br>provided with bidding documents                                              | 17.3158               | 35.784          | .839                    | .821                | .810                        |
| Tsc - contract type                                                                                                                             | 17.4211               | 39.146          | .632                    | .647                | .843                        |
| Tsc - contractor did not consider<br>that the design is exotic, complex or<br>difficult to build and he does not<br>have the required expertise | 17.3684               | 39.468          | .713                    | .666                | .831                        |
| Tsc - selection of contractor on the basis of lowest bid                                                                                        | 17.8421               | 54.140          | 058                     | .247                | .902                        |
| Tsc - amount of performance security / retention money                                                                                          | 17.2632               | 38.871          | .848                    | .907                | .815                        |
| Tsc - absence of third party<br>validation during defect liability<br>period                                                                    | 17.5789               | 40.924          | .585                    | .485                | .849                        |

### **3.**Construction Phase related Indicators

| Reliab           |                                              |            |
|------------------|----------------------------------------------|------------|
| Cronbach's Alpha | Cronbach's Alpha Based on Standardized Items | N of Items |
| .938             | .929                                         | 24         |

|                | Summary Item Statistics |         |         |       |                      |          |            |  |
|----------------|-------------------------|---------|---------|-------|----------------------|----------|------------|--|
|                | Mean                    | Minimum | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |  |
| Item Means     | 2.941                   | 1.316   | 3.579   | 2.263 | 2.720                | .356     | 24         |  |
| Item Variances | 1.490                   | .339    | 2.690   | 2.351 | 7.931                | .292     | 24         |  |

|                                                                                                                                        |                                  | Item-10ta                         | II Statistics                          |                                    | -                                      |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|----------------------------------------|------------------------------------|----------------------------------------|
|                                                                                                                                        | Scale Mean<br>if Item<br>Deleted | Scale Variance<br>if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if Item<br>Deleted |
| Cn - owner proposes changes<br>because he had planned to make<br>changes during construction from<br>the beginning                     | 68.3684                          | 347.357                           | .096                                   |                                    | .942                                   |
| Cn - owner proposes changes<br>during construction due to sudden<br>changes in his requirements /<br>expectations                      | 68.3158                          | 349.673                           | .070                                   |                                    | .941                                   |
| Cn - owner proposes changes<br>during construction due to change<br>in ownership                                                       | 68.5789                          | 352.813                           | 007                                    |                                    | .941                                   |
| Cn - owner proposes changes to<br>assert his authority and make undue<br>interference in construction                                  | 69.2632                          | 354.649                           | 079                                    |                                    | .941                                   |
| Cn - owner proposes changes due to financial problems                                                                                  | 67.1053                          | 317.433                           | .685                                   |                                    | .934                                   |
| Cn - slowness in decision making process by the owner                                                                                  | 67.3684                          | 322.579                           | .799                                   |                                    | .933                                   |
| Cn - changes in building codes,<br>bye-laws & govt. Rules                                                                              | 68.1579                          | 317.140                           | .741                                   |                                    | .933                                   |
| Cn - delayed revision of drawings<br>by designer                                                                                       | 67.1053                          | 316.433                           | .784                                   |                                    | .933                                   |
| Cn - drawings not properly stamped<br>or certified by designer                                                                         | 68.0526                          | 317.386                           | .761                                   |                                    | .933                                   |
| Cn - custody and supply of drawings at site                                                                                            | 68.3158                          | 320.673                           | .673                                   | •                                  | .934                                   |
| Cn - delayed approval of drawings<br>by owner or consultant                                                                            | 67.2105                          | 305.731                           | .782                                   | •                                  | .932                                   |
| Cn - material changes due to<br>shortage of material in the market                                                                     | 67.2632                          | 330.760                           | .528                                   |                                    | .936                                   |
| Cn - material changes due to<br>procurement delays by the<br>contractor                                                                | 67.2632                          | 314.094                           | .718                                   | -                                  | .933                                   |
| Cn - contractor does not follow<br>recommended construction methods<br>and does not use proper<br>construction equipment               | 67.3158                          | 331.117                           | .553                                   |                                    | .936                                   |
| Cn - contractor's lack of skilled manpower                                                                                             | 67.1579                          | 308.474                           | .880                                   |                                    | .931                                   |
| Cn - contractor's lack of comprehension of drawing detail                                                                              | 67.0526                          | 313.164                           | .753                                   |                                    | .933                                   |
| Cn - contractor's lack of<br>coordination and management<br>during construction                                                        | 67.2632                          | 339.649                           | .365                                   |                                    | .938                                   |
| Cn - contractor's-staff facing lack<br>of tools, equipment, etc. For<br>measurement, alignment, angular<br>adjustment at corners, etc. | 67.3158                          | 318.784                           | .744                                   |                                    | .933                                   |
| Cn - contractor and his staff<br>focusing on other projects                                                                            | 67.3684                          | 317.023                           | .764                                   |                                    | .933                                   |
| Cn - designer's lack of awareness /                                                                                                    | 67.5263                          | 319.041                           | .720                                   | •                                  | .934                                   |

|                                                                                                                     | Scale Mean<br>if Item<br>Deleted | Scale Variance<br>if Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if Item<br>Deleted |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|----------------------------------------|------------------------------------|----------------------------------------|
| interest about on-going construction                                                                                |                                  |                                   |                                        |                                    |                                        |
| process                                                                                                             |                                  |                                   |                                        |                                    |                                        |
| Cn - un-anticipated weather<br>conditions                                                                           | 68.0526                          | 320.608                           | .745                                   |                                    | .933                                   |
| Cn - unforeseen problems and<br>differing site conditions                                                           | 67.4211                          | 328.480                           | .687                                   |                                    | .935                                   |
| Cn - timing of the proposed changes<br>i.e. Whether at the start or at the end<br>of construction                   | 67.4737                          | 310.374                           | .756                                   |                                    | .933                                   |
| Cn – approving authorities do not<br>check that structure is constructed<br>according to approved building<br>plans | 67.0000                          | 334.000                           | .418                                   |                                    | .938                                   |

# 4. Overall Project Phase related Indicators

#### **Reliability Statistics**

| Cronbach's Alpha | Cronbach's Alpha Based on Standardized Items | N of Items |
|------------------|----------------------------------------------|------------|
| .941             | .941                                         | 14         |

|                | Summary Item Statistics |         |         |       |                      |          |            |
|----------------|-------------------------|---------|---------|-------|----------------------|----------|------------|
|                | Mean                    | Minimum | Maximum | Range | Maximum /<br>Minimum | Variance | N of Items |
| Item Means     | 2.789                   | 1.842   | 3.579   | 1.737 | 1.943                | .313     | 14         |
| Item Variances | 1.837                   | .918    | 2.778   | 1.860 | 3.025                | .321     | 14         |

|                                                                       | Scale Mean<br>if Item | Scale Variance  | Corrected<br>Item-Total | Squared<br>Multiple | Cronbach's<br>Alpha if Item<br>Deleted |
|-----------------------------------------------------------------------|-----------------------|-----------------|-------------------------|---------------------|----------------------------------------|
|                                                                       | Deleted               | if Item Deleted | Correlation             | Correlation         | Deleted                                |
| Pr - economic situation of the<br>country                             | 35.4737               | 173.596         | .736                    | .871                | .936                                   |
| Pr - nationality of participants                                      | 37.2105               | 186.287         | .648                    | .960                | .939                                   |
| Pr - organizational structure of<br>owner, consultant and contractor  | 36.4211               | 189.813         | .450                    | .891                | .943                                   |
| Pr - lack of communication and<br>coordination between parties        | 35.7895               | 167.175         | .858                    | .927                | .932                                   |
| Pr - lack of mutual respect between parties                           | 36.2105               | 167.287         | .846                    | .900                | .933                                   |
| Pr - conflicts and legal disputes<br>between various parties          | 36.0526               | 164.164         | .872                    | .971                | .932                                   |
| Pr - participant's honest wrong<br>belief                             | 36.3684               | 181.690         | .711                    | .935                | .937                                   |
| Pr - corruption / fraudulent practices<br>Pr - lack of an experienced | 35.5263               | 180.041         | .723                    | .938                | .937                                   |
| consultant or his lack of interest in<br>work                         | 35.7368               | 178.316         | .728                    | .845                | .937                                   |
| Pr - frequent replacement of<br>consultant during construction        | 35.7895               | 172.398         | .781                    | .908                | .935                                   |
| Pr - appointment of contractor as consultant                          | 37.0526               | 183.608         | .562                    | .850                | .941                                   |
| Pr - appointment of designer as consultant                            | 36.5789               | 175.257         | .650                    | .940                | .939                                   |
| Pr - design firm or contractor firm goes bankrupt or is black-listed  | 36.8421               | 180.140         | .609                    | .846                | .940                                   |
| Pr - withdrawal of licensed and permits                               | 36.6316               | 175.912         | .740                    | .909                | .936                                   |