
 

 

 

Speech Corpus Generation For Low Resource 

Language (Pashto) 

 

 

 

 

 

 

 

 

By 

Muhammad Shoaib 

Supervisor: Dr. Shibli Nisar 

 

A thesis submitted to the faculty of the Computer Science Department, Military College 

of Signals, National University of Sciences and Technology, Rawalpindi in partial 

fulfillment of the requirements for the degree of MS in Software Engineering 

December 2022



 

 

 

THESIS ACCEPTANCE CERTIFICATE 

 

 Certified that the final copy of the MS/MPhil thesis written by Mr. Maj 

Muhammad Shoaib, Registration No NUST00000359455, of Military College of Signals, 

has been vetted by the undersigned, found complete in all respect as per NUST 

Statutes/Regulations, is free of plagiarism, errors, and mistakes and is accepted as partial, 

fulfillment for the award of MS/MPhil degree. It is further certified that necessary 

amendments as pointed out by GEC members of the student have been also incorporated in 

the said thesis. 

 

 

     Signature: _________________________ 

Name of Supervisor: Asst Prof Shibli Nisar, PhD 

Date: _____________________________ 

 

 

 

Signature (HoD): _____________________ 

Date: _____________________________ 

 

 

 

Signature (Dean/Principal): _____________ 

Date: _____________________________ 

 

 



 

 

 

Abstract  

Meta AI’s new unsupervised speech recognition framework (wav2vec variants) is the latest 

development of several years of work in speech recognition models, data sets, and training 

techniques. The wav2vec model has changed the way traditional ASR worked, now a few 

hours of spoken data is required to obtain transcribed speech. Despite this, over 6000 

languages couldn't exploit the opportunity because they lack the required speech data 

corpus. The corpus should contain 4-5 hours of speech data on average, which is a 

challenge, especially for a low-resource language. To deal with the challenge the current 

approach is to manually record speech and then transcribe it. Such an approach is resource 

intensive and costly. On the internet, there is a wealth of speech data. To capitalize on such 

data, we will use an automated speech utilization process instead of manual recording. In 

our thesis, we have proposed a model that automatically fetches audio data from free 

video/audio sharing websites and segments them to produce desired length audio frames. 

The proposed model is generic and can be implemented for any low-resource language. 

Furthermore, using the proposed pipeline we generated speech data for the Pashto language. 

 

 

 

 

 



 

 

 

Declaration 

I hereby declare that no portion of the work presented in this thesis has been submitted in 

support of another award or qualification either at this institution or elsewhere 

 

 

 

 

 

 

 

 

 

 

 

 

ii 



 

 

 

Dedication 

“In the name of Allah, the most Beneficent, the most Merciful" 

I dedicate this thesis to my family, teachers, and acquaintances who supported me 

each step of the way 

 

 

 

 

 

 

 

 

 

 

iii 



 

 

 

Acknowledgments 

All praises to Allah for the strengths and His blessing in completing this thesis. 

I would like to convey my gratitude to my supervisor, Asst Prof. Shibli Nisar, Ph.D., for his 

supervision and constant support. His invaluable help of constructive comments and 

suggestions throughout the experimental and thesis work are major contributions to the 

success of this research. Also, I would thank my committee members; Asst Prof. Imran 

Qureshi, Ph.D., and Asst Prof. Yawar Abbas Bangash, Ph.D. for their support and 

knowledge extended during the formulation of this research study. 

Last, but not least, I am highly thankful to my mother (late), and companion. They have 

always stood by my aspirations and have been a great source of motivation for me. I would 

like to thank them for all their care, love, and support through my times of stress and 

excitement. 

 

 

 

 

 

 

 

 



 

 

 

vi 

Table of Contents 

Page 

Thesis Acceptance Certificate .........................................................................................     i 

Abstract ...........................................................................................................................     ii 

Declaration ......................................................................................................................     iii 

Dedication .......…………………………………………………………………………     iv 

Acknowledgement ..........................................................................................................     v 

Table of Contents ………………………………….……………………………….......    vii 

List of Figures …………………………………………………….……………….…...   viii 

List of Tables ..................................................................................................................     ix 

 

Chapter 

1. INTRODUCTION………………………………………………………………...…1 

1.1. Overview…………………………………………………………………………2 

1.2. Motivation………………………………………………………………………..3 

1.3. Problem Statement……………………………………………………………….4 

1.4. Objectives…………………………………………………………………….….5 

1.5. Thesis Contribution……………………………………………………………...6 

1.6. Thesis Organization……………………………………………………………...7 

2. LITERATURE REVIEW ….…………8 

2.1. Available Research  

2.2. What is a Low Resource Language ?…………………………………...9 

2.3. ASR Trends Then and Now……………………………………………………..10 

2.4. ASR Challenges………………………………………………………………...11 

2.5. Implications for a Low-Resource Language…………………………….12 

3. PASHTOSPEECH CORPUS ANALYSIS...………………………………………21 

3.1. Description……………………………………………………………………...22 



 

 

 

3.2. Speakers and Accent Data………...……………………………………………25 

3.3. Audio Format and Encoding……………………………………………………...27 

3.4. Audio Parameters……………………………………………………………….22 

3.5. Availability……………………………………………………………………..28 

vii 

4. VIDEO STREAMING TECHNOLOGY...………………………………………...10 

4.1. How Video Streaming Works?.............................................................................11 

4.2. Streaming vs Downloading……………………………………..........................12 

4.3. Types of Video Streaming…………………………………………………...13 

4.4. Technical Approaches……………………...…………………………………..16 

4.5. How YouTube Streaming Works?……………………………………………20 

5. METHODOLOGY...…………………..…………………………21 

5.1. Data Collection Process…………………………………………………….22 

5.2. Data Preprocessing…………………………………………………………..33 

5.3. Model Development…………………………………………………………….44 

5.3.1. Raw Audio Download…………………………………………………44 

5.3.2. Audio Cleaning………………………………………………………….55 

5.3.3. Audio Parameters setting……………………………………………….55 

5.3.4. Audio segmentation……………………………………………………55 

5.3.5. Clean Speech……………………………………………………………66 

5.3.6. Text Processing…………………………………………………………66 

5.4. Data Postprocessing…………………………………………………………….66 

6. MODEL EVALUATION…………………………………………………………22 

6.1. Evaluation Metrics………………………………………………………………35 

6.2. Experiments & Results…………………………………………………………34 

7. Future work & Conclusion ……………………………………………………….….23 

Notations…………………………………………………………………………….25 

References………………………………………………………………………...…26 



 

 

 

viii 

List of Figures 

1.1 Cognitive cycle………………………………………………………………….   6 

1.2 E2E ASR system…………………………………………………………………7 

1.3 Traditional Machine Learning……………………………………………………8 

1.4 Transfer Learning……………………………………………………………….9 

1.5 Statistics of “Self-Supervised Learning” Term Appearing in Papers………….10 

3.1 Audio File Organization……………………………………………………….11 

3.2 Naming convention of folders and audio files of PashtoSpeech……………….12 

4.1 Video Streaming Generic Process………………………………………………13 

4.2 Real-Time Encoding……………………………………………………………14 

4.3 Pre-Recorded Encoding 

5.1 PashtoSpeech Corpus Model Block Diagram 

5.2 Different Sampling Rate 

5.3 Conversion of Stereo to a Mono Channel 

5.4 Pashto Alphabets 

5.5 Characters that Do not Connect from the Left 

5.6 Pashto Numbers 0-9 

5.7 Pashto Special Characters 

5.8 Audio Files IDs in PashtoSpeech   

 

 



 

 

 

ix 

List of Tables 

 

1.1 Resource-Rich Language Corpora ……………………………………………….   6 

 

1.2 Resource-Low Language Corpora …………………..…………………….   21 

 

3.1 Architecture of proposed detection system……………………………………......... 22 

 

5.1 Video URLs Selected 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

1 

 

 



 

ii 

 

THESIS ACCEPTANCE CERTIFICATE 

 

 Certified that the final copy of the MS/MPhil thesis written by Mr. Maj 

Muhammad Shoaib, Registration No NUST00000359455, of Military College of Signals, 

has been vetted by the undersigned, found complete in all respect as per NUST 

Statutes/Regulations, is free of plagiarism, errors, and mistakes and is accepted as partial, 

fulfillment for the award of MS/MPhil degree. It is further certified that necessary 

amendments as pointed out by GEC members of the student have been also incorporated in 

the said thesis. 

 

 

     Signature: _________________________ 

Name of Supervisor: Asst Prof Shibli Nisar, PhD 

Date: _____________________________ 

 

 

 

Signature (HoD): _____________________ 

Date: _____________________________ 

 

 

 

Signature (Dean/Principal): _____________ 

Date: _____________________________ 

 

 



 

iii 

 

Abstract  

Meta AI’s new unsupervised speech recognition framework (wav2vec variants) is the latest 

development of several years of work in speech recognition models, data sets, and training 

techniques. The wav2vec model has changed the way traditional ASR worked, now a few 

hours of spoken data is required to obtain transcribed speech. Despite this, over 6000 

languages couldn't exploit the opportunity because they lack the required speech data 

corpus. The corpus should contain 4-5 hours of speech data on average, which is a 

challenge, especially for a low-resource language. To deal with the challenge the current 

approach is to manually record speech and then transcribe it. Such an approach is resource 

intensive and costly. On the internet, there is a wealth of speech data. To capitalize on such 

data, we will use an automated speech utilization process instead of manual recording. In 

our thesis, we have proposed a model that automatically fetches audio data from free 

video/audio sharing websites and segments them to produce desired length audio frames. 

The proposed model is generic and can be implemented for any low-resource language. 

Furthermore, using the proposed pipeline we generated speech data for the Pashto language. 

 

 

 

 

 



 

iv 

 

Declaration 

I hereby declare that no portion of the work presented in this thesis has been submitted in 

support of another award or qualification either at this institution or elsewhere 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

 

Dedication 

“In the name of Allah, the most Beneficent, the most Merciful" 

I dedicate this thesis to my family, teachers, and acquaintances who supported me 

each step of the way 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

 

Acknowledgments 

All praises to Allah for the strengths and His blessing in completing this thesis. 

I would like to convey my gratitude to my supervisor, Asst Prof. Shibli Nisar, Ph.D., for his 

supervision and constant support. His invaluable help of constructive comments and 

suggestions throughout the experimental and thesis work are major contributions to the 

success of this research. Also, I would thank my committee members; Asst Prof. Imran 

Qureshi, Ph.D., and Asst Prof. Yawar Abbas Bangash, Ph.D. for their support and 

knowledge extended during the formulation of this research study. 

Last, but not least, I am highly thankful to my mother (late), and companion. They have 

always stood by my aspirations and have been a great source of motivation for me. I would 

like to thank them for all their care, love, and support through my times of stress and 

excitement. 

 

 

 

 

 

 

 

 



 

vii 

 

Table of Contents 

Page 

Thesis Acceptance Certificate .........................................................................................     i 

Abstract ...........................................................................................................................     ii 

Declaration ......................................................................................................................     iii 

Dedication .......…………………………………………………………………………     iv 

Acknowledgement ..........................................................................................................      v 

Table of Contents ………………………………….……………………………….......     vi 

List of Figures …………………………………………………….……………….…...    vii 

List of Tables ..................................................................................................................    viii 

 

Chapter 

1. INTRODUCTION………………………………………………………………...     1 

1.1. Overview………………………………………………………………………     1 

1.2. Motivation……………………………………………………………………..     5 

1.3. Problem Statement…………………………………………………………….     5 

1.4. Objectives……………………………………………………………………..     6 

1.5. Thesis Contribution……………………………………………………………    6 

1.6. Thesis Organization……………………………………………………………    7 

2. LITERATURE REVIEW ….………….................................................................    8 

2.1. Dynamics of a Low Resource Language (LRL)................................................    8  

2.2. Available Research.....................................…………………………………...    10 

3. PASHTOSPEECH CORPUS ANALYSIS...……………………………………..     13 

3.1. Description……………………………………………………………………    13 

3.2. Speakers and Accent Data………...………………………………………….     14 

3.3. Audio Format and Encoding…………………………………………………     15 

3.4. Audio Parameters……………………………………………………………      15 

3.5. Availability…………………………………………………………………..      15 



 

viii 

 

vii 

4. VIDEO STREAMING TECHNOLOGY...………………………………………     16 

4.1. How Video Streaming Works?........................................................................     16 

4.2. Streaming vs Downloading……………………………………......................     17 

4.3. Technical Approaches......................................................................................     17 

4.4. Types of Video Streaming…………………………………………………...     17 

4.5. How YouTube Streaming Works?……………………………………………    18 

5. METHODOLOGY...…………………..…………………………...........................     19 

5.1. Data Collection Process……………………………………………………...     19 

5.2. Data Preprocessing…………………………………………………………..      21 

5.3. Model Development………………………………………………………….     22 

5.3.1. Raw Audio Download…………………………………………………    22 

5.3.2. Audio Cleaning………………………………………………………..     25 

5.3.3. Audio Parameters Setting……………………………………………...    26 

5.3.4. Audio Segmentation……………………………………………………   28 

5.3.5. Clean Speech…………………………………………………………..    31 

5.3.6. Text Processing………………………………………………………..    31 

5.4. Data Postprocessing…………………………………………………………..    32 

6. MODEL EVALUATION………………………………………………………...    33 

6.1. Evaluation Metrics…………………………………………………………….   33 

6.2. Experiments.................………………………………………………………..   36 

7. FUTURE WORK & CONCLUSION ……………………………………….….   44 

Notations…………………………………………………………………………..   46 

References………………………………………………………………………....   47 

 

 

 



 

ix 

 

List of Figures 

1.1 Traditional ASR Model …………………………………………………………    2 

1.2 E2E ASR system ………………………………………………...……………...    2 

1.3 Traditional Machine Learning……………………………………………………   3 

1.4 Transfer Learning……………………………………………………………….     3 

1.5 Statistics of “Self-Supervised Learning” Term Appearing in Papers………….     4 

3.1 Audio File Organization……………………………………………………….    13 

3.2 Naming Convention of Folders and Audio Files (Pashto Speech) …..................  14 

4.1 Video Streaming Generic Process………………………………………….......   16 

5.1 Pashto Speech Corpus Model Block Diagram …………………………………   22 

5.2 Different Sampling Rates ....................................................................................  27 

5.3 Conversion of Stereo to a Mono Channel .........................................................    28  

5.4 Audio Files IDs in Pashto Speech ......................................................................   32 

5.5 Transcribe Pashto Text in Pashto Speech ..........................................................   32 

6.1 Silent Audio File (PRAAT image) ...................................................................    34 

6.2 Partly Silent Audio File (PRAAT image) .........................................................    34 

6.3 Sliced Only Audio File (PRAAT image) ..........................................................    35 

6.4 Sliced and Silent Audio Files (PRAAT image).....................................................35 

  

 

 

 



 

x 

 

List of Tables 

 

3.1 Clean Speech Files ……………………………………………….............    14 

5.1 Video URLs Selected ………………….......................…………………….    21 

6.1 Audio Extraction for URL Input Data ……………………...…...................    37 

6.2 Audio Source Separation Data...................................................................     37    

6.3 Speech Source Separation Data .................................................................    38 

6.4 Audio Standard Splitting (For 10-Second Audio Files) ..............................   39 

6.5 Audio Split on Silences (For 10-Second Audio Files) ...............................   39 

6.6 Time Required to Segment Input Audio ....................................................   39 

6.7 Output Speech for Pashto, Baluchi, and Sindhi .........................................   41 

6.8 Comparison of Noisy Speech for Pashto, Baluchi, and Sindhi ..................   42 

6.9 Time Consumption for Pashto, Baluchi, and Sindhi ..................................   43 

6.10 Speech Data Consumption for Pashto, Baluchi, and Sindhi .......................  43 



 

 

 



 

1 

 

 



 

1 

 

Chapter 1 

Introduction 

1.1 Overview 

Data plays a critical role in the building of language technologies. Language models are 

frequently evaluated using static corpora. The characteristics of these datasets 

fundamentally influence the model’s behavior. The model can be divided into two 

categories: Natural Language Processing (NLP) and Automatic Speech Recognition 

(ASR).  The ASR field has become an important research area for human-to-machine 

communication. The core function of an ASR system is to convert spoken words into 

corresponding written text automatically [1]. Earlier ASR technology relied on manual 

feature extraction and traditional Machine Learning (ML) techniques like Gaussian 

Mixture Models (GMM), Dynamic Time Warping (DTW), and Hidden Markov Models 

(HMM). These Models were a statistical approach, but they still fall short in terms of 

performance accuracy [2,3]. In the 1990s, the research tendency began to shift toward the 

use of artificial neural networks (ANNs) in speech applications. The ability to detect and 

learn complex structures from a vast amount of data is what enabled an ANN-based 

technique to achieve high performance in ASR systems. However, ANN required a high 

amount of data to produce accurate results [4,5,6]. Since the year 2000, the growing 

popularity of Deep Learning (DL) has shifted the trend from traditional ASR to E-2-E 

(End to End) ASR technology [7,8,9,10]. E2E ASR systems decode input speech data 

into an output data sequence using a single network [11,12,13,14,15]. As shown in 

Figures 1.1 and 1.2, the traditional approach's pronunciation, acoustic, and language 

models are now trained in a single system. 



 

2 

 

Figure 1.1: Traditional ASR Model 

Figure 1.2: E2E ASR Model 

Deep Learning models [16,17,18,19] have achieved great performance in speech 

recognition tasks and need to be trained on a massive amount of human-labeled voice 

data, which often comes with a high cost in terms of time and resources. The majority of 

data available for practical use is extremely unorganized, and labels are hard to obtain. 

Furthermore, such ASR systems are usually accessible in English and a few other 

resource-rich languages. Therefore, for a large majority of the 7,000 languages spoken 

worldwide, simply supervised teaching is impracticable [20]. Consequently, Artificial 

Intelligence (AI) researchers started exploring unsupervised learning approaches for 

developing less data-intensive and better results-giving ASR systems [21,22,23]. Self-

training methods were explored [24,25,26] that showed promising results 

[17,27,28,29,30,31]. The idea is to apply a model's learned intelligence from a larger 

dataset to a target task with limited data. As shown in Figures 1.3 and 1.4, the model is 

trained using a self-supervision technique on some contextual data as a pre-target task, 

and then the learned intelligence is fine-tuned using supervised learning on a target task. 

 



 

3 

 

Figure 1.3: Traditional Machine learning 

Figure 1.4: Transfer Learning 

The researcher's interest in the field of self-supervised learning started to expand in 2016 

onwards as shown in Figure 1.5. Facebook AI pundits came up with the idea of wav2vec 

and matured it into wav2vec2.0 with the addition of a transformer network to existing 

convolutional networks. The encoder accepts raw audio as input, processes it in layers, 

and outputs latent speech representations for a predetermined number of time steps. 

When they utilized the whole Libri Speech dataset (English) for fine-tuning, the test-

clean subset had a Word Error Rate (WER) of 1.8%, whereas the test-other had a WER of 

3.3%. When only 10 minutes of labeled training data were used, the results of Libri 

Speech were 4.8% on a test clean and 8.2% on test-other subsets [32]. 



 

4 

 

 

 

 

 

 

 

 

Figure 1.5: Statistics of “Self-Supervised Learning” Term Appearing in Papers  

Wav2vec isn't the only self-supervised method available in this domain. TRILL (TRIpLet 

Loss network) is an unsupervised embedding for speech developed by Google AI using 

the massive AudioSet dataset containing over 2 million audio clips [33]. Soon researchers 

started testing and improvising ASR models with a self-supervised concept utilizing 

wav2vec and a related framework. A trend of developing a series of unlabeled speech 

repositories has popped up for different languages like Mozilla Common Voice [34], 

Deep Speech, LibriVox, VoxPopuli, Chinese [35,36], and many more. The wav2vec 

framework and other alike models require a few hours of a transcribed dataset (normally 

4-5 hours) to test an ASR system but producing such data is one of the main challenges, 

especially in the case of low-resource languages. Speech data can be either recorded in an 

environment under certain standards or fetched from online resources. Recording speech 

is expensive in terms of time, cost, and other resources. Alternatively, there is an 

enormous spoken data available over the internet on different audio or video platforms 

like YouTube and Facebook, etc. Such data can be extracted with less or almost no cost 

and provide an opportunity for potential speech corpora. Now, the question is how to 

extract and test it against prevailing ASR technologies. Hence, compiling a few hours of 

transcribed speech data is not an easy task and we again face a challenge. This challenge 

presents a viable area of research: How to preserve online speech data and use it for state-

https://aihub.cloud.google.com/s?q=nonsemantic-speech-benchmark
https://aihub.cloud.google.com/s?q=nonsemantic-speech-benchmark


 

5 

 

of-the-art ASR applications? We will try to find our way out in the preceding chapters for 

the low-resource language “Pashto”. 

1.2 Motivation 

Ethnologue reports that people speak almost 7117 languages across the globe. 

Unfortunately, this number is decreasing, with 90% of these languages having fewer than 

100,000 speakers. Over 2000 languages are spoken in Africa alone. Languages spoken in 

Central Asia, Northeast India, Afghanistan, and Iran region have limited resources. Low-

resource languages spoken in Pakistan include Sindhi, Baluchi, Kashmiri, Gojri, Hindko, 

Siraiki, Dari, Gilgiti, Balti, Pashto, etc. Most of these languages lack lexicons, phonetics, 

and language models [37]. Producing Speech data is a major problem in such languages. 

Our motivation is twofold: firstly, there is a need for a low-cost, less resource-intensive, 

and easy-to-use speech data collection technique. Secondly, we are interested in 

generating speech data for the Pashto language to build ASR corpora and fine-tune 

cutting-edge models. 

Pashto is classified as an Indo-European language by worldData.info, with 50.4 million 

speakers worldwide. It is primarily spoken in Afghanistan and northwest regions 

of Pakistan. It is recognized as one of Afghanistan's official national languages. There is 

no API support available in the Google Cloud Speech-to-Text domain [“Google Cloud 

Speech-to-Text” and “Google Cloud Translation AI”]. Mozilla Common voice has not 

published the Pashto language corpus yet [commonvoice.mozilla]. Pashto has a limited 

web presence, digital resources, and linguistic expertise available. Currently, there are no 

sufficient acoustic or standard text corpora, pronunciation lexica, and data repositories 

held.  

1.3 Problem Statement  

The existing state of ASR work is not satisfactory for low-resource languages including 

Pashto. As a result, a sizable proportion of the global population, including the Pashtun 

community, is unable to benefit from the boom in speech digitization. To preserve the 

language and capitalized on speech technology digitization it is a dire need to create data 

repositories and test these with the latest ASR trends. The traditional ASR approach is a 

human-labeled data-intensive, costly, and impractical approach for low-resource 



 

6 

 

languages. Meta AI wav2vec [32] self-supervised ASR framework provide an 

opportunity; it can be used on a few hours of a transcribed dataset. But Building a few 

hours of speech corpus is a challenging task. As voice recording is costly, speech data 

available online in the public domain can be utilized but how to collect such information 

again is a problem.  Now we need a data-gathering mechanism, that is free and fast 

enough to scrap speech online. Once such a mechanism is built then a speech corpus 

needs to be developed utilizing online voice data. YouTube is one such platform that 

provides a huge amount of speech data in the public domain. Thus, a handsome amount 

of research can activate native speakers to develop advanced ASR systems for low-

resource languages.  

1.4 Objectives 

The following are the thesis's primary goals: - 

• To develop an automated online speech collection technique for a low-resource 

language. 

• To produce a Pashto speech dataset of 5 to 6 hours in line with the wav2vec 

framework for speech transcription. 

1.5 Thesis Contribution 

After conducting an extensive literature review, so far, no such work of speech data 

collection and ASR Corpus development can be found for a low-resource language 

generally and Pashto particularly. The mechanism proposed in this paper has not been 

used for any other project. An effort has been put forward to exploit the research gap 

identified. The following are the major contributions of this work: - 

• This work can activate further research in the field of ASR for Pashto and other alike 

languages. 

• The proposed pipeline is generic, any language can use it to generate speech data, 

especially a low-resource language. 

• The proposed speech collection pipeline can be used for any kind of audio or video 

data available online in the public domain. 



 

7 

 

• The proposed data collection technique can be modified and improvised according to 

requirements. 

• The speech data acquired for Pashto can be used to test the latest ASR models. 

• The Pashto speech dataset can provide the basis for further larger repository building. 

• The Pashto speech dataset can be used for further transcription and fine-tuning of 

advanced ASR models. 

• Finally, such corpora have multipurpose implications in the areas of health, education, 

industries, and law enforcement sectors. 

1.6 Thesis Organization 

The remainder of the thesis is organized as follows: - 

• Chapter 2 gives an extensive literature review describing the dynamics of Low 

resource Language (LRL) followed by existing research on the subject. 

• Chapter 3 contains an analysis of Pashto speech generated with the help of the 

proposed model. 

• Chapter 4 covers the generic concept of how video streaming works and how it 

affects downloading and extraction of audio data from video-sharing platforms. A 

detailed description of YouTube's mechanism of video streaming is given. 

• Chapter 5 describes the methodology adopted to develop the model and its use to 

generate speech data for Pashto. 

• Chapter 6 explains the model evaluation mechanism including results and 

discussions. 

• Chapter 8 marks the end of the document presenting future work and a conclusion. 

 

 

 

 



 

8 

 

Chapter 2 

Literature Review 

The first part of this chapter introduces the concept of a low-resource language, its 

challenges, and the implications for a resource-scarce language in the field of ASR. The 

second part of the chapter provides an overview of previous research available. The 

chapter is summarized in the following sequence: 

2.1 Dynamics of a Low Resource Language (LRL) 

2.1.1 What is a Low resource language (LRL)? 

The building of language technologies has a significant impact on the lives of billions of 

people worldwide. We use important techniques like computational linguistics, speech 

recognition, and artificial intelligence to exploit the voids of a language. Any language 

can be either rich in digital resources or low. The phrase “under-resourced languages” 

was first used in 2003 & 2004 [33,34]. The synonyms for the same concept can be found 

as low-density languages, resource-poor languages, low-data languages, less-resourced 

languages, and under-resourced languages. Richness in resources can be viewed in terms 

of the following aspects: 

• Massive amounts of raw text from various subjects and resources. 

• Resources for lexicons, phonemes, syntax, and semantics. 

• Task-specific resources (for example, parts-of-speech tags, named entities, and so 

on).  

2.1.2 ASR Challenges 

The resources available to train speech recognizer tasks for a low-resource language are 

severely limited. There can be multiple reasons: - 

• Firstly, a language with limited resources needs strategies that go well beyond simple 

model retraining. Resource scarcity necessitates novel data-gathering techniques such 

as crowdsourcing [38] or models that allow information sharing among different 

languages [39,40].  



 

9 

 

• Secondly, several cultural and social variables connected to the low-resource 

language environment pose lingering problems. Some of the important variables 

include numerous regional dialects, code-switching or codemixing occurrences, and 

the prevalence of many non-native speakers.  

• Thirdly, the gap between language speakers and technology developers must be 

bridged. Finding native speakers with the technical skills required to train ASR 

systems in their language is nearly impossible.  

• Finally, research describing under-resourced languages is limited and sometimes 

poorly addressed in linguistic literature. To put such systems in place, resources and 

knowledge from similar languages must be borrowed, necessitating the assistance of 

dialectologists, phoneticians, and other relevant experts. All these factors present a 

multidisciplinary challenge for researchers working on ASR technology for under-

resourced languages. 

2.1.3 Implications for a Low-Resource Language  

Keeping ASR trends in view, the commercial market is driven by several high-resource 

languages, especially English, French, Spanish, Mandarin, Chinese and Japanese. As a 

result, speakers of low-resource languages run a risk of becoming socioeconomically 

isolated due to the unavailability of digital resources. As speech is the fastest mode of 

data processing, therefore, the rescue can be seen in exploiting the latest trends in speech 

technology. Low-resource languages may benefit from ASR tools that require less 

amount of speech for model training. 

In the case of Pashto, despite having abundant speakers, it is one of the low-resource 

languages for multiple reasons. There is a lack of research work in language technology 

in the areas of Natural Language Processing and voice recognition. The language raw text, 

lexical, syntactic, semantic dictionaries, dependency tree corpora, and semantic databases 

are limited. One can hardly find any funded project to produce some sort of Pashto text 

and speech data. The current small amount of work has a high word error rate and lacks 

study to improve its accuracy. In such circumstances speech models like wav2vec self-



 

10 

 

supervise framework present an opportunity. Such models need a few hours of data to 

finetune on transcribe dataset. This will help a low-resource language such as Pashto in 

developing a data preservation and repository system for speech recognition tasks. 

2.2 Available Research 

The generation of an ASR corpus has been essential to the advancement of speech 

technology. Several initiatives have been launched over the years. In 1993 TIMIT (Texas 

Instrument/Massachusetts Institute of Technology) database was launched [41]. Wall 

Street Journal [42] and Switchboard [43] databases have enabled the growth of large 

vocabulary continuous speech recognition systems. However, the high cost of collecting, 

maintaining, and disseminating such good-quality datasets stifles independent speech 

technology research. The realm of speech recognition has evolved from statistical to deep 

learning methods and self-supervised learning models. As a result, the cost of developing 

and maintaining data repositories has decreased, and researchers' interest in speech 

recognition has grown over time. The research already carried out in the ASR field can be 

described in the following subsections: - 

2.2.1 Developed Languages  

In the case of developed languages like English, Chinese, and Japanese, etc., speech 

recognition research has progressed significantly. These languages have established 

advanced repositories to test and train ASR's latest models. LibriSpeech [44] is a 1,000-

hour English speech dataset collected from audiobooks. GigaSpeech [45] is another 

10,000-hour English speech dataset. Mozilla Common Voice [46] is a 10,000-hour 

crowdsourced read speech corpus in a variety of languages. MLS [47] is a 50,000-hour 

speech corpus derived from audiobooks. Aishell-1 [48] is an open-source mandarin 

speech corpus and "Corpus of Spontaneous Japanese" (CSJ) is a Japanese database.  

2.2.2 Emerging Languages  

The speech recognition research is progressing for emerging languages like Turkish, 

Hindi, Urdu, and Persian.  The tendency of publishing speech datasets is on the rise. The 

90 hours of Turkish Speech Corpus [49] extracted from Turkish movies were used in 

speech recognition activities. One of the initiating works for the Hindi language is an 



 

11 

 

annotated and time-aligned speech database consisting of a total of 500 sentences uttered 

by 50 speakers [semanticscholar.org]. The most recent effort is 1111 hours of Hindi ASR 

Challenge 2022 named Gramvaani data [openslr.org]. It is based on sharing spontaneous 

telephone speech recordings in regional variations of Hindi from an enterprise Gram 

Vaani. A corpus for 0 to 9 Urdu digits and another dataset for 250 Urdu isolated words 

have been published [50]. There is an effort to use a 50,000 unique and phonetically rich 

Urdu text corpus for training a Large Vocabulary Continuous Speech Recognition 

System (LVCSR) [51]. There is research in the Persian language available on large 

vocabulary and Speech Emotion Recognition using deep learning [52, 53]. The ASR 

research for some of the languages is progressing like Marathi [54] and Myanmar 

language [55]. A Corpus containing 16 multiple rare languages spoken in the Eastern and 

Northeastern regions of India has been published [56]. One more work for Indo-Aryan 

languages: Awadhi, Bhojpuri, Braj, and Magahi is given in [57].  

This para contains some of the most pertinent literature on the subject. The pansori-

TEDxKR dataset [58] is based on open online video content like TED conference talks in 

the Korean language. Pansori retrieves two streams, audio, and subtitle data in SubRip 

format, from online video-sharing resources using a cloud-based speech API. Another 

work is JTubespeech [59]: a corpus of Japanese speech gathered from YouTube for 

speech recognition and speaker verification. JTubespeech produces search terms from 

HTML files of Wikipedia article words and then extracts videos with subtitles. The 

num2words Python library is used to replace numbers with their spoken equivalents. The 

average relative Levenshtein distance between subtitles is used to detect and filter out 

automated subtitles. A CTC segmentation is used as an alignment tool to calculate a score 

and re-align the subtitles to the audio. The BembaSpeech [60] corpus was recorded using 

the Lig-Aikuma app (Gauthier et al., 2016c). Speakers recorded audio from tokenized 

text scripts at the sentence level using the software's elicitation mode. Bengali Common 

Voice Speech Dataset [61] is based on a crowdsourcing technique. Multi-Domain 

Cantonese Corpus (MDCC) [62] is based on audiobooks downloaded from sources 

filtered manually by language experts. The original audio pieces are converted into 

shorter audio utterances using a voice activity detection (VAD) tool. 



 

12 

 

2.2.3 Pashto Language  

Speech recognition research in the Pashto language is extremely limited. The research 

approach adopted is very basic and primitive. Research carried out so far can be 

summarized as: 

• An effort has been made to generate a Pashto Medium Vocabulary Speech Corpus 

[63]. The corpus contains 161 isolated Pashto words, including the most 

frequently used Pashto words, names of the days of the week, and digits 0 to 25.  

• In the Pashto script, there is an OCR-based approach for developing image 

datasets for optical character recognition systems [64]. 

• A Pashto Spoken Digits database for automatic speech recognition was developed 

[65].  

• The LVCSR system was developed as part of the Pashto speech-translation 

system at the SCALE (Summer Camp for Applied Language Exploration) 2015 

workshop on "Speech-to-text-translation for low-resource languages." [66].  

• Google Translation API's recognition engine supports the Pashto (ps) language 

for the Neural Machine Translation (NMT) model but there is no API support 

available in the Google Cloud Speech-to-Text domain [cloud.google.com].  

According to the literature review, there is a need to develop an automated mechanism 

for speech collection from online resources for a low-resource language such as Pashto. 

To extract speech, the mechanism should be independent of APIs (Application 

Programming Interface) or other platform-dependent tools, as most low-resource 

languages lack such support. Further, there is no speech data available for Pashto that can 

be used for the transcription of an ASR system. 

 

 

 



 

13 

 

Chapter 3 

Pashto Speech Corpus Analysis 

The chapter explains the characteristics and statistics of Pashto Speech data in the 

following ways: 

3.1 Description  

The corpus has a speech of size 725 Megabytes with a total duration of 5.9 hours of 

speech. The audio data has been split into chunks of one (1) to fifteen (15) seconds. 

Audio files of different segments are placed in different folders as shown in Figure 3.1. 

The naming convention of folders and audio files is done on the lines of Mozilla 

Common Voice Languages as shown in Figure 3.2. An excel file is generated that shows 

the statistics of clean audio files as given in Table 3.1. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Audio File Organization 



 

14 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Naming Convention of Folders and Audio Files (Pashto Speech) 

Table 3.1: Clean Speech Files 

3.2 Speakers & Accent characteristics    

The corpus consists of 5221 audio files spoken by 137 speakers. Speakers fall into male 

and female categories according to gender. Three age groups were chosen: speakers aged 

year 18-40, 40-60, and over 60. Video URLs were selected based on the speaker’s 

Audio File 

Type 

1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s 14s 15s 

Audio file 

count 

1375 1003 702 456 326 313 210 180 128 131 104 88 72 69 64 

Total Time 

Length in 

seconds 

1375 2006 2106 1824 1630 1878 1470 1440 1152 1310 1144 1056 936 966 960 

Total Time 

Length in 

minutes 

22.91 33.43 35.1 30.4 27.16 31.3 24.5 24 19.2 21.83 19.0

6 

17.6 15.6 16.1 16 

Total Time 

Length in 

hours 

0.38 0.56 0.58 0.51 0.45 0.52 0.41 0.4 0.32 0.36 0.32 0.29 0.26 0.27 0.27 

Collective Time Length in Hours        =      0.38+0.56+0.58+0.51+0.45+0.52+0.41+0.4+0.32+0.36+0.32+0.29+0.26+0.27+0.27    = 5.9 Hours 



 

15 

 

fluency to speak and read Pashto mainly in Afghani and Yousufzai accents. All the 

speakers are identified as Pashtuns from Pakistan and Afghanistan. Speakers have 

recorded videos under their choice of environment & uploaded the same at their 

convenience. All the utterances are expected to have background noise. The noise has 

been removed with the audio source separation mechanism using the underlining concept 

of the short-time energy calculation for an audio signal. 

3.3 Audio Format and Encoding 

The video data on YouTube is available in a variety of audio formats and encoding 

schemes. We used the ".WAV" (Waveform Audio File Format) for speech-to-text 

experiments with UTF-8 (“Unicode Transformation Format - 8 bits”). UTF-8 is a 

Unicode encoding system that assigns each character a unique code called a code point. It 

can convert any Unicode character to a unique binary string and the binary string back to 

a Unicode character. Unicode is now the global standard for encoding all human 

languages, including emojis. 

3.4 Audio Parameters 

As the video data on YouTube is sampled with different frequencies. The most common 

sampling frequency used to produce most digital audio is 44.1kHz. A human can hear all 

the audio frequencies below 22.05kHz. Since ASR experiments do not require such a 

high sampling rate, we down sampled the audio to a sampling frequency of 16kHz, which 

has become the de facto standard for speech recognition in both production and research. 

The bit rate is set to 256 and the sample width is kept at 2 with a single track (mono). 

3.5 Availability  

The speech data of the corpus can be used for research purposes on a request basis.  

 

 

 



 

16 

 

Chapter 4 

Video Streaming Technology 
Video technology has advanced significantly since the invention of the first moving 

picture in 1888. Today, you can share a video with millions of people around the world 

with a few clicks or taps on your desktop and smartphone. On average, each person 

watches about 16 hours of video per week. Video streaming protocols are required for 

your device to be able to send and play video. When a video is streamed, it is possible to 

view it before the entire file is downloaded to the client. [Blog: blog.vidizmo.com]. A 

video can be streamed directly from streaming servers to various end devices, such as 

personal computers or smartphones, using video-sharing platforms like YouTube. As 

discussed earlier the source of speech acquisition in our model is YouTube. Therefore, a 

quick overview of how streaming works in general, how it affects video surfing or 

downloading, and how YouTube utilizes it is given in this chapter. 

4.1 What is Video Streaming?  

Streaming is a mechanism that allows you to watch audio or video without downloading 

it. Initially, websites were made up of text pages with a few images. These days anyone 

with a high-speed Internet connection can watch high-quality media online utilizing this 

facility. The continuous transmission of audio or video files from a server to a client is 

known as streaming. The client device stores the media file remotely and then transmits it 

to the server over the Internet instantly. [Blog: cloudflare.com]. The following diagram 

(Figure 4.1) summarizes the entire process [blog:vidizmo.com]:- 

Figure 4.1: Video Streaming Generic Process 

 



 

17 

 

4.2 Streaming and Downloading? 

Streaming is more efficient than media downloading. When a media file is downloaded, 

the device stores the copy of the complete file and then plays it when it finishes 

downloading. On the other hand, when the video is streamed, it is neither saved nor 

copied and the browser plays it instantly. The entire file is not loaded at once rather 

loading happens in segments without saving information locally in the browser [Blog: 

cloudflare.com]. 

4.3 Technical Approaches  

Generally, streaming occurs in three ways, as shown below [Blog: ns1.com]. 

4.3.1 Progressive Download   

The delivery of streaming video or audio files over HTTP is referred to as progressive 

download. When the file has been downloaded sufficiently to play it, playback begins, 

and the remaining portion of the file is downloaded in the background. There is normally 

a delay when playing the video, and it is not possible to view the next parts of the video if 

they have not yet been downloaded. Videos are streamed at one type of bit rate, and all 

users receive the same video file regardless of connection speed. 

4.3.2 Single-Bitrate Streaming Protocols  

Real-Time Streaming Protocol (RTSP) protocols necessitate the use of a streaming server 

and a dedicated client player. The client displays the contents received in segments from 

the RTSP protocol before recycling it. Unlike in a progressive download, users can skip 

parts of a video by sending a request to the streaming server to load a new segment of the 

video. RTSP is UDP oriented and provides better performance with the same connection 

speed. 

4.3.3 Adaptive Bitrate Streaming   

An adaptive bitrate is an advanced form of streaming. it uses UDP to process variable bit 

rates when transmitting media. The bitrate of streamed content is tuned according to the 

user's connection speed, network conditions, and device resources. The video creator 

must upload the same audio or video file encoded with different bitrates for adaptive 



 

18 

 

bitrate streaming to work. On the client side, the video player monitors device-end 

processing. The player provides the highest possible bit rate at which the user can watch 

media without interruption. This situation is evaluated every 5-10 seconds, and if 

necessary, the player requests different bit rates according to user requirements. 

4.4 How YouTube Streaming Works?   

After Google, YouTube has the second-most views and, after Netflix, it is the second-

most favorite online video content website. YouTube has more than 2 billion users 

logged in monthly across the globe. [Blog: influencermarketinghub.com]. YouTube 

supports both DASH (Dynamic Adaptive Streaming over HTTP) and legacy streaming 

techniques. DASH provides both audio and video streams to be downloaded. The media 

streams can be merged using media editing tools like FFmpeg. Legacy streaming is also 

known as progressive download. It provides both audio and video streams in the same 

file. The resolutions of 720p and lower are supported [88]. Streaming techniques enable 

us to view audio or video content on YouTube at numerous bit rates and resolutions. 

 

 

 

 

 

 

 

 

 

 

 

 



 

19 

 

Chapter 5 

Methodology 

The chapter explains how data is collected and preprocessed for model processing of 

speech data. A detailed overview of the model's structure and functions is then provided. 

Finally, the output data is post-processed to achieve the desired results. The working of 

the chapter is described in multiple sections; - 

5.1 Data Collection Process 

In this section, we will analyze the existing methods of how voice data is collected and 

used for ASR tasks. Following that, a brief description of how we collected spoken data 

for our language of interest (Pashto) is presented. 

5.1.1 Speech Data Collection in general  

Generally, gathering data is an essential component of developing ASR systems for 

under-resourced languages. Speech data can be generated in two ways: those that make 

use of already-existing audio or video resources and those that record speech as part of 

the data collection procedure. The major portion of already recorded speech data is 

available on the internet, and some of the data can be accessed offline and stored in 

stand-alone repositories. Already recorded speech categories include TV or radio 

broadcast recordings, spoken lectures, parliamentary speeches, audio or video data on 

social media platforms, offline speech collections, etc. Although the prerecorded voice 

data serve as the starting point for corpus generation, the main challenge here is to edit 

and transcribe the recordings.  

The second method of recording speech as a part of data collection faces certain 

complexities: firstly, low-resource languages have normally poorly standardized writing 

systems, secondly, manual transcription is time taking and a lack of qualified language 

professionals makes manual audio transcription more difficult. Crowdsourcing [67] may 

provide some relief in this regard, but the contributor may not record their voices 



 

20 

 

accurately and there are not enough workers available in case of a low-resource language 

[64]. Thirdly, the available sources of speakers are not often diverse enough to be useful 

for ASR. The recording process can be done using some sort of menu-driven telephone 

service, but it could be time taking and prone to repetition and mistakes. As an 

alternative, recordings can be obtained during in-person recording sessions, but logistical 

difficulties could arise as more recording devices may be required. keeping its 

widespread availability developing smartphone apps can accelerate recording speed, but 

its development, maintenance, and operation cost is a major concern. However, 

spontaneous speech corpora with limited resources are normally less helpful as a starting 

point for ASR development. Keeping in view the cost, efforts, and difficulties inherent in 

resource use, transcribing spontaneous speech in resource-scarce languages favors the 

existing recorded speech data approach. 

5.1.2 Speech Data collection for Pashto 

This is an important step in the corpus development study. We have used the existing 

recorded speech data approach to gather data. A thorough literature search was conducted 

to find Pashto literature and its corresponding video data on YouTube. Video information 

was searched on YouTube for different categories of Pashto literature. There are no 

criteria adopted to select specific literature. Approximately 10-15 genre categories were 

identified including culture, Drama, Fairy Tales, Health, interview, Literature, lifestyle, 

news, Novel, Politics, Short stories, Sports, and TV shows. Random keywords were 

searched to find speech URLs on YouTube.  

The study focused on URLs that were posted between 2018 and 2022 on multi-YouTube 

channels. Depending on the availability of videos on YouTube, five categories of Pashto 

literature including novels, dramas, short stories, fairy tales, and interviews were selected. 

A total of 130 video URLs are selected. Novels are audiobooks on different topics 

uploaded on YouTube. Dramas include web series, TV serials, and telefilms on daily life 

happenings. Short stories normally consist of personal biography, ideas, or past 

happenings of speakers. Fairy tales are cartoon stories either translated or dubbed into the 

Pashto language by different speakers. Interviews of different speakers in daily routines 



 

21 

 

are also part of the literature. A URL excel sheet was maintained with some additional 

information like video time length, the number of speakers for different ages, channels, 

and the date of uploading. Watch time is used to calculate the total video hours of URL 

excluding ads. Details of the video data selected are given in Table 5.1. 

Table 5.1: Video URLs Selected 

5.2 Data Preprocessing 

This is the initiating process of the project, and its purpose is to produce a refined URL 

list as input to the pipeline model. As described earlier, the URLs are selected for male 

and female speakers of different age groups according to genre categories. The process is 

divided into two steps: 

• Firstly, a fair review is carried out to find the target video URLs. Videos for all the 

selected URLs were played on YouTube to check for any inconsistency or missing 

segments. URLs with muted sections and abnormal sounds were dropped. URLs 

containing a major portion of its video as music were discarded. The filtered URLs 

Genre Category 

 

 

Links Selected Speakers Video length (Hours) Uploading 

Duration 

Male Female 

Male 

speakers 

Female 

Speakers 

Novel 40 25 06 20.01  09.04 

2018-2022 

Interviews 16 08 23 04.03 10.03 

Short Stories 13 06 09 02.09 03.02 

Fairy Tales 11 08 05 02.04 04.03 

Culture 12 05 04 02.02 03.05 

Politics 10 02 02 03.07 02.08 

News 15 03 04 02.06 03.03 

Drama 13 15 12 04.04 08.09 

Total:08 130 

72 65 39.36 42.37 

Total: 137 Total: 81.73 



 

22 

 

were placed in an excel file with a record of the URL’s title, date of uploading, 

channel name, speaker age, and gender. Final URLs were copied to the text file. 

• Secondly, the URLs were tested against the flow of independent video download and 

audio extraction modules. There was a problem with downloading some videos due to 

their copyrights or being unavailable as removed afterward by the channel. All such 

problematic URLs are identified and replaced with similar valid URLs; thus, a refined 

Text file is produced. 

5.3 Model Development 

The section illustrates in detail how the proposed model for Pashto Speech corpus 

development works. To extract audio chunks an automated pipeline is proposed. The 

pipeline extracts audio files from YouTube URLs and split them into required time-

length chunks. Multiple modules are used to process the audio segments, resulting in 

clean audio chunks for our project as shown in Figure 5.1. For clarity, the speech 

generation pipeline is further divided into five subcomponents: raw audio extraction, 

audio cleaning, audio parameter adjustment, audio segmentation, and postprocessing 

clean audio chunks. Details are described as under. 

Figure 5.1: Pashto Speech Corpus Model Block Diagram 

5.3.1 Raw Audio Download  

This module deals with downloading raw audio files from YouTube videos. A raw audio 

file consists of vocals and noise. In this process, a URL text file is provided as input to 

the pipeline. The procedure can be explained in the following steps: 

 

 



 

23 

 

5.3.1.1 Create URL List  

The pipeline reads the URL text file line by line and compiles it in the form of a list. 

Python has a set of built-in methods that can be used for string manipulation. We tested 

the following three well-known methods to perform this task. 

• The readlines method returns a list of lines from the stream. A new line character \n is 

also added in the string and it can be removed with str.rstrip('\n'). 

• We can iterate over the file to read it line by line. The iteration method only takes one 

line of the file content to the memory and processes it.  

• The file.read(size=-1, /) method reads from the file until EOF (End of File) if the 

size is not set. The splitlines function can be used with it to split the lines at their 

boundaries to compile a list. 

Memory usage and other processing statistics can be observed using python inbuild 

modules like tracemalloc or debugging code chunks. We tested and compared the 

efficiency performance of the above three methods used for URL list creation. We 

increase the number of lines in the tested file incrementally to compare the performance 

difference. Generally, the file iteration method is much better than the readlines method 

from the perspective of memory usage when the file size is super large. 

The readlines method holds all the lines of the file in the memory, but the iteration 

method only takes one line of the file content to the memory and processes it to 

avoid memory errors [90]. In our case, file.read().splitlines() is the most efficient method 

as compared to the other two methods because it takes less time to compile the URL list 

and also does remove newlines. 

5.3.1.2 Fetch URLs Title  

The purpose of this module is to retrieve the title information of the videos to be 

downloaded. We want to save the extracted audio files with the name of the title; 

therefore, audios need to be fetched with their meaningful title as given on YouTube. 

Video title information can provide help and clarity when keeping track of audio chunks 

in the directory and processing text for speech transcription afterward. Python provides 

several inbuilt functions to download videos and their information from YouTube. 

https://docs.python.org/3/library/tracemalloc.html#module-tracemalloc


 

24 

 

youtube-dl is one such library that is available in the public domain and can be used 

according to one's needs.  

YoutubeDL objects have a method that allows InfoExtractors to work in some defined 

order. Information extractors extract all the needed information to download the actual 

video file and write it to a disk. When a URL is passed as an argument, the YoutubeDL 

object forwards it to the first InfoExtractor being able to handle the dictionary and stores 

the video information retrieved by The InfoExtractor. The information is then sent to 

YoutubeDL, which downloads the video into the directory. We have implemented 

InfoExtractors for retrieving Youtube video title information. 

5.3.1.3 Extract Raw Audios   

This is an important step of the audio download module as it supplies raw audio speech 

for the further working of the model. Python provides important tools like youtube-dl, 

pytube, Moviepy, etc for audio or video exploitation. youtube-dl (or YoutubeDL) is a 

platform-independent and command-line library to download videos from Youtube as 

described earlier. The youtube-dl project is currently being developed on GitHub. pytube 

has no decencies and it provides a command line facility to manipulate YouTube Videos 

owned by tfdahlin. MoviePy is another python module used for video processing, editing, 

or creating advanced effects.  

As discussed earlier, we need to save the audio files in the directory with the name of the 

video title information. We tested youtube-dl for audio extraction from Youtube videos. 

The youtube-dl library was creating problems in saving audio files with the name of the 

title in the directory. The cause traced during debugging was with special characters in 

the title string. Errors were occurring while saving audio files with the title name. Despite 

we used the string characters replacement mechanism, it didn’t work. Renaming the 

audio file other than the title worked but it was not desired.  MoviePy was also tried but it 

needed other dependencies and packages. Then pytube being a lightweight and 

dependency-free library for audio download was tried and it solved our purpose.  

Each file system has its own set of rules for forming the various components of a 

directory or file path. Some of the special characters cannot be used when creating or 



 

25 

 

renaming folders and files in the directory. These characters include: \, /,:, *, ?, ", <, >, |, 

~, #, %, &, +,{, }, - note that comma (,) is not included. Therefore, the title information 

fetched in the first step was passed through the string character replacement mechanism 

to remove forbidden characters when saving audio files in the directory folders. We have 

implemented the concept in Python. 

As previously stated in the video streaming chapter, YouTube supports both legacy 

streaming (progressive) and DASH (Dynamic Adaptive Streaming over HTTP or MPEG-

DASH) techniques. The legacy streams contain the audio and video in a single file 

whereas adaptive streams split the video and audio tracks. Pytube supports both 

Progressive & DASH streams and makes it easy to filter media based on the choice of the 

stream according to user preferences. The refined title information is supplied to the 

YouTube object (yt) for accessing the media streams. We chose progressive streaming 

using the filter function of The Pytube API. The top streams are selected using the first() 

method and likewise downloaded at the desired path with the download method() of 

pytube library. 

5.3.2 Audio Cleaning  

The output of the audio extraction module is raw audio i.e, it is composed of noise and 

vocals. Raw audio is provided as input to the audio cleaning module. The cleaning 

module process raw audio and removes noise to get clean audio. Speech source 

separation is not a simple task. The underlying concept that works for speech source 

separation is time-frequency (TF) masking. The process of awarding values to the slots of 

a time-frequency interpretation to improve, reduce, or separate portions of an audio 

segment is termed Time-frequency masking [Blog: mathworks.com]. There are varying 

frequency corresponding to various types of sounds. For example, the lead vocals would 

occupy different frequency bands than the drums.TF masking filters the spectrum of 

frequencies that comprise a piece of music, allowing us to choose which frequencies to 

preserve.TF masking has been implemented using Spleeter, an AI (artificial intelligence) 

tool that breaks down music into its instrumental pieces and is owned by Deezer an 

online music streaming provider. Spleeter divides raw speech into multiple sound sources 

using pre-trained models. These models include two, four, and five stems. The 2-stem 



 

26 

 

model is the simplest and divides input speech into vocals and accompaniments). 

Similarly, 4-stems produce output sounds such as vocals, drums, bass, and others, while 

5-stems produce output speech such as vocals, drums, bass, piano, and others [68]. 

Our audio cleaning module is using Spleeter's default 2-stems model for audio source 

separation. The 2-stems model splits the audio into two very basic layers i.e., vocals track 

and accompaniment (karaoke or other track). Spleeter has two dependencies: ffmpeg and 

libsndfile (). ffmpeg library is dependant on ffprobe. ffmpeg is a multimedia stream 

manipulating tool whereas ffprobe is the sub-part of ffmpeg. libsndfile is a C language 

library used for reading or writing audio files in a wide variety of audio file formats. 

These dependencies can be installed according to Spleeter version, and the programming 

environment used for development.  

The general expression to accomplish the 2-stems source separation is given as: “spleeter 

separate -p spleeter:model type -o output/ directory.audio format”. The -p is used for 

providing the model settings (2stems) “-o” stands for the output file name in a particular 

audio format. Using the source separation concept discussed above, we have used the 2-

stem Spleeter model to extract vocals from raw audio and store them in the desired 

directory (dataset folder). 

5.3.3 Audio Parameters Setting   

Audio parameter adjustment is the third module of our speech pipeline, and its function is 

to reset the audio sampling rate and other necessary parameters. An audio file has several 

characteristics associated with them. The most common parameters include channels, 

frame rate (sample rate), and sample width. To understand its importance a brief 

overview is necessary [Blogs: vocitec.com, github.com, headphonesty.com]: 

• A communication channel that transports a speech signal from its source to the 

listener is known as an audio channel. An audio channel can be monophonic, 

stereophonic, or multiphonic. Mono process one sound, stereo support two channels, 

and multi-channel sound has more channels. 

• The sample rate is defined as the number of samples of a signal collected per second 

and is measured in Hertz (Hz) or kHz, as shown in Figure 5.2. These samples are 



 

27 

 

evenly spaced in time. For example, a sampling rate of 16000 Hz means that 16000 

samples are captured per second, with every single sample being precisely 1/16000 of 

a second equally spaced on the time scale.  

 

 

Figure 5.2: Different Sampling Rates 

• The frame rate measurement for a video is analogous to the sampling rate. A video is 

a collection of images, that are displayed back-to-back rapidly to create the 

appearance of continuous, uninterrupted motion or movement. These collections are 

referred to as "frames" in this context. Some common sample rates are 48 kHz (most 

common for audio tracks in movies), 44.1 kHz (most frequently used for music CDs), 

and 8 kHz (most frequently used for telephone conversations). 

• The amount of information bits in each sample is known as the bit depth and is 

expressed in bits per sample. A sample depth of 16 bits means that each audio sample 

can represent 2^16 = 65,536 distinct amplitudes or levels of sounds.  

• Yet there is another important property of audio called a bit rate, which is calculated 

as bit rate = sample rate x bit depth. 

Several APIs recommend using a minimum sampling rate of 16,000 Hz because sampling 

below this rate can cause a loss of information to the signal. Wav2Vec framework has 

been trained on speech sampled at 16kHz. Python provides Pydub that can be used to 

play, split, merge, and edit only the .wav audio files. The instance of AudioSegment on 

creation saves audio parameters including sampling rate from extracted speech. In our 



 

28 

 

project, we have kept speech to be sampled at a rate of 16 kHz.  Channel (1) is used to 

avoid unnecessary heavy loading of audio data i.e any audio recorded with stereo or 

multi-channel is converted to mono channel as shown in Figure 5.3.  

 

 

 

 

 

 

 

Figure 5.3: Conversion of Stereo to a Mono Channel 

5.3.4 Audio Segmentation  

Breaking audio files based on quiet parts or muteness is a common use case in audio 

processing and has various applications. Multiple Machine learning tools allow us to 

carry out this function. Python provides packages like libros for audio signal extraction 

and visualization and pydub for audio file manipulation. Librosa is generally geared more 

toward music, but it can also be utilized for audio-slicing purposes. PyDub takes very less 

post-processing tasks utilizing the ‘split_on_silence’ function. When the audio is large or 

the silence time for splitting exceeds 5 seconds, the processing time increases. It worked 

fine in our case because the silence threshold used is less than five seconds. 

There are two options available to slice audio into chunks i.e., standard splitting and split 

on silence. Standard splitting causes audio to be sliced into equal-sized chunks in time. 

The issue with this kind of segmentation is that we get half-uttered syllables at the start 

and end of the audio chunk. There is also a chance that the chunks may also contain 

undesirable silences between the start and end of the audio file. Half-sliced chunks need 

time padding. One solution is that we can use time padding of standard time length, but it 

again causes half-sliced words as different words have different time lengths.  Finding the 

variable time length padding for each chunk sliced differently is time taking and difficult. 

https://librosa.org/doc/main/index.html


 

29 

 

Even though undesirable silence within the chunk needs to be removed, that’s why we 

opted for the split-on-silence method. To split audio, several parameters can be passed as 

an argument to the ‘split_on_silence’ module. Usually, to get desired chunks length 

following parameters are used [Blog: github.com/jiaaro]: 

• sound - It is the input speech segment utilized for silence detection. 

• min_silence_len - It is the portion of the audio segment that must be silent for a 

certain time in milliseconds, and it is selected as the threshold duration for the 

segmentation of an audio file. By default, it is 1000 milliseconds (ms). The optimized 

value for our requirement is 700 ms. 

• silence_thresh – It is the higher limit for audio to be silent in dFBS (decibels 

relative to full scale). By default, it is -16 and below this value, audio is considered 

silent. The best value suited to our requirement is -40 dB. 

• seek_step - It is the step (window/frame) size used for iterating over the segment in 

milliseconds. A sliding window of a certain time size (in ms) is used for the detection 

of silences. seek step sets how much to move the sliding window over each time. We 

are using the default value of one ms. 

• keep_silence - It is the amount of silence added at the beginning and end of the 

chunks. It is used to avoid abruptly cutting off an audio segment. The “True” value 

denotes that all the silence is retained, and the “False” value denotes that none is kept. 

It is measured in milliseconds and the default value is 100ms whereas in our case it is 

100 ms. 

There are two important points in the audio segmentation process that make sense i.e how 

silence threshold works? and how audio slicing is performed (seek step). Analog and 

digital audio levels are measured in decibels (dB) and dBFS respectively. Decibels (dB) 

is generally a measure of the ratio between two values on a logarithmic scale. The values 

can be a power or any field quantity. When the term is applied to audio signals the values 

of amplitudes between two audio signals are compared given as dB = 20log10(A1/A2), 

where 1 dB = 1/10th of a bel and A1 and A2 are the amplitudes of the signals of interest 

[69]. dBFS (dB relative to full scale) also measures the ratio between two signal levels 



 

30 

 

and hence, both dB and dBFS are dimensionless metrics. Mathematically dBFS is 

expressed as dBFS = 20log10(A/Max), where A is the amplitude of the measured signal, 

and Max is the maximum (peak) possible amplitude for that signal. For instance, if the 

signal’s amplitude is 1, and the maximum amplitude that’s possible for the signal before 

clipping (distortion) is 10, then the dBFS value for the signal is calculated as dBFS = 

20log10(1/10) = -20 dBFS, it implies that the signal in our example is at a level that’s 20 

dB below its clipping point (maximum). When a signal is at its maximum amplitude, its 

dBFS is 0. All subsequent dBFS readings for the signal will be negative since the signal 

level can only fall from its peak amplitude level. 

The second point of interest is the windowing or framing of a digital signal. It is based on 

short-term energy calculation for a signal. The concept is used to detect silence at a 

certain threshold energy level. The lowest energy level becomes the threshold value, any 

silence equal to or less than this value causes the audio to split into chunks. Since for 

most of the practical cases the unvoiced part has low energy content and thus silence 

(background noise) and unvoiced part is classified together as silence/unvoiced and is 

distinguished from the voiced part. Short-time energy calculation can be used to find 

voiced and silent segment parts of an audio signal. The energy of a signal x(m) is given 

as [72]: 

 E = ∑ 𝑥2(𝑚)
∞

𝑚=−∞
      Equation 2 

𝐸𝑛 = 𝑎0 + ∑ 𝑥2(n − N + 1)+ . . . +𝑥2(𝑛)
𝑛

𝑚=𝑛−𝑁+1
 Equation 3 

Generally, for the time-varying signals, the speech signal is divided into frames at its 

utterance level, therefore applying the nth window frame to calculate the short-term 

energy of the speech signal. Thus, for frame 1 and n-th frame equations becomes [73]: 

E(1) = ∑ [𝑥(𝑚)]2𝑁−1

𝑚=0
      Equation 4 

E(n) = ∑ [𝑥(𝑚) .  𝑤(𝑛 − 𝑚)]2∞

𝑚=−∞
,    Equation 5 

where,  w = window function,     

and  n = Shift in samples/Frames 



 

31 

 

A window of the rectangular pulse does not change the amplitude of the speech sample. It 

is given as: 

𝑤(𝑛) = {
1;     0 ≤ 𝑛 ≤ 𝑁
0;                𝑒𝑙𝑠𝑒

}       Equation 6 

The high and low energy would denote spoken and silent parts respectively. Under 

certain threshold energy, the unvoiced shall be considered as silence. Using the above 

concept an optimized approach was used to get the desired clean audio file chunks. 

5.3.5 Clean Speech   

This marks the final process of audio chunk formation. The procedure is divided into two 

steps. In step 1, we intend to divide the speech from 1 second into 15 seconds chunk files 

and save it in separate folders. Normally speech segments of less than 30 seconds give 

good accuracy [Sewade Ogun] when used for ASR testing, therefore we selected chunks 

of the time length of 1-15 seconds. A Jason file is created to keep a record of counts of 

audio files for each chunk type.  

In the second step, the speech collection is passed through the filter to remove 

unnecessary data. We have used the round function to avoid float values as pydub gives 

output in integers. 

5.4 Text Processing 

This section of the model is concerned with text formulation for the final clean audio files 

generated by the speech processing pipeline. To avoid abrupt cutting, each audio file is 

padded with one millisecond at the beginning and end. This facilitates comprehension of 

spoken words. Furthermore, we saved the raw audio with the title information, which aids 

in the understanding of the individual speech segment in case of any ambiguity. Pashto 

script writing is not an easy task, it needs a language expert to understand the speech and 

produce a valid text for it. The language expert will produce the transcribed text for 

corresponding speech segments. 

 

 



 

32 

 

5.5 Data Postprocessing 

This section deals with the activities required to produce transcribed speech. Language 

experts produce text for corresponding audio files. Each audio file is given an ID value 

and a similar ID for a corresponding audio file is also given as shown in Figures 5.4 & 

5.5. 

 

 

 

 

Figure 5.4: Audio Files IDs in Pashto Speech 

 

 

 

Figure 5.5: Transcribe Pashto Text in Pashto Speech 

 

 

 



 

33 

 

Chapter 6 

Model Evaluation 

Our research involves the development of an automated speech corpus generation 

pipeline and its application to produce speech data in Pashto. We explore that there are no 

specific evaluation metrics that can be used to check the pipeline's operation; however, 

we can test the model's output accuracy and quality using parameters such as audio 

extraction, source separation, audio splitting, URL input, etc. In this chapter, we will 

present some metrics for evaluating our model and discuss the results while analyzing the 

potential parameters. 

6.1 Evaluation Metrics 

Our model is made up of interconnected modules. One module's output serves as the next 

module's input. Using the input and output results, along with module parameters, certain 

evaluation metrics can be defined to track the model's progress. These metrics are as 

follows: 

• Audio Files 

In our project, the output speech is divided into multiple audio chunks known as audio 

files. The length of these audio or speech files ranges from one (1) to fifteen (15) 

seconds. 

• Silent Audio File 

As shown in Figure 6.1, these are the audio files that do not contain any human vocal 

data.  

 

 

 

 

 



 

34 

 

 

 

 

 

 

Figure 6.1: Silent Audio File (PRAAT image) 

• Partial Silent Audio Files 

These are the audio files that contain both human vocal data and silence. As illustrated in 

Figure 6.2, the words in partially spoken segments are clear and complete. 

Figure 6.2:  Partly Silent Audio File (PRAAT image) 

• Sliced Only Audio File 

These are the audio files that contain human vocal data, but the words spoken words at 

the beginning and end of the audio file are half-sliced. There are no silent segments that 

are longer than the threshold value (Loudness less than -40dB & Silence Length of 700 

milliseconds) as shown in Figure 6.3. 



 

35 

 

Figure 6.3: Sliced Only Audio File (PRAAT image) 

• Sliced & Silent Audio Files 

These are audio files that include both half-uttered vocal and silent segments. The half-

spoken words occur at the start and end of an audio file as shown in Figure 6.4. 

Figure 6.4:  Sliced and Silent Audio Files (PRAAT image) 

• Noisy Speech Audio Files 

These are audio files with background noise, echoes, multi-speaker vocals, or music. 

Such speech contains vocals that are either inaudible or clear enough for a normal human 

to understand. 

• Clean Speech Audio Files 

These are the model's final audio files, and they contain clear vocals with no or 

negligible background noise. A normal person can hear and comprehend its words easily.  



 

36 

 

• Valid Speech Data 

These are clean speech audio files that contain clear vocals with no background noise or 

music source. A normal person can hear and comprehend its words. Such data do not 

contain any faulty audio segments.  

• Invalid Speech Data 

These are clean speech audio files that do not contain any of the following unwanted 

segments. 

• Silent. 

• Partial Silent. 

• Sliced only. 

• Sliced & Silent 

• Noisy Segments  

• Quality of Speech Data 

The quality parameters of output speech are given as follows: - 

• Channel = Mono 

• Sampling Width = 16 bit 

• Sampling Rate = 16 kHz 

• Audio Format = wav 

• Accuracy of Speech Data 

It is the percentage of valid speech data in the dataset under consideration. 

6.2 Experiments 

Keeping in mind the data flow and functionality of our model, we can experiment as 

follows: - 

6.2.1 Audio Extractor results 

•      Results 

Raw audio extraction is the first intermediate output in our project. YouTube supports 

streaming techniques that deliver audio and video in separate streams. The Pytube audio 



 

37 

 

extractor API was used in conjunction with the progressive streaming technique to extract 

audio data. The results for different URLs (40, 90, and 135) are shown in Table 6.1. 

URLs Data Failed 

Extraction 

Successful 

Extraction 

Time 

Taken 

Total 

Final 

Accuracy 

(%) 

40 (31.6 Hours) 03 (7.5%) 37 19 Minutes 37 92.5 

90 (59.8 Hours) 02 (2.2%) 88 35 Minutes 88 97.77 

135 (82.73 Hours) 05 (3.7%) 130 73 Minutes 130 96.29 

 

Table 6.1: Audio Extraction for URL Input Data 

•      Discussion 

Results of Table 6.1 show that more than 90% of URLs selected as input gave valid audio 

extraction. The extraction failure rate is less than 8%. When the corresponding URLs 

were examined, it was discovered that either the URL had been removed by the uploader 

or it did not allow the data to be downloaded. Such issues pertain to the source of video 

data but not the extractor. 

6.2.2 Speech Source Separation  

•      Results 

The speech source separation module segregates raw audio into vocals (clean speech) and 

accompaniment (noise). Table 6.2 gives the time taken by the source separation 

mechanism to split input audio into noise and clean vocals from different speech inputs 

whereas Table 6.3 shows the overall result for 81.73 hours (130 URLs) of video data 

input. The ratio of clean to noisy speech audio files along with the accuracy of clean 

speech is provided. 

 

Table 6.2: Noise Removal Profile 

URLs URL Video Length Audio Extracted Noise Removal Time 

37 31 Hours 21 Hours 23 Minutes 

88 59 Hours 40 Hours 35 Minutes 

130 81.73 Hours 54 Hours 83 Minutes 



 

38 

 

Audio File Type Audio Files (in Seconds) Accuracy (%) 

Clean Noisy  

1s 1375(22.9Minutes) 3(0.05Minutes) 99.78 

2s 1003 2 99.80 

3s 702 3 99.57 

4s 456 4 99.12 

5s 326 (27.1 Minutes) 5 (0.4 Minutes) 98.46 

6s 313 7 97.76 

7s 210 6 97.14 

8s 180 8 95.55 

9s 128 9 92.18 

10s 131(21.8Minutes)  10(1.6Minutes) 92.36 

11s 104 10 90.38 

12s 88 11 87.5 

13s 72 10 86.11 

14s 69 11 84.05 

15s 64(16 Minutes) 12(3 Minutes) 81.25 

 

Table 6.3: Audio Source Separation Profile 

•      Discussion 

The results of Table 6.2 shows that splitting raw audio of 21 hours into vocal and 

accompaniment takes 23 minutes. Similarly, 40 and 54 hours of raw audio data take 35 

and 83 minutes respectively to remove noise. As a result, the time required to remove 

noise from audio data increases as the amount of input speech increases. Table 6.3 gives 

results of clean and noisy speech for the whole input URL data. For instance, out of 1375 

audio files of type one-second, only 03 audio files are noisy. Similarly, 326 audio files of 

type five-second contain 05 noisy audio files, 131 audio files of type ten-second contain 

10 noisy audio files, and 64 audio files of type fifteen-second contain 12 noisy audio 

files. The accuracy of source separation is good with smaller audio files and decreases as 

the file size increases. For example, it is 99% in the case of a one-second audio file and 

81% in the case of a fifteen-second audio file. Audio cleaning entails separating the 

media into vocal and accompaniment tracks. The vocal is clean audio, whereas the 

accompaniment is noise.  



 

39 

 

6.2.3 Speech Segmentation 

•      Results 

The final output in our project is clean audio file generation ranging from one second (1s) 

to fifteen seconds (15s). We conducted two types of segmentation methods i.e standard 

splitting and split on silence. Results of audio Segmentation for 10 minutes, one hour, 

and 5 hours of input URL data using both techniques are shown in Table 6.4 and Table 

6.5. Table 6.6 shows the results of the time taken when segmenting the raw audio. 

Results include data for 10 minutes, one hour, and 5 hours of input URLs. Only the audio 

files of one-second (1s), five-second (5s), ten-second (10s), and fifteen-second (15s) 

duration are included in the results with calculated accuracy. 

 

 

 

 

 

Table 6.4: Audio Standard Splitting (10-Second Audio Files) 

 

 

 

 

 

 

Table 6.5: Audio Split on Silences (10-Second Audio Files) 

 

 

 

 

 

 

 

 

 

Table 6.6: Time Required to Segment Input Audio 

 

Input 

Data 

Total 

Files 

Silent 

Files 

Partial 

Silent 

Files 

Sliced 

Only 

Files 

Sliced 

& Silent 

Files 

Invalid 

Speech 

Valid 

Speech 

Accuracy 

(%) 

10 mins 60 4 3 33 12 52 8 13.33 

1 Hour 11 360 21 220 51 303 57 15.83 

5 Hours 59 1800 109 1009 239 1416 384 21.33 

Input 

Data 

Total 

Files 

Silent  

Files 

Partial 

Silent  

files 

Sliced 

Only  

Files 

Sliced 

& Silent  

Files 

Invalid 

Speech 

Valid 

Speech 

Accuracy 

(%) 

10 Mins 60 1 0 1 0 2 58 96.6 

1 Hour 693 3 0 5 0 8 685 98.8 

5 Hours 1753 13 0 21 0 34 1719 98.06 

URL Data Audio 

Extracted 

Type of Audio File Total 

Time 

Segmentation 

Time 
1s 5s 10s 15s 

37 

(31Hours) 

21 Hours 391 92 37 18 24.85 

Minutes 

5 Minutes 

88 

(59Hours) 

40  Hours 930 220 88 43 59.25 

Minutes 

9 Minutes 

130 

(81Hours) 

54  Hours 1375 326 131 64 1.46 

Hours 

23 Minutes 



 

40 

 

•      Discussion 
The standard splitting technique produced unsatisfactory results. According to Table 6.4, 

the accuracy with 10 minutes, 1 hour, and 5 hours of input data is 13%, 15%, and 21%, 

respectively. Although increasing the amount of input data improves accuracy, the ratio 

of output valid speech is still too low (less than 22%). The split-on-silence method 

produces significantly better results. The split-on-silence technique has an overall 

accuracy of more than 95%, according to Table 6.5. As a result, we only used this 

information in our final speech data. 

Table 6.2 shows that the final output speech consists of audio files ranging from one 

second (1s) to fifteen seconds (15s). For each audio file, the percentage of valid speech is 

given. For instance, it is 99% for one-second, 98% for five-second, 92% for ten-second, 

and 81% for fifteen-second audio files. The data shows that the length of an audio file 

influences the segmentation process, i.e. when the length of an audio file increases, the 

accuracy of valid chunks decreases. 

Table 6.6 shows the segmentation time for four different types of audio files: 1s, 5s, 10s, 

and 15s. It takes 5 minutes to split the speech into vocals and accompaniment tracks from 

21 hours of extracted audio. Similarly, 40 hours of audio takes 9 minutes to produce the 

required audio file chunks, while 54 hours of audio takes 23 minutes.  

6.2.4 Speech Output for Multiple languages 

As previously stated, the model is generic and can be applied to any language. In addition 

to Pashto, we tested the pipeline for data in Sindhi and Balochi to see how the results did 

respond. The experiments carried out can be summarized as follows: - 

6.2.4.1 Output Speech 

•      Results 

We chose Pashto (Ps), Baluchi (Bl), and Sindhi (Sn) to test the pipeline accuracy in terms 

of output speech for multiple low-resource languages. The input data of 2.30 hours (07 

URLs) for Pashto, 2.28 hours (09 URLs) for Baluchi, and 2.26 hours (11 URLs) for 

Sindhi is provided to the model. Table 6.7 displays the obtained results. 

 



 

41 

 

Input Data Type Output Speech (Minutes) 

 

 

Pashto: 07 URLs (02 

Hours and 30 Minutes) 

 

 

 

Baluchi: 09 URLs (02 

Hours and 28 Minutes) 

 

 

 

Sindhi: 11 URLs (02 

Hours and 26 Minutes) 

Ps Bl Sn 

1s 73 61 12 

2s 94 107 25 

3s 51 45 12 

4s 43 52 20 

5s 55 59 28 

6s 19 33 19 

7s 17 23 12 

8s 27 32 21 

9s 21 16 08 

10s 15 19 12 

11s 9 06 04 

12s 13 12 20 

13s 11 13 10 

14s 7 05 04 

15s 12 08 06 

Total 34.58 

Minutes 

40.51 

Minutes 

23.93 

Minutes 

 

Table 6.7: Output Speech for Pashto, Baluchi, and Sindhi 

•      Discussion 

Table 6.7 shows nearly identical speech output data for all three languages. The output 

for Pashto is 34 minutes when 2.5 hours of URL data is provided as input. Similarly, 2.4 

hours of Baluchi input data produces 40 minutes of output speech. For the Sindhi 

language, the output speech is 23 minutes when 2.3 hours of input data is provided. The 

results show that there is no significant difference in output speech regardless of the 

language data supplied to the model as input. 

6.2.4.2 Noisy Data 

•      Results 

The results for noisy and valid speech data are shown in Table 6.8. Accuracy is 

calculated in terms of valid speech data for all three languages.  

 



 

42 

 

URLs Type Noisy Speech Valid Speech Accuracy 

(%) 

 

 

Pashto:  

07 Urls (02 

Hours and 

30 

Minutes) 

 

 

Baluchi:  

09 Urls (02 

Hours and 

28 

Minutes) 

 

 

Sindhi:  

11 Urls (02 

Hours and 

26 

Minutes) 

Ps Bl Sn Ps Bl Sn Ps Bl Sn 

1s    73 61 12 100 100 100 

2s    94 107 25 100 100 100 

3s    51 45 12 100 100 100 

4s    43 52 20 100 100 100 

5s  1 1 55 58 27 100 98.3 96.4 

6s    19 33 19 100 100 100 

7s 1   18 23 12 94.7 100 100 

8s    27 32 21 100 100 100 

9s 1   20 16 8 95.2 100 100 

10s  1 2 15 18 10 100 94.7 83.3 

11s  1 1 9 7 3 100 87.5 75 

12s 1   12 12 20 92.3 100 100 

13s 2 1 1 9 12 9 81.8 92.3 90 

14s 1 1 1 6 3 3 85.7 75 75 

15s 2 1 1 10 5 4 83.3 83.3 80 

Total 98s 68s 78s       

 

Table 6.8: Comparison of Noisy Speech for Pashto, Baluchi, and Sindhi 

•      Discussion 
Table 6.8 shows noisy speech details for all three languages. The collective noisy audio 

files for Pashto, Baluchi, and Sindhi are 98s, 68s, and 78 seconds respectively. Results 

show that speech containing noise is independent of language. The ratio of noisy audio 

files is almost identical for all languages. 

6.2.4.3 Comparison in Time Consumption 

•           Results 
When URL input is provided to the model to generate the final output speech, the time 

taken by the model to process it is referred to as Time Consumption. Time consumption 

includes the time required to extract audio from video URLs, the time required to remove 

noise from raw audio, and the time required for speech segmentation to produce the final 

output speech, as shown in Table 6.9. 



 

43 

 

Language Input Data Audio 

Extraction 

(Minutes) 

Audio Source 

Separation 

(Minutes) 

Audio 

Splitting 

(Minutes) 

Pashto 2.30 Hours 9 12 1-2 

Baluchi 2.28 Hours 8 10 1-2 

Sindhi 2.26 Hours 7 9 1-2 

 

Table 6.9: Time Consumption for Pashto, Baluchi, and Sindhi 

•      Discussion 
Table 10 shows nearly identical results for all three languages. It takes less than ten 

minutes to extract audio from 2-3 hours of YouTube URL data. Similarly, the time 

required for noise removal is less than 15 minutes, and audio segmentation takes less than 

2 minutes to produce the final output speech. This shows that the model is independent of 

language video data. 

6.2.5 Comparison with other Datasets 

Table 6.10 shows a quick comparison of our speech data with Urdu and Punjabi datasets 

from Mozilla Common Voice. 

 

Details Urdu Punjabi  Pashto Speech  

Volume 270 MB 90.15 MB 725 MB 

Size (Hours) 13 4 5.9 

Voices  108 58 137 

Audio Format MP3 MP3 Wav 

Split Age:  

19-29 = 71% 

40-49 = 7% 

Gender: 

Male = 61% 

Female = 21%  

 Age: 

18-40 = 40% 

40-60 =35% 

60+ = 25% 

Gender: 

Male = 52% 

Female = 48% 

Speech mode Manual Recorded Manual Recorded Online (Youtube) 

 

Table 6.10: Speech Data Consumption for Pashto, Baluchi, and Sindhi 



 

44 

 

Chapter 7 

Future Work & Conclusion 

7.1 Future perspective 

Our research establishes a solid foundation for creating speech corpora and provides directions 

for future work in terms of improving model functionality and output speech quality. First and 

foremost, future work should address the challenges identified in our research by incorporating 

techniques to address the issues identified. Second, the model can be improvised to acquire the 

necessary speech data. 

The URL selection process is manual; however, it can be automated by using standard keywords 

from Wikipedia or other textual sources to search for relevant data on YouTube. The job of 

source separation is to remove noise from raw audio extracted, but some audio files still 

contain noise. There is currently no automated mechanism in place to check speech and 

differentiate between valid and noisy audio files. As a result, a mechanism can be 

developed to identify problematic audio files and isolate them from valid speech. The 

time for audio extraction, noise removal, and speech segmentation is manually recorded 

for each video; this aspect can be automated by incorporating some technique that counts 

time for these activities. The current Pashto speech corpus is based on two main dialects 

as well as the written text. More speech data for multiple dialects mapped to multiple 

textual formats can be created. There is currently no predefined condition on the model 

that generates a specific amount of output speech for a specified number of audio chunks. 

The above scenario can be implemented to produce speech for predefined audio hours 

and speech segment file requirements. 

 

 

 

 

 



 

45 

 

7.2 Conclusion 

Automatic speech recognition (ASR) for low-resource languages improves linguistic 

minorities' access to technological advantages. The first step in developing an ASR 

system is to generate a transcribed speech corpus. Traditional ASR models require 

massive amounts of speech data, whereas the Meta AI self-supervised concept allows us 

to train an ASR system with only a few hours of speech data. However, generating such 

transcribed speech is a widespread issue for low-resource languages. The primary 

problem is the collection of speech data. Recording and crowdsourcing are popular 

methods, but they are expensive for a low-resource language. As a result, this research 

contributes to the development of a model for automated online speech data retrieval. The 

model can generate voice segments suitable for speech recognition tasks in a low-

resource language by utilizing video or audio-sharing platforms such as YouTube. A 

review of existing work in the field of speech recognition for the Pashto language has 

also been conducted. An ASR dataset is created using YouTube resources to address the 

issue of speech data scarcity in the Pashto language. 

 

 

 

 

 

 

 



 

46 

 

Notations 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

47 

 

References 

[1] Polat, Huseyin, and Saadin Oyucu. "Building a speech and text corpus of 

Turkish: Large corpus collection with initial speech recognition 

results." Symmetry 12.2 (2020): 290. 

[2] Papastratis, Ilias "Speech Recognition: a review of the different deep learning 

approaches", theaisummer.com, Year "2021",  

[3] Paramonov, P.; Sutula, N. “Simplified scoring methods for HMM-based 

speech recognition” Soft Comput. 2016,20, 3455–3460. [CrossRef] 

[4] Mahanty, R.; Mahanti, P.K. Unleashing artificial intelligence onto big data: A 

review. In Research on Computational Intelligence Applications in 

Bioinformatics, 1st ed.; Dash, S., Subudhi, B., Eds.; IGI Global: Hershey, PA, 

USA, 2016; pp. 1–16. 

[5] Aggarwal, R.; Dave, M. “Acoustic modeling problem for automatic speech 

recognition system: Advances and refinements (Part II)”. Int. J. Speech 

Technol. 2011, 14, 1572–8110. [CrossRef] 

[6] [2201.02419v2] Automatic Speech Recognition Datasets in Cantonese: A 

Survey and New Dataset (arxiv.org) 

[7] “What is Automatic Speech Recognition?” blog by voximplant dated: 2020-

10-01. Blog Link: https://voximplant.com/blog/what-is-automatic-speech-recognition 

[8] Zhang, Biao, Barry Haddow, and Rico Sennrich. "Revisiting End-to-End 

Speech-to-Text Translation From Scratch." arXiv preprint 

arXiv:2206.04571 (2022). 

[9] Li, Jinyu. "Recent advances in end-to-end automatic speech 

recognition." APSIPA Transactions on Signal and Information 

Processing 11.1 (2022). 

[10] Perero-Codosero, Juan M., Fernando M. Espinoza-Cuadros, and Luis A. 

Hernández-Gómez. "A Comparison of Hybrid and End-to-End ASR Systems 

for the IberSpeech-RTVE 2020 Speech-to-Text Transcription 

Challenge." Applied Sciences 12.2 (2022): 903. 

https://arxiv.org/abs/2201.02419v2
https://arxiv.org/abs/2201.02419v2
https://voximplant.com/blog/what-is-automatic-speech-recognition


 

48 

 

[11] Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; 

Kingsbury, B. Deep neural networks for acoustic modeling in speech 

recognition: The shared views of four research groups. IEEE Signal 

Processing Mag. 2012, 29, 82–97. [CrossRef] 

[12] Prabhavalkar, R.; Rao, K.; Sainath, T.N.; Li, B.; Johnson, L.; Jaitly, N. A 

Comparison of Sequence-to-Sequence Models for Speech Recognition. 

Interspeech 2017, 2017, 939–943. [CrossRef] 

[13] Rao, Kanishka, Haşim Sak, and Rohit Prabhavalkar. "Exploring architectures, 

data and units for streaming end-to-end speech recognition with rnn-

transducer." 2017 IEEE Automatic Speech Recognition and Understanding 

Workshop (ASRU). IEEE, 2017. 

[14] He, Y.; Sainath, T.N.; Prabhavalkar, R.; McGraw, I.; Alvarez, R.; Zhao, D.; 

Gruenstein, A. Streaming end-to-end speech recognition for mobile devices. 

In Proceedings of the ICASSP 2019—2019 IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 

May 2019; pp. 6381–6385. 

[15] Li, J.; Zhao, R.; Meng, Z.; Liu, Y.; Wei, W.; Parthasarathy, S.; Gong, Y. 

Developing RNN-T models surpassing high-performance hybrid models with 

customization capability. arXiv 2020, arXiv:2007.15188. 

[16] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. 

Le. Specaugment: A simple data augmentation method for automatic speech 

recognition. In Proc. of Interspeech, 2019. 

[17] G. Synnaeve et al. End-to-end ASR: from Supervised to Semi-Supervised 

Learning with Modern Architectures. arXiv, abs/1911.08460, 2019. 

[18] W. Han et al. Contextnet: Improving convolutional neural networks for 

automatic speech recognition with global context. arXiv, 2020. 

[19] Gulati, Anmol, et al. "Conformer: Convolution-augmented transformer for 

speech recognition." arXiv preprint arXiv:2005.08100 (2020). 

[20] Simons, Gary F., and Charles D. Fennig. "Ethnologue: Languages of the 

World, Dallas, Texas: SIL International." Online version: http://www. 

ethnologue. com (2017). 



 

49 

 

[21] A. H. Liu, H.-Y. Lee, and L.-S. Lee. Adversarial training of end-to-end speech 

recognition using a criticizing language model. arXiv, 2018. 

[22] Baskar, Murali Karthick, et al. "Semi-supervised sequence-to-sequence ASR 

using unpaired speech and text." arXiv preprint arXiv:1905.01152 (2019). 

[23] W.-N. Hsu, A. Lee, G. Synnaeve, and A. Hannun. Semi-supervised speech 

recognition via local prior matching. arXiv, 2020. 

[24] H. Scudder. Probability of error of some adaptive pattern-recognition 

machines. IEEE Trans. on Inform. Theory, 1965. 

[25] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised 

methods. In Proc. of ACL, 1995.  

[26] E. Riloff. Automatically generating extraction patterns from untagged text. In 

Proc. of AAAI, 1996. 

[27] Mathur, Chetan N., and K. P. Subbalakshmi. "Security issues in cognitive 

radio networks." Cognitive Networks: Towards Self‐Aware Networks (2007): 

271-291. 

[28] E. Riloff. Automatically generating extraction patterns from untagged text. In 

Proc. of AAAI, 1996. 

[29] S. H. K. Parthasarathi and N. Strom. Lessons from building acoustic models 

with a million hours of speech. arXiv, 2019. 

[30] J. Kahn, A. Lee, and A. Hannun. Self-training for end-to-end speech 

recognition. In Proc. of ICASSP, 2020. 

[31] Q. Xu, T. Likhomanenko, J. Kahn, A. Hannun, G. Synnaeve, and R. Collobert. 

Iterative pseudo-labeling for speech recognition. arXiv, 2020. 

[32] D. S. Park, Y. Zhang, Y. Jia, W. Han, C.-C. Chiu, and et al. Improved noisy 

student training for automatic speech recognition. arXiv, 2020. 

[33] Alexei Baevski Henry Zhou Abdelrahman Mohamed Michael Auli. wav2vec 

2.0: A Framework for Self-Supervised Learning of Speech Representations. 

arxiv.org 2020. 

[34] Krauwer, Steven. "The basic language resource kit (BLARK) as the first 

milestone for the language resources roadmap." Proceedings of SPECOM. 

Vol. 2003. No. 8. 2003. 



 

50 

 

[35] Berment, Vincent. Méthodes pour informatiser les langues et les groupes de 

langues «peu dotées». Diss. Université Joseph-Fourier-Grenoble I, 2004. 

[36] Young, Steve J., and Lin Lawrence Chase. "Speech recognition evaluation: a 

review of the US CSR and LVCSR programmes." Computer Speech & 

Language 12.4 (1998): 263-279. 

[37] Kincaid, Jason, “A Brief History of ASR: Automatic Speech Recognition” 

July 2018 

[38] Conneau, Alexis, et al. "Unsupervised cross-lingual representation learning 

for speech recognition." arXiv preprint arXiv:2006.13979 (2020). 

[39] Gelas, Hadrien, et al. "Quality assessment of crowdsourcing transcriptions for 

African languages." Twelfth Annual Conference of the International Speech 

Communication Association. 2011. 

[40] Schultz, Tanja, and Alex Waibel. "Language-independent and language-

adaptive acoustic modeling for speech recognition." Speech 

Communication 35.1-2 (2001): 31-51. 

[41] Le, Viet-Bac, and Laurent Besacier. "Automatic speech recognition for under-

resourced languages: application to Vietnamese language." IEEE Transactions 

on Audio, Speech, and Language Processing 17.8 (2009): 1471-1482. 

[42] Lopes, Carla, and Fernando Perdigao. "Phone recognition on the TIMIT 

database." Speech Technologies/Book 1 (2011): 285-302. 

[43] Paul, Douglas B., and Janet Baker. "The design for the Wall Street Journal-

based CSR corpus." Speech and Natural Language: Proceedings of a 

Workshop Held at Harriman, New York, February 23-26, 1992. 1992. 

[44] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “Switchboard: telephone 

speech corpus for research and development,” in Proc. of IEEE ICASSP, 1992. 

[45] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: An asr 

corpus based on public domain audio books. In 2015 IEEE International 

Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 

5206–5210, 2015. doi: 10.1109/ICASSP.2015.7178964.  

[46] G. Chen, S. Chai, G. Wang, J. Du, W.-Q. Zhang, C. Weng, D. Su, D. Povey, J. 

Trmal, J. Zhang, M. Jin, S. Kudanpur, S. Watanabe, S. Zhao, W. Zou, X. Li, 



 

51 

 

X. Yao, Y. Wang, Z. You, and Z. Yan. Gigaspeech: An evolving, multi-

domain asr corpus with 10,000 hours of transcribed audio. Interspeech 2021, 

2021. 

[47] Ardila, Rosana, et al. "Common voice: A massively-multilingual speech 

corpus." arXiv preprint arXiv:1912.06670 (2019). 

[48] V. Pratap, Q. Xu, A. Sriram, G. Synnaeve, and R. Collobert. Mls: A large-

scale multilingual dataset for speech research. Interspeech 2020, Oct 2020. doi: 

10.21437/interspeech.2020-2826. URL http: 

//dx.doi.org/10.21437/Interspeech.2020-2826. 

[49] Bu, H., Du, J., Na, X., Wu, B., and Zheng, H. (2017). Aishell-1: An open-

source mandarin speech corpus and a speech recognition baseline. In 2017 

20th Conference of the Oriental Chapter of the International Coordinating 

Committee on Speech Databases and Speech I/O Systems and Assessment (O-

COCOSDA), pages 1–5. IEEE. 

[50] Ali, Hazrat, Nasir Ahmad, and Abdul Hafeez. "Urdu speech corpus and 

preliminary results on speech recognition." International conference on 

engineering applications of neural networks. Springer, Cham, 2016. 

[51] Raza, Agha Ali; Hussain, Sarmad; Sarfraz, Huda; Ullah, Inam; Sarfraz, Zahid 

(2009). [IEEE 2009 Oriental COCOSDA International Conference on Speech 

Database and Assessments - Urumqi, China (2009.08.10-2009.08.12)] 2009 

Oriental COCOSDA International Conference on Speech Database and 

Assessments - Design and development of phonetically rich Urdu speech 

corpus., (), 38–43. doi:10.1109/ICSDA.2009.5278380  

[52] Sameti, Hossein, et al. "A large vocabulary continuous speech recognition 

system for Persian language." EURASIP Journal on Audio, Speech, and Music 

Processing 2011.1 (2011): 1-12. 

 

[53] Yazdani, Ali, Hossein Simchi, and Yasser Shekofteh. "Emotion Recognition 

In Persian Speech Using Deep Neural Networks." 2021 11th International 

Conference on Computer Engineering and Knowledge (ICCKE). IEEE, 2021. 



 

52 

 

[54] Tiwari, Sonal A., Rajashri G. Kanke, and A. Maheshwari. "Marathi Speech 

Database Standardization: A Review and Work." International Journal of 

Computer Science and Information Security (IJCSIS) 19.7 (2021). 

[55]  Mon, Aye Nyein, Win Pa Pa, and Kyaw Thu Ye. "UCSY-SC1: A 

Myanmar speech corpus for automatic speech recognition." International 

Journal of Electrical and Computer Engineering 9.4 (2019): 3194. 

[56] Basu, Joyanta, et al. "Multilingual speech corpus in low-resource eastern and 

northeastern Indian languages for speaker and language 

identification." Circuits, Systems, and Signal Processing 40.10 (2021): 4986-

5013. 

[57] Kumar, Ritesh, et al. "Annotated Speech Corpus for Low Resource Indian 

Languages: Awadhi, Bhojpuri, Braj and Magahi." arXiv preprint 

arXiv:2206.12931 (2022). 

[58] Choi, Yoona, and Bowon Lee. "Pansori: ASR corpus generation from open 

online video contents." arXiv preprint arXiv:1812.09798 (2018). 

[59] Takamichi, Shinnosuke, et al. "JTubeSpeech: corpus of Japanese speech 

collected from YouTube for speech recognition and speaker 

verification." arXiv preprint arXiv:2112.09323 (2021). 

[60] Sikasote, Claytone, and Antonios Anastasopoulos. "BembaSpeech: A Speech 

Recognition Corpus for the Bemba Language." arXiv preprint 

arXiv:2102.04889 (2021). 

[61] Alam, Samiul, et al. "Bengali common voice speech dataset for automatic 

speech recognition." arXiv preprint arXiv:2206.14053 (2022). 

[62] Yu, Tiezheng, et al. "Automatic Speech Recognition Datasets in Cantonese: A 

Survey and New Dataset." Proceedings of the Thirteenth Language Resources 

and Evaluation Conference. 2022. 

[63] Ahmed, Irfan, et al. "The development of isolated words corpus of pashto for 

the automatic speech recognition research." 2012 International Conference of 

Robotics and Artificial Intelligence. IEEE, 2012. 



 

53 

 

[64] Wahab, Mehreen, Hassan Amin, and Farooq Ahmed. "Shape analysis of 

pashto script and creation of image database for OCR." 2009 International 

Conference on Emerging Technologies. IEEE, 2009. 

[65] Abbas, Arbab Waseem, Nasir Ahmad, and Hazrat Ali. "Pashto Spoken Digits 

database for the automatic speech recognition research." 18th International 

Conference on Automation and Computing (ICAC). IEEE, 2012. 

[66] Trmal, Jan, et al. "Using of heterogeneous corpora for training of an ASR 

system." arXiv preprint arXiv:1706.00321 (2017). 

[67] Parent, Gabriel, and Maxine Eskenazi. "Toward better crowdsourced 

transcription: Transcription of a year of the let's go bus information system 

data." 2010 IEEE Spoken Language Technology Workshop. IEEE, 2010. 

[68] Hennequin, Romain, et al. "Spleeter: a fast and efficient music source 

separation tool with pre-trained models." Journal of Open Source 

Software 5.50 (2020): 2154. 

[69] Tom Bäckström and Okko Räsänen and Abraham Zewoudie and Pablo Pérez 

Zarazaga and Liisa Koivusalo and Sneha Das and Esteban Gómez Mellado 

and Marieum Bouafif Mansali and Daniel Ramos, “Introduction to Speech 

Processing” edition 2, 2022. 

[70] Ishizaka, Kenzo, and James L. Flanagan. "Synthesis of voiced sounds from a 

two‐mass model of the vocal cords." Bell system technical journal 51.6 (1972): 

1233-1268. 

[71] Atal, B., and L. Rabiner. "A pattern recognition approach to voiced-unvoiced-

silence classification with applications to speech recognition." IEEE 

Transactions on Acoustics, Speech, and Signal Processing 24.3 (1976): 201-

212. 

[72] Jalil, Madiha, Faran Awais Butt, and Ahmed Malik. "Short-time energy, 

magnitude, zero crossing rate and autocorrelation measurement for 

discriminating voiced and unvoiced segments of speech signals." 2013 The 

international conference on technological advances in electrical, electronics, 

and computer engineering (TAEECE). IEEE, 2013. 



 

54 

 

[73] Wang, Zhe. "Audio Signal Acquisition and Processing System Based on 

Model DSP Rapid Design." Security and Communication Networks 2022 

(2022). 

[74] Aajiz, N.M., and Pashto Academy Publications, “Bilingual primer Pashto - 

English”  

[75] Rahman, Tariq. "Language policy, multilingualism and language vitality in 

Pakistan." Trends in linguistics studies and monographs 175 (2006): 73. 

[76] Lorigo, Liana, and Venu Govindaraju. "Segmentation and pre-recognition of 

Arabic handwriting." Eighth International Conference on Document Analysis 

and Recognition (ICDAR'05). IEEE, 2005. 

[77] Ardila, Rosana, et al. "Common voice: A massively-multilingual speech 

corpus." arXiv preprint arXiv:1912.06670 (2019). 

 

 

 


