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Abstract 

Neural network-based machine learning algorithms have shown outstanding results and 

are currently being widely used in numerous fields. These machine learning algorithms 

demands considerable computing power for internal calculations and training with big 

datasets in a reasonable amount of time. In recent years, clouds provide services to 

facilitate this process, but it introduces new security threats, as the machine learning 

algorithms mainly rely on the utilization of personal data for training and classification 

which frequently has privacy implications. To overcome this problem, we propose new 

approach for operating deep neural networks on encrypted data. Homomorphic 

encryption is a cryptographic technique, which allows to perform computations on 

encrypted data, but it also has some limitations associated with it. However, it only 

supports limited number of addition and multiplication operations in encrypted domain. 

Existing works only cater simple machine learning algorithms like binary classifiers 

and simple neural networks in the encrypted domain. Moreover, these simple machine 

learning algorithms does not provide the required accuracies and also handle a limited 

number of datasets. To address these issues deeper neural networks are required, which 

on the other hand increases the computational complexity. In this study, we create novel 

methods for implementing deep neural networks within the realistic limitations of 

homomorphic encryption techniques. We mainly concentrate on convolutional neural 

networks for training and encrypted classification. To begin, we provide techniques for 

approximating the activation functions typically employed in CNNs (e.g., ReLU and 

Sigmoid) with low degree polynomials, which is required for efficient homomorphic 

encryption schemes. The models are then trained using approximation polynomials 

rather than the original activation functions, and their performance is evaluated. In the 

end, we apply convolutional neural networks to encrypted data for privacy preserving 

classification by varying the various Homomorphic encryption scheme’s parameters 

and evaluate the model performance. The proposed scheme ensures privacy while 

attaining the maximum accuracy. 
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𝑝𝑘                                                  public key 

𝑠𝑘                                                  secret key 

𝜆                                                    security parameter 

𝑐                                                    ciphertext 
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B                                                    set of vectors 

ℒ                                                    represent lattice 
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R                                                    set of real numbers  

‖𝒗‖                                                norm of a vector 

< 𝑎, 𝑏 >                                        dot product of two vectors   

T                                                    plaintext modulus  

N                                                    polynomial modulus degree 

Q                                                    coefficient modulus        

E                                                     noise (error) 

𝑁𝑚                                                  highest Degree polynomial (𝑚)             
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Chapter 1 

Introduction 

 

1.1 Overview and Motivation 

Cloud computing empowers anyone–from individuals to enterprises–to migrate on 

premise workloads to a third-party. Cloud computing might not be feasible in all 

circumstances, despite the fact that it can significantly enhance the computer power 

available to customers with low budgets and processing capacity. For instance, the 

GDPR [1] regulation of the European Union (EU) governs the privacy and data 

protection laws within EU and limits the information that may be transmitted beyond 

the EU. The GDPR may be violated, if the computation of sensitive data is outsourced 

to a cloud provider located outside the EU. One method for maintaining data privacy 

and GDPR compliance is to make encryption of data before sharing it to a cloud server. 

But what if someone want to perform computations on the data at cloud server? 

Homomorphic encryption (HE) helps us to perform such kind of computations. It 

allows the users to execute calculations on encrypted data at outsource environment 

while ensuring the cloud server wouldn’t learn anything about the data of the user.  

Although the use case is straightforward, implementing this kind of solution is a 

difficult task. The biggest challenge is creating the homomorphic version of the 

function that has to be evaluated later. First, the input data must be encoded as 

homomorphic plaintexts and this encoding will impact the efficiency of the resulting 

circuit. Second, HE schemes only support basic arithmetic operations like addition and 

multiplication and it cannot support high-level functions like rounding, evaluating non-

polynomial functions. Finally, multiplicative depth of evaluation function has a direct 

relation with HE parameters, higher depth functions demand bigger HE parameters, 

which decreases the efficiency of the scheme and increases computing time. 

For years, the security and machine learning scientists have been fascinated by learning 

the model without having access to raw material. Ideally, we want the confidential data 

https://sciwheel.com/work/citation?ids=13762322&pre=&suf=&sa=0&dbf=0
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to be encrypted before storing it on cloud and certain data analysis performed without 

ever decrypting the data. HE is a strong candidate for secure outsourced data 

computations, however because of the aforementioned problems, implementing real-

world machine learning tasks in an outsourced privacy-preserved environment is quite 

difficult. Existing solutions [2][3][5] can only handle simplified low-depth circuits such 

as logistic regression and simple neural network and these learning algorithms only 

handle datasets in a texture format. The primary objective of this thesis is to provide 

the practical support to high depth real-world machine learning model like deeper 

neural network. Deeper neural network also allows us to handle datasets comprises of 

textural as well as image format and also the model accuracy of such networks are far 

better than the simple learning algorithms. This work will examine the performance of 

the purposed model by using real-world datasets and demonstrate its feasibility in 

different sectors like health, genomes analysis and business analytics etc. 

1.2 Problem Statement 

Technology advancement in current era introduces a new sort of currency in everyday 

human experience known as individual’s privacy. Machine learning, as a technical 

front-runner that plays a leading role in many current developments, is strongly reliant 

on the utilization of personal data. Analytical models are used in machine learning to 

create well-informed predictions on given datasets. Furthermore, a lot of machine 

learning models required a significant computing resource in order to analyze enormous 

volumes of data efficiently. Taking advantage of cloud resources is one answer to this 

dilemma. When it comes to security, a cloud-based solution invites a number of 

problems. On the other hand, what if it was possible to incorporate the best aspects of 

both worlds, i.e., utilizing cloud resources while maintaining individual security, while 

performing machine learning on cloud settings? 

Supposing a previously trained machine learning model is stored on the cloud. A client 

encrypts his data and sends it to cloud server. The model uses encrypted data to process 

a result that can only be decrypted by the individual. This identical scenario has been 

demonstrated achievable through the use of privacy-preserving classification. 

Therefore, it is crucial to comprehend how encryption is used inside privacy-preserving 

classification when evaluating the confidentiality and effectiveness of a system. The 

core idea of privacy-preserving classification problem is to use the encrypted data to 

https://sciwheel.com/work/citation?ids=13749558&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749567,13749560,13749561&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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make encrypted predictions. The design and implementation of a prediction model 

involves the use of three datasets: training, validation, and testing. A training dataset is 

used during the learning phase to determine the weights that comprise the predictive 

model. During the learning phase, a validation dataset is used to fine-tune the model's 

architecture and meta-parameters, as well as to query the model's performance on 

unseen data. After the learning process, the final model's predictive ability is verified 

using a testing dataset. This is known as the classification process. 

The learning phase of privacy-preserving classification uses unencrypted datasets, 

whereas the inference phase uses encrypted datasets. It looks like a client-server 

architecture as shown in Fig 1. In this scenario, the prediction model has already been 

trained on cloud server, yet the cloud server would like to change it so that it can classify 

inputs that have been encrypted. So, learning phase is straightforward and uses 

unencrypted training and validation datasets to update weights and fine-tune model 

architecture. But during the classification phase, the distinction can be seen, where the 

model provides an encrypted prediction on encrypted testing dataset. The proposed 

solution to the classification problem in a privacy preserved environment is based on 

homomorphic encryption. 

 

 

Figure 1. HE-based Privacy Preserving Classification  
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1.3 Research Objectives 

The main objectives of thesis are discussed as follows: 

• To ensure the privacy of user’s data while performing computation on the 

data in out-sourced environments e.g., cloud server. 

• Application of HE for higher depth multiplicative circuits like 

Convolutional Neural Network (CNN). 

• Assessing efficient approximation techniques for nonlinear computation 

functions to make them compatible with HE.  

• Verification of proposed solutions using the MNIST [6] dataset. 

1.4 Thesis Contribution 

In literature, the privacy-preserving classification problem has several solutions that are 

based on HE [2][3][5][4]. While these solutions claim to be accurate and efficient, they 

are mainly unexplored and understudied. In fact, finding even a straightforward case 

study is challenging due to the inadequate documentation and missing source codes. 

Also, most of these works only employ the HE for simple machine learning algorithms 

like simple logistic regression etc. To employ the HE for deep learning algorithm, like 

convolutional neural network (CNN), is a challenging task. This study focuses on a 

more thorough investigation of combining HE with CNN. 

This study combine the CNN with HE using an open source Microsoft cryptographic 

library called SEAL[7], which is built on the BFV [8][9] and CKKS [10] schemes. 

Although both encrypted training as well as encrypted classification are conceivable, 

but the main purpose of this work is to examine the viability of encrypted classification 

and the complexities of SEAL. 

To address the limitations of HE functionality, the non-linear activation functions 

(ReLU & Sigmoid) are approximated to low degree polynomial-approximations. The 

CNN is trained using the real activation functions on plain data, but the classification 

phase uses approximated activation functions on HE-encrypted data. Along with the 

activation layers, the other parts of the network e.g., convolution, pooling, and fully- 

connected layers are also developed. Initial experiments are carried out with a 

straightforward three-layer network to ensure that these privacy-preserving layers were 

correct. Following the success of the preliminary results, a bigger seven-layer network 

https://sciwheel.com/work/citation?ids=13762323&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749558&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749567,13749560,13749561&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13749560&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13768004&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12170336,13763825&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7019327&pre=&suf=&sa=0&dbf=0
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is built to conduct encrypted classification on handwritten digit dataset, named as 

MNIST [6] dataset. The application is designed and tested to ensure accuracy, 

performance, efficiency, and general applicability. The findings of the experiments 

highlight the potential importance of HE in modern days cloud-based machine learning 

information systems, particularly based on CNN. Finally, the HE-parameters are 

adjusted to observe how parameter size impacts efficiency and accuracy in order to 

investigate the behavior of privacy-preserving classification in the prospective of 

cryptography/security. 

1.5 Research Methodology 

The research work starts from literature review of the existing proposed schemes being 

used for privacy preserved machine learning using HE. The literature review is done 

from various academic sources. This research then narrows down to privacy preserved 

CNN classifications problems using HE while listing down the drawbacks of existing 

schemes and formulates the problem. Then, it discusses the necessary changes needed 

in CNN layer to make it compatible with HE schemes for encrypted classification 

purposes in later part of the thesis. 

The implementation is done using Python version of SEAL [11], called Pyfhel [12], in 

VS Code in a Windows-based environment. Several modules are also integrated for the 

complete implementation, which will be discussed in detail in relevant chapter. In the 

end, a road map for future research areas in the privacy preserving classification will 

be discussed. Fig 2 represents the major highlights of the research methodology. 

 

 

Figure 2. Research Methodology 

https://sciwheel.com/work/citation?ids=13762323&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7019355&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13887409&pre=&suf=&sa=0&dbf=0
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1.6 Thesis Organization 

The thesis is organized as follows: 

a. Chapter 2 contains a brief mathematical background related to post-quantum 

cryptography in the context of homomorphic encryption.  

b. Chapter 3 contains a brief literature review of HE-based privacy preserving machine 

learning solutions. Some well-known privacy preserving techniques are also 

discussed in this chapter. 

c. Chapter 4 elaborates the main homomorphic encryption scheme used in our 

proposed model. 

d. Chapter 5 introduces the proposed work. The practical feasibility of the proposed 

model is also discussed in this chapter. Privacy of different components of proposed 

CNN model is also discussed. 

e. Chapter 6 covers the details of implementation of the proposed work in python-

based environment. MNIST dataset is used to provide a comparative study. The 

results are generated in the form of graphs and are also presented in this chapter. 

f. Chapter 7 marks the end of this document, concluding the results and some future 

recommendations to cater for the issues faced during this thesis. 
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Chapter 2 

Preliminary Studies 

This chapter provides the necessary mathematical background along with some basics 

of cryptography. It also includes the most critical definitions for comprehending the 

FHE schemes and definitions. At the end some basics of machine learning algorithms, 

especially the convolutional neural network, are also discussed. 

2.1 Introduction 

The term cryptology originates from the Greek terms kryptós and logos, which means 

"hidden word." Generally, cryptology is a science that studies how to hide confidential 

information. Cryptography and cryptanalysis are two complementing branches in 

cryptology, with cryptography being the science of building secure ciphers and 

cryptanalysis being the science of cracking ciphers. This thesis will concentrate on 

cryptography, specifically encryption schemes along with their daily life applications. 

The goal of cryptography is to hide confidential information from unauthorized parties, 

by providing some among the properties like Confidentiality, Integrity, Non-

repudiation and Authentication. Cryptographic algorithms are based on the concept of 

computational hardness, which makes them practically tough to break by an adversary. 

The cryptosystems are techniques and protocols which meet all or some of the 

characteristics listed above. 

Encryption refers to the process of encrypting a message or piece of information so that 

only authorized people may access it, ensuring confidentiality. Symmetric (Private-

key) and Asymmetric (Public-key) are two types of encryption schemes. Asymmetric 

cryptosystems have separate encryption and decryption keys, whereas symmetric 

cryptosystems use the same key for both. The fact that symmetric encryption is faster 

than asymmetric encryption is one of its advantages. However, one disadvantage is that 

the key must be exchanged securely. In order to understand the concept of HE, we only 

focus on the public key cryptography in this chapter. 

2.2 Public-Key Encryption 

Public-key encryption (PKE) enables the users to transmit messages privately without 

using a shared secret [13][14]. Cryptographic algorithms, which depends upon one-way 

https://sciwheel.com/work/citation?ids=4532972,13751539&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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functions (OWF) are used to generate public and private keys. In PKE, anyone having 

public key can encrypt the message and create a ciphertext. However, only those who 

have the access of associated private key can able to decrypt the ciphertext.  

A PKE scheme mainly comprises the following three algorithms [14]: 

Key Generation. 𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆)  →  (𝑝𝑘, 𝑠𝑘): It generates private (𝒑𝒌) and public (𝒔𝒌) 

keys while taking security parameter 𝜆. 

Encryption. 𝐸𝑛𝑐(𝑝𝑘,𝑚)  →  𝑐: It encrypts message 𝑚 using 𝒑𝒌 and generates 

ciphertext 𝑐. 

Decryption. 𝐷𝑒𝑐(𝑠𝑘, 𝑐)  →  𝑚: It decrypts ciphertext 𝑐 by utilizing the 𝒔𝒌 to recover 

the message 𝑚 ∈  𝑀. 

Cryptographic algorithms are built on the assumption of computational hardness, 

making them difficult to break in practice by any adversary with sufficient knowledge. 

The security given by a particular encryption is determined by its average-case 

hardness, rather than the effort required to crack it in the worst-case scenario. The 

desired hardness is either a proof that minimal number of steps required to obtain the 

solution is extremely large and thus impossible to break, or a reduction to an 𝑁𝑃-Hard 

problem under assumption 𝑃 ≠  𝑁𝑃. The hardness problems of most public key 

encryption systems are depended upon integer-factorization and discrete-logarithm 

problems. 

2.3 Homomorphic Encryption 

In traditional encryption, it requires to decrypt a message in order to perform 

any kind of operations on it. In contrast, HE allows to conduct computations directly on 

the ciphertext. While decrypting the ciphertext, the resulting plaintext will match the 

result of performing the computation on the corresponding plaintext. A homomorphic 

encryption scheme with encryption algorithm 𝐸 over an operation‘ ∗ ’ supports the 

following equation: 

𝐸(𝑚1) ∗  𝐸(𝑚2) =  𝐸(𝑚1  ∗  𝑚2); ∀ 𝑚1;  𝑚2 𝜖 𝑀 

where M is the messages space [15]. 

In contrast to PKE, the HE schemes mainly contains the following four algorithms:  

https://sciwheel.com/work/citation?ids=13751539&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11721802&pre=&suf=&sa=0&dbf=0
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Key Generation. 𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆)  →  (𝑝𝑘, 𝑠𝑘): It generates private (𝒑𝒌) and public (𝒔𝒌) 

keys while taking security parameter 𝜆. 

Encryption. 𝐸𝑛𝑐(𝑝𝑘,𝑚)  →  𝑐: It encrypts message 𝑚 using 𝒑𝒌 and generates 

ciphertext 𝑐.  

Decryption. 𝐷𝑒𝑐(𝑠𝑘, 𝑐)  →  µ: It decrypts ciphertext 𝑐 by utilizing the 𝒔𝒌 to recover the 

message 𝑚 ∈  𝑀. 

Evaluation. 𝑬𝒗𝒂𝒍(𝐶, (𝑐1, . . . , 𝑐𝑙), 𝒑𝒌)  →  𝒄
′: It takes public key 𝒑𝒌 and applies a 

circuit 𝐶: 𝒞𝑙  →  𝒞 to 𝑐1, . . . , 𝑐𝑙, and outputs a ciphertext 𝑐′. 

For the ciphertext to be successfully decrypted following an evaluation process, its 

format must be maintained. Furthermore, the size of ciphertext increases after every 

operation is applied on it. To perform infinite operations, there is a need to keep size of 

ciphertext within specific limit. The bound of number of operations on ciphertext 

classifies the HE schemes into three categories: PHE, SHE and FHE as shown in Fig 3. 

The detail of these schemes is given in the following sections.  

 

Figure 3. Homomorphic Encryption Types 

2.3.1 Partially Homomorphic Encryption 

There are many conventional cryptosystems that only allow to perform a single 

operation on ciphertext. These are classified as PHE. 

PHE: It is either an additive homomorphic scheme that allows only additive operations 

on encrypted data or a multiplicative homomorphic scheme that allows only 

multiplicative operations on encrypted data.  
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Partially homomorphic cryptosystems include RSA [13], ElGamal [16], , Benaloh [17], 

Paillier [18], Goldwasser-Micali [19] and Damgård-Jurik [20] and we will now show 

the homomorphic properties for unpadded RSA and Paillier. 

RSA: The RSA [13][14] scheme contains three algorithms as (KeyGen, Enc, 

Dec), define as follows: 

• 𝑲𝒆𝒚𝑮𝒆𝒏(𝜆)  →  (𝒑𝒌, 𝒔𝒌): 

1. Generate two distinct primes 𝑝 and 𝑞, compute 𝑁 =  𝑝𝑞 and 𝜑(𝑁). 

2. Take an integer 𝑒 
𝑅
→ ℤ𝜑(𝑁) such that 𝐺𝐶𝐷(𝑒, 𝜑(𝑁))  =  1, then compute its 

(modular) inverse 𝑑 =  𝑒 − 1 𝑚𝑜𝑑 𝜑(𝑁).  

3. Set: 𝒑𝒌 =  (𝑁, 𝑒) and 𝒔𝒌 =  (𝑁, 𝑑) 

• 𝑬𝒏𝒄(𝒑𝒌,𝒎)  →  𝒄 ∶ Compute 𝒄 =  𝒎𝒆 𝑚𝑜𝑑 𝑵. 

• 𝑫𝒆𝒄(𝒔𝒌,𝒎)  →  𝒎 ∶ Compute 𝒎 =  𝒎𝒅  𝑚𝑜𝑑 𝑵. 

RSA provides the homomorphic property w.r.t multiplicative, which means that one 

can multiply two ciphertext to receive multiplication of the underlying plaintexts. Let’s 

utilize the same key for encrypting two messages, 𝑚1 and 𝑚2: 

𝑬𝒏𝒄(𝑚1)  =  𝑚1
𝑒
 𝑚𝑜𝑑 𝑁 

𝑬𝒏𝒄(𝑚2)  =  𝑚2
𝑒
 𝑚𝑜𝑑 𝑁 

The homomorphism is then defined as follows: 

𝑬𝒏𝒄(𝑚1)  ·  𝑬𝒏𝒄(𝑚2)  =  𝑚1
𝑒𝑚2

𝑒
 𝑚𝑜𝑑 𝑁 =  (𝑚1𝑚2)

𝑒𝑚𝑜𝑑 𝑁 =  𝑬𝒏𝒄(𝑚1  ·  𝑚2) 

Paillier: The Paillier [18] scheme also comprises three algorithms (KeyGen, 

Enc, Dec), define as follows: 

• 𝑲𝒆𝒚𝑮𝒆𝒏(𝜆)  →  (𝒑𝒌, 𝒔𝒌): 

1. Generate two distinct primes 𝑝 and 𝑞, such that 𝐺𝐶𝐷(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) =

1. Compute 𝑛 = 𝑝𝑞 and 𝜆 = 𝑙𝑐𝑚(𝑝 − 1, 𝑞 − 1). 

2. Take an integer 𝑔, 𝑢 𝜖 ℤ𝑛2
∗  such that 𝐺𝐶𝐷(𝑛, 𝐿(𝑔𝜆(𝑚𝑜𝑑 𝑛2) ))  =  1, and 

𝐿(𝑢) = (𝑢 − 1)/𝑛.  

3. Set: 𝒑𝒌 =  (𝑛, 𝑔) and 𝒔𝒌 =  (𝑝, 𝑞) 

https://sciwheel.com/work/citation?ids=4532972&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1198388&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751540&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9163809&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7019353&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751541&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4532972&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751539&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9163809&pre=&suf=&sa=0&dbf=0
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•  𝑬𝒏𝒄(𝒑𝒌,𝒎)  →  𝒄 ∶ Generate a random value 𝑟 𝜖 ℤ𝑛2
∗   

and compute 𝑐 = 𝑔𝑚𝑟𝑛 𝑚𝑜𝑑 𝑛2. 

• 𝑫𝒆𝒄(𝒔𝒌,𝒎) →  𝒎 ∶ Compute 𝑚 = (
𝐿(𝑐𝜆 𝑚𝑜𝑑 𝑛2)

𝐿(𝑔𝑚 𝑚𝑜𝑑 𝑛2)
)  𝑚𝑜𝑑 𝑛2 

Paillier has additive homomorphic property. Let us use the same key to encrypt two 

messages, 𝑚1 and 𝑚2: 

𝑬𝒏𝒄(𝑚1)  =  (𝑔
𝑚1𝑟1

𝑛 𝑚𝑜𝑑 𝑛2) 

𝑬𝒏𝒄(𝑚2)  =  (𝑔
𝑚2𝑟2

𝑛 𝑚𝑜𝑑 𝑛2) 

The homomorphism is then defined as follows: 

𝑬𝒏𝒄(𝑚1) ·  𝑬𝒏𝒄(𝑚2) =  (𝑔
𝑚1𝑟1

𝑛 𝑚𝑜𝑑 𝑛2)(𝑔𝑚2𝑟2
𝑛 𝑚𝑜𝑑 𝑛2)

= 𝑔𝑚1+𝑚2(𝑟1𝑟2)
𝑛 𝑚𝑜𝑑 𝑛2    =  𝑬𝒏𝒄(𝑚1 + 𝑚2) 

2.3.2 Somewhat Homomorphic Encryption 

Depending upon the number of operations it can perform, HE schemes can be 

categorized as somewhat homomorphic scheme. 

SHE. It can allow to perform both the operations of multiplicative and additive, but 

allows limited number of repetitions. This restriction is defined by the scheme's ability 

to correctly decrypt ciphertext associated with homomorphic operations. 

All HE schemes that had been presented up to 2005 could only perform one operation 

either addition or multiplication. Boneh-Goh-Nissim (BGN) [21] is the first SHE 

schemes which allows only one multiplication operation but infinite number of 

additions, while keeping the size of ciphertext constant. Another example of SHE 

schemes is BFV [9] scheme. In general, the ciphertext of such homomorphic encryption 

scheme has a noise parameter, and the noise must be less than a certain limit in order 

to be decrypted correctly. This scheme can perform additive and multiplicative 

homomorphism on encrypted data, but after each operation the noise level increases in 

the generated homomorphic ciphertext. So, it can only perform a limited number of 

operations in order to keep the noise parameter as small as possible. 

https://sciwheel.com/work/citation?ids=13751542&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13763825&pre=&suf=&sa=0&dbf=0
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2.3.3 Fully Homomorphic Encryption Schemes 

In 2009, the first FHE scheme was introduced by Craig Gentry in his doctoral thesis 

[19]. Based on his work, other researchers also tried to develop their own practical FHE 

schemes. 

FHE. It can allow to execute infinite number of operations, both multiplication as well 

as addition, on encrypted data [22]. 

Although Gentry's FHE scheme looked promising, but its high computational cost made 

it impractical. In order to make his scheme practical for real-world applications, several 

improvements had been made. Though efforts to develop new FHE techniques 

continued, the majority of them were centered on lattices problems. Depending upon the 

hardness problems, FHE schemes can be divided into four types as follows: 

1. Ideal lattice-based: Firstly, Gentry [23] proposed Ideal lattice-based FHE 

scheme, then other researchers improve his work, Smart and Vercauteren [24]. 

2. NTRU-based: NTRUEncrypt is an encryption scheme which has homomorphic 

properties [25]. 

3. RLWE-based: Vaikuntanathan and Brakerski [26] proposed a FHE schem 

based upon RLWE problem. 

4. Integers-based: An approximate-GCD problem based FHE scheme proposed 

by Van Dijket al [27]. 

2.4 Post-Quantum Cryptography 

The security of various encryption systems is currently jeopardized due to the threat of 

quantum computing. Shor created a quantum algorithm in 1994 that can solve the 

integer factorization as well as discrete logarithm problems [28]. This means that with 

the presence of quantum-based computers, all cryptographic schemes based on these 

assumptions will not achieve the same level of security. ElGamal and RSA are two of 

the schemes affected. Because these are used to protect many types of sensitive data, 

breaking them could have serious consequences for privacy and security. As a 

consequence, cryptographers must develop new protocols based on completely novel 

concepts and assumptions. The following are some possible research directions that are 

thought to be quantum secure: 

https://sciwheel.com/work/citation?ids=13751544&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2843384&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751545&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5190187&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751546&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2843386&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13112267&pre=&suf=&sa=0&dbf=0


 

13 

• Code-based Cryptography 

• Multivariate-based Cryptography 

• Lattice-based Cryptography 

• Hash-based Cryptography 

Table 1 lists some classical cryptosystems as well as their current security status w.r.t 

quantum computers. In this chapter, we look at lattice-based cryptography, which is 

thought to be resistant to quantum computers, meaning no one has yet discovered a way 

to break it. Also, most of the practical FHE schemes also have their hardness based on 

lattices. 

Table 1. Security of Classical Cryptosystem in Quantum Era 

Cryptosystem Broken by Quantum Algorithms? 

RSA [13] Not Secure 

Diffie-Hellman [29] Not Secure 

Elliptic curve [30], [31] Not Secure 

McEliece [32] Secure 

NTRU [33] Secure 

Lattice-based [34] Secure 

 

2.4.1 Lattice-based Cryptography 

Lattice-based encryption looks to be the most favorable options for post-quantum-based 

cryptography. The lattice-based cryptographic long-term security may be guaranteed 

for two main reasons. First, it has been established that many lattice-theory problems 

are NP-Hard [35]. Second, the worst to average case reductions are applicable to these 

lattice problems [34]. This means that picking any random instance of the problem will 

be as hard as solving the worst case. 

2.4.2 Lattices 

A lattice is a collection of points in n-dimensional space that has a periodic structure 

[36]. Let 𝑩 = {𝒃𝟏, … , 𝒃𝒏} be a set of n-linearly independent vectors in ℝ𝑚hen set of all 

https://sciwheel.com/work/citation?ids=4532972&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764432&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764433,13764434&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13764435&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764436&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751548&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751547&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751548&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751549&pre=&suf=&sa=0&dbf=0


 

14 

integer linear combinations of the vectors in 𝑩 will be the lattice which is generated by 

𝑩: ℒ(𝑩) = {∑ 𝑥𝑖𝑏𝑖
𝑛
𝑖=1 |𝑥𝑖 ∈ ℤ} [36][37][38]. This provides the definition [38]: 

ℒ(𝐵) = {𝑥⃗ × 𝑩 ∶  𝑥⃗ ∈ ℤ𝑛} 

For n-linearly independent vector having dimension 𝑛 = 𝑚 is defined as full rank 

lattice. Hence, the following definition [38]: 

𝑩 =  {𝒃𝟏, . . . , 𝒃𝒏},    𝒃𝒊 ∈  ℝ
𝑛 

An example of a lattice in ℝ2is shown in Fig 4. 

 

Figure 4. A lattice in ℝ2
 

Ideal lattice, which have additional structure than ordinary lattices, particularly the 

structure of an ideal, was the foundation of Gentry's method [19]. Lattices have a group 

structure, but ideal lattices, as the name implies, have an ideal structure. Some problems 

in lattice-based cryptography are easily solved by using bases of a specific structure. 

We define a bad basis as one in which solving a specific lattice problem is often no 

simpler than on a random basis. Good bases are ones in which a certain problem may 

be solved easily. The public key is a "bad" basis whereas the secret key is a "good" 

basis for lattice-based FHE algorithms [39]. A good bass is often composed of vectors 

that are short and nearly orthogonal [39]. 

2.4.3 Lattice Problems 

This section discusses several typical hard problems that serve as the basis for a variety 

of lattice-based cryptographic schemes. The problems involve finding the shortest and 

closest vectors in a lattice. 

https://sciwheel.com/work/citation?ids=13751549&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751551&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751551&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751551&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751553&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751553&pre=&suf=&sa=0&dbf=0
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2.4.3.1 SVP & CVP 

The Shortest Vector Problem (SVP) has been extensively studied, and it appears to be 

intractable in general, even with quantum algorithms. The SVP seeks a nonzero vector, 

often known as a short or shortest vector, whose Euclidean norm is the smallest among 

all other nonzero lattice vectors. This is considered simple in a two-dimensional lattice, 

but it becomes difficult to solve in multiple dimensions. 

Definition 1 (SVP). Given an arbitrary basis 𝑩 for an 𝑛-dimensional lattice ℒ = 

ℒ(𝑩), compute a non-zero vector 𝒗 ∈  ℒ, such that ‖𝒗‖  =  𝝀1. [40][37][41] 

 

Figure 5. Shortest Vector Problem 

CVP is the generalized form of SVP. Previous research work [39] [52] has concluded 

that CVP is as much hard as SVP. CVP asks for a vector which is not too far from a 

specific target point, and it doesn’t necessarily have to be the closest one. 

Definition 2 (CVP). Provided any arbitrary lattice basis B for an 𝑛-dimensional lattice 

for some target point 𝒕 ∈  ℝ𝑛, compute 𝒗 ∈  ℒ such that ‖𝒕 − 𝒗‖ is minimal.[40][42] 

 

Figure 6. Closest Vector Problem 

There are two major distinctions between SVP and CVP. First, the SVP requires a 

lattice point near zero, whereas CVP asks a lattice point near an arbitrary point in space. 

https://sciwheel.com/work/citation?ids=13751554&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764789&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751554&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751555&pre=&suf=&sa=0&dbf=0
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Second, in CVP the solution can be an all zero vector, whereas in SVP it cannot. As a 

result, it is impossible to use CVP to solve SVP by obtaining the shortest vector that is 

close to the origin because doing so would result in the zero vector. The SVP and CVP 

problem are shown in above Fig 5 and 6, respectively.  

2.4.3.2 Approximate SVP & CVP 

Due to the hardness of solving SVP and CVP, cryptographers have considered 

approximation versions of these problems, which are particularly suitable to 

cryptography. Approximation algorithms only yield answers that are confirmed within 

a certain factor 𝛾 of the optimum. 

In approximate-SVP (𝑆𝑉𝑃𝛾  ), the task is to identify a non-zero vector located at a 

distance of no more than 𝛾𝜆1(ℒ), for γ= 𝛾(𝑛)  ≥ 1. 

Definition 3 (𝑆𝑉𝑃𝛾). Fix γ > 1. Given any arbitrary basis 𝑩  for n-dimensional lattice 

ℒ, compute a non-zero vector 𝒗 𝜖 ℒ such that ‖𝒗‖  = 𝛾 𝝀1. [37][40] 

In an approximation-CVP (𝐶𝑉𝑃𝛾 ), this involves to find a lattice vector at most distance 

of 𝛾, for γ= 𝛾(𝑛)  ≥ 1. 

Definition 4 (𝐶𝑉𝑃𝛾). Fix γ > 1. Given any arbitrary basis 𝑩  for an n-dimensional 

lattice ℒ and some target point 𝑡 𝜖 ℝ𝑛, compute 𝒗 𝜖 ℒ such that ‖𝒕 − 𝒗‖  ≤

𝛾 ‖𝒕 − 𝒙𝑩‖. [40] 

The following problems are the decision variant of approximating the shortest vector 

and closest vector in a given lattice within a factor γ. 

Definition 5 (Gap Shortest Vector Problem (Gap 𝑆𝑉𝑃𝛾)). Given B and r, decide 

whether 𝜆(𝐵) ≤ 𝑟 or if  𝜆(𝐵) ≥ 𝛾. 𝑟 (Instances where 𝑟 <   𝜆(𝐵)  <   𝛾. 𝑟 are not 

considered.) [37] 

Definition 6 (Gap Closest Vector Problem (Ga 𝑆𝑉𝑃𝛾)). Given 𝑩, 𝑥 𝜖 ℝ𝑛 and 𝑟, decide 

whether dist(𝑥, 𝐿)  ≤  𝑟, or if 𝑑𝑖𝑠𝑡(𝑥, 𝐿)  ≥ 𝛾. 𝑟 . (Instances between r and  𝛾. 𝑟 are not 

considered.) [37] 

Variants of this approximation problem are commonly used to demonstrate the security 

of cryptosystems [43]. 

https://sciwheel.com/work/citation?ids=13751554,13751552&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13751554&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751556&pre=&suf=&sa=0&dbf=0
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2.4.4 Learning With Error 

Regev [44] introduced the Learning With Errors (LWE) problem in 2005, which is a 

generalization of the Learning Parity with Noise (LPN) problem. The LPN problem is 

the same as decoding random linear codes. It is a well-studied problem which is believe 

to be hard [44]. Regev demonstrated that his public-key cryptosystem based on LWE 

hardness was significantly more efficient than other suggested public-key 

cryptosystems based on unique-SVP, a subset of SVP. He further proves LWE's 

hardness via a quantum reduction from the worst-case lattice problem SVP, where a 

quantum reduction is a reduction that employs quantum computing. As a result, it has 

become an essential building block in modern cryptographic systems, as well as a 

prominent topic in current research. The problem with LWE is that it is inherently 

inefficient owing to a quadratic overhead. In LWE, the size of public key is 

𝑂(𝑚𝑛𝑙𝑜𝑔 𝑞)  =  Õ(𝑛2 ). Additionally, it increases the message size by a factor of 

𝑂(𝑛 𝑙𝑜𝑔 𝑞)  =  Õ(𝑛) by each encryption [44]. 

Definition 7 (Decisional Learning With Errors (DLWE)). Let 𝑛 and 𝑞 be positive 

integers, and 𝜒 an error distribution over ℤ. Let 𝒔 be a uniformly random vector in ℤ𝑞
𝑛. 

The DLWE is to distinguish 𝐴𝑠,𝜒 from the uniform distribution 𝑈 from 𝑚 independent 

samples (𝒂𝒊, 𝑏𝑖) 𝜖 ℤ𝑞
𝑛  ×  ℤ𝑞 where every sample is distributed according to either: 

𝐴𝑠,𝜒 or the uniform distribution. [44][37] 

Definition 8 (Search Learning With Errors). Let 𝑛 and 𝑞 be positive integers, and 𝜒  

an error distribution over ℤ. Let 𝒔 be a uniformly random vector in ℤ𝑞
𝑛. The search 

LWE is to find 𝑠 from 𝑚 independent samples(𝒂𝒊, 𝑏𝑖) 𝜖 ℤ𝑞
𝑛  ×  ℤ𝑞 drawn from 𝐴𝑠,𝜒. 

[44][37] 

2.4.5 Ring Learning With Error 

To address LWE's inefficiency, Regev, Peikert, and Lyubashevsky devised Ring 

Learning With Errors (RLWE) problem [45]. In most cases, n noisy LWE equations 

may be replaced by a single noisy RLWE equation, which obviously increases 

efficiency. RLWE, defined as LWE over ideal lattice, is an algebraic variant of LWE. 

These are more structured than random lattices. It can be interpreted mathematically as 

replacing the group ℤ𝑞
𝑛 with the ring ℤ𝑞[𝑥]/(𝑥

𝑛 + 1). [44][45] 

https://sciwheel.com/work/citation?ids=13751557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751558&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751558&pre=&suf=&sa=0&dbf=0
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Definition 9 (RLWE). Consider the ring ℝ =  ℤ𝑞[𝑥]/(𝑥
𝑛 + 1) with 𝑛 as power of 

𝟐 and an error distribution 𝜒 over 𝑅. Let 𝒔 be uniformly random sampled from ℝ𝑞. 

The decision RLWE is to distinguish 𝐴𝑠,𝜒 from the uniform distribution ℝ from 𝑚 

independent samples (𝒂𝒊, 𝑏𝑖)  ∈  ℝ𝑞  ×  ℝ𝑞 where every sample is distributed 

according to either: 𝐴𝑠,𝜒 or the uniform distribution. [45][37] 

2.5 Neural Network 

A network of neurons organized in the layers is referred to as a neural network (NN). 

Every neuron receives an input, process it through a function, and then outputs the 

outcome of function. The layer that the neuron belongs to, determines the structure of 

this function. Input, hidden, and output layers are the three layers that make up a simple 

neural network [46]. The structures of the neurons in each layer vary. Input layer 

neurons only receive input; their outputs are identical to the input values. In hidden 

layer the neuron has an input vector (𝑥0, . . . , 𝑥𝑛), a weight vector (𝑤0, . . . , 𝑤𝑛), and an 

output 𝑦. This formula is used to compute the output. 

𝑦 = 𝑓(∑𝑥𝑖 ∗ 𝑤𝑖

𝑛

𝑖=0

) 

In the above equation, 𝑓 is an activation function. Several functions might be utilized as 

activation functions such as step, hyperbolic, ReLU and sigmoid functions. The output 

layer is the last. This layer's neurons are sometimes simple (like those in the input layer) 

and sometimes complicated (like in hidden layers). Each layer contains bias neuron that 

is linked to all the neurons in subsequent layer. This work only focuses on the fully 

connected feed-forward neural network. In such kind of networks all neurons of each 

layer are linked to all neuron present in subsequent layer. A simple neural network is 

shown in the Fig 7 below.  

https://sciwheel.com/work/citation?ids=13751558&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13942934&pre=&suf=&sa=0&dbf=0
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Figure 7. A Neural Network 

Convolutional Neural Network (CNN), a generalized form of neural networks, is 

discussed in the following section. 

2.6 Convolutional Neural Networks (CNNs / Conv-Nets) 

In machine learning CNNs [47] are certain kind of feed-forward type neural network 

which are very useful in different areas specially in image recognition and image 

classifications. CNNs are built up of cascading layers that accept image data as input 

and transform it into label scores as output. Layers include in CNNs are as following: 

• Convolutional Layer 

• Activation Layer 

• Pooling Layer 

• Fully-Connected Layer 

2.6.1 Convolutional Layer 

The convolutional layer contains a sliding filter that is applied to the input image. When 

a filter is applied in an image it extracts certain feature from it. Therefore, many filters 

may be applied to the same layer to extract various features of an image. The three-

dimensional sliding filter is made up of number of weights that are learnt throughout 

the training. Each filter is a 𝑛 ×  𝑛 square (e.g., 𝑛 =  3 𝑜𝑟 5) with a stride. The stride 

is a set of two integers, e.g., stride of (2, 2) means that at each step a filter is moving 

two units to the left or down. This layer calculates dot-product between filter weights 

and associated values in pixel's neighbor by convolving the pixels in the image. This 

https://sciwheel.com/work/citation?ids=13943000&pre=&suf=&sa=0&dbf=0
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step just requires two operations, one is addition and second is multiplication, so one 

can apply the same procedure in the encrypted domain easily. Fig 8 illustrates the 

convolution process [48]. 

 

Figure 8. Convolutional Layer 

2.6.2 Activation Layer 

In CNN there is another layer which contains a non-linear function, is known as 

activation layer. This layer usually comes after each convolutional layer. Each neuron 

in the preceding layer is activated using a nonlinear activation function. This layer adds 

a non-linear component to CNN, allowing them to solve more complicated 

classification problems. Some of the activation functions used in practice are shown in 

Fig 9. 

 

Figure 9. Activation Functions 

The following equations represent the sigmoid and ReLU functions. 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

https://sciwheel.com/work/citation?ids=13942884&pre=&suf=&sa=0&dbf=0
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𝑅𝑒𝐿𝑈(𝑧) = {
𝑧 ,   𝑧 > 0         
0 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Since it is obvious that these equations involve nonlinear functions, we must change 

them in order to make them compatible with HE schemes. 

2.6.3 Pooling Layer 

Pooling-layer is used to decrease the size of the data by sub-sampling it. This is also a 

non-linear layer. This layer usually comes after the activation layer. The two most 

common non-linear pooling layers i.e., Average and Max pooling layers, are shown in 

Fig 10 [49]. The maximum value inside the subsection is output of Max pooling layer, 

and average of all values inside the subsection is the output of the Average pooling 

layer. 

 

Figure 10. Pooling Layers 

2.6.4 Fully Connected Layer 

It is usually the last layer of CNN. All neurons in this layer are linked to all other neuron 

of previous layer, as seen in Fig 11 [50]. The total sum of weights in this layer is the 

product of total number of neurons in the preceding and current layers. This layer's 

output is how many classes are included in the dataset. 

https://sciwheel.com/work/citation?ids=13943035&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13943056&pre=&suf=&sa=0&dbf=0
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Figure 11. Fully Connected Layer 
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Chapter 3 

Literature Review 

In this chapter, first we introduce some well-known techniques that are currently used 

to perform machine learning in privacy-preserving environment. The next step is to 

undertake a thorough literature review of earlier studies in the perspective of privacy-

preserving machine learning. We largely concentrated on homomorphic encryption-

based solutions from the techniques mentioned above. 

3.1 Privacy Preservation Techniques 

Prime objective of this research work is centered around performing the privacy 

preserved classification using convolutional neural network (CNN). So, the method 

chosen for this purpose must not only allow for secure computing but also give a high 

level of security. Secure Remote Computation (SRC), Homomorphic Encryption (HE), 

and Multi-Party Computation (MPC) are three common privacy preservation strategies 

that were investigated in order to secure CNN. 

3.1.1 Secure Hardware (Intel SGX) 

The Secure Remote Computation (SRC) problem refers to the ability of an individual 

to run software on some remote computer while maintaining a level of security [51]. 

According to this problem, remote computer must be hosted by an untrustworthy party, 

emphasizing the need of data confidentiality along with data integrity.  

The SRC problem is solved by Intel SGX, with the goal of securing user-level programs 

through the use protected memory sections (enclaves). An individual uploads his data 

into a protected enclaves and performs the private calculations using a particular set of 

CPU instructions. In contrast to other secure hardware systems, Intel SGX solely makes 

use of attestation to validate contents in the protected enclave. Initially, Intel SGX 

considered as the appropriate solution of SRC problem, however subsequent 

investigations have revealed certain flaws in it. In fact, studies shows that the Intel SGX 

has different vulnerabilities, particularly it is vulnerable to cache timing-attacks [52]. 

Furthermore, sources indicate that the security assurances of Intel SGX are not apply 

to cloud settings [51][52]. Because the goal of this study is to improve cloud security, 

secure hardware has been ruled out [51]. 

https://sciwheel.com/work/citation?ids=13764984&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5680536&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764984&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5680536&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764984&pre=&suf=&sa=0&dbf=0
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3.1.2 Secure Multi-Party Computation 

Secure Multi-Party Computation (SMPC) is an approach which allows for distributed 

computation of functions. The primary objective of MPC is to offer a system which 

allows different parties to collaborate on specific computations while respecting the 

privacy of their input data [53]. Each participant in MPC provides their own input data, 

which is converted into smaller chunks and sent to other servers each masked with a 

random value. This is how MPC allows for cooperative computing while preserving 

the privacy of each person's personal data [54]. Although, MPC has a little 

computational overhead benefit, but it demands several rounds of communication 

between the individuals participating in the protocol. 

3.1.3 Homomorphic Encryption 

HE is a distinct type of encryption scheme that allows to performs direct calculation on 

ciphertext. Similar to many other PKE cryptosystems, to encrypt some data, HE 

cryptosystem also uses public-key while the decryption is done using private-key. 

However, after the data has been encrypted using the public key, HE also permits 

normal arithmetic operations (additions and multiplications) to be applied to the 

encrypted data. For instance, if you add two encrypted values together using 

homomorphic addition, the outcome will be the plaintext values added in an encrypted 

manner, as illustrated in Fig 12. It means, operations performed in the ciphertext space 

thus resemble operations performed in the plaintext space. 

 

Figure 12. Homomorphic Addition 

https://sciwheel.com/work/citation?ids=13764985&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12012409&pre=&suf=&sa=0&dbf=0
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3.2 Related work 

Graepel et al. [55] trained two machine learning classifiers using a Somewhat HE 

schemes. These algorithms included Linear Mean and Fisher's Linear Discriminate. In 

order to circumvent HE algorithms limitations, they introduced division-free 

algorithms. They did not take into account more complex algorithms, instead 

concentrated on straightforward classifiers like the linear means classifier. 

Additionally, they took into account a weak security model and the client can learn the 

model. 

Bost et al. [56] proposed privacy-preserving classification model for three distinct 

machine learning algorithms named as Naive Bayes, Hyper-plane Decision and 

Decision trees. The author combined garbled circuits with three homomorphic 

encryption schemes named as Piallier, BGV and Quadratic Residuosity schemes. They 

use SMC as the basis of their approach, which is effective only for small data sets and 

only takes into account conventional machine learning techniques. 

Xie et al. [57] examined theoretical elements of constructing neural networks in the 

encrypted domain using polynomial approximation. Dowlin et al. [3] extended this 

work by presenting CryptoNets. It was a first detailed studied CNN classifier for 

encrypted data. The author employed Microsoft SEAL, a levelled homomorphic 

encryption technique that supported SIMD. The author used scaled mean-pooling layer 

to solve the division operation limitation, being inaccessible to encrypted values. The 

sigmoid function was replaced with 𝑓(𝑧):=  𝑧2 as the activation function in HE 

schemes, since they did not support the exponential function. They trained the given 

model using unencrypted data, then utilized it to classify encrypted data. On the MNIST 

dataset, they got an overall accuracy of 98.95%. This CryptoNets was able to process 

48068 cases per hour. The accuracy of CryptoNets was improved in a study by 

Chabanne et al.[4] by combining the solution's original concepts with batch-

normalization approach. They employed ReLU as the activation function in their 

scheme. They utilized a mix of Taylor series along with batch-normalization for ReLU 

activation function approximation.  

Jiang et al [58] proposed a privacy preserving deep learning model named as E2DM 

(Encrypted Data and Encrypted Model). A matrix was homomorphically encrypted by 

https://sciwheel.com/work/citation?ids=4120281&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764986&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764987&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749567&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749560&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960924&pre=&suf=&sa=0&dbf=0
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E2DM before being subjected to arithmetic operations. The primary contribution of this 

model was the reduction in the complexity required for computing. They used CNN 

with a square activation function, two fully connected and one convolutional layers. 

To train a simple neural network in privacy preserved environment Phong et al. [59] 

suggested a technique based on additive homomorphic encryption. The author pointed 

out a weakness in Shokri et al. [60] work, that leaked client data during training process. 

The main concept was to allow a server to upgrade the model (learning) by aggregating 

user gradient values. 

Hesamifard et al. [5] proposed a work named as CryptoDL, which included a modified 

version of CNN that operated on encrypted data. The author modified the activation 

function using low degree polynomials. This study demonstrated the importance of 

polynomial approximation of activation functions present in neural networks, so that 

HE operations could be performed on them. They attempted to approximate the ReLU, 

sigmoid, and tanh types of activation functions. The CNN with polynomial 

approximation was employed during the training phase. The model created during the 

training step was then applied to classify encrypted data. This model did not support 

privacy-preserving deep neural network training on encrypted data. 

Liu et al. [61] proposed a privacy preserving technique for CNN training as well as 

classification purposes. Each activation layer was preceded by batch-normalization 

layer, and the activation layer was approximated by using a Taylor series and Gaussian 

distribution. Additionally, they substituted a convolutional layer with a longer stride for 

the non-linear pooling layer. So, they modified the CNN with these changings to make 

it compatible with HE. 

Juvekar et al. [62] proposed a framework named as Gazelle, which combined HE with 

MPC, for privacy preserving classification purpose. The goal of this study was to retain 

the model privacy in the server and to make it simpler for client to perform a 

classification without exposing his input data to server. Gazelle effectively blended 

secret-sharing with HE for privacy preserving classification since it could switch 

between HE and GC protocols. The bias, weight, and stride size of the convolutional 

layer were concealed to protect the neural network model privacy. The experiment 

https://sciwheel.com/work/citation?ids=13960925&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10157238&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749561&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960926&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960928&pre=&suf=&sa=0&dbf=0
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demonstrates that, in terms of runtime, Gazelle completely surpasses other well-liked 

methods like MiniONN [63] and Cryptonets [3]. 

Sanyal et al. [64] proposed a framework, TAPAS, which used encrypted data to speed 

up parallel processing in privacy preserved enjoinment. They tried to overcome the 

lengthy process of classification in context of HE. The key contribution was to develop 

a novel approach to accelerate binary computing in Binary Neural Network (BNN). All 

data are initially converted into binary by the algorithm. After that, it performs an 

XNOR operation between encrypted and unencrypted data to compute the inner 

product. They then count how many 1’s there are in the preceding step's outcome. They 

next determine if the difference between the bias and the number of bits was greater 

than twice the amount that was counted. If the answer was yes, they gave the activation 

function a value of 1, and if the answer was no, they gave it a value of -1. They also 

decreased the evaluation step time by evaluating the gates in parallel processing at the 

same level. Another work of Bourse et al. [67] proposed a technique named as FHE 

DiNN (Fast HE Discretized Neural Network) for privacy preserving machine learning. 

They intended to overcome the complexity problem when using a standard HE 

approach with a neural network. The complexity of the network increases with network 

depth, which increases the cost of computation. They employed the bootstrapping 

approach to bring the network complexity to liner from with respect to depth of neural 

network. Their neural network contained the discretized value of weights and biases as 

compared to standard neural network. They employed sign function as the activation 

function in their network. To update the output of the neuron, they employed the 

bootstrapping for computing the activation function. They successfully demonstrated 

that by increasing network size, BNN might achieve accuracy that was comparable to 

that of normal neural network. 

 

 

 

 

 

https://sciwheel.com/work/citation?ids=13961044&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749567&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960929&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960930&pre=&suf=&sa=0&dbf=0


 

28 

Table 2: Comparative Analysis of exiting privacy preserving  

Study HE Scheme ML 

Technique 

Dataset Run 

Time (s) 

Accuracy 

(%) 

PoC/PoM 

Considerations 

Comments 

Graepel et 

al. 

[55] 

 

BFV Linear Mean 

& Fisher's 

Linear 

Discriminate 

Breast 

Cancer 

255.7 95.00 PoC It only 

supports 

simple ML 

algorithm. 

Bost et al. 

[56] 

Piallier, 

BGV 

Quadratic 

Residuosity 

Hyperplane 

Decision, 

Naïve Bayes 

& Decision 

Trees 

Breast 

Cancer 

& 

ECG 

14.77  

--- 

PoC It only 

supports 

simple ML 

algorithm. 

Dowlin et 

al. 

[3] 

YASHE CNN MNIST 697 98.95 PoC They use 

Taylor series 

for function 

approximation. 

Chabanne 

et al. 

[4] 

BGV CNN MNIST  

--- 

99.30 

 

PoC Their crypto 

parameters are 

not clear. 

Jiang et al. 

[58] 

CKKS CNN MNIST 28.59 98.10 Both It only caters 

simple NN, 

missing 

pooling layer. 

Phong et 

al. 

[59] 

 

Additive-HE 

Piallier, 

LWE-based 

CNN MNIST 

& 

Speech  

 

120 97.00 Both It only handle 

simple 3-layer 

NN. 

Hesamifard 

et al. 

[5] 

BGV CNN MNIST 

 

320 99.52 

 

PoC It can classify 

many instances 

for each 

prediction 

round. 

Liu et al. 

[61] 

 

BGV CNN MNIST 477.6 98.97 

 

PoC Their CNN not 

include 

pooling layer. 

Juvekar et 

al. 

[62] 

HE + MPC CNN 

 

MNIST  

&  

CIFAR-

10 

 

---- 

 

---- 

Both It combines 

CNN with HE 

and MPC. 

Sanyal et 

al. 

[64] 

TFHE BNN 

 

Cancer  

& MNIST 

147 98.60 

 

Both It works only 

for simple 

binary NN 

such as BNN. 

Bourse et 

al. 

[67] 

TFHE DiNN MNIST 1.64 96.35 

 

Both DiNN is 

another form 

of BNN. 

Brutzkus et 

al. 

[68] 

CKKS CNN MNIST & 

CIFAR-

10 

 

---- 

98.95 PoC Their crypto 

parameters are 

not clear. 

Lee et al. 

[69] 

RNS-CKKS CNN 
ResNet-20 

CIFAR-

10 

14694 98.43 PoC They employ 

bootstrapping 

after Conv. 

and ReLU. 

 

 

https://sciwheel.com/work/citation?ids=4120281&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764986&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749567&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749560&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960924&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960925&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749561&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960926&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960928&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960929&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960930&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960931&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960932&pre=&suf=&sa=0&dbf=0
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Chapter 4 

Homomorphic Encryption Scheme 

4.1 Introduction 

Homomorphic encryptions can perform computations on ciphertext directly. However, 

due to the properties of the various HE variants, not all are suitable for all tasks. SHE 

is a variant of HE in which one can perform many encrypted operations sequentially, 

but the total number of encrypted operations is limited by the scheme's initialization 

parameters. 

As mentioned above, we have made use of the SEAL implementation, a popular 

homomorphic library for usage in higher-level applications. The library is developed in 

C++ and has a wrapper for languages like C#. Its source code is available on GitHub 

under the open-source MIT license. One of the main schemes that is implemented in 

SEAL is the Fan-Vercauteren (FV) scheme [9], is discussed in [53] along with some 

improvements. FV is a SHE schemes and its security relies on the RLWE problem, a 

quantum-secure problem with high security. SEAL also includes the CKKS scheme 

[10] in addition to the FV scheme.  

4.2 Description of the FV Scheme 

The FV technique is the homomorphic encryption scheme employed by the Microsoft 

SEAL library, and it is based on the algebraic ring structure. Basically, algebraic rings 

are mathematical sets of elements inside a modulus that enable the binary operations 

addition and multiplication. To make the FV scheme work, our initial plaintext 

numbers, the ones we wish to decrypt, must be obtained in the ring structure ℝ𝑡. The 

ring ℝ𝑡 is define as 𝑅𝑡 = ℤ𝑡[𝑥]/𝑥
𝑛 + 1 , which includes only those integer number 

from ℤ  for which there exists a polynomial having degree less than 𝑛 with coefficients 

reduced modulo 𝑡. Here, the scheme is initialized by defining the important 

initialization parameters of plaintext modulus 𝑡, ciphertext modulus 𝑞, and degree of 

polynomial modulus 𝑛. The ring structure permits polynomials with coefficients 

modulo 𝑡 and a degree less than 𝑛. The 𝑡 and 𝑥𝑛 + 1  are referred to as the plaintext 

and polynomial moduli, respectively. The encryption process begins with the 

specification of both of these moduli as encryption parameters.  

https://sciwheel.com/work/citation?ids=13763825&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7019327&pre=&suf=&sa=0&dbf=0
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Since each of our original numbers must be a member of the ring structure ℝ𝑡 in order 

to be encrypt able under this scheme so, we first encode each one to make it a member 

of the ring structure. Any number, whether it be an integer or a rational number, must 

be encoded into a plaintext polynomial in ℝ𝑡 before it can be encrypted under the 

scheme, according to the ring ℝ𝑡. After the appropriate integers have been encoded into 

ℝ𝑡 they are encrypted into a ciphertext array of at least two polynomials in the ring 

structure ℝ𝑞 where 𝑞 is the coefficient modulus and is specified as an encryption 

parameter before the encryption occurs. Setting the initialization parameters is covered 

in section 4.4 below. 

This section includes detailed explanations of the encryption and decryption processes 

used in the FV scheme to ensure its correctness. A  𝑎
$
←ℝ2 denotes that 𝑎 is sampled 

uniformly from the finite set ℝ2. The scheme's main algorithms are as follows: 

• Generate public keys pk, secret keys sk and evaluation keys evk using the 

algorithms PublicKeyGen, SecretKeyGen and EvaluationKeyGen. 

• Eneryption(pk,m): Let public key 𝑝𝑘 = (𝑝0, 𝑝1) and message 𝑚 ∈ ℝ𝑡. Sample 

𝑒1, 𝑒2 ← 𝜒 and 𝑢
$
←ℝ2. The ciphertext 𝑐𝑡 is given as 𝑐𝑡 = ([∆𝑚 + 𝑝0𝑢 +

𝑒1]𝑞 , [𝑝1𝑢 + 𝑒2]𝑞). 

• Decryption(sk,ct): Let 𝑠 = 𝑠𝑘, 𝑐0 = 𝑐𝑡[0] and 𝑐1 = 𝑐𝑡[1]. Compute 𝑚′ =

[⌊
𝑡

𝑞
[𝑐0 + 𝑐1𝑠]𝑞⌉]

𝑡
to get the decryption of 𝑚 inti 𝑚′. 

4.2.1 Key generation 

Private and public key pair is used throughout the encryption process to transform a 

plaintext number into a ciphertext number. Two stages are adopted for key generation. 

First stage is to generate private-key (𝑠). The process of generating the private-key 

involves creating an 𝑛-term random polynomial. Furthermore, a uniform sample of 

each coefficient is taken from a set of {−1,0,1}. Next, public-key (𝑝𝑘) is generated by 

first taking another temporary random polynomial (called 𝑎 polynomial) from the 

ciphertext space, i.e., a polynomial having its coefficients modulo the q variable. The 

coefficients are equally sampled over the whole 𝑞 range. The temporary random 

polynomial 𝑎 will have the same n terms as the secret key. The next step is to create a 
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random error polynomial called 𝑒 for the public key. To achieve this, we sample 𝑛 

coefficients from a discrete Gaussian distribution with values that are significantly 

lower than 𝑞. Afterwards, the two polynomials (𝑝𝑘 =  [−𝑎𝑠 + 𝑒] 𝑎𝑛𝑑 𝑝𝑘 =  𝑎) 

define the public key in the following manner: 

𝑝𝑘 =  ([−𝑎𝑠 +  𝑒], 𝑎) 

Now that the 𝑠 and 𝑝𝑘 keys have been generated, we may execute encryptions. So, the 

next thing we'll do is examine how the encrypt-process-decrypt procedure handles the 

encryption step. 

4.2.2 Encryption 

Recall that a plaintext polynomial is changed into a pair of ciphertext polynomials 

throughout the encryption process. When there are 𝑛 terms in the plaintext polynomial, 

each with a coefficient modulo 𝑡. Additionally, the ciphertext polynomial pair contains 

n terms with coefficients that are modulo 𝑞. We will need to create three additional little 

polynomials, identical to those used to in public key generation to conduct the 

encryption. Two error polynomials 𝑒1 and 𝑒2 will be constructed from identical discrete 

Gaussian distribution which was used to generate 𝑒 in public key. Along with 𝑒1 and 

𝑒2 we will produce the third polynomial 𝑢 whose coefficients will be uniformly 

sampled from the same set as the secret key, namely the set {−1,0,1}. Following the 

generation of the three polynomials 𝑒1, 𝑒2 𝑎𝑛𝑑 𝑢 the two ciphertext polynomials are 

determined as follows: 

𝑐𝑡 = ([𝑝𝑘0. 𝑢 + 𝑒1 + ⌊
𝑞

𝑡
⌋ .𝑚]

𝑞
, [𝑝𝑘1. 𝑢 + 𝑒2]𝑞) 

The ciphertext 𝑐𝑡 computed above correctly hides our message 𝑚 in the combination 

of random noise values. Because our initial message m is a plaintext polynomial with 

modulus 𝑡 variable coefficients, it is scaled up first by [
𝑞

𝑡
] and then hidden by summing 

with (𝑝𝑘0. 𝑢 +  𝑒). Despite the fact that the 𝑒1 is taken as a sample from a discrete 

Gaussian distribution, the term 𝑝𝑘0. 𝑢 effectively masks our message, making it 

difficult to distinguish from random noise. The reason why the same plaintext message 

will always generate a different ciphertext is due to 𝑝𝑘0. 𝑢. 
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We may identify five components of ciphertext by further analyzing the computations 

for each single encryption step. These includes private key, public key, message, noise 

and mask. The mathematical expansion of the encryption phase shows the five 

encryption components as follows: 

𝑐𝑡 = ([− 𝑎 𝑢⏟
𝑚𝑎𝑠𝑘

  𝑠⏟
𝑠𝑒𝑐𝑟𝑒𝑡

⏞        
𝑝𝑘0

+ 𝑒 𝑢 + 𝑒1⏟    
𝑛𝑜𝑖𝑠𝑒

+ ⌊
𝑞

𝑡
⌋ .𝑚

⏟  
𝑚𝑒𝑠𝑠𝑎𝑔𝑒

] , [ 𝑎⏞
𝑝𝑘1

. 𝑢⏟  
𝑚𝑎𝑠𝑘

+ 𝑒2⏟
𝑛𝑜𝑖𝑠𝑒

]) 

 

4.2.3 Decryption 

After understanding the encryption, now we move to understand the decryption 

process. To decrypt a ciphertext 𝑐𝑡 using the FV technique, we first remove the masking 

by summing the ciphertext's two polynomials to yield the polynomial shown below: 

[𝑐𝑡0 + 𝑐𝑡1. 𝑠]𝑞 = [−𝑎𝑢𝑠 + 𝑒0𝑢 + 𝑒1 + ⌊
𝑞

𝑡
⌋ .𝑚]

𝑞
+ [𝑎. 𝑢 + 𝑒2]𝑞 . 𝑠 

= [𝑒2𝑠 + 𝑒0𝑢 + 𝑒1 + ⌊
𝑞

𝑡
⌋ .𝑚]

𝑞
 

The above expansion demonstrates that in addition to our message 𝑚 scaled by [
𝑞

𝑡
], 

additional information known as the inherent noise, 𝑣, is present in the ciphertext. The 

equation above provides a definition for this inherent noise as 

𝑣 = [𝑒2𝑠 + 𝑒0𝑢 + 𝑒1]𝑞 

We next compute by scaling the 𝑐𝑡 polynomial back to the values in modulo 𝑡 in order 

to ensure that the decryption is successful. Meanwhile, the noise terms 𝑣 will be 

removed by rounding off. The noise terms must be small enough to be rounded off in 

order for this to succeed; otherwise, the decryption will fail. This scaling down step is 

accomplished by first multiplying with 
𝑡

𝑞
, and then rounding off the little noise terms as 

follows: 

𝑚′ = [ ⌊
𝑡

𝑞
[𝑒2𝑠 + 𝑒0𝑢 + 𝑒1 + ⌊

𝑞

𝑡
⌋ .𝑚]

𝑞
⌋ ]
𝑡
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On the other hand, we may write this by emphasizing the noise polynomial as: 

𝑚′ = [ ⌊
𝑡

𝑞
[𝑣 + ⌊

𝑞

𝑡
⌋ . 𝑚]

𝑞
⌋ ]
𝑡

 

The plaintext message m from the previous equation is decrypted to its corresponding 

plaintext message m'. If no operation was done on the ciphertext, then m' = m; 

otherwise, m' will represent the outcome of the operation. 

The noise polynomials represented by 𝑣 must have coefficients that are small enough 

to be rounded off and scaled down by [
𝑡

𝑞
]. In contrast, if the noise coefficients are larger, 

they will quietly create an inaccurate result since they will end up closer to a different 

integer than their intended one. This finding implies that the liberty to manage an 

equivalent quantity of noise is provided by the difference in [
𝑞

𝑡
]. The amount of noise 

that may be tolerated during the decryption process grows along size of the difference 

between the 𝑞 and the 𝑡. 

4.3 Noise Budget (Circuit Depth) 

Each ciphertext can only handle a certain number of homomorphic operations. SEAL 

refers to this restriction as the noise budget, whereas other researchers in the 

homomorphic encryption community refer to it as the circuit depth. We will also use 

the terminology "noise budget." This noise budget reduces towards zero as we do 

homomorphic operations. When the noise budget reaches its zero limit, all 

homomorphic operations produce garbage values because the coefficients of the 

polynomial representing the ciphertext exceed the coefficient modulus q, an encryption 

parameter. As a result, the decryption method will be unable to decipher the ciphertext 

within the encryption parameters that have been specified. The most significant 

consideration is the noise budget. Because, it is the noise budget, which permits or 

prevents a computing party from performing additional homomorphic operations on 

ciphertext. 

It is important to note that if we combine a ciphertext with a zero or low noise budget 

with another ciphertext that has an adequate noise budget during an arithmetic 

operation, the noise budget for the resulting ciphertext will be zero. This makes it clear 
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that the output won't be successfully decrypted and decoded if one of the ciphertext 

operands has inadequate noise budget. 

As stated in the SEAL documentation [22], the initial noise 𝑣, in a ciphertext is 

calculated using the formula below: 

𝑣𝑖 =
𝑞 𝑚𝑜𝑑 𝑡

𝑞
. ‖𝑚‖.𝑁𝑚

+
7𝑛𝑡

𝑞
.min 𝑛𝑜𝑖𝑠𝑒𝑀𝑎𝑥𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛,   6 × 𝑛𝑜𝑖𝑠𝑒𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑒𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛   

In the formula for calculating the initial noise budget above, we have our original 

message as 𝑚, the encryption parameters as 𝑛, 𝑡, 𝑞, and the highest degree of 

polynomial 𝑚 as 𝑁𝑚. The random noise distribution is defined by the standard 

deviation and the maximum deviation of the sample. The initial noise formula shows 

us that initial noise budget for the identical message m is dictated by the initialization 

parameters of the encryption scheme 𝑡, 𝑞 and 𝑛. The next section defines these 

parameters. 

4.4 Parameter Selection (𝒕, 𝒒, 𝒏) 

The encryption initialization parameters have a substantial impact on the homomorphic 

processes. The initialization settings have an impact on the actual encryption 

/decryption, along with the performance and outcome of the operations. These settings 

must be configured before any integers are encrypted or homomorphic processes are 

performed. The security keys (the public/private and evaluation keys) of the scheme are 

created based on these encryption settings. The following are the three primary 

encryption parameters: 

4.4.1 Plaintext Modulus (𝒕) 

The plaintext (coefficient) modulus, which specifies the maximum size of the plaintext 

data that may be encrypted, can be any positive integer. It has significant effects on the 

noise budget's initial value in a newly encrypted ciphertext and how much of it is used 

up during homomorphic multiplications. For a good performance without impacting the 

noise budget, the 𝑡 value must be kept as low as feasible [7]. 

https://sciwheel.com/work/citation?ids=13768004&pre=&suf=&sa=0&dbf=0
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4.4.2 Ciphertext Modulus (𝒒) 

The FV scheme's ciphertext (coefficient) modulus is a product of one or more tiny 

prime integers. The magnitude of the coefficient modulus should be considered a key 

component in defining the noise budget. To be correctly decoded, a ciphertext's noise 

value should be less than the 𝑞 value. The decryption method will fail to decipher 

ciphertext with a noise value greater than the 𝑞 value. A high coefficient modulus must 

be utilized, if a big noise budget is necessary for complex computations. However, 

studies have shown that a higher coefficient modulus 𝑞 also reduces the scheme's level 

of security. By simultaneously raising the polynomial modulus 𝑛 while increasing 𝑞, 

this decrease in security level can be regained [7]. 

When we discuss the coefficient modulus's size, we are referring to the bit length of its 

product, which can be one or more smaller prime values. The coefficient modulus in 

SEAL is a positive composite number that is the sum of several primes with a maximum 

bit size of 60-bits. 

The size of the polynomial modulus 𝑛 and the number of prime elements in the 

coefficient modulus have the greatest influence on performance. Thus, based on 

experiments, it is recommend using as few factors in the coefficient modulus is possible 

for good performance. 

4.4.3 Polynomial Modulus (𝒏) 

The polynomial modulus 𝑛 is the maximum value that can be used in a polynomial to 

represent a plaintext or a ciphertext. The value 𝑛 should be thought of as mainly 

affecting the security level of scheme. The HE schemes becomes more secure as the 

polynomial modulus increases. To properly encode integers into the ring 𝑅, the value 

of 𝑛 must be the power-of-2 cyclotomic polynomial, i.e., (1. 𝑥(𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 2) + 1 ). 

Because there are more coefficients in ciphertext due to a larger polynomial modulus 

𝑛, all operations become slower as a result. Based on security and efficiency 

considerations, the SEAL documentation suggests that 𝑛 takes values of 

1024, 2048, 4096, 8192, 16384 or 32768 for typical computation scenarios. 

https://sciwheel.com/work/citation?ids=13768004&pre=&suf=&sa=0&dbf=0
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4.5 Relinearization 

Multiplications in the FV and other related homomorphic encryption schemes increase 

the number of polynomials in the ciphertext. Relinearization is a technique for lowering 

the number of polynomials to an acceptable level in order to control noise growth.  

Relinearization is required for a number of reasons. These include the fact that 

processing a larger polynomial than a smaller one takes longer time. In order to obtain 

the output, convolutional neural networks use operations like the multiplication of 

several numbers over multiple layers, which is an extremely computationally expensive 

algorithm. Another intriguing justification for using relinearization that we discovered 

throughout our study is that smaller ciphertext results in a lesser increase in noise. 

Relinearization can be used in the CNN after each multiplication to reduce noise, which 

is depending on the size of the ciphertext operands. This can be seen by a simulation of 

the noise growth when two ciphertext are multiplied together, one with an increasing 

number of polynomials and the other with a fixed polynomial count size of 2. The SEAL 

documentation [7] for multiplication includes a relinearization formula that may be 

used to determine the noise in the output of the multiplication. 

 

Figure 13. Effect of ciphertext polynomial size on noise budget 

We get the conclusion from this simulation that noise increases exponentially as 

ciphertext size increases. 

https://sciwheel.com/work/citation?ids=13768004&pre=&suf=&sa=0&dbf=0


 

37 

4.6 Number encoding  

In SEAL, the numbers that we want to compute must be encoded in a polynomial of 

the type 𝑥𝑛  +  1. Here, the polynomial's coefficient is 𝑥, and 𝑛 is a power of two. The 

polynomial modulus, which was discussed above, is represented by 𝑥𝑛  +  1. The 

SEAL library encodes integers and fractions in a somewhat different fashion, as 

explained below. 

4.6.1 Integer Encoding 

We give an example to explain integer encoding. Let the encoding base 𝑥 = 2, then the 

integer 30 =  24 + 23 + 22 + 21 is encoded in polynomial form as 1. 𝑥4 + 1. 𝑥3 +

1. 𝑥2 + 1. 𝑥1. Similarly, for encoding base 𝑥 = 3, the integer 30 =  24 + 23 + 22 + 21 

encoding as a polynomial is  1. 𝑥3 + 1. 𝑥1 . 

4.6.2 Fractional Encoding 

Fixed-precision rational numbers are used to implement fractional encoding, with the 

integral part handled identically to integer encoding and the fractional part handled 

slightly differently. It extends the number in a specified base 𝑥, possibly truncating an 

infinite fractional portion to finite precision. For example, 

30.75 = 24 + 23 + 22 + 21 + 2−1 + 2−2 

Here the encoding base is 𝑥 = 2. For the sake of understanding, let the polynomial 

modulus is (1. 𝑥1024 + 1). The integer part of the above fractional number is encoding 

as the same way as encoding an integer, but the fractional part is transferred to the 

highest degree part of the polynomial with the coefficient signs changed. Because we 

are working with ring structures that can only contain positive integers, the negative 

coefficients are always encoded as a residual of the plaintext coefficient modulus t. In 

our example, for 𝑡 = 6 and 𝑛 = 1024,   the fractional encoding of the number 30.75 =

24 + 23 + 22 + 21 + 2−1 + 2−2 is given as  

30.75 = 5. 𝑥1023 + 5. 𝑥1022 + 1𝑥4 + 1𝑥3 + 1𝑥2 + 1𝑥1 

4.7 HE Coded Libraries  

Over the years, various authors have released a number of homomorphic encryption 

libraries, most of which are intended for specific implementations. Different libraries 
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include different HE schemes. Table 3 lists the most popular libraries along with the 

corresponding HE schemes that each library offers. 

Table 3. HE Libraries 

Library/Scheme BFV BGV TFHE FHEW CKKS 

SEAL ✔ ✔   ✔ 

HElib  ✔   ✔ 

PALISADE ✔ ✔   ✔ 

cuHE   ✔   

TFHE-Chimera ✔  ✔ ✔ ✔ 

FHEW    ✔  

HEAAN     ✔ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

39 

Chapter 5 

Proposed Work 

Cloud environment provide the ease to access data and use on-demand resource sharing 

from anywhere in the world. With the expansion of cloud infrastructure, machine 

learning (ML) models can be trained and deployed on cloud servers. Users may utilize 

the models to make predictions once they have been deployed, and they don't have to 

be concerned with the models or the service being maintained. This is what is meant by 

machine learning as a service. Both the training and classification phases can be 

outsourced to the cloud. While performing these phases the ML algorithm, training 

data, the model, and the feature vector must all be kept secret by one or more of the 

parties involved in applications that handle sensitive data.  

This chapter first describes the system model and the entities involved in it. Then, it 

provides the threat model which describes the potential threat in the given system 

model. It’s also discussing the privacy of each component of network in the proposed 

system model in the context of threat model. At the end, the necessary modifications 

needed in CNN layers to make them compatible with HE are discussed. These 

modifications allow to perform privacy preserved classification at outsourced 

environment.  

5.1 System and Threat Model 

HE helps the clients in outsourcing their critical data securely. During the outsourcing 

of the data, confidentiality and privacy of client data can be compromised by the 

malicious or curious server. System model helps in determining the entities involved as 

well as about the functionality of the proposed protocol. Threat modelling helps in 

finding potential exploits which can later become stern threats. Moreover, it also helps 

in securing the data from the entities like internal threat actors or external malicious 

threats. The threat model works with our system model and helps in establishing the 

effectiveness of our proposed model. 

5.1.1 System Model  

In order to maintain the privacy of the major components of the privacy preserving 

classification model as a service framework, we take into account the system model 



 

40 

shown in Fig 14, in which the cloud server uses a CNN model that has been trained to 

classify the client's unseen instances. The classification process in this case only works 

with user provided encrypted data. 

 

Figure 14. System Model 

In this system model, the server already has the training dataset and it builds a model 

from this plain dataset. The final model is in plaintext form placed at cloud. The client 

gives encrypted instances to cloud server which classifies these instances and returns 

the encrypted results to client. Intent in this system model is to protect the privacy of 

feature values of inputs and prediction of unseen instances against server, and also to 

protect the privacy of machine learning algorithm and model parameters against the 

client. 

5.1.2 Threat Model 

To create a secure protocol, we must identify potential threats and attacks that could 

target a system. Adversaries frequently aim is to jeopardize security requirements such 

as confidentiality, integrity, and availability. During threat modelling, it is critical to 

understand these threats and attacks, as well as their implications for security. Our 

system model of privacy preserving classification typically involves two entities, one 

is data owner (client) and second is cloud server and it involves a two-way 

communication i.e., from client to server and from server to client. In first case, the 

client encrypts the data and generates the required keys for homomorphic calculations, 

and sends encrypted queries and the public key parameters to cloud server. In this case, 

from the client’s viewpoint, the main threat in the system is either the cloud server or 

any eavesdropper. As the queries are encrypted so eavesdropper would not get any 
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meaning full information. As far as the server is concerned, we assume it as semi-honest 

threat model in which cloud server strictly follows the protocol specifications but may 

passively collect transmitted inputs and try to infer useful information about client’s 

data. In second case, cloud performs desired computations on an encrypted query and 

sends encrypted results to client. In this case, from the server’s prospective, the main 

threat in the system is either the client or any eavesdropper. As the results are encrypted 

so eavesdropper would not get any meaning full information. As far as the client side 

is concerned, we also assume it as semi-honest threat entity in which the client strictly 

follows the specifications of protocol but also try to infer useful information about 

machine learning algorithm and the weights of trained model placed on server. The 

adversial matrix of our model is shown in Table 4. 

Table 4. Adversial Matrix 

 
Known Unknown 

 

 

Client 

• Input data 

• Data types of input of the neural 

network 

• Data types of outputs of the neural 

network 

• Encryption and decryption keys 

• Machine Learning Algorithm 

• Model Parameters 

 

Server 

• Machine Learning Algorithm 

• Model Parameters 

• Input data 

• Encryption and decryption 

keys 

 

5.2 Model’s Components Privacy Considerations 

The privacy of different parts of a classification model must be taken into account when 

performing privacy-preserved classification in an outsourced environment. These 

components include feature values, predictions for unseen instances, ML algorithm and 

ML model privacy. In the sub-sections, we will discuss the privacy of each component 

individually and explain how our proposed model will ensure the privacy of these 

components. 
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5.2.1 Feature Values 

From the perspective of the data owner, feature values are one of the most important 

considerations. As these values include sensitive information of data owner, exposing 

them to the cloud server would be a serious security issue in the system. Medical 

records are an example of sensitive data that is stored as feature values. The Health 

Insurance Portability and Accountability Act (HIPPA) standard ensures that the data of 

the patient is kept private. This parameter is used to assess the proposed protocol's 

security. A non-authorized party should only receive minimal (or no) information about 

the feature values. In our suggested model, the data owner encrypts the feature values 

before sending them to the cloud. As a result, no non-authorized party receives any 

information. 

5.2.2 Predictions of Unseen Instances. 

The classifier's output is another component which should be consider during privacy 

preserving classification. All private classification protocol considers this component 

to be the client's private information. For example, the outcome of evaluating a patient's 

medical data contains sensitive information regarding the patient's present health state. 

Any entity other than the data owner does not have access to the result of the classifier. 

The classifier results are encrypted in our proposed protocol, so server has no access to 

them, ensuring the privacy of unseen instances. 

5.2.3 Machine Learning Algorithm 

If parties do not share the ML algorithm, then the learning algorithm is equally crucial. 

The privacy of this component is taken into account in privacy preserving classification 

scenarios, and it should be considered throughout the protocol design process. Consider 

a company that specializes in data analysis for other organizations. One of their assets 

is their data processing approach, and they don't disclose how the model is constructed. 

After the analysis, they just send the results to the client. The server's privacy requires 

that privacy of this component be protected. The privacy of this component is 

maintained in our proposed protocol since client receives no information from the cloud 

server regarding the steps involved in data analysis. 
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5.2.4 Model Privacy 

The model privacy is essential for client as well as the server. Actually, the model 

includes the patterns of the dataset as well as information gained from instances, so it 

is critical for the client. As a result, the model should not be made accessible to the 

server. From the perspective of the server, it is a server asset, similar to the analysis 

algorithm. Suppose a company provides a classification service to the clients in a 

privacy preserved environment. In this case, the model must be kept secret from the 

client because now it is a server asset. As a result, maintaining the privacy of model is 

also important. The model is built by the server and not transferred to the client in our 

protocol; as a result, the model's privacy is protected from the client. 

5.3 CNN Layer Design 

The primary purpose of this research work is solely to perform classification on 

encrypted data. So, the CNN layers are designed while considering feed-forward 

network only and back-propagation phase is omitted. The only operations supported by 

SEAL is addition and multiplications, so CNN layers are designed while keeping these 

limitations in mind. In our CNN model, the activation layers contain the non-linear 

functions, thus the primary challenge is to deal with this function in our model. To 

combat this challenge, different polynomial approximation techniques are explored 

e.g., Numerical approximation method, Taylor series and Chebyshev approximation. 

By doing analysis it is found that Chebyshev approximation technique is best for 

approximating the activations functions. More detail of approximating functions is 

given in Chapter 6. Before creating a privacy-preserving CNN, all the layers of CNN 

are researched, implemented and then tested both in plaintext as well as ciphertext 

space. While performing computations using SEAL, in case of plaintext the input and 

output vectors have data type of long while in encrypted case (ciphertext space) these 

vectors have data type of ciphertext. The plain layers of CNN are used as a reference 

for comparison to verify the accuracy of the encrypted classification. 

5.3.1 Activation Functions Design 

The activation function takes a 1-D/3-D vector as input, and the outputs a 1-D/3-D 

vector. The output vector has type long or ciphertext depends on whether an input to 

the function is encrypted or unencrypted. In the plain activation layer, both input and 
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output vectors remain unencrypted, but they are encrypted in ciphertext activation layer. 

The approximate algorithms of both the ReLU and Sigmoid activation function with 

two degrees of approximation are described below in Algorithm 1 and 2. 

Algorithm 1: ReLU Function  

𝑰𝒏𝒑𝒖𝒕: 𝑖𝑛;  𝑛_𝑖𝑛𝑝𝑢𝑡;  𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 

𝑶𝒖𝒕𝒑𝒖𝒕: 𝑜𝑢𝑡 

𝑠𝑐𝑎𝑙𝑒 =  10000 

𝑐0  =  0 

𝑐1  =  5000 

𝑐2  =  55 

𝑖𝑛_𝑠𝑖𝑧𝑒 ⇐  𝑛_𝑖𝑛𝑝𝑢𝑡 

𝒇𝒐𝒓 𝑗 =  0,1, …  𝑖𝑛_𝑠𝑖𝑧𝑒 𝑑𝑜 

       𝑜𝑢𝑡[𝑗]  ⇐  𝑖𝑛[𝑗]  ∗  𝑖𝑛[𝑗]  ∗  𝑐2  +  𝑖𝑛[𝑗]  ∗  𝑐1  +  𝑐0 

end  

 

Algorithm 2: Sigmoid Function  

𝑰𝒏𝒑𝒖𝒕: 𝑖𝑛;  𝑛_𝑖𝑛𝑝𝑢𝑡;  𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 

𝑶𝒖𝒕𝒑𝒖𝒕: 𝑜𝑢𝑡 

𝑠𝑐𝑎𝑙𝑒 =  10000 

𝑐0  =  5000 

𝑐1  =  5700 

𝑐2  =  −300 

𝑖𝑛_𝑠𝑖𝑧𝑒 ⇐  𝑛_𝑖𝑛𝑝𝑢𝑡 

𝒇𝒐𝒓 𝑗 =  0,1, …  𝑖𝑛_𝑠𝑖𝑧𝑒 𝑑𝑜 

       𝑜𝑢𝑡[𝑗]  ⇐  𝑖𝑛[𝑗]  ∗  𝑖𝑛[𝑗]  ∗  𝑐2  +  𝑖𝑛[𝑗]  ∗  𝑐1  +  𝑐0 

end  

 

5.3.2 Convolution Layer Design 

This layer gets a 3-D input vector, a 3-D weights vector and produces a 3-D vector as 

an output. The output vector has type long or ciphertext depends on whether an input 

to the layer is unencrypted or encrypted, respectively. In this layer, a sliding filter/kernel 

is utilized to compute the dot product between the weight vector and input vectors. The 

result of dot product is then elementwise added with the bias vector. The Algorithm 3 

describes the steps involved in the convolutional layer. In plain convolution layer each 
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vector (the input, weight, bias and the output) is unencrypted. The input/output vectors 

are encrypted in ciphertext convolution layer, but the weights and bias vectors are not, 

while all these vectors are not encrypted in plain convolutional layer. In SEAL, 

plaintexts and ciphertext can be added to and multiplied with one another. 

Algorithm 3: Convolution Layer 

𝑰𝒏𝒑𝒖𝒕: 𝑖𝑛;  𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡;  𝑖𝑛_𝑤𝑖𝑑𝑡ℎ;  𝑑𝑒𝑝𝑡ℎ;  𝑘𝑒𝑟𝑛𝑒𝑙_ℎ𝑒𝑖𝑔ℎ𝑡;  𝑘𝑒𝑟𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ;  𝑛_𝑘𝑒𝑟𝑛𝑒𝑙𝑠;  

𝑤𝑒𝑖𝑔ℎ𝑡;  𝑏𝑖𝑎𝑠;  𝑠𝑐𝑎𝑙𝑒  

𝑶𝒖𝒕𝒑𝒖𝒕: 𝑜𝑢𝑡 

𝑐𝑜𝑢𝑛𝑡 ⇐  0 

𝑜𝑢𝑡_ℎ𝑒𝑖𝑔ℎ𝑡 ⇐  𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡 −  (𝑘𝑒𝑟𝑛𝑒𝑙_ℎ𝑒𝑖𝑔ℎ𝑡 −  1) 

𝑜𝑢𝑡_𝑤𝑖𝑑𝑡ℎ ⇐   ( 𝑖𝑛_𝑤𝑖𝑑𝑡ℎ −  (𝑘𝑒𝑟𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ −  1) 

𝑓𝑜𝑟 𝑘 =  0,1, … 𝑛_𝑘𝑒𝑟𝑛𝑒𝑙𝑠 𝑑𝑜 

      𝑓𝑜𝑟 𝑦 =  0,1, …  𝑜𝑢𝑡_ℎ𝑒𝑖𝑔ℎ𝑡 𝑑𝑜 

            𝑓𝑜𝑟 𝑥 =  0,1, …  𝑜𝑢𝑡_𝑤𝑖𝑑𝑡ℎ 𝑑𝑜 

                  𝑓𝑜𝑟 𝑐 =  0,1, …  𝑑𝑒𝑝𝑡ℎ 𝑑𝑜 

                        𝑓𝑜𝑟 𝑘𝑦 =  0,1, …  𝑘𝑒𝑟𝑒𝑛𝑒𝑙_ℎ𝑒𝑖𝑔ℎ𝑡 𝑑𝑜 

                              𝑓𝑜𝑟 𝑘𝑥 =  0,1, …  𝑘𝑒𝑟𝑒𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ 𝑑𝑜 

                                    𝑡𝑒𝑚𝑝 ⇐  𝑖𝑛[𝑦 +  𝑘𝑦][𝑥 +  𝑘𝑥][𝑐] 

                                    𝑡𝑒𝑚𝑝 ⇐  𝑡𝑒𝑚𝑝 ∗  𝑤𝑒𝑖𝑔ℎ𝑡[𝑘𝑦][𝑘𝑥][𝑐][𝑘] 

                                    𝑖𝑓 𝑐𝑜𝑢𝑛𝑡 =  0 𝑡ℎ𝑒𝑛 

                                          𝑜𝑢𝑡[𝑦][𝑥][𝑘]  ⇐  𝑡𝑒𝑚𝑝 

                                          𝑐𝑜𝑢𝑛𝑡 + + 

                                    𝑒𝑙𝑠𝑒 

                                          𝑜𝑢𝑡[𝑦][𝑥][𝑘]+ =  𝑡𝑒𝑚𝑝 

                                          𝑐𝑜𝑢𝑛𝑡 + + 

                                    𝑖𝑓 𝑐𝑜𝑢𝑛𝑡 =  (𝑘𝑒𝑟𝑛𝑒𝑙_ℎ𝑒𝑖𝑔ℎ𝑡 ∗  𝑘𝑒𝑟𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ ∗  𝑑𝑒𝑝𝑡ℎ) 𝑡ℎ𝑒𝑛 

                                          𝑐𝑜𝑢𝑛𝑡 =  0 

                  𝑜𝑢𝑡[𝑦][𝑥][𝑘]  ⇐  𝑏[𝑘]  ∗  𝑠𝑐𝑎𝑙𝑒 

 

 

5.3.3 Pooling Layer Design 

The Max and Average Pool layers have to be changed because HE does not offer any 

division and comparison operations. To overcome this limitation, we replaced these 

layers with sum-pooling layer as shown in the Algorithm 4. The output of sum-pooling 

layer is simply the summation of values within the sliding window. This layer accepts 
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a 3-D vector as input, and produces outputs of 3-D vector. The output vector is either a 

3-D long vector or a 3-D ciphertext vector depends on if an input to the layer is 

unencrypted or encrypted, respectively. In the plain pooling layer, both input/output 

vectors are unencrypted, but they are encrypted in ciphertext pooling layer. 

Algorithm 4: Pooling Layer 

𝑰𝒏𝒑𝒖𝒕: 𝑖𝑛;  𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡;  𝑖𝑛_𝑤𝑖𝑑𝑡ℎ;  𝑑𝑒𝑝𝑡ℎ;  𝑝𝑜𝑜𝑙𝑥;  𝑝𝑜𝑜𝑙𝑦 

𝑶𝒖𝒕𝒑𝒖𝒕: 𝑜𝑢𝑡 

𝑐𝑜𝑢𝑛𝑡 ⇐  0 

𝑜𝑢𝑡_ℎ𝑒𝑖𝑔ℎ𝑡 ⇐  𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡 / 𝑝𝑜𝑜𝑙𝑦 

𝑜𝑢𝑡_𝑤𝑖𝑑𝑡ℎ ⇐   𝑖𝑛_𝑤𝑖𝑑𝑡ℎ/ 𝑝𝑜𝑜𝑙𝑥 

𝑓𝑜𝑟 𝑐 =  0,1, …  𝑑𝑒𝑝𝑡ℎ 𝑑𝑜 

       𝑓𝑜𝑟 𝑦 =  0,1, …  𝑜𝑢𝑡_ℎ𝑒𝑖𝑔ℎ𝑡 𝑑𝑜 

             𝑓𝑜𝑟 𝑥 =  0,1, …  𝑜𝑢𝑡_𝑤𝑖𝑑𝑡ℎ 𝑑𝑜 

                     𝑓𝑜𝑟 𝑖 =  0,1, …  𝑝𝑜𝑜𝑙𝑦 𝑑𝑜 

                              𝑓𝑜𝑟 𝑗 =  0,1, …  𝑝𝑜𝑜𝑙𝑥 𝑑𝑜 

                                    𝑡𝑒𝑚𝑝 ⇐  𝑖𝑛[𝑦 ∗  𝑝𝑜𝑜𝑙𝑦 +  𝑖][𝑥 ∗  𝑝𝑜𝑜𝑙𝑥 +  𝑗][𝑐] 

                                    𝑖𝑓 𝑐𝑜𝑢𝑛𝑡 =  0 𝑡ℎ𝑒𝑛 

                                          𝑜𝑢𝑡[𝑦][𝑥][𝑘]  ⇐  𝑡𝑒𝑚𝑝 

                                          𝑐𝑜𝑢𝑛𝑡 + + 

                                    𝑒𝑙𝑠𝑒 

                                          𝑜𝑢𝑡[𝑦][𝑥][𝑘]+ =  𝑡𝑒𝑚𝑝 

                                          𝑐𝑜𝑢𝑛𝑡 + + 

                                    𝑖𝑓 𝑐𝑜𝑢𝑛𝑡 =  (𝑝𝑜𝑜𝑙𝑦 ∗  𝑝𝑜𝑜𝑙𝑥) 𝑡ℎ𝑒𝑛 

                                          𝑐𝑜𝑢𝑛𝑡 =  0 

 

 

5.3.4 Fully Connected Layer Design 

This layer takes a 1-D weights vector, a 1-D input vector as input, and outputs 1-

D vector. The output vector is either a 1-D long vector or a 1-D ciphertext vector 

depends on if an input to the layer is unencrypted or encrypted, respectively. This layer 

calculates the input vector's dot product with weight vector, then adds bias vector to 

outcome elementwise as shown in Algorithm 5. The weight vector and bias vector are 

not encrypted in fully connected ciphertext layer, but input/output vectors are 

encrypted, whereas all these vectors are not encrypted in plain fully connected layer. 
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Algorithm 5: Fully Connected Layer 

𝑰𝒏𝒑𝒖𝒕: 𝑖𝑛;  𝑛_𝑖𝑛𝑝𝑢𝑡;  𝑛_𝑜𝑢𝑡𝑝𝑢𝑡; 𝑤𝑒𝑖𝑔ℎ𝑡;  𝑏𝑖𝑎𝑠;  𝑠𝑐𝑎𝑙𝑒 

𝑶𝒖𝒕𝒑𝒖𝑡: 𝑜𝑢𝑡 

𝑖𝑛_𝑠𝑖𝑧𝑒  ⇐  𝑛_𝑖𝑛𝑝𝑢𝑡 

𝑜𝑢𝑡_𝑠𝑖𝑧𝑒 ⇐  𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 

𝑓𝑜𝑟 𝑖 =  0,1, …  𝑜𝑢𝑡_𝑠𝑖𝑧𝑒 𝑑𝑜 

      𝑓𝑜𝑟 𝑗 =  0,1, …  𝑖𝑛_𝑠𝑖𝑧𝑒 𝑑𝑜 

            𝑡𝑒𝑚𝑝 ⇐  𝑖𝑛[𝑗] 

            𝑡𝑒𝑚𝑝 ⇐  𝑡𝑒𝑚𝑝 ∗  𝑤𝑒𝑖𝑔ℎ𝑡[𝑗][𝑖] 

            𝑖𝑓 𝑗 =  0 𝑡ℎ𝑒𝑛 

                 𝑜𝑢𝑡[𝑖]  ⇐  𝑡𝑒𝑚𝑝 

            𝑒𝑙𝑠𝑒 

                 𝑜𝑢𝑡[𝑦][𝑥][𝑘]+ =  𝑡𝑒𝑚𝑝 

𝑜𝑢𝑡[𝑖]  ⇐  𝑏[𝑖]  ∗  𝑠𝑐𝑎𝑙𝑒 
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Chapter 6 

Experimental Results and Evaluation 

The major motivation for developing privacy-preserving CNN classification model is 

to ensure information secrecy for all involved parties. There are instances that demand 

privacy protection measures, even if they are not necessary in most cases. For instance, 

while working with the medical data, confidentiality of a patient personal information 

is of utmost importance. In this case, a privacy-preserving CNN classification model 

may be utilized to let patients get a diagnosis by transmitting his personal information, 

with patient being the only one who can access the information and the diagnostic. In 

addition, the hospital may use its classifier on the encrypted data while still keeping its 

model hidden from the patients. 

In this chapter, first we approximate the activation functions on different scales and 

degrees and present the graphical representation of original and approximated 

activation functions. Next, we analyze the effect of variation of HE parameters on the 

time and accuracy of proposed CNN classification model. At the end we discuss the 

fast configurations required for the proposed model in term of time and accuracy.  

6.1 Polynomial Approximation Techniques 

There are numerous methods available for approximating a continuous function, but we 

are only concerned with polynomial approximation in this work. For polynomial 

approximation, a number of techniques have been put forth in the literature, such as 

Taylor series and Chebyshev polynomials [70][71]. We examine the following 

approaches to approximate the activation functions: 

• Numerical approximation method 

• Taylor series method 

• Chebyshev approximation method 

We employ each of these techniques individually to analyze the polynomial 

approximation of activation functions and also the merit and demerits of these methods 

are discussed below. 

https://sciwheel.com/work/citation?ids=13887383&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13887384&pre=&suf=&sa=0&dbf=0
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Numerical Analysis: In this technique, the set of points is produced from the activation 

function and feed this set into approximation function, along with a constant degree for 

activation function. We tested polynomials with degree ranging 3-10 and concluded 

that the accuracy declines significantly for lower degree polynomials. To get optimal 

accuracy, we must raise the degree, which is inefficient when dealing with encrypted 

data. Our analysis revealed that this technique is not an effective way for approximating 

the activation function. 

Taylor Series: Taylor series, a prominent approach for estimating functions, is used in 

this method. We approximated the activation function using polynomials of varying 

degrees and trained the model with polynomials of given degrees. This approach is 

ineffective due to two key problems. The first problem is that, despite being lower than 

above method, the high degree of polynomial approximation is still too high to be used 

with HE schemes. Secondly, the approximation interval is the most crucial problem. 

The fundamental goal of this series is to make approximation of given functions in a 

point nearby space. Approximation error is significantly larger for the points outside of 

the input interval than for those within of it. For instance, this approach is unable to 

cover the [0, 255] range of integer values for pixels in the MNIST dataset. Chebyshev 

polynomials [71] may be used to estimate the activation function across a wide range, 

which allows us to avoid requiring further layers, as explained below. 

Chybeshev approximation Method: The use of Chebyshev polynomials is not as 

widespread as earlier techniques. But these are more appropriate for our problem due 

to a certain feature. With this approach, we estimate a function throughout an interval 

rather than just a tiny region around a point. We increase the interval to be able to cover 

integers since HE systems are over integers with message space ℤ . The Chybeshev 

polynomial is given as:  

𝑇𝑛+1 (𝑥) =  2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥) 

The minimax approximation is another name for the Chebyshev approximation. By 

increasing accuracy and reducing overall computing cost, the minimax polynomial 

technique is employed for function approximation [72]. As opposed to Taylor's 

polynomial approximation, which minimizes error at the point of expansion, the 

minimax technique reduces error across a specific input segment. In order to identify a 

https://sciwheel.com/work/citation?ids=13887384&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13887385&pre=&suf=&sa=0&dbf=0
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mathematical function that minimizes the maximum error, the minimax approximation 

is applied. As an example, for a function 𝑓 defined over the interval [𝑎, 𝑏], the minimax 

approximation finds a polynomial 𝑝(𝑥) that minimizes max max
𝑎≤𝑥≤𝑏

|𝑓(𝑥)  −  𝑝(𝑥)|. 

In order to approximate a continuous function 𝑓, defined over [𝑎, 𝑏], we need to 

describe 𝑓 as a sequence of Chebyshev polynomials at [−1,1]. More precisely, 𝑓 is 

expressed as: 

𝑓(𝑥) =  ∑ 𝑐𝑘𝑇𝑘(𝑥)
𝑛

𝑘=0
                   𝑥 ∈  [−1, 1] 

where 𝑐𝑘 is the Chebyshev coefficient and 𝑇𝑘(𝑥) can be calculated from above 

mentioned equation. The polynomial's coefficients are then calculated, and it is 

eventually expressed in the original interval [𝑎, 𝑏]. 

6.2 Activation Functions Approximation 

We employ Chebyshev polynomial approximate method to approximate the ReLU and 

Sigmoid activation functions in our proposed model, in which the inputs are HE 

encrypted images. Table 5 depicts the polynomial approximation of the ReLU 

activation function with degree 5 and 7. Since the degree and interval choices have an 

impact on the model's performance, it is necessary to select appropriate parameters. To 

achieve this, we ran a number of experiments with various intervals and degrees.  

Table 5 demonstrates that the activation functions are more precisely approximated 

when higher degree polynomials are used in short intervals. For instance, compared to 

the other polynomials, the polynomial with degree 7 and interval [10, 10] is more 

accurate in its approximation of the ReLU function. The same holds true for the 

Sigmoid activation function, where a high degree 7 and short interval [10, 10] provide 

a better approximation, as shown in Table 5. However, using higher degree polynomials 

imposes substantial computation overhead, and short intervals limit the approximation 

function's applicability. 
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Table 5. Approx. of ReLU Function on Two Intervals Using Degree 5 & 7 

Degree Intervals Polynomial Approximation  

of Activation Function 

ReLU 

Functions 

5 [−10, 10] (2.368475785867𝑒−19) × 𝑥5  − (0.000252624921308674) × 𝑥4  −

(2.90138283768708𝑒−17) × 𝑥3  + (0.0660873211772537) × 𝑥  2  +

(0.500000000000001) × 𝑥 + (0.862730150341736)  

 

 

Fig 15(a) 

7 [−10, 10] (−8.88178419700125𝑒−21) × 𝑥7  + (3.66197231323541𝑒−6) ×

𝑥6  + (1.33226762955019𝑒−18) × 𝑥5  −

(0.000847927183186682) × 𝑥4  − (5.24025267623074𝑒−17) ×

𝑥3  + (0.0920352084972136) × 𝑥2  + (0.500000000000001) × 𝑥 +

(0.637244473880199)  

 

 

 

Fig 15(b) 

5 [−100, 100] (2.27373675443232𝑒−23) × 𝑥5  − (2.52624921308674𝑒−7) × 𝑥4  −

(2.70006239588838𝑒−19) × 𝑥3  + (0.00660873211772537) × 𝑥2  +

(0.500000000000001) × 𝑥 + (8.62730150341737)  

 

 

Fig 15(c) 

7 [−100, 100] (−6.82121026329696𝑒−27) × 𝑥7  + (3.6619723132354𝑒−11) ×

𝑥6  + (1.03739239420975𝑒−22) × 𝑥5  − (8.47927183186682𝑒−7) ×

𝑥4  −  (4.2277292777726𝑒−19) × 𝑥3  + (0.00920352084972135) ×

𝑥2  + (0.5) × 𝑥 + (6.37244473880199)  

 

 

Fig 15(d) 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 15. Approximation of ReLU Functions 

Table 6 depicts the polynomial approximation of the Sigmoid activation function. 

Table 6. Approx. of Sigmoid Function on Two Intervals Using Degree 5 & 7 

Degree Intervals Polynomial Approximation  

of Activation Function 

Sigmoid 

Functions 

5 [−10, 10] (2.04674243304457𝑒−5) × 𝑥5  + (2.46800554530117𝑒−20) × 𝑥4  −

(3.36794817460072 𝑒−3) × 𝑥3 − (1.8874604570257𝑒−18) × 𝑥2 +

(0.18781951515784) × 𝑥 +  0.5  

 

Fig 16(a) 

7 [−10, 10] (−4.3491363562486𝑒−7) × 𝑥7  − (2.72617215260618𝑒−21) ×

𝑥6  + (9.1841913854224𝑒−5) × 𝑥5  + (2.97822205265474𝑒−19) ×

𝑥4  − (0.00652613009718176) × 𝑥3  −

(4.60152342661793𝑒−18) × 𝑥2  + (0.216030242319584) × 𝑥 +

(0.5)  

 

 

 

Fig 16(b) 

5 [−100, 100] (2.76073648103432𝑒−10) × 𝑥5 − (5.79639277612257𝑒−24) ×

𝑥4  − (4.39372964286412𝑒−6) × 𝑥3  + (8.80835665108732𝑒−20) ×

𝑥2  + (0.0221378748236003) × 𝑥 + (0.5)  

 

 

Fig 16(c) 

7 [−100, 100] (−8.15672915997047𝑒−14) × 𝑥7 − (2.69310298657131𝑒−27) ×

𝑥6  + (1.66796555552873𝑒−9) × 𝑥5  + (2.88883265216498𝑒−23) ×

𝑥4  − (1.10438386410423𝑒−5) × 𝑥3  − (2.84535249558831𝑒−20) ×

𝑥2  + (0.0295953437969288) × 𝑥 + (0.5)  

 

 

 

Fig 16(d) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 16. Polynomial Approximation of Sigmoid Functions 
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6.3 CNN Model Accuracy with Polynomial Activation Function 

We conduct our experiments using the MNIST [6] dataset and the CNN model that is 

described below in Fig 18 to assess performance of various approximation methods. 

For a comparison, we first train the given model using original activation functions and 

find the accuracy against each activation function as shown in Table 7. Then, we use 

the approximation polynomial of degree two for the given activation functions in the 

given model and calculate the accuracies given in the Table 7.  

Table 7. CNN accuracies based on original and approximated activation functions 

Activation Function Original Model Approximated Model 

Sigmoid 98.82 % 98.25% 

ReLU 99.15% 98.75% 

 

6.4 Privacy Preserved Classification Model 

In this section we discussed the different part involved in the proposed privacy 

preserved classification model. It includes the dataset we used for the training purpose 

and details about the structure of proposed CNN model as well as the input and output 

sizes of each layer present in it. It also contains the model training and testing part along 

with the tuning parameters.  

6.4.1 Dataset 

The MNIST data set is used to train and test the privacy-preserving CNN. This dataset 

is chosen specifically because it is widely used in the field of deep learning. This enable 

a comparison of accuracy with prior research. There are 60,000 total images in this 

dataset, from which 50,000 images are choosen for training while remaining 10,000 

images are selected for testing. The MNIST dataset contains images of 28𝑥28 pixel 

arrays, every pixel is made up of a positive integer ranging from 0-255. Fig 17 displays 

a sample of pictures from the MNIST dataset. 

https://sciwheel.com/work/citation?ids=13762323&pre=&suf=&sa=0&dbf=0
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Figure 17. MNIST Dataset 

6.4.2 CNN Network 

The CNN network which is used to train and categories MNIST dataset is shown in Fig 

18. A summary of this network is provided below: 

1. 1st Conv-Layer: It takes an image of dimension 28 × 28 × 1 as an input. The 

layer contains 4 kernels of dimension 5 × 5, with stride of (1,1). 

2. Activation-Layer: It performs the ReLU function at every input node. 

3. 1st Pool-Layer: It takes an input of dimension 24 × 24 × 4 and have stride of 

size (2,2). Its output is 12 × 12 × 4. 

4. 2nd Conv-Layer: It has input of dimension 12×12×4. This layer consists of 

12 kernels of dimension 5 × 5, and stride of (1,1). The outcome of this layer is 

8 × 8 × 12. 

5. 2nd Pool-Layer: It takes an input of dimension 8 × 8 × 12 and have stride of 

size (2,2). Its output is 4 × 4 × 12. 

6. Flatten-Layer: The input of this layer is 4 × 4 × 12 and returns the output of 

192. 

7.  Fully Connected-Layer: It combines incoming 192 notes to the 10 output 

nodes. 
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Figure 18. Proposed Convolutional Neural Network 

6.4.3 Model Training 

The original ReLU function is replaced by Chybeshev approximated ReLU function 

during learning phase. The CNN model is trained with the PyTorch framework using 

PyTorch library with MNIST dataset. The training is carried out in batches of 128 for 

a total of 1000 epochs. The Adaptive Moment Estimation, often known as Adam, is the 

optimization technique utilized during training. Adam is chosen because it requires less 

memory and performs well with minimal hyper parameter adjustment. 

6.4.4 Model Testing 

The ReLU activation function is changed by degree two polynomial approximation 

function during the classification phase, while the pooling layer is changed to the sum-

pooling layer. The model uses an encrypted PNG image of a handwritten digit from 0 

to 9 as input, and the weights are determined during training. The encrypted image is 

then classified, and the final layer output is decrypted. The output vector has ten values, 

and each of them corresponds to a digit from 0 to 9. The classifier's prediction is 

whatever number from 0 to 9, is connected with the highest value discovered in the 

output. Furthermore, images aren't classified in batches since working with encrypted 

data requires a considerable amount of processing power and memory. Instead, the 

privacy-preserving classier processed each image separately. 
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6.5 Result Profiling 

Accuracy and Timing are two of the most crucial aspects to examine when evaluating 

the practicality of any cryptosystem: does this accurately categories the image as well 

as how much time does it take to classify the image? We put our privacy-preserving 

CNN model to the test under various circumstances to see how different factors affect 

accuracy and time in an effort to better understand the capabilities of HE. Timing is 

determined by counting the seconds it took to perform each layer and to encrypt/decrypt 

the image. In order to determine the accuracy, the model is typically run over the 

complete test dataset, however due to resource constraints, a very simple test has to be 

constructed. The privacy-preserving CNN is applied to a single random picture from 

the testing dataset rather than testing all 6,000 images. 

6.5.1 Timing 

It is discovered during the initial testing phases that our privacy preserved CNN model 

takes 215.08 seconds to classify an encrypted image.  We calculate the time it took for 

encryption/decryption of an image as well as time of each layer in order to determine 

where it might be spending the most of its time during the classification phase. Table 8 

and 9 show the time needed to read the image, encrypt it, execution time of each layer, 

and the decryption of final result. The security parameter is set to 128 bits for all timing 

values indicated below. The execution time of each layer of our CNN model is shown 

in the Table 8. 

Table 8. Running Time of CNN Layers 

Layers Description Time(s) 

1st Convolutional Layer  Input: 28x28x1 

Output: 24x24x4 

79 

Activation Layer (ReLU) 2nd Degree polynomial 25 

1st Pooling Layer Avg. pooling 0.01 

2nd Convolutional Layer  Input: 28x28x1 

Output: 24x24x4 

106 

2nd Pooling Layer Avg. pooling 0.01 

Flatten Layer Output: 192 0.06 

Fully Connected Layer Output: 10 2 
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The convolution layer requires the most computation time, as shown in Table 8. The 

activation layer is the 2nd most expensive layer in term of time, then comes fully 

connected layer, and lastly the pooling layer. 

Table 9 shows the time the model takes to read, encrypt and decrypt the image.  

Table 9. Image Encryption/Decryption Time 

Operation Time (s) 

Read Image 0.0005 

Encrypt Image 3.28 

Decrypt 0.02 

 

According to the timing data in Table 9, reading the image takes only 0.0005 seconds, 

which is a very little amount of time. Encryption takes 3.28 seconds, hence it takes 

around 3.28/(28*28*1) = 0.0128125 seconds to encrypt one pixel. Decryption takes 

0.02 seconds, hence it takes around 0.2/(10) = 0.02 seconds to decrypt one value. 

It is evident from the preliminary time data shown in Table 8 that the convolution layer 

and ReLU activation layers are the main sources of the computational bottleneck. 

6.5.2 Security Parameter (𝒌/𝝀) Variation 

In the prospective of model security, HE has a few factors that are essential to consider 

while performing the CNN classification. One of these parameters is 𝑘/𝜆, which is 

called the security parameter. We use the default value of 𝑘 = 128 for experiments. 

The security parameters are varied in this section to observe the threshold (Time & 

Accuracy) for calculation as well as the overall security. The timing values are 

calculated by using BFV scheme for polynomial modulus degree 𝑛 = 8192, for each 

three security parameters of 128, 192 and 256 as recommended in [73].  

For SEAL, setting 𝑘 =  128 is comparable to AES 128-bit security, setting 𝑘 =  192 

is equivalent to AES 192-bit security, and setting 𝑘 =  256 is similar to AES 256-bit 

security. Therefore, in addition to the default k = 128, these are the two other security 

settings assessed. 

https://sciwheel.com/work/citation?ids=13865422&pre=&suf=&sa=0&dbf=0
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Fig 19 depicts the time takes by each CNN layer to run based-on the variation security 

parameters. According to the stats in Fig 19, the time required to evaluate each layer 

increases as the security parameter increases. When security parameter is increased 

from 128-bits to 256-bits, the calculation time for the layers (Conv1/Conv2/FC1) that 

take the longest to calculate increases by 1.8 times.  

 

Figure 19. Execution Time of different layers based on Security Parameters Variation 

The total time needed to run the network with regard to changing security parameters 

is shown in Fig 20 below. 
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Figure 20. Total Execution Time of model based on Security Parameter Variation 

From Fig 20 it is evident that the computation time increases as the security parameter 

size increases. The graph suggests that there is a linear relationship with a gradual slope 

between the value of the security parameter and the overall classification time. The 

overall time to classify an encrypted image with a security parameter of 128-bit is 

215.08 seconds, with a 192-bit security parameter is 302.26 seconds, and 444.84 

seconds with a 256-bit security parameter. It is significant to notice that the encrypted 

image could not be fully classified using the security parameter of 256 because the noise 

increases too high and there are insufficient levels to support the given security 

parameter. It takes about 230 seconds longer to use 256-bit security parameter than 128-

bit security parameter. This raises the issue of time at the expense of security: under 

what circumstances would someone be ready to wait even longer in order to get higher 

security level? 

Based on the sizes of the security parameter, Table 10 indicates time taken by the model 

to read, encrypt, and decrypt the given image. It also determines whether or not the 

image is properly classified. 
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Table 10. Encryption/Decryption Time based on Security Parameters 

Security 

Param. 

Polynomial 

Modulus  

Encryption 

Time 

Decryption 

Time 

Prediction 

128 8192 3.28 0.02 YES 

192 8192 3.45 0.025 YES 

256 8192 3.98 ------ NO 

 

According to the timing data in Table 10 security parameter change also has an 

influence on the encryption and decryption time of image. Time required for encryption 

of image increases with the increase in the security parameter. In the large context of 

scheme things, this time difference is trivial because it is only a few seconds. 

Accuracy is also impacted by changes in security parameters. The 256-bit security 

parameter is improperly classifying the encrypted image since there aren't enough 

levels available to accommodate it. To resolve this issue, the polynomial modulus 

degree size is increased from 8192 to 16384, while keeping the same security level of 

256. 

6.5.3 Other parameters (𝒒 & 𝒏) variations 

As discussed in Chapter 4 the ciphertext/coefficient modulus 𝑞 size has a direct relation 

with the noise budget. As complex computations require more noise budget, so a larger 

coefficient modulus is required. The coefficient modulus in SEAL is a positive 

composite number that is the sum of several primes with a maximum bit size of 60 bits. 

These primes are also called the number of levels of modulus chain. These levels 

(primes) in coefficient modulus are changed after each multiplication operation. This 

implies that the evaluation functions have a significant impact on the level values. So, 

a complex evaluation functions require larger values of the coefficient modulus. 

However, a higher coefficient modulus 𝑞 also reduces the level of security of the 

schemes. Therefore, we have to increase the value of polynomial modulus 𝑛 value at 

the same time to meet the required security level. Conversely, the size of polynomial 

modulus 𝑛 and number of prime elements in coefficient modulus 𝑞 have the greatest 

influence on performance. The relationship between the polynomial modulus degree 𝑛 
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and the corresponding upper bound of coefficient modulus q (Number of levels) for 

different security level is provided in [73]. According to this recommendation, as the 

polynomial modulus degree values increase the corresponding ciphertext modulus 

values change and so the number of levels. 

In this section, both the values of coefficient modulus 𝑞 and polynomial modulus 𝑛 are 

varied to observed the change in threshold values and overall time. All timing values 

are measured by using BFV scheme for different values of 𝑛 (1024, 2048, 4096, 8192, 

16384) with standard security parameters of 128-bit. 

Fig 21 illustrates the total execution time of each layer in our network based on variation 

in polynomial modulus degree 𝑛 and the corresponding number of levels in coefficient 

modulus 𝑞. As the value of polynomial modulus degree increases, the time of execution 

of each layer increases too. When the value of polynomial degree 𝑛 is changed from 

1024 to 16384, there is a 2x–6x increase in calculation time for the layers 

(Conv/ReLU/FC). 

 

Figure 21. Execution Time of different layers based on Polynomial Degree Variation 

Fig 22 clearly demonstrates the total execution time of network based on variation in 

polynomial modulus degree 𝑛 and the corresponding number of levels in coefficient 

modulus 𝑞. The findings in Figure 22 illustrates that the computation time increases 

with the increase in polynomial modulus degree 𝑛 and the corresponding number of 
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levels in coefficient modulus 𝑞. The polynomial modulus degree 𝑛 and time of 

classification seems to be correlated linearly with an average slope, as shown in the 

graph. The same is true for varying the number of levels in coefficient modulus 𝑞. It is 

significant to notice that if there are polynomial degree 𝑛 is less than 4096, the noise 

increase would have been not enough for the network to successfully categorize the 

encrypted image. Additionally, Figure 22 slope is substantially steeper than Figure 20 

slope. It makes more sense to reduce the number of layers over the security parameter 

as much as feasible in order to reduce computation time. 

 

 

Figure 22. Total Execution Time of model based on Polynomial Modulus Variation 

Table 11 shows how long it takes to encrypt as well as decrypt the given image and 

determine if the given image is classified correctly depending on the value of 

polynomial modulus degree 𝑛 along with the corresponding levels in coefficient 

modulus 𝑞. The timing data in Table 8 clearly shows that polynomial modulus degree 𝑛 

and coefficient modulus 𝑞 do have an effect the encryption and decryption time of 

image. This time increases as the values of polynomial modulus degree 𝑛 and 

coefficient modulus 𝑞 increase. In the broad scheme of things, this small difference in 

time is insignificant. 

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Ti
m

e 
in

 (
se

c)

Polynomial Modulus (n)

Total Time vs Polynomial Modulus Variation



 

64 

Table 11. Encryption/Decryption Time 

Polynomial 

modulus 

degree 

Ciphertext 

Modulus 

Levels 

Encryption 

Time 

(s) 

Decryption 

Time 

(s) 

Prediction 

1024 128 0.34   --- NO 

2048 128 0.66  0.01 NO 

4096 128 1.53 0.01 YES 

8192 128 3.72 0.03 YES 

16384 128 14.83 0.34 YES 

 

Accuracy is also affected by varying the size of polynomial modulus degree 𝑛 and 

coefficient modulus 𝑞. A certain minimum number of levels corresponding the 

polynomial modulus degree 𝑛 is undoubtedly required to effectively categorize the 

given encrypted image and control the noise budget. There is not simple formula for 

calculating the required number of levels in coefficient modulus 𝑞. But in general, the 

number of levels must be equivalent to the number of multiplications in the evaluation 

function. The network put to the test in this experiment includes a degree two 

polynomial computation and three dot products. Because of this, early tests were 

conducted with different levels set. The minimal number of levels was found by 

guessing and checking when results displayed an error message.  

Thus, based on experiments, it is recommend using as few factors in the coefficient 

modulus is possible for good performance. 

6.6 Best Configuration 

By understanding all the above-mentioned results and limitations of HE, final test for 

the fast configuration is carried out. Best configuration means to select such parameters 

that yield both accurate predictions and the fastest timing results. In this section all the 

timing values are calculated by taking the polynomial modulus degree value of 4096 

and security parameter set to 128-bit.  
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Table 12. Timing of each layer based on Best Configuration 

Conv-1 ReLU P-1 Conv-2 P-2 Flat FC 

34 10 0.01 45 0.005 0.005 1 

 

Table 12 represents the all-time best value of each layer execution time based on the 

best parameter selection, while still maintaining the correct prediction. 
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Chapter 7 

Conclusions and Future Work 

We conclude our thesis by providing a concrete conclusion and future work in two 

sections. The first section contains the brief overview of the thesis. The second section 

includes the future work in the context of privacy-preserving classification through 

CNN using HE. 

7.1 Conclusion 

In this thesis, we looked into ways to outsource computing securely while employing 

homomorphic encryption on encrypted data. We suggested cryptographic protocols for 

the widely used algorithms to act as building blocks to allow a wide range of secure 

data analytics and machine learning applications on the cloud. The HE-limitations for 

privacy-preserving machine learning, specifically for employing CNN for classification 

in an outsourced setting, were investigated. To keep these limitations in mind, we 

modified the different layer of CNN to make them compatible with HE supported 

operations. In particularly, we approximated the non-linear activation functions like 

Sigmoid and ReLU into functions which only includes additions and multiplications 

terms. We approximated these function on different degree and scales to examine the 

impact of these variations on accuracy of proposed classification model. At the end, we 

calculated the time of each layer and the overall time as well as the accuracy of proposed 

model by varying the HE parameters. Overall, this work served as an effective 

demonstration of concept for the classification of encrypted images. 

7.2 Future Work 

The current study has opened several pathways for future research. Some of them are 

summarized below. 

In our current research, we have been working only on feed-forward neural networks. 

The most prominent example is the CNN. However, there are numerous other neural 

network architectures, like recurring neural networks, are available which can be 

explored for evaluation using homomorphic encryption. 
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Our proposed model only included two entities the client and the server i.e., we only 

consider one to one client/server architecture. This work would be expanded in the 

multi-party setting using multi-key homeomorphic encryption schemes. 

In our suggested study, we took into account a semi-honest threat model architecture. 

The participants closely adhere to the protocol's rules in the semi-honest environment, 

but they are still interested in learning about other inputs from the interactions. So, to 

move beyond this threat model, like malicious threat model, would be an interesting 

work to do. 
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