

i

Privacy Preserving Machine Learning Using

Homomorphic Encryption

By

Aftab Akram

A thesis submitted to the faculty of Information Security Department, Military

College of Signals, National University of Sciences and Technology, Rawalpindi in

partial fulfillment of the requirements for the degree of MS in Information Security.

Dec 2022

MCS

ii

Thesis Acceptance Certificate

 Certified that final copy of MS Thesis written by Mr. Aftab Akram, Registration

No. 00000318233, of Military College of Signals has been vetted by undersigned,

found complete in all respects as per NUST Statutes/Regulations/MS Policy, is free of

plagiarism, errors, and mistakes and is accepted as partial fulfillment for award of MS

degree. It is further certified that necessary amendments as pointed out by GEC

members and local evaluators of the scholar have also been incorporated in the said

thesis.

 Signature: _______________________________

 Name of Supervisor Asst. Prof. Dr. Fawad Khan

 Date: __________________________________

 Signature (HOD): __________________________

 Date: __________________________________

 Signature (Dean/Principal) ___________________

 Date: __________________________________

iii

Declaration

I hereby declare that except where specific reference is made to the work of others,

the contents of this dissertation are original and have not been submitted in whole or

in part for consideration for any other degree or qualification in this, or any other

university. This dissertation is my own work and contains nothing which is the

outcome of work done in collaboration with others, except as specified in the text

and Acknowledgements.

 Aftab Akram

 Dec 2022

iv

Dedication

This thesis is dedicated to my Family and my Supervisor for their endless support, and

encouragement throughout my research work.

v

Acknowledgement

All praises to Allah Almighty for the strength He gave me in completing this thesis. I

would like to convey my gratitude to my supervisor Asst. Prof. Dr. Fawad Khan and co-

supervisor Asst. Prof. Dr. Shahzaib Tahir, for their supervision and constant support. I

would also like to thank my committee members; Assoc. Prof. Dr. Muhammad Faisal

Amjad and Maj. Zeeshan Zulkifl for their support, guidance and knowledge regarding

this topic. Their comments and suggestions throughout the thesis work are major

contributions to the success of this research.

Last, but not the least, I am highly thankful to my father and mother. They have always

stood by my dreams and aspirations and have been a great source of inspiration for me.

I would like to thank them for all their care, love and support through my times of stress

and excitement.

vi

Abstract

Neural network-based machine learning algorithms have shown outstanding results and

are currently being widely used in numerous fields. These machine learning algorithms

demands considerable computing power for internal calculations and training with big

datasets in a reasonable amount of time. In recent years, clouds provide services to

facilitate this process, but it introduces new security threats, as the machine learning

algorithms mainly rely on the utilization of personal data for training and classification

which frequently has privacy implications. To overcome this problem, we propose new

approach for operating deep neural networks on encrypted data. Homomorphic

encryption is a cryptographic technique, which allows to perform computations on

encrypted data, but it also has some limitations associated with it. However, it only

supports limited number of addition and multiplication operations in encrypted domain.

Existing works only cater simple machine learning algorithms like binary classifiers

and simple neural networks in the encrypted domain. Moreover, these simple machine

learning algorithms does not provide the required accuracies and also handle a limited

number of datasets. To address these issues deeper neural networks are required, which

on the other hand increases the computational complexity. In this study, we create novel

methods for implementing deep neural networks within the realistic limitations of

homomorphic encryption techniques. We mainly concentrate on convolutional neural

networks for training and encrypted classification. To begin, we provide techniques for

approximating the activation functions typically employed in CNNs (e.g., ReLU and

Sigmoid) with low degree polynomials, which is required for efficient homomorphic

encryption schemes. The models are then trained using approximation polynomials

rather than the original activation functions, and their performance is evaluated. In the

end, we apply convolutional neural networks to encrypted data for privacy preserving

classification by varying the various Homomorphic encryption scheme’s parameters

and evaluate the model performance. The proposed scheme ensures privacy while

attaining the maximum accuracy.

vii

Table of Contents

Chapter 1 .. 1

Introduction .. 1

1.1 Overview and Motivation .. 1

1.2 Problem Statement ... 2

1.3 Research Objectives ... 4

1.4 Thesis Contribution .. 4

1.5 Research Methodology .. 5

1.6 Thesis Organization ... 6

Chapter 2 .. 7

Preliminary Studies .. 7

2.1 Introduction .. 7

2.2 Public-Key Encryption ... 7

2.3 Homomorphic Encryption ... 8

2.3.1 Partially Homomorphic Encryption ... 9

2.3.2 Somewhat Homomorphic Encryption .. 11

2.3.3 Fully Homomorphic Encryption Schemes ... 12

2.4 Post-Quantum Cryptography ... 12

2.4.1 Lattice-based Cryptography ... 13

2.4.2 Lattices ... 13

2.4.3 Lattice Problems .. 14

2.4.4 Learning With Error ... 17

2.4.5 Ring Learning With Error .. 17

2.5 Neural Network .. 18

2.6 Convolutional Neural Networks (CNNs / Conv-Nets) .. 19

2.6.1 Convolutional Layer .. 19

2.6.2 Activation Layer .. 20

2.6.3 Pooling Layer ... 21

2.6.4 Fully Connected Layer ... 21

Chapter 3 .. 23

Literature Review... 23

3.1 Privacy Preservation Techniques ... 23

3.1.1 Secure Hardware (Intel SGX) .. 23

viii

3.1.2 Secure Multi-Party Computation ... 24

3.1.3 Homomorphic Encryption.. 24

3.2 Related work .. 25

Chapter 4 .. 29

Homomorphic Encryption Scheme .. 29

4.1 Introduction .. 29

4.2 Description of the FV Scheme ... 29

4.2.1 Key generation ... 30

4.2.2 Encryption .. 31

4.2.3 Decryption .. 32

4.3 Noise Budget (Circuit Depth) .. 33

4.4 Parameter Selection (𝒕, 𝒒, 𝒏).. 34

4.4.1 Plaintext Modulus (𝒕) .. 34

4.4.2 Ciphertext Modulus (𝒒) ... 35

4.4.3 Polynomial Modulus (𝒏) ... 35

4.5 Relinearization ... 36

4.6 Number encoding ... 37

4.6.1 Integer Encoding .. 37

4.6.2 Fractional Encoding ... 37

4.7 HE Coded Libraries ... 37

Chapter 5 .. 39

Proposed Work .. 39

5.1 System and Threat Model .. 39

5.1.1 System Model .. 39

5.1.2 Threat Model .. 40

5.2 Model’s Components Privacy Considerations ... 41

5.2.1 Feature Values ... 42

5.2.2 Predictions of Unseen Instances. ... 42

5.2.3 Machine Learning Algorithm ... 42

5.2.4 Model Privacy .. 43

5.3 CNN Layer Design .. 43

5.3.1 Activation Functions Design .. 43

5.3.2 Convolution Layer Design ... 44

5.3.3 Pooling Layer Design .. 45

5.3.4 Fully Connected Layer Design .. 46

Chapter 6 .. 48

ix

Experimental Results and Evaluation .. 48

6.1 Polynomial Approximation Techniques .. 48

6.2 Activation Functions Approximation... 50

6.3 CNN Model Accuracy with Polynomial Activation Function 54

6.4 Privacy Preserved Classification Model .. 54

6.4.1 Dataset.. 54

6.4.2 CNN Network .. 55

6.4.3 Model Training .. 56

6.4.4 Model Testing .. 56

6.5 Result Profiling .. 57

6.5.1 Timing .. 57

6.5.2 Security Parameter (𝒌/𝝀) Variation ... 58

6.5.3 Other parameters (𝒒 & 𝒏) variations .. 61

6.6 Best Configuration ... 64

Chapter 7 .. 66

Conclusions and Future Work ... 66

7.1 Conclusion ... 66

7.2 Future Work ... 66

References .. 68

x

List of Figures

Figure 1. HE-based Privacy Preserving Classification ... 3

Figure 2. Research Methodology .. 5

Figure 3. Homomorphic Encryption Types .. 9

Figure 4. A lattice in ℝ2 ... 14

Figure 5. Shortest Vector Problem .. 15

Figure 6. Closest Vector Problem ... 15

Figure 7. A Neural Network ... 19

Figure 8. Convolutional Layer .. 20

Figure 9. Activation Functions .. 20

Figure 10. Pooling Layers ... 21

Figure 11. Fully Connected Layer .. 22

Figure 12. Homomorphic Addition ... 24

Figure 13. Effect of ciphertext polynomial size on noise budget .. 36

Figure 14. System Model .. 40

Figure 15. Approximation of ReLU Functions ... 52

Figure 16. Polynomial Approximation of Sigmoid Functions .. 53

Figure 17. MNIST Dataset .. 55

Figure 18. Proposed Convolutional Neural Network .. 56

Figure 19. Execution Time of different layers based on Security Parameters Variation 59

Figure 20. Total Execution Time of model based on Security Parameter Variation 60

Figure 21. Execution Time of different layers based on Polynomial Degree Variation 62

Figure 22. Total Execution Time of model based on Polynomial Modulus Variation 63

xi

List of Tables

Table 1. Security of Classical Cryptosystem in Quantum Era .. 13

Table 2: Comparative Analysis of exiting privacy preserving .. 28

Table 3. HE Libraries .. 38

Table 4. Adversial Matrix ... 41

Table 5. Approx. of ReLU Function on Two Intervals Using Degree 5 & 7 51

Table 6. Approx. of Sigmoid Function on Two Intervals Using Degree 5 & 7 52

Table 7. CNN accuracies based on original and approximated activation functions 54

Table 8. Running Time of CNN Layers .. 57

Table 9. Image Encryption/Decryption Time .. 58

Table 10. Encryption/Decryption Time based on Security Parameters................................... 61

Table 11. Encryption/Decryption Time... 64

Table 12. Timing of each layer based on Best Configuration ... 65

xii

Notations

𝑒𝑣𝑘 evaluation key

𝑝𝑘 public key

𝑠𝑘 secret key

𝜆 security parameter

𝑐 ciphertext

ℤ set of integers

N set of natural numbers

B set of vectors

ℒ represent lattice

𝑏𝑖 basis vectors

R set of real numbers

‖𝒗‖ norm of a vector

< 𝑎, 𝑏 > dot product of two vectors

T plaintext modulus

N polynomial modulus degree

Q coefficient modulus

E noise (error)

𝑁𝑚 highest Degree polynomial (𝑚)

1

Chapter 1

Introduction

1.1 Overview and Motivation

Cloud computing empowers anyone–from individuals to enterprises–to migrate on

premise workloads to a third-party. Cloud computing might not be feasible in all

circumstances, despite the fact that it can significantly enhance the computer power

available to customers with low budgets and processing capacity. For instance, the

GDPR [1] regulation of the European Union (EU) governs the privacy and data

protection laws within EU and limits the information that may be transmitted beyond

the EU. The GDPR may be violated, if the computation of sensitive data is outsourced

to a cloud provider located outside the EU. One method for maintaining data privacy

and GDPR compliance is to make encryption of data before sharing it to a cloud server.

But what if someone want to perform computations on the data at cloud server?

Homomorphic encryption (HE) helps us to perform such kind of computations. It

allows the users to execute calculations on encrypted data at outsource environment

while ensuring the cloud server wouldn’t learn anything about the data of the user.

Although the use case is straightforward, implementing this kind of solution is a

difficult task. The biggest challenge is creating the homomorphic version of the

function that has to be evaluated later. First, the input data must be encoded as

homomorphic plaintexts and this encoding will impact the efficiency of the resulting

circuit. Second, HE schemes only support basic arithmetic operations like addition and

multiplication and it cannot support high-level functions like rounding, evaluating non-

polynomial functions. Finally, multiplicative depth of evaluation function has a direct

relation with HE parameters, higher depth functions demand bigger HE parameters,

which decreases the efficiency of the scheme and increases computing time.

For years, the security and machine learning scientists have been fascinated by learning

the model without having access to raw material. Ideally, we want the confidential data

https://sciwheel.com/work/citation?ids=13762322&pre=&suf=&sa=0&dbf=0

2

to be encrypted before storing it on cloud and certain data analysis performed without

ever decrypting the data. HE is a strong candidate for secure outsourced data

computations, however because of the aforementioned problems, implementing real-

world machine learning tasks in an outsourced privacy-preserved environment is quite

difficult. Existing solutions [2][3][5] can only handle simplified low-depth circuits such

as logistic regression and simple neural network and these learning algorithms only

handle datasets in a texture format. The primary objective of this thesis is to provide

the practical support to high depth real-world machine learning model like deeper

neural network. Deeper neural network also allows us to handle datasets comprises of

textural as well as image format and also the model accuracy of such networks are far

better than the simple learning algorithms. This work will examine the performance of

the purposed model by using real-world datasets and demonstrate its feasibility in

different sectors like health, genomes analysis and business analytics etc.

1.2 Problem Statement

Technology advancement in current era introduces a new sort of currency in everyday

human experience known as individual’s privacy. Machine learning, as a technical

front-runner that plays a leading role in many current developments, is strongly reliant

on the utilization of personal data. Analytical models are used in machine learning to

create well-informed predictions on given datasets. Furthermore, a lot of machine

learning models required a significant computing resource in order to analyze enormous

volumes of data efficiently. Taking advantage of cloud resources is one answer to this

dilemma. When it comes to security, a cloud-based solution invites a number of

problems. On the other hand, what if it was possible to incorporate the best aspects of

both worlds, i.e., utilizing cloud resources while maintaining individual security, while

performing machine learning on cloud settings?

Supposing a previously trained machine learning model is stored on the cloud. A client

encrypts his data and sends it to cloud server. The model uses encrypted data to process

a result that can only be decrypted by the individual. This identical scenario has been

demonstrated achievable through the use of privacy-preserving classification.

Therefore, it is crucial to comprehend how encryption is used inside privacy-preserving

classification when evaluating the confidentiality and effectiveness of a system. The

core idea of privacy-preserving classification problem is to use the encrypted data to

https://sciwheel.com/work/citation?ids=13749558&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749567,13749560,13749561&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0

3

make encrypted predictions. The design and implementation of a prediction model

involves the use of three datasets: training, validation, and testing. A training dataset is

used during the learning phase to determine the weights that comprise the predictive

model. During the learning phase, a validation dataset is used to fine-tune the model's

architecture and meta-parameters, as well as to query the model's performance on

unseen data. After the learning process, the final model's predictive ability is verified

using a testing dataset. This is known as the classification process.

The learning phase of privacy-preserving classification uses unencrypted datasets,

whereas the inference phase uses encrypted datasets. It looks like a client-server

architecture as shown in Fig 1. In this scenario, the prediction model has already been

trained on cloud server, yet the cloud server would like to change it so that it can classify

inputs that have been encrypted. So, learning phase is straightforward and uses

unencrypted training and validation datasets to update weights and fine-tune model

architecture. But during the classification phase, the distinction can be seen, where the

model provides an encrypted prediction on encrypted testing dataset. The proposed

solution to the classification problem in a privacy preserved environment is based on

homomorphic encryption.

Figure 1. HE-based Privacy Preserving Classification

4

1.3 Research Objectives

The main objectives of thesis are discussed as follows:

• To ensure the privacy of user’s data while performing computation on the

data in out-sourced environments e.g., cloud server.

• Application of HE for higher depth multiplicative circuits like

Convolutional Neural Network (CNN).

• Assessing efficient approximation techniques for nonlinear computation

functions to make them compatible with HE.

• Verification of proposed solutions using the MNIST [6] dataset.

1.4 Thesis Contribution

In literature, the privacy-preserving classification problem has several solutions that are

based on HE [2][3][5][4]. While these solutions claim to be accurate and efficient, they

are mainly unexplored and understudied. In fact, finding even a straightforward case

study is challenging due to the inadequate documentation and missing source codes.

Also, most of these works only employ the HE for simple machine learning algorithms

like simple logistic regression etc. To employ the HE for deep learning algorithm, like

convolutional neural network (CNN), is a challenging task. This study focuses on a

more thorough investigation of combining HE with CNN.

This study combine the CNN with HE using an open source Microsoft cryptographic

library called SEAL[7], which is built on the BFV [8][9] and CKKS [10] schemes.

Although both encrypted training as well as encrypted classification are conceivable,

but the main purpose of this work is to examine the viability of encrypted classification

and the complexities of SEAL.

To address the limitations of HE functionality, the non-linear activation functions

(ReLU & Sigmoid) are approximated to low degree polynomial-approximations. The

CNN is trained using the real activation functions on plain data, but the classification

phase uses approximated activation functions on HE-encrypted data. Along with the

activation layers, the other parts of the network e.g., convolution, pooling, and fully-

connected layers are also developed. Initial experiments are carried out with a

straightforward three-layer network to ensure that these privacy-preserving layers were

correct. Following the success of the preliminary results, a bigger seven-layer network

https://sciwheel.com/work/citation?ids=13762323&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749558&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749567,13749560,13749561&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13749560&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13768004&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12170336,13763825&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7019327&pre=&suf=&sa=0&dbf=0

5

is built to conduct encrypted classification on handwritten digit dataset, named as

MNIST [6] dataset. The application is designed and tested to ensure accuracy,

performance, efficiency, and general applicability. The findings of the experiments

highlight the potential importance of HE in modern days cloud-based machine learning

information systems, particularly based on CNN. Finally, the HE-parameters are

adjusted to observe how parameter size impacts efficiency and accuracy in order to

investigate the behavior of privacy-preserving classification in the prospective of

cryptography/security.

1.5 Research Methodology

The research work starts from literature review of the existing proposed schemes being

used for privacy preserved machine learning using HE. The literature review is done

from various academic sources. This research then narrows down to privacy preserved

CNN classifications problems using HE while listing down the drawbacks of existing

schemes and formulates the problem. Then, it discusses the necessary changes needed

in CNN layer to make it compatible with HE schemes for encrypted classification

purposes in later part of the thesis.

The implementation is done using Python version of SEAL [11], called Pyfhel [12], in

VS Code in a Windows-based environment. Several modules are also integrated for the

complete implementation, which will be discussed in detail in relevant chapter. In the

end, a road map for future research areas in the privacy preserving classification will

be discussed. Fig 2 represents the major highlights of the research methodology.

Figure 2. Research Methodology

https://sciwheel.com/work/citation?ids=13762323&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7019355&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13887409&pre=&suf=&sa=0&dbf=0

6

1.6 Thesis Organization

The thesis is organized as follows:

a. Chapter 2 contains a brief mathematical background related to post-quantum

cryptography in the context of homomorphic encryption.

b. Chapter 3 contains a brief literature review of HE-based privacy preserving machine

learning solutions. Some well-known privacy preserving techniques are also

discussed in this chapter.

c. Chapter 4 elaborates the main homomorphic encryption scheme used in our

proposed model.

d. Chapter 5 introduces the proposed work. The practical feasibility of the proposed

model is also discussed in this chapter. Privacy of different components of proposed

CNN model is also discussed.

e. Chapter 6 covers the details of implementation of the proposed work in python-

based environment. MNIST dataset is used to provide a comparative study. The

results are generated in the form of graphs and are also presented in this chapter.

f. Chapter 7 marks the end of this document, concluding the results and some future

recommendations to cater for the issues faced during this thesis.

7

Chapter 2

Preliminary Studies

This chapter provides the necessary mathematical background along with some basics

of cryptography. It also includes the most critical definitions for comprehending the

FHE schemes and definitions. At the end some basics of machine learning algorithms,

especially the convolutional neural network, are also discussed.

2.1 Introduction

The term cryptology originates from the Greek terms kryptós and logos, which means

"hidden word." Generally, cryptology is a science that studies how to hide confidential

information. Cryptography and cryptanalysis are two complementing branches in

cryptology, with cryptography being the science of building secure ciphers and

cryptanalysis being the science of cracking ciphers. This thesis will concentrate on

cryptography, specifically encryption schemes along with their daily life applications.

The goal of cryptography is to hide confidential information from unauthorized parties,

by providing some among the properties like Confidentiality, Integrity, Non-

repudiation and Authentication. Cryptographic algorithms are based on the concept of

computational hardness, which makes them practically tough to break by an adversary.

The cryptosystems are techniques and protocols which meet all or some of the

characteristics listed above.

Encryption refers to the process of encrypting a message or piece of information so that

only authorized people may access it, ensuring confidentiality. Symmetric (Private-

key) and Asymmetric (Public-key) are two types of encryption schemes. Asymmetric

cryptosystems have separate encryption and decryption keys, whereas symmetric

cryptosystems use the same key for both. The fact that symmetric encryption is faster

than asymmetric encryption is one of its advantages. However, one disadvantage is that

the key must be exchanged securely. In order to understand the concept of HE, we only

focus on the public key cryptography in this chapter.

2.2 Public-Key Encryption

Public-key encryption (PKE) enables the users to transmit messages privately without

using a shared secret [13][14]. Cryptographic algorithms, which depends upon one-way

https://sciwheel.com/work/citation?ids=4532972,13751539&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0

8

functions (OWF) are used to generate public and private keys. In PKE, anyone having

public key can encrypt the message and create a ciphertext. However, only those who

have the access of associated private key can able to decrypt the ciphertext.

A PKE scheme mainly comprises the following three algorithms [14]:

Key Generation. 𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆) → (𝑝𝑘, 𝑠𝑘): It generates private (𝒑𝒌) and public (𝒔𝒌)

keys while taking security parameter 𝜆.

Encryption. 𝐸𝑛𝑐(𝑝𝑘,𝑚) → 𝑐: It encrypts message 𝑚 using 𝒑𝒌 and generates

ciphertext 𝑐.

Decryption. 𝐷𝑒𝑐(𝑠𝑘, 𝑐) → 𝑚: It decrypts ciphertext 𝑐 by utilizing the 𝒔𝒌 to recover

the message 𝑚 ∈ 𝑀.

Cryptographic algorithms are built on the assumption of computational hardness,

making them difficult to break in practice by any adversary with sufficient knowledge.

The security given by a particular encryption is determined by its average-case

hardness, rather than the effort required to crack it in the worst-case scenario. The

desired hardness is either a proof that minimal number of steps required to obtain the

solution is extremely large and thus impossible to break, or a reduction to an 𝑁𝑃-Hard

problem under assumption 𝑃 ≠ 𝑁𝑃. The hardness problems of most public key

encryption systems are depended upon integer-factorization and discrete-logarithm

problems.

2.3 Homomorphic Encryption

In traditional encryption, it requires to decrypt a message in order to perform

any kind of operations on it. In contrast, HE allows to conduct computations directly on

the ciphertext. While decrypting the ciphertext, the resulting plaintext will match the

result of performing the computation on the corresponding plaintext. A homomorphic

encryption scheme with encryption algorithm 𝐸 over an operation‘ ∗ ’ supports the

following equation:

𝐸(𝑚1) ∗ 𝐸(𝑚2) = 𝐸(𝑚1 ∗ 𝑚2); ∀ 𝑚1; 𝑚2 𝜖 𝑀

where M is the messages space [15].

In contrast to PKE, the HE schemes mainly contains the following four algorithms:

https://sciwheel.com/work/citation?ids=13751539&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11721802&pre=&suf=&sa=0&dbf=0

9

Key Generation. 𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆) → (𝑝𝑘, 𝑠𝑘): It generates private (𝒑𝒌) and public (𝒔𝒌)

keys while taking security parameter 𝜆.

Encryption. 𝐸𝑛𝑐(𝑝𝑘,𝑚) → 𝑐: It encrypts message 𝑚 using 𝒑𝒌 and generates

ciphertext 𝑐.

Decryption. 𝐷𝑒𝑐(𝑠𝑘, 𝑐) → µ: It decrypts ciphertext 𝑐 by utilizing the 𝒔𝒌 to recover the

message 𝑚 ∈ 𝑀.

Evaluation. 𝑬𝒗𝒂𝒍(𝐶, (𝑐1, . . . , 𝑐𝑙), 𝒑𝒌) → 𝒄
′: It takes public key 𝒑𝒌 and applies a

circuit 𝐶: 𝒞𝑙 → 𝒞 to 𝑐1, . . . , 𝑐𝑙, and outputs a ciphertext 𝑐′.

For the ciphertext to be successfully decrypted following an evaluation process, its

format must be maintained. Furthermore, the size of ciphertext increases after every

operation is applied on it. To perform infinite operations, there is a need to keep size of

ciphertext within specific limit. The bound of number of operations on ciphertext

classifies the HE schemes into three categories: PHE, SHE and FHE as shown in Fig 3.

The detail of these schemes is given in the following sections.

Figure 3. Homomorphic Encryption Types

2.3.1 Partially Homomorphic Encryption

There are many conventional cryptosystems that only allow to perform a single

operation on ciphertext. These are classified as PHE.

PHE: It is either an additive homomorphic scheme that allows only additive operations

on encrypted data or a multiplicative homomorphic scheme that allows only

multiplicative operations on encrypted data.

10

Partially homomorphic cryptosystems include RSA [13], ElGamal [16], , Benaloh [17],

Paillier [18], Goldwasser-Micali [19] and Damgård-Jurik [20] and we will now show

the homomorphic properties for unpadded RSA and Paillier.

RSA: The RSA [13][14] scheme contains three algorithms as (KeyGen, Enc,

Dec), define as follows:

• 𝑲𝒆𝒚𝑮𝒆𝒏(𝜆) → (𝒑𝒌, 𝒔𝒌):

1. Generate two distinct primes 𝑝 and 𝑞, compute 𝑁 = 𝑝𝑞 and 𝜑(𝑁).

2. Take an integer 𝑒
𝑅
→ ℤ𝜑(𝑁) such that 𝐺𝐶𝐷(𝑒, 𝜑(𝑁)) = 1, then compute its

(modular) inverse 𝑑 = 𝑒 − 1 𝑚𝑜𝑑 𝜑(𝑁).

3. Set: 𝒑𝒌 = (𝑁, 𝑒) and 𝒔𝒌 = (𝑁, 𝑑)

• 𝑬𝒏𝒄(𝒑𝒌,𝒎) → 𝒄 ∶ Compute 𝒄 = 𝒎𝒆 𝑚𝑜𝑑 𝑵.

• 𝑫𝒆𝒄(𝒔𝒌,𝒎) → 𝒎 ∶ Compute 𝒎 = 𝒎𝒅 𝑚𝑜𝑑 𝑵.

RSA provides the homomorphic property w.r.t multiplicative, which means that one

can multiply two ciphertext to receive multiplication of the underlying plaintexts. Let’s

utilize the same key for encrypting two messages, 𝑚1 and 𝑚2:

𝑬𝒏𝒄(𝑚1) = 𝑚1
𝑒
 𝑚𝑜𝑑 𝑁

𝑬𝒏𝒄(𝑚2) = 𝑚2
𝑒
 𝑚𝑜𝑑 𝑁

The homomorphism is then defined as follows:

𝑬𝒏𝒄(𝑚1) · 𝑬𝒏𝒄(𝑚2) = 𝑚1
𝑒𝑚2

𝑒
 𝑚𝑜𝑑 𝑁 = (𝑚1𝑚2)

𝑒𝑚𝑜𝑑 𝑁 = 𝑬𝒏𝒄(𝑚1 · 𝑚2)

Paillier: The Paillier [18] scheme also comprises three algorithms (KeyGen,

Enc, Dec), define as follows:

• 𝑲𝒆𝒚𝑮𝒆𝒏(𝜆) → (𝒑𝒌, 𝒔𝒌):

1. Generate two distinct primes 𝑝 and 𝑞, such that 𝐺𝐶𝐷(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) =

1. Compute 𝑛 = 𝑝𝑞 and 𝜆 = 𝑙𝑐𝑚(𝑝 − 1, 𝑞 − 1).

2. Take an integer 𝑔, 𝑢 𝜖 ℤ𝑛2
∗ such that 𝐺𝐶𝐷(𝑛, 𝐿(𝑔𝜆(𝑚𝑜𝑑 𝑛2))) = 1, and

𝐿(𝑢) = (𝑢 − 1)/𝑛.

3. Set: 𝒑𝒌 = (𝑛, 𝑔) and 𝒔𝒌 = (𝑝, 𝑞)

https://sciwheel.com/work/citation?ids=4532972&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1198388&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751540&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9163809&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7019353&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751541&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4532972&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751539&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9163809&pre=&suf=&sa=0&dbf=0

11

• 𝑬𝒏𝒄(𝒑𝒌,𝒎) → 𝒄 ∶ Generate a random value 𝑟 𝜖 ℤ𝑛2
∗

and compute 𝑐 = 𝑔𝑚𝑟𝑛 𝑚𝑜𝑑 𝑛2.

• 𝑫𝒆𝒄(𝒔𝒌,𝒎) → 𝒎 ∶ Compute 𝑚 = (
𝐿(𝑐𝜆 𝑚𝑜𝑑 𝑛2)

𝐿(𝑔𝑚 𝑚𝑜𝑑 𝑛2)
) 𝑚𝑜𝑑 𝑛2

Paillier has additive homomorphic property. Let us use the same key to encrypt two

messages, 𝑚1 and 𝑚2:

𝑬𝒏𝒄(𝑚1) = (𝑔
𝑚1𝑟1

𝑛 𝑚𝑜𝑑 𝑛2)

𝑬𝒏𝒄(𝑚2) = (𝑔
𝑚2𝑟2

𝑛 𝑚𝑜𝑑 𝑛2)

The homomorphism is then defined as follows:

𝑬𝒏𝒄(𝑚1) · 𝑬𝒏𝒄(𝑚2) = (𝑔
𝑚1𝑟1

𝑛 𝑚𝑜𝑑 𝑛2)(𝑔𝑚2𝑟2
𝑛 𝑚𝑜𝑑 𝑛2)

= 𝑔𝑚1+𝑚2(𝑟1𝑟2)
𝑛 𝑚𝑜𝑑 𝑛2 = 𝑬𝒏𝒄(𝑚1 + 𝑚2)

2.3.2 Somewhat Homomorphic Encryption

Depending upon the number of operations it can perform, HE schemes can be

categorized as somewhat homomorphic scheme.

SHE. It can allow to perform both the operations of multiplicative and additive, but

allows limited number of repetitions. This restriction is defined by the scheme's ability

to correctly decrypt ciphertext associated with homomorphic operations.

All HE schemes that had been presented up to 2005 could only perform one operation

either addition or multiplication. Boneh-Goh-Nissim (BGN) [21] is the first SHE

schemes which allows only one multiplication operation but infinite number of

additions, while keeping the size of ciphertext constant. Another example of SHE

schemes is BFV [9] scheme. In general, the ciphertext of such homomorphic encryption

scheme has a noise parameter, and the noise must be less than a certain limit in order

to be decrypted correctly. This scheme can perform additive and multiplicative

homomorphism on encrypted data, but after each operation the noise level increases in

the generated homomorphic ciphertext. So, it can only perform a limited number of

operations in order to keep the noise parameter as small as possible.

https://sciwheel.com/work/citation?ids=13751542&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13763825&pre=&suf=&sa=0&dbf=0

12

2.3.3 Fully Homomorphic Encryption Schemes

In 2009, the first FHE scheme was introduced by Craig Gentry in his doctoral thesis

[19]. Based on his work, other researchers also tried to develop their own practical FHE

schemes.

FHE. It can allow to execute infinite number of operations, both multiplication as well

as addition, on encrypted data [22].

Although Gentry's FHE scheme looked promising, but its high computational cost made

it impractical. In order to make his scheme practical for real-world applications, several

improvements had been made. Though efforts to develop new FHE techniques

continued, the majority of them were centered on lattices problems. Depending upon the

hardness problems, FHE schemes can be divided into four types as follows:

1. Ideal lattice-based: Firstly, Gentry [23] proposed Ideal lattice-based FHE

scheme, then other researchers improve his work, Smart and Vercauteren [24].

2. NTRU-based: NTRUEncrypt is an encryption scheme which has homomorphic

properties [25].

3. RLWE-based: Vaikuntanathan and Brakerski [26] proposed a FHE schem

based upon RLWE problem.

4. Integers-based: An approximate-GCD problem based FHE scheme proposed

by Van Dijket al [27].

2.4 Post-Quantum Cryptography

The security of various encryption systems is currently jeopardized due to the threat of

quantum computing. Shor created a quantum algorithm in 1994 that can solve the

integer factorization as well as discrete logarithm problems [28]. This means that with

the presence of quantum-based computers, all cryptographic schemes based on these

assumptions will not achieve the same level of security. ElGamal and RSA are two of

the schemes affected. Because these are used to protect many types of sensitive data,

breaking them could have serious consequences for privacy and security. As a

consequence, cryptographers must develop new protocols based on completely novel

concepts and assumptions. The following are some possible research directions that are

thought to be quantum secure:

https://sciwheel.com/work/citation?ids=13751544&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2843384&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751545&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5190187&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751546&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2843386&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13112267&pre=&suf=&sa=0&dbf=0

13

• Code-based Cryptography

• Multivariate-based Cryptography

• Lattice-based Cryptography

• Hash-based Cryptography

Table 1 lists some classical cryptosystems as well as their current security status w.r.t

quantum computers. In this chapter, we look at lattice-based cryptography, which is

thought to be resistant to quantum computers, meaning no one has yet discovered a way

to break it. Also, most of the practical FHE schemes also have their hardness based on

lattices.

Table 1. Security of Classical Cryptosystem in Quantum Era

Cryptosystem Broken by Quantum Algorithms?

RSA [13] Not Secure

Diffie-Hellman [29] Not Secure

Elliptic curve [30], [31] Not Secure

McEliece [32] Secure

NTRU [33] Secure

Lattice-based [34] Secure

2.4.1 Lattice-based Cryptography

Lattice-based encryption looks to be the most favorable options for post-quantum-based

cryptography. The lattice-based cryptographic long-term security may be guaranteed

for two main reasons. First, it has been established that many lattice-theory problems

are NP-Hard [35]. Second, the worst to average case reductions are applicable to these

lattice problems [34]. This means that picking any random instance of the problem will

be as hard as solving the worst case.

2.4.2 Lattices

A lattice is a collection of points in n-dimensional space that has a periodic structure

[36]. Let 𝑩 = {𝒃𝟏, … , 𝒃𝒏} be a set of n-linearly independent vectors in ℝ𝑚hen set of all

https://sciwheel.com/work/citation?ids=4532972&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764432&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764433,13764434&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13764435&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764436&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751548&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751547&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751548&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751549&pre=&suf=&sa=0&dbf=0

14

integer linear combinations of the vectors in 𝑩 will be the lattice which is generated by

𝑩: ℒ(𝑩) = {∑ 𝑥𝑖𝑏𝑖
𝑛
𝑖=1 |𝑥𝑖 ∈ ℤ} [36][37][38]. This provides the definition [38]:

ℒ(𝐵) = {𝑥⃗ × 𝑩 ∶ 𝑥⃗ ∈ ℤ𝑛}

For n-linearly independent vector having dimension 𝑛 = 𝑚 is defined as full rank

lattice. Hence, the following definition [38]:

𝑩 = {𝒃𝟏, . . . , 𝒃𝒏}, 𝒃𝒊 ∈ ℝ
𝑛

An example of a lattice in ℝ2is shown in Fig 4.

Figure 4. A lattice in ℝ2

Ideal lattice, which have additional structure than ordinary lattices, particularly the

structure of an ideal, was the foundation of Gentry's method [19]. Lattices have a group

structure, but ideal lattices, as the name implies, have an ideal structure. Some problems

in lattice-based cryptography are easily solved by using bases of a specific structure.

We define a bad basis as one in which solving a specific lattice problem is often no

simpler than on a random basis. Good bases are ones in which a certain problem may

be solved easily. The public key is a "bad" basis whereas the secret key is a "good"

basis for lattice-based FHE algorithms [39]. A good bass is often composed of vectors

that are short and nearly orthogonal [39].

2.4.3 Lattice Problems

This section discusses several typical hard problems that serve as the basis for a variety

of lattice-based cryptographic schemes. The problems involve finding the shortest and

closest vectors in a lattice.

https://sciwheel.com/work/citation?ids=13751549&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751551&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751551&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751551&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751553&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751553&pre=&suf=&sa=0&dbf=0

15

2.4.3.1 SVP & CVP

The Shortest Vector Problem (SVP) has been extensively studied, and it appears to be

intractable in general, even with quantum algorithms. The SVP seeks a nonzero vector,

often known as a short or shortest vector, whose Euclidean norm is the smallest among

all other nonzero lattice vectors. This is considered simple in a two-dimensional lattice,

but it becomes difficult to solve in multiple dimensions.

Definition 1 (SVP). Given an arbitrary basis 𝑩 for an 𝑛-dimensional lattice ℒ =

ℒ(𝑩), compute a non-zero vector 𝒗 ∈ ℒ, such that ‖𝒗‖ = 𝝀1. [40][37][41]

Figure 5. Shortest Vector Problem

CVP is the generalized form of SVP. Previous research work [39] [52] has concluded

that CVP is as much hard as SVP. CVP asks for a vector which is not too far from a

specific target point, and it doesn’t necessarily have to be the closest one.

Definition 2 (CVP). Provided any arbitrary lattice basis B for an 𝑛-dimensional lattice

for some target point 𝒕 ∈ ℝ𝑛, compute 𝒗 ∈ ℒ such that ‖𝒕 − 𝒗‖ is minimal.[40][42]

Figure 6. Closest Vector Problem

There are two major distinctions between SVP and CVP. First, the SVP requires a

lattice point near zero, whereas CVP asks a lattice point near an arbitrary point in space.

https://sciwheel.com/work/citation?ids=13751554&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764789&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751554&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751555&pre=&suf=&sa=0&dbf=0

16

Second, in CVP the solution can be an all zero vector, whereas in SVP it cannot. As a

result, it is impossible to use CVP to solve SVP by obtaining the shortest vector that is

close to the origin because doing so would result in the zero vector. The SVP and CVP

problem are shown in above Fig 5 and 6, respectively.

2.4.3.2 Approximate SVP & CVP

Due to the hardness of solving SVP and CVP, cryptographers have considered

approximation versions of these problems, which are particularly suitable to

cryptography. Approximation algorithms only yield answers that are confirmed within

a certain factor 𝛾 of the optimum.

In approximate-SVP (𝑆𝑉𝑃𝛾), the task is to identify a non-zero vector located at a

distance of no more than 𝛾𝜆1(ℒ), for γ= 𝛾(𝑛) ≥ 1.

Definition 3 (𝑆𝑉𝑃𝛾). Fix γ > 1. Given any arbitrary basis 𝑩 for n-dimensional lattice

ℒ, compute a non-zero vector 𝒗 𝜖 ℒ such that ‖𝒗‖ = 𝛾 𝝀1. [37][40]

In an approximation-CVP (𝐶𝑉𝑃𝛾), this involves to find a lattice vector at most distance

of 𝛾, for γ= 𝛾(𝑛) ≥ 1.

Definition 4 (𝐶𝑉𝑃𝛾). Fix γ > 1. Given any arbitrary basis 𝑩 for an n-dimensional

lattice ℒ and some target point 𝑡 𝜖 ℝ𝑛, compute 𝒗 𝜖 ℒ such that ‖𝒕 − 𝒗‖ ≤

𝛾 ‖𝒕 − 𝒙𝑩‖. [40]

The following problems are the decision variant of approximating the shortest vector

and closest vector in a given lattice within a factor γ.

Definition 5 (Gap Shortest Vector Problem (Gap 𝑆𝑉𝑃𝛾)). Given B and r, decide

whether 𝜆(𝐵) ≤ 𝑟 or if 𝜆(𝐵) ≥ 𝛾. 𝑟 (Instances where 𝑟 < 𝜆(𝐵) < 𝛾. 𝑟 are not

considered.) [37]

Definition 6 (Gap Closest Vector Problem (Ga 𝑆𝑉𝑃𝛾)). Given 𝑩, 𝑥 𝜖 ℝ𝑛 and 𝑟, decide

whether dist(𝑥, 𝐿) ≤ 𝑟, or if 𝑑𝑖𝑠𝑡(𝑥, 𝐿) ≥ 𝛾. 𝑟 . (Instances between r and 𝛾. 𝑟 are not

considered.) [37]

Variants of this approximation problem are commonly used to demonstrate the security

of cryptosystems [43].

https://sciwheel.com/work/citation?ids=13751554,13751552&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13751554&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751556&pre=&suf=&sa=0&dbf=0

17

2.4.4 Learning With Error

Regev [44] introduced the Learning With Errors (LWE) problem in 2005, which is a

generalization of the Learning Parity with Noise (LPN) problem. The LPN problem is

the same as decoding random linear codes. It is a well-studied problem which is believe

to be hard [44]. Regev demonstrated that his public-key cryptosystem based on LWE

hardness was significantly more efficient than other suggested public-key

cryptosystems based on unique-SVP, a subset of SVP. He further proves LWE's

hardness via a quantum reduction from the worst-case lattice problem SVP, where a

quantum reduction is a reduction that employs quantum computing. As a result, it has

become an essential building block in modern cryptographic systems, as well as a

prominent topic in current research. The problem with LWE is that it is inherently

inefficient owing to a quadratic overhead. In LWE, the size of public key is

𝑂(𝑚𝑛𝑙𝑜𝑔 𝑞) = Õ(𝑛2). Additionally, it increases the message size by a factor of

𝑂(𝑛 𝑙𝑜𝑔 𝑞) = Õ(𝑛) by each encryption [44].

Definition 7 (Decisional Learning With Errors (DLWE)). Let 𝑛 and 𝑞 be positive

integers, and 𝜒 an error distribution over ℤ. Let 𝒔 be a uniformly random vector in ℤ𝑞
𝑛.

The DLWE is to distinguish 𝐴𝑠,𝜒 from the uniform distribution 𝑈 from 𝑚 independent

samples (𝒂𝒊, 𝑏𝑖) 𝜖 ℤ𝑞
𝑛 × ℤ𝑞 where every sample is distributed according to either:

𝐴𝑠,𝜒 or the uniform distribution. [44][37]

Definition 8 (Search Learning With Errors). Let 𝑛 and 𝑞 be positive integers, and 𝜒

an error distribution over ℤ. Let 𝒔 be a uniformly random vector in ℤ𝑞
𝑛. The search

LWE is to find 𝑠 from 𝑚 independent samples(𝒂𝒊, 𝑏𝑖) 𝜖 ℤ𝑞
𝑛 × ℤ𝑞 drawn from 𝐴𝑠,𝜒.

[44][37]

2.4.5 Ring Learning With Error

To address LWE's inefficiency, Regev, Peikert, and Lyubashevsky devised Ring

Learning With Errors (RLWE) problem [45]. In most cases, n noisy LWE equations

may be replaced by a single noisy RLWE equation, which obviously increases

efficiency. RLWE, defined as LWE over ideal lattice, is an algebraic variant of LWE.

These are more structured than random lattices. It can be interpreted mathematically as

replacing the group ℤ𝑞
𝑛 with the ring ℤ𝑞[𝑥]/(𝑥

𝑛 + 1). [44][45]

https://sciwheel.com/work/citation?ids=13751557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751558&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751557&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751558&pre=&suf=&sa=0&dbf=0

18

Definition 9 (RLWE). Consider the ring ℝ = ℤ𝑞[𝑥]/(𝑥
𝑛 + 1) with 𝑛 as power of

𝟐 and an error distribution 𝜒 over 𝑅. Let 𝒔 be uniformly random sampled from ℝ𝑞.

The decision RLWE is to distinguish 𝐴𝑠,𝜒 from the uniform distribution ℝ from 𝑚

independent samples (𝒂𝒊, 𝑏𝑖) ∈ ℝ𝑞 × ℝ𝑞 where every sample is distributed

according to either: 𝐴𝑠,𝜒 or the uniform distribution. [45][37]

2.5 Neural Network

A network of neurons organized in the layers is referred to as a neural network (NN).

Every neuron receives an input, process it through a function, and then outputs the

outcome of function. The layer that the neuron belongs to, determines the structure of

this function. Input, hidden, and output layers are the three layers that make up a simple

neural network [46]. The structures of the neurons in each layer vary. Input layer

neurons only receive input; their outputs are identical to the input values. In hidden

layer the neuron has an input vector (𝑥0, . . . , 𝑥𝑛), a weight vector (𝑤0, . . . , 𝑤𝑛), and an

output 𝑦. This formula is used to compute the output.

𝑦 = 𝑓(∑𝑥𝑖 ∗ 𝑤𝑖

𝑛

𝑖=0

)

In the above equation, 𝑓 is an activation function. Several functions might be utilized as

activation functions such as step, hyperbolic, ReLU and sigmoid functions. The output

layer is the last. This layer's neurons are sometimes simple (like those in the input layer)

and sometimes complicated (like in hidden layers). Each layer contains bias neuron that

is linked to all the neurons in subsequent layer. This work only focuses on the fully

connected feed-forward neural network. In such kind of networks all neurons of each

layer are linked to all neuron present in subsequent layer. A simple neural network is

shown in the Fig 7 below.

https://sciwheel.com/work/citation?ids=13751558&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13751552&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13942934&pre=&suf=&sa=0&dbf=0

19

Figure 7. A Neural Network

Convolutional Neural Network (CNN), a generalized form of neural networks, is

discussed in the following section.

2.6 Convolutional Neural Networks (CNNs / Conv-Nets)

In machine learning CNNs [47] are certain kind of feed-forward type neural network

which are very useful in different areas specially in image recognition and image

classifications. CNNs are built up of cascading layers that accept image data as input

and transform it into label scores as output. Layers include in CNNs are as following:

• Convolutional Layer

• Activation Layer

• Pooling Layer

• Fully-Connected Layer

2.6.1 Convolutional Layer

The convolutional layer contains a sliding filter that is applied to the input image. When

a filter is applied in an image it extracts certain feature from it. Therefore, many filters

may be applied to the same layer to extract various features of an image. The three-

dimensional sliding filter is made up of number of weights that are learnt throughout

the training. Each filter is a 𝑛 × 𝑛 square (e.g., 𝑛 = 3 𝑜𝑟 5) with a stride. The stride

is a set of two integers, e.g., stride of (2, 2) means that at each step a filter is moving

two units to the left or down. This layer calculates dot-product between filter weights

and associated values in pixel's neighbor by convolving the pixels in the image. This

https://sciwheel.com/work/citation?ids=13943000&pre=&suf=&sa=0&dbf=0

20

step just requires two operations, one is addition and second is multiplication, so one

can apply the same procedure in the encrypted domain easily. Fig 8 illustrates the

convolution process [48].

Figure 8. Convolutional Layer

2.6.2 Activation Layer

In CNN there is another layer which contains a non-linear function, is known as

activation layer. This layer usually comes after each convolutional layer. Each neuron

in the preceding layer is activated using a nonlinear activation function. This layer adds

a non-linear component to CNN, allowing them to solve more complicated

classification problems. Some of the activation functions used in practice are shown in

Fig 9.

Figure 9. Activation Functions

The following equations represent the sigmoid and ReLU functions.

𝜎(𝑧) =
1

1 + 𝑒−𝑧

https://sciwheel.com/work/citation?ids=13942884&pre=&suf=&sa=0&dbf=0

21

𝑅𝑒𝐿𝑈(𝑧) = {
𝑧 , 𝑧 > 0
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Since it is obvious that these equations involve nonlinear functions, we must change

them in order to make them compatible with HE schemes.

2.6.3 Pooling Layer

Pooling-layer is used to decrease the size of the data by sub-sampling it. This is also a

non-linear layer. This layer usually comes after the activation layer. The two most

common non-linear pooling layers i.e., Average and Max pooling layers, are shown in

Fig 10 [49]. The maximum value inside the subsection is output of Max pooling layer,

and average of all values inside the subsection is the output of the Average pooling

layer.

Figure 10. Pooling Layers

2.6.4 Fully Connected Layer

It is usually the last layer of CNN. All neurons in this layer are linked to all other neuron

of previous layer, as seen in Fig 11 [50]. The total sum of weights in this layer is the

product of total number of neurons in the preceding and current layers. This layer's

output is how many classes are included in the dataset.

https://sciwheel.com/work/citation?ids=13943035&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13943056&pre=&suf=&sa=0&dbf=0

22

Figure 11. Fully Connected Layer

23

Chapter 3

Literature Review

In this chapter, first we introduce some well-known techniques that are currently used

to perform machine learning in privacy-preserving environment. The next step is to

undertake a thorough literature review of earlier studies in the perspective of privacy-

preserving machine learning. We largely concentrated on homomorphic encryption-

based solutions from the techniques mentioned above.

3.1 Privacy Preservation Techniques

Prime objective of this research work is centered around performing the privacy

preserved classification using convolutional neural network (CNN). So, the method

chosen for this purpose must not only allow for secure computing but also give a high

level of security. Secure Remote Computation (SRC), Homomorphic Encryption (HE),

and Multi-Party Computation (MPC) are three common privacy preservation strategies

that were investigated in order to secure CNN.

3.1.1 Secure Hardware (Intel SGX)

The Secure Remote Computation (SRC) problem refers to the ability of an individual

to run software on some remote computer while maintaining a level of security [51].

According to this problem, remote computer must be hosted by an untrustworthy party,

emphasizing the need of data confidentiality along with data integrity.

The SRC problem is solved by Intel SGX, with the goal of securing user-level programs

through the use protected memory sections (enclaves). An individual uploads his data

into a protected enclaves and performs the private calculations using a particular set of

CPU instructions. In contrast to other secure hardware systems, Intel SGX solely makes

use of attestation to validate contents in the protected enclave. Initially, Intel SGX

considered as the appropriate solution of SRC problem, however subsequent

investigations have revealed certain flaws in it. In fact, studies shows that the Intel SGX

has different vulnerabilities, particularly it is vulnerable to cache timing-attacks [52].

Furthermore, sources indicate that the security assurances of Intel SGX are not apply

to cloud settings [51][52]. Because the goal of this study is to improve cloud security,

secure hardware has been ruled out [51].

https://sciwheel.com/work/citation?ids=13764984&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5680536&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764984&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5680536&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764984&pre=&suf=&sa=0&dbf=0

24

3.1.2 Secure Multi-Party Computation

Secure Multi-Party Computation (SMPC) is an approach which allows for distributed

computation of functions. The primary objective of MPC is to offer a system which

allows different parties to collaborate on specific computations while respecting the

privacy of their input data [53]. Each participant in MPC provides their own input data,

which is converted into smaller chunks and sent to other servers each masked with a

random value. This is how MPC allows for cooperative computing while preserving

the privacy of each person's personal data [54]. Although, MPC has a little

computational overhead benefit, but it demands several rounds of communication

between the individuals participating in the protocol.

3.1.3 Homomorphic Encryption

HE is a distinct type of encryption scheme that allows to performs direct calculation on

ciphertext. Similar to many other PKE cryptosystems, to encrypt some data, HE

cryptosystem also uses public-key while the decryption is done using private-key.

However, after the data has been encrypted using the public key, HE also permits

normal arithmetic operations (additions and multiplications) to be applied to the

encrypted data. For instance, if you add two encrypted values together using

homomorphic addition, the outcome will be the plaintext values added in an encrypted

manner, as illustrated in Fig 12. It means, operations performed in the ciphertext space

thus resemble operations performed in the plaintext space.

Figure 12. Homomorphic Addition

https://sciwheel.com/work/citation?ids=13764985&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12012409&pre=&suf=&sa=0&dbf=0

25

3.2 Related work

Graepel et al. [55] trained two machine learning classifiers using a Somewhat HE

schemes. These algorithms included Linear Mean and Fisher's Linear Discriminate. In

order to circumvent HE algorithms limitations, they introduced division-free

algorithms. They did not take into account more complex algorithms, instead

concentrated on straightforward classifiers like the linear means classifier.

Additionally, they took into account a weak security model and the client can learn the

model.

Bost et al. [56] proposed privacy-preserving classification model for three distinct

machine learning algorithms named as Naive Bayes, Hyper-plane Decision and

Decision trees. The author combined garbled circuits with three homomorphic

encryption schemes named as Piallier, BGV and Quadratic Residuosity schemes. They

use SMC as the basis of their approach, which is effective only for small data sets and

only takes into account conventional machine learning techniques.

Xie et al. [57] examined theoretical elements of constructing neural networks in the

encrypted domain using polynomial approximation. Dowlin et al. [3] extended this

work by presenting CryptoNets. It was a first detailed studied CNN classifier for

encrypted data. The author employed Microsoft SEAL, a levelled homomorphic

encryption technique that supported SIMD. The author used scaled mean-pooling layer

to solve the division operation limitation, being inaccessible to encrypted values. The

sigmoid function was replaced with 𝑓(𝑧):= 𝑧2 as the activation function in HE

schemes, since they did not support the exponential function. They trained the given

model using unencrypted data, then utilized it to classify encrypted data. On the MNIST

dataset, they got an overall accuracy of 98.95%. This CryptoNets was able to process

48068 cases per hour. The accuracy of CryptoNets was improved in a study by

Chabanne et al.[4] by combining the solution's original concepts with batch-

normalization approach. They employed ReLU as the activation function in their

scheme. They utilized a mix of Taylor series along with batch-normalization for ReLU

activation function approximation.

Jiang et al [58] proposed a privacy preserving deep learning model named as E2DM

(Encrypted Data and Encrypted Model). A matrix was homomorphically encrypted by

https://sciwheel.com/work/citation?ids=4120281&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764986&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764987&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749567&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749560&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960924&pre=&suf=&sa=0&dbf=0

26

E2DM before being subjected to arithmetic operations. The primary contribution of this

model was the reduction in the complexity required for computing. They used CNN

with a square activation function, two fully connected and one convolutional layers.

To train a simple neural network in privacy preserved environment Phong et al. [59]

suggested a technique based on additive homomorphic encryption. The author pointed

out a weakness in Shokri et al. [60] work, that leaked client data during training process.

The main concept was to allow a server to upgrade the model (learning) by aggregating

user gradient values.

Hesamifard et al. [5] proposed a work named as CryptoDL, which included a modified

version of CNN that operated on encrypted data. The author modified the activation

function using low degree polynomials. This study demonstrated the importance of

polynomial approximation of activation functions present in neural networks, so that

HE operations could be performed on them. They attempted to approximate the ReLU,

sigmoid, and tanh types of activation functions. The CNN with polynomial

approximation was employed during the training phase. The model created during the

training step was then applied to classify encrypted data. This model did not support

privacy-preserving deep neural network training on encrypted data.

Liu et al. [61] proposed a privacy preserving technique for CNN training as well as

classification purposes. Each activation layer was preceded by batch-normalization

layer, and the activation layer was approximated by using a Taylor series and Gaussian

distribution. Additionally, they substituted a convolutional layer with a longer stride for

the non-linear pooling layer. So, they modified the CNN with these changings to make

it compatible with HE.

Juvekar et al. [62] proposed a framework named as Gazelle, which combined HE with

MPC, for privacy preserving classification purpose. The goal of this study was to retain

the model privacy in the server and to make it simpler for client to perform a

classification without exposing his input data to server. Gazelle effectively blended

secret-sharing with HE for privacy preserving classification since it could switch

between HE and GC protocols. The bias, weight, and stride size of the convolutional

layer were concealed to protect the neural network model privacy. The experiment

https://sciwheel.com/work/citation?ids=13960925&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10157238&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749561&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960926&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960928&pre=&suf=&sa=0&dbf=0

27

demonstrates that, in terms of runtime, Gazelle completely surpasses other well-liked

methods like MiniONN [63] and Cryptonets [3].

Sanyal et al. [64] proposed a framework, TAPAS, which used encrypted data to speed

up parallel processing in privacy preserved enjoinment. They tried to overcome the

lengthy process of classification in context of HE. The key contribution was to develop

a novel approach to accelerate binary computing in Binary Neural Network (BNN). All

data are initially converted into binary by the algorithm. After that, it performs an

XNOR operation between encrypted and unencrypted data to compute the inner

product. They then count how many 1’s there are in the preceding step's outcome. They

next determine if the difference between the bias and the number of bits was greater

than twice the amount that was counted. If the answer was yes, they gave the activation

function a value of 1, and if the answer was no, they gave it a value of -1. They also

decreased the evaluation step time by evaluating the gates in parallel processing at the

same level. Another work of Bourse et al. [67] proposed a technique named as FHE

DiNN (Fast HE Discretized Neural Network) for privacy preserving machine learning.

They intended to overcome the complexity problem when using a standard HE

approach with a neural network. The complexity of the network increases with network

depth, which increases the cost of computation. They employed the bootstrapping

approach to bring the network complexity to liner from with respect to depth of neural

network. Their neural network contained the discretized value of weights and biases as

compared to standard neural network. They employed sign function as the activation

function in their network. To update the output of the neuron, they employed the

bootstrapping for computing the activation function. They successfully demonstrated

that by increasing network size, BNN might achieve accuracy that was comparable to

that of normal neural network.

https://sciwheel.com/work/citation?ids=13961044&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749567&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960929&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960930&pre=&suf=&sa=0&dbf=0

28

Table 2: Comparative Analysis of exiting privacy preserving

Study HE Scheme ML

Technique

Dataset Run

Time (s)

Accuracy

(%)

PoC/PoM

Considerations

Comments

Graepel et

al.

[55]

BFV Linear Mean

& Fisher's

Linear

Discriminate

Breast

Cancer

255.7 95.00 PoC It only

supports

simple ML

algorithm.

Bost et al.

[56]

Piallier,

BGV

Quadratic

Residuosity

Hyperplane

Decision,

Naïve Bayes

& Decision

Trees

Breast

Cancer

&

ECG

14.77

PoC It only

supports

simple ML

algorithm.

Dowlin et

al.

[3]

YASHE CNN MNIST 697 98.95 PoC They use

Taylor series

for function

approximation.

Chabanne

et al.

[4]

BGV CNN MNIST

99.30

PoC Their crypto

parameters are

not clear.

Jiang et al.

[58]

CKKS CNN MNIST 28.59 98.10 Both It only caters

simple NN,

missing

pooling layer.

Phong et

al.

[59]

Additive-HE

Piallier,

LWE-based

CNN MNIST

&

Speech

120 97.00 Both It only handle

simple 3-layer

NN.

Hesamifard

et al.

[5]

BGV CNN MNIST

320 99.52

PoC It can classify

many instances

for each

prediction

round.

Liu et al.

[61]

BGV CNN MNIST 477.6 98.97

PoC Their CNN not

include

pooling layer.

Juvekar et

al.

[62]

HE + MPC CNN

MNIST

&

CIFAR-

10

Both It combines

CNN with HE

and MPC.

Sanyal et

al.

[64]

TFHE BNN

Cancer

& MNIST

147 98.60

Both It works only

for simple

binary NN

such as BNN.

Bourse et

al.

[67]

TFHE DiNN MNIST 1.64 96.35

Both DiNN is

another form

of BNN.

Brutzkus et

al.

[68]

CKKS CNN MNIST &

CIFAR-

10

98.95 PoC Their crypto

parameters are

not clear.

Lee et al.

[69]

RNS-CKKS CNN
ResNet-20

CIFAR-

10

14694 98.43 PoC They employ

bootstrapping

after Conv.

and ReLU.

https://sciwheel.com/work/citation?ids=4120281&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13764986&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749567&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749560&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960924&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960925&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13749561&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960926&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960928&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960929&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960930&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960931&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13960932&pre=&suf=&sa=0&dbf=0

29

Chapter 4

Homomorphic Encryption Scheme

4.1 Introduction

Homomorphic encryptions can perform computations on ciphertext directly. However,

due to the properties of the various HE variants, not all are suitable for all tasks. SHE

is a variant of HE in which one can perform many encrypted operations sequentially,

but the total number of encrypted operations is limited by the scheme's initialization

parameters.

As mentioned above, we have made use of the SEAL implementation, a popular

homomorphic library for usage in higher-level applications. The library is developed in

C++ and has a wrapper for languages like C#. Its source code is available on GitHub

under the open-source MIT license. One of the main schemes that is implemented in

SEAL is the Fan-Vercauteren (FV) scheme [9], is discussed in [53] along with some

improvements. FV is a SHE schemes and its security relies on the RLWE problem, a

quantum-secure problem with high security. SEAL also includes the CKKS scheme

[10] in addition to the FV scheme.

4.2 Description of the FV Scheme

The FV technique is the homomorphic encryption scheme employed by the Microsoft

SEAL library, and it is based on the algebraic ring structure. Basically, algebraic rings

are mathematical sets of elements inside a modulus that enable the binary operations

addition and multiplication. To make the FV scheme work, our initial plaintext

numbers, the ones we wish to decrypt, must be obtained in the ring structure ℝ𝑡. The

ring ℝ𝑡 is define as 𝑅𝑡 = ℤ𝑡[𝑥]/𝑥
𝑛 + 1 , which includes only those integer number

from ℤ for which there exists a polynomial having degree less than 𝑛 with coefficients

reduced modulo 𝑡. Here, the scheme is initialized by defining the important

initialization parameters of plaintext modulus 𝑡, ciphertext modulus 𝑞, and degree of

polynomial modulus 𝑛. The ring structure permits polynomials with coefficients

modulo 𝑡 and a degree less than 𝑛. The 𝑡 and 𝑥𝑛 + 1 are referred to as the plaintext

and polynomial moduli, respectively. The encryption process begins with the

specification of both of these moduli as encryption parameters.

https://sciwheel.com/work/citation?ids=13763825&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7019327&pre=&suf=&sa=0&dbf=0

30

Since each of our original numbers must be a member of the ring structure ℝ𝑡 in order

to be encrypt able under this scheme so, we first encode each one to make it a member

of the ring structure. Any number, whether it be an integer or a rational number, must

be encoded into a plaintext polynomial in ℝ𝑡 before it can be encrypted under the

scheme, according to the ring ℝ𝑡. After the appropriate integers have been encoded into

ℝ𝑡 they are encrypted into a ciphertext array of at least two polynomials in the ring

structure ℝ𝑞 where 𝑞 is the coefficient modulus and is specified as an encryption

parameter before the encryption occurs. Setting the initialization parameters is covered

in section 4.4 below.

This section includes detailed explanations of the encryption and decryption processes

used in the FV scheme to ensure its correctness. A 𝑎
$
←ℝ2 denotes that 𝑎 is sampled

uniformly from the finite set ℝ2. The scheme's main algorithms are as follows:

• Generate public keys pk, secret keys sk and evaluation keys evk using the

algorithms PublicKeyGen, SecretKeyGen and EvaluationKeyGen.

• Eneryption(pk,m): Let public key 𝑝𝑘 = (𝑝0, 𝑝1) and message 𝑚 ∈ ℝ𝑡. Sample

𝑒1, 𝑒2 ← 𝜒 and 𝑢
$
←ℝ2. The ciphertext 𝑐𝑡 is given as 𝑐𝑡 = ([∆𝑚 + 𝑝0𝑢 +

𝑒1]𝑞 , [𝑝1𝑢 + 𝑒2]𝑞).

• Decryption(sk,ct): Let 𝑠 = 𝑠𝑘, 𝑐0 = 𝑐𝑡[0] and 𝑐1 = 𝑐𝑡[1]. Compute 𝑚′ =

[⌊
𝑡

𝑞
[𝑐0 + 𝑐1𝑠]𝑞⌉]

𝑡
to get the decryption of 𝑚 inti 𝑚′.

4.2.1 Key generation

Private and public key pair is used throughout the encryption process to transform a

plaintext number into a ciphertext number. Two stages are adopted for key generation.

First stage is to generate private-key (𝑠). The process of generating the private-key

involves creating an 𝑛-term random polynomial. Furthermore, a uniform sample of

each coefficient is taken from a set of {−1,0,1}. Next, public-key (𝑝𝑘) is generated by

first taking another temporary random polynomial (called 𝑎 polynomial) from the

ciphertext space, i.e., a polynomial having its coefficients modulo the q variable. The

coefficients are equally sampled over the whole 𝑞 range. The temporary random

polynomial 𝑎 will have the same n terms as the secret key. The next step is to create a

31

random error polynomial called 𝑒 for the public key. To achieve this, we sample 𝑛

coefficients from a discrete Gaussian distribution with values that are significantly

lower than 𝑞. Afterwards, the two polynomials (𝑝𝑘 = [−𝑎𝑠 + 𝑒] 𝑎𝑛𝑑 𝑝𝑘 = 𝑎)

define the public key in the following manner:

𝑝𝑘 = ([−𝑎𝑠 + 𝑒], 𝑎)

Now that the 𝑠 and 𝑝𝑘 keys have been generated, we may execute encryptions. So, the

next thing we'll do is examine how the encrypt-process-decrypt procedure handles the

encryption step.

4.2.2 Encryption

Recall that a plaintext polynomial is changed into a pair of ciphertext polynomials

throughout the encryption process. When there are 𝑛 terms in the plaintext polynomial,

each with a coefficient modulo 𝑡. Additionally, the ciphertext polynomial pair contains

n terms with coefficients that are modulo 𝑞. We will need to create three additional little

polynomials, identical to those used to in public key generation to conduct the

encryption. Two error polynomials 𝑒1 and 𝑒2 will be constructed from identical discrete

Gaussian distribution which was used to generate 𝑒 in public key. Along with 𝑒1 and

𝑒2 we will produce the third polynomial 𝑢 whose coefficients will be uniformly

sampled from the same set as the secret key, namely the set {−1,0,1}. Following the

generation of the three polynomials 𝑒1, 𝑒2 𝑎𝑛𝑑 𝑢 the two ciphertext polynomials are

determined as follows:

𝑐𝑡 = ([𝑝𝑘0. 𝑢 + 𝑒1 + ⌊
𝑞

𝑡
⌋ .𝑚]

𝑞
, [𝑝𝑘1. 𝑢 + 𝑒2]𝑞)

The ciphertext 𝑐𝑡 computed above correctly hides our message 𝑚 in the combination

of random noise values. Because our initial message m is a plaintext polynomial with

modulus 𝑡 variable coefficients, it is scaled up first by [
𝑞

𝑡
] and then hidden by summing

with (𝑝𝑘0. 𝑢 + 𝑒). Despite the fact that the 𝑒1 is taken as a sample from a discrete

Gaussian distribution, the term 𝑝𝑘0. 𝑢 effectively masks our message, making it

difficult to distinguish from random noise. The reason why the same plaintext message

will always generate a different ciphertext is due to 𝑝𝑘0. 𝑢.

32

We may identify five components of ciphertext by further analyzing the computations

for each single encryption step. These includes private key, public key, message, noise

and mask. The mathematical expansion of the encryption phase shows the five

encryption components as follows:

𝑐𝑡 = ([− 𝑎 𝑢⏟
𝑚𝑎𝑠𝑘

 𝑠⏟
𝑠𝑒𝑐𝑟𝑒𝑡

⏞
𝑝𝑘0

+ 𝑒 𝑢 + 𝑒1⏟
𝑛𝑜𝑖𝑠𝑒

+ ⌊
𝑞

𝑡
⌋ .𝑚

⏟
𝑚𝑒𝑠𝑠𝑎𝑔𝑒

] , [𝑎⏞
𝑝𝑘1

. 𝑢⏟
𝑚𝑎𝑠𝑘

+ 𝑒2⏟
𝑛𝑜𝑖𝑠𝑒

])

4.2.3 Decryption

After understanding the encryption, now we move to understand the decryption

process. To decrypt a ciphertext 𝑐𝑡 using the FV technique, we first remove the masking

by summing the ciphertext's two polynomials to yield the polynomial shown below:

[𝑐𝑡0 + 𝑐𝑡1. 𝑠]𝑞 = [−𝑎𝑢𝑠 + 𝑒0𝑢 + 𝑒1 + ⌊
𝑞

𝑡
⌋ .𝑚]

𝑞
+ [𝑎. 𝑢 + 𝑒2]𝑞 . 𝑠

= [𝑒2𝑠 + 𝑒0𝑢 + 𝑒1 + ⌊
𝑞

𝑡
⌋ .𝑚]

𝑞

The above expansion demonstrates that in addition to our message 𝑚 scaled by [
𝑞

𝑡
],

additional information known as the inherent noise, 𝑣, is present in the ciphertext. The

equation above provides a definition for this inherent noise as

𝑣 = [𝑒2𝑠 + 𝑒0𝑢 + 𝑒1]𝑞

We next compute by scaling the 𝑐𝑡 polynomial back to the values in modulo 𝑡 in order

to ensure that the decryption is successful. Meanwhile, the noise terms 𝑣 will be

removed by rounding off. The noise terms must be small enough to be rounded off in

order for this to succeed; otherwise, the decryption will fail. This scaling down step is

accomplished by first multiplying with
𝑡

𝑞
, and then rounding off the little noise terms as

follows:

𝑚′ = [⌊
𝑡

𝑞
[𝑒2𝑠 + 𝑒0𝑢 + 𝑒1 + ⌊

𝑞

𝑡
⌋ .𝑚]

𝑞
⌋]
𝑡

33

On the other hand, we may write this by emphasizing the noise polynomial as:

𝑚′ = [⌊
𝑡

𝑞
[𝑣 + ⌊

𝑞

𝑡
⌋ . 𝑚]

𝑞
⌋]
𝑡

The plaintext message m from the previous equation is decrypted to its corresponding

plaintext message m'. If no operation was done on the ciphertext, then m' = m;

otherwise, m' will represent the outcome of the operation.

The noise polynomials represented by 𝑣 must have coefficients that are small enough

to be rounded off and scaled down by [
𝑡

𝑞
]. In contrast, if the noise coefficients are larger,

they will quietly create an inaccurate result since they will end up closer to a different

integer than their intended one. This finding implies that the liberty to manage an

equivalent quantity of noise is provided by the difference in [
𝑞

𝑡
]. The amount of noise

that may be tolerated during the decryption process grows along size of the difference

between the 𝑞 and the 𝑡.

4.3 Noise Budget (Circuit Depth)

Each ciphertext can only handle a certain number of homomorphic operations. SEAL

refers to this restriction as the noise budget, whereas other researchers in the

homomorphic encryption community refer to it as the circuit depth. We will also use

the terminology "noise budget." This noise budget reduces towards zero as we do

homomorphic operations. When the noise budget reaches its zero limit, all

homomorphic operations produce garbage values because the coefficients of the

polynomial representing the ciphertext exceed the coefficient modulus q, an encryption

parameter. As a result, the decryption method will be unable to decipher the ciphertext

within the encryption parameters that have been specified. The most significant

consideration is the noise budget. Because, it is the noise budget, which permits or

prevents a computing party from performing additional homomorphic operations on

ciphertext.

It is important to note that if we combine a ciphertext with a zero or low noise budget

with another ciphertext that has an adequate noise budget during an arithmetic

operation, the noise budget for the resulting ciphertext will be zero. This makes it clear

34

that the output won't be successfully decrypted and decoded if one of the ciphertext

operands has inadequate noise budget.

As stated in the SEAL documentation [22], the initial noise 𝑣, in a ciphertext is

calculated using the formula below:

𝑣𝑖 =
𝑞 𝑚𝑜𝑑 𝑡

𝑞
. ‖𝑚‖.𝑁𝑚

+
7𝑛𝑡

𝑞
.min 𝑛𝑜𝑖𝑠𝑒𝑀𝑎𝑥𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 6 × 𝑛𝑜𝑖𝑠𝑒𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑒𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

In the formula for calculating the initial noise budget above, we have our original

message as 𝑚, the encryption parameters as 𝑛, 𝑡, 𝑞, and the highest degree of

polynomial 𝑚 as 𝑁𝑚. The random noise distribution is defined by the standard

deviation and the maximum deviation of the sample. The initial noise formula shows

us that initial noise budget for the identical message m is dictated by the initialization

parameters of the encryption scheme 𝑡, 𝑞 and 𝑛. The next section defines these

parameters.

4.4 Parameter Selection (𝒕, 𝒒, 𝒏)

The encryption initialization parameters have a substantial impact on the homomorphic

processes. The initialization settings have an impact on the actual encryption

/decryption, along with the performance and outcome of the operations. These settings

must be configured before any integers are encrypted or homomorphic processes are

performed. The security keys (the public/private and evaluation keys) of the scheme are

created based on these encryption settings. The following are the three primary

encryption parameters:

4.4.1 Plaintext Modulus (𝒕)

The plaintext (coefficient) modulus, which specifies the maximum size of the plaintext

data that may be encrypted, can be any positive integer. It has significant effects on the

noise budget's initial value in a newly encrypted ciphertext and how much of it is used

up during homomorphic multiplications. For a good performance without impacting the

noise budget, the 𝑡 value must be kept as low as feasible [7].

https://sciwheel.com/work/citation?ids=13768004&pre=&suf=&sa=0&dbf=0

35

4.4.2 Ciphertext Modulus (𝒒)

The FV scheme's ciphertext (coefficient) modulus is a product of one or more tiny

prime integers. The magnitude of the coefficient modulus should be considered a key

component in defining the noise budget. To be correctly decoded, a ciphertext's noise

value should be less than the 𝑞 value. The decryption method will fail to decipher

ciphertext with a noise value greater than the 𝑞 value. A high coefficient modulus must

be utilized, if a big noise budget is necessary for complex computations. However,

studies have shown that a higher coefficient modulus 𝑞 also reduces the scheme's level

of security. By simultaneously raising the polynomial modulus 𝑛 while increasing 𝑞,

this decrease in security level can be regained [7].

When we discuss the coefficient modulus's size, we are referring to the bit length of its

product, which can be one or more smaller prime values. The coefficient modulus in

SEAL is a positive composite number that is the sum of several primes with a maximum

bit size of 60-bits.

The size of the polynomial modulus 𝑛 and the number of prime elements in the

coefficient modulus have the greatest influence on performance. Thus, based on

experiments, it is recommend using as few factors in the coefficient modulus is possible

for good performance.

4.4.3 Polynomial Modulus (𝒏)

The polynomial modulus 𝑛 is the maximum value that can be used in a polynomial to

represent a plaintext or a ciphertext. The value 𝑛 should be thought of as mainly

affecting the security level of scheme. The HE schemes becomes more secure as the

polynomial modulus increases. To properly encode integers into the ring 𝑅, the value

of 𝑛 must be the power-of-2 cyclotomic polynomial, i.e., (1. 𝑥(𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 2) + 1).

Because there are more coefficients in ciphertext due to a larger polynomial modulus

𝑛, all operations become slower as a result. Based on security and efficiency

considerations, the SEAL documentation suggests that 𝑛 takes values of

1024, 2048, 4096, 8192, 16384 or 32768 for typical computation scenarios.

https://sciwheel.com/work/citation?ids=13768004&pre=&suf=&sa=0&dbf=0

36

4.5 Relinearization

Multiplications in the FV and other related homomorphic encryption schemes increase

the number of polynomials in the ciphertext. Relinearization is a technique for lowering

the number of polynomials to an acceptable level in order to control noise growth.

Relinearization is required for a number of reasons. These include the fact that

processing a larger polynomial than a smaller one takes longer time. In order to obtain

the output, convolutional neural networks use operations like the multiplication of

several numbers over multiple layers, which is an extremely computationally expensive

algorithm. Another intriguing justification for using relinearization that we discovered

throughout our study is that smaller ciphertext results in a lesser increase in noise.

Relinearization can be used in the CNN after each multiplication to reduce noise, which

is depending on the size of the ciphertext operands. This can be seen by a simulation of

the noise growth when two ciphertext are multiplied together, one with an increasing

number of polynomials and the other with a fixed polynomial count size of 2. The SEAL

documentation [7] for multiplication includes a relinearization formula that may be

used to determine the noise in the output of the multiplication.

Figure 13. Effect of ciphertext polynomial size on noise budget

We get the conclusion from this simulation that noise increases exponentially as

ciphertext size increases.

https://sciwheel.com/work/citation?ids=13768004&pre=&suf=&sa=0&dbf=0

37

4.6 Number encoding

In SEAL, the numbers that we want to compute must be encoded in a polynomial of

the type 𝑥𝑛 + 1. Here, the polynomial's coefficient is 𝑥, and 𝑛 is a power of two. The

polynomial modulus, which was discussed above, is represented by 𝑥𝑛 + 1. The

SEAL library encodes integers and fractions in a somewhat different fashion, as

explained below.

4.6.1 Integer Encoding

We give an example to explain integer encoding. Let the encoding base 𝑥 = 2, then the

integer 30 = 24 + 23 + 22 + 21 is encoded in polynomial form as 1. 𝑥4 + 1. 𝑥3 +

1. 𝑥2 + 1. 𝑥1. Similarly, for encoding base 𝑥 = 3, the integer 30 = 24 + 23 + 22 + 21

encoding as a polynomial is 1. 𝑥3 + 1. 𝑥1 .

4.6.2 Fractional Encoding

Fixed-precision rational numbers are used to implement fractional encoding, with the

integral part handled identically to integer encoding and the fractional part handled

slightly differently. It extends the number in a specified base 𝑥, possibly truncating an

infinite fractional portion to finite precision. For example,

30.75 = 24 + 23 + 22 + 21 + 2−1 + 2−2

Here the encoding base is 𝑥 = 2. For the sake of understanding, let the polynomial

modulus is (1. 𝑥1024 + 1). The integer part of the above fractional number is encoding

as the same way as encoding an integer, but the fractional part is transferred to the

highest degree part of the polynomial with the coefficient signs changed. Because we

are working with ring structures that can only contain positive integers, the negative

coefficients are always encoded as a residual of the plaintext coefficient modulus t. In

our example, for 𝑡 = 6 and 𝑛 = 1024, the fractional encoding of the number 30.75 =

24 + 23 + 22 + 21 + 2−1 + 2−2 is given as

30.75 = 5. 𝑥1023 + 5. 𝑥1022 + 1𝑥4 + 1𝑥3 + 1𝑥2 + 1𝑥1

4.7 HE Coded Libraries

Over the years, various authors have released a number of homomorphic encryption

libraries, most of which are intended for specific implementations. Different libraries

38

include different HE schemes. Table 3 lists the most popular libraries along with the

corresponding HE schemes that each library offers.

Table 3. HE Libraries

Library/Scheme BFV BGV TFHE FHEW CKKS

SEAL ✔ ✔ ✔

HElib ✔ ✔

PALISADE ✔ ✔ ✔

cuHE ✔

TFHE-Chimera ✔ ✔ ✔ ✔

FHEW ✔

HEAAN ✔

39

Chapter 5

Proposed Work

Cloud environment provide the ease to access data and use on-demand resource sharing

from anywhere in the world. With the expansion of cloud infrastructure, machine

learning (ML) models can be trained and deployed on cloud servers. Users may utilize

the models to make predictions once they have been deployed, and they don't have to

be concerned with the models or the service being maintained. This is what is meant by

machine learning as a service. Both the training and classification phases can be

outsourced to the cloud. While performing these phases the ML algorithm, training

data, the model, and the feature vector must all be kept secret by one or more of the

parties involved in applications that handle sensitive data.

This chapter first describes the system model and the entities involved in it. Then, it

provides the threat model which describes the potential threat in the given system

model. It’s also discussing the privacy of each component of network in the proposed

system model in the context of threat model. At the end, the necessary modifications

needed in CNN layers to make them compatible with HE are discussed. These

modifications allow to perform privacy preserved classification at outsourced

environment.

5.1 System and Threat Model

HE helps the clients in outsourcing their critical data securely. During the outsourcing

of the data, confidentiality and privacy of client data can be compromised by the

malicious or curious server. System model helps in determining the entities involved as

well as about the functionality of the proposed protocol. Threat modelling helps in

finding potential exploits which can later become stern threats. Moreover, it also helps

in securing the data from the entities like internal threat actors or external malicious

threats. The threat model works with our system model and helps in establishing the

effectiveness of our proposed model.

5.1.1 System Model

In order to maintain the privacy of the major components of the privacy preserving

classification model as a service framework, we take into account the system model

40

shown in Fig 14, in which the cloud server uses a CNN model that has been trained to

classify the client's unseen instances. The classification process in this case only works

with user provided encrypted data.

Figure 14. System Model

In this system model, the server already has the training dataset and it builds a model

from this plain dataset. The final model is in plaintext form placed at cloud. The client

gives encrypted instances to cloud server which classifies these instances and returns

the encrypted results to client. Intent in this system model is to protect the privacy of

feature values of inputs and prediction of unseen instances against server, and also to

protect the privacy of machine learning algorithm and model parameters against the

client.

5.1.2 Threat Model

To create a secure protocol, we must identify potential threats and attacks that could

target a system. Adversaries frequently aim is to jeopardize security requirements such

as confidentiality, integrity, and availability. During threat modelling, it is critical to

understand these threats and attacks, as well as their implications for security. Our

system model of privacy preserving classification typically involves two entities, one

is data owner (client) and second is cloud server and it involves a two-way

communication i.e., from client to server and from server to client. In first case, the

client encrypts the data and generates the required keys for homomorphic calculations,

and sends encrypted queries and the public key parameters to cloud server. In this case,

from the client’s viewpoint, the main threat in the system is either the cloud server or

any eavesdropper. As the queries are encrypted so eavesdropper would not get any

41

meaning full information. As far as the server is concerned, we assume it as semi-honest

threat model in which cloud server strictly follows the protocol specifications but may

passively collect transmitted inputs and try to infer useful information about client’s

data. In second case, cloud performs desired computations on an encrypted query and

sends encrypted results to client. In this case, from the server’s prospective, the main

threat in the system is either the client or any eavesdropper. As the results are encrypted

so eavesdropper would not get any meaning full information. As far as the client side

is concerned, we also assume it as semi-honest threat entity in which the client strictly

follows the specifications of protocol but also try to infer useful information about

machine learning algorithm and the weights of trained model placed on server. The

adversial matrix of our model is shown in Table 4.

Table 4. Adversial Matrix

Known Unknown

Client

• Input data

• Data types of input of the neural

network

• Data types of outputs of the neural

network

• Encryption and decryption keys

• Machine Learning Algorithm

• Model Parameters

Server

• Machine Learning Algorithm

• Model Parameters

• Input data

• Encryption and decryption

keys

5.2 Model’s Components Privacy Considerations

The privacy of different parts of a classification model must be taken into account when

performing privacy-preserved classification in an outsourced environment. These

components include feature values, predictions for unseen instances, ML algorithm and

ML model privacy. In the sub-sections, we will discuss the privacy of each component

individually and explain how our proposed model will ensure the privacy of these

components.

42

5.2.1 Feature Values

From the perspective of the data owner, feature values are one of the most important

considerations. As these values include sensitive information of data owner, exposing

them to the cloud server would be a serious security issue in the system. Medical

records are an example of sensitive data that is stored as feature values. The Health

Insurance Portability and Accountability Act (HIPPA) standard ensures that the data of

the patient is kept private. This parameter is used to assess the proposed protocol's

security. A non-authorized party should only receive minimal (or no) information about

the feature values. In our suggested model, the data owner encrypts the feature values

before sending them to the cloud. As a result, no non-authorized party receives any

information.

5.2.2 Predictions of Unseen Instances.

The classifier's output is another component which should be consider during privacy

preserving classification. All private classification protocol considers this component

to be the client's private information. For example, the outcome of evaluating a patient's

medical data contains sensitive information regarding the patient's present health state.

Any entity other than the data owner does not have access to the result of the classifier.

The classifier results are encrypted in our proposed protocol, so server has no access to

them, ensuring the privacy of unseen instances.

5.2.3 Machine Learning Algorithm

If parties do not share the ML algorithm, then the learning algorithm is equally crucial.

The privacy of this component is taken into account in privacy preserving classification

scenarios, and it should be considered throughout the protocol design process. Consider

a company that specializes in data analysis for other organizations. One of their assets

is their data processing approach, and they don't disclose how the model is constructed.

After the analysis, they just send the results to the client. The server's privacy requires

that privacy of this component be protected. The privacy of this component is

maintained in our proposed protocol since client receives no information from the cloud

server regarding the steps involved in data analysis.

43

5.2.4 Model Privacy

The model privacy is essential for client as well as the server. Actually, the model

includes the patterns of the dataset as well as information gained from instances, so it

is critical for the client. As a result, the model should not be made accessible to the

server. From the perspective of the server, it is a server asset, similar to the analysis

algorithm. Suppose a company provides a classification service to the clients in a

privacy preserved environment. In this case, the model must be kept secret from the

client because now it is a server asset. As a result, maintaining the privacy of model is

also important. The model is built by the server and not transferred to the client in our

protocol; as a result, the model's privacy is protected from the client.

5.3 CNN Layer Design

The primary purpose of this research work is solely to perform classification on

encrypted data. So, the CNN layers are designed while considering feed-forward

network only and back-propagation phase is omitted. The only operations supported by

SEAL is addition and multiplications, so CNN layers are designed while keeping these

limitations in mind. In our CNN model, the activation layers contain the non-linear

functions, thus the primary challenge is to deal with this function in our model. To

combat this challenge, different polynomial approximation techniques are explored

e.g., Numerical approximation method, Taylor series and Chebyshev approximation.

By doing analysis it is found that Chebyshev approximation technique is best for

approximating the activations functions. More detail of approximating functions is

given in Chapter 6. Before creating a privacy-preserving CNN, all the layers of CNN

are researched, implemented and then tested both in plaintext as well as ciphertext

space. While performing computations using SEAL, in case of plaintext the input and

output vectors have data type of long while in encrypted case (ciphertext space) these

vectors have data type of ciphertext. The plain layers of CNN are used as a reference

for comparison to verify the accuracy of the encrypted classification.

5.3.1 Activation Functions Design

The activation function takes a 1-D/3-D vector as input, and the outputs a 1-D/3-D

vector. The output vector has type long or ciphertext depends on whether an input to

the function is encrypted or unencrypted. In the plain activation layer, both input and

44

output vectors remain unencrypted, but they are encrypted in ciphertext activation layer.

The approximate algorithms of both the ReLU and Sigmoid activation function with

two degrees of approximation are described below in Algorithm 1 and 2.

Algorithm 1: ReLU Function

𝑰𝒏𝒑𝒖𝒕: 𝑖𝑛; 𝑛_𝑖𝑛𝑝𝑢𝑡; 𝑛_𝑜𝑢𝑡𝑝𝑢𝑡

𝑶𝒖𝒕𝒑𝒖𝒕: 𝑜𝑢𝑡

𝑠𝑐𝑎𝑙𝑒 = 10000

𝑐0 = 0

𝑐1 = 5000

𝑐2 = 55

𝑖𝑛_𝑠𝑖𝑧𝑒 ⇐ 𝑛_𝑖𝑛𝑝𝑢𝑡

𝒇𝒐𝒓 𝑗 = 0,1, … 𝑖𝑛_𝑠𝑖𝑧𝑒 𝑑𝑜

 𝑜𝑢𝑡[𝑗] ⇐ 𝑖𝑛[𝑗] ∗ 𝑖𝑛[𝑗] ∗ 𝑐2 + 𝑖𝑛[𝑗] ∗ 𝑐1 + 𝑐0

end

Algorithm 2: Sigmoid Function

𝑰𝒏𝒑𝒖𝒕: 𝑖𝑛; 𝑛_𝑖𝑛𝑝𝑢𝑡; 𝑛_𝑜𝑢𝑡𝑝𝑢𝑡

𝑶𝒖𝒕𝒑𝒖𝒕: 𝑜𝑢𝑡

𝑠𝑐𝑎𝑙𝑒 = 10000

𝑐0 = 5000

𝑐1 = 5700

𝑐2 = −300

𝑖𝑛_𝑠𝑖𝑧𝑒 ⇐ 𝑛_𝑖𝑛𝑝𝑢𝑡

𝒇𝒐𝒓 𝑗 = 0,1, … 𝑖𝑛_𝑠𝑖𝑧𝑒 𝑑𝑜

 𝑜𝑢𝑡[𝑗] ⇐ 𝑖𝑛[𝑗] ∗ 𝑖𝑛[𝑗] ∗ 𝑐2 + 𝑖𝑛[𝑗] ∗ 𝑐1 + 𝑐0

end

5.3.2 Convolution Layer Design

This layer gets a 3-D input vector, a 3-D weights vector and produces a 3-D vector as

an output. The output vector has type long or ciphertext depends on whether an input

to the layer is unencrypted or encrypted, respectively. In this layer, a sliding filter/kernel

is utilized to compute the dot product between the weight vector and input vectors. The

result of dot product is then elementwise added with the bias vector. The Algorithm 3

describes the steps involved in the convolutional layer. In plain convolution layer each

45

vector (the input, weight, bias and the output) is unencrypted. The input/output vectors

are encrypted in ciphertext convolution layer, but the weights and bias vectors are not,

while all these vectors are not encrypted in plain convolutional layer. In SEAL,

plaintexts and ciphertext can be added to and multiplied with one another.

Algorithm 3: Convolution Layer

𝑰𝒏𝒑𝒖𝒕: 𝑖𝑛; 𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡; 𝑖𝑛_𝑤𝑖𝑑𝑡ℎ; 𝑑𝑒𝑝𝑡ℎ; 𝑘𝑒𝑟𝑛𝑒𝑙_ℎ𝑒𝑖𝑔ℎ𝑡; 𝑘𝑒𝑟𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ; 𝑛_𝑘𝑒𝑟𝑛𝑒𝑙𝑠;

𝑤𝑒𝑖𝑔ℎ𝑡; 𝑏𝑖𝑎𝑠; 𝑠𝑐𝑎𝑙𝑒

𝑶𝒖𝒕𝒑𝒖𝒕: 𝑜𝑢𝑡

𝑐𝑜𝑢𝑛𝑡 ⇐ 0

𝑜𝑢𝑡_ℎ𝑒𝑖𝑔ℎ𝑡 ⇐ 𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡 − (𝑘𝑒𝑟𝑛𝑒𝑙_ℎ𝑒𝑖𝑔ℎ𝑡 − 1)

𝑜𝑢𝑡_𝑤𝑖𝑑𝑡ℎ ⇐ (𝑖𝑛_𝑤𝑖𝑑𝑡ℎ − (𝑘𝑒𝑟𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ − 1)

𝑓𝑜𝑟 𝑘 = 0,1, … 𝑛_𝑘𝑒𝑟𝑛𝑒𝑙𝑠 𝑑𝑜

 𝑓𝑜𝑟 𝑦 = 0,1, … 𝑜𝑢𝑡_ℎ𝑒𝑖𝑔ℎ𝑡 𝑑𝑜

 𝑓𝑜𝑟 𝑥 = 0,1, … 𝑜𝑢𝑡_𝑤𝑖𝑑𝑡ℎ 𝑑𝑜

 𝑓𝑜𝑟 𝑐 = 0,1, … 𝑑𝑒𝑝𝑡ℎ 𝑑𝑜

 𝑓𝑜𝑟 𝑘𝑦 = 0,1, … 𝑘𝑒𝑟𝑒𝑛𝑒𝑙_ℎ𝑒𝑖𝑔ℎ𝑡 𝑑𝑜

 𝑓𝑜𝑟 𝑘𝑥 = 0,1, … 𝑘𝑒𝑟𝑒𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ 𝑑𝑜

 𝑡𝑒𝑚𝑝 ⇐ 𝑖𝑛[𝑦 + 𝑘𝑦][𝑥 + 𝑘𝑥][𝑐]

 𝑡𝑒𝑚𝑝 ⇐ 𝑡𝑒𝑚𝑝 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡[𝑘𝑦][𝑘𝑥][𝑐][𝑘]

 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡 = 0 𝑡ℎ𝑒𝑛

 𝑜𝑢𝑡[𝑦][𝑥][𝑘] ⇐ 𝑡𝑒𝑚𝑝

 𝑐𝑜𝑢𝑛𝑡 + +

 𝑒𝑙𝑠𝑒

 𝑜𝑢𝑡[𝑦][𝑥][𝑘]+ = 𝑡𝑒𝑚𝑝

 𝑐𝑜𝑢𝑛𝑡 + +

 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡 = (𝑘𝑒𝑟𝑛𝑒𝑙_ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑘𝑒𝑟𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ ∗ 𝑑𝑒𝑝𝑡ℎ) 𝑡ℎ𝑒𝑛

 𝑐𝑜𝑢𝑛𝑡 = 0

 𝑜𝑢𝑡[𝑦][𝑥][𝑘] ⇐ 𝑏[𝑘] ∗ 𝑠𝑐𝑎𝑙𝑒

5.3.3 Pooling Layer Design

The Max and Average Pool layers have to be changed because HE does not offer any

division and comparison operations. To overcome this limitation, we replaced these

layers with sum-pooling layer as shown in the Algorithm 4. The output of sum-pooling

layer is simply the summation of values within the sliding window. This layer accepts

46

a 3-D vector as input, and produces outputs of 3-D vector. The output vector is either a

3-D long vector or a 3-D ciphertext vector depends on if an input to the layer is

unencrypted or encrypted, respectively. In the plain pooling layer, both input/output

vectors are unencrypted, but they are encrypted in ciphertext pooling layer.

Algorithm 4: Pooling Layer

𝑰𝒏𝒑𝒖𝒕: 𝑖𝑛; 𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡; 𝑖𝑛_𝑤𝑖𝑑𝑡ℎ; 𝑑𝑒𝑝𝑡ℎ; 𝑝𝑜𝑜𝑙𝑥; 𝑝𝑜𝑜𝑙𝑦

𝑶𝒖𝒕𝒑𝒖𝒕: 𝑜𝑢𝑡

𝑐𝑜𝑢𝑛𝑡 ⇐ 0

𝑜𝑢𝑡_ℎ𝑒𝑖𝑔ℎ𝑡 ⇐ 𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡 / 𝑝𝑜𝑜𝑙𝑦

𝑜𝑢𝑡_𝑤𝑖𝑑𝑡ℎ ⇐ 𝑖𝑛_𝑤𝑖𝑑𝑡ℎ/ 𝑝𝑜𝑜𝑙𝑥

𝑓𝑜𝑟 𝑐 = 0,1, … 𝑑𝑒𝑝𝑡ℎ 𝑑𝑜

 𝑓𝑜𝑟 𝑦 = 0,1, … 𝑜𝑢𝑡_ℎ𝑒𝑖𝑔ℎ𝑡 𝑑𝑜

 𝑓𝑜𝑟 𝑥 = 0,1, … 𝑜𝑢𝑡_𝑤𝑖𝑑𝑡ℎ 𝑑𝑜

 𝑓𝑜𝑟 𝑖 = 0,1, … 𝑝𝑜𝑜𝑙𝑦 𝑑𝑜

 𝑓𝑜𝑟 𝑗 = 0,1, … 𝑝𝑜𝑜𝑙𝑥 𝑑𝑜

 𝑡𝑒𝑚𝑝 ⇐ 𝑖𝑛[𝑦 ∗ 𝑝𝑜𝑜𝑙𝑦 + 𝑖][𝑥 ∗ 𝑝𝑜𝑜𝑙𝑥 + 𝑗][𝑐]

 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡 = 0 𝑡ℎ𝑒𝑛

 𝑜𝑢𝑡[𝑦][𝑥][𝑘] ⇐ 𝑡𝑒𝑚𝑝

 𝑐𝑜𝑢𝑛𝑡 + +

 𝑒𝑙𝑠𝑒

 𝑜𝑢𝑡[𝑦][𝑥][𝑘]+ = 𝑡𝑒𝑚𝑝

 𝑐𝑜𝑢𝑛𝑡 + +

 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡 = (𝑝𝑜𝑜𝑙𝑦 ∗ 𝑝𝑜𝑜𝑙𝑥) 𝑡ℎ𝑒𝑛

 𝑐𝑜𝑢𝑛𝑡 = 0

5.3.4 Fully Connected Layer Design

This layer takes a 1-D weights vector, a 1-D input vector as input, and outputs 1-

D vector. The output vector is either a 1-D long vector or a 1-D ciphertext vector

depends on if an input to the layer is unencrypted or encrypted, respectively. This layer

calculates the input vector's dot product with weight vector, then adds bias vector to

outcome elementwise as shown in Algorithm 5. The weight vector and bias vector are

not encrypted in fully connected ciphertext layer, but input/output vectors are

encrypted, whereas all these vectors are not encrypted in plain fully connected layer.

47

Algorithm 5: Fully Connected Layer

𝑰𝒏𝒑𝒖𝒕: 𝑖𝑛; 𝑛_𝑖𝑛𝑝𝑢𝑡; 𝑛_𝑜𝑢𝑡𝑝𝑢𝑡; 𝑤𝑒𝑖𝑔ℎ𝑡; 𝑏𝑖𝑎𝑠; 𝑠𝑐𝑎𝑙𝑒

𝑶𝒖𝒕𝒑𝒖𝑡: 𝑜𝑢𝑡

𝑖𝑛_𝑠𝑖𝑧𝑒 ⇐ 𝑛_𝑖𝑛𝑝𝑢𝑡

𝑜𝑢𝑡_𝑠𝑖𝑧𝑒 ⇐ 𝑛_𝑜𝑢𝑡𝑝𝑢𝑡

𝑓𝑜𝑟 𝑖 = 0,1, … 𝑜𝑢𝑡_𝑠𝑖𝑧𝑒 𝑑𝑜

 𝑓𝑜𝑟 𝑗 = 0,1, … 𝑖𝑛_𝑠𝑖𝑧𝑒 𝑑𝑜

 𝑡𝑒𝑚𝑝 ⇐ 𝑖𝑛[𝑗]

 𝑡𝑒𝑚𝑝 ⇐ 𝑡𝑒𝑚𝑝 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡[𝑗][𝑖]

 𝑖𝑓 𝑗 = 0 𝑡ℎ𝑒𝑛

 𝑜𝑢𝑡[𝑖] ⇐ 𝑡𝑒𝑚𝑝

 𝑒𝑙𝑠𝑒

 𝑜𝑢𝑡[𝑦][𝑥][𝑘]+ = 𝑡𝑒𝑚𝑝

𝑜𝑢𝑡[𝑖] ⇐ 𝑏[𝑖] ∗ 𝑠𝑐𝑎𝑙𝑒

48

Chapter 6

Experimental Results and Evaluation

The major motivation for developing privacy-preserving CNN classification model is

to ensure information secrecy for all involved parties. There are instances that demand

privacy protection measures, even if they are not necessary in most cases. For instance,

while working with the medical data, confidentiality of a patient personal information

is of utmost importance. In this case, a privacy-preserving CNN classification model

may be utilized to let patients get a diagnosis by transmitting his personal information,

with patient being the only one who can access the information and the diagnostic. In

addition, the hospital may use its classifier on the encrypted data while still keeping its

model hidden from the patients.

In this chapter, first we approximate the activation functions on different scales and

degrees and present the graphical representation of original and approximated

activation functions. Next, we analyze the effect of variation of HE parameters on the

time and accuracy of proposed CNN classification model. At the end we discuss the

fast configurations required for the proposed model in term of time and accuracy.

6.1 Polynomial Approximation Techniques

There are numerous methods available for approximating a continuous function, but we

are only concerned with polynomial approximation in this work. For polynomial

approximation, a number of techniques have been put forth in the literature, such as

Taylor series and Chebyshev polynomials [70][71]. We examine the following

approaches to approximate the activation functions:

• Numerical approximation method

• Taylor series method

• Chebyshev approximation method

We employ each of these techniques individually to analyze the polynomial

approximation of activation functions and also the merit and demerits of these methods

are discussed below.

https://sciwheel.com/work/citation?ids=13887383&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13887384&pre=&suf=&sa=0&dbf=0

49

Numerical Analysis: In this technique, the set of points is produced from the activation

function and feed this set into approximation function, along with a constant degree for

activation function. We tested polynomials with degree ranging 3-10 and concluded

that the accuracy declines significantly for lower degree polynomials. To get optimal

accuracy, we must raise the degree, which is inefficient when dealing with encrypted

data. Our analysis revealed that this technique is not an effective way for approximating

the activation function.

Taylor Series: Taylor series, a prominent approach for estimating functions, is used in

this method. We approximated the activation function using polynomials of varying

degrees and trained the model with polynomials of given degrees. This approach is

ineffective due to two key problems. The first problem is that, despite being lower than

above method, the high degree of polynomial approximation is still too high to be used

with HE schemes. Secondly, the approximation interval is the most crucial problem.

The fundamental goal of this series is to make approximation of given functions in a

point nearby space. Approximation error is significantly larger for the points outside of

the input interval than for those within of it. For instance, this approach is unable to

cover the [0, 255] range of integer values for pixels in the MNIST dataset. Chebyshev

polynomials [71] may be used to estimate the activation function across a wide range,

which allows us to avoid requiring further layers, as explained below.

Chybeshev approximation Method: The use of Chebyshev polynomials is not as

widespread as earlier techniques. But these are more appropriate for our problem due

to a certain feature. With this approach, we estimate a function throughout an interval

rather than just a tiny region around a point. We increase the interval to be able to cover

integers since HE systems are over integers with message space ℤ . The Chybeshev

polynomial is given as:

𝑇𝑛+1 (𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥)

The minimax approximation is another name for the Chebyshev approximation. By

increasing accuracy and reducing overall computing cost, the minimax polynomial

technique is employed for function approximation [72]. As opposed to Taylor's

polynomial approximation, which minimizes error at the point of expansion, the

minimax technique reduces error across a specific input segment. In order to identify a

https://sciwheel.com/work/citation?ids=13887384&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13887385&pre=&suf=&sa=0&dbf=0

50

mathematical function that minimizes the maximum error, the minimax approximation

is applied. As an example, for a function 𝑓 defined over the interval [𝑎, 𝑏], the minimax

approximation finds a polynomial 𝑝(𝑥) that minimizes max max
𝑎≤𝑥≤𝑏

|𝑓(𝑥) − 𝑝(𝑥)|.

In order to approximate a continuous function 𝑓, defined over [𝑎, 𝑏], we need to

describe 𝑓 as a sequence of Chebyshev polynomials at [−1,1]. More precisely, 𝑓 is

expressed as:

𝑓(𝑥) = ∑ 𝑐𝑘𝑇𝑘(𝑥)
𝑛

𝑘=0
 𝑥 ∈ [−1, 1]

where 𝑐𝑘 is the Chebyshev coefficient and 𝑇𝑘(𝑥) can be calculated from above

mentioned equation. The polynomial's coefficients are then calculated, and it is

eventually expressed in the original interval [𝑎, 𝑏].

6.2 Activation Functions Approximation

We employ Chebyshev polynomial approximate method to approximate the ReLU and

Sigmoid activation functions in our proposed model, in which the inputs are HE

encrypted images. Table 5 depicts the polynomial approximation of the ReLU

activation function with degree 5 and 7. Since the degree and interval choices have an

impact on the model's performance, it is necessary to select appropriate parameters. To

achieve this, we ran a number of experiments with various intervals and degrees.

Table 5 demonstrates that the activation functions are more precisely approximated

when higher degree polynomials are used in short intervals. For instance, compared to

the other polynomials, the polynomial with degree 7 and interval [10, 10] is more

accurate in its approximation of the ReLU function. The same holds true for the

Sigmoid activation function, where a high degree 7 and short interval [10, 10] provide

a better approximation, as shown in Table 5. However, using higher degree polynomials

imposes substantial computation overhead, and short intervals limit the approximation

function's applicability.

51

Table 5. Approx. of ReLU Function on Two Intervals Using Degree 5 & 7

Degree Intervals Polynomial Approximation

of Activation Function

ReLU

Functions

5 [−10, 10] (2.368475785867𝑒−19) × 𝑥5 − (0.000252624921308674) × 𝑥4 −

(2.90138283768708𝑒−17) × 𝑥3 + (0.0660873211772537) × 𝑥 2 +

(0.500000000000001) × 𝑥 + (0.862730150341736)

Fig 15(a)

7 [−10, 10] (−8.88178419700125𝑒−21) × 𝑥7 + (3.66197231323541𝑒−6) ×

𝑥6 + (1.33226762955019𝑒−18) × 𝑥5 −

(0.000847927183186682) × 𝑥4 − (5.24025267623074𝑒−17) ×

𝑥3 + (0.0920352084972136) × 𝑥2 + (0.500000000000001) × 𝑥 +

(0.637244473880199)

Fig 15(b)

5 [−100, 100] (2.27373675443232𝑒−23) × 𝑥5 − (2.52624921308674𝑒−7) × 𝑥4 −

(2.70006239588838𝑒−19) × 𝑥3 + (0.00660873211772537) × 𝑥2 +

(0.500000000000001) × 𝑥 + (8.62730150341737)

Fig 15(c)

7 [−100, 100] (−6.82121026329696𝑒−27) × 𝑥7 + (3.6619723132354𝑒−11) ×

𝑥6 + (1.03739239420975𝑒−22) × 𝑥5 − (8.47927183186682𝑒−7) ×

𝑥4 − (4.2277292777726𝑒−19) × 𝑥3 + (0.00920352084972135) ×

𝑥2 + (0.5) × 𝑥 + (6.37244473880199)

Fig 15(d)

(a)

(b)

52

(c)

(d)

Figure 15. Approximation of ReLU Functions

Table 6 depicts the polynomial approximation of the Sigmoid activation function.

Table 6. Approx. of Sigmoid Function on Two Intervals Using Degree 5 & 7

Degree Intervals Polynomial Approximation

of Activation Function

Sigmoid

Functions

5 [−10, 10] (2.04674243304457𝑒−5) × 𝑥5 + (2.46800554530117𝑒−20) × 𝑥4 −

(3.36794817460072 𝑒−3) × 𝑥3 − (1.8874604570257𝑒−18) × 𝑥2 +

(0.18781951515784) × 𝑥 + 0.5

Fig 16(a)

7 [−10, 10] (−4.3491363562486𝑒−7) × 𝑥7 − (2.72617215260618𝑒−21) ×

𝑥6 + (9.1841913854224𝑒−5) × 𝑥5 + (2.97822205265474𝑒−19) ×

𝑥4 − (0.00652613009718176) × 𝑥3 −

(4.60152342661793𝑒−18) × 𝑥2 + (0.216030242319584) × 𝑥 +

(0.5)

Fig 16(b)

5 [−100, 100] (2.76073648103432𝑒−10) × 𝑥5 − (5.79639277612257𝑒−24) ×

𝑥4 − (4.39372964286412𝑒−6) × 𝑥3 + (8.80835665108732𝑒−20) ×

𝑥2 + (0.0221378748236003) × 𝑥 + (0.5)

Fig 16(c)

7 [−100, 100] (−8.15672915997047𝑒−14) × 𝑥7 − (2.69310298657131𝑒−27) ×

𝑥6 + (1.66796555552873𝑒−9) × 𝑥5 + (2.88883265216498𝑒−23) ×

𝑥4 − (1.10438386410423𝑒−5) × 𝑥3 − (2.84535249558831𝑒−20) ×

𝑥2 + (0.0295953437969288) × 𝑥 + (0.5)

Fig 16(d)

53

(a)

(b)

(c)

(d)

Figure 16. Polynomial Approximation of Sigmoid Functions

54

6.3 CNN Model Accuracy with Polynomial Activation Function

We conduct our experiments using the MNIST [6] dataset and the CNN model that is

described below in Fig 18 to assess performance of various approximation methods.

For a comparison, we first train the given model using original activation functions and

find the accuracy against each activation function as shown in Table 7. Then, we use

the approximation polynomial of degree two for the given activation functions in the

given model and calculate the accuracies given in the Table 7.

Table 7. CNN accuracies based on original and approximated activation functions

Activation Function Original Model Approximated Model

Sigmoid 98.82 % 98.25%

ReLU 99.15% 98.75%

6.4 Privacy Preserved Classification Model

In this section we discussed the different part involved in the proposed privacy

preserved classification model. It includes the dataset we used for the training purpose

and details about the structure of proposed CNN model as well as the input and output

sizes of each layer present in it. It also contains the model training and testing part along

with the tuning parameters.

6.4.1 Dataset

The MNIST data set is used to train and test the privacy-preserving CNN. This dataset

is chosen specifically because it is widely used in the field of deep learning. This enable

a comparison of accuracy with prior research. There are 60,000 total images in this

dataset, from which 50,000 images are choosen for training while remaining 10,000

images are selected for testing. The MNIST dataset contains images of 28𝑥28 pixel

arrays, every pixel is made up of a positive integer ranging from 0-255. Fig 17 displays

a sample of pictures from the MNIST dataset.

https://sciwheel.com/work/citation?ids=13762323&pre=&suf=&sa=0&dbf=0

55

Figure 17. MNIST Dataset

6.4.2 CNN Network

The CNN network which is used to train and categories MNIST dataset is shown in Fig

18. A summary of this network is provided below:

1. 1st Conv-Layer: It takes an image of dimension 28 × 28 × 1 as an input. The

layer contains 4 kernels of dimension 5 × 5, with stride of (1,1).

2. Activation-Layer: It performs the ReLU function at every input node.

3. 1st Pool-Layer: It takes an input of dimension 24 × 24 × 4 and have stride of

size (2,2). Its output is 12 × 12 × 4.

4. 2nd Conv-Layer: It has input of dimension 12×12×4. This layer consists of

12 kernels of dimension 5 × 5, and stride of (1,1). The outcome of this layer is

8 × 8 × 12.

5. 2nd Pool-Layer: It takes an input of dimension 8 × 8 × 12 and have stride of

size (2,2). Its output is 4 × 4 × 12.

6. Flatten-Layer: The input of this layer is 4 × 4 × 12 and returns the output of

192.

7. Fully Connected-Layer: It combines incoming 192 notes to the 10 output

nodes.

56

Figure 18. Proposed Convolutional Neural Network

6.4.3 Model Training

The original ReLU function is replaced by Chybeshev approximated ReLU function

during learning phase. The CNN model is trained with the PyTorch framework using

PyTorch library with MNIST dataset. The training is carried out in batches of 128 for

a total of 1000 epochs. The Adaptive Moment Estimation, often known as Adam, is the

optimization technique utilized during training. Adam is chosen because it requires less

memory and performs well with minimal hyper parameter adjustment.

6.4.4 Model Testing

The ReLU activation function is changed by degree two polynomial approximation

function during the classification phase, while the pooling layer is changed to the sum-

pooling layer. The model uses an encrypted PNG image of a handwritten digit from 0

to 9 as input, and the weights are determined during training. The encrypted image is

then classified, and the final layer output is decrypted. The output vector has ten values,

and each of them corresponds to a digit from 0 to 9. The classifier's prediction is

whatever number from 0 to 9, is connected with the highest value discovered in the

output. Furthermore, images aren't classified in batches since working with encrypted

data requires a considerable amount of processing power and memory. Instead, the

privacy-preserving classier processed each image separately.

57

6.5 Result Profiling

Accuracy and Timing are two of the most crucial aspects to examine when evaluating

the practicality of any cryptosystem: does this accurately categories the image as well

as how much time does it take to classify the image? We put our privacy-preserving

CNN model to the test under various circumstances to see how different factors affect

accuracy and time in an effort to better understand the capabilities of HE. Timing is

determined by counting the seconds it took to perform each layer and to encrypt/decrypt

the image. In order to determine the accuracy, the model is typically run over the

complete test dataset, however due to resource constraints, a very simple test has to be

constructed. The privacy-preserving CNN is applied to a single random picture from

the testing dataset rather than testing all 6,000 images.

6.5.1 Timing

It is discovered during the initial testing phases that our privacy preserved CNN model

takes 215.08 seconds to classify an encrypted image. We calculate the time it took for

encryption/decryption of an image as well as time of each layer in order to determine

where it might be spending the most of its time during the classification phase. Table 8

and 9 show the time needed to read the image, encrypt it, execution time of each layer,

and the decryption of final result. The security parameter is set to 128 bits for all timing

values indicated below. The execution time of each layer of our CNN model is shown

in the Table 8.

Table 8. Running Time of CNN Layers

Layers Description Time(s)

1st Convolutional Layer Input: 28x28x1

Output: 24x24x4

79

Activation Layer (ReLU) 2nd Degree polynomial 25

1st Pooling Layer Avg. pooling 0.01

2nd Convolutional Layer Input: 28x28x1

Output: 24x24x4

106

2nd Pooling Layer Avg. pooling 0.01

Flatten Layer Output: 192 0.06

Fully Connected Layer Output: 10 2

58

The convolution layer requires the most computation time, as shown in Table 8. The

activation layer is the 2nd most expensive layer in term of time, then comes fully

connected layer, and lastly the pooling layer.

Table 9 shows the time the model takes to read, encrypt and decrypt the image.

Table 9. Image Encryption/Decryption Time

Operation Time (s)

Read Image 0.0005

Encrypt Image 3.28

Decrypt 0.02

According to the timing data in Table 9, reading the image takes only 0.0005 seconds,

which is a very little amount of time. Encryption takes 3.28 seconds, hence it takes

around 3.28/(28*28*1) = 0.0128125 seconds to encrypt one pixel. Decryption takes

0.02 seconds, hence it takes around 0.2/(10) = 0.02 seconds to decrypt one value.

It is evident from the preliminary time data shown in Table 8 that the convolution layer

and ReLU activation layers are the main sources of the computational bottleneck.

6.5.2 Security Parameter (𝒌/𝝀) Variation

In the prospective of model security, HE has a few factors that are essential to consider

while performing the CNN classification. One of these parameters is 𝑘/𝜆, which is

called the security parameter. We use the default value of 𝑘 = 128 for experiments.

The security parameters are varied in this section to observe the threshold (Time &

Accuracy) for calculation as well as the overall security. The timing values are

calculated by using BFV scheme for polynomial modulus degree 𝑛 = 8192, for each

three security parameters of 128, 192 and 256 as recommended in [73].

For SEAL, setting 𝑘 = 128 is comparable to AES 128-bit security, setting 𝑘 = 192

is equivalent to AES 192-bit security, and setting 𝑘 = 256 is similar to AES 256-bit

security. Therefore, in addition to the default k = 128, these are the two other security

settings assessed.

https://sciwheel.com/work/citation?ids=13865422&pre=&suf=&sa=0&dbf=0

59

Fig 19 depicts the time takes by each CNN layer to run based-on the variation security

parameters. According to the stats in Fig 19, the time required to evaluate each layer

increases as the security parameter increases. When security parameter is increased

from 128-bits to 256-bits, the calculation time for the layers (Conv1/Conv2/FC1) that

take the longest to calculate increases by 1.8 times.

Figure 19. Execution Time of different layers based on Security Parameters Variation

The total time needed to run the network with regard to changing security parameters

is shown in Fig 20 below.

0

50

100

150

200

250

Conv-1 ReLU P-1 Conv-2 P-2 Flat FC

CNN Layer's Timing based on Security Parameter Variation

128 192 256

60

Figure 20. Total Execution Time of model based on Security Parameter Variation

From Fig 20 it is evident that the computation time increases as the security parameter

size increases. The graph suggests that there is a linear relationship with a gradual slope

between the value of the security parameter and the overall classification time. The

overall time to classify an encrypted image with a security parameter of 128-bit is

215.08 seconds, with a 192-bit security parameter is 302.26 seconds, and 444.84

seconds with a 256-bit security parameter. It is significant to notice that the encrypted

image could not be fully classified using the security parameter of 256 because the noise

increases too high and there are insufficient levels to support the given security

parameter. It takes about 230 seconds longer to use 256-bit security parameter than 128-

bit security parameter. This raises the issue of time at the expense of security: under

what circumstances would someone be ready to wait even longer in order to get higher

security level?

Based on the sizes of the security parameter, Table 10 indicates time taken by the model

to read, encrypt, and decrypt the given image. It also determines whether or not the

image is properly classified.

0

50

100

150

200

250

300

350

400

450

500

550

600

0 50 100 150 200 250 300 350 400

Ti
m

e
in

 (
se

c)

Security Parameters

Total Time vs Security Parameter Variation

61

Table 10. Encryption/Decryption Time based on Security Parameters

Security

Param.

Polynomial

Modulus

Encryption

Time

Decryption

Time

Prediction

128 8192 3.28 0.02 YES

192 8192 3.45 0.025 YES

256 8192 3.98 ------ NO

According to the timing data in Table 10 security parameter change also has an

influence on the encryption and decryption time of image. Time required for encryption

of image increases with the increase in the security parameter. In the large context of

scheme things, this time difference is trivial because it is only a few seconds.

Accuracy is also impacted by changes in security parameters. The 256-bit security

parameter is improperly classifying the encrypted image since there aren't enough

levels available to accommodate it. To resolve this issue, the polynomial modulus

degree size is increased from 8192 to 16384, while keeping the same security level of

256.

6.5.3 Other parameters (𝒒 & 𝒏) variations

As discussed in Chapter 4 the ciphertext/coefficient modulus 𝑞 size has a direct relation

with the noise budget. As complex computations require more noise budget, so a larger

coefficient modulus is required. The coefficient modulus in SEAL is a positive

composite number that is the sum of several primes with a maximum bit size of 60 bits.

These primes are also called the number of levels of modulus chain. These levels

(primes) in coefficient modulus are changed after each multiplication operation. This

implies that the evaluation functions have a significant impact on the level values. So,

a complex evaluation functions require larger values of the coefficient modulus.

However, a higher coefficient modulus 𝑞 also reduces the level of security of the

schemes. Therefore, we have to increase the value of polynomial modulus 𝑛 value at

the same time to meet the required security level. Conversely, the size of polynomial

modulus 𝑛 and number of prime elements in coefficient modulus 𝑞 have the greatest

influence on performance. The relationship between the polynomial modulus degree 𝑛

62

and the corresponding upper bound of coefficient modulus q (Number of levels) for

different security level is provided in [73]. According to this recommendation, as the

polynomial modulus degree values increase the corresponding ciphertext modulus

values change and so the number of levels.

In this section, both the values of coefficient modulus 𝑞 and polynomial modulus 𝑛 are

varied to observed the change in threshold values and overall time. All timing values

are measured by using BFV scheme for different values of 𝑛 (1024, 2048, 4096, 8192,

16384) with standard security parameters of 128-bit.

Fig 21 illustrates the total execution time of each layer in our network based on variation

in polynomial modulus degree 𝑛 and the corresponding number of levels in coefficient

modulus 𝑞. As the value of polynomial modulus degree increases, the time of execution

of each layer increases too. When the value of polynomial degree 𝑛 is changed from

1024 to 16384, there is a 2x–6x increase in calculation time for the layers

(Conv/ReLU/FC).

Figure 21. Execution Time of different layers based on Polynomial Degree Variation

Fig 22 clearly demonstrates the total execution time of network based on variation in

polynomial modulus degree 𝑛 and the corresponding number of levels in coefficient

modulus 𝑞. The findings in Figure 22 illustrates that the computation time increases

with the increase in polynomial modulus degree 𝑛 and the corresponding number of

0

200

400

600

800

1000

1200

1400

Conv-1 ReLU P-1 Conv-2 P-2 Flat FC

CNN Layers Timing based on Variations in q & n

1024 2048 4096 8192 16384

https://sciwheel.com/work/citation?ids=13865422&pre=&suf=&sa=0&dbf=0

63

levels in coefficient modulus 𝑞. The polynomial modulus degree 𝑛 and time of

classification seems to be correlated linearly with an average slope, as shown in the

graph. The same is true for varying the number of levels in coefficient modulus 𝑞. It is

significant to notice that if there are polynomial degree 𝑛 is less than 4096, the noise

increase would have been not enough for the network to successfully categorize the

encrypted image. Additionally, Figure 22 slope is substantially steeper than Figure 20

slope. It makes more sense to reduce the number of layers over the security parameter

as much as feasible in order to reduce computation time.

Figure 22. Total Execution Time of model based on Polynomial Modulus Variation

Table 11 shows how long it takes to encrypt as well as decrypt the given image and

determine if the given image is classified correctly depending on the value of

polynomial modulus degree 𝑛 along with the corresponding levels in coefficient

modulus 𝑞. The timing data in Table 8 clearly shows that polynomial modulus degree 𝑛

and coefficient modulus 𝑞 do have an effect the encryption and decryption time of

image. This time increases as the values of polynomial modulus degree 𝑛 and

coefficient modulus 𝑞 increase. In the broad scheme of things, this small difference in

time is insignificant.

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Ti
m

e
in

 (
se

c)

Polynomial Modulus (n)

Total Time vs Polynomial Modulus Variation

64

Table 11. Encryption/Decryption Time

Polynomial

modulus

degree

Ciphertext

Modulus

Levels

Encryption

Time

(s)

Decryption

Time

(s)

Prediction

1024 128 0.34 --- NO

2048 128 0.66 0.01 NO

4096 128 1.53 0.01 YES

8192 128 3.72 0.03 YES

16384 128 14.83 0.34 YES

Accuracy is also affected by varying the size of polynomial modulus degree 𝑛 and

coefficient modulus 𝑞. A certain minimum number of levels corresponding the

polynomial modulus degree 𝑛 is undoubtedly required to effectively categorize the

given encrypted image and control the noise budget. There is not simple formula for

calculating the required number of levels in coefficient modulus 𝑞. But in general, the

number of levels must be equivalent to the number of multiplications in the evaluation

function. The network put to the test in this experiment includes a degree two

polynomial computation and three dot products. Because of this, early tests were

conducted with different levels set. The minimal number of levels was found by

guessing and checking when results displayed an error message.

Thus, based on experiments, it is recommend using as few factors in the coefficient

modulus is possible for good performance.

6.6 Best Configuration

By understanding all the above-mentioned results and limitations of HE, final test for

the fast configuration is carried out. Best configuration means to select such parameters

that yield both accurate predictions and the fastest timing results. In this section all the

timing values are calculated by taking the polynomial modulus degree value of 4096

and security parameter set to 128-bit.

65

Table 12. Timing of each layer based on Best Configuration

Conv-1 ReLU P-1 Conv-2 P-2 Flat FC

34 10 0.01 45 0.005 0.005 1

Table 12 represents the all-time best value of each layer execution time based on the

best parameter selection, while still maintaining the correct prediction.

66

Chapter 7

Conclusions and Future Work

We conclude our thesis by providing a concrete conclusion and future work in two

sections. The first section contains the brief overview of the thesis. The second section

includes the future work in the context of privacy-preserving classification through

CNN using HE.

7.1 Conclusion

In this thesis, we looked into ways to outsource computing securely while employing

homomorphic encryption on encrypted data. We suggested cryptographic protocols for

the widely used algorithms to act as building blocks to allow a wide range of secure

data analytics and machine learning applications on the cloud. The HE-limitations for

privacy-preserving machine learning, specifically for employing CNN for classification

in an outsourced setting, were investigated. To keep these limitations in mind, we

modified the different layer of CNN to make them compatible with HE supported

operations. In particularly, we approximated the non-linear activation functions like

Sigmoid and ReLU into functions which only includes additions and multiplications

terms. We approximated these function on different degree and scales to examine the

impact of these variations on accuracy of proposed classification model. At the end, we

calculated the time of each layer and the overall time as well as the accuracy of proposed

model by varying the HE parameters. Overall, this work served as an effective

demonstration of concept for the classification of encrypted images.

7.2 Future Work

The current study has opened several pathways for future research. Some of them are

summarized below.

In our current research, we have been working only on feed-forward neural networks.

The most prominent example is the CNN. However, there are numerous other neural

network architectures, like recurring neural networks, are available which can be

explored for evaluation using homomorphic encryption.

67

Our proposed model only included two entities the client and the server i.e., we only

consider one to one client/server architecture. This work would be expanded in the

multi-party setting using multi-key homeomorphic encryption schemes.

In our suggested study, we took into account a semi-honest threat model architecture.

The participants closely adhere to the protocol's rules in the semi-honest environment,

but they are still interested in learning about other inputs from the interactions. So, to

move beyond this threat model, like malicious threat model, would be an interesting

work to do.

68

References

[1] E. Kreke, “From Directive 95/46/EC to the General Data Protection Regulation:
Addressing the potential harm to data subjects’ rights arising from personal data
collection and data analytics,” 2018.

[2] Q. Zhang, L. T. Yang, and Z. Chen, “Privacy preserving deep computation model on
cloud for big data feature learning,” IEEE Transactions on Computers, vol. 65, no. 5,
pp. 1351–1362, 2015.

[3] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing,
“CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and
Accuracy,” in Proceedings of The 33rd International Conference on Machine Learning,
New York, New York, USA, vol. 48, pp. 201–210.

[4] H. Chabanne, A. De Wargny, J. Milgram, C. Morel, and E. Prouff, “Privacy-preserving
classification on deep neural network,” Cryptology ePrint Archive, 2017.

[5] E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: Deep neural networks over
encrypted data,” arXiv preprint arXiv:1711.05189, 2017.

[6] Y. LeCun, “The MNIST database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[7] K. Laine, “Simple encrypted arithmetic library 2.3. 1, Microsoft Research, 2017.”

[8] Z. Brakerski, “Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP,” in Advances in cryptology – CRYPTO 2012, vol. 7417, R. Safavi-
Naini and R. Canetti, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
868–886.

[9] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,”
Cryptology ePrint Archive, 2012.

[10] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arithmetic
of approximate numbers,” in Advances in cryptology – ASIACRYPT 2017, vol. 10624,
T. Takagi and T. Peyrin, Eds. Cham: Springer International Publishing, 2017, pp. 409–
437.

[11] H. Chen, K. Laine, and R. Player, “Simple Encrypted Arithmetic Library - SEAL v2.1,”
in Financial cryptography and data security, vol. 10323, M. Brenner, K. Rohloff, J.
Bonneau, A. Miller, P. Y. A. Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore, and M.
Jakobsson, Eds. Cham: Springer International Publishing, 2017, pp. 3–18.

[12] A. Ibarrondo and A. Viand, “Pyfhel: Python for homomorphic encryption libraries,” in
Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, 2021, pp. 11–16.

[13] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978,
doi: 10.1145/359340.359342.

https://sciwheel.com/work/bibliography/13762322
https://sciwheel.com/work/bibliography/13762322
https://sciwheel.com/work/bibliography/13762322
https://sciwheel.com/work/bibliography/13749558
https://sciwheel.com/work/bibliography/13749558
https://sciwheel.com/work/bibliography/13749558
https://sciwheel.com/work/bibliography/13749567
https://sciwheel.com/work/bibliography/13749567
https://sciwheel.com/work/bibliography/13749567
https://sciwheel.com/work/bibliography/13749567
https://sciwheel.com/work/bibliography/13749560
https://sciwheel.com/work/bibliography/13749560
https://sciwheel.com/work/bibliography/13749561
https://sciwheel.com/work/bibliography/13749561
https://sciwheel.com/work/bibliography/13762323
https://sciwheel.com/work/bibliography/13762323
https://sciwheel.com/work/bibliography/13768004
https://sciwheel.com/work/bibliography/12170336
https://sciwheel.com/work/bibliography/12170336
https://sciwheel.com/work/bibliography/12170336
https://sciwheel.com/work/bibliography/12170336
https://sciwheel.com/work/bibliography/13763825
https://sciwheel.com/work/bibliography/13763825
https://sciwheel.com/work/bibliography/7019327
https://sciwheel.com/work/bibliography/7019327
https://sciwheel.com/work/bibliography/7019327
https://sciwheel.com/work/bibliography/7019327
https://sciwheel.com/work/bibliography/7019355
https://sciwheel.com/work/bibliography/7019355
https://sciwheel.com/work/bibliography/7019355
https://sciwheel.com/work/bibliography/7019355
https://sciwheel.com/work/bibliography/13887409
https://sciwheel.com/work/bibliography/13887409
https://sciwheel.com/work/bibliography/13887409
https://sciwheel.com/work/bibliography/4532972
https://sciwheel.com/work/bibliography/4532972
https://sciwheel.com/work/bibliography/4532972

69

[14] J. Katz and Y. Lindell, Introduction to modern cryptography. Chapman and Hall/CRC,
2020.

[15] C. Fontaine and F. Galand, “A survey of homomorphic encryption for nonspecialists,”
EURASIP J. on Info. Security, vol. 2007, pp. 1–10, 2007, doi: 10.1155/2007/13801.

[16] T. Elgamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE Trans. Inform. Theory, vol. 31, no. 4, pp. 469–472, Jul. 1985, doi:
10.1109/TIT.1985.1057074.

[17] J. Benaloh, “Dense probabilistic encryption,” in Proceedings of the workshop on
selected areas of cryptography, 1994, pp. 120–128.

[18] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes,” in Advances in cryptology — EUROCRYPT ’99, J. Stern, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 223–238.

[19] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play mental poker
keeping secret all partial information,” in Proceedings of the fourteenth annual ACM
symposium on Theory of computing - STOC ’82, New York, New York, USA, 1982,
pp. 365–377, doi: 10.1145/800070.802212.

[20] I. Damgård and M. Jurik, “A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system,” in International workshop on public key
cryptography, 2001, pp. 119–136.

[21] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on ciphertexts,” in
Theory of cryptography conference, 2005, pp. 325–341.

[22] T. S. Fun and A. Samsudin, “A survey of homomorphic encryption for outsourced big
data computation,” KSII Transactions on Internet and Information Systems (TIIS), vol.
10, no. 8, pp. 3826–3851, 2016.

[23] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the
41st annual ACM symposium on Symposium on theory of computing - STOC ’09, New
York, New York, USA, 2009, p. 169, doi: 10.1145/1536414.1536440.

[24] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with relatively small
key and ciphertext sizes,” in International Workshop on Public Key Cryptography,
2010, pp. 420–443.

[25] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption,” in Proceedings of the 44th
symposium on Theory of Computing - STOC ’12, New York, New York, USA, 2012, p.
1219, doi: 10.1145/2213977.2214086.

[26] Z. Brakerski and V. Vaikuntanathan, “Fully Homomorphic Encryption from Ring-
LWE and Security for Key Dependent Messages,” in Advances in cryptology – CRYPTO
2011, vol. 6841, P. Rogaway, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 505–524.

[27] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully Homomorphic
Encryption over the Integers,” in Advances in Cryptology – EUROCRYPT 2010, vol.
6110, H. Gilbert, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 24–43.

https://sciwheel.com/work/bibliography/13751539
https://sciwheel.com/work/bibliography/13751539
https://sciwheel.com/work/bibliography/11721802
https://sciwheel.com/work/bibliography/11721802
https://sciwheel.com/work/bibliography/1198388
https://sciwheel.com/work/bibliography/1198388
https://sciwheel.com/work/bibliography/1198388
https://sciwheel.com/work/bibliography/13751540
https://sciwheel.com/work/bibliography/13751540
https://sciwheel.com/work/bibliography/9163809
https://sciwheel.com/work/bibliography/9163809
https://sciwheel.com/work/bibliography/9163809
https://sciwheel.com/work/bibliography/7019353
https://sciwheel.com/work/bibliography/7019353
https://sciwheel.com/work/bibliography/7019353
https://sciwheel.com/work/bibliography/7019353
https://sciwheel.com/work/bibliography/13751541
https://sciwheel.com/work/bibliography/13751541
https://sciwheel.com/work/bibliography/13751541
https://sciwheel.com/work/bibliography/13751542
https://sciwheel.com/work/bibliography/13751542
https://sciwheel.com/work/bibliography/13751544
https://sciwheel.com/work/bibliography/13751544
https://sciwheel.com/work/bibliography/13751544
https://sciwheel.com/work/bibliography/2843384
https://sciwheel.com/work/bibliography/2843384
https://sciwheel.com/work/bibliography/2843384
https://sciwheel.com/work/bibliography/13751545
https://sciwheel.com/work/bibliography/13751545
https://sciwheel.com/work/bibliography/13751545
https://sciwheel.com/work/bibliography/5190187
https://sciwheel.com/work/bibliography/5190187
https://sciwheel.com/work/bibliography/5190187
https://sciwheel.com/work/bibliography/5190187
https://sciwheel.com/work/bibliography/13751546
https://sciwheel.com/work/bibliography/13751546
https://sciwheel.com/work/bibliography/13751546
https://sciwheel.com/work/bibliography/13751546
https://sciwheel.com/work/bibliography/2843386
https://sciwheel.com/work/bibliography/2843386
https://sciwheel.com/work/bibliography/2843386

70

[28] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer,” SIAM Rev., vol. 41, no. 2, pp. 303–332, Jan.
1999, doi: 10.1137/S0036144598347011.

[29] W. Diffie and M. E. Hellman, “New directions in cryptography,” in Democratizing
Cryptography: The Work of Whitfield Diffie and Martin Hellman, 2022, pp. 365–390.

[30] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48, no. 177, pp. 203–
203, Jan. 1987, doi: 10.1090/S0025-5718-1987-0866109-5.

[31] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in cryptology —
CRYPTO ’85 proceedings, H. C. Williams, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1986, pp. 417–426.

[32] R. J. McEliece, “A public-key cryptosystem based on algebraic,” Coding Thv, vol.
4244, pp. 114–116, 1978.

[33] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public key
cryptosystem,” in International algorithmic number theory symposium, 1998, pp. 267–
288.

[34] M. Ajtai, “Generating hard instances of lattice problems,” in Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, 1996, pp. 99–108.

[35] M. Ajtai, “The shortest vector problem in L2 is NP-hard for randomized reductions,”
in Proceedings of the thirtieth annual ACM symposium on Theory of computing, 1998,
pp. 10–19.

[36] O. Regev, “Lattice-based cryptography,” in Annual International Cryptology
Conference, 2006, pp. 131–141.

[37] C. Peikert, “A decade of lattice cryptography,” FNT in Theoretical Computer Science,
vol. 10, no. 4, pp. 283–424, 2016, doi: 10.1561/0400000074.

[38] S. Garg, C. Gentry, and S. Halevi, “Candidate Multilinear Maps from Ideal Lattices,”
in Advances in cryptology – EUROCRYPT 2013, vol. 7881, T. Johansson and P. Q.
Nguyen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–17.

[39] D. Micciancio and O. Regev, “Lattice-based cryptography,” in Post-quantum
cryptography, Springer, 2009, pp. 147–191.

[40] S. D. Galbraith, Mathematics of public key cryptography. Cambridge University Press,
2012.

[41] D. Micciancio and S. Goldwasser, Complexity of lattice problems: a cryptographic
perspective, vol. 671. Springer Science & Business Media, 2002.

[42] D. Micciancio, “The hardness of the closest vector problem with preprocessing,” IEEE
Transactions on Information Theory, vol. 47, no. 3, pp. 1212–1215, 2001.

[43] D. Micciancio, “The shortest vector in a lattice is hard to approximate to within some
constant,” SIAM journal on Computing, vol. 30, no. 6, pp. 2008–2035, 2001.

[44] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,”
Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40, 2009.

https://sciwheel.com/work/bibliography/13112267
https://sciwheel.com/work/bibliography/13112267
https://sciwheel.com/work/bibliography/13112267
https://sciwheel.com/work/bibliography/13764432
https://sciwheel.com/work/bibliography/13764432
https://sciwheel.com/work/bibliography/13764433
https://sciwheel.com/work/bibliography/13764433
https://sciwheel.com/work/bibliography/13764434
https://sciwheel.com/work/bibliography/13764434
https://sciwheel.com/work/bibliography/13764434
https://sciwheel.com/work/bibliography/13764435
https://sciwheel.com/work/bibliography/13764435
https://sciwheel.com/work/bibliography/13764436
https://sciwheel.com/work/bibliography/13764436
https://sciwheel.com/work/bibliography/13764436
https://sciwheel.com/work/bibliography/13751548
https://sciwheel.com/work/bibliography/13751548
https://sciwheel.com/work/bibliography/13751547
https://sciwheel.com/work/bibliography/13751547
https://sciwheel.com/work/bibliography/13751547
https://sciwheel.com/work/bibliography/13751549
https://sciwheel.com/work/bibliography/13751549
https://sciwheel.com/work/bibliography/13751552
https://sciwheel.com/work/bibliography/13751552
https://sciwheel.com/work/bibliography/13751551
https://sciwheel.com/work/bibliography/13751551
https://sciwheel.com/work/bibliography/13751551
https://sciwheel.com/work/bibliography/13751553
https://sciwheel.com/work/bibliography/13751553
https://sciwheel.com/work/bibliography/13751554
https://sciwheel.com/work/bibliography/13751554
https://sciwheel.com/work/bibliography/13764789
https://sciwheel.com/work/bibliography/13764789
https://sciwheel.com/work/bibliography/13751555
https://sciwheel.com/work/bibliography/13751555
https://sciwheel.com/work/bibliography/13751556
https://sciwheel.com/work/bibliography/13751556
https://sciwheel.com/work/bibliography/13751557
https://sciwheel.com/work/bibliography/13751557

71

[45] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors
over rings,” in Annual international conference on the theory and applications of
cryptographic techniques, 2010, pp. 1–23.

[46] “An Introduction To Mathematics Behind Neural Networks | by Gautham S | Analytics
Vidhya | Medium.” [Online]. Available: https://medium.com/analytics-vidhya/an-
introduction-to-mathematics-behind-neural-networks-135df0b85fa1. [Accessed: 16-
Nov-2022]

[47] “A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way | by
Sumit Saha | Towards Data Science.” [Online]. Available:
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53. [Accessed: 16-Nov-2022]

[48] “Simple Introduction to Convolutional Neural Networks | by Matthew Stewart |
Towards Data Science.” [Online]. Available: https://towardsdatascience.com/simple-
introduction-to-convolutional-neural-networks-cdf8d3077bac. [Accessed: 16-Nov-
2022]

[49] H. Yingge, I. Ali, and K.-Y. Lee, “Deep Neural Networks on Chip - A Survey,” in 2020
IEEE International Conference on Big Data and Smart Computing (BigComp), 2020,
pp. 589–592, doi: 10.1109/BigComp48618.2020.00016.

[50] “Affine Layer Definition | DeepAI.” [Online]. Available: https://deepai.org/machine-
learning-glossary-and-terms/affine-layer. [Accessed: 16-Nov-2022]

[51] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint Archive, 2016.

[52] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on intel SGX,” in
Proceedings of the 10th European Workshop on Systems Security - EuroSec’17, New
York, New York, USA, 2017, pp. 1–6, doi: 10.1145/3065913.3065915.

[53] S. Samet and A. Miri, “Privacy-preserving classification and clustering using secure
multi-party computation,” in Proceeding of the International Conference on Relations,
Orders and Graphs: Interaction with Computer Science (ROGICS), 2008, pp. 482–491.

[54] H. C. A. van Tilborg and S. Jajodia, Eds., “Secure Multiparty Computation,” in
Encyclopedia of cryptography and security, Boston, MA: Springer US, 2011, pp. 1121–
1121.

[55] T. Graepel, K. Lauter, and M. Naehrig, “ML confidential: machine learning on
encrypted data,” in Information security and cryptology – ICISC 2012, vol. 7839, T.
Kwon, M.-K. Lee, and D. Kwon, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 1–21.

[56] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning classification over
encrypted data,” Cryptology ePrint Archive, 2014.

[57] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and M. Naehrig, “Crypto-
nets: Neural networks over encrypted data,” arXiv preprint arXiv:1412.6181, 2014.

[58] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure outsourced matrix computation and
application to neural networks,” in Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security, 2018, pp. 1209–1222.

https://sciwheel.com/work/bibliography/13751558
https://sciwheel.com/work/bibliography/13751558
https://sciwheel.com/work/bibliography/13751558
https://sciwheel.com/work/bibliography/13942934
https://sciwheel.com/work/bibliography/13942934
https://sciwheel.com/work/bibliography/13942934
https://sciwheel.com/work/bibliography/13942934
https://sciwheel.com/work/bibliography/13943000
https://sciwheel.com/work/bibliography/13943000
https://sciwheel.com/work/bibliography/13943000
https://sciwheel.com/work/bibliography/13943000
https://sciwheel.com/work/bibliography/13942884
https://sciwheel.com/work/bibliography/13942884
https://sciwheel.com/work/bibliography/13942884
https://sciwheel.com/work/bibliography/13942884
https://sciwheel.com/work/bibliography/13943035
https://sciwheel.com/work/bibliography/13943035
https://sciwheel.com/work/bibliography/13943035
https://sciwheel.com/work/bibliography/13943056
https://sciwheel.com/work/bibliography/13943056
https://sciwheel.com/work/bibliography/13764984
https://sciwheel.com/work/bibliography/5680536
https://sciwheel.com/work/bibliography/5680536
https://sciwheel.com/work/bibliography/5680536
https://sciwheel.com/work/bibliography/13764985
https://sciwheel.com/work/bibliography/13764985
https://sciwheel.com/work/bibliography/13764985
https://sciwheel.com/work/bibliography/12012409
https://sciwheel.com/work/bibliography/12012409
https://sciwheel.com/work/bibliography/12012409
https://sciwheel.com/work/bibliography/4120281
https://sciwheel.com/work/bibliography/4120281
https://sciwheel.com/work/bibliography/4120281
https://sciwheel.com/work/bibliography/4120281
https://sciwheel.com/work/bibliography/13764986
https://sciwheel.com/work/bibliography/13764986
https://sciwheel.com/work/bibliography/13764987
https://sciwheel.com/work/bibliography/13764987
https://sciwheel.com/work/bibliography/13960924
https://sciwheel.com/work/bibliography/13960924
https://sciwheel.com/work/bibliography/13960924

72

[59] Y. Aono, T. Hayashi, L. Wang, S. Moriai, and Others, “Privacy-preserving deep
learning via additively homomorphic encryption,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2017.

[60] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in 2015 53rd Annual
Allerton Conference on Communication, Control, and Computing (Allerton), 2015, pp.
909–910, doi: 10.1109/ALLERTON.2015.7447103.

[61] W. Liu, F. Pan, X. A. Wang, Y. Cao, and D. Tang, “Privacy-preserving all
convolutional net based on homomorphic encryption,” in International Conference on
Network-Based Information Systems, 2018, pp. 752–762.

[62] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “$\{$GAZELLE$\}$: A low
latency framework for secure neural network inference,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 1651–1669.

[63] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network predictions via
minionn transformations,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security - CCS ’17, New York, New York, USA, 2017,
pp. 619–631, doi: 10.1145/3133956.3134056.

[64] A. Sanyal, M. Kusner, A. Gascon, and V. Kanade, “TAPAS: Tricks to accelerate
(encrypted) prediction as a service,” in International Conference on Machine Learning,
2018, pp. 4490–4499.

[65] M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang, “Secure logistic regression based on
homomorphic encryption: design and evaluation.,” JMIR Med. Inform., vol. 6, no. 2, p.
e19, Apr. 2018, doi: 10.2196/medinform.8805.

[66] A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, “Logistic regression model training
based on the approximate homomorphic encryption.,” BMC Med. Genomics, vol. 11,
no. Suppl 4, p. 83, Oct. 2018, doi: 10.1186/s12920-018-0401-7.

[67] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic evaluation of
deep discretized neural networks,” in Advances in cryptology – CRYPTO 2018: 38th
annual international cryptology conference, santa barbara, CA, USA, august 19–23,
2018, proceedings, part III, vol. 10993, H. Shacham and A. Boldyreva, Eds. Cham:
Springer International Publishing, 2018, pp. 483–512.

[68] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low latency privacy preserving
inference,” in International Conference on Machine Learning, 2019, pp. 812–821.

[69] J.-W. Lee et al., “Privacy-preserving machine learning with fully homomorphic
encryption for deep neural network,” IEEE Access, vol. 10, pp. 30039–30054, 2022.

[70] W. Han and K. E. Atkinson, Theoretical numerical analysis: A functional analysis
framework. Springer, 2009.

[71] C. F. Dunkl and Y. Xu, Orthogonal polynomials of several variables. Cambridge:
Cambridge University Press, 2014.

[72] J. Schlessman, “Approximation of the sigmoid function and its derivative using a
minimax approach,” 2002.

https://sciwheel.com/work/bibliography/13960925
https://sciwheel.com/work/bibliography/13960925
https://sciwheel.com/work/bibliography/13960925
https://sciwheel.com/work/bibliography/10157238
https://sciwheel.com/work/bibliography/10157238
https://sciwheel.com/work/bibliography/10157238
https://sciwheel.com/work/bibliography/13960926
https://sciwheel.com/work/bibliography/13960926
https://sciwheel.com/work/bibliography/13960926
https://sciwheel.com/work/bibliography/13960928
https://sciwheel.com/work/bibliography/13960928
https://sciwheel.com/work/bibliography/13960928
https://sciwheel.com/work/bibliography/13961044
https://sciwheel.com/work/bibliography/13961044
https://sciwheel.com/work/bibliography/13961044
https://sciwheel.com/work/bibliography/13961044
https://sciwheel.com/work/bibliography/13960929
https://sciwheel.com/work/bibliography/13960929
https://sciwheel.com/work/bibliography/13960929
https://sciwheel.com/work/bibliography/7712794
https://sciwheel.com/work/bibliography/7712794
https://sciwheel.com/work/bibliography/7712794
https://sciwheel.com/work/bibliography/7019325
https://sciwheel.com/work/bibliography/7019325
https://sciwheel.com/work/bibliography/7019325
https://sciwheel.com/work/bibliography/13960930
https://sciwheel.com/work/bibliography/13960930
https://sciwheel.com/work/bibliography/13960930
https://sciwheel.com/work/bibliography/13960930
https://sciwheel.com/work/bibliography/13960930
https://sciwheel.com/work/bibliography/13960931
https://sciwheel.com/work/bibliography/13960931
https://sciwheel.com/work/bibliography/13960932
https://sciwheel.com/work/bibliography/13960932
https://sciwheel.com/work/bibliography/13887383
https://sciwheel.com/work/bibliography/13887383
https://sciwheel.com/work/bibliography/13887384
https://sciwheel.com/work/bibliography/13887384
https://sciwheel.com/work/bibliography/13887385
https://sciwheel.com/work/bibliography/13887385

73

[73] M. Chase et al., “Security of homomorphic encryption,” HomomorphicEncryption. org,
Redmond WA, Tech. Rep, 2017.

https://sciwheel.com/work/bibliography/13865422
https://sciwheel.com/work/bibliography/13865422

