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ABSTRACT 

 

To reduce fruit loss and ensure quality, harvest timing and load information is critical to 

farm management (of labour and packing consumables). Early harvest brings poor eating quality 

fruit to the market, while late harvest decreases the available shelf life of fruit. These factors drive 

the need for quantitative tools for fruit maturity and quality testing. The assessment of harvest time 

is generally based on time (number of days from flowering) and physical features (size, shape and 

surface characteristics, firmness and pulp color). The assessment of these physical features is 

subjective and requires experience labour. The current quality inspection methods in Pakistan 

include weight-based segregation and packaging, therefore the quality of each fruit is not traceable. 

A few value chains have now set standards for fruit dry matter (DM) content at the time of harvest 

assessed non-destructively via near infrared spectroscopy (NIRS) (e.g. Australian Mango Industry 

Association). Pakistani supply chain also needs to adopt such a system that provides traceability 

and visibility to each sample within fruit packs.  

The focus of this thesis is to investigate the short-wave NIRS (SWNIRS) for fruit quality 

inspection and present a decision support system for the Pakistani horticulture. First in this thesis, 

I have developed a decision support system for prediction of Pakistani fruit’s quality index values 

using SWNIRS. The investigated fruits, i.e. export varieties of mango (‘Sindhri’, ‘Samar Bahisht 

Chaunsa’ and ‘Sufaid Chaunsa’), export variety of mandarin (‘Kinnow’) and loquat, hold high 

commercial significance to Pakistan, but also provide examples of fruit with relatively thin and 

thick skin and with relatively thick and thin edible flesh. These differences in morphology can be 

expected to impact the non-invasive assessment of flesh characters using SWNIRS. Locally 

developed partial least squares regression (PLSR) models returned an coefficient of determination 

(R2) of 0.90 and root mean square error (RMSE) of 0.95 oBrix for solids soluble content (SSC) and 

R2 of 0.80 and RMSE of 1.17% for DM in the prediction of a mango test set, and an R2 of 0.71 

and RMSE 0.65 oBrix in the prediction of SSC in a Kinnow mandarin test set. For cultivar ‘Tanaka’ 

loquats, the locally developed PLSR model achieved an R2 of 0.90 and RMSE of 0.95oBrix in the 

prediction of a test set. The results confirm the suitability of NIRS for the non-invasive evaluation 

of thin-skinned fruit and highlight the need for a data model trained on spectra obtained from 

multiple varieties when indicated by quality control on prediction performance. 

 Most of the reported literature on non-destructive fruit quality estimation uses an 

indirect approach to classify fruit sample i.e. predict the quality index value using some machine 

learning regression algorithm and based on the predicted value judge the sample quality (which 

requires prior knowledge about standards). Second, in this thesis, I have proposed a direct 

sweetness classifier for fruit sweetness classification as opposed to thresholding based indirect 

measure of quality index value. I have defined acceptance criteria for melons and oranges based 

on direct classification method to predict the sweetness level using NIR spectroscopy. I have 

compared performance of our classification-based approach with that of regression-based 

thresholding methods reported in literature. The proposed classifier has been tested for sweetness 

classification of Pakistani melon (variety: ‘Honey melons’) and orange (variety: ‘Blood red’, 

‘Mosambi’ and ‘Succari’) fruits. The best SSC model was obtained using multiple linear 

regression on second derivative of spectral data (for wavelength range 729–975 nm) with 

correlation coefficient (R) = 0.93, and RMSE = 1.63 on test samples. Sweetness of test samples 

were obtained using ◦Brix thresholding with an accuracy of 55.45% for three classes. The best 
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direct sweetness classifier was obtained using K nearest neighbor (KNN) on second derivative of 

spectral data (for wavelength range 729–975 nm) with an accuracy of 70.3% for three classes on 

test samples. For oranges, PLSR models were developed for Brix, titratable acidity (TA), Brix: 

TA, and BrimA (Brix minus acids) estimation with a correlation coefficient of 0.57, 0.73, 0.66, 

and 0.55, respectively, on independent test data. The ensemble classifier achieved 81.03% 

accuracy for three classes (sweet, mixed, and acidic) classification on independent test data for 

direct fruit classification. Extensive evaluation validates our argument that modelling a direct 

sweetness classifier is a better approach as compared to estimation of quality indices for sweetness 

classification using NIR spectroscopy.  

 Automated fruit classification is a significant task in many industrial applications. For 

instance, it may help a supermarket cashier in identifying the fruit, its cultivar and subsequently 

its price. Computer vision based automatic fruit classification is relatively a mature field now, but 

it requires complex computer vision algorithms and systems to accurately classify different fruits. 

Third, I present SWNIR spectral data-based classifier for fruit classification problems. The 

research focuses on O-H and C-H overtone features of fruit and its correlation with SWNIRS and 

therefore opens a new dimension of fruit classification problems using SWNIRS. Eleven fruits, 

which include apple, cherry, hass, kiwi, grapes, mango, melon, orange, loquat, plum, and apricot, 

were used in this study to cover physical characteristics such as peel thinness, pulp, seed thickness, 

and size. Different shallow machine learning architectures were trained to classify fruits using 

spectral feature vectors. At first, using 83 features vectors within the range of 725-975nm (3nm-

resolution) and then using only four features of wavelength 770nm, 840nm, 910nm, and 960nm 

(corresponding to O-H and C-H overtone features). For the 83 spectral features range as an input, 

the QDA classifier achieved a cross-validation accuracy of 100% and a test data accuracy of 

93.02%. For the four features vector as an input, the QDA classifier achieved a cross-validation 

accuracy of 97.1% and test data accuracy of 90.38%. The results demonstrate that fruit 

classification is mainly a function of absorptivity of SWNIR radiation primarily with respect to O-

H and C-H overtones features. An LED-based device mainly having 770nm, 840nm, 910nm, and 

960nm range LEDs can be used in applications where automation in fruit classification is required. 

 The decision support system presented in this dissertation will not only aid the Pakistani 

supply chain for automated, efficient and non-destructive quality assessment of fruits in particular, 

but in general also opens a new dimension for fruit segregation in two applications: 1) using direct 

classification based on acceptance criteria of sweetness instead of quantitative assessment of 

quality attributes and 2) fruit type classification using SWNIR spectral features.   
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Chapter 1 : INTRODUCTION 

 

This chapter summarizes the motivation, research problems, scope, objectives and limitations of 

the presented research. 

1.1. Motivation: 

Each year 1.3 billion tonnes of the world's food supply worth around $1 trillion is 

squandered due to inefficient harvesting and transportation procedure. Concurring to UNESCO 

sustainable consumption and production goal, accomplishing more with less is the key to a 

sustainable future. Reducing environmental degradation, enhancing resource efficiency, and 

supporting more sustainable lives also accounts for this objective. 

Despite being an Agricultural country, Pakistan’s agricultural contribution to GDP 

declined to 24%, from 51% in 1957 [1]. According to Agriculture marketing information service, 

around twenty-nine types of fruits are produced throughout the year in Pakistan. However, mostly 

the produced fruits are expended in domestic markets. Pakistan exported 768 thousand tons of 

fruits FY 2019-20. Production of citrus, mango, apple, melons, dates, guava, and apricot reflects 

strong domestic market demand for horticulture crops. The highest production has reached i.e. 

Citrus fruit & Mango 2.4 and 1.7 million tons, the largest fruit crop group by volume and are major 

export revenue earner. Pakistan is the 4th largest producer of mango in the world. In the year 2019-

20 125000 tons of mango were exported to different regions of the world, earning $72 million for 

Pakistan. Figure 1.1 shows Pakistan’s mango export statistics since 2012[1]. From 2014-17, a 

decrease in mango export can be seen due to deteriorated quality of exported fruit (the EU imposed 

a ban on Pakistani mango import). Hence, new regulations were made to ensure quality. 

 



 

2 
 

 

Figure 1.1: Pakistan's mango export statistics since 2012 

 

 

Figure 1.2: Pakistan’s mango supply chains 

 

Like other fruits and vegetables, Pakistan’s mango supply chain involves multiple agents 

and procedures (see Figure 1.2). Fruit harvest maturity/quality is of great concern for growers and 

dealers. Early harvest of fruit results in delivery of poor eating quality fruit to market with 

consequent loss of purchases, while late harvest of fruit results in post-harvest loss by delivery of 

over ripe fruit to markets. The assessment of harvest time is generally based on time (number of 

days from flowering) and physical features (size, shape and surface characteristics, firmness and 

pulp color). Chemical and physical methods determine quality indices such as solids soluble 
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contents (SSC), dry matter (DM) and titratable acidity (TA). However, these methods are 

destructive and time-consuming procedures [2]. Currently, in Pakistan, the quality inspection 

methods are either manual, destructive or are weight-based. Thus, a need arises for non-

destructive, fast, accurate instrumental techniques capable of screening the samples on-line/at-line. 

 Non-destructive testing using portable near infrared spectroscopy (NIRS) has been used 

in quantitative measure of fruit quality indices, which are correlated with fruit maturity [2]. In 

recent years, researchers have used NIRS over different wavelength regions with machine learning 

regression algorithms to develop maturity indexes prediction models of various fruits including 

apple [3],[4], pear [5],[6], mango [7], banana [8], [9], melon [10], [11], mandarin [12], [13], 

strawberry [14],[15], apricot [16], [17], kiwifruit [18],[19], persimmon [20], grape [21],[22], 

loquat [23] and pineapple [24]. However, due to the diversity in varieties and growing conditions, 

it is essential to develop the maturity index prediction model for a particular variety, growing 

region and for local or export varieties [2]. The Vis and NIR region of the light spectrum has the 

range 400-750 nm and 750-2500 nm, respectively. The short wave NIR (SWNIR) or Herschel 

region lies between 750-1100 nm and the extended NIR region lies between 1100-2500 nm. The 

SWNIR region is used commercially for the assessment of internal quality attributes of intact fruit, 

in preference to the extended NIR region [25]. Longer wavelength ranges offer narrower and 

stronger absorption features as compared to SWNIR and thus better evaluation of internal 

parameters however, the SWNIR wavelengths have greater effective penetration depth into the 

fruit, hence, offer robustness across independent populations and given the variation in outer layer 

attributes. The short-wave Vis-NIR option is preferred for commercial purposes due to (currently) 

lower hardware costs [25], [26]. 

 The focus of this thesis is to investigate the SWNIR spectroscopy for fruit quality 

inspection and present a decision support system for the Pakistani horticulture. Recent reviews 

[25], [26] of the use of NIRS in fruit quality evaluation have noted the need for further work in the 

development of instrumentation, chemometric procedures including a need to demonstrate model 

robustness in prediction of fruit populations from a range of varieties and growing conditions, and 

for further application development in terms of application of NIRS to assessment of new 

commodities and attributes.   

 First, in this thesis, I developed a decision support system for the prediction of Pakistani 

fruit’s quality index values using SWNIRS. The current quality inspection methods in Pakistan 



 

4 
 

include weight-based segregation and packaging, therefore the quality of each fruit is not traceable. 

A few value chains have now set standards for fruit DM content at the time of harvest assessed 

non-destructively via NIRS (e.g. Australian Mango Industry Association, [27]). The Pakistani 

supply chain also needs to adopt such a system that provides traceability and visibility to each 

sample within fruit packs.   

Second, in this thesis, I have proposed a direct sweetness classifier for fruit sweetness 

classification as opposed to thresholding based indirect measure of quality index value. The 

proposed classifier has been tested for sweetness classification of Pakistani melons and orange 

cultivars. Most of the reported literature has reported chemometric models based on machine 

learning regression algorithms to predict fruit quality index value. Decision is taken based on the 

predicted value of quality index. For fruit sorting, a qualitative assessment (e.g. classification 

technique) can be used rather than a quantitative measurement of the amount of an attribute. Many 

claims exist in literature about fruit population classification, such as based on cultivars or species, 

geographic locations, or production systems [25]. Without explicit a priori information of the NIR 

evaluated component, NIRS can be utilised to determine an attribute. Jacobs et al. [28], for 

example, used NIR spectra to determine the storage life of lettuce. 

Third, I present SWNIR spectral data-based classifier for fruit classification problems. The 

research focuses on O-H (Oxygen - Hydrogen) and C-H (Carbon - Hydrogen) overtone features of 

fruit and its correlation with SWNIRS and therefore opens a new dimension of fruit classification 

problems using SWNIRS. Fruit classification is a complex and challenging problem due to 

interclass similarities and uneven intraclass attributes. Choice of data acquisition sensors and 

relevant features is critical. Knowledge in the domain of computer vision has been widely used to 

solve the fruit classification problem using many sensors from black and white cameras to non-

visual sensors like acoustic and tactile sensors [29]. For non-destructive classification, the acoustic 

and tactile sensors have limitations such as physical contact or fruit excitation requirements [30]–

[36]. Vision based sensors also have limitations like high sensitivity to light conditions and 

background environment which introduce problems like reflection, refraction, translation, rotation 

and scale dependence.  

To summarize, I have chosen to investigate the potential of SWNIR spectroscopy for non-

destructive fruit sorting and quality inspection using direct and indirect approach to classify fruits.  
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1.2. Research Problems: 

 

Section 1.1 summarised the research's objective and narrowed down its focus to a specific set of 

applications. In this section, I describe the research questions I set out to answer. 

1. To provide traceability and visibility to each sample within a fruit pack, is it possible to 

measure non-destructively fruit quality estimates (such as, DM and/or SSC) during 

packaging of export fruit varieties in Pakistan?  

2. Is it possible to have a decision support system that segregates fruit samples based on 

quality attributes using SWNIR spectral absorbance of fruits through direct classification 

instead of estimating fruit quality attributes from SWNIR spectral absorbance (such as, 

DM, SSC or etc. through regression) using machine learning models? 

3. Is it possible to classify different types of fruit using a SWNIRS or a multiwavelength LED 

based simple and cost-effective device? 

 

1.3. Scope, Objectives and limitations: 

 

In this section, the scope, objectives and limitations of my research are described. 

 

1. To introduce quality traceable / quality-based segregation system in Pakistani supply 

chain, I developed a decision support system for prediction of Pakistani fruit’s quality 

index values non-destructively. The investigated fruits hold high commercial 

significance to Pakistan, but also provide examples of fruit with relatively thin and 

thick skin and with relatively thick and thin edible flesh. These differences in 

morphology can be expected to impact the non-invasive assessment of flesh characters 

using NIRS. The objectives are: 

(a) To develop NIRS based models for on-tree prediction of SSC and DM for three 

important export varieties of mango i.e.  ‘Sindhri’, ‘Sufaid Chaunsa’ and ‘Samar 

Bahisht Chaunsa’.  

(b) To develop SSC prediction model for our export variety of mandarin i.e. ‘Kinnow’. 

(c) To assess the applicability of field portable NIRS to a novel commodity, Loquat 

(investigated variety, ‘Tanaka’). 
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The developed mango, mandarin and loquat models were trained with dataset collected 

at a single temperature (25oC). To obtain a robust model against sample temperature 

variations (for on-tree predictions), the model needs to be trained with samples scanned 

at multiple temperatures.   

 

2. To present a decision support system that can directly classify fruit samples as 

acceptable class sample or not, I choose melon and orange fruit as a case study. Melon 

and orange are high-value fruit crop grown on a large scale in Pakistan. They are not 

only cherished in Pakistan but the citrus fruit brings handsome revenue to the country 

by its export to many countries. Another reason for choosing these fruits is their thick 

inedible peel (average rind thickness of melons is 6.68mm and oranges is 5mm) which 

makes the penetration of NIR radiation challenging. Investigated local cultivars include 

one cultivar of melon i.e. ‘Honey’ melons and three cultivars of oranges i.e. ‘Mosambi’, 

‘Succari’ and ‘Blood red’. The objectives are as follows: 

(a) To define acceptance criteria for melons based on direct classification method to 

predict sweetness level using NIR spectroscopy. 

(b) To define acceptance criteria for oranges based on direct classification method to 

predict taste level (sweet/mix/acidic) using NIR spectroscopy. 

(c) Suitable design of the decision support system elements and selection of suitable 

pre-processing and classification techniques. 

(d) Compare proposed direct classification method with literature reported indirect 

method of quality index value prediction. 

Considering orange fruit, along with sweetness, the consumer acceptance is usually 

also linked with richness and tartness. As in the case of succari cultivar which is always 

sweet but not as tasty as mosambi and blood red cultivars. Our proposed sweetness 

classifier for orange is based on acceptance criteria linked only with sweetness of 

sample and not the tartness and richness parameters. 

 

3. To investigate the potential of SWNIRS for fruit classification problem, I collected 

datasets using the F-750 for eleven fruits including apple, cherry, hass, kiwi, grapes, 
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mango, melon, orange, loquat, plum, and apricot to cover physical characteristics such 

as peel thinness, pulp, seed thickness, and size. The objectives are: 

(a) To test different shallow machine learning architectures for fruit type classification 

(b) Compare two sets of spectral feature vectors i.e. 83 features vectors within the range 

of 725-975nm (3nm-resolution) and only four features of wavelength 770nm, 

840nm, 910nm, and 960nm (corresponding to O-H and C-H overtone features). 

 

1.4. Contributions: 

 

The main contributions of this dissertation are as follows: 

 

1. I present a decision support system for non-destructive quality-based fruit sorting and 

grading for Pakistani horticulture. 

2. I present a novel decision support system to predict sweetness of melons and oranges 

which is based on direct classification approach. 

3. I present SWNIR spectroscopy-based solution to fruit classification problem. 

 

1.5. Publications: 

This section lists the papers I have published and submitted for review as part of this 

dissertation. 

 

Published papers: 

 

1. Zeb, A., Qureshi, W. S., Ghafoor, A., Malik, A., Imran, M., Iqbal, J., & Alanazi, E. 

(2021). Is this melon sweet? A quantitative classification for near-infrared 

spectroscopy. Infrared Physics & Technology, 114, 103645. (IF: 2.638) [37] 

2. Zeb, A., Qureshi, W. S., Ghafoor, A., & O’Sullivan, D. (2022, February). Learning 

fruit class from short wave near infrared spectral features, an AI approach towards 

determining fruit type. In 2022 8th International Conference on Mechatronics and 

Robotics Engineering (ICMRE) (pp. 193-196). IEEE. [38] 
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3. Zeb, A., Walsh, K.B., Qureshi, W.S., Malik, A., Shah, S.S.A., Ghafoor, A., Alanzai, 

E. Vis-NIR spectroscopy for fruit quality evaluation: case study for Pakistani apple, 

mango, mandarin and loquat production. Accepted in International Food research 

journal. (IF: 1.1014) 

 

Submitted papers: 

 

1. Zeb, A., Qureshi, W. S., Ghafoor, A., Malik, A., Imran, M., Alina, M., Tiwana, M., & 

Alanazi, E. Sensory assessment classification using short-wave NIR spectroscopy for 

Pakistani orange cultivars. 

Revised version submitted to Scientific Reports (IF: 4.99) 

 

 

1.6. Dissertation outline: 

 

This thesis is organized as follows: 

Chapter 2:  This chapter presents the basic model of the proposed decision support system and 

introduction/literature review of all the basic blocks, i.e. NIRS and chemometrics.  

Chapter 3:  This chapter presents decision support system for prediction of Pakistani fruit’s quality 

index values. The investigated fruits include apple, mango, mandarin and loquat. It includes 

relevant literature, materials and methods, results and conclusion sections.  

Chapter 4:  This chapter presents the proposed direct classification based decision support system 

for prediction of acceptance (sweetness) level of melons. It includes introduction, materials and 

methods, results, and conclusion sections. Includes material from [37] 

Chapter 5:  This chapter presents the proposed direct classification based decision support system 

for prediction of sweetness level of oranges. It includes introduction, materials and methods, 

results, and conclusion sections.  

Chapter 6:  This chapter presents the SWNIRS based proposed classification method for fruits 

type classification. It includes introduction, materials and methods, results, and conclusion 

sections. Includes material from [38]. 
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Chapter 7:  This chapter briefly summarizes the dissertation and concludes the research findings 

along with future recommendations. 
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Chapter 2 : DECISION SUPPORT SYSTEM 

In this thesis, a decision support system for fruit quality estimation using NIR spectroscopy 

has been presented. Figure 1 shows the basic block diagram of the decision support system. To 

judge fruit quality, the sample is exposed to NIR radiation and as a result the molecular bonds of 

macro constituents absorb the radiation and vibrate.  A spectrometer is used to measure this 

absorption of light with respect to individual wavelengths. Chemometric analysis is then 

performed on the raw absorbance spectra to tease out useful information about fruit internal quality 

for instance DM and Brix level etc.  The decision support system is based on the following 

hypothesis: 

“Fruit quality is a function of absorptivity of short wave NIR radiation primarily with respect to 

O-H and C-H overtones features” 

These blocks in Figure 2.1 are explained in detail in sections below. 

 

Figure 2.1: Decision support system for fruit quality estimation 

 

1.1. Vis- NIR Spectroscopy: 

 

Spectroscopy is the study of light and other radiation absorption and emission by materials, 

as well as the relationship between these processes and the wavelength of radiation. Spectroscopic 

techniques are used in nearly every modern discipline of science and technology. The visible and 

near-infrared (Vis and NIR) regions of the light spectrum have wavelength ranges of 400-750 nm 

and 750-2500 nm, respectively. Whereas, the short-wave NIR (SWNIR), or Herschel area, ranges 

from 750 to 1100 nm, while the extended NIR ranges from 1100 to 2500 nm. 
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Visible spectroscopy depends on the absorption of light of a matching energy level, i.e. at 

specified wavelengths, as a result of electronic transitions in molecules. As a result, with an 

average full width half maximum (FWHM) of about 20 nm, strong absorption peaks occur [39]. 

Light absorption associated to the vibration and stretching of molecular bonds is measured 

in NIR spectroscopy. This mainly comprises absorption of light associated to the C-H and O-H 

bonds stretching in intact fruits [40], [41], which is mostly related to water and storage reserves 

(the major macro constituents). The basic absorption ranges linked with these characteristics are 

found in the infrared region of light (>2500 nm), depicting far finer and greater absorption peaks 

than those found in the NIR region. 

In the 1960s, Karl Norris of the United States Department of Agriculture (USDA) came up 

with the idea of employing NIR spectroscopy to quantify analyte levels in solid materials. The 

early research was based on agricultural goods with a low moisture content [42]. Later, the study 

was expanded to include intact fruits and vegetables with significant moisture content. Birth et al. 

[43] measured the amount of DM in onions, while Dull et al. [44] measured the amount of total 

soluble solids (TSS) in melons. Then, in Japan, a research and development programme began 

with the publication of the first study on non-destructive TSS assessment in peaches [45]. 

NIR region gives lower absorptivity of overtones features than those of infrared (IR) 

region. Due to this characteristic, the effective pathlengths of NIR radiation within fruit are in the 

millimetres to centimetres range. Whereas, in case of IR radiation the effective pathlengths are in 

the order of micrometres. Similarly, in the SWNIR region higher overtone characteristics with 

longer effective pathlengths are observed as compared to the overtones in NIR region. This is the 

reason that SWNIR radiation can be used to estimate fruit quality of intact fruits. 

Absorption at 740 nm and 960 nm is associated with third and second overtone of O-H 

stretching and 840nm is associated with O-H combination feature. While, absorption at 910 nm is 

associated with third overtone of C-H stretching. However, the overall peak positions shift with 

temperature and solute concentration because the amount of H-bonding can change which 

influences the vibration of O-H bonds. In practice, its hard to interpret short-wave NIR (being 

second and third overtones, so weak and broad) compared to extended NIR and IR regions. 

However, the features related to water can be interpreted, which is the main NIR active molecule 

in fruit. Around 80-90% of fleshy fruit is composed of water. This is why every other variable is 
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examined in relation to water's enormous absorption characteristics. Increase in any other 

macroconstituent, e.g. solids soluble content (SSC) and dry matter (DM), causes decrease in water 

content resulting in a negative correlation with water. The penetration depth of NIR in fruits is 

comparatively greater in the 700–900 nm range [46] hence more information on internal quality 

attributes can be fetched by using wavelength absorption data of this region. Understanding the 

raw absorption spectra is challenging because all absorption characteristics are wide and 

overlapping. The use of NIRS over IR spectroscopy is successful due to chemometrics, which 

enabled useful information to be fetched out of the spectra. 

Because H bonding affects the vibration of O-H bonds, water absorption characteristics are 

sensitive to temperature. Water exists in various states linked with the extent of H-bonding, from 

complete H bonding (‘crystalline’) in ice to none in water vapor. Increase in temperature or soluble 

sugars concentration causes decreased H-bonding and the absorption peaks linked with O-H bonds 

shift to shorter wavelengths [41].  The effect of temperature on DM prediction is mainly on 

accuracy (i.e., bias) instead of precision (i.e., bias corrected RMSEP) (e.g., [47]).  

 

2.1.1. Vis- NIR spectroscopy assessable attributes: 

 

2.1.1.1. Dry matter and solids soluble content: 

 

Vis-NIR spectroscopy is being used in commercial practice to estimate DM and SSC of 

intact thin-skinned fruits. According to a review [25], Vis-NIRS can be employed to measure DM 

and SSC of intact thin-skinned fruits to root mean square error prediction (RMSEP) of less than 

1% for both.  

DM content is utilized as an indicator of:  

• Storage reserves i.e. sum of starch and soluble sugars for instance in un ripped mangoes 

and apples, or oil content for instance in avocado or olive fruit 

• Future soluble sugars content in climacteric fruits that store starch which is converted to 

sugars with ripening  

Consequently, DM content at the time of harvest is an index of SSC of fruit after ripening. 



 

13 
 

A few value chains have now set standards for fruit DM content at the time of harvest 

assessed non destructively via NIRS (e.g. Australian Mango Industry Association, [27]). DM is 

also an important indicator of fruit harvest maturity, with the desired DM level altered by growing 

condition for example, in mango [48], [49] and in durian [50].  

 DM prediction models using NIRS have been successfully built that are robust to ripening 

phase i.e. to quantity of starch and sugars. But, the accuracy of SSC prediction models is affected 

with variations in starch levels e.g. in apple and mango ripening phase [51], [52]. The reason is 

probably that NIR spectra for sugar and starch in water are similar. Hence, for climacteric fruits, 

the accuracy of SSC prediction models with NIRS is highest for fully ripped fruits i.e. when starch 

is completely transformed to sugar (e.g. [52]). This conclusion does not apply to fruits that contain 

soluble sugars rather than starch as their primary reserve, such as stone fruit or grapes. 

 

2.1.1.2.  Internal defects: 

 

After DM and SSC levels, the highest commercial adoption of Vis-NIRS is on packaging 

lines for fruit sorting based on internal defects The apparent absorption spectra of a fruit is 

influenced by both dispersion and absorption. Internal fruit features that cause variations in 

dispersion of light inside the fruit can be detected with Vis-NIRS just as easily as absorbance-

related features. A decrease in the intensity of light scattering in a fruit is linked to an internal 

water core defect (e.g., [53]), and identification of this disease using Vis-NIRS has been published 

by many authors such as apple mouldy core [54] and apple internal browning [55]. 

 

2.1.1.3.  Acidity: 

 

 In fruits like lemons and limes, which contain roughly 70 g L-1 (citric acid equivalents), 

acidity is a major constituent. However it is a micro-constituent in most other fruit, for example 

Subedi et al. [56] found that the average acidity of peach fruit was 8.8 g L-1 (citric acid equivalents). 

SSC measured of lime juice via refractometer is led by the influence of organic acids instead of 

soluble sugars, whereas the opposite is valid for peach. Subedi et al. [56], [57] used SWNIRS to 
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determine the RMSEP of an unbiased group of uncut and cut lime fruit to be 3.0 and 1.6 g L-1 

(citric acid equivalents), respectively. Provided such estimate of RMSEP, the consistent direct 

evaluation of acidity in fruits having low acidity amounts is doubtful (reliable means that test set 

is independent of training set). An indirect assessment includes correlation of one characteristic 

(i.e. acidity level) to another characteristic quantifiable by Vis-NIR spectroscopy (such as 

chlorophyll level). And if the indirect link holds true in practice, indirect acidity evaluation may 

be useful. 

2.1.1.4.  Firmness: 

 

 In postharvest research, a non-destructive measurement of fruit firmness remains a "holy 

grail." The usual technique of evaluation involves inserting a penetrometer into the fruit, which is 

damaging. Many claims have been made for employing Vis-NIRS to determine fruit firmness. 

Indeed, firmness assessment was mentioned in 10% of all studies published between 2015 and 

2020 [25]. 

Slight variations in chemical (such as pectin levels) are linked to changes in firmness. The 

use of NIRS to estimate these chemical variations in uncut fruit seems unlikely. Changes in cell 

wall adherence are linked to changes in firmness. Changes in cell shape may cause changes in light 

dispersion inside the fruit, which can be observed in the perceived absorbance spectrum, although 

these variations in dispersion have not been associated significantly with firmness amount. Water 

content, pigment level, and starch-sugar conversion during ripening are all correlated to firmness 

levels, thus indirect Vis-NIRS assessments may be established (e.g., [58]). 

As a result, there is no agreement that Vis-NIRS can reliably (and directly) detect firmness. 

 

2.1.1.5.  Other macro attributes: 

 

Literature shows that with proper hardware, i.e. optical geometry, physiological states like 

maturity or ripening stage, as well as the extent of internal flaws like internal browning, can be 

evaluated [25]. 



 

15 
 

2.1.1.6.  Minor constituents:  

 

It's also improbable that minor constituents could be directly and non-destructively 

assessed using Vis-NIRS in high moisture content fruit, except via indirect association with the 

amount of some other macro-constituent or pigment. For instance, [59] performed experiments on 

bell peppers using Vis-NIRS to estimate ascorbic acid non-destructively and obtained an RMSECV 

of 15.1–18.9 mg per 100 g (fresh weight). The fruit was tested at various maturity levels. Because 

numerous characteristics change throughout fruit development, the ascorbic acid evaluation could 

be of a different characteristic correlating to ascorbic acid level.  

 

2.1.1.7.  Discrimination: 

 

For fruit sorting, a qualitative assessment (e.g. classification technique) can be used rather 

than a quantitative measurement of the amount of an attribute. Many claims exist in literature 

about fruit population classification, such as based on cultivars or species, geographic locations, 

or production systems [60]. Without explicit a priori information of the NIR evaluated component, 

NIRS can be utilised to determine an attribute. Jacobs et al. [28], for example, used NIR spectra to 

determine the storage life of lettuce. However, robustness of such models needs to be 

proved with independent test data. For example, Vis-NIRS can determine whether the apple 

sample is acceptable or not, based on internal browning level [55]. 

 

2.1.2. NIR wavelength region:  

 

In commercial practise, the SWNIR range (750-1100 nm) is employed to estimate internal 

characteristics of intact fruit, such as SSC and DM value, rather than wavelengths >1100 nm. 

However, many published papers on the evaluation of interior fruit features (57 percent,[25]) use 

equipment with longer wavelength ranges (>1000 nm). Use of extended NIR region instead of 

SWNIR, provides narrower and stronger absorption features which could lead to better results in 

the evaluation of internal quality attributes than the SWNIR. In the SWNIR band, however, the 
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water absorption coefficient is comparatively low, allowing for increased penetration depth inside 

fruit. Given the diversity in outer layer characteristics, the reduced effective penetration depth 

because of longer wavelengths could restrict model's robustness across independent populations. 

Even if the extended NIR region produced equivalent results, the Vis-NIR option will be chosen 

for commercial applications due to lesser hardware cost [61]. 

For a bell-pepper application, Vis-SWNIR produced superior findings than short wave IR 

reflectance spectroscopy [59]. Applications like carrot SSC [62], grape colour, phenolics, SSC, 

and ripeness stage [63], and persimmon astringency [64], Vis-SWNIR outperformed NIR. For 

assessing SSC of intact beets, the Vis-NIR range produced better results than the NIR range, while 

sugar beets slices produced nearly identical results [65], and for these wavelength ranges this is in 

agreement with the actual penetration depth. In contrast, [61] found that a sensor (using a 

reflectance geometry) working in the 850-1888 nm range performed better in the evaluation of 

apple characteristics than a sensor working in the 340-1014 nm region. 

 

2.1.3. NIRS applications: 

 

Vis-NIRS has been widely employed to estimate fruit maturity/quality parameters of many 

fruits including (but not limited to) apple, mango, guava, avocado, pear, persimmon, grapes, 

melon, citrus etc. Few of the reported studies have been summarized below: 

 

2.1.3.1. Apple: 

 

SSC is a critical quality metric in apples as it is related to maturity, harvest time, 

and taste [66]. It is critical to estimate SSC using efficient tools such as NIR 

spectroscopy to meet increasing consumer demand for high-quality apples. Brown et 

al. [67], demonstrate in spectroscopic studies that non-bruised tissues have a higher 

reflectance at Vis-NIR wavelengths than freshly bruised tissue. Bilanski et al. [68] and 

Pen et al. [69] expanded these fundamental studies by categorising wavelengths to 
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distinguish between non-defected and defected peeled apple tissue. Moons et al. [70] 

recognized a correlation among pH, SSC, and titratable acidity (TA) and NIR spectra. 

Lammertyn et al. [71] demonstrated through promising results that non-destructive 

estimation of apple internal quality attributes is possible. PLSR and PCR have been 

used to create a correlation between apple quality parameters and reflectance spectra. 

Standard error of prediction (SEP) of 0.068, correlation coefficient (R) of 0.93, SEP of 

0.61, R of 0.82, and SEP of 2.49, respectively, has been reported for the pH, SSC, and 

firmness models. Whereas the prediction performance for mechanical texture 

properties was poor.  

Zude et al. [72] used non-destructive spectral analysis to determine the chlorophyll 

content of two apple varieties, 'Elstar' and 'Jonagold'. The experimentation 

demonstrated good results for 'Elstar' using 650 to 730 nm range.  Moreover, it has 

been recommended that wavelengths higher than 720 nm should not be used for the 

'Jonagold' apple, this has been suggested because certain fruits have varying 

characteristics that have an inconsistent impact on light reflectance outside this 

wavelength range. Liu et al. [73] evaluated FT-NIR spectroscopy for predicting fruit 

quality of intact apples in 814 – 1100 nm range. For TA and SSC, chemometric models 

based on PLSR were developed. Liu et al. [74] evaluated the same FT-NIRS in 

interactance geometry (812-2537 nm) for Fuji apples.   

During cold storage of 'Cripps Pink' apples, Mogollon et al. [75] discovered that 

the most effective wavelength range for detecting internal browning is 600–830 nm. 

As per existing literature, SSC and firmness are critical parameters in determining the 

maturity of Apple fruit. PLSR, is a widely used prediction method, alongside 

multiplicative scatter correction (MSC), Savitzky-Golay (SG) Smoothing, and 

principal component analysis (PCA) as pre-processing techniques. PLSR models 

provide encouraging results for estimating maturity of apple. SSC in apples has been 

predicted with good accuracy using NIRS, which is not the case with firmness. The 

applications of NIRS for the prediction of apple quality attributes are summarised in 

Table 2.1. 
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2.1.3.2. Mango: 

 

Walsh et al. [76] discovered that the amount of DM in mango corresponded to 

amount of carbohydrate in the fruit. In terms of fruit maturity, it is considered to be an 

important indicator. The applications of NIRS for mango quality evaluation are 

summarised in Table 2.2. Lately, scientists have established spectroscopic approaches 

and handheld tools that can accurately quantify on-tree fruit [48], [76].  

Intact fruit DM can be assessed on the tree using NIRS in accurate and non-

invasive manner. Guthrie et al. [77] stated the use of a Multiple Linear Regression 

(MLR) model for single cultivar of mango at harvest maturity stage, while Saranwong 

et al. (2004) reported the use of a PLSR model for the same cultivar, with results of 

(R2 = 0.96 and RMSEP = 0.79) and (R2 = 0.89, SEP = 0.41, bias = 0.07), respectively. 

PLS multi-cultivar model for mango DM estimation created by Subedi et al. (2011) 

was used to accurately estimate samples of independent populations (R2
P = 0.79, 

RMSEP = 0.97).  

According to Spreer et al. [78], measurements of mango fruit's size can be taken 

non-destructively and linked to the fruit's weight (R2 = 0.96, with an accuracy of 0.1 

g). moreover, it is stated that non-destructive procedures make it possible to regularly 

monitor fruit on the tree to avoid sampling problems that are linked with destructive 

sampling. 

Nagle et al., [79] have argued that change in intercellular distance could alter 

light scattering pattern, which could affect the calculation of NIR based DM. The 

calibration of water deficient fruits (R2
C = 0.35, RMSEC = 4.6% DM) has yielded poor 

results using SWNIRS. Walsh et al., [76] employed handheld spectrometers with 

PLSR to measure DM of mango on-tree and proved their usefulness in making 

harvesting decisions. Internal browning based sorting of ‘Keit’ mangoes is done by 

Gabriels et al., [80] by comparing PLSR and ANN models, where ANN outperformed 

the PLSR model.  
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Table 2.1: Applications of NIRS for apple quality estimation 

Optical 

Geometry 

Spectrometer Cultivar Parameter 

estimated 

Wavelength 

range (nm) 

Data 

set 

size 

Pre-processing 

algorithm 

Estimation 

model 

R2 Ref 

Reflection 

Vis-NIR 

Red 

delicious, 

Gala 

SSC 800- 1100 
960 

+ 

800 

PCA 

PCR, 

Mahalanobis 

Distance (MD) 

0.93, 

0.96 

[81] 

Firmness 400-1800 0.22, 

0.79 

Multiple (20) DM 408-2498 229 SNV,  

SG 1-D 

PLSR 0.94 [82] 

Multiple  SSC 

TA 

400-1022 100 MSC,  

SG Smoothing, 

PCA 

BPNN, 

GRNN,  

PSO 

- [83] 

Multiple (7) SSC, 

DM 

729-975 640 PCA PLSR 0.89, 

0.95 

[84] 

Braeburn 
SSC, 

Firmness 
650-980 30 - PLSR 

0.81, 

0.83 
[85] 

FT-NIR 

Golden 

Smoothee, 

Golden 

Delicious, 

Granny 

Smith 

SSC, 

DM, 

TA 

900-2500 960 - PLSR 0.80, 

0.83, 

0.80 

[86] 

Interaction Vis-NIR Pink Lady 

Flesh 

browning, 

SSC, 

500-975 296 
SG smoothing, 

PCA 
PLS DA 0.86 [55] 
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DM 

Fuji SSC 350-1030 150 

MSC, 

SNV, 

SG Smoothing 

SMLR 0.63 [87] 

FT-NIR 

Fuji 

SSC, 

TA, 

pH 

812-2357 333 SG Smoothing PLSR 

0.91, 

0.51, 

0.58 

[73] 

multiple 

Glucose, 

Fructose, 

Sucrose 

814-1100 130 
MSC, 

SG Smoothing 
PLSR 

0.95, 

0.97, 

0.97 

(R) 

[74] 

Transmission Vis-NIR Fuji 

SSC, 

Water core 

degree 

600-1000 663 

MSC, SG 

Smoothing, 

SNV 

SI-PLSR, 

SI-SPA-PLSR, 

GA-PLSR, 

CARS-PLSR 

0.95, 

0.94, 

0.92, 

0.98 

(R) 

[53] 
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Table 2.2: Applications of NIRS for mango quality estimation 

Optical 

Geometry 

Spectrometer Cultivar Parameter 

estimated 

Wavelength 

range (nm) 

Data set 

size 

Pre-processing 

algorithm 

Estimation 

model 

R2 Ref 

Reflection Vis-NIR 

Tommy Atkins 

SSC, 

Firmness, 

TA 

1200-2400 80 SG 2-D 

MLR, 

PCA, 

PLSR 

MLR: 

0.93, 

0.82, 

0.60 

[88] 

SSC, 

DM, 

TA, 

Firmness 

950-1650 400 

SG smoothing, 

SNV, 

EMSC 

PLSR 

0.92, 

0.67, 

0.50, 

0.72 

[89] 

Caraboa 
SSC, 

DM 

700-1100 200 
MSC,  

SG 2-D 

MLR, 

PLSR 

0.96, 

0.97 
[90] 

700-990 1200 derivative 

PLSR 

0.84, 

0.77 
[91] 

Osteen 
Ripening 

index 
600-1750 140 

SG smoothing, 

EMSC 
0.83 [92] 

Cogshall 

SSC, 

DM, 

TA 

800-2300 250 
SG 1-D, 

2-D 
- [93] 

Kenington 

Pride, 

Calypso 

DM 300-1050 350 - 0.82 [49] 

Chokonan, 

Rainbow, 
SSC 900-1700 80 EMSC 

SVM, 

PLSR 

0.95, 

0.86 
[94] 
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Kai Te 

Keitt 
Internal 

browning 
400-1000 576 Thresholding 

PLSR, 

ANN 

0.53, 

0.57 
[80] 

FT-NIR Kent 

SSC,  

TA, 

Ascorbic 

acid 

1000-2500 58 

SNV, 

MSC, 

SG 2-D 

PLSR, 

PCR 

0.66, 

0.95, 

0.61 

[95] 

Interactance Vis-NIR Palmer 

SSC, 

DM 

699-999 

SSC, 

699-981 

DM 

149 
SNV, 

SG 1-D PLSR 

0.87, 

0.84 
[96] 

DM 699-981 200 - 0.82 [97] 

Transmission  Vis-NIR Sunshine pH 300-1000 120 

Baseline correction, 

MSC, 

SG Smoothing, 

Normalization 

PLSR 0.93 [98] 
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2.1.3.3. Grapes: 

 

The criteria for table grapes maturity is based on three critical attributes: SSC, 

TA, and pH. Although SSC and TA are important quality markers, there exist 

additional elements that significantly influence sensory judgement [99]. As seen in 

Table 2.3, the majority of researches have considered TA, SSC, and pH as grape quality 

indexes. Sensory evaluation is the most appropriate method for estimating the market 

acceptability of table grapes. NIRS is amongst the most effective non-destructive 

techniques for estimating the maturity of table grapes.  

Fernandez-Novales et al., [100] employed transmission optical geometry with 

NIRS to predict SSC in 700–1060 nm range and obtained good results. Two spectral 

bands i.e. 650–1100 and 750–1100 nm, and two optical geometries were compared i.e. 

diffuse transmission and interaction, were utilised [101] to create PLSR models for 

SSC estimation in the three grape varieties 'Carmenere', 'Chardonnay' and 'Cabernet 

Sauvignon'. Models using the first spectral band (650-1100nm) had a R value more 

than 0.90 and an RMSEP value less than 1.2 for all cultivars. In comparison to 

interactance, the transmittance spectral analysis performed slightly better. As 

demonstrated by Larrain et al., [102], pre-processing procedures with reflectance 

spectra had no significant effect on estimating the SSC in the 640–1100 nm range. For 

SSC, PLSR models depicted good performance with R2
P values from 0.93 to 0.96 and 

RMSEP values ranging from 1.01 to 1.27 for various varieties. Moreover, for pH 

estimation of several grape varieties the wavelength range of 640–1100 nm with 

reflectance spectra was used and PLSR models returned R = 0.75–0.89 and RMSEP = 

0.088–0.16.  

Cao et al., [103] estimated SSC, pH and variety of three table grape cultivars in 

the 400–1000 nm range. The genetic algorithm (GA) was used for wavelength 

selection and the least squares support vector machine (LSSVM) with an R2
P of 0.98 

and an RMSEP of 0.13. Omar et al., [104] assessed SSC and pH of table grapes and 

revealed that from 922–923 and 990–995 nm wavebands are most significant for SSC 

and pH assessment. The optimum result was an MLR model based on the three 

wavelengths: 605, 923, and 990 nm (R = 0,87; RMSE = 0,11). Additionally, the 
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anthocyanin concentration in several grape varieties was also determined using a PLS-

based model in the 640–1100 nm band, with good results (R = 0.79–0.83). Table 2.3 

summarises the uses of NIRS for grape quality evaluation. From Table 2.3, it can be 

seen that to eliminate noise and fluctuations in the data, pre-processing algorithms such 

as smoothing, MSC, SNV, and Savitzky-Golay (SG) derivative filters have been used. 

PLS has demonstrated superior outcomes in terms of R2 values when compared to 

other regression algorithms. 
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Table 2.3: Applications of NIRS for grape quality estimation 

Optical 

Geometry 
Spectrometer Cultivar 

Parameter 

estimated 

Wavelength 

range (nm) 
Data set size 

Pre-processing 

algorithm 

Estimation 

model 
R/R2 Ref 

Reflection Vis-NIR 

Graciano 
Phenolic 

compounds 
1100-2000 84 

MSC, 

SNV, 

detrend 

MPLSR 0.98 (R) [105] 

Cabernet 

Sauvignon, 

Merlot, 

Syrah, 

Carmene`re 

OH 450-1660 

650, 

450, 

450, 

225 

 

SG 1-D PLSR 

0.93, 

0.92, 

0.98, 

0.81 

(R ) 

[106] 

Nebbiolo 

SSC, 

TA, 

pH 

450-980 

71 fresh, 

156 

homogenized 

MSC, 

SG 1-D, 2-D, 

Smoothing 

PLSR 

0.82, 

0.81, 

0.81 (R) 

[21] 

Manicure 

finger, 

Ugni Blanc 

Surface 

color, 

SSC, 

Total 

phenolic 

compounds 

400-1000 
270 berries at 

5 stages 

MSC, 

SNV 
LS-SVM 

0.870 (SSC), 

0.872 (TP) 

R2 

[63] 

Grenache Amino acids 
570-1000 

1100-2100 
4480 berries 

MSC, 

SNV, 

detrend 

MPLSR 0.60 (R2) [107] 

Syrah, 

Cabernet 

Sauvignon 

TSS, 

Total 

anthocyanins, 

450-1800 
432, 

576 berries 

Median filter, 

Moving average 

filter, 

PCR, 

MLR, 

PLSR 

R2> 0.90, 

R2> 0.90, 

R2> 0.70, 

[108] 
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yellow 

flavonoids 

SG 1-D, 2-D, 

MSC 

 

Tempranill

o, 

Syrah 

Total 

phenolic, 

Anthocyanin, 

Flavanols 

908-1676 400 berries - MPLSR - [109] 

Cabernet 

Sauvignon, 

Sangioves, 

Merlot 

Reductant 

sugars, 

TA, 

Anthocyanin, 

pH, 

maturity 

index 

(reductant 

sugars/TA) 

400-1000 

30 berries/ 

bunch 

45 berries/day 

Total 4 days 

- PLSR 

0.75, 

0.78, 

0.61, 

0.70, 

0.80 

(R) 

[110] 

Shiraz, 

Cabernet, 

Chardonna

y,  

Merlot e 

Pinot 

SSC 400-1000 - 

Averaging, 

Normalization, 

transformation 

MLR 

R2 0.95 for 

red, 

0.83 for 

white 

varieties 

[111] 

FT-NIR 

Prime 

Seedless, 

Thompson 

Seedless, 

TSS, 

TA, 

TSS/TA, 

pH, 

BrimA 

800-2500 338 bunches 

Moving Smoothing 

windows + MSC, 

SNV, 

SG 1-D, 2-D, 

MSC 

PLSR 

0.71, 

0.33, 

0.57, 

0.28, 

0.77 

[112] 
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Regal 

Seedless, 

(R2) 

Interactance Vis-NIR 

Cabernet 

Sauvignon, 

Carménère, 

Merlot, 

Pinot Noir, 

and 

Chardonna

y 

SSC, 

pH, 

Anthocyanin 

concentration 

640-1100 

60 berries or 

each variety / 

week for 4 

months 

- PLSR 

0.930,  

0.923, 

0.921, 

0.875, 

0.874, 

(R2  values of 

SSC  for each 

variety) 

[102] 

White 

Malanga 

TA, 

pH, 

SSC, 

Firmness, 

No of Seeds 

800-1100 - SG 2-D PLSR 

0.897, 

0.632, 

0.980, 

0.661, 

0.903 

(R2) 

[113] 

Transmission 

Vis-NIR 

Caignan, 

Mouerdre, 

Ugni blanc 

TA 680-1100 371 - 

PLSR, 

MLR, 

LS-SVM 

0.76, 

0.69, 

0.83 

(R2) 

[114] 

Jufeng SSC 200-1100 115 bunches MSC PLSR 0.83 (R2) [115] 

Albarino Volatile 

compounds 
190-2500 52 berries 

SNV, 

SG-1D, 2-D 
PLSR 

0.85 

(R2) 
[116] 

FT-NIR 

Grape 

must, 

White wine 

Calcium 1100-2300 
60, 

98 

Baseline correction, 

MSC, 

SNV, SG 1-D 

PLSR 

0.91, 

0.93 

(R2)  

[117] 
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2.1.3.4. Melon: 

 

SSC assessment using NIRS may be more difficult for fruits having thick peel 

and large size, for example melons and watermelons. Depending upon the type of fruit 

and intensity of light, the NIR radiation can penetrate to a depth of approximately 4–

20 mm within the fruit, which may be appropriate to measure the SSC for fruits with 

thin peels and small sizes, as significant spectral information can be collected. 

However, while melons have a thick peel, the peel thickness varies from stem end to 

calyx in melons. As a result, if the location having the thickest peel is picked to capture 

spectral data, sufficient information about fruits inner characteristics is not acquired. 

A suitable representative location for spectra collection is necessary in this scenario. 

Guthrie et al. [118] built first SSC-prediction model using NIR spectroscopy in 

reflectance mode for intact melons. A total of 100 melons of three different varieties 

(El Dorado, Eastern star and Hammersly) were harvested on three different dates. A 

combined calibration model built using MLR performed good with a data set taken 

from all three harvests (R2 = 0.72, MSEP = 1.84 ◦Brix). Sugiyama et al., [119] 

investigated the relationship between SSC and NIR spectra (collected in interactance 

mode) in melons. Six Andes melons at three ripeness stages (unripe, mature and fully 

mature) were investigated. Sugar distribution maps for melons were generated at 676 

nm wavelength, which depicted that sugar levels rise gradually from melons rind 

towards inner pulp. Greensill et al. [120], accomplished transfer of prediction models 

for melons SSC between Fourier transform NIR (FT-NIR) spectrometer (630–1030 

nm) and scanning-grating based NIR instruments using various chemometric 

techniques. Two populations of Rock melons i.e. Dubloon (201 samples) and Navajo 

(198 samples) were used. Guthrie et al. [121] tested robustness of multivariate 

calibration models for SSC of 100 rock melons using NIR spectroscopy (695–1045 

nm). The SSC of mesocarp was reported to be highest around the equator and 

increasing towards seeds cavity and, decreasing towards stem and calyx end of the 

melon but more so towards the stem. Equatorial region was selected as the 

representative region for collection of spectra and destructive testing for SSC. 

Modified PLSR (MPLSR) was used with second derivative pre-processing of 
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absorbance data reported to perform better than standard partial least squares 

regression (PLSR). Long et al. [122] also investigated the variation of SSC within same 

sample in Eastern star and Malibu melons (total 149 samples), and in this regard 

supported the previous discussion of Guthrie et al. [121]. Long et al., [122] added that 

cold storage of fruit (0–14 days) does not affect NIR model performance.  

Flores et al. [123] also built NIR prediction models using SSC as quality index 

in intact and cut melons and watermelons. Examined variety included Cantaloupe and 

Galia melons. Suh et al. [124], [125] concluded that interactance mode of NIRS 

provides more information of fruits internal attributes as compared to reflectance and 

transmittance modes, to predict SSC and firmness in thick skinned fruits such as 

muskmelons. Tian et al. [126] conducted experiments to predict SSC for two varieties 

of melons i.e. Baipi and Hetao, using transmittance mode of NIRS (350–1000 nm). 

Three spectral pre-processing methods i.e. first derivative, second derivative and 

Norris derivative smoothing were used for creating the PLSR model and principal 

component regression (PCR) model. Sanchez ´ et al. [127] used NIRS to estimate 

melon pulp color in Cantaloupe and Galia melons. MPLSR was used along with 

several pre-processing techniques and principle component analysis (PCA).  

Khurnpoon et al. [128] concluded that only two of the textural properties i.e. 

rupture force and penetrating force for melons pulp can be estimated by NIRS using 

FT NIR spectrometer in reflectance mode. Three varieties of melons including Manao, 

Jinhongbao and Xizhoumi (120 samples each) were tested [10] using NIR 

spectrometer in reflectance mode. SSC calibration model was built using spectral data 

collected at stylar and equator ends. Hu et al., [129] and Zhang et al. [130] have done 

a comparison between different positions for acquiring spectra and different models 

for predicting SSC in Hami melons. Three local models (at calyx, equator, and stem 

position) and one global model was built using PLSR with different pre-processing 

techniques. The results concluded that the models generated from data acquired from 

equator-region and the global data (from all three positions) depicted similar 

performance and better than the calyx and stem regions-based models. Hence, it was 

recommended that equator position is suitable for spectral data collection in intact 

Hami melons in order to predict SSC.  
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Sensory test was conducted by Lu et al. [131] to establish internal quality 

standards for Elizabeth, M-1, M-3 and M-5 variety of melons. A total of 16 melons (4 

melons of each variety) were tested by a panel of 10 judges. Satisfactory class samples 

included melons with SSC over 12 ◦Brix and firmness 4–5.5 kgf cm−2 whereas melons 

over 10 ◦Brix and firmness 3.5–6.5 kgf cm−2 were considered average class samples. 

NIRS predictive models for SSC and firmness were built using wavelength selected 

genetic algorithm for mix cultivars using spectral data collected from stylar end of 

samples. Firmness model was reported to be inferior than SSC predictive model. Table 

2.4 lists the applications of melon quality estimation reported in literature using NIRS. 

 

2.1.3.5. Other fruits: 

 

Attempts have been made to non-destructively estimate fruit internal 

characteristics of avocado, pear, peach, persimmon, mandarin, guava, banana and 

strawberries etc using Vis-NIRS (see Table 2.5).  
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Table 2.4: Applications of NIRS for melon quality estimation 

Optical 

Geometry 
Spectrometer Cultivar 

Parameter 

estimated 

Wavelength 

range (nm) 

Data 

set 

size 

Pre-processing 

algorithm 

Estimation 

model 
R/R2 Ref 

Reflection Vis-NIR 

Hami 

SSC 

550-950 120 

1) None 

2) Smoothing 

3) Smoothing + 

MSC 

4) Smoothing + 

normalization 

5) Smoothing + 

mean centering 

PLSR, 

MLR, 

LSSVM 

0.89, 

0.89, 

0.88, 

0.93, 

0.89 

(R) 

[129] 

Smoothing-MSC 

Smoothing-

normalization 

Smoothing-SNV 

PLSR, 

CARS, 

UVE, 

CARS-SPA, 

UVE-SPA 

0.91, 

0.914, 

0.92 

(R) 

[130] 

El Dorado,  

Eastern star, 

Hammersly 

700-1100 100 SG 2-D MLR 

0.82, 

0.44, 

0.70 

(R2) 

[118] 

Cantaloupe, 

Galia 
515-1650 1000 -- MPLS 

0.74 

(R2) 
[123] 

Manao, 

Jinhongbao, 

Xizhoumi 

750-950 360 

MSC, 

SG 1-D PLSR 
0.83 

(R2) 
[10] 
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Cantaloupe, 

Galia 
Pulp color 535-1650 432 

SNV, 

Detrending, 

Window filtering 

(1,5,5,1) 

MPLS 

a*- 0.97 

b*- 0.88 

c*- 0.85 

h*-0.97 

(R2) 

[127] 

FT-NIR 

Reticulata 

CV. Green 

net 

Rupture 

force, 

Penetrating 

force 

800-2500 249 

Constant offset 

elimination, straight 

line subtraction, 

vector 

normalization, min-

max normalization, 

multiplicative 

scatter correction 

(MSC), first 

derivatives, second 

derivates, first 

derivative + straight 

line subtraction, 

first derivative + 

vector 

normalization, first 

derivative + MSC  

PLSR 

0.85, 

0.84 

(R2) 

[128] 
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Interactance Vis-NIR 

Muskmelons 

SSC, 

Firmness 

475-1100 256 

(1) normalization 

with mean 

(2) normalization 

with max 

(3) normalization 

with range 

(4) MSC 

(5) median filter 

(size 3,5,7) 

(6) SG 1-D (size 

3,5,7) 

(7) SG 2-D (size 

3,5,7) 

(8) Norris Gap 1-D 

(size 3,5,7) 

Norris Gap 2-D 

(size 3,5,7) 

PLSR 

0.710  

0.732 

0.755 

0.702 

0.700,0.699, 

9.701 

0.386, 0.594, 

0.627 

0.014, 0.003, 

0.012 

0.619, 0.499, 

0.667 

0.125, 0.243, 

0.412 

(R2) 

[124] 

Elizabeth,  

M-1, 

M-3, 

M-5 

500-1010 16 SG (25,3) PLSR 

0.832, 

0.573 

(R2) 

[131] 

Transmission Vis-NIR 
Baipi, 

Hetao 
SSC 350-1000 - SG 1-D 

PLSR, 

PCR 

0.907, 

0.921 

(R) 

[126] 
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Table 2.5: Applications of NIRS for fruit quality estimation 

Optical 

Geometry 
Spectrometer Fruit Cultivar 

Parameter 

estimated 

Wavelength 

range (nm) 

Data 

set 

size 

Pre-processing 

algorithm 

Estimation 

model 
R2 Ref 

Reflection Vis-NIR 

Kiwi Hayward 
SSC, 

Firmness 
400-2450 3840 SG smoothing 

PLSR, 

SVM 

0.83, 

0.60 
[132] 

Peach  Akatsuki Firmness 500-1000 40 SG 2-D PLSR 0.80 [133] 

Kiwi 
Xixuan, 

Huayou 
SSC 860-1700 200 SNV 

PLSR, 

LSSVM 

0.76, 

0.92 
[134] 

Pear 

Cuiguan, 

Huanghua, 

Qingxiang 

Firmness 350-1800 330 MC-UVE-SPA 
PLSR, 

LSSVM 

0.93, 

0.93 
[135] 

Peach Calrico Firmness 400-1060 260 

SNV, 

MSC, 

SG 2-D 

PLSR, 

LSSVM 

0.76, 

0.78 
[136] 

Mandarin Clemevilla 

Firmness, 

SSC, 

pH, 

TA 

1600-2400 256 
SNV, 

Detrending 
MPLSR 

0.28, 

0.64, 

0.79 

[137] 

Avocado Hass 

DM, 

Oil 

Content, 

Moisture 

content 

700-2500 155 

SNV, 

MSC, 

SG 2-D 

PLSR 

0.84, 

0.84, 

0.58 

[138] 

Pear 
Abate, 

Cascade, 

SSC, 

Firmness 
500-1010 240 

MSC, 

Standardization, 

PLSR, 

MLR 

0.84, 

0.67, 
[139] 
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Conference, 

Wujiuxiang, 

Red Comice 

SG 2-D 0.84, 

0.61 

FT-NIR 

Kiwi Hayward 

SSC, 

DM, 

Firmness 

850-2500 100 

SNV, 

MSC, 

SG 2-D 

PLSR 

0.91, 

0.83, 

0.89 

[140] 

Peach Aurora-1 
SSC, 

Firmness 
1000-2500 530 

SNV + Detrend, 

MSC, 

SG 2-D 

PLSR 
0.45, 

0.40 
[141] 

Peach Baby Gold 

SSC, 

pH, 

TA 

800-2500 50 

SNV, 

MSC, 

SG 2-D 

PLSR 

0.84, 

0.52, 

0.43 

[142] 

Orange Penggan 
SSC, 

pH 
1000-2500 600 Multiple PLSR 

0.835, 

0.735 

(R) 

[143] 

Interaction Vis-NIR 

Pear Yunhe SSC 590-1091 134 

SNV, 

MSC, 

SG 1-D 

PLSR 0.90 [144] 

Kiwi Saehan 
DM, 

SSC 
729-975 100 SG 2-D PLSR 

0.73, 

0.73 
[145] 

Banana Robusta 

DM, 

SSC, 

Firmness 

500-1050 204 - PLSR 

0.88, 

0.97, 

0.98 

[52] 

Mandarin Nanfeng 

SSC, 

TA, 

Vitamin C, 

400-1040 153 
SG 1-D, 2-D, 

MSC 

SVM, 

BPNN, 

PLSR 

0.93, 

0.66, 

0.81, 

[146] 
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Surface 

color 

0.57 

(R) 

Avocado Shepard and Hass DM 720-975 690 SG 2-D PLSR 0.88 [147] 

Orange 
Shatangju, 

Huangyanbendizao 
SSC 400-1000 300 

SG Smoothing, 

MSC 
PLSR 

0.837, 

0.866 

(R) 

[148] 

Transmittance Vis-NIRS 

Mandarins Satsuma 
Citric acid 

content 
- - 

SG 2-D + mean 

centring 
PLSR 

0.83 

(R) 
[149] 

Orange Navel SSC 550-980 195 multiple 
PPSO-

PLSR 
0.788 [150] 



 

37 
 

2.1.4. NIRS instruments: 

 

2.1.4.1. Optical Geometry: 

 

There are three types of optical geometries i.e. reflectance, partial transmittance or 

interactance and full transmission. Recognizing the fruit's specular as well as diffuse 

reflection, a reflection geometry allows the detector to see an illuminated portion of the fruit. 

Internal characteristics of the sample are not revealed by specular reflections. Detection of 

specular reflections can exceed detection of diffusely reflected light in an incorrectly 

designed system. Incident rays illuminating an object at 45 degrees to the plane of the object 

will reduce amount of specular rays received by the detector. To assess fruit quality, the 

mesocarp, rather than the superficial layers should be the source of the diffusely scattered 

light detected by a reflectance geometry, to avoid biassing the results.  

Detector, sample and lamp are organised in a way that light must travel from the 

sample to reach the detector, with no direct passage of light between lamp and detector. 

Arrangements like this can have a 180° angle between lamp, sample and detector ('full 

transmission' geometry) or smaller angles ('interactance' or 'partial transmission'). 

With moving fruit on a packline, the 'shadow probe' configuration [120] is used for 

contactless sample evaluation. It is a specific partial-transmission geometry in which, probes 

are installed in front of the collinear light source, thus a shadow is formed on the fruit as 

viewed by the probe. As a result, the detected signal does not depends on detector to sample 

distance.  Optical density and tissue inhomogeneity in many fruits limit the application of a 

full transmission geometry. As a result, powerful light sources and/or precise detectors are 

required for the former issue, while the latter results in an optically sampled volume that 

does not match the desired attribute (e.g., flesh TSS). 

The optical geometry chosen for a particular postharvest activity should be guided by 

an examination of the fruit structure in relation to the spectrophotometric system's optical 

geometry. Although a vast number (75%) of research published since 2015 [25] utilise Vis-

NIRS to analyse internal characteristics of fruit use a reflection geometry, still no 

commercial spectrophotometer designed for fruit applications uses this geometry. This could 
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be due to the apparatus available in research facilities, with reflection geometry 

predominating in food applications [151]. The majority of food applications utilise a 

standardized sample for which a surface (reflection) examination can be used to represent 

the entire sample. Future papers on the development of applications utilising Vis-NIRS for 

fruit characteristic evaluation should include a justification for the optical geometry used. 

Vis-NIR spectroscopy of undamaged fruit demands light to pass through the 'skin' of 

the fruit (usually the exocarp and non-edible mesocarp), the edible mesocarp, and back out 

of the skin. Spectra recorded with a reflection geometry will largely contain data about the 

surface of the sample in terms of diffusely reflected and specular light. Variation in the 

morphology and surface characteristics of the fruit will affect the amount of specular 

reflection, hence altering the perceived absorption levels. Due to the fact that specular light 

is similar to incoming light, its influence to the perceived absorption spectrum can be 

reduced 'physically' by polarising filters or numerically using pre-processing 

techniques such as derivatives. However, the latter procedure does not increase the signal-

to-noise ratio (SNR) of diffuse reflection portion. 

The bulk of diffuse reflected light will originate within 5 mm of the surface of apple 

fruit [46], [152], and from a shallower depth for fruits with a thicker (greater scattering 

factor) exocarp, like avocado. Internal attribute evaluation using reflection geometry 

demands a connection between the internal characteristic and the spectra of the fruit's 

external layers. 

As compared to reflection geometry, transmission geometry is more suitable for 

gathering useful information from more depth within fruit.  Schaare and Fraser [153] 

compared the performance of interaction, reflection and full transmission geometries for 

evaluation of SSC in intact Kiwi. They found interaction geometry to be most useful in their 

assessment as reflection geometry spectra contained superficial layer information due to 

specular and diffuse reflection and full transmission geometry spectra had low SNR and also 

contained information about central seeds and tissues. As reflection geometry highly 

depends upon surface reflectance instead of internal reflection, any change in surface 

properties will affect the results. Thus, chemometric models based on reflection geometry 

are expected to depict poor robustness when predicting independent populations [25]. 
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Internal faults are typically evaluated using a acceptable/non- 

acceptable (discriminant) judgement. However, the imperfection may not be distributed 

evenly across the fruit. A reflection geometry entails evaluating a single section of the fruit. 

Using a full transmission geometry, light is distributed throughout the fruit, including some 

reflection from the inner surface of skin, and hence this geometry enables evaluation of a 

bigger fraction of the fruit content [154]. As a result, this geometry may produce a more 

beneficial outcome than that of other geometries, as demonstrated in the evaluation of 

internal browning in apple and pear [55], [155], as well as internal decay in citrus [156]. 

It can be concluded that NIRS technique can be successfully applied to thin skin intact 

fruits having a homogenous pericarp where the optical geometry applied matches to fruit 

structure. 

 

2.1.4.2. SWNIR in-line equipment: 

 

Constraints regarding in-line applications include the sample assessment speed suitable to 

conveyer belt speed, operating conditions, and the geometry of conveyer belt. As compared to in-

field use, light conditions can be reasonably controlled in the in-line applications. Main issues 

include: 

• Effect of sample movement during the interval of measurement 

• Appropriate optical geometry to reduce the effect of change in fruit size and shape 

• Spectra collection from a representative section of the fruit, where attributes’ 

natural distribution within fruits may vary 

• Robustness of the models 

Japan first introduced in-line commercial use of NIRS technology in late 1980s / early 

1990s, for sorting application in fruits on attribute such as SSC. In-line commercial equipment was 

initially introduced by the Japanese companies like Mitsui Metals and Mining, Sumitomo, Fantac 

and Emitec. Initially the systems were based on reflectance geometry which was soon replaced by 

partial or full transmittance geometry, as the reflectance geometry had model robustness issues. 

Except the Sumitomo system which used diode lasers as a light source, all other systems employed 
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halogen lamps. The use of diode lasers was later discontinued due to its cost and laser output 

intensity stability issues. In the early 2000s, many new in-line systems were manufactured by the 

global grading equipment manufacturers i.e. Color Vision Systems (Australia, now part of MAF 

RODA, France) and Compac (now Tomra, Norway), Greefa (Holland), Multiscan technologies 

(Spain), Aweta (Holland), Sacmi and Unitec (Italy). 

 Current state of the art commercial systems sort upto 10 fruits per second (depending on 

fruit size and simultaneous operation at multiple lanes) at an assessment speed of 1 m.s-1. Such 

systems employ SWNIR spectrometers with a partial or full transmittance geometry. There is lack 

of performance benchmarking of commercial in-line systems in literature because of commercial 

concerns except [26]. Although researchers have tried to mimic in-line system issues for example, 

Ignat et al. [61] investigated the performance of PLSR models developed with the use of two 

different spectrometers for static and moving apples.  However, such attempts have used either 

wavelength region of >1050nm or a reflectance geometry (e.g. [61], [157]), both of which are not 

used in standard commercial systems. 

 In comparison to machine vision and weight-based segregation (i.e. load cells), SWNIRS 

adoption in in-line commercial systems lacks behind. The probable reasons include accuracy, 

complexity and value addition to the current systems. As far as accuracy is concerned, NIRS based 

systems indirectly measure fruit attributes unlike the direct assessment in weight-based systems, 

hence, NIRS application depends upon the strength of the indirect correlation of NIRS with the 

attribute of interest. Moreover, to increase reliability of the NIRS system, the calibration models 

need to be updated regularly [26] which increases operational complexity. And lastly, value 

creation can be observed in Japanese fruit markets which offered rewards for top quality fruit. This 

incentive served as a motivational factor for manufacturing of commercial in-line NIRS systems 

by multiple industries in Japan, however, at extremely high prices. In most of the markets (e.g. in 

western countries), fruit rejection (with a strong penalty) is done on the basis of internal browning 

instead of SSC values. Hence, NIRS based defected fruit sorting is being promoted in Western 

markets regardless of the degree of uncertainty involved [55]. 
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2.1.4.3.  SWNIR devices for handheld use: 

 

 Many handheld NIR spectrometer-based models exist that are designed to be used with the 

fruit and predict its attribute’s value. The basic difference between in field use and indoor use is 

the ability of NIRS device to tolerate changes in ambient light conditions and temperature levels. 

Many generic small handheld spectrometers (not specific to fruit) are available with guiding 

material available on how to do fruit evaluation with them [25]. In early 2000s, handheld devices 

purposely built for in-field use became commercially available for example, NIRGun by Fantec 

from Japan, pigment analyzer by CP from Germany, Sacmi from Italy, Nirvana by integrated 

spectronics from Australia and Felix instruments from USA. Few of them have left the field like 

NIRGun, pigment analyzer and Nirvana, many new handheld devices have been released like 

SunForest and GWon from South Korea, Atago Hikari and FHK from Japan [25]. 

 Many other detector techniques also exist [25] within generic spectrometric devices.   

There are two types of detector technologies in handheld NIR spectrometers i.e. single detector 

and array detector [158]. VIAVI MicroNIR 1700 by Santa Rosa from USA is probably the first 

commercial handheld NIR spectrometer used in many applications of qualitative and quantitative 

assessment of seafood, pharmaceutical drugs, soil hydrocarbon contaminants and food nutrients. 

It employs an array detector within wavelength range 908-1676 nm along with a linear variable 

filter (LVF) as monochromator. However, single detectors have low cost as compared to array-

based detectors. Hence, many new advancements were seen in NIRS systems with single detector. 

The DLP NIRscan Nano EVM by Dallas TX from USA uses a single element detector with digital 

micro mirror device covering wavelength range of 900-1701nm. Another MEMS based FT-NIR 

system (wavelength range 1298 to 2606 nm) containing single chip Michelson interferometer was 

introduced by the Si-ware systems from Egypt. The FT-NIR technology offers multiple advantages 

over other technologies like higher optical resolution and ease of model transfer between 

instruments. These technologies have not been implemented in fruit-specific spectrometers with 

the proper optical geometry, wavelength range, and user interface. It's not out of the question that 

this kind of change will occur within the next decade. 

Majority of fruit spectrometers employ tungsten halogen lamp as a light source, a CMOS 

linear array detector or grating and Silicon photodiode operating in the 350-1100 nm with a 
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interactance optical geometry. Variations in ambient light can be accommodated by referencing 

each sample. Amongst all commercial handheld devices, F-750 produce quality meter by Felix 

instruments [159] is a commercial handheld non-destructive fruit quality meter intended for use 

with fruit in the field. It employs a halogen lamp as light source, equipped with a Carl Zeiss MMS1 

spectrometer with wavelength range 285-1200 nm (+/- 10nm) in interactance mode and spectral 

sampling of 3nm and spectral resolution of 8-13nm. It is equipped with a GPS to record spatial 

coordinates for possible generation of orchard maturity maps and provides referencing on every 

sample to cater ambient light variations. The interface is user-friendly with the ability to develop 

chemometric models for a particular fruit cultivar. It is a research-oriented device from Felix 

Instruments. It gives the data scientist the ability to capture raw spectra, apply different pre-

processing filters, develop statistical models for fruit quality estimates, and test those models in 

the field. It takes extensive research and training before F-750 can be used in the field as a portable 

fruit quality estimator.  There are at least a total 40 research articles published recently that use F-

750 as a benchmark to capture spectral data for research and developing models for estimation of 

different fruit quality estimates [96], [160], [161], [162], [163], [164], [165], [166], [167], [168], 

[55],[169],[170],[171],[97],[172],[173]. Felix Instruments have recently also started ready to use 

the F-751 series for only a few fruits i.e., Mangoes, avocados, and Melon. The F-750 is used as the 

industry standard (benchmark instrument) e.g. Australian mango industry association [27]. 

Low-cost LED based instrumentation is also available for assessment of specific pigment 

in fruit. For instance, the Atago Hikari uses LEDs as a light source within the SWNIR region. 

Advantage of using LEDs as a light source is less power consumption and negligible heat 

dissipation, thus there isn’t any need for heat dissipation systems used in the case of halogen lamp. 

The DA meter, Kiwi meter and Cherry meter [174] are handheld devices that measure chlorophyll 

or red pigment detection at two or three wavelengths (DA meter: 670 nm and 720 nm; Kiwi meter 

and Cherry meter: 560 nm, 640 nm and 750 nm). The Multiplex330 [175] is also a handheld device 

employs three LEDs i.e. 435 nm, 685 nm and 735 nm, to measure chlorophyll, flavonols and 

anthocyanins content of leaves and fruits. The FIORAMA [176] handheld device uses 5 LEDs of 

wavelengths 535 nm, 570 nm, 685 nm, 720 nm and 950 nm to measure chlorophyll and red 

pigments.   
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2.2. Chemometrics 

 

NIRS measures the absorption of light associated to the vibration of molecular bonds when 

exposed to light radiations thus providing chemical data. Chemometrics is a data driven science 

that uses mathematics and statistics to extract useful information out of this chemical data. All the 

overtone (absorption) features acquired via NIRS are broad and overlapping which makes the 

interpretation of the acquired spectra in raw form, difficult. When NIRS was introduced as an 

alternative to infrared spectroscopy, it was made possible by the invention of chemometrics, which 

made it possible to fetch out relevant information from the acquired spectra. It typically involves 

feature extraction (i.e. data pre-processing) and machine learning based model development 

(Figure 2.2). Sections below explain each of these in detail:  

 

 

 

 

 

2.2.1. Feature Extraction: 

 

The NIR spectra represents the pattern of NIR radiation absorption by the sample. Factors 

affecting the shape of NIR spectra are: 

1) Due to chemical characteristics of the sample, each wavelength of light will get 

absorbed differently by the sample. Mostly, this is the desired signal which can be 

further interpreted as it relates to the feature of interest. 

2) Depending on the wavelength, light scatters at different angles due to different particle 

sizes.  

3) Differences in path lengths among samples because of positioning variations and 

sample surface irregularities. The scattering effects due to particle size and due to 

different path length are the main cause of variations in the NIR spectra. 

Chemometrics 

Feature 

Extraction 

Statistical 

Learning Model 
NIR 

Spectra 

Fruit 

quality 

estimation 

Figure 2.2: Main elements of chemometrics block of the decision support system 
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Additive effects such as differences in path lengths introduce a shift in spectrum baseline 

along the vertical axis. While multiplicative effects such as due to particle size alter the slope of 

the spectrum.  The purpose of data pre-processing is to eliminate effects that are unrelated to the 

characteristics of the target sample, which would result in better features and thus better data 

modelling. Many pre-processing techniques are available in literature that can be applied on 

spectral data before the model development. Researchers in the past have used these pre-

processing algorithms (individual and in combination, both) to optimize their modelling results 

(Anderson and Walsh, 2022). Standard pre-processing algorithms include two main categories i.e. 

scatter correction algorithms (mean centring, standard normal variate (SNV), and multiplicative 

scatter correction (MSC)) and derivative algorithms. Wavelength selection (WS) methods have 

also been used in literature with chemometric data to reduce redundancy in data and thus number 

of features resulting in reduced complexity of modelling algorithms [177], [178].  

Initially, the research reports in this field presented extensive comparisons of pre-

processing algorithms to optimize the results. However, now it has been accepted that the optimum 

pre-processing technique (and its parameter settings) depend upon instrumentation used and the 

application. Hence, the trend in current reports is to just mention the used (optimum in their case) 

pre-processing technique along with parameter settings employed [177]. Many reviews are 

available in literature that summarize the pre-pre-processing techniques used in horticultural 

applications e.g. [179]–[181]. Some of the most widely used pre-processing techniques are 

explained in section below: 

 

2.2.1.1. Standard normal variate (SNV): 

 

When NIR radiations interact with molecules of the target sample, the resultant 

scattering of light often generates a shift in absorbance levels. As a result, it may become more 

difficult to interpret and model the resulting spectra. Light scattering causes variations in path 

lengths that result in varying background signal levels (variation with the wavelengths creating 

baseline shift and curvature) within the sample and among different samples [182].  
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SNV pre-processing transformation reduces the scattering effects and differences in 

global signal intensities by subtracting the mean of the spectrum from each spectrum and then 

dividing each spectrum by the standard deviation of the spectra. 

 

𝑥𝑖.𝑗(𝑆𝑁𝑉) =
(𝑥𝑖,𝑗−𝜇𝑖)

𝜎𝑖
      (2.1) 

Where 𝑥𝑖,𝑗(𝑆𝑁𝑉) is the transformed element, 𝑥𝑖,𝑗 is the raw spectra element of the ith 

spectrum at variable j, 𝜇𝑖 is the mean of the ith spectrum and 𝜎𝑖 is the standard deviation of 

spectrum i. SNV benefits include: 

1) Correction of baseline shift and global variations in intensity 

2) Improvement in PLSR results when used with NIR spectra with scattering effects 

SNV drawbacks include: 

1) SNV resulting spectra has 0 centred positive and negative values, which may make 

interpretation more difficult 

2) SNV works on the assumption that multiplicative effects are uniformly distributed 

over the whole spectra, which may not be the case in all applications, hence it may 

introduce more artifacts. 

 

2.2.1.2. Multiplicative scatter correction (MSC): 

 

MSC is a demanding pre-processing technique that requires a reference spectrum 

which is ideally free of all scattering effects. Getting such reference spectrum is a challenge itself. 

Usually that reference is obtained by taking average of all the spectral observations. MSC is done 

in two steps [183]: 

1) An ordinary least squares regression equation of the form given below is used to 

regress each spectrum 𝑥𝑖 against the reference spectrum 𝑥𝑚: 

𝑥𝑖 =  𝑎𝑖 + 𝑏𝑖  .  𝑥𝑚    (2.2) 

2) The MSC corrected spectrum is then calculated as:  

𝑥𝑖(𝑀𝑆𝐶) =
(𝑥𝑖−𝑎𝑖)

𝑏𝑖
     (2.3) 
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2.2.1.3. Spectral derivatives: 

 

Spectral derivatives remove both the additive and multiplicative effects in the spectra. 

The first derivative only eliminates the additive effect (baseline shift) while the second derivative 

eliminates both the additive and multiplicative effects (baseline and slope). There are two different 

spectral derivative methods i.e. Norris William (NW) and Savitzky-Golay (SG). Both these 

methods first perform smoothing to avoid reduction of signal to noise ratio (SNR) in corrected 

spectra. Finite difference method is the main method behind finding derivatives. For first 

derivative the difference of two consecutive spectral measurements is calculated as [183]: 

𝑥𝑖
′ =  𝑥𝑖 − 𝑥𝑖−1     (2.4) 

Second derivative is calculated by taking difference of two consecutive points of first 

derivative i.e. 

𝑥𝑖
′′ =  𝑥𝑖

′ − 𝑥𝑖−1
′ =  𝑥𝑖−1 − 2 . 𝑥𝑖 +  𝑥𝑖+1    (2.5) 

 

In literature, the most widely used spectral derivative pre-processing technique is the 

SG method. Savitzky and Golay [184] introduced a method of numerical derivation including the 

smoothing. A symmetric window size is selected and then a polynomial is fitted on the raw data 

within that window to find derivative at the central point of the window. The parameters of the 

polynomial are then calculated, which can be used to calculate derivative of any order of this 

polynomial analytically. The derivative equation is used to calculate the derivative of the centre 

point of the window. This method is repeated for all points in the spectra. The window size and 

polynomial order are to be decided based on the application. The polynomial order defines the 

highest derivative that can be calculated for example, a fourth order polynomial can be used to 

find fourth order derivative.  

 

2.2.1.4. Principal component analysis (PCA): 
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The spectroscopic sensors capture information about the sample in the form of light signals 

at multiple wavelengths. In multivariate data analysis, first step is to identify clear differences in 

the captured signal among different samples. However, in case of NIRS and SWNIRS, the 

overtone features are so broad and overlapping that there exists strong correlation among 

wavelengths which makes it difficult to interpret the raw spectra. For good modelling of data, the 

input features to a machine learning model should be uncorrelated with each other. Correlation 

among features provides no extra information to the model about the data to be modelled. Thus, it 

is desirable to reduce the redundancy in the features, which can be achieved by reducing the 

number of features while maintaining maximum variation in the data using some technique like 

principal component analysis (PCA)[183].  

For a matrix X with dimensions (m x n), m number of rows corresponding to observations 

and n corresponding to absorbance values (features) at n number of wavelengths. PCA transforms 

this m x n dimensional space having ‘n’ number of correlated variables into a m x p dimensional 

space having ‘p’ number of uncorrelated variables (called as the principal components ‘PCs’), 

which are linear combination of the original variables. The matrix X is decomposed as: 

𝑿 = 𝑺𝑳𝑻 + 𝑬      (2.6) 

Where S is the scores matrix of dimensions (m x p) containing the coordinates for ‘m’ 

samples in the new space (coordinate system) created with ‘p’ uncorrelated variables. While L is 

the loading matrix of dimensions (p x n) containing the contributions of the ‘n’ original variables 

to the ‘p’ new variables and T represents transpose operation. E is the residual error matrix. 

Mathematically, an eigen vector decomposition is performed of the matrix 𝑿𝑇𝑿 to get an 

approximate �̂� of loading matrix 𝑳. The approximate for score matrix �̂� is calculated by regressing 

X onto �̂�. 

PCA is performed in the following steps [185]: 

1) Normalization: 

This step normalizes the range of input variables so that each variable contributes equally 

to the analysis. If the ranges of input variables have significant differences, the variables with more 

range will have more influence than those with small ranges, this leads to unjust results. This is 

mathematically done by: 
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𝑞′ =
𝑞−𝜇

𝜎
      (2.7) 

Where 𝜇 is the mean and 𝜎 is the standard deviation.  

 

2) Computation of the covariance matrix: 

This matrix computes the relationships (correlations) between variables. It is a p x p matrix 

(where p is the number of input variables). The entries of this matrix are the covariances associated 

with the input variables. For instance for a 3-dimensional input data having three variables a, b 

and c, the covariance matric will be given as: 

[

𝐶𝑜𝑣(𝑎, 𝑎) 𝐶𝑜𝑣(𝑎, 𝑏) 𝐶𝑜𝑣(𝑎, 𝑐)
𝐶𝑜𝑣(𝑏, 𝑎) 𝐶𝑜𝑣(𝑏, 𝑏) 𝐶𝑜𝑣(𝑏, 𝑐)
𝐶𝑜𝑣(𝑐, 𝑎) 𝐶𝑜𝑣(𝑐, 𝑏) 𝐶𝑜𝑣(𝑐, 𝑐)

]     (2.8) 

 

3) Computation of the Eigen vectors and Eigen values: 

Next step is to compute the eigen vectors and eigen values of the covariance matrix. The 

eigen values and eigen vectors will determine the principal components (PCs). PCs are the new 

set of variables constructed using linear combinations of input variables. The PCs are uncorrelated 

amongst each other, and the first few components contain maximum information about input 

variables.  Which means that a x dimensional data will have x number of PCs and the first PC will 

have maximum variance (information about input data) and then the second PC will have second 

most variance and so on. Usually, the first few PCs are used as feature set and other PCs with low 

variances are discarded. The PCs represent new axes where data direction explains maximum 

amount of variance. Larger the variance of a line, larger is the scatter of data samples along it and 

thus more information it carries. The eigen vectors are actually the direction of the axes of most 

variance (called as PCs), and the eigen values are the coefficients of the eigen vectors, representing 

magnitude of variance of each PC. 

 

4) Feature vector: 

The feature vector has eigen vectors at its columns (the first few ones which are kept). The 

number of columns in feature vector decides the new dimension of the data. 

 

5) Recasting of data along PC axes: 
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The input data is still in its original form. To re-orient the input data from original axes to 

the PC axes, feature vector is used. The transpose of feature vector is multiplied with the transpose 

of the feature vector to get the transformed data with reduced dimensions having maximum 

information about input data. 

 

2.2.2. Machine Learning based Modelling:  

2.2.2.1. Multivariate regression algorithms: 

 

To interpret spectra in such a way that a desired result is deduced from it, a mathematical 

function that transforms the predictors (independent variables x) and the predicted (dependent 

variable y) is generally needed: 

 

𝑦 = 𝑓(𝑥)     (2.9) 

The coefficients of f(x) are computed from training samples (spectra and reference values 

both). 

 

2.2.2.1.1. Multiple linear regression (MLR): 

 

The linear regression finds a linear relationship between dependent and independent 

variable. In case of one independent variable, it is called simple linear regression. While in case of 

multiple independent variables, it is called as multiple linear regression. Linear regression finds a 

linear function between the independent and dependent variable, with coefficients computed from 

the data. Given a dataset of m observations and n number of independent variables [183]: 

 

{𝑦𝑖, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛} 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑚     (2.10) 

 

The MLR estimates a linear function of the form: 

 

𝑦𝑖 =∝0+ ∝1 𝑥𝑖1 +∝2 𝑥𝑖2 + ⋯ +∝𝑛 𝑥𝑖𝑛 +  𝜖𝑖   (2.11) 
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Where y is the estimated value to attribute, 𝛽0 is the y-intercept, 𝛽𝑎 ( a = 1 to n ) are the slope 

coefficients for each independent variable 𝑥𝑖𝑎 and 𝑥𝑖𝑎 are the variables representing absorbance 

values at multiple wavelengths. Moreover, 𝜖 is the error variable which defines the random 

deviations from the linear relationship between the dependent and independent variables. Which 

can be written in matrix notation as: 

 

𝒚 = 𝑿 ∝  + 𝝐     (2.12) 

Where  

 

𝒚 =  [

𝑦1

𝑦2

⋮
𝑦𝑚

]      (2.13) 

 

𝑿 =  [

1 𝑥11 … 𝑥1𝑛

1
⋮

𝑥21

⋮

… 𝑥2𝑛

⋮ ⋮
1 𝑥𝑚1 … 𝑥𝑚𝑛

]    (2.14) 

 

∝=  [

∝0

∝1

⋮
∝𝑛

]      (2.15) 

 

𝝐 =  [

𝜖1

𝜖2

⋮
𝜖𝑚

]      (2.16) 

 

Where y vector, contains the reference values 𝑦𝑖 for i = 1 to m, called as the predicted / 

dependent variable. X matrix contains m observations (along the rows) and each observation 

having n independent variables in the columns. ∝ is an n dimensional regression coefficient vector, 

∝0 is the intercept. In simple linear regression, m = 1 and the coefficient is called as slope. These 

coefficients are computed as partial derivatives of the predicted variable w.r.t independent 

variables. 𝝐 is the vector of error terms or noise. This variable accounts for all other factors that 
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influence the predicted variable y other than the independent variables. The regression coefficients 

α can be computed using the ordinary least squares approach assuming X is full rank, which gives 

the unbiased estimator ∝̂ of α, of the form: 

 

∝̂= (𝑿𝑇𝑿)−1𝑿𝑇𝒀     (2.17) 

 

where the subscript -1 represents the inverse of 𝑿𝑇𝑿.  

MLR based model is the easiest to interpret considering the wavelengths involved. In MLR, 

wavelength selection can be manually done, which can lead to more robust model as compared to 

ones which decide the wavelengths based on training data statistics. However, it requires good 

background understanding of the underlying phenomenon. In case of spectroscopic data, the 

number of independent variables ‘n’ may be larger than the observations ‘m’ in the training set. 

Which means that number of columns is greater than number of rows in X and thus 𝑿𝑇𝑿 

(covariance matrix) becomes singular and non-invertible, thus a unique solution is not possible. 

This can be avoided by increasing the number of observations or reducing the spectral features 

size such that n < m. Moreover, MLR assumes linear relationship between dependent and 

independent variables and also that the independent variables don’t have high correlation among 

each other. If the correlation is high, the prediction performance may be poor as high correlation 

results in over fitting model. 

Mainly, MLR outperforms others when the instrument has light source with limited number 

of wavelengths. For instance, the fruit grader, Sumitomo (Japan), uses an MLR model SSC 

estimation of fruit as it employs multiple NIR diode lasers of peak wavelengths. The internal defect 

sorter, MAF (Montabaun, France), employs LEDs of distinct peak wavelengths to estimate ratio 

of absorbance at two wavelengths, also uses MLR model.  

 

2.2.2.1.2. Principal component regression (PCR): 

 

As the MLR assumes that the independent variables are not correlated with each other (which 

is not always the case), the PCR improves the modelling of MLR by using PCA and instead of 
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directly using the independent variables for regression, it uses the PCs (subset of PCs) of the 

independent variables to estimate the model. Usually, the PCs with higher variance are used as the 

feature set, however, there may be applications where the PCs with low variance are also important 

for predicting the output. However, manual selection of PCs which are most influential for the 

output can lead to excellent prediction results. PCR is applied in three steps [185]: 

1) First of all, PCA is applied on the independent variables and PCs are calculated whose 

number equals the number of independent variables. Then a subset of PCs (the feature set) 

is chosen based on some appropriate criteria for further use. 

2) Next, the reference outcomes are regressed against the chosen feature set using linear 

regression method to get the regression coefficients vector (dimensions equal to the 

dimension of the feature set). 

3) To get the PCR estimator (having dimension equal to the number of independent variables), 

the regression coefficients vector is transformed using PCA eigen vectors. 

Basically, the PCR approximates the regression coefficients α (of MLR) by replacing the X matrix 

with the S matrix of PCA 

∝̂= (𝑺𝑇𝑺)−1𝑺𝑇𝒀     (2.18) 

PCR usually has lesser standard errors and give better performance on independent test data 

as compared to MLR, due to use of PCs. The number of PCs used can be decided by evaluating 

the PCR model’s performance over different number of PCs on a validation dataset that is 

independent of training set. 

 

2.2.2.1.3. Partial Least Squares Regression (PLSR): 

 

Although PCR provides good improvement in prediction performance as compared to 

MLR, it uses those PCs which have maximum variance of input data and there is no surety that 

the PCs with maximum variance will also have influence on the prediction of output variable y. If 

the attribute of interest has significant influence on the spectra, the first few PCs will most likely 

capture it. However, if the variations in the spectra are influenced by other factors as well, then the 
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first few PCs may not be most useful for predicting the attribute of interest. To overcome this, the 

PLSR defines new variables by exploiting the relation between X and Y.  

The partial least squares regression is least square regression with partial number of 

variables. It basically projects the dependent and independent variables into a new space and then 

finds a linear regression model. The new variables are created as orthogonal linear combinations 

of input variables by capturing maximum covariance between X and Y [179]. The new variables 

are different form PCs and are called as latent variables (LVs). In PCA space this is achieved by 

singular value decomposition of 𝑿𝑇𝒀 instead of 𝑿𝑇𝑿. As a result, bilinear decomposition of both 

the matrices X and Y is performed in scores matrix and loadings matrix similar to PCA. The 

decomposition in case of NIPALS algorithm is obtained as [183]: 

𝑿 = 𝑺𝑳𝑻 + 𝑬      (2.19) 

𝒀 = 𝑹𝑶𝑻 + 𝑮      (2.20) 

Where X is an m x n matrix of independent variables (m observations and n features), Y is 

an m x l matrix of output variables, S and R are m x p matrices (projection of X and Y respectively), 

L and O are n x p and l x p orthogonal loading matrices and E and G are error matrices. PLSR is 

most suited when the number of features (input variables) is greater than the observations and 

when there exists multicollinearity between X variables, as opposed to MLR. The number of LVs 

is decided by testing the PLSR model for different number of LVs on independent test data as in 

the case of PCR. Both PLSR and PCR perform equally good in most cases. As PLSR captures 

maximal variance in the attribute of interest i.e. covariance between X and Y rather than maximal 

variance of spectra i.e. variance in X, it is expected that PLSR gives comparable performance to 

PCR with fewer number of LVs than that of PCs.   

PLSR is the most often used chemometric modelling technique in postharvest research. 

Commercial postharvest Vis-SWNIRS instrumentation currently available exclusively uses PLSR 

or MLR methods. Other food applications have seen commercialization of neural networks, 

indicating that there is room for additional research with other multivariate methods in fruit quality 

estimation applications, with benchmarking to PLSR using the same data set for calibration and 

independent test sets. Although there are reports of these modelling techniques being used in 

postharvest applications [186], no consistent advantage over the usage of PLSR has been proven. 
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2.2.2.1.4. Artificial neural network (ANN): 

 

The ANNs are inspired by the brain’s biological neural networks. An ANN is composed 

of multiple nodes called as the artificial neurons [185]. Each node is connected to other nodes thus 

can transmit signal to others just like the brain. At each connection, the signal that is transmitted 

is a real number and output at each node is calculated by some non-linear function applied at the 

sum of its inputs. The links connecting different nodes are called edges. Nodes and edges have a 

weight associated to them that is adjusted as training is done. The weight is multiplied by the signal 

at each connection. The ANN typically has layers, each layer has one/multiple nodes. The signal 

travels from input layer to output layer after passing from inner/hidden layers. Figure 2.3 below 

shows the typical structure of ANN. 

 

Figure 2.3: Typical structure of ANN 

 

Neural networks are trained just like human brains i.e. by giving them examples, a known 

input and a known result (without any rules defined). The network is trained by finding the 

difference between the actual output and predicted output of network and based on the error 

generated the weights of the network are adjusted. The process is repeated iteratively till the error 



 

55 
 

is minimal. After sufficient number of iterations a criteria is established and the training is 

terminated. The ANNs learning resembles the gradient descent approach.  

For instance, we have a node with n number of inputs i.e. x1, x2, …. , xn , each input has a 

respective weight associated with it i.e. w1, w2, …. , wn. the node will sum up all these inputs as: 

 

∝ =  𝑥1𝑤1 + 𝑥2𝑤2 + ⋯ + 𝑥𝑛𝑤𝑛   (2.21) 

 

Where ∝ is the activation or output of the node. After the summation, output is passed 

through a activation function which includes step, sigmoid, signum or linear function. In the case 

of step activation function, if the output is greater than a certain threshold the neuron outputs a 

signal e.g 1 and zero otherwise: 

𝑥1𝑤1 + 𝑥2𝑤2 + ⋯ + 𝑥𝑛𝑤𝑛 > 𝑇   (2.22) 

 

Hence, the summation and activation functions together form a node.  In 1958, Frank 

Rosenblatt provided a training algorithm for a simple ANN called as perceptron. A single 

perceptron can classify inputs into one of two classes. It uses same principle as of a neuron i.e. 

summation followed by activation function: 

𝑦 = 𝑠𝑔𝑛 (∑ 𝑥𝑖𝑤𝑖 + 𝜃2
𝑖=1 )             (2.23) 

𝑠𝑔𝑛 (𝑠) =  {
1        𝑖𝑓 𝑠 > 0

−1      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (2.24) 

Y is the output of perceptron and 𝜃 is the bias. For a given training set, both 𝜃 and 𝑤𝑖 are are 

updated iteratively. The weights are initialized randomly. µ is the learning rate as in the case of 

steepest descent algorithm. The algorithm works as follows: 

1) Some random sample from training set is taken as input and output is calculated. 

If output is correct, then nothing is done. 

2) If result is incorrect, the weight vector is modified as : 

 

𝑤𝑖 =  𝑤𝑖 +  𝜇 𝑦(𝑛) 𝑥𝑖(𝑛)                (2.25) 

 

𝐸 =  
1

2
∑ (𝑦𝑚 − 𝑌𝑚)2𝑁

𝑚=1            (2.26) 
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E is the error function which needs to be minimal. 𝑦𝑚 is desired output and 𝑌𝑚 is the predicted 

output. N is the number of samples in training set. These steps are repeated until the complete 

training set is classified correctly called as the back-propagation algorithm. The same procedure 

can be repeated for a multilayer perceptron which one input layer, at least one hidden layer and 

one output layer. It is to be noted that, ANNs can be used for regression as well as classification. 

In case of regression the output is computed without the activation function. If large datasets are 

used, ANNs tend to perform better than PLSR. 

 

2.2.2.2. Classification algorithms: 

 

In machine learning, classification is a two-phase procedure Figure 2.4. One is learning 

phase and other is prediction phase. In learning phase, training data is used to develop a model. In 

prediction phase, the developed model is used to predict the output for test data[185].  

 

 

 

 

 

 

 

 

2.2.2.2.1. Tree: 

 

Decision trees belong to supervised learning algorithms and are amongst the easiest to understand 

and implement algorithms [187]. They can be used to solve classification and regression problems 

both. Decision trees learn decision rules using the training data. Root of the tree is the starting 

Training 

Data 

Classification 

Algorithms 

Classifier 

(Model) 

New record 

Data 

Prediction 

Figure 2.4: Overall framework of classification 



 

57 
 

point to predict a class label (Figure 2.5). Root traits are compared with the record’s traits. Based 

on the comparison value, next node to traverse is decided.  

 

Figure 2.5: Basic layout of decision tree 

The basic algorithm includes [188]: 

1) Tree is constructed in a divide and conquer manner and top down approach 

2) For training at start, all examples are at the root 

3) Features are categorical 

4) Based on selected features, the examples are divided recursively 

5) Test features are selected based on some statistical measure lie the information gain 

6) When all samples at a given node belong to same class and there are no remaining features 

for further division, its time to stop. 

 

2.2.2.2.2. Linear discriminant Analysis (LDA): 

 

LDA is a supervised classification technique used for dimensionality reduction. It overcomes 

the issues with logistic regression i.e. logistic regression is used for two class classification, 

Root node

Decision node

Decision node

Terminal node

Terminal node

Terminal node
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unstable with well-separated classes and if number of observations is lesser than the attributes of 

interest. The LDA works as follow [189]: 

1) Firstly, “between class variance” is calculated which is the distance between the mean of 

different classes: 

𝑆𝑏 =  ∑ 𝑁𝑖(�̅�𝑖 − �̅�)(�̅�𝑖 − �̅�)𝑇𝑔
𝑖=1     (2.27) 

 

2) Secondly, the “within class variance” is calculated which is the distance between each 

sample and the mean of that class: 

𝑆𝑤 = ∑ (𝑁𝑖 − 1)𝑆𝑖
𝑔
𝑖=1      (2.28) 

 

3) Finally, the lower dimensional space is created which minimizes the within class variance 

and maximizes the between class variance. Q is considered as lower dimensional projection 

also called Fisher’s criterion: 

𝑄𝑙𝑑𝑎 =  𝑎𝑟𝑔𝑄𝑚𝑎𝑥
|𝑄𝑇 𝑆𝑏  𝑄|

|𝑄𝑇  𝑆𝑤 𝑄|
    (2.29) 

 

2.2.2.2.3. Support vector machine (SVM): 

 

SVM is a supervised machine learning algorithm for classification/regression. It is more 

suitable for classification but is also used for regression with the name support vector regression 

(SVR). SVM basically estimates a hyperplane that separates classes of data. To address binary 

classification issues, SVM employs the "kernel trick," which is based on the addition of one 

dimension to an existing predictor variable function. When drawing a hyperplane of separation, 

the points closest to each class' hyperplane are used as support vectors to influence the hyperplane. 

By default SVM can classify only two classes. However, there exist modifications to tune SVM to 

classify multiple classes. A binary classifier can be created for each class i.e. if the sample belongs 

to that class or not of that class. In case of fruits, for instance for apple class, there will be a 

classifier to predict if it’s an apple or not an apple, for mango class, a classifier will decide if it’s 

a mango or not and so on.  
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SVMs perform well for linearly separable data. However, for non-linearly separable data 

kernelized SVMs are used. The non-linear data in any dimension is mapped to a higher dimension 

where it is linear. For example, a non linear data in one dimension can be mapped to two 

dimensions where it will be linearly separable (each 1-D point is mapped to a 2-D ordered pair). 

The kernel basically tells the similarity between data points w.r.t the two feature spaces i.e. how 

much two data points of original feature space are similar in the new feature space. Different kernel 

function exist however, two of are very commonly used [190]: 

1) Radial Basis Kernel (RBF):  

It is the default kernel which uses an exponentially decaying function to find similarity 

between two points in the new feature space. Exponential function is applied on the distance 

between the vectors and the actual input feature space as shown below: 

𝐾(𝑥, 𝑥′) =  𝑒(−𝛾||𝑥−𝑥′||)     (2.30) 

||𝑥 − 𝑥′|| is the squared Euclidean distance between two points. 𝛾 is set manually and 

should be greater than 0.  

2) Polynomial Kernel: 

It uses an additional parameter called degree to control the computational cost and 

complexity. 

There are three important parameters in kernel SVM i.e. the Kernel, gamma and the C 

parameter. Selection of kernel depends upon input data type and the transformation type. Gamma 

value decides how closely the decision boundary surrounds the data points in original space, low 

values can lead to low accuracy and high values to over fitting. The C parameter is used to 

regularize the data. Lower values of C mean more tendency to tolerate errors and hence low 

accuracy and high value means overfitting.  

The SVR is based on the same concepts as SVM, except instead of separating classes, the 

hyperplane is employed as the regression equation for prediction. In the SVR framework, the 

epsilon (support vector) is a parameter that specifies the margin of tolerance. The hyperplane is 

affected by variables in the +/- epsilon region of the hyperplane. A cost parameter is used to weigh 

the influence of variables outside of this range on the hyperplane's performance, but the hyperplane 

is still affected by them. LS-SVM (LSSVM) is a variation of the SVM algorithm in which the 
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hyperplane is solved using a linear equation rather than a quadratic one. There are numerous 

comparison studies using SVM as a fruit chemometric modelling approach, making it the second 

most common method. 

Pros of SVM include good performance over a range of datasets for both high and low 

dimensional data and also are versatile in terms of kernel specifications. Cons include more 

computational complexity, input data needs careful pre-processing, parameter values need to be 

chosen carefully and are difficult to interpret as they don’t provide a direct probability estimator. 

 

2.2.2.2.4. K-Nearest Neighbor (KNN): 

 

KNN is also a supervised learning algorithm and is amongst the simplest ones. It can be used for 

regression and classification both, however it is mainly used for classification. It is a non-

parametric algorithm in a sense that it does not make any assumption about the data. It just stores 

all the training data examples and when a new sample is given for prediction, it calculates 

Euclidean distance from all the examples in training data and assign the class that is most similar 

to the already available classes. This is the reason it is also called as lazy learner algorithm. The 

KNN classification works as follows [185]: 

1) The number K is selected which represents number of neighbors to be checked similarity 

with. 

2) The Euclidean distance of new data point with the K number of neighbors is calculated.  

3) Among these neighbors, number of data points in each class is counted. 

4) The class which has maximum number of neighbors is assigned to the data point. 

 

In KNN regression, the output value is the average value of K nearest neighbors. 

 

2.2.2.2.5. Ensemble: 

 

Ensemble learning is a general approach that combines prediction from multiple machine learning 

models to get better results. There are three main categories of ensemble classifiers [185]:  
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1) Bagging:  

This approach works by applying many decision trees on the same dataset and then 

averaging the results. 

2) Stacking:  

It includes fitting different models on the same dataset and then training another model for 

best possible combination of the predictions 

3) Boosting: 

It involves application of models in a sequential manner which make corrections to the 

previous model’s prediction and then the final prediction is computed as a weighted 

average. 

 

2.2.3. Benchmarking:  

 

In this field, the aim to develop a chemometric model that relates spectra to attributes of 

interest [191]. The PLSR is the most widely used chemometric technique used as a regressor in 

this research area along with standard feature extraction techniques like spectral derivatives, SNV 

and MSC [191]. If some novel feature extraction technique is reported, benchmarking to a standard 

and most widely used feature extraction technique is recommended [25] e.g. Sun et al [192] 

illustrated such benchmarking for temperature correction methods for avocado DM content 

prediction. The commercially available post-harvest NIRS instruments entirely employ PLSR (or 

MLR in LED based devices) [25]. Neural networks have also been used commercially for 

determination of fat products in meat [193]. This suggests that there is capacity for more work 

using other modelling techniques in postharvest applications however, other techniques should be 

presented with benchmarking to PLSR on same calibration and independent test datasets [25]. 

To date, there are numerous publications [25] in this field, however, the comparison of 

presented models/instruments with other literature reported models/instruments is difficult 

because of the difference in datasets collected (if available online). In other fields, there are open 

datasets available online for instance, ImageNet Large Scale Visual Recognition Challenge, 

ILSVRC, and few open datasets of Vis-NIRS (of a smaller scale) are available online for 
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applications like soil application [194]. Similar online open access datasets are not available for 

post-harvest application [25]. Hence comparative studies in this field are not possible. 

 

2.2.4. Calibration set size: 

 

A limited number of observations in the calibration set are used in some NIRS application 

development reports. Consider the possibility that two random numbers will be arranged in 

ascending order. Consider what would happen if only three fruit spectra were obtained with dozens 

of wavelength data points. There's a chance that values at certain wavelengths will trend with 

attribute level for particular fruits at random. This is an example of regression models that have 

been overfitted. 

It is advised that application studies for assessing intact fruit comprise hundreds of spectra 

linked to reference values. In order to build a 'robust' model, data from numerous harvests or 

seasons must be included, resulting in data sets including hundreds of samples (e.g., [48], [152], 

[195]). 

This means that when PLS, MLR, and LS-SVM modelling approaches are compared on 

the basis of 120 fruits gathered at a single location and time, and the sets of calibration and 

validation data are divided according to TSS values, the predicted results are overly optimistic for 

use in independent set prediction, and the proposed solution is not clear whether it will hold up in 

practice. For an avocado dry matter content application, Blakey [195] gives a valuable case study 

with over 10,000 samples and the utilisation of independent test sets. As a general rule, cross-

validation algorithms assist avoid this problem; however, the cross-validation groups need to be 

broad and comprise distinct sets of data rather than single sample cross validation. 

 

2.2.5. Independent test sets: 

 

A Vis-NIRS model must be able to withstand a wide range of production, storage, and 

plant variety circumstances, as well as a wide range of measurement conditions, including ambient 
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light and temperature. Postharvest industry adoption of the technology requires a demonstration 

of model robustness, which should be the primary focus of present and future studies. Many 

reviews have emphasised the importance of using an independent test set, one that has not been 

used to tune model parameters, to create prediction statistics (e.g., [196]). 

A model can be utilised in an NIRS pack-line implementation to predict fruit from various 

harvest dates, growing sites, and conditions, as well as from different cultivars. As such, it is 

advised that the test sets chosen reflect the model's intended application. Refractometric 

assessments of TSS may be affected by changes in the soluble sugar types or levels of organic 

acids, for example, or the skin characteristics may change with water stress, altering the scattering 

coefficients of the fruit's skin. 

For typical parameters like as TSS and DM, several studies have found that three years of 

data (growing seasons) is required to develop an accurate model. However, this conclusion may 

also be linked to the length of a regular funding grant. Samples from a variety of water stress 

treatments [49] and maturation stages/ripeness stages have been included in the calibration set in 

an attempt to create robustness within a single season. 

Future application development research should cover a wide range of populations. 

Prediction statistics for these sets, or cross validation findings utilising the independent sets as 

cross validation groups, should be used to report the outcomes of the study. NIRS model accuracy 

and precision problems can be teased out by comparing the outcomes of the various test sets (e.g., 

multiple cultivars, growing conditions, different seasons etc). 

 

2.2.6. Conclusion: 

 

Most of the published research on the measurement of intact fruit internal parameters have 

used wider wavelength regions including extended NIR region (>1000 nm) [25], e.g. for 

‘Valencia’ orange 450-2500nm [197], for citrus 1100-2500nm [198], for ‘Satsuma’ mandarin 400-

2350nm [199] and reflection geometry (more details in section 2.1.3). This results in acquisition 

of spectra having dominant features from fruit skin and hence the models are not robust to skin 

property variations between populations. 
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The SWNIR region is used commercially for the assessment of internal quality attributes 

of intact fruit, in preference to the extended NIR region [25]. Longer wavelength ranges offer 

narrower and stronger absorption features as compared to SWNIR and thus better evaluation of 

internal parameters however, the SWNIR wavelengths have greater effective penetration depth 

into the fruit, hence, offer robustness across independent populations and given the variation in 

outer layer attributes. The short-wave Vis-NIR option is preferred for commercial purposes due to 

(currently) lower hardware costs [25], [26]. There is a need to evaluate SWNIRS for fruit quality 

estimation of Pakistani fruit cultivars.  

Moreover, most of the reported literature (section 2.1.3) on non-destructive fruit quality 

estimation performs quantitative assessment of quality attributes. The potential and benefits of 

discriminant sorting (based on direct classification) for fruit sweetness classification needs to be 

analysed as compared to quantitative assessment of quality attribute.  
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Chapter 3 : SWNIR SPECTROSCOPY FOR FRUIT QUALITY INDEX 

ESTIMATION FOR PAKISTANI FRUIT CULTIVARS 

3.1. Introduction: 

 

The current fruit quality inspection methods in Pakistan are either manual and destructive 

(based upon physical appearance or internal flesh characteristics) or include weight-based 

segregation systems. To introduce quality traceable system for each fruit within a pack, efficient 

non-destructive testing system needs to be adopted by the Pakistani horticulture specially for 

export quality fruits.  

Non-destructive testing using portable near infrared spectroscopy (NIRS) has been used in 

quantitative measure of fruit quality indices such as DM, SSC, TA , and colour, which are 

correlated with fruit maturity/quality [2]. Initially, NIRS instruments were laboratory bound, 

however, portable instrumentation is now available, e.g, Consumer Physics’ SciO [200]. A few 

instruments are designed specifically for use with fruit, e.g., in terms of a partial transmission 

optical geometry, e.g., Sunforest H-100C [201] and Atago Hikari [202], and ability to operate 

outdoors with varying ambient temperature and light levels, e.g., Felix Instrument F-750 produce 

quality meter [159]. The F-750 provides referencing on every sample to address the issues of 

varying ambient light and temperature. Some spectrometers targeted to fruit applications come 

with pre-supplied models that the user can not alter (e.g., the Hikari). Other units come with a 

factory supplied model but allow the user to extend the existing model or develop new models.  

The F750 unit is supplied with factory installed ‘starter’ models which are intended for use by the 

user-horticulturalist. Starter models are available for apple, mango, cherry, grape, avocado, kiwi, 

mandarin, pear, cherry and persimmon fruit [159]. For ease of practical implementation, a Vis-

NIRS model should be ‘robust’ in use across production environments, seasons, storage 

conditions, plant varieties, and instruments. Managing multiple models is time-consuming and 

cumbersome for end-users [177].  

To investigate the applicability of SWNIR spectroscopy for non-destructive quality 

inspection in Pakistan, the industry standard F-750 fruit quality meter is used as a Vis-NIR 

spectrometer handheld device. This device is featured in many publications [55], [80], [162], 

[163], [170], [203], [204], all of which involve de-novo development of chemometric models, but 
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the robustness of the available chemometric models has not been demonstrated in prediction of 

fruit populations from a range of varieties and growing conditions. To directly adopt available 

portable NIRS instruments in Pakistani horticulture, the effectiveness of factory supplied models 

in prediction of Pakistani fruit cultivars needs to be investigated. Therefore, as a first thing, I 

investigated the robustness of available chemometric models for quality inspection of Pakistani 

fruit cultivars. And for fruits where available chemometric models failed to predict the quality 

indices of Pakistani cultivars, I have developed new chemometric models for prediction of fruit 

quality parameters.  

In this chapter, factory supplied starter models for apple, mango and mandarin are assessed 

relative to locally developed new models. The F-750 Vis-NIR factory-supplied apple, ‘Kensington 

Pride’ (KP) mango and mandarin models were evaluated to estimate SSC and DM for local 

cultivars of apple varieties (i.e., Golden Delicious and Red Delicious), export quality cultivars of 

mango (i.e., ‘Sindhri’, ‘Samar Bahisht (SB) Chausna’ and ‘Sufaid Chaunsa’) and SSC for an 

export quality cultivar of mandarin (i.e., Kinnow). Moreover, new models were developed for 

Pakistani cultivars of mango and mandarin and compared with factory supplied models. Starter 

model for loquat was not available hence, the applicability of field portable NIRS to the loquat is 

also investigated.  These fruits hold high commercial significance to Pakistan, but also provide 

examples of fruit with relatively thin and thick skin and with relatively thick and thin edible flesh. 

These differences in morphology can be expected to impact the non-invasive assessment of flesh 

characters using NIRS. 

  

3.2. Materials and methods: 
 

3.2.1. Fruit: 

 

Mature, ripened apple (Malus domestica) samples were purchased from the local market 

(120 fruit in total, 30 fruit of each of two varieties, ‘Golden Delicious’ and ‘Red Delicious’, on 

two dates during the month of May 2020). The recommended harvest maturity criterion in Pakistan 

for apple i.e. ‘Red Delicious’ cultivar is 12.03 oBrix and 15.1% DM [205], ‘Golden Delicious’ is 

11.68°Brix and 17.03% DM [206]. 
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Mango (Mangifera indica L.) fruit at hard green harvest-maturity stage were harvested 

from mango orchards located in Muzaffargarh and Multan Districts of Punjab Province, Pakistan.  

A total of 734 fruit samples of variety ‘Sindhri’, ‘SB Chaunsa’ and ‘Sufaid Chaunsa’ were 

harvested across two seasons (2019, 2020), with fruit harvested at three stages, i.e., one week 

before, on and one week after the estimated commercial harvesting date (mango harvest period for 

Sindhri and Samar Bahisht Chaunsa is 2-3 weeks and for Sufaid chaunsa it is 3-4 weeks). These 

populations provided a wide range of SSC and DM values. The 600 samples (200 of each variety) 

harvested in August 2019 were used for PLSR model development. The134 samples (Sindhri 20 

samples, SB Chaunsa 73 samples and Sufaid Chaunsa 41 samples) harvested in July 2020 were 

used for model validation. The recommended harvest maturity criterion in Pakistan for mango i.e. 

‘Sindhri’ cultivar is 6-7.5 oBrix and 17-20% DM, ‘Samar Bahisht (SB) Chaunsa’ is 9.0-11.0°Brix 

and 18-21% DM, and ‘Sufaid Chaunsa’ is 8-9 °Brix and 24-25% DM ([207], [208]). 

Mandarin (Citrus nobilis Lour x Citrus deliciosa Tenora , variety ‘Kinnow’) ripened 

samples were purchased from a local market (72 fruit in total, on two dates during the month of 

Feb 2021). Average peel thickness was 2 - 4 mm. 50 samples were used for model calibration, 

each sample was scanned from two opposite sides for SSC hence total 100 spectra were used to 

calibrate model. 22 samples, scanned from two opposite sides for SSC (total 44 spectra), were used 

for model validation.  The recommended harvest maturity criteria for mandarin is 10 oBrix. 

Loquat (Eriobotrya japonica, variety ‘Tanaka’) fruit were harvested during the month of 

May 2021 from an orchard located in district Garhi Duppata of Azad Jammu Kashmir (AJK) 

province, Pakistan. Average fruit size of investigated variety is 2.5-5cm with a thin skin and large 

central seeds. Mature loquat fruit (n=225) were harvested randomly from different locations on 

different trees, on three dates. Fruit samples from the first two harvest dates (n=157) were used in 

model development, while fruit samples from the third harvest (n=68) were used in validation. The 

recommended harvest maturity criteria for loquat (Eriobotrya japonica)  is 12 oBrix [209]. 

All fruits were transported on the day of collection to a local laboratory and stored at room 

temperature (25oC) for 24 h prior to analyses to minimize the influence of sample temperature on 

prediction accuracy [210]. Mangoes were tested in Muhammad Nawaz Shareef University of 

Agriculture (MNSUA), Multan, and other fruits were tested in National Centre of Robotics and 

Automation (NCRA), Islamabad.  
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3.2.2. Collection of Vis-NIR spectra: 

 

Apple, mango, mandarin and loquat fruit were marked on opposite sides (see Figure 3.1) at 

equatorial position and three replicate spectra collected at each position. The three spectra for each 

position were averaged to provide one spectrum for each position. Vis-NIR spectra (range 400-

1150 nm) were collected using the F-750 (Felix Instruments, Camas, WA, USA). This device 

employs interactance optical geometry and a Carl Zeiss MMS-1 spectrometer, with a pixel spacing 

of approximately 3.3 nm and a spectral resolution (FWHM) of 8-13 nm. It uses a halogen lamp as 

a light source.  

 

Figure 3.1: Schematic diagram of the marked positions for NIR spectra collection in (a) apples, (b) 

mangoes, (c) oranges and (d) loquats 
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3.2.3. Reference measurements: 

 

With apple and mango fruit, one sampling position was used for SSC measurement and other 

used for dry matter content (DM) estimation using reference methods. For orange and loquat, SSC 

was assessed of both positions on each fruit.  For SSC estimation, the marked region was excised, 

and skin was removed. The extracted flesh was squeezed using a manual fruit squeezer. SSC was 

assessed of a sample of the extracted juice using a digital refractometer (Model: PAL-1 [°Brix 0–

53%], Atago Co., Ltd, Tokyo, Japan). The refractometer has automatic temperature compensation 

with range 10-100oC and measurement accuracy of ±0.2%.  

For apple and mango DM determination, a core of 26 mm in diameter and 10 mm in depth 

(Fig. 3.1 a and b) was extracted and the skin (1–2 mm thick) removed using a fruit peeler. Weight 

was assessed before and after drying in a fan forced oven set at 65°C to constant weight (generally 

48 h) [147]. 

 

3.3. Chemometric analysis: 

 

The F-750 model builder software was used for building calibration models using calibration 

datasets Table 3.2 for mango, mandarin and loquat fruit. Three models for each fruit type were 

developed, based on use of raw spectra and pre-processed spectra using Savitzky-Golay first and 

second derivative smoothing filters. The performance of developed models was evaluated by R2
CV 

(coefficient of determination of cross validation), R2
P (coefficient of determination of prediction), 

RMSECV (root mean square error of cross validation) and RMSEP (root mean square error of 

prediction). This software employs leave one out cross validation. Partial least squares regression 

(PLSR) models for mango and loquat were developed for SSC and DM using the 729-975 nm 

region as this is a region containing information on O-H and C-H features of carbohydrates and 

water [211]. For oranges, the PLSR model was developed using the Vis/NIR region in the range 

600-1050 nm (following [212]).  

The factory supplied model for apple SSC and DM was indicated to be based on >1500 samples 

from multiple populations of Granny Smith, Gala, Fuji, Jazz, red Delicious, JonaGold, Golden 

Delicious and other varieties, with fruit at a range of maturities and at multiple temperatures.  The 
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DM employed 6 latent variables while the SSC model employed 5 latent variables and both models 

used the 725-975nm range. The supplied mango model of F-750 is a post-harvest model for SSC 

and DM estimation developed using 196 KP mango samples, used the 801-975nm range and 

employed 5 latent variables for SSC and DM both. The supplied Mandarin starter model is a SSC 

demo model developed at room temperature using 78 store bought Mandarin samples of unstated 

cultivar and used the wavelength region from 702-981nm, employing 6 latent variables. 

 

3.4. Results: 
 

3.4.1. SSC and DM statistics: 

 

The viability of NIRS assessment of a given attribute is dependent on the RMSEP and the 

standard deviation (S.D.) of the attribute in the population. This technique is useful only when the 

S.D. of the attribute of interest is greater than the RMSEP [25]. Table 3.1 lists the SSC and DM 

statistics of collected datasets from 180 apple, 734 mango, 144 orange  and 450 loquat spectra 

samples. Standard deviation (SD) on SSC measurements was 1.2 oBrix in apple, 1.8 oBrix in 

mango, 1.07 oBrix in mandarin and 2.88 oBrix in loquat, while SD on DM measurements was 1.1 

% for apple and 2.5 % for mango.  Given expected RMSEP of under 1 oBrix and 1% DM [6], these 

populations show a sufficiently large distribution range to suit evaluation by NIRS.  

 

Table 3.2 shows statistics for DM of mango with respect to DM model calibration and 

prediction data sets and SSC statistics of mango, melon, and loquat fruit with respect to the Brix 

calibration and prediction data sets.  

The prediction set SSC and DM distributions were similar to the calibration set for mango and 

mandarin, while the loquat prediction set had a lower SSC than the calibration set, the distributions 

were still well overlapped Table 3.2.      
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Table 3.1: Statistics of reference SSC and DM values for apple, mango, mandarin and loquat data sets 

obtained through destructive testing 

Fruits Variety 
No. of 

Samples 

Minimum Maximum Mean S.D. 

(oBrix) (DM%) (oBrix) (DM%) (oBrix) (DM%) (oBrix) (DM%) 

Apple 

Golden 

Delicious 
60 11.0 13.5 14.7 17.4 12.8 15.1 1.1 1.1 

Red 

Delicious 
60 9.7 12.5 13.5 16.4 11.9 14.6 1.0 1.0 

Combined 120 9.7 12.5 14.7 17.4 11.9 14.6 1.2 1.1 

Mango 

SB 

Chaunsa 
273 9.4 15.1 19.8 33.7 13.5 23.5 2.99 2.9 

Sufaid 

Chaunsa 
241 5.3 19.1 12.0 30.4 8.5 25.2 1.2 2.1 

Sindhri 220 5.4 11.4 11.2 22.9 8.5 18.2 1.0 2.2 

Combined 734 5.3 11.4 19.8 33.7 10.2 22.3 1.8 2.5 

Mandarin Kinnow 144 8.2 -- 13 -- 10.35 -- 1.07 -- 

Loquat Tanaka 450 4.9 -- 25.7 -- 13.87 -- 2.88 -- 

 

Table 3.2: Statistics of reference SSC and DM values with respect to calibration and prediction data sets 

for mango, mandarin, and loquat fruit, obtained through destructive testing. 

Fruits Data set No. of 

spectra 

Minimum Maximum Mean S.D. 

oBrix DM 

% 

oBrix DM 

% 

oBrix DM % oBrix DM % 

Mango Calibration 600 5.3 11.4 19.8 32.5 10.0 22.0 1.2 2.2 

Prediction 134 6.7 11.7 19.7 33.7 10.2 22.1 1.0 2.0 

Mandarin Calibration 100 8.4 -- 13 -- 10.45 -- 1.1 -- 

Prediction 44 8.2 -- 12.2 -- 10.13 -- 0.98 -- 

Loquat Calibration 316 4.9 -- 25.7 -- 14.57 -- 2.89 -- 

Prediction 134 8.2 -- 24.4 -- 13.53 -- 2.80 -- 
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3.4.2. Overview on spectra: 

 

The average absorbance spectra (Figure 3.2) of apple, mango, orange and loquat fruits are 

dominated by a peak around 680 nm associated to chlorophyll absorption and a 970 nm peak 

associated with a second overtone of a O-H stretching vibration [25]. Figure 3.3 shows the average 

absorbance spectra for each investigated variety of (a) apple and (b) mango fruit.  

 

Figure 3.2: Average raw absorbance spectra of all investigated varieties for apple, mango, mandarin and 

loquat fruit samples. 
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(a) 

 

(b) 

Figure 3.3: Raw absorbance spectra depicting difference in average spectra of investigated varieties of 

(a) apple and (b) mango samples. 
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3.4.3. PLSR model results: 

 

3.4.3.1. Apple: 

 

F-750 apple starter PLSR model was validated using 120 samples of 2 varieties .e. ‘Golden 

Delicious’ and ‘Red Delicious’ of apple fruit. Table 3.3 shows the combined results of F-750 apple 

model in terms of R2 and RMSE for Brix and DM. The values of R2 (0.90,0.87) and RMSE (0.76 

oBrix, 0.69%) show that the F-750 apple model is a robust model and well suitable for the two 

investigated varieties i.e., ‘Golden Delicious’ and ‘Red Delicious’ cultivated in Pakistan.  

Table 3.3: F-750 apple model validation results with two varieties i.e. ‘Golden Delicious’ and ‘Red 

Delicious’ for Brix and DM 

Maturity Index R2 RMSE 

SSC (oBrix) 0.90 0.76 

DM (%) 0.87 0.69 

3.4.3.2. Mango: 

 

Mango SSC and DM prediction models were built for three local varieties of mango i.e. 

‘Sindhri’, ‘SB Chaunsa’ and ‘Sufaid Chaunsa’ using F-750 produce quality meter. Combined 

variety models were built using PLSR. Three models were built for SSC and DM i.e. with raw 

spectra, with SG first derivative preprocessed spectra and SG second derivative preprocessed 

spectra. All models were calibrated using leave one out cross validation. Table 3.4 presents cross 

validation results for combined variety mango model built using 600 mango samples (from 2019 

season) in terms R2 of cross validation (R2
CV) and RMSE of cross validation (RMSECV). From 

Table 3.4, it can be concluded that the PLSR model built with raw spectra for DM prediction and 

SG second derivative pre-processed spectra for SSC prediction performed comparatively better 

than the other models with R2
CV of (0.80, 0.88) and RMSECV of (1.35o, 1.28%) for SSC and DM, 

respectively. Hence, the model no 1 was selected for DM prediction, model no 3 for SSC prediction 

and built into the F-750 produce quality meter for further validation. 

Table 3.5 depicts the R2 prediction (R2
P) and RMSE prediction (RMSEP) values using 

independent prediction dataset of 2020 season for SSC and DM prediction, respectively. Table 3.5 

shows the SSC and DM prediction results for each variety separately (Sindhri 20 samples, SB 
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Chaunsa 73 samples and Sufaid Chaunsa 41 samples) when tested with the developed combined 

variety PLSR model, as well as prediction results using 134 samples collectively. The prediction 

results were first collected on-tree using the developed model and then the samples were harvested 

and immediately transported to laboratory, where the samples were stored on room temperature 

for 1 hour and then results were collected again using the developed model as well as supplied 

model. After taking readings from the developed model and supplied mango model, the mango 

samples were destructively tested to find reference values of SSC and DM.  Lab prediction results 

of developed combined variety model have RMSEP of 0.95 oBrix and 1.17% while on tree results 

have RMSEP of 1.25 oBrix and 1.24% for Brix and DM respectively. Results of supplied model 

for the same prediction data set are also reported in Table 3.5 which show that DM results of KP 

model are better than SSC results.  

Prediction results over single cultivar and combined cultivars were similar for locally 

developed combined cultivar model, and superior to the factory supplied model (Table 3.5). Results 

for predictions made outdoors, of fruit on tree were slightly poorer than predictions made of the 

same fruit under indoor conditions of constant lighting and temperature. 

Table 3.4: Cross validation results for SSC and DM prediction models using PLSR for 600 mango 

samples of 3 cultivars 

Model No Pre-processing 

SSC model DM model 

Cross validation Cross Validation 

R2
cv 

RMSEcv 

(oBrix) 
R2

CV 
RMSECV 

(%) 

1 None 0.77 1.38 0.88 1.28 

2 SG 1st Derivative 0.79 1.35 0.88 1.32 

3 SG 2nd Derivative 0.80 1.35 0.88 1.31 
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Table 3.5: Prediction results of SSC and DM with supplied model and developed combined variety model for local varieties 

Maturity 

Index 

Prediction data set 

Developed combined variety model Factory Model 

Sindhri 

samples 

SB Chaunsa  

samples 

Sufaid 

Chaunsa  

samples 

All samples 

(Prediction in lab) 

All samples 

(Prediction on 

tree) 

All samples 

(prediction in lab) 

R2
P RMSEP R2

P RMSEP R2
P RMSEP R2

P RMSEP R2
P RMSEP R2

P RMSEP 

SSC 

(oBrix) 
0.92 1.15 0.71 1.26 0.93 0.85 0.90 0.95 0.83 1.25 0.38 9.23 

DM (%) 0.89 1.62 0.68 1.05 0.74 0.85 0.80 1.17 0.77 1.24 0.70 4.03 
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3.4.3.3. Mandarin: 

Mandarin SSC prediction model was developed using PLSR for Pakistani export quality 

cultivar i.e. ‘Kinnow’. For model calibration, leave-one out cross validation was used on data 

collected from 100 Kinnow samples. Three models were developed, one with raw spectra and 

other two with SG first and second derivative pre-processed spectra, respectively. Second 

derivative pre-processed spectra-based model performed comparatively better with R2
CV of 0.68 

and RMSECV of 0.62o Brix.  

F-750 ‘Mandarin’ SSC starter model and the developed ‘Kinnow’ model were validated 

using 44 ‘Kinnow’ samples. Prediction results in Table 3.6 show that the supplied model needs re-

calibration for the investigated local variety. The locally developed model outperformed the 

factory supplied model in prediction of a test set with R2
P of 0.71 and RMSEP of 0.64 oBrix. 

 

Table 3.6: Cross validation and prediction results for developed SSC model for ‘Kinnow’ and prediction 

results of supplied Mandarin model on same test data 

Pre-processing 

Developed model Factory Model 

Cross validation Prediction Prediction 

R2
cv 

RMSEcv 

(oBrix) 
R2

P 
RMSEP 

(oBrix) 
R2

P 
RMSEP 

(oBrix) 

None 0.53 0.75 - - - - 

SG 1st Derivative 0.61 0.68 - - - - 

SG 2nd Derivative 0.68 0.62 0.71 0.64 0.03 7.47 

 

3.4.3.4. Loquat: 

 

Loquats fall under the class of small size (2.5 – 5 cm) and thin skin fruits. The F-750 

produce quality meter does not have a factory supplied ‘starter’ model to predict maturity indices 

of loquats. To build local calibration model, fruit samples were scanned on their equator region, 

with around 80% of scanned side illuminated. Three PLSR models were developed, one with raw 

spectra and other two with SG first and second derivative pre-processed spectra, respectively. 

Model built using second derivative preprocessing again delivered the best cross validation results 
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and was further validated with an independent prediction set Table 3.7 . Validation results depicted 

R2
P

 0.90 and RMSEP 0.95o Brix.  

Table 3.7: Cross validation and prediction results for Brix prediction model using PLSR for loquat fruit 

Pre-processing 

Cross validation Prediction 

R2
cv 

RMSEcv 

(oBrix) 
R2

P 
RMSEP 

(oBrix) 

None 0.85 1.04 - - 

SG 1st Derivative 0.88 0.94 - - 

SG 2nd Derivative 0.89 0.92 0.90 0.95 

 

3.5. Discussion: 

 

3.5.1. Comparison of Vis-NIR spectra: 

 

The fruit types varied in chlorophyll and carotenoid content, as revealed by the size of 

the absorbance peaks centered on 680 and 550 nm, respectively (Figure 3.2). The water absorption 

peaks in the range 700-1100 nm have lower absorptivity than experienced at higher wavelengths 

which allows for a longer pathlength of these shorter wavelengths. This is beneficial for estimation 

of mesocarp DM and/or SSC content of intact fruits. With interactance optical geometry, as 

employed by the F-750, the effective optical sampling depth is reported to be 10-30 mm for thin 

skinned fruits [25]. The average NIR absorbance was greater in mango and apple than mandarin 

and loquat fruits, a result ascribed to a higher light scattering coefficient of skin of mandarin 

(average rind thickness in the investigated variety was 2-4 mm) relative to apple and mango. It is 

not clear why the absorbance values of loquats were also lower than that of apple and mango. The 

lack of impact of the seed on spectra and models suggests that the majority of detected diffusely 

scattered light originated within the fruit mesocarp (average mesocarp thickness in the investigated 

variety was <10 mm).    

3.5.2. Performance of factory supplied apple, mango and orange models of F-750: 

 

The supplied apple starter model of F-750 was built with an extensive dataset of more 

than 1500 apples of Granny Smith, Gala, Fuji, Jazz, Red delicious, JonaGold, Golden delicious, 
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and other cultivars over a wide maturity range and multiple temperatures to estimate SSC and DM. 

When tested for Red delicious and Golden delicious varieties cultivated in different geological 

region than those of used in model calibration), the model returned good estimation results with 

R2 (0.90,0.87) and RMSE (0.76 oBrix, 0.69%) (Table 3.3). The reason for such results is, firstly 

the model was already calibrated for the tested varieties i.e. Red delicious and Golden Delicious; 

secondly the training dataset was quite extensive with over 1500 apples covering a wide maturity 

range and thirdly the model was trained over multiple temperatures to reduce the effect of 

temperature variations while taking readings.  

I developed a new model for the three export varieties of Pakistani mango, keeping in 

view their economic importance. The combined variety model built using 600 samples from 2019 

season has R2
CV of (0.80, 0.88) and RMSECV of (1.35 oBrix, 1.28%) for SSC and DM, respectively 

(Table 3.4). Moreover, for SSC estimation, model developed using second derivative of spectra is 

the best, while for DM estimation, model developed using raw spectra is optimum. The supplied 

mango model of F-750 is a post-harvest model for SSC and DM estimation developed using 196 

KP mango samples. For fair comparison of our developed model and supplied KP model, KP 

model was validated using the same prediction data set of season 2020 (Table 3.5). Results show 

that DM estimation of KP model is better than SSC estimation for cultivars not included in model 

calibration. For mangoes, it is observed (see Table 3.4) that a single model is not optimum to 

estimate both SSC and DM. 

Supplied Mandarin starter model is a SSC demo model developed at room temperature 

using 78 store bought Mandarin samples. When validated with a similar variety (i.e., ‘Kinnow’) 

in terms of peel thickness (avg thickness 3 mm), the supplied model returned prediction R2
P of 

0.04 and RMSEP 7.47oBrix (Table 3.6) which shows that Mandarin spectral data is not correlated 

with Kinnow data. The mandarin model is built upon the spectral range 702-981 nm however, I 

observed that the developed model of Kinnow performed better for 600-1050 nm range, which is 

in agreement with the findings of [212]. 

 

3.5.3. Comparative performance by fruit type and application to loquat: 

 

A RMSEP of 0.76, 0.95, 0.64 and 0.95 oBrix (Table 3.3 – 3.7) was obtained in prediction 

of SSC for test sets of apple, mango, mandarin and loquat fruit, respectively. And for DM, a 
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RMSEP of 0.69% and 1.17% in prediction of test sets of apple and mango fruit, respectively. This 

result is acceptable for quality classification of these products, given an attribute range (S.D.) of 

at least twice that of the RMSEP values [25].     

The utility of NIRS assessment (725-975 nm) of SSC in intact loquat was 

demonstrated, despite the presence of a large seed within a fruit with relatively thin flesh. The 

RMSEP value of 0.95o Brix (Table 3.7) for prediction data set agrees with Fu et al. [23] who 

reported values of 0.96 - 1.21o Brix (RMSEP) for Dahongpao and Jiajiaozhong varieties of loquats 

with Fourier transform NIR (FT-NIR) spectrometer in diffuse reflectance mode. It is to be noted 

here that the RMSEP values reported by Fu et al. [23] used full range reflectance NIR spectra (800-

2500 nm) and hence a greater number of spectral features. While, the locally developed model 

uses 729-975 nm NIR interactance spectra (only 83 spectral features) to build SSC prediction 

models and achieved RMSEP of 0.95o Brix.  

 

3.6. Conclusion: 
 

In this chapter, I investigated the effectiveness of handheld near infrared spectroscopy 

(NIRS) for the evaluation of dry matter (DM) and soluble solids content (SSC) in four types of 

fruits of significance to Pakistani horticulture, i.e. mango, apple, mandarin and loquat. Lesser NIR 

absorbance is observed in mandarin and loquat relative to apple and mango fruit, due to higher 

light scattering coefficient of mandarin’s peel (average peel thickness 2-4 mm) and loquat’s edible 

mesocarp (average mesocarp thickness <10mm). The investigated handheld NIRS device (i.e. 

Felix instruments F750) is supplied with ready to use starter models for many fruits. The starter 

models (i.e. mango and mandarin) which were based on a small population set of a single cultivar 

at a single temperature failed to effectively predict the quality indices of local cultivars of mango 

and mandarin. Conversely, the supplied apple model which was based on a large population set of 

multiple cultivars at different temperatures performed well in use with locally grown fruit of the 

same cultivars as used in the calibration dataset. The locally developed mango model was based 

on samples at a single temperature hence when tested with on-tree fruit, the performance was 

inferior as compared to that of in-lab testing at single temperature. Based on these results, the 

portable NIR technology is recommended for use across several commodities, given suitable 

model development based on samples from multiple cultivars with a range of growing conditions, 
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and with assessment of samples at different temperatures.  Use in quantitative assessment of fruit 

quality targeted to Pakistan’s export markets is also recommended. In the next chapter, a 

qualitative classification-based decision support system is presented for melon’s eating quality 

classification. 
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Chapter 4 : DECISION SUPPORT SYSTEM FOR MELON SWEETNESS 

CLASSIFICATION USING DIRECT CLASSIFICATION APPROACH  

4.1. Introduction:  
 

Melons (Cucumis Melo) are nutritious, sweet, and amongst the most refreshing summer 

fruit in Pakistan.  Honey melons are cultivated in Sindh, Punjab, and some parts of Kyber Pakhtun 

Khaw province of Pakistan, harvested from April till June. These are not the same as honey dew 

melons although they have little resemblance in appearance. Honey melons have creamy net 

patterns on their skin with a strong fragrant aroma. Melons come under the class of non-climacteric 

fruits i.e. once harvested they cannot ripe on their own. Hence, for melons maturity (at the time of 

harvest) and ripeness are the same. The term ripeness is directly related to the eating quality of 

fruits. Unlike mangoes, and apples it is difficult to know if the melon is sweet just by smelling or 

looking the fruit from outside. This is usually needed when the melons are graded for packing to 

the market, or at the consumer end. For now, there exists some melon varieties that are guaranteed 

to be sweet however for varieties such as “Honey melons”, it is difficult to judge their sweetness 

from smell, skin or firmness.  

For convenience of consumers, there is a need to introduce marketing standards that should 

help differentiate between sweet and poor-quality fruit. Soluble solids content (SSC) has been 

widely used as melon quality assessment parameter [213]. SSC represents sugars (such as sucrose, 

fructose etc.), organic acids (such as citric, malic, tartaric etc.), soluble amino acids and other 

compounds (such as fat, minerals, alcohol, flavonoids etc.). The USA industry has used SSC as 

quality index for many years for marketing purposes [214]. Moreover, in the absence of sensory 

analyses, breeders and agronomists depend heavily on SSC as a standard for quality. Chace et. al. 

[215] first proposed SSC as suitable objective parameter of quality followed by researchers in 

[216] which affirm that SSC and quality are linearly related. Mutton et. al. [213] suggested that 

SSC and flesh firmness both are key parameters for melon quality assessment however, flesh 

firmness changes rapidly during storage thus limiting its use. For Australian market, Mutton et. al. 

recommended 10o Brix as minimum acceptable quality standard [213], while for USA, it is 9o Brix 

[214].  
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Existing conventional methods used to measure internal characteristics of melons are 

destructive and time consuming [217]. Section 2.1.3.4 of this dissertation presents detailed 

literature review of the NIRS based non-destructive experiments carried out in literature.  

To the best of our knowledge, all efforts done using vis/NIR spectroscopy to define quality 

standards for melons are based on prediction of SSC by some regression model, and then defining 

sharp limits on the predicted SSC values to distinguish satisfactory or unsatisfactory class melons 

as done by researchers in literature [131]. However, there may exist some overlap in SSC values 

of both classes (satisfactory and unsatisfactory) as SSC does not merely represent sugar content 

but multiple soluble contents such as sugars, organic acids, soluble amino acids, and other 

compounds. However, I argue that consumer acceptance is more related to the sweetness level of 

melons i.e. sugar content than other soluble compounds [37].  

In this chapter I define acceptance criteria for melons based on direct classification method 

to predict the sweetness level using NIR spectroscopy. I have compared performance of our 

classification-based approach with that of regression-based thresholding methods reported in 

literature.  

 

4.2. Materials and methods: 
 

4.2.1. Melon samples preparation: 

 

For the experiment, a total of 101 honey melon samples were purchased from local market 

in five different batches (20 melons each) covering one full season of melons i.e. on 17 April, 1 

May, 15 May, 29 May and 12 June 2020. All samples were elliptic and individual fruit weight was 

around 0.5-1.5 kg. Average rind thickness was 6.68 mm. All samples were transported to a local 

laboratory (Islamabad, Pakistan) and stored at room temperature (25oC) for 24h to minimize the 

influence of sample temperature on prediction accuracy [210]. All samples were then marked at 4 

equator positions each (almost 90o apart) to cater for within same sample SSC and sweetness 

variations, for spectral acquisition and destructive testing as shown in Figure 4.1. Samples within 

each fruit were treated as separate spectral sets. Hence, 404 samples were divided into calibration 

set and prediction set with a of ratio 3:1. To secure better performance of calibration models, the 

distribution range of SSC values in calibration set was usually much larger than that of prediction 
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set [46]. For that, the samples were sorted in ascending order of actual SSC values and the second 

sample of every four samples were added into prediction set. Remaining samples were added to 

calibration set. This sample partitioning method is reported in [129]. 

 

Figure 4.1: Schematic diagram of the marked four positions for NIR spectra collection in honey melons 

 

4.2.2. Collection of Vis-NIR spectra: 

 

Vis-NIR spectra (range 310-1100 nm) were collected using the industry standard F750 (Felix 

Instruments, Camas, WA, USA) equipped with Carl Zeiss MMS-1 spectrometer employing 

interactance optical geometry. Each pixel in the receiver has a spatial sampling of 3nm with a 

spectral resolution of 8-13 nm (approx.). Halogen lamp is used as a light source. The interactance 

spectra were collected from 101 samples (4 positions each). For each single position, average of 

three scans was recorded. Spectra collected from each position was treated as separate sample, 

hence a total of 404 spectral samples were collected.  

4.2.3. SSC determination through destructive testing: 

 

After NIR interactance spectra acquisition, the SSC values were immediately measured by 

conventional destructive testing procedure. For each position, the marked region from where 

spectral data has been collected, was cut as shown in Figure 4.2 and rind was removed. Rind 

thickness was also measured and recorded using Vernier Calipers. The extracted flesh was 

squeezed using manual fruit squeezer and the juice was poured onto digital refractometer (Model: 

PAL-1 [°Brix 0–53%], Atago Co., Ltd, Tokyo, Japan). The refractometer has automatic 

temperature compensation with range 10-100oC and measurement accuracy of ±0.2%.  
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Figure 4.2: Flesh extraction for SSC determination through refractometer 

 

4.2.4. Sensory assessment: 

 

Reference values for sweetness were assessed by a briefly trained 10-member judges panel 

with age group between 20-60 years. After spectra acquisition and destructive testing, the 

surrounding region around the marked positions (see Figure 4.3) was extracted and cut into 10 

equal pieces to be presented to judges. Judges were given distilled water for drinking after every 

sample assessment to clear previous sample taste. Melons are classified into three classes by 

sensory evaluation i.e. very sweet, sweet and flat. The sweetness class of each sample was 

characterized by average score of the panel for that sample. Class wise scoring sheet used for 

assessment is given in Table 4.1. 

Table 4.1: Score distribution for classification of sweetness level of honey melons 

Class label Score 

Very sweet 8-10 

Sweet 5-7 

Flat 0-4 

 

Optically and 
physically 
sampled tissue 
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Figure 4.3: Flesh extraction for sensory evaluation of sweetness 

 

4.3.   Chemometric analysis: 
 

To establish sweetness quality standards for melons, I propose direct classification-based 

decision method (method B, Figure 4.4) as oppose to literature reported method A of first 

predicting SSC using regression and then apply sharp thresholds. For Australian market SSC 

threshold of minimum acceptable quality standard is 10 oBrix [213], for USA it is 9 oBrix and for 

Chinese varieties, satisfactory class samples are above 12 oBrix and average class samples above 

10 oBrix [131]. As SSC does not represent merely sugar content, I argue that instead of deciding 

minimum quality standard based on SSC, it may be decided because of direct sensory evaluation. 

Proposed method B as in Figure 4.4 is based on a classification model that classifies input spectral 

data into satisfactory and unsatisfactory class samples. Before building classification model, 

spectral pre-processing and PCA were applied to enhance classifier performance.  

Investigated pre-processing techniques include moving average smoothing, SG first 

derivative, SG second derivative, MSC, SNV and normalization were applied one at a time before 

building calibration model. Performance of models based on each pre-processing technique was 

compared and analyzed.   

Both linear and nonlinear multivariate calibration methods have been used and compared 

to build regression model for SSC prediction. Linear methods employed include PLSR and MLR 

while nonlinear methods include support vector machine (SVM) and artificial neural network 

(ANN). To estimate sweetness level of melons directly from the spectra, several supervised 

Surrounded tissues were 

extracted and presented to 

judges for sensory assessment 

of each position separately 

a b d 
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learning and unsupervised learning classifiers are implemented and compared including tree, 

ensemble, K nearest neighbor (KNN), linear discriminant analysis (LDA), SVM and ANN.  

 

 

 

Figure 4.4: Block diagram representing two different definitions of establishing sweetness quality 

standard for melons 

 

4.4. Results and discussions: 

 

4.4.1. Vis /NIR spectra analysis: 

 

Vis/NIR spectroscopy (range 350-2500 nm) records response of O-H, C-H, C-O and N-H 

bonds in fruits. Hence these organic molecules absorb energy as they vibrate because of NIR 

radiation exposure, which is translated into absorbance spectrum by NIR spectrometer. Short wave 

NIR radiation i.e. 750- 1300nm is considered as the absorbance band of high overtones i.e. 3rd and 

4th overtone while common NIR (after 1300 nm) belongs to 1st or 2nd overtone.  

  The raw absorbance spectra of 101 melons within range 310-1100 nm is shown in Figure 

4.5. It can be observed that all samples have similar trend in their NIR absorbance spectra. The 
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spectra before 450 nm and after 1080 nm is noisy. A prominent peak around 675 nm can be 

observed from Figure 4.5 which might be related with the absorbance band of chlorophyll [218]. 

The absorbance band around 740-760 nm is associated with the 3rd overtone of O-H bond and the 

band around 840nm is associated with 3rd overtone of C-H bond [219]. The absorbance band 

around 980 nm is related with water [220]. The penetration depth of NIR in fruits is comparatively 

greater in the 700-900 nm range [46] hence more information on internal quality attributes can be 

fetched by using wavelength absorption data of this region. Therefore, regression and classification 

models were developed using spectral feature region from 729-975 nm as this is the region of 

carbohydrates such as glucose, fructose and sucrose [211]. To support this, PLSR prediction 

models were generated using two ranges 1) 729-975 nm and 2) 500-1100 nm and compared in 

section 4.4.3.  

 

Figure 4.5: Raw absorbance spectra of 101 melons 

 

4.4.2. Statistics of destructive testing and sensory evaluation results: 

 

Table 4.2 lists the SSC statistics of collected datasets from 101 melon samples, which depicts 

that SSC values from 101 samples were fairly normally distributed around mean 7.99 oBrix with 

standard deviation (S.D.) 2.52 oBrix. SSC values range from 2.7-14.4, 3.1-13.9 and 2.7-14.4 oBrix 
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which shows sufficiently large distribution range. Moreover, the SSC range of calibration set was 

bigger than that of prediction set which helped in development of better prediction models [129], 

[221].  

Table 4.2: Statistics of SSC (oBrix) values of 101 samples in calibration and prediction data sets 

Data sets No. of Samples 
Minimum 

(oBrix) 

Maximum 

(oBrix) 

Mean 

(oBrix) 

S.D. 

(oBrix) 

Calibration set 303 2.70 14.4 7.99 2.53 

Prediction set 101 3.10 13.9 7.98 2.52 

All samples 404 2.70 14.4 7.99 2.52 

 

Figure 4.6 depicts the correlation between the sweetness levels and SSC values. From the fig it is 

obvious that there is significant overlap in terms of SSC levels between the three melon classes, 

hence based on only SSC, the sweetness criteria cannot be defined. From 404 samples (101 melons, 

4 samples each), 139 samples belonged to flat class, 146 belonged to sweet class and 119 belonged 

to very sweet class. On average, melons with SSC over 10 oBrix were very sweet, between 7 -10 

oBrix were sweet and below 7 oBrix had flat taste.   
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Figure 4.6: Correlation of melon sweetness levels with SSC values 

  

 

4.4.3. Spectra Pre-processing and principle components extraction using PCA: 

 

Pre-processing techniques were implemented on raw spectra in Unscrambler v11.0 spectral 

analysis software evaluation version (CAMO PRECESS AS, Oslo, Norway). Smoothing was done 

using 3 point moving average filter, normalization was performed by unit vector normalization, 

SG first derivative and second derivative were performed using 9 points and 21 points windows, 

respectively. After preprocessing, PCA was performed on the resulting transformed spectra for 

dimensionality reduction. Table 4.3 presents contribution rate of first fifteen principle components 

of raw and pre-processed spectral data. It shows that the first principle component PC-1 offers the 

main contribution and the total contribution rate of the first 15 PCs is 99.99% in all cases. The first 

15 components have non-zero contribution in case of SNV and SG 1st derivative pre-processed 

data, first 15 components were taken as input to regression and classification algorithms. While 

for raw spectra and smoothing, normalization, MSC and SG 2nd derivative filter pre-processed 

data, selected number of PCs are first 9,9,13,13 and 9, components respectively, as other 

0 2 4 6 8 1 0 1 2 1 4 1 6

SSC (OBRIX)

Very 

sweet

Sweet

Flat
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components have zero contribution. Higher components have very less contribution, however, 

excluding them from feature set results in lesser accuracy of regression and classification 

algorithms. 

Table 4.3: Contribution rates of first 15 principal components of raw and preprocessed data for different 

techniques 

Principal 

Component 

Preprocessing techniques (Contribution rate %) 

Raw Smoothing Normalization SNV MSC 
SG 1st 

derivative 

SG 2nd 

derivative 

PC-1 98.4 98.4 84.4 82.3 87.0 86.1 99.7 

PC-2 1.32 1.32 13.0 15.7 11.5 7.13 1.7e-1 

PC-3 2.5e-1 2.5e-1 2.29 1.59 1.25 5.08 1.2 e-1 

PC-4 2e-2 2e-2 2.9e-1 0.40 2.9e-1 9.9e-1 4.3e-3 

PC-5 3.3e-3 3.3e-3 3e-2 1.8e-2 1.3e-2 4.9e-1 1.6e-3 

PC-6 1.1e-3 1.2e-3 6.3e-3 5.1e-3 3.4e-3 6.1e-2 7e-4 

PC-7 4e-4 4e-4 2.2e-3 2.0e-3 1.4e-3 4.3e-2 5e-4 

PC-8 2e-4 2e-4 1.8e-3 1.5e-3 1.1e-3 3e-2 2e-4 

PC-9 2e-4 2e-4 7e-4 7e-4 4e-4 9.3e-3 1e-4 

PC-10 - - 2e-4 2e-4 2e-4 3.6e-3 - 

PC-11 - - 1e-4 2e-4 1e-4 2.4e-3 - 

PC-12 - - 1e-4 1e-4 1e-4 1.3e-3 - 

PC-13 - - 1e-4 1e-4 1e-4 9e-4 - 

PC-14 - - - 1e-4 - 7e-4 - 

PC-15 - - - 1e-4 - 6e-4 - 

 

4.4.4.   oBrix based thresholding for sweetness classification: 

 

Four regression techniques i.e. PLSR, MLR, SVM and ANN were implemented and compared 

in MATLAB (ver R2016a) to build SSC prediction models. Results were compared in terms of 

correlation coefficient (R) and root mean squared error (RMSE) values. The most celebrated 

regression technique, PLSR was used to test impact of two different spectral regions on the model. 

Performance of PLSR model built with 83 spectral features from 729-975 nm range, is compared 

in table 3 with PLSR model built using spectral data with 200 features (500-1100 nm). Since PCA 
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is an inherent part of PLSR, each feature here represents a wavelength absorbance value. For model 

calibration, 10-fold cross validation was used in all models. Calibration and prediction datasets 

were created using the sampling method discussed in section 4.2.1. 

From Table 4.4, PLSR model developed using the spectral window 729-975 nm performed 

comparatively better than the spectral range of 500-1100 nm. Therefore, for rest of the techniques, 

the spectral range of 729-975 nm was selected as model input features. PLSR performed better 

when input features were pre-processed with SG second derivative in terms of prediction results 

i.e. RP is 0.79, RMSEP is 1.54 oBrix for 725-975 nm and RP is 0.75, RMSEP is 1.64 oBrix for 500-

1100 nm.  

Table 4.4: SSC prediction model comparison for the input spectral range 729-975 nm and 500-1050 nm (* 

refers to best results) 

Pre-processing 

PLSR 

Calibration set Prediction set 

729-975 nm 500-1100 nm 729-975 nm 500-1100 nm 

RCV RMSECV RCV RMSECV RP RMSEP RP RMSEP 

None 0.82 1.44 0.79 1.52 0.75 1.68 0.72 1.72 

Smoothing 0.81 1.45 0.79 1.54 0.75 1.69 0.72 1.73 

Normalization 0.84 1.38 0.78 1.57 0.69 1.80 0.66 1.78 

SNV 0.85 1.34 0.78 1.57 0.70 1.77 0.70 1.78 

MSC 0.84 1.35 0.78 1.56 0.69 1.79 0.69 1.81 

SG 1st Derivative 0.85 1.32 0.82 1.44 0.72 1.71 0.75 1.64 

SG 2nd 

Derivative 
0.83 1.38 0.81 1.48 0.79* 1.54* 0.75 1.64 

 

 

Performance of SSC prediction model built with MLR, SVM and ANN regressors is presented 

in Table 4.5. PCA is an intrinsic part of PLS regression however, for other investigated regression 

techniques I have compared their performance with and without PCA in Table 4.5. SVM models 

were built using linear kernel while for PCA enabled input, ANN architecture had input layer with 

number of inputs equal to number of PCs, one hidden layer with 20 neurons and output layer 

having single output. Without PCA, ANN architecture had input layer of 83 inputs, one hidden 

layer of 83 neurons and one output layer having single output. Number of neurons and hidden 
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layers are chosen heuristically. Overall, all investigated regressors gave better performance with 

PCA enabled input data while predicting independent test data. With prediction set, MLR had RP 

= 0.93 and RMSEP = 1.63 oBrix with 15 principle components as input as compared to RP = 0.90 

and RMSEP = 1.84 oBrix with 83 spectral features as input. Similar trend can be seen for SVM and 

ANN regressors as well from table 5. With PCA, SVM regression model performed relatively 

better with MSC pre-processed spectral inputs with RP = 0.78 and RMSEP = 1.58 for prediction 

set, as compared to other pre-processing techniques. ANN performed equally good when input 

was pre-processed with SG first derivative and SG second derivative filters along with PCA i.e. 

RP= 0.76 and RMSEP= 1.63 in both cases. Hence, further comparisons are done for regressors and 

classifiers with PCA enabled inputs.  
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Table 4.5: Performance comparison of investigated regressors by first applying different pre-processing techniques with and without PCA on the 

spectral input data (* refers to best results) 

Pre--processing 

Regressors 

Calibration set Prediction set 

MLR SVM ANN MLR SVM ANN 

RCV RMSECV RCV RMSECV RCV RMSECV RP RMSEP RP RMSEP RP RMSEP 

None With PCA 0.82 1.47 0.82 1.43 0.89 1.15 0.92 1.67 0.75 1.66 0.74 1.73 

Without PCA 0.89 1.35 0.79 1.58 0.86 1.25 0.91 1.81 0.73 1.78 0.72 1.73 

Smoothing With PCA 0.82 1.47 0.82 1.43 0.88 1.21 0.92 1.69 0.74 1.69 0.75 1.69 

Without PCA 0.89 1.36 0.80 1.54 0.84 1.28 0.91 1.82 0.74 1.72 0.70 1.79 

Normalization With PCA 0.80 1.56 0.79 1.53 0.86 1.39 0.91 1.81 0.70 1.80 0.74 1.68 

Without PCA 0.88 1.41 0.70 1.80 0.63 1.89 0.90 1.89 0.53 2.16 0.13 2.5 

SNV With PCA 0.81 1.52 0.80 1.49 0.83 1.76 0.91 1.78 0.71 1.78 0.71 1.65 

Without PCA 0.88 1.36 0.76 1.65 0.76 1.57 0.90 1.87 0.64 2.02 0.58 2.06 

MSC With PCA 0.81 1.53 0.80 1.49 0.84 1.59 0.91 1.80 0.78* 1.58* 0.69 1.83 

Without PCA 0.88 1.37 0.73 1.75 0.81 1.65 0.89 1.95 0.60 2.02 0.66 2.08 

SG 1st 

Derivative 

With PCA 0.83 1.45 0.83 1.42 0.85 1.37 0.91 1.71 0.73 1.73 0.79* 1.63* 

Without PCA 0.89 1.33 0.83 1.42 0.82 1.48 0.91 1.78 0.74 1.73 0.78 1.75 

SG 2nd 

Derivative 

With PCA 0.83 1.43 0.83 1.40 0.84 1.37 0.93* 1.63* 0.75 1.66 0.79* 1.63* 

Without PCA 0.89 1.22 0.83 1.40 0.81 1.45 0.90 1.84 0.76 1.64 0.72 1.75 
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To find class labels using the predicted SSC values from regression model, best models for 

each of the four investigated regressors i.e. PLSR with SG 2nd derivative, MLR with SG 2nd 

derivative, SVM with MSC and ANN with SG 2nd derivative pre-processing are selected (Table 

4.5). Prediction spectral data set was given as input to each model and respective SSC output 

values were noted. Thresholding was then applied on the predicted SSC values to assign a class 

label to each sample. Flat class label was assigned to the samples with predicted SSC value below 

7 oBrix, sweet class label for samples between 7 – 10 oBrix and above 10 oBrix very sweet class 

label was assigned. oBrix thresholding-based class labels were then compared with reference class 

labels (assigned through sensory evaluation) and accuracy was calculated as number of correct 

labels divided by total number of samples in prediction data set. Table 4.6 shows accuracy of oBrix 

based thresholding with these four regression models. For the three classes, best accuracy was 

achieved by MLR regressor i.e. 55.45%. With this accuracy rate, almost 44% of the samples will 

be mis judged which may result in significant waste of melons. The accuracy rate can be improved 

by reducing the number of classes. Hence, the sweet and very sweet class samples were merged to 

form satisfactory class samples (all samples above 7 oBrix) and flat class samples represent 

unsatisfactory class samples (below 7 oBrix). Table 4.6 also shows the accuracy when the samples 

are classified into two classes. PLSR and MLR gave 80.2% accuracy with satisfactory and 

unsatisfactory class segregation. 

Table 4.6: Accuracy comparison of oBrix based thresholding for melons sweetness classification (* refers 

to best results) 

Regressor 
Accuracy (%) 

3 class 2 class 

PLSR  53.47 80.20* 

MLR  55.45* 80.20* 

SVM  54.46 78.22 

ANN  52.48 79.21 

4.4.5. Direct sweetness classification: 

  

To predict melon’s eating quality in terms of sweetness, multi class classification techniques 

were implemented. Classifier predictor inputs were spectral absorbance values (raw spectra/pre-
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processed spectra) within range 729-975 nm whereas the reference labels were the ones generated 

by sensory test conducted (section 4.2.4). PCA was performed after pre-processing to optimize 

performance and first 15 principle components were selected (details in section 4.3.3). Various 

classification techniques including tree, ensemble, LDA, SVM, KNN and ANN were 

implemented. 10-fold cross validation was performed for calibration of all classification models. 

ANN architecture had input layer with number of inputs equal to number of PCs, one hidden layer 

with 20 neurons and output layer having single output. Table 4.7 presents performance comparison 

of the investigated classifiers in terms of accuracy. SVM and KNN models depicted best prediction 

accuracy among all others i.e. 70.30% with SG 1st derivative and SG 2nd derivative pre-processed 

and PCA enabled spectral input data, respectively. Ensemble and ANN classifiers had 64.4% 

accuracy with PCA enabled raw spectral input. With tree and LDA classifier the best prediction 

accuracy is 61.39% with 1st derivative preprocessing and PCA. 

To improve classification accuracy, this multi class data was converted into binary class data 

by combining sweet and very sweet samples as satisfactory class and flat class labelled as 

unsatisfactory class. Performance comparison of same set of classifiers for binary classification is 

given in Table 4.8. Accuracy of all investigated classifiers increased for binary classification. SVM 

and KNN models again depicted best prediction accuracy among all others i.e. 87.13% and 88.12% 

with 3-point moving average filtered spectral input data and PCA, respectively.  
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Table 4.7: Performance comparison in terms of accuracy of different classifiers for 3 class classification (* refers to best results) 

Pre-processing 

Classifiers 

Calibration set Prediction set 

Tree LDA SVM KNN Ensemble ANN Tree LDA SVM KNN Ensemble ANN 

None 54.1 60.7 69 65 66.7 70.3 44.5 60.4 65.35 67.33 64.36 64.4 

Smoothing 53.1 62 68 62.4 62 75.2 48.51 55.45 67.33 67.33 57.43 63.4 

Normalization 48.8 58.7 64.7 62 58.4 73.6 51.49 55.45 64.36 61.39 55.45 60.4 

SNV 54.5 61.4 64.7 64 63 62.2 49.50 56.44 58.42 58.42 63.37 56.4 

MSC 53.8 63.4 65 66 64.7 68 48.51 57.43 62.38 53.47 62.38 60.4 

SG 1st Derivative 51.8 62 67 65.3 64.7 70 61.39 61.39 70.30* 66.34 62.38 63.4 

SG 2nd Derivative 52.8 61.4 65 63.4 63.4 72.6 49.50 56.44 65.35 70.30* 55.45 63.4 

 

Table 4.8: Performance comparison in terms of accuracy of different classifiers for binary classification (* refers to best results) 

Pre-processing 

Classifiers 

Calibration set Prediction set 

Tree LDA SVM KNN Ensemble ANN Tree LDA SVM KNN Ensemble ANN 

None 72.3 82.2 82.8 80.5 83.2 83.2 72.28 80.20 81.19 81.19 80.20 83.2 

Smoothing 70.6 82.2 83.2 80.9 80.5 81.2 73.27 81.19 87.13 88.12* 79.21 81.2 

Normalization 69.6 82.2 82.2 78.9 79.5 79.2 78.22 79.21 80.20 84.16 76.24 79.2 

SNV 74.6 82.8 83.8 80.2 79.9 83.2 77.23 80.20 77.23 80.20 78.22 83.2 

MSC 75.2 82.2 84.2 83.2 81.5 83.2 70.30 81.19 78.22 75.25 79.21 83.2 

SG 1st Derivative 71.9 82.5 83.5 84.5 82.8 85.1 72.28 81.19 86.14 82.18 83.17 85.1 

SG 2nd Derivative 74.3 82.8 83.8 83.5 83.2 82.2 74.26 79.21 83.17 86.14 79.21 82.2 
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Table 4.9 summarizes best prediction accuracy results from Table 4.7 and Table 4.8 for each 

classifier with 3 class and 2 class segregation. KNN and SVM classifiers have 70.30% accuracy 

for 3 class classification and 88.12% and 87.13% for binary classification, respectively. 

Comparing Table 4.6 and Table 4.9, it can be concluded that direct sweetness classification is a 

better non-destructive quantitative measure as compared to oBrix based thresholding to classify 

melons based on sweetness quality. The best results with oBrix based sweetness estimation are 

55.45 % and 80.2% accuracy for 3 class and 2 class melons classification, respectively. However, 

with direct sweetness classification the results improved to 70.30% and 88.12% for 3 class and 2 

class melons classification, respectively.  

Since, direct sweetness classification proves out to be better than the oBrix based sweetness 

estimation, the classification models were tested again with an independent test data of season 

2021. The test data of season 2021 consisted of 9 melons each scanned from 4 sides at equator 

position (same protocol as of season 2020), hence total 36 spectra samples were acquired, and also 

sensory evaluation was conducted by the same panel of judges. Among the 36 samples, 6 belonged 

to very sweet class, 15 to sweet class and 15 to flat class. The direct sweetness prediction results 

of the selected classifiers for this independent season data set is also presented in Table 4.9. 

Table 4.9: Comparison of prediction set accuracy for multi class and binary class direct sweetness 

classification (* refers to best results) 

Classifier 

Best prediction accuracy of 

season 2020 data set 

Prediction accuracy of 

season 2021 dataset 

3 class 2 class 3 class 2 class 

Tree 61.39 78.22 58.33 72.22 

LDA 61.39 81.19 58.33 77.78 

SVM 70.30* 87.13 63.88 83.33 

KNN 70.30* 88.12* 66.67 86.11* 

Ensemble 64.36 83.17 61.12 80.55 

ANN  64.4 85.1 63.88 83.33 
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4.5. Conclusion: 
 

I proposed direct classification based quantitative measure to predict melons sweetness 

intensity using NIR spectroscopy. An extensive evaluation was conducted on “honey melon” 

variety, which is grown in Pakistan. A total of 101 melons with average rind thickness 6.68 mm, 

were scanned from four sides at equator position. The industry standard F-750 spectrometer 

employing interactance optical geometry was used to collect spectral data. After spectra collection, 

destructive testing was performed to find reference SSC values. Sweetness standards were 

established by sensory evaluation by a panel of judges. Melons with SSC over 10 oBrix were 

considered as very sweet class samples; between 7-10 oBrix as sweet class samples and below 7 

oBrix as flat class samples. Extensive chemometric analysis was carried out to obtain SSC 

prediction model and direct sweetness classification model for NIR spectroscopy. Raw spectral 

data (in wavelength range 729-975 nm) was transformed using various pre-processing techniques 

including smoothing, normalization, SNV, MSC, Savitzky-Golay first derivative and second 

derivative filtration. PCA was then performed for dimensionality reduction. Suitable SSC 

calibration model was then obtained by comparing different regression techniques including 

PLSR, MLR, SVM and ANN. SSC model obtained using MLR gave best results in terms of R for 

independent prediction samples (RP=0.93 and RMSEP=1.63 oBrix) with second derivative spectral 

pre-processing. To estimate sweetness intensity, oBrix thresholds were applied on predicted SSC 

values which resulted in 55.45% classification accuracy for three classes. Moreover, for direct 

sweetness classification, various classifiers including tree, LDA, SVM, KNN, ensemble and ANN 

were compared using pre-processed and PCA enabled spectral inputs and reference sweetness 

labels. For the three sweetness classes, KNN classifier had 70.30% accuracy. Furthermore, I 

observed that classification accuracy improved by combining sweet and very sweet class into one 

‘satisfactory’ class. For oBrix thresholding-based classification the accuracy improved to 80.2% 

and for KNN based direct sweetness classification the accuracy improved to 88.12%. Outcomes 

of both these methods in terms of prediction accuracy validate that direct classification is a better 

quantitative measure as compared to oBrix based thresholding to estimate melons sweetness.  

To further validate the performance of proposed direct classification method on other fruits 

and mixed cultivar datasets, next chapter presents direct sweetness classification of orange 

cultivars using SWNIRS.  
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Chapter 5 : DECISION SUPPORT SYSTEM FOR ORANGE 

SWEETNESS CLASSIFICATION USING DIRECT CLASSIFICATION 

APPROACH  

5.1. Introduction: 

  
 Oranges are juicy, refreshing and most loved winter fruit in Pakistan. Pakistan is the 6th largest 

producer of citrus in the world [1], and around 0.46 million tons of fruit was exported in the year 

2020 [222]. Ripeness is very critical as it directly influences the eating quality of harvested fruits 

[223]. Oranges are non-climacteric fruits i.e., they don’t ripe further once they are harvested. In 

Pakistan, quality inspection for fruits to be exported is still carried out subjectively by the 

packaging industry by visualizing physical features, such as fruit color, size, sample-based tasting. 

The method is error prone and tedious. These factors serve as a motivation for automation of 

testing procedures. To automate the visual quality inspection, one can utilize camera sensors for 

estimating size, surface characteristics, and texture [224]. For gauging taste, sweetness, or other 

quality measure, one can utilize infrared spectroscopy-based methods [225]. The non-destructive 

assessment using NIRS can help to correlate dry matter (DM), SSC, titratable acidity (TA), and 

color [2] with fruit quality. Such assessment can also help in full batch testing and quality-based 

segregation as opposed to sample-based manual judgement.   

 The pulp of oranges is covered inside a thick peel, which makes penetration of NIRS 

challenging. Since, ripening and harvest maturity is same for non-climacteric fruits, there can be 

two ways to estimate ripeness/maturity. The first method is to estimate the fruit quality parameters 

like Brix, TA etc. using machine learning regression algorithm and based on their values judge the 

sample quality. The second method is to directly classify the eating quality using machine learning 

classification algorithm, as reported by researchers in [226] for direct sweetness classification of 

grapes. Like oranges, melons also have thick rind. In the previous chapter, I presented a direct 

sweetness classifier for melons as opposed to oBrix based thresholding, using the correlation 

between short-wave NIR spectroscopy and sensory assessment. The proposed direct sweetness 

classifier was tested on a single cultivar of melons i.e. ‘honey’ melons. There is a need to evaluate 

the correlation of short-wave NIRS and sensory assessment in other fruits as well. Moreover, the 

potential of short-wave NIRS and direct sweetness classification for mixed cultivar datasets needs 

to be analyzed.  
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 In this chapter, the effectiveness of short-wave NIR spectroscopy and direct sweetness 

classification is evaluated for Pakistani cultivars of orange i.e., Blood red, Mosambi and Succari 

(average peel thickness 6mm). A correlation is developed between quality indices i.e., Brix, TA, 

Brix:TA and BrimA (Brix minus acids), sweetness of the fruit and NIR spectra which is then 

classified as sweet, mixed, and acidic using a machine learning classifier based on NIR spectra. I 

argue that direct classification is more suitable to evaluate orange sweetness as opposed to 

estimating quality indices.  

5.2. Materials and methods: 
 

5.2.1. Fruit samples: 

 

Orange (Citrus sinenses (L.) Osbeck), cultivars (cvs.) ‘Blood red’, ‘Mosambi’ and 

‘Succari’) ripened samples were harvested from orchard located in Chakwal district of Punjab 

province on two dates (33 of Blood red, 32 of Mosambi and 27 of Succari; 92 fruits in total). 

Average peel thickness was 6 mm. Sixty-four samples were used for model calibration, with each 

fruit scanned on two sides for Brix and TA to give 128 spectra. Twenty-eight samples (total 56 

spectra) were used for model validation (see Table 5.1 for details). Samples within each fruit were 

treated as independent spectral set.  

 

Table 5.1: Number of samples of investigated orange cultivars in calibration and prediction datasets. 

Cultivar 

Number of 

samples in 

calibration set 

Number of 

samples in 

prediction set 

Blood red 23 10 

Mosambi 22 10 

Succari 19 8 

Total 64 28 
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5.2.2. Collection of Vis/NIR spectra: 

 

Orange samples were marked on-tree on opposite sides i.e. sun facing side and non-sun 

facing side (180o apart approximately) as shown in Figure 5.1, to account for within fruit variations. 

After marking samples on-tree, the oranges were harvested on two dates (both harvest dates were 

one week apart) and brought to a local laboratory at National Centre of Robotics and Automation 

(Islamabad, Pakistan) and stored at room temperature for 24 hours to minimize the influence of 

sample temperature on prediction accuracy [210]. Three spectra were collected from each position 

and average was computed. Vis-NIR spectra (range 400-1150 nm) were collected using the F-750 

(Felix Instruments, Camas, WA, USA). This device employs interactance optical geometry and a 

Carl Zeiss MMS-1 spectrometer, with a pixel spacing of approximately 3.3 nm and a spectral 

resolution (FWHM) of 8-13 nm. It uses a halogen lamp as a light source. 

 

 

 

 

 

 

 

5.2.3. Reference measurements: 

 

For reference measurements, the marked region (along with surrounding tissues to get a 

suitable representation of the core as well) was excised and skin was removed. The extracted flesh 

was squeezed using a garlic press. Brix was assessed of a sample of the extracted juice using a 

digital refractometer (Model: PAL-1 [°Brix 0–53%], Atago Co., Ltd, Tokyo, Japan). The 

refractometer has automatic temperature compensation with range 10-100oC and measurement 

accuracy of ±0.2%.  

TA was measured by manual titration of 10mL of extracted juice with 0.1 M sodium 

hydroxide (NaOH) using phenolphthalein as an indicator.  The acid formula for citrus fruit samples 

(Eq. 5.1) was applied to calculate TA, expressed as % citric acid [137] 

Left View Right View 

Figure 5.1: Schematic diagram of the marked positions for NIR spectra collection in 

oranges 
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𝑇𝐴 (% 𝑐𝑖𝑡𝑟𝑖𝑐 𝑎𝑐𝑖𝑑) =  
0.0064∗𝑡𝑖𝑡𝑟𝑒 (𝑁𝑎𝑂𝐻)𝑚𝐿

10𝑚𝐿 (𝑗𝑢𝑖𝑐𝑒)
 𝑥 100            (5.1) 

       𝐵𝑟𝑖𝑥 𝑡𝑜 𝑇𝐴 𝑟𝑎𝑡𝑖𝑜 (𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥) =  
𝐵𝑟𝑖𝑥

𝑇𝐴
   (5.2) 

𝐵𝑟𝑖𝑚𝐴 = 𝐵𝑟𝑖𝑥 − 𝑘(𝑇𝐴)     (5.3) 

 

Maturity index and BrimA were then calculated by eq (5.2) and eq (5.3) [104] respectively. The 

value of k in eq (5.3) is taken as 1. 

 

5.2.4. Sensory Assessment: 

 

Reference values for sweetness were assessed by a briefly trained five judges panel with 

age between 20 to 50. After spectra acquisition, two slices were cut from the neighbor region from 

where destructive testing has been performed and presented to two of the judges at random for 

taste evaluation. Distilled water was provided to judges for drinking after every sample evaluation 

to clear previous sample taste. Oranges were classified into three classes by sensory evaluation i.e. 

Sweet, mix (sweet and acidic both) and acidic. The class label of each sample was described by 

average score of the two judges for that sample. Class wise scoring sheet used for assessment is 

given in Table 5.2. 

Table 5.2: Score distribution for classification of sweetness level of oranges 

Class label Score 

Sweet 8-10 

Mix 5-7 

Acidic 0-4 

 

 

5.2.5. Chemometric Analysis: 

 

 A direct sweetness classification method has been proposed in previous chapter for melons 

sweetness classification as opposed to indirect measure of oBrix estimation. In this chapter, I have 

implemented both the methods for quality assessments of oranges as shown in Figure 5.1. The first 
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method shows an indirect approach for classification that estimates fruit quality index parameters 

values using machine learning regression algorithm and based on those predicted values, the 

quality of the sample is classified. The second method shows direct classification approach that 

directly classifies test sample as sweet, acidic or mix class sample, using machine learning 

classification algorithm.  

11-point SG second derivative preprocessing was performed on spectral data. For indirect quality 

assessment, partial least squares regression was used to build Brix, TA, Brix:TA and BrimA 

estimation models.  PCA was applied on spectral data and then several supervised and 

unsupervised learning classifiers are implemented and compared including tree, ensemble, KNN, 

linear discriminant analysis (LDA) and SVM. 

 

Figure 5.2: Block diagram representing two different methods of orange quality assessment 

 

For indirect method to classify fruits, the Unscrambler v11.0 spectral analysis software 

evaluation version (CAMO PRECESS AS, Oslo, Norway) was used for building combined variety 

calibration model using calibration dataset (Table 5.4). 11 points Savitzky-Golay second derivative 

smoothing filter was applied before building model. The performance of developed models was 

evaluated by RCV (correlation coefficient of cross validation), RP (correlation coefficient of 
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prediction), RMSECV (root mean square error of cross validation) and RMSEP (root mean square 

error of prediction). 10-fold cross validation was performed. Partial least squares regression 

(PLSR) models were developed using the Vis/NIR region in the range 600-1050 nm (following 

[35]). 

For direct classification, MATLAB R 2018a software was used. Input data for both the 

methods i.e. direct and indirect method of classification was same (pre-processed with 11-point 

SG second derivative using Unscrambler software). Classification was performed using MATLAB 

classification learner module with PCA enabled (first 15 principal components were used). 

5.3. Results: 

 

5.3.1. Dataset statistics: 

 

Destructive testing statistics of orange quality index parameters i.e. Brix, TA, maturity 

index and BrimA with respect to the individual variety are shown in Table 5.3. The range and mean 

of Blood red cultivar is relatively low for Brix, Brix:TA and BrimA, and high for TA as compared 

to other two varieties. Table 5.3 shows that the statistics of Succari cultivar are dissimilar from the 

other two investigated cultivars with respect to TA and Brix:TA i.e. TA range (0.14-0.33%) and 

mean (0.21%) is lowest and maturity index range (33.64-75.63) and mean (55.38) is highest than 

that of Blood red and Mosambi cultivars.  

Since, Succari cultivar is statistically different from the other two cultivars, the models 

were built using two different combinations of investigated cultivars i.e. dataset-1 contains all 

three investigated cultivars and dataset-2 contains only Blood red and Mosambi cultivars. Table 

5.4 shows data set wise statistics of quality index parameters.  
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Table 5.3: Statistics of Brix, TA, maturity index and BrimA with respect to the individual investigated varieties of orange 

Dataset 

Number 

of 

Samples 

Range Mean S.D. 

Brix 

(oBrix) 

TA 

(%) 
Brix:TA 

BrimA 

(%) 

Brix 

(oBrix) 

TA 

(%) 
Brix:TA 

BrimA 

(%) 

Brix 

(oBrix) 

TA 

(%) 
Brix:TA 

BrimA 

(%) 

Blood 

red 
33 

7.3-

11.3 

0.59-

1.98 

5.3-

12.71 

6.53-

9.97 
9.22 1.03 9.37 8.2 1.04 0.29 1.67 0.88 

Mosambi 
32 9-13.4 

0.4-

1.12 

9.82-

24.69 

8.51-

12.73 
10.98 0.68 16.9 10.31 1.22 0.19 3.57 1.12 

Succari 
27 

8.8-

13.1 

0.14-

0.33 

33.64-

75.63 

8.54-

12.9 
11.03 0.21 55.38 10.77 1.02 0.04 11.09 0.99 

 

Table 5.4: Statistics of reference values with respect to calibration and prediction data sets 

 

Dataset 
Total 

Samples 

Min Mean S.D. 

Brix 

(oBrix) 

TA 

(%) 

Brix:

TA 

BrimA 

(%) 

Brix 

(oBrix) 

TA 

(%) 

Brix:

TA 

BrimA 

(%) 

Brix 

(oBrix) 

TA 

(%) 

Brix:

TA 

BrimA 

(%) 

Dataset1: 

(Blood red, 

Mosambi 

and Succari) 

Calibration 

128 
7.4-

13.4 

0.14

-

1.98 

5.3-

75.63 

6.53-

12.73 
10.37 0.69 24.91 9.68 1.39 0.39 20.89 1.49 

Prediction 
56 

7.3-

13.1 

0.17

-1.5 

6.2-

65.5 

6.56-

12.9 
10.3 0.62 25.87 9.64 1.36 0.37 19.70 1.55 

Total 

184 
7.3-

13.4 

0.14

-

1.98 

5.3-

75.63 

6.53-

12.9 
10.36 0.67 25.20 9.70 1.39 0.39 20.48 1.52 

Dataset2: 

(Blood red 

and 

Mosambi) 

Calibration 
90 

7.4-

13.4 

0.4-

1.98 

5.3-

22.94 

6.53-

12.73 
10.20 0.89 12.54 9.31 1.52 0.29 4.22 1.53 

Prediction 
40 

7.3-

12.1 

0.4-

1.5 

6.2-

24.69 

6.56-

11.61 
9.83 0.79 14.17 9.03 1.20 0.30 5.44 1.25 

Total 
130 

7.3-

13.4 

0.4-

1.98 

5.3-

24.69 

6.53-

12.73 
10.08 0.86 13.05 9.23 1.43 0.3 4.67 1.45 
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Figure 5.3 shows the correlation of orange sweetness levels and quality index parameters 

values. From 184 samples (92 oranges, 2 samples each), 129 samples belonged to sweet class, 48 

belonged to mix class and 7 belonged to acidic class. From Table 5.3, the sweetness levels cannot 

be concluded based on individual values of Brix, TA, Brix:TA or BrimA, since there is significant 

overlap between the three sweetness levels and the respective quality indexes. Moreover, it can be 

concluded that with respect to quality index parameters, Succari cultivar is dissimilar to the other 

two investigated varieties. 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 5.3: Correlation of orange taste quality levels with (a) Brix, (b) TA, (c) maturity index and (d) 

BrimA 
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5.3.2. Overview of Spectra: 

 

(a) 

 

(b) 

Figure 5.4: (a) Raw absorbance and (b) Savitzky-Golay second derivative spectra of collected dataset 

The absorbance spectra of orange fruit (Figure 5.4) is dominated by a peak around 680 nm 

associated to chlorophyll absorption [218] and a 970 nm peak associated with water absorption 

band [227]. 
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5.3.3. Indirect method of sample classification results: 

 

Table 5.5 presents the combined variety PLSR model results on Brix, TA, Brix:TA and 

BrimA with dataset having 184 samples including all three investigated varieties. The cross 

validation RCV
 is 0.69, 0.48, 0.5 and 0.66 respectively and RMSECV is 1.00 oBrix, 0.34%, 18.06  

and 1.13% respectively.  

These models include samples of Succari variety as well, which is a statistically 

incompatible cultivar (with respect to TA and Brix:TA) with the Blood red and Mosambi cultivars. 

Hence, Table 6 shows PLSR models trained on Blood red and Mosambi cultivars since they are 

similar to each other w.r.t TA and Brix:TA statistics. Table 5.6 shows that excluding Succari 

samples from dataset and rebuilding PLSR models provided improved results for TA and Brix:TA 

models. However, Brix and BrimA prediction results were worsened because with respect to Brix, 

all three investigated varieties have similar statistics. Removing Succari samples reduced the size 

of data set and hence worse results.  

 

 

Table 5.5: Cross validation and prediction results for PLSR models developed for dataset1 (Blood red, 

Mosambi and Succari) 

Index 

PLSR model 

Cross validation Prediction 

Rcv 
RMSEcv 

(oBrix/%) 
RP 

RMSEP 

(oBrix/%) 

Brix 0.69 1.00 0.57 1.05 

TA 0.48 0.34 0.25 0.48 

Brix:TA 0.5 18.06 0.39 20.99 

BrimA 0.66 1.13 0.55 1.35 
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Table 5.6: Cross validation and prediction results for PLSR models developed for dataset2 (Blood red 

and Mosambi) 

Index 

PLSR model 

Cross validation Prediction 

Rcv 
RMSEcv 

(oBrix/%) 
RP 

RMSEP 

(oBrix/%) 

Brix 0.83 1.10 0.43 1.18 

TA 0.59 0.23 0.73 0.19 

Brix:TA 0.43 3.79 0.66 3.14 

BrimA 0.58 1.23 0.29 1.33 

 

5.3.4. Direct classification results: 

 

To predict orange’s eating quality in terms of sweetness, multi class classification 

algorithms were implemented on both datasets. The cross validation and prediction results for both 

data sets are listed in Table 5.7 and Table 5.8. For dataset1, ensemble classifier achieved 81.03% 

accuracy for 3 class classification of independent test data. For dataset2, SVM and KNN both 

achieved 79.49% accuracy for 3 class classification of independent test data.  

Table 5.7: Cross validation and prediction results for 3 class classification for dataset1 (Blood red, 

Mosambi and Succari cultivars) 

Classifiers 
Cross validation 

accuracy (%) 

Prediction set accuracy 

(%) 

Tree 57.5 72.41 

LDA 56.7 60.34 

SVM 64.2 60.34 

KNN 63.4 72.41 

Ensemble 58.2 81.03 
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Table 5.8: Cross validation and prediction results for 3 class classification for dataset2 (Blood red and 

Mosambi cultivars) 

Classifiers 
Cross validation 

accuracy (%) 

Prediction set accuracy 

(%) 

Tree 57.8 64.10 

LDA 53.3 76.92 

SVM 60 79.49 

KNN 66.7 79.49 

Ensemble 57.5 71.79 

 

 

5.4. Observations and discussion: 
 

5.4.1. Statistics comparison of investigated cultivars: 

 

The “Blood red” variety is the most tasteful (mix to sweet taste) cultivars of orange in 

Pakistan. Table 5.3 shows that its range and mean of TA is high and of Brix, Brix:TA and BrimA 

is low. From 66 samples of Blood red, 33 belonged to sweet class, 26 belonged to mix class and 7 

belonged to acidic class.  

 The Mosambi cultivar is also segregated as sweet by the judges. It can be seen from Table 

5.3 that its range and mean of TA is lesser and for Brix its higher than Blood red cultivar hence its 

flavor is generally more sweater than Blood red variety. Amongst 64 samples of Mosambi, 46 

belonged to sweet class and 17 belonged to mix class. 

The Succari cultivar is a different cultivar in terms of sweetness from the other two 

cultivars. Succari samples always have a flat sweet taste due to lack of acids contents. The statistics 

of quality index parameters also support this claim as its TA range and mean is the lowest and 

hence Brix:TA values are the highest amongst other investigated. Amongst 54 samples of Succari, 

47 belonged to sweet class and only 5 belonged to mix class. 
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5.4.2. Development of mix cultivar PLSR models: 

 

An attempt was made to predict Brix, TA, Brix:TA and BrimA using PLSR regression 

models developed for mixed cultivar datasets. Since, Succari cultivar is statistically (w.r.t TA and 

Brix:TA) and taste wise different from the other two investigated cultivars, PLSR models were 

built for two datasets, one having mixture of statistically different cultivars i.e. Blood red, 

Mosambi and Succari and other one having only statistically compatible cultivars i.e. Blood red 

and Mosambi.  

It is observed that since all three investigated cultivars have almost similar Brix and BrimA 

statistics (Table 5.3), hence the model built with data set having all three cultivars achieved better 

prediction results for Brix and BrimA as compared to the model built with dataset having only two 

cultivars i.e. Blood red and Mosambi (Table 5.5 and Table 5.6). This is because dataset 2 has lesser 

number of samples than dataset1. The TA and Brix:TA results of PLSR models built with only 

two cultivars data (Blood red and Mosambi) achieved relatively better prediction results than the 

three cultivar dataset.  

 

5.4.3. Direct vs indirect methods of classification: 

 

Dataset standard deviation (S.D.) is important to determine the value of the NIRS technique 

for fruit quality assessment [25]. The technique holds significance only when S.D. of the attribute 

of interest is greater than the measurement RMSEP. Indeed, the prediction set R is directly related 

to measurement bias corrected RMSEP and S.D. i.e., for a particular bias corrected RMSEP, higher 

S.D. will result in higher RP value [25].  

For indirect method of sample classification, it is observed that the RCV and RP values of 

the developed PLSR models are low however, the RMSECV and RMSEP are below the S.D. of the 

datasets (for Brix and BrimA considering S.D. of dataset1 and for TA and Brix:TA considering 

S.D. of dataset2) (see Table 5.3 - Table 5.6). The low RP values are because of low S.D. of the 

collected dataset, which is a limitation for the presented work as well.  

I observed (see Table 5.7 - Table 5.8) good correlation between NIR spectra and sensory 

assessment as opposed to quality indices. Hence, direct classification is more suitable for orange 

sweetness classification using NIR spectroscopy as opposed to estimation of quality indices.  
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5.5. Conclusion: 

 

The research was carried out to develop a correlation between quality indices i.e. Brix, 

titratable acidity (TA), Brix:TA and BrimA (Brix minus acids), sensory assessment of the fruit and 

NIR spectra that was then classified as sweet, mixed, and acidic based on NIR spectra for Pakistani 

cultivars of orange i.e., Blood red, Mosambi and Succari. NIR spectral data was obtained using 

the industry standard F-750 fruit quality meter (310-1100 nm). Reference Brix and TA 

measurements were taken using standard destructive testing methods. Reference taste labels i.e. 

sweet, mix and acidic, were acquired by sensory evaluation of samples by a panel of judges. I  

observed that Succari cultivar is statistically dissimilar from the other two cultivars w.r.t TA and 

Brix:TA. Hence, chemometric analysis was carried out on two datasets i.e. dataset1 (Blood red, 

Mosambi and Succari) and dataset 2 (Blood red and Mosambi samples only), to obtain prediction 

models for quality indices and sweetness classification model. Better results of partial least squares 

regression (PLSR) models for Brix and BrimA were achieved for dataset1 with correlation 

coefficient (R) values of 0.57 and 0.55 on independent test data, respectively. For TA and Brix:TA, 

better PLSR models were achieved with dataset2 with R values of 0.73 and 0.66 on independent 

test data, respectively. For direct fruit classification, ensemble classifier achieved 81.03% accuracy 

with dataset1 and KNN and SVM classifier achieved 79.29% accuracy with dataset2, for 3 class 

(sweet, mix and acidic) classification on independent test data. I observed good correlation 

between NIR spectra and sensory assessment as opposed to quality indices. Hence, direct 

classification is more suitable for orange sweetness classification using NIR spectroscopy as 

opposed to estimation of quality indices. In the next chapter, SWNIRS based fruit classification 

system is presented for automated fruit type classification in contrast to computer vision based 

classification  methods. 
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Chapter 6 : DECISION SUPPORT SYSTEM FOR FRUIT TYPE 

CLASSIFICATION USING SWNIR SPECTROSCOPY  

6.1.  Introduction: 

 

The Vis and NIR region of the light spectrum has the range 400-750 nm and 750-2500 nm, 

respectively. The short wave NIR (SWNIR) or Herschel region lies between 750-1100 nm and the 

extended NIR region lies between 1100-2500 nm. NIR spectroscopy involves the measurement of 

the absorbance of light linked with the vibration of molecular bonds. For intact fruits, this usually 

entails absorption linked with the stretching of O-H and C-H bonds [40], [41], related principally 

with water and storage reserves (the major macro constituents). The infrared region (>2500 nm) 

provides the fundamental absorption bands associated with these features with more fine and higher 

absorption peaks than linked with the overtones observed in the NIR region. NIR region gives lower 

absorptivity of overtones features than those of infrared (IR) region. Due to this characteristic, the 

effective pathlengths of NIR radiation through fruit are in the order of millimeters to centimeters 

rather than micrometers as in the case of IR radiation. Similarly, with the short-wave NIR (SWNIR) 

region longer effective pathlengths are achieved with higher overtone features as compared to the 

overtones in the NIR region. This is the reason that SWNIR radiation can be used to estimate fruit 

parameters of intact fruits [25].  

Absorption at 770 nm and 960 nm is associated with a third and second overtone of O-H 

stretching, respectively and 840nm is associated with the O-H combination feature. While 

absorption at 910 nm and 1100 nm is associated with a third and second overtone of C-H stretching, 

respectively [41]. These overtone features have broad peaks with a full width half maximum 

(FWHM) of 20nm (the reported peaks are centers of the respective bands). However, the overall 

peak positions shift with temperature and solute concentration because the amount of H-bonding 

can change which influences the vibration of O-H bonds. In practice, it is hard to interpret short-

wave NIR (being second and third overtones, so weak and broad) compared to extended NIR and 

IR regions. However, the features related to water can be interpreted, which is the main NIR active 

molecule in fruit. Around 80-90% of fleshy fruit is composed of water. This is the reason that any 

other parameter is measured with reference to the large absorption features of water. An increase in 

any other macroconstituent, e.g., SSC and DM, causes a decrease in water content resulting in a 

negative correlation with water. The penetration depth of NIR in fruits is comparatively greater in 
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the 700–900 nm range [46] hence more information on internal quality attributes can be fetched by 

using wavelength absorption data of this region. Understanding the raw absorption spectra is 

challenging because all absorption characteristics are wide and overlapping. The use of NIRS over 

IR spectroscopy is successful due to chemometrics, which enabled useful information to be fetched 

out of the spectra.  

Point spectroscopy delivers a sum of light absorption and scattering. The scattering 

characteristics of tissue affect the effective penetration depth of light into that tissue [228]. 

However, the quantity of light scattering differs between fruit types [191], [228]. This fact can be 

used to classify different fruits. In this chapter, the potential of SWNIR spectroscopy, primarily 

with respect to O-H and C-H overtone features, is analyzed for fruit type classification [38]. 

Different shallow machine learning architectures were trained to classify fruits using spectral 

feature vectors obtained by the industry-standard F-750 fruit quality meter. Two types of feature 

sets are used to compare the classification potential of both sets i.e. (1) 83 features within 725-

975nm range and (2) only 4 features at wavelengths 770nm, 840nm, 910nm, and 960nm 

corresponding to O-H and C-H overtone features. 

6.2. Materials and Methods: 

 

6.2.1. Collection of Vis/NIR Spectra: 

 

Vis-NIR spectral data (wavelength range 400-1150nm) is collected using the industry standard 

F-750 fruit quality meter (Felix Instruments, Camas, WA, USA). The dataset for apple, grapes, 

mango, melon, orange, loquat, plum and apricot are collected for local cultivars of Pakistan while 

online available datasets of F-750 [7] for cherry, hass and kiwi have been used. Samples of apple, 

grapes, mango, melon, orange, loquat, plum and apricot were scanned from equator position with 

F-750. Table 6.1 shows the details of fruit datasets used.  

Table 6.1: Details of datasets collected for investigated fruits 

Fruit Variety Season 
Number of 

Samples 

Training and testing dataset 

samples 

Apple 

Golden Delicious, 

Red Delicious-Pak, 

Red Delicious-Turk 

2019 35 Training 

2020 15 Testing 
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Grapes Sundar Khani 2020 100 70 Training, 30 Testing 

Mango SB Chaunsa 
2019 150 Training 

2020 50 Testing 

Melon Honey melons 
2020 150 Training 

2021 50 Testing 

Orange 

Red-Blood 

2020 

74 54 Training, 20 Testing 

Mosambi 64 44 Training, 20 Testing 

Succari 54 44 Training, 10 Testing 

Loquat Tanaka 
2020 150 Training 

2021 50 Testing 

Plum Fazle Manani 2020 200 150 Training, 50 Testing 

Apricot Badami 2020 200 150 Training, 50 Testing 

Cherry Lapins 2016 200 150 Training, 50 Testing 

Hass unknown 2017 200 150 Training, 50 Testing 

Kiwi General Kiwis 2016 200 150 Training, 50 Testing 

6.2.2. Chemometric Analysis: 

 

The basic idea behind finding fruit class from short wave NIR spectral features is to construct a 

linear predictor function that generates a score from a set of weights that are linearly combined with 

the set of spectral features of given observations as: 

 

𝑆𝑐𝑜𝑟𝑒𝑠 (𝑋𝑖 , 𝑘) =  𝛼𝑘 .  𝑋𝑖     (6.1) 

 

where “.” is the dot operator, Xi  is the spectral features vector corresponding to the ith observation, 

𝛼𝑘 is the coefficients vector corresponding to class k and 𝑆𝑐𝑜𝑟𝑒𝑠 (𝑋𝑖, 𝑘) is the score associated with 

allocating observation i to class k. The predicted class is the one that has highest score. Machine 

learning classification algorithms determine the optimal scores and interpret them to assign class to 

observation i.  

For fruit type classification, MATLAB R 2021a software was used. Classification was 

performed using MATLAB classification learner module with PCA enabled (first 7 principal 
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components were used). Principle component analysis (PCA) has been widely used with 

spectroscopic data [4,9] to emphasize variation and bring out strong patterns in the data set. PCA 

was applied on spectral data and then several supervised and unsupervised machine learning 

classifiers are implemented and compared including tree, ensemble, K nearest neighbor (KNN), 

linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector machine 

(SVM), naïve bayes and artificial neural network (ANN). 

 

6.3. Results: 

 

6.3.1. Overview of spectra: 

 

The average absorbance spectra of all fruits within SWNIR range (Figure 6.1) is dominated by 

small peaks around 770 nm, 840 nm and a strong peak around 960 nm associated with water 

absorption band [227]. 

6.3.2. Principal Component Analysis: 

 

PCA scores plot for the collected data set is shown in Figure 6.2 (a and b). Observations that 

are similar together form a cluster in scores plot of PCA. Figure 6.2 depicts that all the eleven 

investigated fruits form well defined clusters in both the cases i.e. (a) with 83 features from 725-

975nm wavelength range (3nm resolution) and (b) with only 4 features at wavelengths 770nm, 

840nm, 910nm and 960nm. Hence, the plots depict good potential for classification algorithms to 

distinguish fruits using SWNIR region or simply only the OH and CH overtones features. 
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Figure 6.1: Average raw absorbance spectra of collected datasets for the investigated fruits 

 

(a) 
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(b) 

 

6.3.3. Classification Results: 

 

Table 6.2 shows the classification results in terms of cross validation (CV) accuracy and test data 

accuracy for 83 features (within range 725-975nm with 3nm resolution) as input to the classifier. 

Training dataset has 1507 observations for the eleven fruits while the test data has 531 observations 

(some of them are of independent season). QDA classifier outperformed other investigated 

classifiers with 100% CV accuracy and 93.02% test accuracy. 

The classification results (Table 6.3) in terms of CV accuracy and test data accuracy for only 4 

features at wavelengths 770nm, 840nm, 910nm and 960nm (OH and CH overtone features) as input 

to the classifier. QDA classifier outperformed other investigated classifiers with 97.1% CV 

accuracy and 90.38% test accuracy. 

Table 6.2: Classification accuracies using 83 features within wavelength range 725-975nm 

Classifier CV accuracy Test accuracy 

Tree 97.9 88.68 

LDA 99.3 90.94 

Figure 6.2: 3D scores plot for first three principal components of spectra of the investigated fruits (a) 

725-975 nm wavelength range, and (b) only 4 features at wavelengths 770nm, 840nm, 910nm and 960nm 
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QDA 100 93.02 

Naïve Bayes 98.9 91.89 

SVM 99.8 92.26 

KNN 99.7 93.21 

Ensemble 99.3 90.57 

ANN 99.4 91.89 

 

Table 6.3: Classification accuracies using 4 features at wavelengths 770nm, 840nm, 910nm and 960nm 

Classifier CV accuracy Test accuracy 

Tree 94.8 87.55 

LDA 95.7 87.92 

QDA 97.1 90.38 

Naïve Bayes 94 81.32 

SVM 98.3 90 

KNN 97.7 89.81 

Ensemble 96.6 89.43 

ANN 97.5 89.81 

 

6.4. Observations and Conclusion: 
 

The results obtained from PCA, and classification suggest that fruit classification is mainly a 

function of OH and CH overtone features. PCA results depict that both the feature sets, i.e., 83 

features from the 725-975nm wavelength range and only 4 features representing the OH and CH 

overtones peaks within the 725-975nm range, form well-defined clusters in the PCA space. The 

PCA scores plot depicts a good intra-cluster correlation for all the eleven clusters in both cases 

(Figure 6.2). The three-stone fruits i.e. loquat, plum, and apricot have less inter-cluster distance 

between them (see Figure 6.2) and also show similar absorbance behaviour in Figure 6.1. This is 

because all the three investigated stone fruits have similar physical structures i.e. thin peel, a thin 

pulp (and hence lesser NIR radiation absorbance by pulp) and a big stone/stones in the center of the 

fruit. Apple, mango, grapes, melon, and orange also have less inter-cluster distances amongst each 

other (Figure 6.2) and also it shows a similar trend in the absorbance spectra (see Figure 6.1) i.e. top 

five peaks at 960nm wavelength related to water absorption band. All these five fruits have thick 
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pulp and small seeds (the investigated grapes variety is ‘Sundar khani’ which has no seeds). Hass, 

cherry, and kiwi show good inter-cluster distances from all other clusters. Kiwi’s spectra form two 

clusters with a less inter-cluster distance between them, the reason is unknown as kiwi’s dataset 

was taken from an online source with no information available about the cultivars that were 

scanned. 

Results obtained from PCA and classification in case 2 (90.38% test accuracy for 11 classes) i.e. 

only 4 features at wavelengths 770nm, 840nm, 910nm and 960nm (OH and CH overtone features) 

provide good motivation for application of low cost LED based devices in fruit classification 

problems. Spectrometer based portable devices are also available e.g. Felix instruments F-750 [8], 

Consumer Physics’ SciO [11], Sunforest H-100C [12] and Atago Hikari [13], however these 

devices are expensive compared to LED based portable devices for assessment of specific pigment 

in fruit (at two to five wavelengths) i.e. DA meter[14], kiwi meter [14], cherry meter [14], Multiplex 

330[15] and FIORAMA [16]. 
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Chapter 7 : CONCLUSION AND FUTURE RECOMMENDATIONS 

 

7.1. Overview of Dissertation: 

 

In this dissertation, I have investigated the SWNIR spectroscopy for non-destructive fruit quality 

inspection and present a decision support system for the Pakistani horticulture. The case studies 

involve fruits that are not only of commercial significance to Pakistani horticulture, but also 

provide examples of fruit with relatively thin and thick skin and with relatively thick and thin 

edible flesh. These differences in morphology can be expected to impact the non-invasive 

assessment of flesh characters using SWNIRS. This chapter summarizes the research contributions 

from chapter 3,4,5 and 6. 

 

The main contributions of this dissertation are as follows: 

 

1. I present a decision support system for quality-based fruit sorting and grading for 

Pakistani horticulture. 

2. I present a novel decision support system to predict sweetness of melons and oranges 

which is based on direct classification approach. 

3. I present SWNIR spectroscopy-based solution to fruit classification problem. 

 

In chapter 2, I investigated the effectiveness of handheld near infrared spectroscopy (NIRS) 

for the evaluation of DM and SSC in four types of fruits of significance to Pakistani horticulture, 

i.e. mango, apple, mandarin and loquat. The fruits differed in the applicability of the NIRS 

technique: apples and mangoes as fruit with a thin skin and thick (> 1 cm) edible tissue, Kinnow 

mandarin because of their thick peel (>3 mm), and loquats because of their thin (<1 cm) edible 

tissue, with a large central seed. The investigated handheld NIRS device (i.e. Felix instruments 

F750) is supplied with ready to use starter models for many fruits. I investigated the performance 

robustness of supplied apple, mandarin and KP mango model in prediction of SSC and DM of 

local cultivars of these fruits. The starter models (i.e. mango and mandarin) which were based on 

a small population set of a single cultivar at a single temperature failed to effectively predict the 
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quality indices of local cultivars of mango and mandarin. Conversely, the supplied apple model 

which was based on a large population set of multiple cultivars at different temperatures performed 

well in use with locally grown fruit of the same cultivars as used in the calibration dataset. Hence, 

for mango and mandarin, I developed new chemometric models for local cultivars of mango 

(export culitvars : ‘Sindhri’, ‘Sufaid Chaunsa’ and ‘SB Chaunsa’) and mandarin (export cultivar : 

‘Kinnow’). I also investigated the feasibility of using SWNIRS for SSC prediction of loquat fruit. 

The locally developed mango, mandarin and loquat models performed well with the test data. The 

developed mango, mandarin and loquat models were trained with dataset collected at a single 

temperature (25oC). To obtain a robust model against sample temperature variations (for on-tree 

predictions), the model needs to be trained with samples scanned at multiple temperatures.   Based 

on these results, the portable NIR technology is recommended for future use across several 

commodities, given suitable model development based on samples from multiple cultivars with a 

range of growing conditions, and with assessment of samples at different temperatures.  Use in 

quantitative assessment of fruit quality targeted to Pakistan’s export markets is also recommended.  

In chapter 4 and 5, I present a direct sweetness classifier for melons and oranges as opposed to 

the literature reported regression based indirect measure of the quality attributes like SSC. First 

extensive evaluation was conducted on “honey melon” variety, which is grown in Pakistan. The 

industry standard F-750 spectrometer employing interactance optical geometry was used to collect 

spectral data. After spectra collection, destructive testing was performed to find reference SSC 

values. Sweetness standards were established by sensory evaluation by a panel of judges. 

Extensive chemometric analysis was carried out to obtain SSC prediction model and direct 

sweetness classification model for SWNIRS. Outcomes of both these methods in terms of 

prediction accuracy validate that direct classification is a better quantitative measure as compared 

to oBrix based thresholding to estimate melons sweetness.  

Second experiment was conducted on oranges to develop a correlation between quality indices 

i.e. Brix, TA, Brix:TA and BrimA, sensory assessment of the fruit and NIR spectra that was then 

classified as sweet, mixed, and acidic based on NIR spectra for Pakistani cultivars of orange i.e., 

Blood red, Mosambi and Succari. NIR spectral data was obtained using the F-750 fruit quality 

meter. Reference Brix and TA measurements were taken using standard destructive testing 

methods. Reference taste labels i.e. sweet, mix and acidic, were acquired by sensory evaluation of 
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samples by a panel of judges. I observed that Succari cultivar is statistically dissimilar from the 

other two cultivars w.r.t TA and Brix:TA. Hence, chemometric analysis was carried out on two 

datasets i.e. dataset1 (Blood red, Mosambi and Succari) and dataset 2 (Blood red and Mosambi 

samples only), to obtain prediction models for quality indices and sweetness classification model. 

Best fit partial least squares regression (PLSR) models for Brix and BrimA were achieved for 

dataset1. For TA and Brix:TA, best fit PLSR models were achieved with dataset2. I observed good 

correlation between NIR spectra and sensory assessment as opposed to quality indices. Hence, 

direct classification is more suitable for orange sweetness classification using NIR spectroscopy 

as opposed to estimation of quality indices. Considering orange fruit, along with sweetness, the 

consumer acceptance is usually also linked with richness and tartness. As in the case of Succari 

cultivar which is always sweet but not as tasty as Mosambi and Blood red cultivars. Our proposed 

sweetness classifier for orange is based on acceptance criteria linked only with sweetness of sample 

and not the tartness and richness parameters. 

In chapter 6, I investigated the feasibility of using SWNIRS spectral features for automated 

classification of fruit type. Eleven fruits, which include apple, cherry, hass, kiwi, grapes, mango, 

melon, orange, loquat, plum, and apricot, were used in this study to cover physical characteristics 

such as peel thinness, pulp, seed thickness, and size. Different shallow machine learning 

architectures were trained to classify fruits using spectral feature vectors. The results obtained from 

PCA, and classification suggest that fruit classification is mainly a function of OH and CH overtone 

features. PCA results depict that both the feature sets, i.e., 83 features from the 725-975nm 

wavelength range and only 4 features representing the OH and CH overtones peaks within the 725-

975nm range, form well-defined clusters in the PCA space. The PCA scores plot depicts a good 

intra-cluster correlation for all the eleven clusters in both cases. Results obtained from PCA and 

classification in case 2 (90.38% test accuracy for 11 classes) i.e. only 4 features at wavelengths 

770nm, 840nm, 910nm and 960nm (OH and CH overtone features) provide good motivation for 

application of low cost LED based devices in fruit classification problems. Spectrometer based 

portable devices can also be used, however these devices are expensive compared to LED based 

portable devices for assessment of specific pigment in fruit (at two to five wavelengths). 
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7.2. Future Recommendations: 

 

According to the reported literature and available chemometric models, PLSR has 

dominated applications of NIRS in horticulture. PLSR models perform well with small training 

datasets of a particular population and similar conditions. However, the performance of PLSR 

models is deteriorated for independent test sets of a different population having different growing 

conditions. In recent applications, ANN and convolutional neural networks (CNN) have shown 

promise in overcoming these issues. However, ANN and CNN models are more prone to 

overfitting with smaller datasets as compared to PLSR and MLR models, hence they require larger 

datasets for training. The ANNs implemented in literature have shallow architectures trained with 

carefully handcrafted features as input. As a practical example, the Australian mango industry has 

used ANN model based on 80000 mango spectra samples from 39 instruments, 16 cultivars and 

591 populations, for mango DM estimation on a handheld device [183]. The first publication of 

CNN is reported in 2021 which employs a 1-D CNN and transfer learning approach on a publicly 

available dataset of 11,691 spectra for mango DM (harvested in four seasons) [229]. This publicly 

available dataset has been used in many comparative studies [230]. The advantage of using CNN 

over ANN seems to be the use of raw spectra at the input instead of carefully extracted features 

using pre-processing algorithms as in case of ANN. Also, standard machine learning algorithms 

tend to saturate once the dataset size increases beyond a certain limit, whereas deep learning 

models keeps on learning and updating based on new data and thus improving their performance. 

Hence, in future, efforts need to be done to collect larger datasets for training which include spectra 

of multiple cultivars over a range of growing and temperature conditions acquired via multiple 

instruments. ANN and CNN are the future in this area where extensive datasets may be available 

and comparative studies need to be done. It is to be noted here that in horticultural applications, 

collection of such extensive dataset requires years of effort, time and huge amount of funding, and 

also loss of large number of fruits.  

The work presented in this dissertation is the first attempt to introduce non-destructive and 

efficient decision support system for fruit quality estimation for the Pakistani supply chain, both 

the upstream in the orchards and downstream in the packaging lines, distribution centres and at the 

consumer end. The models developed in this dissertation are based on shallow machine learning 

models like PLSR, KNN etc with smaller but reasonable dataset sizes (comparable to the PLSR 
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models reported in literature). In future, the research needs to be further continued for extension 

of available datasets and subsequent use of ANN and deep learning architectures like CNN to 

achieve robust chemometric models incorporating multiple cultivars data over multiple growing 

and temperature conditions which can better assist Pakistani supply chain.  
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