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Abstract

This dissertation is concerned with mathematical modeling and optimal control of

a vector borne disease. We derive and rigorously analyze mathematical models to

better understand the transmission and spread of vector borne diseases. First, a

mathematical model is formulated to evaluate the impact of biological control of

a vector borne disease "malaria" by considering larvivorous fish as a sustainable

larval control method. To evaluate the potential impacts of this biological control

measure on malaria transmission, we investigate the model describing the linked

dynamics between the predator-prey interaction and the host-vector interaction.

The dynamical behavior with all possible equilibria of the model is presented. The

model also exhibits backward bifurcation phenomenon which give rise to the exis-

tence of multiple endemic equilibria. The backward bifurcation phenomenon sug-

gests that the reproductive number R0 < 1 is not enough to eliminate the disease

from the population under consideration. So an accurate estimation of parameters

and level of control measures is important to reduce the infection prevalence of

malaria in an endemic region. Our control techniques for elimination of malaria in

a community suggest that the introduction of larvivorous fish can in principle have

important consequence for the control of malaria but also indicate that it would

require a strong predator on larval mosquitoes. Then, a new epidemic model of a

vector-borne disease which has both direct and the vector mediated transmissions is

considered. The model incorporates bilinear contact rates between the mosquitoes

vector and the humans host populations. Using Lyapunov function theory some

sufficient conditions for global stability of both the disease-free equilibrium and the

endemic equilibrium are obtained. We derive the basic reproduction number ℜ0
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and establish that the global dynamics are completely determined by the values of

ℜ0. For the basic reproductive number ℜ0 < 1, the disease free equilibrium is glob-

ally asymptotically stable, while for ℜ0 > 1, a unique endemic equilibrium exists

and is globally asymptotically stable. The model is extended to assess the impact

of some control measures, by using an optimal control theory. In order to do this,

first we show the existence of the control problem and then use both analytical

and numerical techniques to investigate that there are cost effective control efforts

for prevention of direct and indirect transmission of disease. Finally, we present

complete characterization and numerical simulations of the optimal control prob-

lem. In order to illustrate the overall picture of the epidemic, individuals under the

optimal control and without control are shown in figures. Our theoretical results

are confirmed by numerical simulations and suggest a promising way for the control

of a vector borne disease.
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Chapter 1

Introduction

Infectious diseases, also known as communicable diseases have long been recognized

as a continuous threat to human beings all over the world. Mathematical modeling

of the spread of communicable diseases has an increasing influence on the practice

and theory of disease control and management [1]. Although vaccines have been

developed for protection from many infectious diseases but infectious diseases are

still a major cause of deaths of many people around the world. Recently, mosquito

borne diseases are a major problem and are responsible for many life-threatening

diseases such as malaria and dengue fever. The means of transmission of almost

all infectious diseases from an infected to a susceptible individual is understood.

However, the transmission interactions in a community are very complicated, hence

it is very hard to understand the large size dynamics of the spread of disease without

the proper structure of a mathematical model. Therefore, for understanding the

underlying method by which diseases spread and cause epidemics is key for their

control. This dissertation is concerned with the development of new mathematical

models for the spread and control of a vector borne disease.

"Vector-borne disease" is the term commonly used to describe an illness caused

by an infectious microbe that is transmitted to humans host by blood-sucking

arthropods insects. The arthropods insects that serve as vectors include blood

sucking insects such as mosquitoes, fleas, lice, biting flies and bugs [2]. It can,

however, be directly transmitted from human to human through blood transfusions,
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needle sharing and vertically from mother to child [3]. The term “vector” usually

refers to any arthropod that transmits a disease from one host to other through

feeding activity.

In recent years, vector-borne diseases have emerged as a serious public health

problem in countries of the South-East Asia region including Pakistan [4,5]. Among

these diseases dengue fever and malaria now occur in form of epidemics almost on

an annual basis causing considerable morbidity and mortality. Dengue is spreading

rapidly to newer areas and outbreaks occurring more frequently and explosively. A

large outbreak in Lahore (Pakistan) this year took many lives [6]. Despite techno-

logical advances and increasing affluence in many regions, vector-borne infectious

diseases remain amongst the most important causes of global health illness. The

vectors of a number of infectious diseases, most prominent of which are malaria,

dengue, Chikungunya, yellow fever, Japanese Encephalitic, St Louis Encephalitis,

and West Nile Fever, caused by the West Nile Virus are mosquitoes [7]. There are

also some other vectors like the assassin bugs, causing the Chagas disease, fleas

transmitting the plague from its normal host to humans, or from human to hu-

man, and ticks which transmit the most prevalent vector-borne disease in North

America.

Currently, dengue threatens up to 40% of the world’s population and there

may be 50− 100 million cases annually [8]. A life-threatening vector borne disease

"malaria" remains one of the world’s most prevalent vector-borne disease. Female

blood sucker mosquito "Anopheles" is responsible for transmitting malaria between

humans host population. Moreover, 40% of the world’s population live in malaria

endemic regions. Malaria is responsible for killing about 700, 000 to 2.7 million

people in a year, 75% of whom are children and belongs to poor countries specially

in Africa [9]. Also due to continuous application of pesticides, mosquitoes have

developed resistance to these chemicals which leads to an increase in the incidence

of vector borne disease. Therefore, it is very important for us to understand the

parameters which play a significant role in the transmission of the disease. Further,

we need to develop effective control strategies for prevention of vector borne disease.
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In this dissertation, we develop mathematical models to better understand the

transmission mechanism and spread of vector borne diseases. The model presented

will be a continuation of ideas from recent vector-host models [7, 10, 74, 98, 105].

We use ordinary differential equations to model the vector borne disease, where

humans host and mosquitoes interact and transmit infection to each other. First,

a mathematical model is formulated to evaluate the impact of a biological control

of malaria by considering larvivorous fish as a sustainable larval control method.

To evaluate the potential impacts of this biological control measure on malaria

transmission, we investigate the model describing the linked dynamics between the

predator-prey interaction and the host-vector interaction. For this, we will con-

sider larvivorous fish as control variable in all possible breeding sites of mosquitoes.

The model divides the human population into two classes namely: susceptible and

infectious. The humans host population is recruited into the susceptible class by

birth or immigration. Susceptible humans host contract the disease by interacting

with infectious mosquitoes. Before re-entering the susceptible class, the infectious

human host progress through an infectious class. Humans host leave the classes

through natural mortality and emigration, and through a disease-related death out

of the infectious class. There is one class of larvivorous fish and three classes for

the mosquito population: larvae, susceptible, and infectious class of mosquitoes.

Larvae enters the population at a rate gNv, where g is egg laying rate of the

mosquitoes. Larvae leaves the population through natural death, density depen-

dent death, becoming adult with a maturation rate, and predation of larvae by

larvivorous fish. Larvae becomes adult and enters the susceptible class. Then,

mosquitoes gets infected by biting infectious humans and progress to the infectious

class.

The above assumption and extensions leads to a system of five nonlinear ordi-

nary differential equations with one dependent variable for each class. The different

equilibria of the model are found and stability of these equilibria are discussed. The

threshold quantity denoted by R0 is also defined for the model using the next gen-

eration operator approach. Numerical simulations are carried out and suggest that
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the endemic equilibrium is stable for R0 > 1 and there is a trans-critical bifurca-

tion at R0 = 1 where two branches of equilibrium points intersect and exchange

stability. We prove that the bifurcation at R0 = 1 is supercritical (forward) and

stable endemic equilibrium points exist for R0 > 1. For some values, there ex-

ists a subcritical (backward) bifurcation at R0 = 1 where stable positive endemic

equilibrium points exist for R0 < 1. Thus, even when R0 < 1, disease can persist

in the community in the presence of a locally asymptotically stable disease-free

equilibrium. The model also exhibits backward bifurcation under certain restric-

tion on parameters, which gives rise to existence of multiple endemic equilibria for

R0 < 1. The backward bifurcation phenomenon suggests that the reproductive

number R0 < 1 is not enough to eliminate the disease from the population under

consideration. Therefore, an accurate estimation of parameters and level of control

measures is important to reduce the infection prevalence of malaria in an endemic

region.

Secondly, incorporating the fact that in human population the disease is not

only spread by vector but also a human to human transmission (direct trans-

mission) of the disease is possible. Based on this fact a new model with direct

transmission in addition to vector mediated transmission is formulated to deter-

mine which factors are responsible for the spread of a vector borne disease. In this

model, the human host population is split into different classes namely: susceptible

host, exposed host, infectious host, and recovered (immune) host. People enters

the susceptible class by birth or immigration. Susceptible host acquires infection

not only by infectious vectors but also directly through humans by transfusion re-

lated transmission, blood transmission, transplantation related transmission, and

needle-stick-related transmission. Then they enters the exposed, infectious, and

immune classes. Each host leave the population through natural death, emigration

out of each compartments, and infectious host leave the population by an addi-

tional disease-related death. Similarly, the vector population is subdivided in three

classes: susceptible vector, exposed vector, and infectious vector. The mosquitoes

vector are recruited into the susceptible class by birth. Vector gets infected after
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sucking blood of an infectious host and then they enters the latent and infectious

classes, respectively.

The model with direct transmission of the disease consists of a system of seven

equations with four dependent variables representing host population and three

dependent variables representing vector population. The disease free and endemic

equilibrium points are found and the local and global stability of these equilibria

are discussed. The basic reproduction number ℜ0 for this model is also defined.

When ℜ0 < 1, the disease free equilibrium is asymptotically stable which means

the introduction of a small number of infected individuals would not lead to an

epidemic. When ℜ0 > 1, the unique positive endemic equilibrium exist and is

asymptotically stable, which means the introduction of any infected individual

would lead to an epidemic and disease persist in the community. Numerical sim-

ulations for various sets of parameters in terms of time series plots for each class

are represented in detail. Then the model is further extended to incorporate some

important epidemiological features, such as density-dependent birth rate in both

host and vector populations and time dependent control functions. The extended

model will then be used to determine cost-effective strategies for combating the

spread of a vector-borne disease in a given population. In order to control the dis-

ease we use optimal control strategies by defining three control functions, one for

vector-reduction strategies and the other two for personal (human) protection and

blood screening, respectively. First, we show the existence of the control problem

and then use both analytical and numerical techniques to investigate that there are

cost effective control efforts for prevention of direct and indirect transmission of a

vector borne disease. We also completely characterize the optimal control and com-

pute the numerical solution of the optimality system using an iterative method. In

order to illustrate the overall picture of the epidemic, individuals under the optimal

control and without control are shown in figures.
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1.1 How the vector borne disease spread

Vectors typically gets infected by a disease agent while feeding on the blood of

infected birds, larger animals or humans and then the vector pass on the microbe

to a susceptible human host or other animals. In almost all cases, an infectious

microbe infect and multiply inside the vector body before the vector is able to

transmit the disease to a susceptible host. The most deadly vector borne disease

Malaria, Dengue, Chikungunya and West Nile virus kills million people annually

and are carried by mosquitoes. Pool feeders such as the sand fly and black fly,

vectors for Leishmaniasis and Onchocerciasis respectively, will make a hole in the

host’s skin, forming a small pool of blood from which they feed. Leishmania par-

asites then infect the host through the saliva of the sand fly. Triatomine bugs

are responsible for the transmission of a trypanosome, Trypanosoma cruzi, which

causes Chagas Disease.

An infected mosquito "Aedes Aegypti" which acts as the vector in transmitting

the dengue virus, spread the virus (dengue) from one person to another when it

takes a blood meal [4]. The mosquito gets infected by biting an infected person,

then the mosquito vector pass the virus to a susceptible host. There is no way to

tell which mosquito is carrying the dengue virus. Therefore people must protect

themselves from all mosquito bites. Dengue viruses are common in Asia, Africa,

Australia, the Pacific, and the United State. Dengue is most common in cities but

can also be found in rural areas.

Malaria, which is a vector borne disease, is usually transmitted through the bite

of an infected female "Anopheles" mosquito [9]. Malaria is not transmitted from

one person to another person by casual contact, like common cold or flu. In the

case of malaria, the incubation period for the disease (the period between infection

and the beginning of symptoms) typically lasts between 10 days to four weeks.

West Nile Virus (WNV) is caused by the bite of an infected "Culex pipiens"

mosquito vector [17]. Mosquitoes gets infected by biting an infectious bird. Infected

mosquitoes vector then spread WNV to humans host and other animals by sucking
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blood from their skin [18]. The most common amplifying hosts in the western

hemisphere are American robin and the American crow, developing sufficient viral

to spread the infection to mosquitoes which continue to pass the virus to other

birds and also humans [19]. Birds can not transmit WNV directly to hosts, but in

some cases WNV has been spread directly through blood transfusions and organ

transplants, breastfeeding and even during pregnancy from mother to baby [20].

1.2 Historical perspective of vector borne disease

Vector borne diseases have been described in written history for thousands of years,

including ancient Chinese, Indian, Greek and Roman writings. It was first recog-

nized by workers in Queensland early in the 20th century that dengue is trans-

mitted by the bite of an infected mosquito, particularly "Aedes Aegypti" a female

mosquito. An estimated 50 million cases of dengue appears every year in the

world [103]. In America, there were more than 616, 000 cases of dengue occurs

in 1998, of which 11, 000 cases are of a life threatening form of dengue. Another

vector borne disease "chikungunya" virus was first detected in 1953 in Tanzania

(Africa) [13].

Malaria was found over 4, 000 years ago for the first time. The symptoms of

malaria were discussed in ancient Chinese medical writings, and the disease was

widely recognized in Greece by the fourth century. In 1880, Charles Louis Alphonse

Laveran, a French army surgeon stationed in Constantine, Algeria, was the first to

notice parasites in the blood of a patient suffering from malaria. For this discovery,

Laveran was awarded the Nobel Prize in 1907.

An estimated 110− 115 million cases of malaria were reported in 1948− 1950.

In 1950− 1956 some malaria control programme started and during 1960− 1969,

tremendous success in eradicating the malaria has been achieved. But the control

strategies failed to catch the increasing tendency of P. falciparum infection. In the

start, there were 19.6% total infected individuals in 1970 but the ratio of infected

increases to 41.3% in 1991.
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WNV was identified for the first time in the United States in New York in

1999 [21], during an outbreak involving humans, horses, and birds. After this

the virus has kept spreading rapidly to most parts of the United States [22]. In

the United States, between 1999 and 2001, WNV was related with 149 cases of

neurological diseases in humans host, 814 cases of equine encephalitis and 11, 932

mortalities in the avian population. In 2003, about 9858 WNV cases in human

host of which 14 deaths were reported [23].

1.3 Impact of vector borne disease on public health

and economic

Vector borne disease and poverty are intimately connected. Estimating the eco-

nomic impact of a vector borne disease is important in order to prioritize resources

for research, prevention, and control. The research shows that the average family

cost of treating on one child is approximately $61 including direct and indirect

costs [24]. On average, the largest expenses were those related to the initial visit at

a local general doctor, the hospital bill from children’s hospital and loss of income

for the parents. Malaria is the main cause of poverty in Indian subcontinent, Sri

Lanka and Africa. The countries with high incidence of malaria are among the

poorest in the world, and usually have very low economic growth. Malaria is a

large expense for a family and can rightly be considered as a substantial socioe-

conomic burden in the world. More studies are needed to estimate the amount

of the expenses related to a vector borne disease. It is effecting the way of liv-

ing of Africans and is also preventing the improvement to live a standard life for

future generations. Each year the economic growth of Africa is reduced by $1.3

million [25].

There was an outbreak of dengue fever in 1981 in Cuba and the estimated cost

of this epidemic was approximately $103 million. This cost include the cost of

control measures, hospitalization, the loss of productivity and salaries of 344, 203

adult dengue victims [11]. Durig a dengue epidemic in Thailand (1994), about
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51, 688 reported cases of dengue patients were reported with estimated cost of $6.9

million. Disability-adjusted life years are an age-weighted estimated measure of

years of life lost from premature death, and years of life lived in less than full

health. Globally there are estimated to be 50 million cases of dengue each year,

equal to 528, 000 disability-adjusted life years [12]. In Thailand (2001), the impact

of dengue fever on the relatives of victims hospitalized at the Kamphaeng Phet

provincial hospital with confirmed dengue cases was assessed. It was estimated

that each family loss approximately $61, which is more than the average monthly

income in Thailand. The disability-adjusted life years were counted by a family

level survey, which resulted in an estimated 427 disability-adjusted life years per

million population in 2001.

1.3.1 Signs and symptoms

A vector borne disease "dengue fever" generally starts with a high fever, severe

headache, rash on skin, joint and muscle pain. The first symptom of the disease

appears about 5 to 7 days after a host is bitten by an infected mosquito vector.

Usually rash on the skin appears 3 to 4 days after the start of the fever [9]. The

disease can last up to 10 days, but the complete recovery from the disease can take

a month.

The most common symptoms of malaria are similar to the flu. The human host

may have: a headache, aching muscles, and weakness. A day or so later, the body

temperature may rise (up to 40 degrees Celsius) and the host may have: a fever,

shivers, mild chills, severe headache, vomiting, diarrhoea, and loss of appetite [16].

Symptoms of chikungunya start with a fever within 5 to 6 days after the bite of

an infected mosquito. Symptoms include high-grade fever, severe headache, rashes

on skin, severe joint and muscle pain [14]. Although not generally life threatening,

symptoms include painful arthralgias that can persist for months and even years.

About one in 150 people infected with WNV will develop severe illness. The

severe symptoms can include high fever, headache, neck stiffness, stupor, disori-

entation, coma, tremors, convulsions, muscle weakness, vision loss, numbness and
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paralysis [17]. These symptoms may last several weeks, and neurological effects

may be permanent. In case of mild illness, victim may have a fever and muscle

aches and sometimes a skin rash. In the sever form of the disease, the infection may

spread to the nervous system which results in a high fever, sever headache, and

stiff neck. Children and young individuals are less likely to have severe symptoms

than older adults.

1.3.2 How soon after bite do symptoms appear

The symptoms of dengue usually appears on averages 4 to 6 days after an individual

is bitten by an infectious mosquito vector. If a person is infectious, he will be a

source of dengue virus for about 6 days [103]. The symptoms of malaria, which

often appear about 9 to 14 days after the bite of an infectious mosquito [9, 16].

In case of febrile stage of WNV the symptoms appears after 2 to 8 days. But

generally symptoms of WNV appears about 2 to 15 days after exposure with an

infectious mosquito [65]. The symptoms of chikungunya appears about 2−12 days

after an interaction with a vector carrying chikungunya [14].

1.4 Basic epidemiology of vector borne disease

Epidemiology is the branch of science that describes and explains the spread of

diseases in a population. For example, who has the disease, how seriously, and

when, where, and why he (she) gets the disease? The epidemiology of some of the

life-threatening vector borne diseases is discussed below.

1.4.1 Malaria

Malaria is a potentially fatal disease caused by an infection with Plasmodium

parasites. In most cases, the disease is transmitted through the bite of an infected

female Anopheles mosquito, a vector for malaria. The Anopheles mosquito inserts

its delicate mouthpart under the skin and feeds on its host’s blood. The parasites

which the mosquito carries are usually located in its salivary glands [16]. Therefore,
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the parasites are transmitted directly into the host’s blood stream. Malaria is a

leading cause of death and disease worldwide, especially in developing countries.

Each year, an estimated 300 to 500 million cases occur, and more than 1 million

people die of the disease annually [9].

1.4.2 Dengue

Dengue fever, together with associated dengue haemorrhagic fever, is the world’s

fastest growing vector borne disease and the most important vector-borne viral dis-

ease affecting humans. The two species of the vector transmitting virus are "Aedes

Aegypti" and "Aedes Albopictus" [63]. The mosquitoes that transmit dengue live

among humans and breed in fresh water particularly in old tires, flower pots, old

oil drums and tree hollows in urban areas [62]. The principal vector mosquito,

aedes aegypti, prefers to feed on humans during the day time and most frequently

is found in or near human habitations. There are two peak periods of biting activ-

ity, in the morning for several hours after daybreak and in the late afternoon for

several hours before dark. The mosquito may feed at any time during the day [98].

1.4.3 West Nile virus

West Nile virus (WNV) is spread by the bite of infected vectors and infects hu-

mans, birds and horses. The vectors "Culex pipien" spread WNV and usually

breeds rapidly in bottles, tanks, cans and gutters. A victim of WNV may cause

inflammation of the brain, problems with the senses and polio like paralysis [21,64].

1.4.4 Chikungunya

Chikungunya is a third primatophilic virus (family Togaviridae) that is enzootic in

African and perhaps Asian forests and transmitted by primatophilic mosquitoes.

Transmission was part of a pandemic that spread through southern Asia, Indonesia

and the Philippines. There have been an estimated 1.2 million cases in India

alone, though apart from the highly publicised outbreaks in the Indian ocean there
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has been little attention to this in the world press. The chikungunya outbreak

highlighted a second forest vector species "Aedes Albopictus" that has adapted to

the urban environment [14].

1.5 How can vector borne disease be prevented

There is no vaccine to protect individuals against most of the vector borne diseases

[98]. Prevention centers on self protection from vectors bites when visiting the

areas where a vector borne disease occurs. Eliminating mosquito breeding sites

in these areas is another key prevention measure. Public health education forms

an increasingly important component of management programs and initiatives,

raising awareness about individual and communal actions that may control vectors,

their breeding sites, prevent disease transmission, and provide access to treatment.

Beside from directly impacting disease control, health education gives individuals

greater control over their lives and therefore promotes cultural services.

1.5.1 Avoid mosquito bites when traveling in tropical areas

There is no vaccine for mosquito borne disease, one has to use alternative prevention

measures. The most useful prevention measures include use of mosquito repellents

on skin, mosquito nets and clothing. Before going outdoors during mosquitoes

biting times, try to use repellents on parts of your body which are not covered with

clothes. Use mosquito nets at the time of sleep if sleeping place is not screened. If

any symptoms of a vector borne disease appears, immediately consult a doctor.

1.5.2 Eliminate mosquito breeding sites near your dwelling

Use spray and other chemicals at vectors breeding sites near your dwellings. Do

not let the water to stay near your dwellings and throw away all items that can

collect the water, especially old tires, uncovered barrels, buckets, flower pots, and

cans. Daily change the water in pet animal water containers.



Chapter 2

Basic Epidemiology and

Preliminaries

2.1 Introduction

Epidemiology deals with the study of disease in a population. Mathematical epi-

demiology uses mathematics to formulate the spread of epidemics, so that they

can be understood and countered more effectively. It is well known that the spread

of several infectious diseases in a population is one of the major problems in the

modern society. Infectious diseases are the cause of the mortality of million peoples

as well as the expenditure of a vast amount of money in health care and control

of the disease [1]. Thus, it is essential that adequate attention must be paid to

study and control of such infectious diseases. The transmission of a communicable

disease in a population usually depends on: (i) the susceptible individuals, (ii) the

exposed individuals, (iii) the infectious individuals, (iv) the recovered (removed)

individuals and (v) the mode of transmission of the disease. In the following, we

will provide brief information about transmission of an infectious disease [96].

• Susceptible: Those individuals in a population who are at risk of becoming

infected by a disease.

• Exposed: Those individuals in a population who are infective but depending

13
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on the type of the disease, may or may not transmit the infection.

• Infectious: Those collection of individuals who are already infected and can

transmit the infection to other individuals.

• Recovered: Those individuals who have had the disease but now they are

immune and may not catch or transmit the disease, either because they are

no longer infectious, are naturally immune or have died.

• Transmission : The passing of a communicable disease from an infected

host individual to a conspecific individual, regardless of whether the other

individual was previously infected.

2.2 Compartmental modeling

Mathematical models are important tools in basic scientific research in many areas

of biology, ecology, evolution, toxicology, immunology and natural resource man-

agement biology. The result obtained from analysis and simulation of epidemic

models are used to test and extend biological theory, and to suggest new hypothe-

ses or experiments. A lot of literature related to epidemiological modeling consider

deterministic modeling where the population is divided into different classes called

compartments based on their epidemiological status e.g. susceptible, infectious, re-

covered. The dynamics of several infections in these compartments are represented

by differential equations. The categories in an SIR (Susceptible-Infected-Removed)

models are assumed to be mutually exclusive and the transitions only occur from

S to I and I to R. The number of compartments included in the model depends

on the type of the disease. In case where susceptible individuals become infectious

and then recover from the infection and recovered individuals directly go back

to the corresponding susceptible class, then one needs SIS (Susceptible-Infected-

Susceptible) models to represents this dynamics of the disease. More realistically,

to model a disease dynamics in which people become infectious and recover later

with the permanent acquired immunity to future infections after contracting the
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disease, one need SIR model. If people recover with temporary immunity, so that

they become susceptible again, then the simplest model to represents this dynam-

ics is called an SIRS (Susceptible-Infected-Removed-Susceptible) model. The SI

(Susceptible-Infected) models are used if people do not recover from the disease.

Generally, SIR models are suitable for viral diseases like, mumps, smallpox and

measles, whereas SIS models are used for disease spread by bacterial agent such

as plague, sexually transmitted diseases and meningitis. On the other hand, SEIR

(Susceptible-Exposed-Infected-Removed) model are appropriate for a disease trans-

mission when infected (exposed) people go through a latent period (infected, but

not yet infectious) before becoming infectious (disease like measles). Complete in-

teraction and transfer diagram of some of the more common models which represent

infectious disease dynamics is depicted in Figure (2.1).

Studies of the dynamical properties of such models usually consist of finding

constant equilibrium solutions with conducting linearized analysis to determine

their stability with respect to small disturbances. In mathematical modeling of the

spread of infectious diseases, one needs an epidemic model to describe the behavior

of disease which occur for a short period of time, while endemic models are needed

to study the dynamics of a disease for long period of time [32].

2.3 The incidence function

The incidence in mathematical models of infectious disease is the rate at which

susceptible individuals become infectious. If the time unit is day, then the daily

contact rate denoted by β(N) is defined as the average number of contacts of

an infective per day sufficient to transmit the disease with other individuals. As

S(t)/N(t) is the susceptible fraction of the population, where S(t) andN(t) denotes

the susceptible and the total number of individuals, respectively, in a population.

Thus βS(t)/N(t) is the average number of transmissions of infection per infective

per unit of time and βI(t)/N(t) is the average number of contacts with infectious

individuals a susceptible individual makes per unit time. Thus, the number of new
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Figure 2.1: The transfer diagram for common models of infectious diseases with, the

susceptible class S, the exposed class E, the infectious class I, and the recovered

class R.
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infections arising from the susceptibles is ξS, where ξ = β(N)I/N is called the force

of infection. If β(N) = βN (that is, the contact rate depends on the size of the

total population), then ξS is called mass action (bilinear) incidence [100]. When

β(N) = β, a constant, then ξS is referred to as standard incidence function. The

standard incidence βS(t)I(t)/N(t), which is the average number of transmissions

of infection by all infected individuals I(t) per unit of time. When compared to

the standard incidence, the simple mass action incidence implies that β = λ/N .

Thus in case of mass action incidence β is proportional to the size of population.

2.3.1 The epidemic SIR model

The SIR (Susceptible-Infected-Recovered) epidemic model is given by the following

system of differential equations

dS

dt
= −βSI

N
, S(0) ≥ 0,

dI

dt
=
βSI

N
− γI, I(0) ≥ 0,

dR

dt
= γI, R(0) ≥ 0,

(2.3.1)

where N is the size of the total population, β is the contact rate and 1/γ is an

average infectious period for a given individual. The first SIR epidemic model was

developed by Kermack and McKendrick in 1927 [38] to track disease outbreaks

occurring over a short time span in a closed population of constant size.

2.3.2 The endemic SIR model

The classic SIR endemic model [96] with births and deaths is given by the following

system of differential equations:

dS

dt
= µN − βSI

N
− µS, S(0) ≥ 0,

dI

dt
=
βSI

N
− γI − µI, I(0) ≥ 0,

dR

dt
= γI − µR, R(0) ≥ 0.

(2.3.2)
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The endemic model (2.3.2) is very much the same as the model (2.3.1) mentioned

above, except that it incorporates recruitment of newly born individuals into the

susceptible compartment and natural deaths in susceptible, infected and recovered

class at rate µS, µI, and µR, respectively. Here 1/µ is an average lifetime for a given

individual. A model for disease with an exposed class and permanent immunity

against re-infection would be called an SEIR model and in case of a disease in

which individuals can return to the susceptible class again after infection (or after

immunity) would be called an SIS (or SIRS) model.

2.4 Brief literature survey on modeling of infec-

tious diseases

In 1760 Daniel Bernoulli constructed a model to describe the disease dynamics of

smallpox [1]. The mathematical theory of infectious disease pioneered by Ross,

Kermack and McKendric, has been an important tool for the establishment of vac-

cination strategies. In 1906 Hamer formulated and analyzed a discrete time model

to understand the recurrence of measles epidemics [26]. The model formulated by

Hamer may have been the first to assume that the incidence of infection depends

on the product of the susceptible and infectious individuals. Ross was interested in

the spread and control of a vector borne disease malaria and he developed mathe-

matical models for malaria as a host-vector disease in 1911 [55].

There have been many contributions involving modeling of specific infectious

disease such as influenza [27], rubella [28] and AIDS [29]. A tremendous variety of

models have now been formulated, rigourously analyzed, and applied to infectious

diseases. The recent models [2,34,49–51] have involved important features such as

regular loss of vaccine, passive immunity, disease related immunity, infection stages,

disease transmission from mother to child, disease vectors, macro-parasitic loads,

sexual mixing, vaccination and quarantine. Some important models to explain the

epidemiology of infectious human disease such as measles, whooping cough, chick-

enpox, diphtheria, malaria, smallpox, onchocerciasis, gonorrhea, filariasis, rabies,
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herpes and syphilis have been formulated (see [38–40] and the references therein).

The spread of an infectious disease in human population, generally, depends

upon various factors such as the number of infectives, susceptibles, mode of trans-

mission, social and economic factors, environmental, ecological and geographical

conditions [30]. In the case of indirect transmission bacteria enter the environment

and then contaminate food or water which may be later consumed by susceptibles,

while in direct transmission susceptibles gets infected through meeting (kissing,

shacking hands etc) with infectives [31,35]. Many infectious disease like flu, small-

pox, measles are spread by direct contact of susceptible and infectious individuals,

while diseases like tuberculosis, typhoid, cholera etc are transmitted indirectly.

The compartmentalized deterministic model of an epidemic is based on model-

ing the rates involved in transmission of the disease, contact between members in

the population, population growth, and rates of recovery. The dynamical behavior

and role of optimal control theory using both bilinear incidence and standard inci-

dence rate of an SIR model can be found in [1,33,34]. Trottier and Phillippe [36,37]

discuss deterministic modeling such as SIR models, and the type of sensitivity

analyses and repercussions of such tactics as immunization at birth. The stability

analysis and asymptotic behavior of epidemic models have been investigated by

many authors some of them are Huang et al [41], Dietz [42], Hethcote [43] and

Kamper [44]. Hethcote discussed qualitative analysis of an SIR models by includ-

ing several interaction terms. In [33, 36] the authors presented deterministic SIR

models and analyzed the qualitative analysis.

In the modeling of the spread of infectious diseases, the interplay between epi-

demiological and demographic effects has been the central theme. Models with de-

mographic structure have been analyzed by considering variable population, which

involve birth, death and immigration rates [45]. In addition, mathematical mod-

els of sexually transmitted disease with vertical transmission, in which some of

the children borne to infectious mothers are infectious, have been proposed and

analyzed in [46,47].

In recent years, epidemic models have been studied by many authors [33, 34,
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50, 106, 107]. In order to model disease transmission process several authors have

proposed many nonlinear incidence rates [48]. With these types of modified non-

linear incidence rates, many interesting and complicated transmission dynamics of

epidemics such as multiple equilibria, periodic orbits and Hopf bifurcations have

been studied [49]. The outbreak of infectious diseases causes deaths of millions of

people as well as expenditure of enormous amount of money in health care and

diseases control. It is, therefore, essential that attention must be paid to stop the

spread of such infectious diseases. A number of studies in the literature have been

made to study the role of vaccination and treatment on the spread of infectious

diseases [50, 51].

Recently, some researchers reviews mathematical modeling of the spread of

infectious disease and applied optimal control theory to control the spread of infec-

tious diseases (see [52,53,107] and references therein). The optimal control efforts

are used to limit the spread of the infectious diseases from the population. The

analyzes of optimal control in mathematical models reveal the possibilities to de-

velop strategies that manipulate the level of vaccination and treatment efforts [34].

By treating and vaccinating the peoples in a community at an appropriate time, it

is possible to either reduce or eradicate the disease from the population.

Modeling the transmission of malaria, a vector borne disease, started in nine-

teenth century [54, 55]. Ross [56] constructed a mathematical model of a vector

borne disease by proving that if the mosquito vector population density is decreased

below a threshold, the rate of getting new infections would be less than the rate at

which infected humans recover leading to the elimination of the disease from the

community. The characteristic of variable population size and mortality due to dis-

ease are often ignored. Vector-host epidemic models with variable population and

disease induced death rate have been proposed and rigorously analyzed in [57,106]

whereas models using the assumption of total constant population without disease

related mortality are studied in [58, 59]. Some of the authors considered latent

and infectious classes [58, 60] in a vector borne disease. No attention is paid to

capture the effect of the length of partial immunity. The effect of partial human
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immunity is very important in the transmission dynamics of a vector borne disease

particularly malaria and is mathematically analyzed in a model proposed in [61].

The mathematical models for the spread of dengue and West Nile virus have been

studied in [62, 63] and [64, 65], respectively. A dynamic model for dengue disease

transmission is presented in [66], described by a set of nonlinear differential equa-

tions, that depend on the dynamics of the dengue mosquito vector, the number

of infectious human host and host’s motivation to combat the mosquito. Further-

more, an application of optimal control theory is also presented by considering an

objective functional that depends on the costs of educational, sanitation campaigns

and the costs related to medical treatment of the infectious human host.

2.5 Stability theory

In this section, we treat the stability concepts and conditions of autonomous sys-

tems consisting of differential equations. The most useful and general approach

for studying the stability of nonlinear control systems is the theory introduced in

the late 19th century by the Russian mathematician Alexandr Mikhailovich Lya-

punov [95]. The aim of this section is to discuss the Lyapunov stability theory and

its use in the analysis of nonlinear systems. Before addressing the main problems of

defining and determining stability, let us discuss some relatively simple background

issues.

2.5.1 Nonlinear dynamical systems and equilibrium points

A nonlinear autonomous dynamical system is the set of nonlinear differential equa-

tions expressing the rate of change of state in terms of state and time which does

not explicitly involve time [95]. Generally mathematical models of infectious dis-

eases are described by autonomous systems of differential equations, so we consider

n-dimensional system of nonlinear first order ordinary differential equations in Rn,

Ẋ(t) = F(X(t)), X(t0) = X0, (2.5.1)
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where the dot on X denotes the derivatives with respect to time t and F : Rn → Rn

is n× 1 nonlinear vector function continuous in X, and X is the n× 1 state vector.

In terms of components, above system (2.5.1) can be written as

ẋ1 = f1(x1, x2, ..., xn), x1(t0) = x01,

ẋ2 = f2(x1, x2, ..., xn), x2(t0) = x02,

...

ẋn = fn(x1, x2, ..., xn), xn(t0) = x0n,

where, each fi for i = 1, 2, ..., n is continuously differentiable function. A solution

X(t) of the system (2.5.1) usually corresponds to a curve in state space as t varies

from zero to infinity.

A linear system of differential equation is given by

Ẋ(t) = AX(t) (2.5.2)

where A is an n×n matrix. The linear system (2.5.2) is a special class of nonlinear

system.

Definition 2.5.1. A solution X∗ is called an equilibrium solution, steady state or

a critical point of the system (2.5.1) if X∗ satisfies F(X∗) = 0 [96].

2.5.2 Local stability in first order systems

In this subsection, we present some basic definitions to understand the behavior

of the solutions near equilibria. Before we can generalize these observations to

nonlinear systems, we need some definitions from dynamical systems theory (see

Perko [94]).

Definition 2.5.2. (i) A steady state X∗ is called stable if a solution which starts

nearby stays nearby. More formally: an equilibrium solution X∗ of the system

(2.5.1) is said to be locally stable, if for each ϵ > 0 there exists a δ > 0

such that for any arbitrary solution X(t) of the system (2.5.1) satisfying the

condition ||X(t0)−X∗|| < δ, the inequality
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||X(t)−X∗|| < ϵ (2.5.3)

holds for all t ≥ t0. Here, || · || denotes the Euclidean vector norm.

(ii) A steady state X∗ is called asymptotically stable if it is stable and every

solution starting near the equilibrium point converges to that equilibrium

point. Mathematically: if

||X(t)−X∗|| → 0 as t→ ∞ (2.5.4)

then the solution X∗ is called locally asymptotically stable.

Roughly speaking an equilibrium X∗ is stable if every solution starting near

X∗ stay nearby. If in addition nearby solution approach X∗ as t → ∞, then it is

asymptotically stable.

2.5.3 Routh-Hurwitz criterion

A stable linear system requires that all the roots of the characteristic equation have

negative real parts. In fact, the method determines only if there are roots that lie

outside of the left half plane, it does not actually compute the roots. Routh-Hurwitz

stability criterion is a test to ascertain without computing the roots, whether or not

all roots of a polynomial have negative real parts. Routh-Hurwitz criterion gives

the necessary and sufficient conditions for all roots of the characteristic polynomial

to have negative real parts thus implying asymptotic stability [96].

Routh-Hurwitz Theorem 2.5.3. Consider the characteristic equation

|λI − A| = λn + b1λ
n−1 + ...+ bn−1λ+ bn (2.5.5)

determining the n eigenvalues λ of a real n × n square matrix A, where I is the

identity matrix. Then all the eigenvalues λ have negative real parts iff

△1, △2, ...△n > 0, (2.5.6)
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where

△k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 1 0 0 0 0 . . . 0

b3 b2 b1 1 0 0 . . . 0

b5 b4 b3 b2 b1 1 . . . 0
...

...
...

...
...

... . . . ...

b2k−1 b2k−2 b2k−3 b2k−4 b2k−5 b2k−6
... bk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Jacobian Matrix 2.5.4. Consider the function F : Rn → Rn, where F is the sys-

tem as defined in (2.5.1). The variational matrix or Jacobian matrix of F(x1, x2, ..., xn)

denoted by JF is defined as follows

JF(x1, ..., xn) =


∂f1
∂x1

. . . ∂f1
∂xn

... . . . ...
∂fn
∂x1

... ∂fn
∂xn

 ,
where ∂fi

∂xi
are partial derivatives of fi with respect to xi for i = 1, 2, ..., n. The

importance of the Jacobian matrix lies in the fact that it represents the best linear

approximation to a differentiable function near an equilibrium point [95].

2.6 Method for local stability of equilibria

Often one is able to determine the stability properties of the solution of the system

(2.5.1) from the behavior of a linearized system. The linearization method help us

to find the local stability of a nonlinear system around an equilibrium point.

Consider the autonomous system (2.5.1), and assume that F(X) is continuously

differentiable. Then the system (2.5.1) can be expanded by Taylor series as follows

Ẋ =

(
∂F

∂X

)
X∗=0

X+ FHig(X) (2.6.1)

where FHig(X) denotes the higher-order terms in X. Note that the above Taylor

expansion starts directly with the first-order term, due to the fact that F(0) = 0,

which is the trivial equilibrium point of the system (2.5.1). This can always be

achieved by displacing the origin into the equilibrium point. If the higher-order

terms are dropped, then an approximate linear differential system is obtained
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JF =

(
∂F

∂X

)
X∗= 0

(2.6.2)

where JF is the variational matrix of F. Then, the system

Ẋ = JFX (2.6.3)

is called the variational system or the linearization of the original nonlinear system

with respect to the soltion X∗ = 0.

The following theorem is referred to as the theorem on stability by linearization.

Theorem 2.6.1. The equilibrium X∗ of the system (2.5.1) is asymptotically stable

if the Jacobian matrix J at the equilibrium is stable, that is, if the real parts of all

its eigenvalues are negative otherwise the equilibrium is unstable if the real part of

at least one eigenvalue is positive.

A drawback of this theorem is that it does not settle the stability problem

in the critical case where in addition to eigenvalues with negative real parts, we

have eigenvalues with a zero real part. The method that has the possibility of

solving these problems is called Lyapunov’s direct method, or the method of Lya-

punov functions. A function (Lyapunov function) satisfying some properties is

constructed to prove the stability or asymptotic stability of an equilibrium in a

given region. We shall now turn our attention toward the Lyapunov stability.

2.6.1 Lyapunov functions and LaSalle’s invariance principle

Definition 2.6.2. Let W ⊂ Rn be an open set containing the origin. A real valued

function V : W → R with continuous first order partial derivatives is said to be

positive definite on the set W if the following conditions hold:

• V (X) > 0 for all X ∈ W with X ̸= 0.

• V (0) = 0.

• V is called positive semi-definite if V (X) > 0 for X ∈ W .
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Definition 2.6.3. A scalar positive definite function V with continuous first order

partial derivatives in an open neighborhood W of the origin is called a Lyapunov

function for the differential system (2.5.1) if V̇ ≤ 0 for all X ∈ W − {0} [95].

We formulate a fundamental theorem of Lyapunov’s direct method [95].

Theorem 2.6.4. (Lyapunov’s stability Theorem). Let X∗ = 0 be a fixed point

of the autonomous system Ẋ = F(X), X ∈ Rn and let V : W ⊂ Rn → R be

continuously differentiable positive definite function in some neighborhood W of

X∗ = 0.

• If V̇ (Z) ≤ 0 for X ∈ W − {0}, then 0 is stable.

• If V̇ (X) < 0 for X ∈ W − {0}, then 0 is asymptotically stable.

• If V̇ > 0 for X ∈ W − {0}, then 0 is unstable.

Definition 2.6.5. The equilibrium solution X∗ of the system (2.5.1) is globally

asymptotically stable, if every solution X(t) of the system (2.5.1) corresponding to

an arbitrary choice of initial conditions satisfies

lim
t→∞

X(t) = X∗. (2.6.4)

Definition 2.6.6. The set H ⊂ Rn is said to be invariant with respect to the

system (2.5.1) if for any initial value X0 ∈ H implies that the solution X(X0, t) ∈ H

for all time t in the domain of the solution X(t). It is said to be positively invariant

if X0 ∈ H implies X(X0, t) ∈ H for t > 0. That is if every solution starting in H

remains in H for all t.

Theorem 2.6.7. (LaSalle’s Invariance Principle): Let Ω ⊂ H be a compact set

that is positively invariant with respect to the system (2.5.1). Let V : D → R be a

continuously differentiable function such that V̇ (Z) ≤ 0 on Ω. Let E be the set of

all points in Ω such that V̇ (Z) = 0. Let M be the largest invariant set in E. Then

every solution starting in Ω approaches M as t→ ∞.

Note that, in the above theorem, the word "largest" is understood in the sense

of set theory, i.e., H is the union of all invariant sets.
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2.7 Basic reproduction number

In epidemiology, the threshold for many mathematical models is the basic reproduc-

tion number of an infection which is defined as the expected number of secondary

infections arising from a single infected case in a population with no immunity to

the disease during the entire infectious period [1]. The basic reproductive number,

usually denoted by R0, is a key concept in epidemiology, and is inarguably one

of the foremost and most valuable ideas that mathematician thinking has brought

to epidemic theory. It tells us how easy or difficult it is to eliminate an infection

from a population. Most importantly, R0 serves as a threshold parameter that

predicts whether a disease will spread in a community or not. When R0 < 1, then,

on average, a small number of infectious individuals introduced in a community

produced less than one newly infected individual in their infectious period and the

disease may be eradicated from the population in the long run. When R0 > 1,

introduction of each infectious produces more than one new infected cases, so in

this case there will be an epidemic in the community. However, in simple words

it is defined as the number of secondary cases caused by one infective individual

during his entire infectious period.

The next generation method introduced in [15], is a general method for finding

an expression for the basic reproduction number R0. In order to find R0, one needs

to differentiate new infections from all other changes in a community. The vector

y = (y1, y2, ..., yn)
T , where each yi > 0 denotes the number of individuals in the

ith class. Let us assume that there are n classes of which m < n classes represent

to infected individuals. Let Πf be the set of all states which are free of disease i.e.

Πf = {y > 0|yi = 0, i = 1, 2, ...,m} (2.7.1)

Let Fi(y) be the rate of appearance of new infection in ith class, V+
i (y) be the

rate of transfer of individuals into ith class by all other means, and V−
i (x) be the

rate of transfer of individuals out of ith class. Assume each function is at least

twice differentiable in each variable. The epidemic model consists of the following

system of first order ordinary differential equations together with non-negative
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initial conditions:
dx

dt
= Fi(x) = Fi(x)− Vi(x) (2.7.2)

where Vi(x) = V+
i (x)− V−

i (x) and functions satisfy the following assumptions.

H1: If x > 0, then Fi(x),V+
i (x),V−

i (x) ≥ 0 for i = 1, 2, ..., n.

H2: If x = 0, then V−
i (x) = 0. In particular, if x ∈ Πf , then V−

i (x) = 0 for

i = 1, 2, ...,m.

H3: Fi(x) = 0 for i > m.

H4: x ∈ Πf , then Fi(x) = 0 and V+
i (x) = 0 for i = 1, 2, ...,m.

H5: If Fi(z) is set to zero, then all eigenvalues of the Jacobian matrix, evaluated

at the free of disease equilibrium, have negative real parts.

The first assumption (H1) implies that each of the function is non-negative and it

represents transfer of individuals. In (H2) it is assumed that individuals can not

be transferred out of an empty class. (H3) says that the class with no infection has

zero incidence of infection and remain free of infection. Assumption (H4) represents

that if there is no disease in the community, then it will remain disease free. Finally

(H5) is concerned with the stability of F in the absence of new infections. That

is the disease free equilibrium is locally asymptotically stable provided that the

community has no new infection.

Following the idea of Diekmann et. al. [15], we call PQ−1 the next generation

matrix for the model and set

R0 = ρ(PQ−1), where P =
∂Fi(x0)

∂xj
and Q =

∂Vi(x0)

∂xj

with i ≥ 1, is for the total number of classes and j ≤ m is only for those classes

with infections and ρ(PQ−1) is the spectral radius of the matrix PQ−1.

For example if an infected individual is introduced into a class k of an infection

free community. The (i, j) component of P matrix is the rate at which an infected

individual in class j produce new infections in compartment i, and the (j, k) entry
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of Q−1 is the average time an infected individual spends in class j during its lifetime

in class k. Thus, the (i, k) component of the matrix PQ−1 is the expected number

of new cases in ith class produced by the infected individual introduced into the

kth class.

2.8 Bifurcation theory

If the dynamical behavior of a system of differential equations change by varying a

parameter. A steady state (equilibrium) can become unstable and periodic solution

arise or a new stable steady state may appear making the formerly stable steady

state to an unstable one. If this happens we say that the system has undergone a

bifurcation and the parameter that is varied is known as bifurcation parameter [67].

The analysis of bifurcation is concerned with study of how the behavior of an

equilibrium solution change with a change in a parameter. We will consider only

the case when a single parameter is varied.

Definition 2.8.1. (The saddle-node bifurcation): In case of saddle node bi-

furcation, as the bifurcation parameter passes through the bifurcation point, two

equilibria disappear, so that there are no equilibria afterward. In this case one

equilibria is stable and the other is unstable before they disappear. Consider the

one parameter family of system

ẏ = −y2 + µ.

For µ < 0 this equation has no equilibrium. At µ = 0 the equilibrium y = 0

appears; it is called a saddle-node because it attracts solutions with positive initial

values and repels those with negative ones. Clearly for µ > 0 the equation has

two equilibria: y1 =
√
µ and y2 = −√

µ, the first one is asymptotically stable and

the second one is unstable. The situation in this simple example is generic; if a

system has no equilibrium, a parameter is varied, and at a value of the parameter

equilibria appear then they do this, usually, in pairs, with one stable and the other

unstable.
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2.9 Optimal control technique

Optimal control theory is a powerful mathematical technique derived from the cal-

culus of variation. The behavior of a dynamical system is described by the state

variable(s). The assumption is that there is a way to control the state variable(s)

x, by acting upon it with a suitable control. Thus the dynamics of the system

(state x) depends on the control u. The ultimate goal is to adjust control u to

minimize or maximize a given objective functional, J(u(t), x(t), t), that attains the

desired goal and the required cost to achieving it. The optimal solution is then

obtained when the most desired goal is achieved with least cost. The functional

depends on the control and the state variables. There are a number of different

methods for calculating the optimal control for specific model. Pontryagin’s Max-

imum Principle for example allows the calculation of the optimal control for an

ordinary differential equations system with given constraints. In [82,84] some pow-

erful optimal control techniques have been derived for biological models consisting

of differential equations.

2.9.1 The general optimal control problem

The general optimal control problem is given by

min
u

[
ψ
(
T,y(T )

)
+

∫ T

0

g
(
t,y(t),u(t)

)
dt

]
,

where y = [y1(t), y2(t), ...yn(t)] and u = [u1(t), u2(t), ...um(t)] are the state and

control variables, respectively [84]. The dynamics of the state and control variables

is given by the following system of first order ordinary differential equations

dy

dt
= f(t,y(t),u(t)), y0 = y(0), 0 ≤ t ≤ T. (2.9.1)

2.9.2 Pontryagin’s Maximum Principle

The Pontryagin’s Maximum Principle [82] converts the minimization (maximiza-

tion) of an objective functional denoted by J together with the state variable into
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minimizing (maximizing) point-wise the Hamiltonian H with respect to the control

variable u.

Theorem 2.9.1. If y∗(t) and u∗(t) are optimal state and control variables, respec-

tively for control problem (2.9.1), then there exists adjoint variable denoted by λ(t)

such that

H(t,y(t),u(t), λ(t)) ≤ H(t,y∗(t),u∗(t), λ(t)),

here H is defined as

H = f(t,y(t),u(t)) + λ(t)g(t,y(t),u(t)).

and

dλ(t)

dt
= −∂H

∂y
, λ(T ) = 0.

Where λ(t) is the adjoint or co-state variable and T is the final time.

Necessary conditions

If y∗(t) and u∗(t) are optimal state and control variables, then they satisfy the

following conditions

dλ(t)

dt
= −∂H

∂y
,

λ(T ) = 0,

∂H
∂u

= 0.

(2.9.2)

Sufficient conditions

If y∗(t), u∗(t) and λ(T ) satisfy the above conditions given in (2.9.2), then the

control and the state variables are optimal.



Chapter 3

Biological Control of Malaria: A

Mathematical Model

3.1 Overview

In this chapter, theoretically we take a similar model as discussed in [74]. But here

we consider all possible breeding sites of mosquitoes where biological control by

larvivorous fish is being implemented in practice. Basically we divide the whole

region under consideration into two parts based on breeding sites. The first region

acts as reservoir for larvivorous fish stocking and harvested fish from this region are

introduced to kill mosquito larvae in other region. Also we consider total human

population variable which is more realistic as we are going to study the outcome of

this method of control for longer duration. The objective is to determine whether

or not the model for malaria exhibits the phenomenon of backward bifurcation.

Our numerical simulations show the infection prevalence of malaria in endemic

regions.

3.2 Introduction

In tropical and subtropical regions, mosquito borne diseases are a major prob-

lem and are responsible for many life-threatening diseases such as malaria, yellow

32
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fever, dengue fever and chikungunya etc. Use of pesticides is in practice to control

mosquitoes in these regions but environmental protection agencies have banned

many pesticides as it harms non-targeted population too. Also, due to continuous

application of pesticides, mosquitoes have developed resistance to these chemicals

and now they are not so effective. This suggests us to look for an alternative

method of control of mosquitoes and biological control seems to be environmental

friendly method to control mosquito population. Biological control means intro-

duction or manipulation of organisms to suppress vector population. Biological

control, particularly using larvivorous fish plays a very positive role in controlling

mosquitoes [68]. The method of control of mosquito using larvivorous fish is not

new, it is being implemented since 1937 in many parts of the world. But control

of mosquitoes using pesticides was fast so it suppressed this conventional method

of control of mosquitoes. Now again this method of control is accepted and imple-

mented in many parts of the world and one can refer [68–73] to see the positive

outcome of this method of control. Although there are lots of experimental studies

to see the efficacy of this method of control but not many researchers have ex-

plored mathematical modeling of this method of control of vectors. Recently, a

mathematical model is formulated in [74] to study the efficacy of this method of

control. But this model is simple in the sense that it didn’t incorporate all breeding

sites where in practice larvivorous fishes are introduced to kill mosquito larvae. It

includes a specified region where fish can be stocked and simultaneously it can kill

mosquito larvae in this specified region. But there are other breeding sites too such

as rice fields, water tanks, ditches etc where larvivorous fishes are being introduced

to control mosquito larvae but in this region stocking of larvivorous fishes are not

possible as these are man made habitat for mosquito breeding which are temporary.

Recently, predatory fish that eat mosquito larvae, have been successfully em-

ployed against the malaria vector “Anopheles” as principal biological control agents

that attack the initial larval stages of the mosquito [75]. Biological control may be

effective if breeding sites are well known and limited in number but less feasible

where they are numerous. Biological control thus provides a good illustration of
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the importance of knowledge of local transmission ecology. Economic incentives

may also be important in spurring initial interest in biological control mechanisms.

In Asia, for instance, larvivorous fish have been effective where pisciculture can

provide additional economic and agricultural benefits. In China, Wu et. al. [76]

found that stocking edible fish in flooded parcel of arable land used for growing rice,

supported significant fish production, and greatly reduced the number of malaria

cases [77].

3.3 The model

In this section a long term scenario of biological control of malaria using larvivorous

fish is presented in the form of differential equations. For this method of control,

first step is to identify the mosquito breeding sites and then to apply this method

of control. This includes rivers, ponds as well as man made habitats e.g. water

storage tank, barrels, rice fields, ditches, irrigation channels, field wells, rain water

in fallow lands etc. Field based experiments are carried out to observe the efficacy

of this method of control in different parts of the world and it suggests us to include

this method of control in our integrated control methodology.

Here, first we divide the whole breeding sites in two regions, namely region one

which includes ponds and rivers where fish culture is possible and region two which

includes man made habitats conducive to mosquito breeding such as water tank,

rice fields, ditches etc, which are temporary habitat where fish can’t survive for long.

In fact stocking of larvivorous fish can be done in region one and harvested fish

from region one can be transferred to region two to control mosquito larvae in this

region. So obviously in region one dynamics of larvivorous fish and mosquito larvae

follows predator prey type interaction. But as larvivorous fish population is not

wholly dependent on mosquito larvae, they eat other insects larvae as well as plants

etc. So in our model for larvivorous fish we have considered logistic growth as well

as growth due to the predation of mosquito larvae. Here we assume that a fraction

ν of the total breeding sites/area are lakes/pond rivers which can be considered
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as region one. So region two will be (1 − ν) fraction of total area. Accordingly,

we assume that mosquito larvae density depends upon area of the breeding sites.

So if L is the total larvae density in the whole region under consideration then

νL will be distributed in region one and (1 − ν)L will be distributed in region

two. Furthermore, the population density of the larvivorous fish in region one is

assumed to be P (t). The prey-predator dynamics [96] of Larvae and Larvavorous

fish is given by
dL

dt
= gNv − dL− d1L

2 − λvL− α1L1P − α1α2L2 qEP ,

dP

dt
= rP

(
1− P

K

)
+ γα1L1P − qEP ,

(3.3.1)

where L1 = νL, L2 = (1−ν)L, L1+L2 = L. Nv is the total adult female mosquito

which contributes to the growth of mosquito larvae. Here g is egg laying rate of the

mosquitoes, d is the natural death rate of the mosquito larvae, d1 corresponds to

density dependent death rate constant of mosquito larvae, r is the intrinsic growth

rate of the fish population and K is the carrying capacity of fish population in

region one. As larvae of region one i.e. νL = L1(say) is subjected to predation

by larvivorous fish so the term corresponding to this is α1L1P assuming linear

response with a rate constant α1. γ is the convention efficiency, q is the catchability

constant and E is the harvesting effort to catch the larvivorous fish from region

one. As the fish which are harvested from region one and α2 fraction of it are

introduced in region two to control the mosquito larvae form region two, so the

term α1α2L2 qEP corresponds the predation of larvae of region two by harvested

larvivorous fish with same predation rate constant α1, λv is the maturation rate

constant, i.e larvae become adult with this maturation rate constant.

Let us assume Sv and Iv as the population sizes of susceptible mosquitoes and

infected mosquitoes and Sh and Ih as the population sizes of susceptible humans

and infected humans. Assuming β as the mosquito biting rate, i.e., the average

number of bites per mosquito per unit of time, the force of infection for susceptible

mosquitoes can be represented as cβSv
Ih
Nh

, where c is the transmission probability

from infectious human to mosquitoes and Nh denotes the size of the total human
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population. Assuming that the total number of bites made by mosquitoes equals

to the number of bites received by humans, the average number of bites per human

receives per unit of time is β Nv

Nh
. Assuming the transmission probability per bite

from infectious mosquitoes to human is b, the infection rate per susceptible human

is given by

bβ
Nv

Nh

Iv
Nv

= bβ
Iv
Nh

.

Now assuming criss-cross interaction between humans and mosquitoes, the rate

of change per unit time in the number of susceptibles vector, infected vector, suscep-

tibles host and infected host is governed by following set of differential equations:

dSv(t)

dt
= λvL− cβSv

Ih
Nh

− dvSv,

dIv(t)

dt
= cβSv

Ih
Nh

− dvIv,

dSh(t)

dt
= Γ− bβSh

Iv
Nh

− dhSh + ρIh,

dIh(t)

dt
= bβSh

Iv
Nh

− (dh + ρ+ µ)Ih,

(3.3.2)

where Sv + Iv = Nv, Sh + Ih = Nh. λv is the maturation rate constant of the

mosquitoes vector and dv is the constant death rate of the mosquitoes. Γ is the

rate of recruitment and dh is the constant death rate for the human population. ρ

is the constant recovery rate and µ is the disease related death rate.

3.4 Existence of equilibria

In our proposed model, the total population of mosquitoes and human are Sv+Iv =

Nv, Sh + Ih = Nh, respectively. We consider the following system of differential
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equations for further analysis:

dL(t)

dt
= gNv − dL− d1L

2 − λvL− α1νLP − α1α2(1− ν)L qEP ,

dP (t)

dt
= rP

(
1− P

K

)
+ γα1νLP − qEP ,

dIv(t)

dt
= cβ(Nv − Iv)

Ih
Nh

− dvIv,

dNv(t)

dt
= λvL− dvNv,

dIh(t)

dt
= bβ(Nh − Ih)

Iv
Nh

− (dh + ρ+ µ)Ih,

dNh(t)

dt
= Γ− µIh − dhNh.

(3.4.1)

Possible equilibria of the system (3.4.1) and their stability are explored here. The

equilibria for our model are determined by setting right hand side of the model

(3.4.1) to zero. The system (3.4.1) has five equilibria namely



E1 =
(
0, 0, 0, 0, 0 Γ

dh

)
,

E2 =
(
0, K

r
(r − qE), 0, 0, 0, Γ

dh

)
,

E3 =
(
L∗, 0, 0, λvL∗

dv
, 0, Γ

dh

)
,

E4 =
(
L∗, P ∗, 0, λvL∗

dv
, 0, Γ

dh

)
,

E5 = (L∗, P ∗, I∗v , N
∗
v , I

∗
h, N

∗
h) ,

(3.4.2)

where



L∗ =
g
λv
dv

− (d+ λv)−
K

r
(r − qE){α1ν + α1α2(1− ν)qE}

d1 +
γα1Kν

r
{α1ν + α1α2(1− ν)qE}

,

N∗
v =

λv
dv
L∗,

P ∗ =
K

r
{(r − qE) + γα1νL

∗},

N∗
h =

Γ− µI∗h
dh

,

I∗v =
cβN∗

v I
∗
h

cβI∗h + dvN∗
h

.
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I∗h is the positive root of the following quadratic equation

D1I
2
h +D2Ih +D3 = 0, (3.4.3)

where

D1 = (dh + ρ+ µ)

(
µ

dh

)(
µdv
dh

− βc

)
,

D2 = bcβ2N∗
v (
µ

dh
+ 1) + (dh + ρ+ µ)

(
Γ

dh

)(
βc− 2µdv

dh

)
,

D3 =

{
(dh + ρ+ µ)dv

Γ

dh
− bcβ2N∗

v

}
Γ

dh
.

The roots of this quadratic equation are given by

−(A1 + A2)±
√
(A1 − A2)2 + 4A1bcβ2N∗

v

2D1

,

where A1 = (dh+ρ+µ)
(
βc− µdv

dh

)
Γ
dh
, A2 = bcβ2N∗

v

(
1 + µ

dh

)
−µ dv

dh

Γ
dh
(dh+ρ+µ).

Next, depending upon the signs of D1, D2 and D3, we may have unique, two or no

positive roots. These findings are summarized in Table (3.1).

So, there exists unique positive root under the condition that the constant term

in the last quadratic equation (3.4.3) is negative i.e.

(dh + ρ+ µ)dv
Γ

dh
< bcβ2N∗

v . (3.4.4)

It is easy to visualize that the condition (3.4.4) corresponds to the basic reproduc-

tion number R2
0 > 1 which is discussed in detail in next section. Thus the endemic

equilibrium point E5 exists only when R2
0 > 1. From this discussion, it is easy to

observe that we may get backward as well as forward bifurcation depending upon

parameter values. Following two Figures (3.1 − 3.2) are demonstrating this fact

where the bifurcation parameter is taken as β and bifurcation diagram is drawn

by finding corresponding values of R0. From Figure (3.1), it is concluded that

the backward bifurcation leads to bi-stability phenomenon. The solutions of the

system (3.4.1) converges to the disease free equilibria or the endemic equilibria

depending on the initial population size. Infect, the phenomenon of bi-stability is

very difficult to numerically simulate because the interval of R0 for the occurrence

of backward bifurcation usually is very small and this results in very small range

of parameters taken to make backward bifurcation to occur. The parameter values

used in Figure (3.1) and (3.2) are given in Table (3.2) and (3.3) respectively.
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Table 3.1: Conditions for existence of equilibria.

Conditions sub-conditions results

D3 > 0

i.e. R0 < 1 (a) D1 > 0 & D2 > 0 No positive roots

(b)D1 < 0 & D2 > 0 Unique positive root but greater than
Γ
µ

so discarded

(c) D1 > 0 & D2 < 0 No positive roots or two positive roots

provided D2
2 − 4D1D3 < 0 or

D2
2 − 4D1D3 > 0

(d) D1 < 0 & D2 < 0 Unique positive root but greater

than Γ
µ

so discarded

D3 < 0

i.e. R0 > 1 (a) D1 > 0 & D2 > 0 Unique positive root

(b)D1 < 0 & D2 > 0 Two positive roots as D2
2 − 4D1D3 > 0

but larger root is greater than Γ
µ

so discarded

as for Nh to be positive Ih < Γ
µ

(c) D1 > 0 & D2 < 0 Unique positive root

(d) D1 < 0 & D2 < 0 This case does not exist as

D3 < 0 & D1 < 0 implies D2 > 0
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Table 3.2: Parameter values used in the numerical simulation of backward bifur-

cation.

Notation Value Notation Value

g 60 d 0.05

Γ 0.7 d1 0.02

ν 0.2 λv 0.0625

α1 0.1 α2 0.5

q 0.4 ρ 0.005

γ 0.1 r 0.01

c 0.5 K 20000

dv 0.1 dh 0.00003913

E 0.9 µ 0.002

b 0.5
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Figure 3.1: Variation of the equilibrium level of Ih with β showing the backward

bifurcation from the disease-free equilibrium at R0 = 1, which leads to the existence

of multiple endemic equilibria with parameter as in Table (3.2).

Figure 3.2: Variation of the equilibrium level of Ih with β showing the forward

bifurcation for the parameter values as in Table (3.3).
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Table 3.3: Parameter values used in the numerical simulation of forward bifurca-

tion.

Notation Value Notation Value

g 60 d 0.05

Γ 0.7 d1 0.02

ν 0.2 λv 0.0625

α1 0.2 ρ 0.005

q 0.4 E 0.9

γ 0.1 r 0.01

c 0.5 K 20000

dv 0.1 dh 0.00003913

α2 0.5 µ 0.002

b 0.5
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3.5 The basic reproduction number R0

The basic reproduction number is defined as the number of secondary infections

generated by a typical infected individual in an otherwise disease free population.

The reproduction number (R0) for our model is computed using the method de-

scribed in [15]. Here, the matrices F and V are the matrix of new infections and

the matrix of transfers between compartments, respectively and are given by V

F =

cβSv
Ih
Nh

bβSh
Iv
Nh

 , V =

 dvIv

(dh + ρ+ µ)Ih

 .

Now the matrix F and V evaluated at disease free equilibrium point are given by

F =

 0 cβN∗
v dh
Γ

bβ 0

 , V =

dv 0

0 dh + ρ+ µ

 .

The matrix FV−1 is given by 0
cβdhN

∗
v

Γ(dh + ρ+ µ)
bβ

dv
0


So the reproduction number R0 which is the spectral radius of the matrix FV−1 is

given by

R0 =

√
cβdhN

∗
v

Γ(dh + ρ+ µ)

bβ

dv
.

3.6 Stability analysis

The local asymptotic stability of the equilibria are established using variational

matrix method which is stated in the following theorem.

Theorem 3.6.1. i. The equilibrium point E1 = (0, 0, 0, 0, 0, Γ
dh
) is always unsta-

ble.

ii. The equilibrium point E2 =
(
0, K

r
(r − qE), 0, 0, 0, Γ

dh

)
is locally asymptotically

stable provided

dv

[
d+ λv + {α1ν + α1α2qE(1− ν)} K

r
(r − qE)

]
> gλv,

which implies that L∗ does not exist.
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iii. The equilibrium point E3 =
(
L∗, 0, 0, λvL∗

dv
, 0, Γ

dh

)
is always unstable.

Proof. i: The variational matrix corresponding to the system (3.4.1) at the equi-

librium point E1 =
(
0, 0, 0, 0, 0, Γ

dh

)
is given by

−(d+ λv) 0 0 g 0 0

0 r − qE 0 0 0 0

0 0 −dv 0 0 0

λv 0 0 −dv 0 0

0 0 bβ 0 −(dh + ρ+ µ) 0

0 0 0 0 −µ −dh


.

Here four roots of the characteristic polynomial are −dh,−(dh + ρ + µ),−dv and

r − qE > 0 and other two roots are given by the following quadratic equation,

λ2 + (d+ λv + dv)λ+ {(d+ λv)dv − gλv} = 0.

As one of the eigenvalues is positive so this equilibrium point E1 is always unstable.

ii: The variational matrix at the equilibrium point E2 =
(
0, K

r
(r − qE), 0, 0, 0, Γ

dh

)
is given by

m11 0 0 g 0 0

γα1ν
r
K
(r − qE) −(r − qE) 0 0 0 0

0 0 −dv 070 0

λv 0 0 −dv 0 0

0 0 bβ 0 −(dh + ρ+ µ) 0

0 0 0 0 −µ −dh


,

where m11 = −
[
d+ λv + {α1ν + α1α2qE(1− ν)} K

r
(r − qE)

]
. Here also four roots

of the characteristic polynomial of this variational matrix are −dh,−(dh+ρ+µ),−dv

and −(r − qE) and other two roots are given by the following quadratic equation

λ2 +K1λ+K2 = 0,

where

K1 =
[
d+ λv + {α1ν + α1α2qE(1− ν)} K

r
(r − qE) + dv

]
,

K2 = dv
[
d+ λv + {α1ν + α1α2qE(1− ν)} K

r
(r − qE)

]
− gλv.

(3.6.1)
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This equilibrium point E2 is locally asymptotically stable provided K2 > 0, oth-

erwise it is unstable. The stability of the equilibrium point E2 corresponds to the

case where L∗ does not exist.

iii: The variational matrix at the equilibrium point E3 =
(
L∗, 0, 0, λvL∗

dv
, 0, Γ

dh

)
is given by

−(d+ λv + 2d1L
∗) −{α1ν + α1α2qE(1− ν)}L∗ 0 g 0 0

0 r − qE + γα1νL
∗ 0 0 0 0

0 0 −dv 0 cdhβN
∗
v

Γ
0

λv 0 0 −dv 0 0

0 0 bβ 0 −(dh + ρ+ µ) 0

0 0 0 0 −µ −dh


.

Clearly two of the eigenvalues of this matrix are −dh, r − qE + γα1νL
∗ and other

four roots are given by the following quadratic equations in λ,

(dh + ρ+ µ+ λ)(dv + λ)− bcdhβ
2N∗

v

Γ
= 0,

(d+ λv + 2d1L
∗ + λ)(dv + λ)− gλv = 0.

As one of the eigenvalues is positive under the assumption that r > qE, so this

equilibrium point is always unstable.

Theorem 3.6.2. The disease free equilibrium point E4 =
(
L∗, P ∗, 0, λvL∗

dv
, 0, Γ

dh

)
is

locally asymptotically stable provided R0 < 1.

Proof. The variational matrix at the equilibrium point E4 =
(
L∗, P ∗, 0, λvL∗

dv
, 0, Γ

dh

)
is given by

−gN∗
v

L∗ − d1L
∗ −{α1ν + α1α2qE(1− ν)}L∗ 0 g 0 0

γα1νP
∗ −rP ∗

K
0 0 0 0

0 0 −dv 0 cdhβN
∗
v

Γ
0

λv 0 0 −dv 0 0

0 0 bβ 0 −(dh + ρ+ µ) 0

0 0 0 0 −µ −dh


.
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Clearly one eigenvalue of this matrix is −dh. Expanding the matrix along the

fourth row leads to the following characteristic polynomial

(
λ2+(dh+ ρ+µ+ dv)λ+(dh+ ρ+µ)dv −

bcdhβ
2N∗

v

Γ

)(
λ3+Q1λ

2+Q2λ+Q3

)
= 0.

where

Q1 = dv +
gN∗

v

L∗ + d1L
∗ + r

K
P ∗,

Q2 =
(

gN∗
v

L∗ + d1L
∗
)

r
K
P ∗ + γα1νP

∗{α1ν + α1α2qE(1− ν)}L∗ + dv
(
d1L

∗ + r
K
P ∗) ,

Q3 = dv

[(
gN∗

v

L∗ + d1L
∗
)

r
K
P ∗ + γα1νP

∗{α1ν + α1α2qE(1− ν)}L∗
]
+ gλv

r
K
P ∗.

Two of the eigenvalues are given by the following quadratic equation in λ

λ2 + (dh + ρ+ µ+ dv)λ+ (1−R2
0) = 0

So, roots of this quadratic equation will have negative real parts provided the basic

reproduction number R0 < 1. The other three eigenvalues of this matrix are given

by following cubic equation in λ,

λ3 +Q1λ
2 +Q2λ+Q3 = 0

Clearly, all Q1, Q2 and Q3 are positive and it is easy to verify that Q1Q2−Q3 is

positive. So using Routh-Hurwitz criteria [95,96], roots of this cubic equation will

have negative real parts. Hence the equilibrium point E4 is locally asymptotically

stable provided R0 < 1.

Theorem 3.6.3. The equilibrium point E5 = (L∗, P ∗, I∗v , N∗
v , I

∗
h, N

∗
h) which exists

for R0 > 1 is locally asymptotically stable.

Proof.

The variational matrix at the equilibrium point E5 (L
∗, P ∗, I∗v , N

∗
v , I

∗
h, N

∗
h) is

given by
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

m11 m12 0 g 0 0

m21 m22 0 0 0 0

0 0 m33 m34 m35 m36

λv 0 0 −dv 0 0

0 0 m53 0 m55 m56

0 0 0 0 −µ −dh


where

m11 = − [(d+ λv) + 2d1L
∗ + α1νP

∗ + α1α2qE(1− ν)P ∗] ,

m12 = −{α1ν + α1α2qE(1− ν)}L∗,

m21 = γα1νP
∗,

m22 = r − 2rP ∗

K
+ γα1νL

∗ − qE,

m33 = −(
cβI∗h
N∗

h

+ dv),

m34 =
cβI∗h
N∗

h

,

m35 =
cβ(N∗

v − I∗v )

N∗
h

,

m36 = −cβ(N
∗
v − I∗v )I

∗
h

N∗
h
2 ,

m53 =
bβ(N∗

h − I∗h)

N∗
h

,

m55 = −(
bβI∗v
N∗

h

+ dh + ρ+ µ),

m56 =
bβI∗hI

∗
v

N∗
h
2 .

Expanding the variational matrix along the fourth row and after some rearrange-

ment, we have the following characteristic equation in λ

(
λvg(m22−λ)+(dv+λ)

(
(m11−λ)(m22−λ)−m12m21

))
∣∣∣∣∣∣∣∣∣
m33 − λ m35 m36

m53 m55 − λ m56

0 −µ −dh − λ

∣∣∣∣∣∣∣∣∣ .
This equation can be written as a product of the following two cubic equations,

λ3 + F1λ
2 + F2λ+ F3 = 0, and λ3 +G1λ

2 +G2λ+G3 = 0,
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where

F1 = dv − (m11 +m22) > 0,

F2 = m11m22 − dv(m11 +m22)−m12m21 − λvg > 0,

F3 = dv(m11m22 −m12m21) + λvgm22 > 0,

G1 = dh − (m33 +m55) > 0,

G2 = m33m55 − dh(m33 +m55) + µm56 −m53m35,

G3 = m33m55dhm53m36µ−m33m56µ−m53m35dh.

(3.6.2)

It is to verify that F1F2 − F3 > 0 and G1G2 − G3 > 0 provided R0 > 1. So using

Routh-Hurwitz criteria, this equilibrium point is stable under the condition that

R0 > 1.

3.7 Backward bifurcation analysis

In this section we consider the system (3.4.1) and establish the conditions on pa-

rameter values that cause a backward bifurcation. For classic disease transmission

models with associated reproduction number R0 less than unity is necessary condi-

tion for disease elimination. However, in case of backward bifurcation this require-

ment may not always be sufficient, where a stable endemic equilibrium co-exists

with a stable disease-free equilibrium for R0 < 1. This phenomenon has been ob-

served in numerous disease transmission models [93,98]. In a backward bifurcation

situation, disease control depend on the initial sizes of the various sub-populations

of the model. The occurrence of a backward bifurcation has an important implica-

tions for epidemiological control measures, since an epidemic may persist at steady

state even if R0 < 1. It is instructive to determine whether or not such phenomenon

occurs in the mosquito-fish-human cycle, by analyzing the basic model (3.4.1). A

method, based on the use of Centre Manifold theory [78], will be used to investigate

the possibility of backward bifurcation when R0 = 1.

For this, we consider the following theorem introduced in [78] and based on the

use of centre manifold theory [79].
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Theorem 3.7.1. Let us consider the following general system of ordinary differ-

ential equations with a parameter ϕ = β − β∗

dx

dt
= f(x, ϕ), f : Rn × R → Rn, f ∈ C2(R× R). (3.7.1)

Without loss of generality, it is assumed that x = 0 is an equilibrium for system

(3.7.1) for all values of the parameter ϕ. Assume that

A1. A = Dxf(0, 0) is the linearized matrix of the system (3.7.1) around the equi-

librium x = 0 with ϕ evaluated at 0. Zero is a simple eigenvalue of A and all

other eigenvalue of A have negative real parts;

A2. Matrix A has a non-negative right eigenvector w and a left eigenvector v

corresponding to the zero eigenvalue.

Let fk be the kth component of f and

a =
5∑

i,j,k=1

vkwiwj
∂2fk(0, 0)

∂xi∂xj
, b =

5∑
i,k=1

vkwi
∂2fk(0, 0)

∂xi∂βh

The local dynamics of the system (3.7.1) around 0 are totally determined by a and

b.

(i) In the case where a > 0, b > 0, we have that when ϕ < 0 with |ϕ| close to

zero, x = 0 is unstable; when 0 < ϕ ≪ 1, x = 0 is unstable and there exists

a negative and locally asymptotically stable equilibrium;

(ii) In the case where a < 0, b < 0, we have that when ϕ < 0 with |ϕ| close to

zero, x = 0 is locally asymptotically stable and there exists a positive unstable

equilibrium; when 0 < ϕ≪ 1, x = 0 is locally asymptotically stable, and there

exists a positive unstable equilibrium;

(iii) In the case where a > 0, b < 0, we have that when ϕ < 0 with |ϕ| close

to zero, x = 0 is unstable and there exists a locally asymptotically stable

negative equilibrium; when 0 < ϕ≪ 1, x = 0 is stable and a positive unstable

equilibrium appears;
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(iv) In the case where a < 0, b > 0, we have that when ϕ < 0 changes from neg-

ative to positive, x = 0 changes its stability from stable to unstable. Corre-

spondingly a negative unstable equilibrium becomes positive and locally asymp-

totically stable. Particularly, if a > 0 and b > 0, then a backward bifurcation

occurs at ϕ = 0.

To apply the centre manifold method, the following simplification and change

of variables are made on the model (3.4.1). First, we consider, x1 = L, x2 = P ,

x3 = Iv, x4 = Nv, x5 = Ih and x6 = Nh. Further, by using the vector notation

X = (x1, x2, x3, x4, x5, x6)
T , the system (3.4.1) can be written in the form dX

dt
=

F(X), with F = (f1, f2, f3, f4, f5, f6)
T , as follows:



dx1
dt

= f1 = gx4 − dx1 − d1x
2 − λvx1 − α1vx1x2 − α1α2(1− v)x1qEx2,

dx2
dt

= f2 = γx2(1−
x2
K

) + γα1vx1x2 − qEx2,

dx3
dt

= f3 = cβ(x4 − x3)
x5
x6

− dvx3,

dx4
dt

= f4 = λvx1 − dvx4,

dx5
dt

= f5 = bβ(x6 − x5)
x3
x6

− (dh + ρ+ µ)x5,

dx6
dt

= f6 = Γ− dhx5 − dhx6.

(3.7.2)

In order to explore the possibility of backward bifurcation, we consider β as a

bifurcation parameter, by solving for β from R0 = 1 gives

β = β∗ =

√
dvΓ(dh + ρ+ µ)

cdhN∗
v b

.

The Jacobian matrix at the disease free equilibrium E4 with β = β∗ is
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Jβ∗ =



−gN∗
v

L∗ − d1L
∗ −{α1ν + α1α2qE(1− ν)}L∗ 0 g 0 0

γhα1vP −γP
K

0 0 0 0

0 0 −dv 0 cβNv

Nh
0

λv 0 0 −dv 0 0

0 0 bβ 0 −(dh + ρ+ µ) 0

0 0 0 0 −µ −dh


.

The characteristic equation of the Jacobian matrix Jβ∗ is given by(
λ2 + (dh + ρ+ µ+ dv)λ+ dv(dh + ρ+ µ)(1−R2

0)
)(
λ3 +Q1λ

2 +Q2λ+Q3

)
= 0.

It can be easily seen that the Jacobian matrix Jβ∗ with β = β∗ of the linearized

system (3.7.2) has a simple zero eigenvalue and all other eigenvalues have negative

real parts (see proof of Theorem 3.6.2). Hence, the center manifold theory can be

used to analyze the dynamics of the system (3.7.2) near β = β∗. For the case when

R0 = 1, it can be shown, using technique in Castillo-Chavez and Song [78], that

the matrix Jβ∗ has a right eigenvector (corresponding to the zero eigenvalue), given

by w = [w1 w2 w3 w4 w5 w6]
T , where

w1 = w2 = 0, w3 =
cβN∗

v

N∗
hdv

w5, w4 = 0, w6 =
µ

dh
w5, w5 = w5 > 0. (3.7.3)

Similarly, the matrix Jβ∗ has a left eigenvector (corresponding to the zero eigen-

value), denoted by v = [v1 v2 v3 v4 v5 v6], where

v1 = v2 = v4 = v6 = 0, v3 =
bβ

dv
v5, v5 = v5 > 0. (3.7.4)

The local bifurcation analysis near the bifurcation point is determined by the signs

of two associated constants, denoted by a and b, defined (respectively) by

a =
5∑

i,j,k=1

vkwiwj
∂2fk(0, 0)

∂xi∂xj
, and b =

5∑
i,k=1

vkwi
∂2fk(0, 0)

∂xi∂βh
.

Computation of a. For the transformed model (3.7.2), the associated non-zero

partial derivatives of fi for i = 1, 2, ..., 6 evaluated at the disease free equilibrium
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(DFE) which we need in the computation of a are given by (since v1 = v2 = v4 =

v6 = 0) we only need the following for the computation of a

∂2f3
∂x3∂x5

=
∂2f3
∂x5∂x3

= −cβ/N∗
h ,

∂2f3
∂x5∂x6

=
∂2f3
∂x6∂x5

=
−cβNv∗
N∗2

h

,

∂2f5
∂x3∂x5

=
∂2f5
∂x5∂x3

=
−bβ
Nh

(3.7.5)

all other second order derivatives are zero. After some algebraic manipulations, it

follows that

a = v3

(
−2cβ

N∗
h

w3w5 −
−2cβN∗

v

N∗2
h

w5w6) + v5(
−2bβ

N∗
h

w3w5)

)
.

Substituting the values of v3, w3, w6 and after some re-arrangements we have

a = 2
bcβ2d2hλvL

∗

d2vΓ
2

v5w
2
5(
−cβ
dv

+
µ

dh
− 1).

Computation of b. Substituting the vectors v and w and the respective partial

derivatives (evaluated at the disease free equilibrium) into the expression for b and

after simplifications

b = v3w5
cβNv

Nh

+ v5w3bβ

b is automatically positive. Hence, the coefficient a > 0 if and only if

−cβdh + µdv − dhdv > 0.

Thus, the following result is established.

Theorem 3.7.2. The model exhibits backward bifurcation at R0 = 1 whenever the

coefficient a, is positive.

The model (3.7.2) undergoes backward bifurcation at R0 = 1 if the inequality

(a > 0) is satisfied. Simulations are carried out, using a suitable set of parameter

values (so that a > 0 is satisfied), to illustrate the backward bifurcation property

of the model (3.7.2) (see Figure (3.1) and Figure (3.2)).
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3.8 Numerical simulation and discussion

The system (3.4.1) is simulated for the set of parameters in Table (3.4), in this case

the disease free equilibrium point E4 is stable and for the set of parameter values

in Table (3.4) it is computed as (23.28, 1431.2, 0, 29.1, 0, 12778).

The value of basic reproduction number for this set of parameter values is

0.8054848 which does not satisfy the backward bifurcation condition a > 0. Phase

portrait of this system in Nh − Ih, Nv − Iv and P −L planes are shown in Figures

(3.3)− (3.5), respectively.

Again, the system (3.4.1) is simulated for the set of parameters in Table (3.5).

This set of parameters gives R0 = 0.3523 which satisfied the backward bifurcation

condition (a > 0, b > 0). The two nontrivial equilibria are

E∗
1 = (177.459, 983.672, 69.084, 110.912, 341.899, 414.0147) and

E∗
2 = (177.459, 983.672, 8.887, 110.912, 241.510, 5545.071), where one of them in

particular E∗
1 is stable and E∗

2 is unstable. The unstable equilibrium is shown as

a triangle in Figure (3.6). In addition to these equilibria, we have disease free

equilibrium say E∗
0(177.46, 983.67, 0, 110.912, 0, 17889). This equilibrium point E∗

0

is locally asymptotically stable which is shown in Figure 3.7, which is demonstrating

all three equilibria in Nv − Iv plane.

To see the stability of endemic the equilibrium point for R0 > 1, the system

(3.4.1) is simulated for the set of parameters in Table (3.6). For this set of pa-

rameters R0 = 1.342475 and the endemic equilibrium point E5 comes out to be

(23.28, 1431.2, 7.6814, 29.1, 425.75, 75, 7122.7). The phase portrait of this equilib-

rium point in Nh−Ih, Nv−Iv and P −L planes are shown in Figures (3.8)−(3.10).
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Table 3.4: Parameter values used in the numerical simulations.

Notation Value Notation Value

g 60 d 0.05

Γ 0.5 d1 0.02

ν 0.2 λv 0.0625

α1 0.2 α2 0.5

q 0.3 E 0.5

r 0.2 dv 0.05

c 0.5 K 2000

β 0.6 dh 0.00003913

γ 0.1 ρ 0.005

b 0.5 µ 0.00005

Figure 3.3: Phase plot of Ih verses Nh showing the stability of the disease free

equilibrium.
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Figure 3.4: Phase plot of Iv verses Nv showing the stability of the disease free

equilibrium.

Figure 3.5: Phase portrait of the system in P − L plane.



56

Table 3.5: Parameter values used in the numerical simulations.

Notation Value Notation Value

g 60 d 0.05

Γ 0.7 d1 0.02

ν 0.2 λv 0.0625

α1 0.1 α2 0.5

q 0.4 E 0.9

γ 0.1 r 0.01

c 0.5 K 2000

β 0.4 dh 0.00003913

dv 0.1 ρ 0.005

b 0.5 µ 0.002

Table 3.6: Parameter values used in the numerical simulations.

Notation Value Notation Value

g 60 d 0.05

Γ 0.3 d1 0.02

ν 0.2 λv 0.0625

α1 0.2 α2 0.5

q 0.3 E 0.5

r 0.2 dv 0.05

c 0.5 K 2000

β 0.6 dh 0.00003913

γ 0.1 ρ 0.005

b 0.5 µ 0.00005
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Figure 3.6: Phase portrait in Nh−Ih plane for R0 < 1 and the backward bifurcation

condition a > 0, b > 0.

Figure 3.7: Phase portrait in Nv − Iv plane for R0 < 1 showing bi-stability.
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Figure 3.8: The phase portrait of endemic equilibrium point E5 in Nh − Ih plane.

Figure 3.9: The phase portrait of endemic equilibrium point E5 in Nv − Iv plane.
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Figure 3.10: The phase portrait of endemic equilibrium point E5 in L− P plane.

Finally to see the effect of introduction of larvivorous fish, we change the pa-

rameter α1 and keep all other parameters as in Table (3.5). The variation of

infected human population with time for different α1 is shown in Figure (3.11).

It is observed that for small value of α1 the equilibrium level of Ih is high and

as we increase α1, the equilibrium level of infected human population decreases

and finally further increase in α1 makes R0 < 1 and which makes the disease free

equilibrium point E4 to be stable and hence the infected human population tends

to zero.
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Figure 3.11: The variation of infected human population with time for different

values of α1.

3.9 Conclusions

In this chapter, we have developed and analyzed a nonlinear mathematical model

for malaria which incorporates the introduction of predatory fish as a biological

control agent. For mosquitoes population we consider two stages, i.e. larvae and

adult so that control can be applied to both stages of mosquitoes population.

Equilibria of the model are found and stability of these equilibria are discussed using

variational matrix method. The disease free equilibrium is locally asymptotically

stable whenever R0 < 1 and is unstable for R0 > 1. For R0 > 1 the endemic

equilibrium point is always locally asymptotically stable. As this model exhibits

backward bifurcation, so R0 < 1 is not sufficient to eliminate the disease from the

population and we need another threshold less than one and R0 should be reduced

below this threshold to eliminate the disease from the population. This fact is

demonstrated in the backward bifurcation diagram. Usually, in case of forward
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bifurcation, disease dies out when the reproduction number is less than unity while

in case of backward bifurcation disease may persist even the reproduction number

is less than unity. Also it is observed that with the introduction of predatory fish,

the equilibrium level of larvae population decreases which causes the decrease in

the equilibrium level of adult mosquito population and this decreases the basic

reproduction number. So introduction of larvivorous fish has positive impact in

controlling the transmission of malaria. Further, numerical simulation is performed

to demonstrate the analytical results.



Chapter 4

Formulation of a Vector Borne

Disease Model with Direct

Transmission

4.1 Overview

The work in this chapter is based on the design and analysis of suitable compart-

mental model for the transmission dynamics of a vector borne disease in a popula-

tion. A basic model which allows direct and indirect transmission is formulated and

rigorously analysed. The model consider the transmission of the disease between

two different populations, human host population, and mosquito vector population.

It has a locally-asymptotically stable disease-free equilibrium whenever the basic

reproduction number (ℜ0) is less than unity. Using Lyapunov function theory some

sufficient conditions for global stability of both the disease-free equilibrium and the

endemic equilibrium are obtained. For the basic reproductive number ℜ0 > 1, a

unique endemic equilibrium exists and is globally asymptotically stable. Finally,

using Matlab, numerical simulations are carried out to investigate the influence

of the key parameters on the spread of the vector born disease, to support the

analytical conclusion and illustrate possible behavioral scenarios of the model.

62
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4.2 Introduction

Mathematical modeling involves the use of mathematics to describe, explain,

or predict behavior or phenomena in the real world. It is particularly useful in

investigating questions or testing ideas within complex systems. A mathematical

model is an abstraction of a physical system that uses precise language to describe

the system’s behavior. The model is then analyzed, solved, or simulated on a

computer. The results can be interpreted in physical terms to aid understanding

of the underlying system or to point the parts of the system that might be targeted

for change.

The model first proposed by Ross [55] and subsequently modified by Macdon-

ald [90] has influenced both the modeling and the application of control strategies

to a vector-borne disease malaria. Models of malaria that investigate complications

arising from host superinfection, immunity, and other factors [1,7,91,92] are based

on the fundamental model proposed by Ross. This model has also influenced the

mathematical analysis of many other vector-borne diseases [63, 97]. In almost all

the contribution in modeling the spread of a vector borne disease, many of the con-

tributes consider that vector borne disease such as malaria, dengue fever, West Nile

virus, and so forth, are only transmitted to the human host population through

the bite of infected mosquitoes. However some evidences have shown that direct

transmission (transfusion related transmission, blood transmission, transplantation

related transmission, and needle-stick-related transmission) of a vector borne dis-

ease is also possible [3]. An account of the modeling with direct transmission in

addition to mosquitoes vector transmission can be found in [7,10]. The assumption

of constant population size in epidemiological models is relatively valid for diseases

of short duration with limited effects on mortality. However, this assumption fails

to hold for diseases that are endemic in a population with changing population

size, and for diseases which raise the mortality rate. Considering this situation,

the effects of changing population size and disease induced mortality are far from

negligible in the modeling of epidemics especially a vector borne disease [80]. In
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this chapter, we extend the model of Cai and Li [10] to include exposed individuals,

disease induced death rate and time dependent total population size in both host

and vector populations.

4.3 Model frame work

To develop a compartmental model, we consider the transmission of the disease

between two different populations, human host population, Nh(t), and mosquito

vector population, Nv(t). In our compartmental model, we sub-divided the to-

tal humans host and mosquito vectors populations into different sub-populations.

The total humans host population at time (t), denoted by Nh(t) is split into four

distinct epidemiological subclasses of individuals which are: susceptible Sh(t), ex-

posed Eh(t), infectious Ih(t) and recovered, Rh(t), so that Nh = Sh+Eh+ Ih+Rh.

People recruited in the susceptible class either through birth or through immigra-

tion. Susceptible human can be infected via two routes of transmission, that is

directly through a contact with an infectious individual (possibly as a result of

transfusion related transmission, transplantation related transmission, or needle-

stick-related transmission etc) and through being bitten by an infectious vector.

The interactions between humans host and mosquitoes vector have been assumed

a mass-action type interaction [85]. The host enters the exposed class from the

susceptible class after bitten by an infectious mosquito vector. After a certain

period of time exposed humans host develop symptoms of the disease and then

enter to the infectious class. After some time, the infectious humans recover and

move to the recovered class. The recovered human host are assumed to acquire

permanent immunity and there is no transfer from the recovered class back to the

susceptible class. Humans host leave the population through natural and due to

disease induced death rates.

The total mosquito vectors population is divided into three sub-classes: sus-

ceptible vector, exposed vector and infectious vector, with densities denoted by

Sv(t), Ev(t) and Iv(t), respectively. Here Nv = Sv +Ev + Iv denotes the number of
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the total vector population at time t. The recovered (immune) class in the vector

population does not exist, since the mosquitoes once infected never recover from

infection, that is, their infection period ends with their death. The mosquito vec-

tors enter the susceptible class through birth. Newly infected mosquitoes vector

move to the exposed class Ev from the susceptible class Sv, with some probability,

after biting an infectious human host. After some period of time the mosquito

progress from the exposed class to the class of symptomatic mosquitoes vector Iv.

The mosquito remains infectious for life. Mosquitoes leave the population through

natural death and disease induced death rates. The model also includes human

disease-induced death rate because mortality for a vector borne disease in areas of

high transmission can be high. The dynamics of the disease in human host and

mosquito vector populations is depicted in Figure (4.1).
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Figure 4.1: The schematic flow chart of a vector borne disease transmission model

representing the interaction and transfer of both human and vector populations.

This model has three differences from those reported in the previous model

(chapter 3). The first is that exposed (latent) and immune classes in host pop-

ulation denoted by Eh and Rh, respectively and an exposed Ev class in vector

population is incorporated. The second is that, in order to keep things simple

the incidence term is assumed to be of the bilinear mass-action form and a dis-

ease induced death rate in vector population denoted by δv is included. Finally,

susceptible human hosts can get infected via direct route of transmission, through
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a contact with an infectious individual in addition to an indirect transmission,

through being bitten by an infectious vector. Also rigorous qualitative analysis

will be presented for the resulting vector host epidemic model.

The transfer diagram Figure (4.1) and the assumptions above lead to the fol-

lowing epidemic model consisting of nonlinear system of seven ordinary differential

equations:



dSh

dt
= b1 − β1ShIh − β2ShIv − µhSh,

dEh

dt
= β1ShIh + β2ShIv − αhEh − µhEh,

dIh
dt

= αhEh − γhIh − µhIh − δhIh,

dRh

dt
= γhIh − µhRh,

dSv

dt
= b2 − β3SvIh − µvSv,

dEv

dt
= β3SvIh − αvEv − µvEv,

dIv
dt

= αvEv − µvIv − δvIv,

(4.3.1)

with initial conditions

Sh(0) ≥ 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Rh(0) ≥ 0, Sv(0) ≥ 0, Ev(0) ≥ 0, Iv(0) ≥ 0.

(4.3.2)

The parameters used in the model are shown in Table 4.1.

As in the terms, β1ShIh denotes the rate at which the human hosts Sh get

infected by infectious human hosts Ih, β2ShIv denotes the rate at which the human

hosts Sh get infected by infectious mosquitoes vector Iv, and β3SvIh denotes the

rate at which the mosquitoes vector Sv get infected by infectious humans host Ih.

All parameters are assumed to be strictly positive except the disease-related death

rates which are assume to be nonnegative.
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Table 4.1: Parameter definitions for the model (4.3.1).

b1: The human host input (birth) rate.

β1 : The rate of direct transmission of the disease.

β2: The rate of transmission of the disease from mosquito to human.

β3 The rate of transmission of the disease from human to mosquito.

µh: Natural death rate of humans.

αh: Progression rate from Eh to Ih class.

γh: Recovery rate for humans.

δh: Disease-induced death rate for humans.

b2: Recruitment rate of mosquitoes.

µv: Natural death rate of mosquito.

αv: Progression rate from Ev to Iv class.

δv: Disease-induced death rate for mosquitoes.

4.4 Mathematical analysis of the model

4.4.1 Positivity of solutions

In this section, we will analyze the general properties of the system (4.3.1) with pos-

itive initial conditions. The model (4.3.1) describes the human host and mosquito

vector population, and, therefore, it is very important to prove that all variables

describing the dynamics of the populations will be positive. In particular, the

objective is to prove that all solutions of the system (4.3.1) with positive initial

conditions will be positive for all t > 0.

Theorem 4.4.1. Let the initial conditions be given by (4.3.2). Then the solutions

(Sh, Eh, Ih, Rh, Sv, Ev, Iv) of the system (4.3.1) are positive for all t > 0.

Proof. Let us take

t∗ = sup{t > 0 : Sh > 0, Eh ≥ 0, Ih ≥ 0, Rh > 0, Sv > 0, Ev ≥ 0, Iv ≥ 0}.
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Thus, t∗ > 0. Then, from the first equation of the system (4.3.1) we have

dSh

dt
= b1 − β1ShIh − β2ShIv − µhSh,

= b1 − (β1Ih + β2Iv + µh)Sh.

Letting f(t) = β1Ih(t) + β2Iv(t), above equation can be written as

d

dt

(
Shexp

{∫ t

0

f(u)du+ µht

})
= b1exp

{∫ t

0

f(u)du+ µht

}
,

integrating both sides from t = 0 to t = t∗

Sh(t
∗)exp

{∫ t∗

0

f(u)du+ µht
∗
}
− Sh(0) =

∫ t∗

0

b1exp
{∫ x

0

f(x)dx+ µhy

}
dy,

multiplying both sides by exp
{
−

∫ t∗

0

f(u)du− µht
∗
}

Sh(t
∗) = Sh(0)exp

{
−

∫ t∗

0

f(u)du− µht
∗
}
+ exp

{
−
∫ t∗

0

f(u)du− µht
∗
}

×
∫ t∗

0

b1exp
{∫ x

0

f(x)dx+ µhy

}
dy > 0.

Thus Sh(t
∗) being the sum of positive terms is positive. By the same argument it

can be proved that the quantities Eh, Ih, Rh, Sv, Ev, and Iv are positive for all

time t > 0.

4.4.2 Invariant region

Proposition 4.4.2. Let (Sh, Eh, Ih, Rh, Sv, Ev, Iv) be the solution of the system

(4.3.1) with initial conditions (4.3.2) and the biologically-feasible region Ω = Ωh ×

Ωv with

Ωh = {(Sh, Eh, Ih, Rh) ∈ R4
+ : Nh ≤ b1

µh

},

and

Ωv = {(Sv, Ev, Iv) ∈ R3
+ : Nv ≤

b2
µv

}.

Then Ω is positively invariant and attracting under the flow described by the system

(4.3.1).
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Proof. Adding the expressions in the right-hand sides of the equations in the

model (4.3.1) gives

(dNh

dt
,
dNv

dt

)
= (b1 − µhNh − δhIh, b2 − µvNv − δvIv). (4.4.1)

Since 0 ≤ Ih ≤ Nh and 0 ≤ Iv ≤ Nv,
dNh

dt
≤ b1 − µhNh ≤ 0, for Nh ≥ b1

µh
,

dNv

dt
≤ b2 − µvNv ≤ 0, for Nv ≥ b2

µv
.

(4.4.2)

It follows from (4.4.2) that
(
dNh

dt
≤ 0, dNv

dt
≤ 0

)
. Since dNh

dt
≤ b1 − µhNh and

dNv

dt
≤ b2 − µvNv, a standard comparison theorem [101] can be used to show that

(0, 0) ≤ (Nh, Nv) ≤
(
Nh(0)e

−µht + b1
µh
(1 − e−µht), Nv(0)e

−µvt + b2
µv
(1 − e−µvt)

)
. If

Nh(0) ≤ b1
µh

and Nv(0) ≤ b2
µv

, then Nh(t) ≤ b1
µh

and Nv(t) ≤ b2
µv

. Hence, the set Ω is

positively-invariant (i.e., all initial solutions in Ω remain in Ω for all t > 0). Thus

as t → ∞, 0 ≤ (Nh, Nv) ≤ ( b1
µh
, b2
µv
) and we can conclude that Ω is an attracting

set. �

Thus, every solution of the model (4.3.1), with initial condition in Ω remains

there for t > 0. Furthermore, in Ω the usual existence, uniqueness and continuation

results hold for the system, so that the system (4.3.1), is well-posed mathematically

and epidemiologically [1]. Hence, it is sufficient to study the dynamics of the flow

generated by the model (4.3.1) in Ω.

4.5 Disease free equilibrium and its stability

Disease-free equilibrium points are steady state solutions where there is no

disease in either the human host or mosquito vector populations. In order to

understand dynamical behavior of the system (4.3.1), we set right hand side of all

equations in the system (4.3.1) equal to zero. Direct calculations shows that the

system (4.3.1) has a disease free equilibrium point given by

Ef = (S0
h, 0, 0, 0, S

0
v , 0, 0),
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where S0
h = b1

µh
and S0

v = b2
µv
. The disease free steady states has a strong influence

on the behavior of disease transmission in a community. If we are looking for the

elimination of the disease, we have to establish the conditions under which the

disease free equilibrium is stable.

The dynamics of the disease is described by the quantity ℜ0 as follows:

ℜ0 =
b1
µh

( αhαvb2β2β3
µvQ1Q2Q3Q4

+
αhβ1
Q1Q2

)
, (4.5.1)

with 

Q1 = αh + µh,

Q2 = γh + µh + δh,

Q3 = αv + µv,

Q4 = µv + δv.

The threshold quantity ℜ0, is called the basic reproduction number of the dis-

ease [39,99]. It represents the expected average number of new infections produced

directly and indirectly by a single infective when introduced into a completely sus-

ceptible population. For classical epidemic models, it is common that the basic

reproduction number is threshold in a sense that, when the basic reproduction

number ℜ0 < 1, on average each infected individual infects fewer than one individ-

ual, and the disease dies out. If ℜ0 > 1, on average each infected individual, infects

more than one other individual, so we would expect the disease to spread. It is

standard in epidemiologic modeling to focus on ℜ0 as a stability criterion. Thus,

to investigate control strategies, the approach adopted in [34] consists of studying

parameters values for which R0 was either above or below unity.

To prove stability results at the disease free equilibrium Ef , we calculate the

Jacobian matrix J (Ef ) at Ef .

Theorem 4.5.1. If ℜ0 < 1, then the disease-free equilibrium point Ef of the model

(4.3.1) is locally asymptotically stable, otherwise unstable.

Proof. In order to examine the local stability of the disease-free equilibrium, the

Jacobian matrix should be evaluated at the equilibrium point Ef . Linearizing the
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system (4.3.1) around Ef gives the following Jacobian matrix

J (Ef ) =



−µh 0 −β1 b1
µh

0 0 0 −β2 b1
µh

0 −Q1 β1
b1
µ1

0 0 0 β2
b1
µh

0 αh −Q2 0 0 0 0

0 0 γh −µh 0 0 0

0 0 −β3 b2
µv

0 −µv 0 0

0 0 β3
b2
µv

0 0 −Q3 0

0 0 0 0 0 αv −Q4


. (4.5.2)

Routh-Hurwitz Criteria [96] insures that the stability at the disease free equilibrium

will be obtained if all the eigenvalues of the Jacobian matrix J (Ef ) have negative

real parts. The characteristic equation of the above matrix is

(λ+ µh)(λ+ µh)(λ+ µv)(λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4) = 0, (4.5.3)

where

a1 = Q1 +Q2 +Q3 +Q4,

a2 = Q1Q2 +Q1Q3 +Q1Q4 +Q2Q3 +Q2Q4 +Q3Q4 −
b1αhβ1
µh

,

a3 = Q1Q3Q4 +Q2Q3Q4 + (Q3 +Q4)(Q1Q2 −
b1αhβ1
µh

),

a4 = Q1Q2Q3Q4(1−R0).

There are seven eigenvalues corresponding to equation (4.5.3). Three of the eigen-

values, −µh with multiplicity two and −µv, have negative real part. The other four

eigenvalues are the solutions of the fourth-order polynomial equation

δ(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4. (4.5.4)

Now, from the stability point of view, we want to know whether there is a solution

λ of the polynomial (4.5.4) with positive real part. If such a solution λ of the

polynomial (4.5.4) exist, then the equilibrium point Ef is unstable, otherwise, it is

locally asymptotically stable. The coefficients a1, a2 are always positive but a3, a4

could be negative. It is easily verified that if ℜ0 < 1, a4 > 0 andQ1Q2 > b1αhβ1/µh,

hence a3 > 0. Thus, all ai > 0 for i = 1, 2, 3, 4 and the positivity of all the coefficient
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ai imply that there are no positive real solutions for the polynomial equation (4.5.4).

The necessary and sufficient conditions for the local stability follows by applying

Routh-Hurwitz criteria to the characteristic equation (4.5.4). Since ai > 0, all

roots have negative real parts if and only if

△1 = a1 > 0

△2 =

∣∣∣∣∣∣a1 1

0 a2

∣∣∣∣∣∣ > 0,

△3 =

∣∣∣∣∣∣∣∣∣
a1 1 0

a3 a2 a1

0 0 a3

∣∣∣∣∣∣∣∣∣ > 0,

△4 =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0

a3 a2 a1 1

0 a4 a3 a2

0 0 0 a4

∣∣∣∣∣∣∣∣∣∣∣∣
> 0.

It is clear that a1, a2 > 0, provided ℜ0 < 1, hence △1,△2 > 0. For the disease free

equilibrium Ef to be stable, we only need here to prove that △3,△4 > 0.

△3 = a1a2 − a3 =
(
Q1 +Q2 +Q3 +Q4

)(
Q1Q2 +Q1Q3 +Q1Q4

+Q2Q3 +Q2Q4 +Q3Q4 −
b1αhβ1
µh

)
−

(
Q1Q3Q4 +Q2Q3Q4

+(Q3 +Q4)(Q1Q2 −
b1αhβ1
µh

)
)
.

(4.5.5)

Rewriting equation (4.5.5) with some little rearrangement, we get the following

equation

△3 = (Q1 +Q2)
(
Q1Q2 +Q1Q3 +Q1Q4 +Q2Q3 +Q2Q4 +Q3Q4

−b1αhβ1
µh

)
+Q3

(
Q1Q3 +Q1Q4 +Q2Q3 +Q2Q4 +Q3Q4

)
+Q2

4(Q1 +Q2 + 3Q4).

(4.5.6)
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Lastly,

△4 = a3(a1a2 − a3)− a21a4 =
αhαvb1b2β2β3

µhµv

(Q1 +Q2 +Q3 +Q4)
2

+(Q3 +Q4)
2 + 2(Q1Q3 +Q1Q4 +Q2Q3 +Q2Q4

b1αhβ1
µh

)Q3Q4.
(4.5.7)

Since Q1Q2 > b1αhβ1/µh, whenever ℜ0 < 1. Consequently from the equations

(4.5.6) and (4.5.7), it is clear that △3 and △4 being the sum of positive terms are

positive. Thus, by Routh-Hurwitz criteria [96] all the eigenvalues of the Jacobian

matrix J (Ef ) have negative real parts whenever ℜ0 < 1, which shows that the dis-

ease free equilibrium Ef is locally asymptotically stable. �

Remark . For R0 ≥ 1 or equivalently a4 < 0, we have δ(0) < 0 and lim δ(λ) →

+∞ when λ ∈ R and λ → +∞. Then, there exists λ∗ > 0 such that δ(λ∗) = 0,

which proves the instability of the disease-free equilibrium.

4.6 Existence of the endemic equilibria

Endemic (positive) equilibria are steady state solutions where the disease persists in

the population (all state variables are positive). In order to find equilibria (endemic

equilibria) of the system (4.3.1) where at least one of the infective components of

the system (4.3.1) is non-zero, we need to take the following steps.

Let E+ = (S∗
h, E

∗
h, I

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v ) represents any arbitrary endemic equilib-

rium of the model (4.3.1). Solving the equations of the system (4.3.1) at steady,
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we get 

S∗
h =

Q1Q2Q3Q4(µv + β3I
∗
h)

αhβ1Q3Q4(µv + β3I∗h) + αhαvb2β2β3
,

E∗
h =

Q2

αh

I∗h,

R∗
h =

γh
µh

I∗h,

S∗
v =

b2
µv + β3I∗h

,

E∗
v =

β3b2I
∗
h

Q3(µv + β3I∗h)
,

I∗v =
β3αvb2I

∗
h

Q3Q4(µv + β3I∗h)
.

If I∗h ̸= 0, then substituting S∗
h, I

∗
v in the second equation of the system (4.3.1)

at steady state, we obtain after some calculations the following quadratic equation:

f(Ih) = aI2h + bIh + c = 0, (4.6.1)

where

a = β1β3Q1Q2Q3Q4,

b = (β1µv + β3µh)Q1Q2Q3Q4 + b2αvβ2β3Q1Q2 − b1αhβ1β3Q3Q4,

c = µhµvQ1Q2Q3Q4(1−R0).

(4.6.2)

For a positive endemic equilibrium E+ > 0, we need a > 0 and c < 0. Clearly the

coefficient a is always positive, and c is positive (negative) if ℜ0 is less than (greater

than) unity, respectively. It is easy to see from the theory of quadratic equations

if y1 and y2 are the roots for the quadratic equation (4.6.1), then the product of

the roots is y1y2 = c
a
; and if c

a
< 0 then we have one positive root of the equation

(4.6.1). Since a is always positive and c < 0 when ℜ0 > 1, hence we have one and

only one positive root for the equation (4.6.1) when ℜ0 > 1. If ℜ0 > 1, then there

are two roots of the equation (4.6.1) of which one root is positive and thus there

is a unique endemic equilibrium. Thus we have established the following result.

Lemma 4.6.1. If ℜ0 > 1, then the model (4.3.1) has a unique positive endemic

equilibrium E+ > 0 in Ω.

In the following Section, we study the global behavior of the equilibrium solution

for the system (4.3.1).
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4.7 Global stability analysis

To ensure that disease elimination is independent of the initial sizes of the sub-

populations, it is necessary to show that the disease free equilibrium is globally-

asymptotically stable if ℜ0 < 1. The following theorem provides the global property

of the disease free equilibrium Ef of the system (4.3.1).

Theorem 4.7.1. If ℜ0 ≤ 1, then the disease free equilibrium of the system (4.3.1)

is globally asymptotically stable on Ω.

Proof. The global stability of the disease-free equilibrium in Ω if ℜ0 < 1 can be

shown by considering a new dependent variable (Lyapunov function) as follows:

V (t) = W1

(
Sh−S0

h−S0
h log

Sh

S0
h

)
+W2Eh+W3Ih+W4

(
Sv−S0

v−S0
v log

Sv

S0
v

)
+W5Ev+W6Iv,

(4.7.1)

where Wi, for i=1, 2...6 are some positive constants to be chosen later. Calculating

the Lyapunov derivative of V along the solutions of system (4.3.1), we obtain

V ′(t) = W1(
Sh − S0

h

Sh

)[b1 − β1ShIh − β2ShIv − µhSh] +W2[β1ShIh + β2ShIv −Q1Eh]

+W3[αhEh −Q2Ih] +W4(
Sv − S0

h

Sv

)[b2 − β3SvIh − µvSv] +W5[β3SvIh−

Q3Ev] +W6[αvEv −Q4Iv],

(4.7.2)

where ′ denotes the derivative with respect to time t. Using the values S0
h = b1

µh

and S0
v = b2

µv
in (4.7.2), we have

V ′(t) = −µhW1
(Sh − S0

h)
2

Sh

− µvW4
(Sv − S0

v)
2

Sv

+ (W5 −W4)β3SvIh+

(W2 −W1)[β1ShIh + β2ShIv] + (W3αh −W2Q1)Eh

+(W6αv −W5Q3)Ev + [
W4b2β3
µv

+
W1b1β1
µh

−W3Q2]Ih

[
W1b1β2
µh

−W6Q4]Iv.

(4.7.3)
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Let us choose W1 = W2 = αh/Q1, W3 = 1, W4 = W5 =
b1αhαvβ2
µhQ1Q3Q4

, W6 =

αhb1β2/µhQ1Q4 and rewriting equation (4.7.3) with some little rearrangement, we

get

V ′(t) = −αhµh

Q1

(Sh − S0
h)

2

Sh

− b1αhαvβ2µv

µhQ1Q3Q4

(Sv − S0
v)

2

Sv

−Q2(1−R0)Ih. (4.7.4)

Thus V ′(t) is negative if ℜ0 ≤ 1. Also note that, V ′(t) = 0 if and only if Sh = S0
h,

Sv = S0
v , Eh = Ih = Rh = 0, Ev = Iv = 0. Therefore the largest compact invariant

set in {(Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ Ω : V ′(t) = 0} is the singleton {E1}, where Ef is

the disease-free equilibrium point. It follows by the Lyapunov-Lasalle theorem [95],

that every solution to the equations in the system (4.3.1), with initial conditions

in Ω, approaches the disease free equilibrium Ef as t → ∞. Further, the region Ω

is positively-invariant, thus disease-free equilibrium Ef is globally asymptotically

stable in Ω if ℜ0 ≤ 1. This completes the proof. �

The epidemiological importance of the above result is that the disease will be

wiped-out from the population if ℜ0 < 1, regardless of the initial number of infected

individuals.

The next result concerns the global stability of the endemic equilibrium E+ of

the system (4.3.1). To establish the global stability of the endemic equilibrium, we

follow closely the ideas used in [112].

Theorem 4.7.2. If ℜ0 > 1, then the endemic equilibrium E+ of the system (4.3.1)

is globally asymptotically stable on Ω if



µh =
b1
S∗
h

,

µv =
b2
S∗
v

,

αh =
Q1Q2

2β1S∗
h

,

αv =
Q3Q4β1
β2β3S∗

v

.

(4.7.5)
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Proof. Define the Lyapunov function

L(t) =
1

β1S∗
h

(Sh − S∗
h logSh) +

1

β3S∗
v

(Sv − S∗
v logSv) +

1

β1S∗
h

Eh +
2

Q2

Ih

+
1

β3S∗
v

Ev +
β2
Q4β1

Iv.

(4.7.6)

Calculating the time derivative of L along the solutions of the system (4.3.1), we

obtain

L′(t) =
1

β1S∗
h

(Sh − S∗
h)(

b1
Sh

− β1Ih − β2Iv − µh) +
1

β3S∗
v

(Sv − S∗
v)(

b2
Sv

− β3Ih − µv)

+
1

β1S∗
h

(β1ShIh + β2ShIv −Q1Eh) +
2

Q2

(αhEh −Q2Ih) +
1

β3S∗
v

(β3SvIh

−Q3Ev) +
β2
Q4β1

(αvEv −Q4Iv).

(4.7.7)

After some rearrangement we have

L′(t) = −µh

β1

(Sh

S∗
h

+
S∗
h

Sh

− 2
)
− µv

β3

(Sv

S∗
v

+
S∗
v

Sv

− 2
)
. (4.7.8)

Since the arithmetic mean is greater than or equal to the geometric mean, we have

Sh

S∗
h

+
S∗
h

Sh

≥ 2 and
Sv

S∗
v

+
S∗
v

Sv

≥ 2. (4.7.9)

Thus, the condition (4.7.5) ensures that L′(t) ≤ 0 for all (Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈

Ω, and the strict equality L′(t) = 0 holds only for Sh = S∗
h, Sv = S∗

v , Eh = E∗
h

Ih = I∗h, Rh = R∗
h, Ev = E∗

v , and Iv = I∗v . Then, the equilibrium state E+

is the only positively invariant set of the system (4.3.1) contained entirely in

Ω = {(Sh, Eh, Ih, Rh, Sv, Ev, Iv), Sh = S∗
h, Sv = S∗

v , Eh = E∗
h, Ih = I∗h, Rh =

R∗
h, Ev = E∗

v} and hence by the asymptotic stability theorem [95], the positive en-

demic equilibrium state E+ is globally asymptotically stable on Ω. �

The epidemiological importance of the above result is that the disease continued

to spread in the population.



79

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Time(t)

S
us

ce
pt

ib
le

 H
um

an
 H

os
t S

h

Figure 4.2: Time series plot of the model (4.3.1) with different initial conditions for

the susceptible human host population Sh.

4.8 Numerical results and discussion

In this section the model is solved using Runge-Kutta fourth order scheme.

The techniques in [102] can be used for solving a wide range of problems whose

mathematical models yield system of differential equations.

To explore the behavior of the system and to demonstrate the stability of the

disease free equilibrium, we consider the parameter values in Table (4.2). As ev-

ident from Figures (4.2 − 4.8), the solution profiles converge to the disease free

equilibrium. In Figures (4.2 − 4.8), the result of Theorem (4.7.1) is illustrated

using time series plot by simulating the model 4.3.1 and using parameter values

for the case ℜ0 < 1 and various initial conditions. When ℜ0 < 1, all solutions of

the system (4.3.1) converge to the disease free equilibrium, which implies that the

disease is globally eradicated.

The stability of the endemic equilibrium in which the disease persist in both host

and vector populations is represented in Figures (4.9− 4.14), using the parameter
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Figure 4.3: Time series plot of the model (4.3.1) with different initial conditions for

the exposed human host population Eh.
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Figure 4.4: Time series plot of the model (4.3.1) with different initial conditions for

the infected human host population Ih.
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Figure 4.5: Time series plot of the model (4.3.1) with different initial conditions for

the recovered human host population Rh.
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Figure 4.6: Time series plot of the model (4.3.1) with different initial conditions for

the susceptible mosquito vector population Sv.
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Figure 4.7: Time series plot of the model (4.3.1) with different initial conditions for

the exposed mosquito vector population Ev.
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Figure 4.8: Time series plot of the model (4.3.1) with different initial conditions for

the infected mosquito vector population Iv.
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Figure 4.9: Time series plot of the model (4.3.1) with different initial conditions for

the susceptible human host population Sh.
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Figure 4.10: Time series plot of the model (4.3.1) with different initial conditions

for the exposed human host population Eh.
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Figure 4.11: Time series plot of the model (4.3.1) with different initial conditions

for the infected human host population Ih.
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Figure 4.12: Time series plot of the model (4.3.1) with different initial conditions

for the susceptible mosquito vector population Sv.
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Figure 4.13: Time series plot of the model (4.3.1) with different initial conditions

for the exposed mosquito vector population Ev.
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Figure 4.14: Time series plot of the model (4.3.1) with different initial conditions

for the infected mosquito vector population Iv.
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Figure 4.15: Variation of the infective human host population with time for different

b1 where other parameters are b2 = 1500; β1 = 0.00002; β2 = 0.0012; β3 = 0.01;

µh = 0.09; µv = 0.3; αh = 0.71; αv = 0.4; δh = 0.001; δv = 0.0001; γh = 0.53.

values in Table (5.1), by the time series plots for the case where ℜ0 > 1. The

solution profile converges to the unique positive endemic equilibrium.

Since the basic reproduction number ℜ0 depends upon the parameters of the

model. In order to see the effect of some important parameters on the equilibrium,

we change some of the parameters and keep all other parameters fixed. In Figures

(4.15− 4.16), we change the parameter b1 by keeping all other parameters fixed. It

is observed that for large value of b1 the equilibrium level of Ih and Iv is high and

as we increase b1, the equilibrium level of infected human and vectors population

increases. The variation of infected human and vectors population with time for

different values of b2 is shown in Figures (4.17−4.18), respectively. While in Figures

(4.19−4.21) the effect of β1, β2 and β3, respectively, on the equilibrium level of the

infected humans host population is presented. It is observed that for small value

of these parameters the equilibrium level of Ih is small and as we decrease β1, β2 or

β3, the equilibrium level of infected human population decreases. Finally further

decrease in β1, β2 or β3 makes ℜ0 < 1, which makes the disease free equilibrium
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Table 4.2: Parameters used for numerical simulation

Notation Parameter description Value

b1 The human host input (birth) rate 25

β1 The rate of direct transmission of the disease 0.0001

β2 The rate of transmission of the disease from mosquito to human 0.0012

β3 The rate of transmission of the disease from human to mosquito 0.001

µh Natural death rate of humans 0.09

αh Transfer rate from Eh to Ih class 0.001

γh Recovery rate for humans 0.3

δh Disease-induced death rate for humans 0.9

b2 Recruitment rate of mosquitoes 500

µv Natural death rate of mosquito 0.003

αv Transfer rate from Ev to Iv class 0.04

δv Disease-induced death rate for mosquitoes 0.8
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Figure 4.16: Variation of the infective mosquito vector population with time for

different values of b1 and other parameters are b2 = 1500; β1 = 0.00002; β2 =

0.0012; β3 = 0.01; µh = 0.09; µv = 0.3; αh = 0.71; αv = 0.4; δh = 0.001;

δv = 0.0001; γh = 0.53.

point to be stable and hence the infected population tends to zero. Further, in

Figures (4.22 − 4.24) the effect of β1, β2 and β3, respectively, on the equilibrium

level of the infected mosquitoes vector population is presented. It is observed

that for small value of these parameters the equilibrium level of Iv is small and

as we decrease β1, β2 or β3, the equilibrium level of infected mosquito population

decreases. Further decrease in β1, β2 or β3 makes ℜ0 < 1, which makes the disease

free equilibrium point to be stable and hence the infected mosquito population

tends to zero.
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Table 4.3: Parameters used for numerical simulation

Notation Parameter description Value

b1 The human host input (birth) rate 250

β1 The rate of direct transmission of the disease 0.0001

β2 The rate of transmission of the disease from mosquito to human 0.002

β3 The rate of transmission of the disease from human to mosquito 0.01

µh Natural death rate of humans 0.003

αh Transfer rate from Eh to Ih class 0.0001

γh Recovery rate for humans 0.33

δh Disease-induced death rate for humans 0.0001

b2 Recruitment rate of mosquitoes 500

µv Natural death rate of mosquito 0.003

αv Transfer rate from Ev to Iv class 0.2

δv Disease-induced death rate for mosquitoes 0.00001
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Figure 4.17: Variation of the infective human host population with time for different

values of b2 and other parameters are b1 = 500; β1 = 0.00002; β2 = 0.0012;

β3 = 0.01; µh = 0.09; µv = 0.3; αh = 0.71; αv = 0.4; δh = 0.001; δv = 0.0001;

γh = 0.53.
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Figure 4.19: Variation of the infective human host population with time for different

values of β1 and other parameters are b1 = 500; b2 = 1500; β2 = 0.0012; β3 = 0.01;

µh = 0.09; µv = 0.3; αh = 0.71; αv = 0.4; δh = 0.001; δv = 0.0001; γh = 0.53.
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Figure 4.18: Variation of the infective mosquito vector population with time for

different values of b2 and other parameters are b1 = 500; β1 = 0.00002; β2 = 0.0012;

β3 = 0.01; µh = 0.09; µv = 0.3; αh = 0.71; αv = 0.4; δh = 0.001; δv = 0.0001;

γh = 0.53.

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

Time(t)

In
fe

ct
ed

 H
um

an
 H

os
t I

h

β
2
=0.0002

β
2
=0.0004

β
2
=0.00001

β
2
=0.5

Figure 4.20: Variation of the infective human host population with time for different

values of β2 and other parameters are b1 = 500; b2 = 1500; β1 = 0.00002; β3 = 0.01;

µh = 0.09; µv = 0.3; αh = 0.71; αv = 0.4; δh = 0.001; δv = 0.0001; γh = 0.53.
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Figure 4.21: Variation of the infective human host population with time for different

values of β3 and other parameters are b1 = 500; b2 = 1500; β1 = 0.00002; β2 =

0.0012; µh = 0.09; µv = 0.3; αh = 0.71; αv = 0.4; δh = 0.001; δv = 0.0001;

γh = 0.53.
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Figure 4.22: Variation of the infective vector population with time for different

values of β1 and other parameters are b1 = 500; b2 = 1500; β2 = 0.0012; β3 = 0.01;

µh = 0.09; µv = 0.3; αh = 0.71; αv = 0.4; δh = 0.001; δv = 0.0001; γh = 0.53.
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Figure 4.23: Variation of the infective vector population with time for different

values of β2 and other parameters are b1 = 500; b2 = 1500; β1 = 0.00002; β3 = 0.01;

µh = 0.09; µv = 0.3; αh = 0.71; αv = 0.4; δh = 0.001; δv = 0.0001; γh = 0.53.
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Figure 4.24: Variation of the infective vector population with time for different

values of β3 and other parameters are b1 = 500; b2 = 1500; β1 = 0.00002; β2 =

0.0012; µh = 0.09; µv = 0.3; αh = 0.71; αv = 0.4; δh = 0.001; δv = 0.0001;

γh = 0.53.
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4.9 Conclusions

In this chapter, we analyzed a 7-dimensional ordinary differential equation

model for the transmission of a vector borne disease, which allow a direct mode

of transmission, with 4 variables for humans host population and 3 variables for

vectors population. It is shown that there exists a domain where the model is

epidemiologically and mathematically well-posed.

As in epidemiological models, the model has two steady states, an uninfected

steady state where the disease is not present; and an endemically infected steady

state. We first established local stability results and obtained that there are two

equilibria which are the disease-free equilibria and the endemic equilibria.

Then, we have developed Lyapunov functions to present the global stability

of both the disease free and endemic steady states. It is proved that the global

dynamics are completely determined by the basic reproduction number ℜ0. Our

main results indicated that when ℜ0 < 1, the disease-free equilibrium is globally

asymptotically stable, namely, the disease will die out of the population. When

ℜ0 > 1, a unique endemic equilibrium exists and is globally asymptotically stable,

which implies that the disease will always persist. From epidemiology point of

view, the results in this chapter shows that a vector borne disease can be cleared

from the community whenever the associated threshold parameter ℜ0 is brought

to (and maintained at) a value less unity. If ℜ0 > 1, then the disease can not be

eliminated and will spread in the population.



Chapter 5

Optimal Control of a Vector Borne

Disease

5.1 Overview

The goal of this chapter is to incorporate some important epidemiological features,

such as density-dependent birth rate in both host and vector populations and time

dependent control functions, in our previous model presented in chapter 4. The

extended model will then be used to determine cost-effective strategies for com-

batting the spread of a vector-borne disease in a given population. First, we show

the existence of the control problem and then use both analytical and numerical

techniques to investigate that there are cost effective control efforts for prevention

of direct and indirect transmission of disease. In order to do this three control

functions are used, one for vector-reduction strategies and other two for personal

(human) protection and blood screening, respectively, to reduce the exposed, in-

fectious humans and the total number of mosquitoes. Finally, we characterize the

optimal control and compute numerical solution of the optimality system using an

iterative method.

95
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5.2 Introduction

Optimal control theory is a powerful mathematical tool to make decision involving

complex dynamical systems [84]. For example, what percentage of the population

should be vaccinated as time evolves in a given epidemic model to minimize both

the number of infected people and the cost of implementing the vaccine strategy.

The desired outcome depends on the particular situation. New drug treatments

and combinations of drugs are under constant development. The optimal treatment

scheme for patients remains the subject of intense debate. Application of control

theory to epidemics is a very large field. A comprehensive survey of control theory

applied to epidemiology was performed by Wick [86]. Many different epidemiolog-

ical models with different objective functions have been proposed (see [34,87–89]).

Furthermore, optimal control methods have been used to study the dynamics of

some diseases [104, 105], no such methods have been used, to the author’s knowl-

edge, to determine optimal control measures for a vector-host epidemic with direct

transmission.
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5.3 Application of optimal control to a vector borne

disease

In this section, optimal control strategies for the following vector-host epidemic

model [107] with direct and vector mediated transmission is presented.

dSh

dt
= b1 − β1ShIh − β2ShIv − µhSh,

dEh

dt
= β1ShIh + β2ShIv − αhEh − µhEh,

dIh
dt

= αhEh − γhIh − µhIh − δhIh,

dRh

dt
= γhIh − µhRh,

dSv

dt
= b2 − β3SvIh − µvSv,

dEv

dt
= β3SvIh − αvEv − µvEv,

dIv
dt

= αvEv − µvIv − δvIv.

(5.3.1)

In this system, we modified the recruitment rate in each susceptible population by

including the density effects. In order to do this, we replace the previous recruit-

ment rates by

b1 → b1 + cNh and b2 → b2Nv

where c is the proportionality constant showing the impact of density on the re-

cruitment rate. In the absence of recruitment of new humans (i.e., b1 = 0), the

parameter c represent the per capita birth rate of human hosts.

In the human population, the associated force of infections are reduced by

factors of
(
1− u1(t)

)
and

(
1− u2(t)

)
, respectively, where u1(t) measures the level

of successful precautions effort or a basic-practice blood-donation procedure that

disallows the donations of infected donors and u2(t) measures the level of successful

prevention (personal protection) efforts. The transfusion related transmission can
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be controlled effectively by implementing a basic-practice blood-donation procedure

that disallows the donations of infected donors and standard precautions for needle-

stick injuries are the best preventive measures for needle-stick-related transmission.

Thus the control u1(t) represents the basic precaution or implementation of a basic-

practice blood-donation procedure that disallows the donations of infected donors.

As there is no effective vaccine for most of vector-borne disease at the moment [108],

efforts are underway to develop one (e.g., drugs or vaccine). Consequently the

control variable u2(t) represents the use of drugs or vaccine which are alternative

preventive measures to minimize or eliminate mosquito-human contacts (such as

the use of insect repellents). Finally, we describe the role of the third control

variable u3(t). Most of the vector use favorable climatic conditions to flourish,

particularly during hot and wet seasons [105]. These problems are less pressing

during cold seasons. Therefore, we can use a time-dependent mosquito control,

preferably applied in seasons favorable for mosquito outbreak. The control variable

u3(t) represents the level of larvicide and adulticide used for mosquito control

administered at mosquito breeding sites to eliminate specific breeding areas. It

follows that the reproduction rate of the mosquito population is reduced by a

factor of (1 − u3(t)). Also, it is assumed that under the successful control efforts

the mortality rate of mosquitoes vector population increases at a rate proportional

to the control variable u3(t), where r0 > 0 is a rate constant. Note that the controls

are fully effective when ui(t) = 1 for i = 1, 2, 3 whereas no control is effective when

ui(t) = 0. Taking into account the assumptions and extensions made above, the

dynamics of the control problem is given
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dSh

dt
= b1 + cNh − β1ShIh(1− u1)− β2ShIv(1− u2)− µhSh,

dEh

dt
= β1ShIh(1− u1) + β2ShIv(1− u2)− αhEh − µhEh,

dIh
dt

= αhEh − γhIh − µhIh − δhIh,

dRh

dt
= γhIh − µhRh,

dSv

dt
= b2Nv(1− u3)− β3SvIh(1− u2)− µvSv − r0u3Sv,

dEv

dt
= β3SvIh(1− u2)− αvEv − µvEv − r0u3Ev,

dIv
dt

= αvEv − µvIv − δvIv − r0u3Iv.

(5.3.2)

The above system (5.3.2) for the human host and mosquito vector populations

is also equipped with initial conditions as follows: Sh(0) = Sh0, Eh(0) = Eh0,

Ih(0) = Ih0, Rh(0) = Rh0, Sv(0) = Sv0, Ev(0) = Ev0 and Iv(0) = Iv0. We seek

to minimize the number of exposed host, infected host, total number of mosquito

(vector) and the cost of applying the controls. We use bounded lebesgue measurable

control and the objective functional is given by

J(u1, u2, u3) =

∫ T

0

(
A1Eh + A2Ih + A3Nv +

1

2
(B1u

2
1 +B2u

2
2 +B3u

2
3)
)
dt, (5.3.3)

subject to the state system given in (5.3.2). The total cost includes not only the

consumption for every individual but also the cost of organization, management,

and cooperation etc. Hence, the objective (cost) function should be nonlinear.

In this paper, a quadratic function is implemented for measuring the control cost

by referenced to many literatures in epidemics control [81–83]. The objective of

our work is to minimize the exposed and infectious human population, the total

number of vector population and the cost of implementing the control by using
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possible minimal control variables ui for i = 1, 2, 3. This functional includes the

number of exposed, infectious and the total number of mosquito populations, re-

spectively, as well as the social costs related to the resources needed for, personal

protection B1u
2
1, treatment B2u

2
2, and spraying of insecticides operations, B3u

2
3. In

words, we are minimizing the number of exposed, infectious human and suscepti-

ble, exposed and infectious mosquito populations as well as the cost based on the

implementation of the control functions. We choose to model the control efforts

via a linear combination of quadratic terms, u2i (t)(i = 1, 2, 3). In the objective

functional the quantities A1, A2 represent the weight constants of the exposed and

infected human population, respectively and A3 represent the weight constant of

the total vector population while B1, B2 and B3 are weight constants for blood

donor screening, personal protection (reduction of vector and human contacts) and

vector control, respectively. The terms 1/2B1u
2
1, 1/2B2u

2
2 and 1/2B3u

2
3 describe

the costs associated with the blood donor screening, prevention of vector-human

contacts and vector control, respectively. The cost associated with the first control

could come from donor screening systems. The cost associated with the second

control could come from cost of mosquito repellents which can be spread on the

skin or incorporated in soap, mosquito coils, electric mats, burning of local plants,

and distribution of mosquito nets. The cost associated with third control could

arise from applying conventional chemical pesticides, such as the organophosphate

compound temephos, mosquitocidal oils, such as Bonide Mosquito Larvicide, kill

mosquito larvae and pupae by interfering with air intake at the water surface and

adulticiding. We assume that the costs are proportional to the square of the corre-

sponding control function. The objective of the optimal control problem is to seek

optimal control functions (u∗1(t), u
∗
2(t), u

∗
3(t)) such that

J(u∗1, u
∗
2, u

∗
3) = min{J(u1, u2, u3), (u1, u2, u3) ∈ U} (5.3.4)

subject to the system (5.3.2), where the control set is defined as

U = {(u1, u2, u3)|ui(t) is Lebesgue measurable on [0, 1], 0 ≤ ui(t) ≤ 1, i = 1, 2, 3}.

(5.3.5)
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Pontryagin’s Maximum Principle is used to solve this optimal control problem

and the derivation of the necessary conditions. First we prove the existence of an

optimal control for the system (5.3.2) and then derive the optimality system.

5.4 Existence of control problem

In this section, we consider the control system (5.3.2) with initial conditions at

t = 0 to show the existence of the control problem. Note that for bounded Lebesgue

measurable controls and non-negative initial conditions, non-negative bounded so-

lutions to the state system exists (see [109]).

Pontryagin’s Maximum Principle converts the control problem into a problem

of minimizing a Hamiltonian function H point-wise with respect to (u1, u2, u3):

H = A1Eh + A2Ih + A3Nv + 1/2(B1u
2
1 +B2u

2
2 +B2u

2
3)

+λ1

[
b1 + cNh − β1ShIh(1− u1)− β2ShIv(1− u2)− µhSh

]

+λ2

[
β1ShIh(1− u1) + β2ShIv(1− u2)− αhEh − µhEh

]

+λ3

[
αhEh − γhIh − µhIh − δhIh

]
+ λ4

[
γhIh − µhRh

]

+λ5

[
b2Nv(1− u3)− β3SvIh(1− u2)− µvSv − r0u3Sv

]

+λ6

[
β3SvIh(1− u2)− αvEv − µvEv − r0u3Ev

]

+λ7

[
αvEv − µvIv − δvIv − r0u3Iv

]
.

(5.4.1)

where λi, i = 1, ..., 7 are the adjoint variables.

For the existence of our control problem, we state and prove the following

theorem.
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Theorem 5.4.1. There exists an optimal control u∗ = (u∗1, u
∗
2, u

∗
3) ∈ U such that

J(u∗1, u
∗
2, u

∗
3) = min

(u1,u2,u3)∈U
J(u1, u2, u3),

subject to the control system (5.3.2) with the initial conditions at t = 0.

Proof. To prove the existence of an optimal control we use the result in [34,110].

Note that the control and the state variables are nonnegative values. In this mini-

mizing problem, the necessary convexity of the objective functional J is satisfied.

The set of all the control variables (u1, u2, u3) ∈ U is also convex and closed by def-

inition. The optimal system is bounded which determines the compactness needed

for the existence of an optimal control. In addition, the integrand in the functional

(5.3.3), A1E(t) + A2I(t) + A3Nv(t) + 1/2(B1u
2
1 + B2u

2
2 + B3u

2
3) is convex on the

control set U . Also we can easily see that, there exist a constant ρ > 1 and positive

numbers ω1, ω2 such that

J(u1, u2, u3) ≥ ω1(|u1|2 + |u2|2 + |u3|2)ρ/2 − ω2,

because, the state variables are bounded, which completes the existence of an

optimal control. �

In order to find the optimal solution we apply the Pontryagin’s Maximum Prin-

ciple [111] as follows:

If (x, u) is an optimal solution of an optimal control problem, then there exists a non

trivial vector function λ = (λ1, λ2, ........, λn) satisfying the following inequalities.

dx

dt
=

∂H(t, x, u, λ)

∂λ
,

0 =
∂H(t, x, u, λ)

∂u
,

dλ

dt
= −∂H(t, x, u, λ)

∂x
.

(5.4.2)

Pontryagin’s Maximum Principle provides the necessary conditions for an optimal

control problem. This principle converts (5.3.2), (5.3.3), and (5.3.4) into a prob-

lem of minimizing point-wise Hamiltonian H, with respect to the control variables
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(u1, u3, u3). We, now derive the necessary conditions that optimal control functions

and corresponding states must satisfy. In the following theorem, we present the ad-

joint system and the control characterization by applying the necessary conditions

to the Hamiltonian H.

Theorem 5.4.2. Given an optimal control u∗ = (u∗1, u
∗
2, u3∗) and a solution y =

(Sh, Eh, Ih, Rh, Sv, Ev, Iv) of the corresponding optimal control problem (5.3.2)-

(5.3.3). Then there exists adjoint variables λi, i = 1, ..., 7 satisfying

dλ1(t)

dt
= (λ1 − λ2)

(
β1(1− u1)Ih + β2(1− u2)Iv

)
+ µhλ1 − cλ1,

dλ2(t)

dt
= −cλ1 + αh(λ2 − λ3) + µhλ2 − A1,

dλ3(t)

dt
= −cλ1 + β1(λ1 − λ2)(1− u1)Sh + γh(λ3 − λ4) + (δh + µh)λ3

+β3(λ5 − λ6)(1− u2)Sv − A2,

dλ4(t)

dt
= −cλ1 + µhλ4,

dλ5(t)

dt
= −b2λ5(1− u3) + β3(λ5 − λ6)(1− u2)Ih + µvλ5 + r0λ5u3 − A3,

dλ6(t)

dt
= −b2λ5(1− u3) + αv(λ6 − λ7) + µvλ6 + r0λ6u3 − A3,

dλ7(t)

dt
= β2(λ1 − λ2)(1− u2)Sh − b2λ5(1− u3) + (µv + δv)λ7 + r0λ7u3 − A3.

(5.4.3)

with transversality conditions (or boundary conditions)

λi(T ) = 0, i = 1, 2, ..., 7. (5.4.4)
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Furthermore, the control functions u∗1, u∗2, and u∗3 are given by

u∗1 = max{min{R1, 1}, 0}, (5.4.5)

u∗2 = max{min{R2, 1}, 0}, (5.4.6)

u∗3 = max{min{R3, 1}, 0}, (5.4.7)

where

R1 =
β1(λ2 − λ1)S

∗
hI

∗
h

B1

,

R2 =
β2(λ2 − λ1)S

∗
hI

∗
v + β3(λ6 − λ5)S

∗
vI

∗
h

B2

,

R3 =
b2λ5N

∗
v + r0(λ5S

∗
v + λ6E

∗
v + λ7I

∗
v )

B3

.

Proof. To determine the adjoint equations and the transversality conditions we

use the Hamiltonian H in equation (5.4.1). The adjoint system results from the

Pontryagin’s Maximum Principle [111].

dλ1(t)

dt
= − ∂H

∂Sh

,
dλ2(t)

dt
= − ∂H

∂Eh

, ....,
dλ7(t)

dt
= −∂H

∂Iv

with λi(T ) = 0, i = 1, 2, 3, ..., 7

To get the characterization of the optimal control given by (5.4.5)- (5.4.7),

solving the equations,

∂H

∂u1
= 0,

∂H

∂u2
= 0 and

∂H

∂u3
= 0,

on the interior of the control set and using the property of the control space U , we

can derive the desired result (5.4.5)-(5.4.7). �

The system (5.4.3) is obtained by differentiating the Hamiltonian function, eval-

uated at the optimal control. Here, we call formulas (5.4.5)-(5.4.7) for u∗ the

characterization of the optimal control. The optimal control and the state are

found by solving the optimality system, which consists of the state system (5.3.2),

the adjoint system (5.4.3), initial conditions at t = 0, boundary conditions (5.4.4),

and the characterization of the optimal control problem (5.4.5)-(5.4.7). To solve

the optimality system we use the initial and transversality conditions together with
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the characterization of the optimal control (u∗1, u∗2, u∗3) given in (5.4.5)-(5.4.7). In

addition, the second derivatives of the integrand with respect to u1, u2 and u3,

respectively, are positive, which shows that the optimal problem is minimum at

controls u∗1, u∗2 and u∗3. By substituting the values of u∗1, u∗2 and u∗3 in the control

system (5.3.2) we get the following system

dS∗
h

dt
= b1 + cN∗

h − β1S
∗
hI

∗
h(1−max{min{R1, 1}, 0})

−β2S∗
hI

∗
v (1−max{min{R2, 1}, 0})− µhS

∗
h,

dE∗
h

dt
= β1S

∗
hI

∗
h(1−max{min{R1, 1}, 0})

+β2S
∗
hI

∗
v (1−max{min{R2, 1}, 0})− αhE

∗
h − µhE

∗
h,

dI∗h
dt

= αhE
∗
h − γhI

∗
h − µhI

∗
h − δhI

∗
h,

dR∗
h

dt
= γhI

∗
h − µhR

∗
h,

dS∗
v

dt
= b2N

∗
v (1−max{min{R3, 1}, 0})− β3S

∗
vI

∗
h − µvS

∗
v

−r0max{min{R3, 1}, 0}S∗
v ,

dE∗
v

dt
= β3S

∗
vI

∗
h − αvE

∗
v − µvE

∗
v − r0 max{min{R3, 1}, 0}0}E∗

v ,

dI∗v
dt

= αvE
∗
v − µvI

∗
v − δvI

∗
v − r0 max{min{R3, 1}, 0}I∗v ,

(5.4.8)
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Table 5.1: Parameter values used in the numerical simulations to the optimal

control

Notation Parameter description Value

δv Disease-induced death rate for mosquitoes vector negligible.

µh Natural death rate of humans host. 0.0000409

γh Recovery rate for humans host. 0.1428

µv Average lifespan of mosquitoes vector. [4, 14]

b1 Recruitment rate of humans host. 2.5

δh Disease-induced death rate for humans host. 10−3

αh Progression rate from Eh to Ih class. (0, 1)

with H∗ at (t, S∗
h, E

∗
h, I

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v , u

∗
1, u

∗
2, u

∗
3, λ1, λ2, λ3, λ4, λ5, λ6, λ7):

H∗ = A1E
∗
h + A2I

∗
h + A3N

∗
v + 1

2

(
B1(max{min{β1(λ2 − λ1)S

∗
hI

∗
h

B1

, 1}, 0})2

+B2(max{min{β2(λ2 − λ1)S
∗
hI

∗
v

B2

, 1}, 0})2

+B3(max{min{b2λ5N
∗
v + r0(λ5S

∗
v + λ6E

∗
v + λ7I

∗
v )

B3

, 1}, 0})2
)
+ λ1

dS∗
h

dt

+λ2
dE∗

h

dt
+ λ3

dI∗h
dt

+ λ4
dR∗

h

dt
+ λ5

dS∗
v

dt
+ λ6

dE∗
v

dt
+ λ7

dI∗v
dt
.

(5.4.9)

To find out the optimal control and state, we will numerically solve the above

systems (5.4.8) and (5.4.9).

5.5 Numerical results and discussion

In this section, the optimality system is solved using Runge-Kutta fourth order

scheme. We, show the numerical simulations of the impacts of the optimal control
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strategies on a vector borne disease transmission. The optimal strategy is obtained

by solving the state system, adjoint system and the transversality conditions. In our

numerical simulation, first we start to solve the state equations (5.3.2) using Runge-

Kutta fourth order forward in time with a guess for the controls over the simulated

time. Then, using the current iteration of the state equations, the adjoint equations

in the system (5.4.3) are solved by a backward method with the transversality

conditions (5.4.4). We update the controls by using a convex combination of the

controls in the previous iteration and the value from the characterizations of the

systems (5.4.5)-(5.4.7). This process is repeated and iterations are stopped if the

values of unknowns at the previous iteration are very close to the ones at the present

iteration [84]. We may also refer the readers to see [34] such iterative algorithms

for more detail.

Parameter values used in the numerical simulations are estimated based on a

dengue disease as given in Table (5.1). The values of some of the parameters in

the model are dictated by reality, e.g. the death rates of the human host and

mosquito vector, the duration of the infectious period in the humans host, disease

induced death rate of human host and mosquito vector, etc. Other parameters

are arbitrarily chosen with b2 = 0.045, β1 = 0.0004, β2 = 0.0006, β3 = 0.009,

and αv = 0.042. For illustration purpose, we consider the parameters values in

Table 4.1 for numerical simulation. When viewing the graphs, remember that each

of the individuals without control is marked by un-dashed lines. The individuals

with control are marked by dash-dotted lines. The weight constant values in the

objective functional are A1 = 0.008, A2 = 0.001, A3 = 0.004, B1 = 100, B2 = 50

and B3 = 100.

Figure (5.1), represents the population of susceptible, exposed, infected and

recovered individuals (human) in two systems, (5.3.1) without control and (5.3.2)

with control. The solid line denotes the population of individuals in the system

(5.3.1) without control while the dotted line denotes the population of individuals

in the system (5.3.2) with control. The population of infected individuals with

control is more sharply decreased after 6 days than the individuals without control.
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Figure (5.2) represents the population of susceptible, exposed, infected and the

total vector in the two systems (5.3.1) without control and (5.3.2) with control.

The population of susceptible vector with control is more sharply decreased than

without control and becomes very small. The population of exposed and infected

vector with control is more sharply decreased than the vector population without

control. Figure (5.3) represent the optimal controls u∗1, u∗2 and u∗3. The control

vanishes in day 30 and there remains a very small number of susceptible, exposed

and infected vector.
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Figure 5.1: The plot represents population of susceptible, exposed, infected and

recovered human host both with control and without control.
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Figure 5.2: The plot represents population of susceptible, exposed, infected and the

total number of mosquito vector both with control and without control.
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Figure 5.3: Optimal controls given by (5.4.5)-(5.4.7).

5.6 Conclusions

A comprehensive, continuous model for the transmission dynamics of a vec-

tor borne disease has been presented. We sought to determine control strategies

that would minimize not only the exposed, infected human host, and susceptible,

exposed, infected mosquitoes (vector) but also the cost of implementation of the

control as well. An optimal control strategy has been presented. Our model in-

corporates three types of control measures associated with blood donor screening,

personal protection and the vector reduction strategies. We analyzed the optimal

control using the objective functional J in terms of quadratic forms. Minimizing

the cost we obtained the optimal controls u1, u2 and u3 where J was minimized.

Using Pontryagin’s Maximum Principle the control system is analyzed to deter-

mine the necessary conditions for existence of an optimal control. Using the state

and adjoint system together with the characterization of the optimal control, we

solved the problem numerically via a numerical method. A comparison between

optimal control and without control dynamics is presented. It is easy to see that
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the optimal control has a very desirable effect upon the population for reducing

number of exposed and infected humans host population and the total number of

mosquitoes vector population. In order to illustrate the overall picture of the dis-

ease, the numbers of exposed, infected human population and susceptible, exposed,

infected mosquito population under the optimal control and without control are

shown in figures. The results indicates that preventive practices are very effective

in reducing the incidence of infectious hosts and vectors.

5.7 Areas of possible improvement to our model

Our present model does not consider some other factors listed below which may

influence the spread of vector borne disease. These factor(s) when properly in-

corporated in the model, may provide a better understanding of the transmission

dynamics of vector borne disease and its control.

• Climate change: The impact of climate change on the transmission dy-

namics of vector borne diseases. This allows us to investigate the relationship

between the spread of vector borne diseases and climate change.

• Partial immunity to reinfection: In malaria infection, it is a commonly

observed phenomenon for the recovered individuals to reinfection. In order to

have more accurate representation of the dynamics of a vector borne disease

in the society, our model could be improved to include partial immunity to

reinfection in order to describe the transmission dynamics of malaria with

reinfection in the recovered humans.

• Vaccination: It is expected that any future vector borne disease vaccine

would be imperfect (that is, it would not offer 100% protection against infec-

tion in all people). This will allow us to study, via mathematical modeling,

the potential impact of an imperfect vector borne disease vaccine. So the

model could be extended to incorporate an imperfect vaccine against a vec-

tor borne disease.
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