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Abstract

Medical coding works by assigning standardized medical codes to clinical records’ di-

agnoses, prognoses, and prescriptions. These codes are necessary for accurate medical

billing and claims processing, both of which are vital for sustaining effective revenue

cycles. Computer Assisted Coding (CAC) automates the process of assigning medical

codes, with the aid of the Artificial Intelligence (AI) model. Despite the extraordinary

results, there are certain limitations. These AI models rely on training data and collapse

because they lack domain-specific knowledge, which results in false-positive predictions

or just no predictions at all. Apart from this, the users’ ability to trust these AI ap-

plications is also hampered by the black-box nature of deep learning models. Even

the explainable attention mechanism is unable to explain its certain predictions. These

limitations can be addressed with the consolidation of Symbolic AI with deep learning

leading to explainable and trustable predictions with an overall increase in accuracy.

The hybrid AI approach has a number of benefits, but creating knowledge graphs—the

brain behind symbolic AI—is a laborious process. Thus, I have automated the construc-

tion of knowledge graphs using a few processes that include Data preprocessing, ontology

mapping, concept enrichment, and Neo4j knowledge graph creation. Additionally, I have

suggested two distinct NeuroSymbolic AI approaches to get around some of the deep

learning’s drawbacks. The first approach “Domain-specific knowledge infusion” enriches

the medical terms leading to an overall increase in classification accuracy of nearly 81%.

The second approach of “Explainable Deep Learning Predictions” explains the attention

mechanism results by visualizing the word-to-word and word-to-code level connections

with an accuracy of 64% and 53%. This research is novel as the knowledge graph cre-

ation in few and easy steps has not been done before. Additionally, it is the earliest

study on knowledge graphs for explainability and domain-specific knowledge infusion to

medical coding.
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Chapter 1

Introduction

Medical Coding is the process that aids in billing and claim generation. Diagnosis,

prognosis, prescriptions, and medical notes are all converted into alphanumeric codes

through medical coding. This coding approach safeguards patient data while liberat-

ing insurance companies, hospitals, and governmental organisations from struggling to

analyse lengthy discharge summaries [26]. These codes are from the Healthcare Stan-

dard Procedure Coding System (HSPCS), Current Procedural Therapy (CPT), or the

International Classification of Diseases (ICD) [8].

Medical code assignment is a labour-intensive, time-consuming, and manual task. It

requires the expertise of medical coders to assign standardized medical codes. Also,

erroneous and flawed codes are a significant cause of lost revenue. An estimate states

that four out of every five codes are incorrect [16], which is a huge loss for all parties in-

volved [25]. Researchers have been particularly interested in Automated Medical Coding

(AMC), also known as Computer-Assisted Coding (CAC), in which the human assign-

ment of codes has been made automatic with the use of Artificial Intelligence (AI) and

its subfields Deep Learning (DL) and Machine Learning (ML) [26]. These AI techniques

commence the production of codes without human intervention after training models

using manually annotated data.

Due to their superior and reliable performance and pattern recognition nature, Deep

Learning models are the focus of interest for these CAC problems [35]. Hierarchical At-

tention Networks (HAN) [14], Convolutional Neural Networks (CNN), Recurrent Neural

Networks (RNN), Long Short-Term Memory (LSTM) [2], Bidirectional Encoder Repre-

sentations from Transformer (BERT) [18], etc [48]. are some models that have performed
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Chapter 1: Introduction

incredibly well. Discharge summaries are used as input by these trained models, produc-

ing medical codes as suggestions for medical coders. Even if these codes are incorrect,

they can simplify the process of assigning codes by pointing to the appropriate blocks

and portions of the coding structure [17].

CAC models perform precisely and accurately. However, there are several restrictions

that deep learning cannot overcome. These problems stem from DL models’ reliance on

training data. Automated Medical Coding is a multi-label classification problem, and

the models it uses are trained for specific medical conditions such as diabetes, COVID,

hypertension, stroke, etc. These models don’t work or give out misleading positive

findings if any notion is from another domain.

The Deep Learning Black-box models’ inability to explain predictions is another obsta-

cle [46]. The Deep Learning models are complex and challenging to understand. The

inclusion of an attention mechanism is a recent innovation. This mechanism highlights

the keywords during decoding that were saved in the encoding process. The relation-

ship between these elevated words and the outcomes is still unclear. As a result, the

proposed explainable system cannot be explained. Models’ "black-box" nature makes it

difficult to explain how they operate within. By combining two distinct artificial intelli-

gence approaches—one pattern-based and the other rule-based—these limitations can be

overcome. The combination of Symbolic AI and Deep Learning may be used to improve

classification accuracy and produce results that are comprehensible and reliable.

Symbolic AI was the first wave of AI where humans’ nature of learning symbols and

eventually making decisions on the rules was utilized. Knowledge Graphs (KG) are

called the brains behind symbolic AI which contains hundreds to thousands of triplets.

The nature of Knowledge Graphs being self-explainable can be used for the creation of

applications which will be accurate and will be explainable [57].

1.0.1 Motivation

These KG are beneficial for many purposes but their creation is an extremely difficult

and burdensome task which requires the human intervention of both medical and com-

puter experts. It is highly time-consuming and massive efforts are needed. I had thus

automated the cumbersome task of KG creation in four steps that are: Data Preprocess-

ing, ontology-based information retravel, concept enrichment, and Neo4j KG creation. I

2



Chapter 1: Introduction

had also purposed two different Neuro-Symbolic approaches by utilizing our Automated

KG creation approach, one for the sake of increasing the overall accuracy of the multi-

label classification and the second for the sake of explainability. I employed Bioportal

[5] expert-created ontologies and Mimic-III data [13] for our proposed methodologies.

Our proposed methodologies for KG creation and Neuro-Symbolic AI will pave the

paths towards the new era of AI, where the built applications will not only be accurate

but also explainable in nature. This will lead to the third wave of AI also known as

Neuro-Symbolic AI or eXplainable AI (xAI).

1.1 Problem Statement and Contribution

1.1.1 Problem Statement

• Medical coding is a manual process that has been automated in recent years,

although few models have been trained for the 10th version of the ICD, which is

now in use. ICD-10 codes are 13 times more numerous than ICD-9 codes, which

reduces the precision of AI models developed to solve CAC problems.

• The CAC model’s reliance on training data results in false positives or simply no

results. The scarcity of domain-specific knowledge reduces the accuracy of AMC

models.

• The black-box nature of Deep Learning models is causing AI applications to be

rejected. This aspect makes it difficult for consumers to develop trust in these

applications.

• The proposed Attention Mechanism does not explain the relationship and connec-

tion between highlighted words and predicted codes.

• Symbolic AI could be a solution to the challenges described above, but its con-

struction is highly difficult. Both computer and medical knowledge are required.

Manually creating the hub of hundreds to thousands of triplets ’Knowledge Graphs’

can take months to years.

3



Chapter 1: Introduction

1.1.2 Research Contributions and Novelties

• A pretrained HLAN model is fine-tuned and upgraded from ICD-9 to ICD-10 to

cover a broader problem domain.

• Automating the process of Knowledge Graph Creation by processing the discharge

summaries and mapping the concepts to expert-created BioPortal Ontologies.

• Automating the creation of queries for knowledge graph creation and visualisation.

• In order to get over some of the constraints of the multi-label classification, the

domain-specific knowledge is combined with the pretrained CAC model. Paper

presented at IBCAST Conference [58].

• Using knowledge graphs with an attention mechanism to explain how highlighted

phrases and anticipated codes are connected.

• Simplifying knowledge graphs for visualization of attention mechanism results by

providing word-to-word and word-to-code level connections.

1.1.3 Limitations

• The accuracy of the fine-tuned model with a larger problem domain is lower than

that of the pretrained model. This was entirely predictable given that I increased

the label count from 50 to 550 medical codes.

• The knowledge graphs that were created were limited to particular types of nodes

and relationships. The semantic information supplied by ontologies was used for

this. The solution could be the integration of several ontologies.

• The model predictions completely determine the results of attention-based ex-

plainability. The model’s comparable low accuracy will undoubtedly influence the

word-to-word and word-to-code level explanations.

1.1.4 Thesis Layout

Seven chapters make up the thesis. Chapter 2 discusses the background and introduces

the tools and techniques used in our suggested techniques right after the introduction.

The pertinent literature, the gaps in the prior study, and the solutions are all covered

4



Chapter 1: Introduction

in Chapter 3. In order to help the reader comprehend our own suggested and developed

ways, Chapter 4 described them in detail using graphics. The outcomes of our exper-

iments are shown in Chapter 5, and the various charts demonstrate how effective our

methods were. The topic of discussion in Chapter 6 is how novelties contribute to the

advancement of various fields. The report is concluded in Chapter 7 with a few ideas

and directions for the future.

5



Chapter 2

Domain Concepts

The thesis introduces the readers to a variety of new concepts and makes use of a

wide range of tools to further research. The terms and tools of computer science are

introduced in this chapter along with some background information. The descriptions

of many technologies and relevant subjects are provided here.

2.1 Electronic Health Records (EHR)

A digitally stored systematized collection of patient and population health information is

known as an electronic health record (EHR). The sharing of these records is possible be-

tween various healthcare facilities. EHRs may contain a variety of data, including billing

information, demographics, medical history, prescription and allergy information, im-

munization records, laboratory test results, radiological pictures, and vital signs. Figure

2.1 [36] shows a glimpse of EHR.

Electronic health records (EHRs) have been hailed as essential to raising the standard of

care for many years. Additional to patient charting, electronic health records are utilized

for other purposes. Today, physicians leverage data from patient records to enhance

quality outcomes through their care management programmes. EHR compiles all patient

demographic data into one big pool and uses it to help develop "novel treatments or

innovation in healthcare delivery," which ultimately advances healthcare aims. Clinicians

have been able to recognise and categorise individuals with chronic illnesses by combining

several forms of clinical data from the system’s health records. By using the data and

analytics to stop hospitalizations among high-risk patients, EHR can enhance the quality

6



Chapter 2: Domain Concepts

Figure 2.1: Electronic Health Record Example

of care.

EHR systems are made to accurately store data and record a patient’s state over time.

It makes it unnecessary to find a patient’s earlier paper medical records, and it helps

to guarantee that the data is current, accurate, and readable. Along with "privacy and

security," it also enables open dialogue between the patient and the physician. As there

is only one changeable file, there is less chance of data replication, which lowers the

possibility of lost documents, increases cost-effectiveness, and increases the likelihood

that the file is current [69].

2.1.1 Clinical Notes

EHRs include both structured and unstructured data. Clinical notes are a common term

used to describe the written portion of medical reports. The doctors and the rest of

the healthcare team can use them to determine the patient’s condition and treatment

options, making them the most crucial bits of information for medical professionals [31].

They serve as legal documentation for insurance and billing as well as a communication

tool for medical professionals.

7



Chapter 2: Domain Concepts

2.2 Medical Coding

The term "Medical Coding" was first used in England in the 17th century and has

gained enormous popularity ever since. As the information on illnesses, disorders, and

afflictions was gathered and arranged into numerical codes to determine the causes

and reasons for deaths, it was known as the "London Bills of Mortality." Dr William

Farr suggested a unified classification system in the late 1830s because bills and their

terminology were inconsistent. By the 1930s, this approach had developed into the

International List of Causes of Death. The World Health Organization (WHO) used

this list as the medical profession grew to measure mortality rates and for other reasons.

The International Classification of Diseases expanded this same list (ICD). In 1977, the

ICD codes underwent further development to include not only causes of death but also

illnesses and injuries [11].

Diagnoses, medical practices, services, and equipment data are transformed into al-

phanumeric codes by medical coding [8]. Medical professionals wrote the clinical notes

that include these treatments, services, and diagnoses. The appropriate businesses and

organisations use these codes to generate and produce claims and bills. Insurance firms

and governmental organisations are spared from having to read lengthy discharge re-

ports. Additionally, the patient’s private information is kept on file. Disease outbreaks,

research, mortality forecasting, ICU capacity forecasting, etc. all make use of medical

coding. A medical coder, clinical coder, diagnostic coder, or nosologist is the individual

who converts these clinical notes into codes [61].

Diagnostic and procedural coding systems are the two categories into which medical

coding is divided. The International Classification of Diseases (ICD), Current Procedu-

ral Therapy (CPT), and Healthcare Standard Procedure Coding System are the medical

codes used for billing purposes. Every year, these billing codes are changed and updated

to reflect the circumstances. These are described in further detail below:

2.2.1 Diagnostic Codes

Diagnostic codes are used in medical classification to translate patient ailments, symp-

toms, illnesses, diseases, drug effects, etc. into alphanumeric codes. ICD is the most

popular diagnostic coding system, and these codes are special types. These patients en-

8



Chapter 2: Domain Concepts

counter coding systems concentrate on particular patient encounters such as accidents,

emergencies, outpatient, inpatient, surgical care, mental health, etc. It is currently in

its 12th version after being updated annually.

For specific diagnoses, the ICD coding system has chapters and blocks. Each character

plays a significant role in the creation of these codes, which follow specific criteria. For

instance, the first character of the 10th edition of ICD codes is always a number, there

must be a dot after the first three characters, and no code may be less than three

characters. The chapter and block details for the tenth version of the ICD are displayed

in Figure 2.2 [71]. Compared to procedural codes, the number of diagnostic codes is

enormous.

Figure 2.2: ICD-10 CM structure

2.2.2 Procedural Codes

Unlike diagnostic codes, prescription codes include details about the medical care given

to specific patients. The procedure could involve a surgical procedure, medicine, lab

tests, etc. CPT, ICD-10-PCS, and HCPCS are the coding systems used for procedure

coding. They are seven-character alpha-numeric codes with rules, just like diagnostic

codes. Procedure codes contain detailed information about the procedure being per-

formed in each character.

The first character in Figure 2.3 [22], which depicts the ICD-10-PCS structure, stands

in for a section, the second for a bodily system, the third for a root action, and so

on. There are three groups of CPT codes. The most often used codes are found in

category 1, performance tracking and management codes are found in category 2, and

experimental or emergency procedures are found in category 3. There are around 10,000

CPT codes.

9
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Figure 2.3: ICD-10 PCS structure

2.3 Computer-Assisted-Coding/ Automated Medical Cod-

ing

Medical coders with degrees and expertise in this field perform medical coding. Ma-

chine learning and artificial intelligence as a whole have attracted a tonne of interest

lately. The process of medical coding known as Computer-Assisted-Coding (CAC) or

Automated Medical Coding (AMC) has been automated thanks to the usage of AI

models [54]. These systems have a user interface that takes input and transforms these

summaries into codes.

Hierarchical Attention Networks (HAN) [14], Convolutional Neural Networks (CNN),

Recurrent Neural Networks (RNN) [3], Gated Recurrent Units (GRU), Long Short-

Term Memory (LSTM) [7], and others are some of the popular models for CAC. These

models are used for multi-label classification, which involves assigning various labels or

medical codes to a single clinical note. These systems are very helpful for medical coders

because they can accept or reject model-predicted recommendations.

2.4 Hugging Face

An American business company called Hugging Face [12] develops tools for program-

mers who want to use machine learning in their applications. It is renowned for the

transformer library it provides for applications involving Natural Language Processing

(NLP). Hugging Face Hub is a platform that allows users to share datasets, pretrained
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models, demos of developed applications, etc. It is used to share code and resources for

research and development and was inspired by Github. Hugging Face currently offers

thousands of freely downloadable datasets and models.

2.5 BioPortal

Bioportal [5] is one of the largest repositories of freely available ontologies. The Bio-

Portal ontologies include a variety of features, including suggestions based on dataset

descriptions, word searching across various ontologies, annotating medical concepts with

ontology terms, and more. The hub of more than a thousand ontologies, BioPortal, has

79,636,946 mappings and 14,427,459 classes. The ontologies are available in a variety

of formats, including Comma Separated Files (CSV), Web Ontology Language (OWL),

Resource Description Framework (RDF), and Extensible Markup Language (XML).

2.6 Artificial Intelligence

Since its invention in the 1950s, artificial intelligence has been one of the most intrigu-

ing and widely used technologies [52]. John McCarthy first used the term "artificial

intelligence" at the first AI conference in 1956. Since then, there have been many im-

provements. After learning from the data, the AI model attempts to imitate human

intelligence and predict outcomes. Different kinds of AI have emerged over time [1].

Below are some details.

2.6.1 Symbolic Artificial Intelligence

From the mid-1950s to the mid-1990s, symbolic AI was a popular field [70]. It is also

referred to as the first wave of AI. The main principle of symbolic AI was that humans

begin to learn symbols in early childhood and eventually begin to use them in decision-

making. Why can’t a machine be taught to think if humans think in symbols and

machines operate in symbols? Symbols can be anything that humans in this world

can understand. It might represent an operator in mathematics, a sign, a colour, an

emotion, etc. Symbolic AI builds logic and facilitates some decision-making by using

symbols and their relationships with other symbols. Triplets or facts are other names
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for the group of symbols and relationships. The "brain" of symbolic AI is also referred

to as knowledge graphs or knowledge bases which are a hub of hundreds to thousands

of triplets.

Knowledge Graphs and Ontologies

A unique kind of graphs known as knowledge graphs are directed, labelled, and het-

erogeneous multigraphs [49]. In knowledge graphs, a triplet is a grouping of two nodes

and one relation. The triplets’ hub contains related information about a certain field.

A few examples of the domains are healthcare, finance, law, and education. Formally,

they are employed to depict the semantics of a few domain ideas. The semantics of

COVID-19 are displayed in the knowledge graph as shown in Figure 2.4. It displays

the signs, variations, and traits of COVID. What are the symptoms of COVID-19, for

example? can be answered using these knowledge graphs or knowledge bases [28].

Figure 2.4: COVID-19 Knowledge Graph. This Knowledge base can be used to answer

certain questions such as: What are the symptoms of COVID-19?

Ontologies are generalised data models as opposed to knowledge graphs. It implies that

they are aware of classes, how they relate to one another and their characteristics. They
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don’t include any precise information about words, ideas, or objects. For instance, the

information "Casper is Roger’s pet dog. He barks whenever he encounters an unfamiliar

person. He enjoys eating meat”. This information can be shown in a knowledge graph,

however, for ontology, it will be "Individual has a pet dog. Dog will bark when it sees

an unfamiliar person. Dog enjoys eating meat”. These ontologies are useful resources

for building a particular knowledge graph.

2.6.2 Deep Learning

Lapa and Alexey Ivakhnenko began their study towards creating the learning algorithm

in 1967. A functional supervised, deep, multilayer preceptrons was published by them.

Kunihiko Fukushima introduced other comparable designs for computer vision in 1980.

Rina Dechter initially introduced the phrase "Deep Learning" to the machine learning

field in 1986. In 1989, Yann LeCun applied a standard backpropagation technique that

required three training days. Similar to this, Wei Zhang independently used backpropa-

gation in 1988 on a convolutional neural network for alphabets recognition. In the early

1990s, similar studies on breast cancer diagnosis and medical image segmentation were

conducted [72].

Figure 2.5: Deep Neural Network

Today’s most popular technology is deep learning. Compared to the conventional sym-

bolic AI technique, it has a number of benefits. Instead of developing rules, it uncovers

patterns from data pixel by pixel and bit by bit. It gives the machine the intelligence
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to forecast outcomes for unobserved data, something symbolic AI cannot do. It has

a variety of layers, including input, hidden, and output layers. Numerous neurons are

found in each of these levels. A deep neural network, is made up of several hidden layers.

The deep neural network’s structure is depicted in Figure 2.5 [44], where the circles rep-

resent neurons and the lines represent the connections between them. Each layer has a

unique activation function that is utilised to carry out calculations and make subsequent

judgements. The sigmoid, RELU, Tanh, and other activation functions could be used.

Attention Mechanism

One of the most ground-breaking ideas in recent years is the Attention Mechanism. It

functions according to how people pay attention to different stimuli and objects. For

instance, we observe dark hues and large text in advertising, as well as the title on books

or newspaper covers, etc. The attention Mechanism was proposed as an improvement to

the traditional encoder decoder of machine translation in neural networks. Although it

was designed for NLP tasks, its variant also functions for speech processing and computer

vision applications.

Figure 2.6: Attention Mechanism. The machine translation highlights some words de-

picting their importance for certain predictions.

The encoder processes the input text and encodes it into a context vector in a con-

ventional encoder-decoder manner. Encoder sent the desired accurate summary to the

decoder, which transforms the input into output. Therein lies the problem; if the en-

coder’s summarization is subpar, the outcomes will suffer. When the input sentences are

lengthy, this issue gets much worse. Additionally, recurrent neural networks are unable
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to retain so lengthy information. Accordingly, performance declines with lengthier in-

puts [10]. Although an LSTM is intended to better capture the long-range dependency

than an RNN, it can occasionally overlook certain details. Another issue is that, when

translating the text, there is no method to assign some input words greater weight than

others.

Bahdanau [9] proposed a straightforward yet elegant idea, saying that each input word

should be given a certain amount of relative value in addition to being taken into consid-

eration by the context vector. Therefore, the suggested model looks for a set of points

in the encoder’s hidden states where the most pertinent information is present every

time it generates a phrase. This concept is known as "Attention". Figure 2.6 shows the

abstract working of the Attention Mechanism.

Hierarchical Attention Network

The Hierarchical Attention Network (HAN) functions in a manner comparable to how

a human understands information, particularly documents. Even if we don’t recognize

many of the words in a sentence, we begin to read the words and form sentences. The

same applies to paragraphs before moving on to documents.

As a result, the HAN operates under the principle that "Words make sentences, and

sentences make documents." Its structure includes an attention mechanism and a hier-

archy. The premise is that not all words in a sentence are equally essential, so attention

is paid to both the word and sentence levels.

A hierarchical attention network is made up of bidirectional RNNs that take into account

the context of each sentence or document before applying the appropriate attention,

which highlights specific words and sentences to show how they relate to the prediction.

The concept of classifying documents or texts was introduced by Zichao Yang in a study

titled "Hierarchical Attention Networks for Document Classification" [14] published in

2016. Given that explainability was included, this concept represented a significant

advancement in the classification fields. Figure 2.7 [21] depicts how HAN operates

internally.
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Figure 2.7: Hierarchical Attention Networks

Bidirectional Encoder Representations from Transformers (BERT)

An innovative approach for Natural Language Processing (NLP) called BERT (Bidi-

rectional Encoder Representations from Transformers) was developed by Google AI

Language researchers and publicly released at the end of 2018 [18]. Because of its out-

standing performance, BERT was an instant hit in the Deep Learning community.

Prior to BERT, a language model would either look at the text sequence from left to

right during training or from a combination of left to right and right to left. For creating

sentences, this one-directional method works well. We may anticipate the subsequent

word, add it to the sequence, and then predict the subsequent word until we have

a complete sentence. BERT, a bi-directionally trained language model, now joins the

conversation (this is also its key technical innovation). As opposed to the single-direction

language models, we can now perceive the context and flow of language more deeply.

BERT employs a cutting-edge method called Masked LM (MLM), which randomly

masks words in the phrase before attempting to predict them. This method is used
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in place of traditional word prediction. When a word is "masked," the model uses both

left and right surrounds, as well as both directions of the sentence, to anticipate the

hidden word. It considers the previous and following tokens simultaneously, in con-

trast to earlier language models. This "same-time portion" was absent from the existing

combined left-to-right and right-to-left LSTM-based models. (BERT may be more ac-

curately described as non-directional.)

BERT is dependent on a Transformer (the attention mechanism that learns contextual

relationships between words in a text). An encoder to read the text input and a decoder

to create a prediction for the task make up a basic Transformer. Since the objective

of BERT is to produce a language representation model, just the encoder portion is

required. A series of tokens that are first transformed into vectors and then processed

by the neural network makes up the input to the BERT encoder. However, BERT

requires the input to be modified and embellished with additional metadata before

processing can begin. Token embeddings: At the start of the first sentence, a [CLS]

token is added to the input word tokens, and at the conclusion of each sentence, a [SEP]

token is added. embeddings of segments: Each token receives a marking designating

Sentence A or Sentence B. Because of this, the encoder can tell which sentences are

which. Positional embeddings: Each token is given a positional embedding to show

where it belongs in the sentence. Figure 2.8 [32] shows the working. The next word in

the sentence is not attempted by BERT. Two tactics are employed during training.

Figure 2.8: Bidirectional Encoder Representations from Transformers (BERT) Working

Masked LM (MLM): BERT runs the full sequence through the attention-based en-

coder before predicting only the masked words based on the context provided by the

other non-masked words in the sequence. BERT then randomly masks off 15% of the

words in the input, substituting them with a [MASK] token. This naive masking strat-
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egy has a drawback in that the model only attempts to predict the correct tokens when

the [MASK] token is present in the input when what we really want is for the model to

attempt to predict the proper tokens regardless of which token is present in the input.

To address this problem, the following 15% of the tokens were chosen for masking. The

token [MASK] actually replaces 80% of the other tokens. 10% of the time, a random

token is used to replace a token. Tokens are unaltered 10% of the time. The BERT

loss function ignores the prediction of the non-masked tokens during training and only

takes into account the prediction of the masked tokens. As a result, the model converges

significantly more gradually than right-to-left or left-to-right models. Next Sentence

Prediction (NSP): The BERT training procedure additionally makes use of the next

sentence prediction to comprehend the relationship between two sentences. When doing

activities like answering questions, a pre-trained model with this kind of expertise is

useful. The model learns to predict whether the second sentence is the next one in the

original text when given pairs of sentences as input during training.
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Literature Review

Knowledge graphs, a rich semantic resource have several benefits. Yet, its creation is

extremely difficult and laborious. There have been some advancements in its creation

but total automation or automatic creation in few and easy steps are not done before.

Knowledge graphs with a bundle of information can be procured for overcoming several

limitations but their use have been remain restricted. Similarly, knowledge graphs in

nature are explainable but their essence has not been used for the sake of results inter-

pretation. I have proposed three different methodologies to overcome these limitations.

The related work below shows the limitations of the research done before.

3.1 Knowledge Graph Automation

Knowledge Graphs have become a popular research area due to their several advantages

over standard relational databases and deep learning models. They are useful in a

variety of industries, including business, law, education, finance, and healthcare. They

have been a fascinating area of study order domain as well [68]. The hub of triplets can be

utilised to provide answers to a variety of queries and aid in the efficient administration

of various data sources [28].

Despite their impactful significance, their creation is extremely difficult and limited as

they need the collaboration of multidisciplinary teams. Besides, manual construction is

extremely laborious and time-consuming as computer experts have to create hundreds

to thousands of triplets. A manual effort was done for KG creation using the Influenza

use case [42]. Data was collected from different sources such as Immport, ImmuneSpace,
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Reactome, and the Center for disease control and prevention (CDC).

Table 3.1: Knowledge Graph Creation Research with Limitations.

Authors Year Dataset Limitations

Hofmann, Alexandra

and Perchani [15]

2017 Multiple small knowl-

edge graphs

Manual Creation of

Knowledge Graph us-

ing structured data

Wu, Tianxing and

Wang, Haofen and Li

[39]

2020 Multiple Encylope-

dias

Manual Creation of

Knowledge Graph us-

ing structured data

Bukhari, Syed Ahmad

Chan and Pawar [42]

2021 Reactome, (CDC),

Immport, ImmuneS-

pace

Manual Creation of

Knowledge Graph us-

ing structured data

Jozashoori, Samaneh

and Vidal[23]

2019 Online data sources Semi-automated Cre-

ation of Knowledge

Graph

Wang, Qingyun and

Li, Manling and

Wang [38]

2020 Biomedical Knowl-

edge in Literature

Semi-automated Cre-

ation of Knowledge

Graph

Cheng, Binjie and

Zhang, Jin and Liu

[43]

2021 Crowd-sourcing web-

site data

Semi-automated Cre-

ation of Knowledge

Graph

Malik, Khalid Mah-

mood and Krishna-

murthy [33]

2020 Inhouse Built ontol-

ogy (ICO), Stroke-

related Literature,

BioPortal Ontologies

Multiple Complex

steps

Knowledge Graphs can also be created by combining various data sources, allowing for

the early stages of data cleansing to be skipped for the creation of a comprehensive KG.

In order to locate and fetch intricate and unknown biological relations because humans

are unable to understand that much knowledge at once, data from several sources was

combined for KG development. Small knowledge graphs were combined manually to

produce a vast and rich knowledge base [15]. Similar to this, authors [23] developed a
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rule-based mapping framework called "MapSDI" to combine various data sources and

semantically enhance the data.

To facilitate the development of Knowledge Graphs and to utilise them for various

purposes, some semi-automated methods have been suggested. Knowledge extraction

and knowledge linking are the two main elements of the technique presented by Wu,

Tianxing and Wang [39]. Two core modules, Regular Extraction and Live Extraction

were proposed. Live extraction only detects fresh and updated articles, whereas the

regular extraction sub-module seeks and downloads articles over several stages/time

periods. By employing entity matching, the knowledge-linking module locates duplicate

entities. Several encyclopedias were combined to create Knowledge Graph.

Similar to this, a thorough knowledge discovery framework known as COVID-KG was

created to extract chemical structures and correlations between concepts utilising per-

tinent biomedical knowledge from scientific literature. Wang, Qingyun and Li [38] used

the drug repurposing use case to extract chemical structures and relationships between

concepts. She also acquired biomedical information from the literature. For the aim of

answering questions, this framework was utilized.

A semi-automated methodology was used to create the stroke-related Knowledge Graph

[43]. KG was developed by constructing a dictionary and ontology of stroke disease

using crowd-sourcing website data and standard medical term sets. The nodes were

next connected to external data by identifying similarities with entities.

The proposed approaches are useful but still total automation has been an unaccom-

panied task. Malik, Khalid Mahmood and Krishnamurthy [33] tried to automate the

creation process with multiple steps and layers such as Semantic Knowledge Layer, sta-

tistical Knowledge layer, knowledge factory layer, and knowledge factory layer. Relevant

ontologies from BioPortal and self created Intracranial aneurysm ontology (ICO) was

used for Graph creation.

Above mentioned approaches are useful but still, a lot of them have put effort into

manual creation and a lot of time is consumed. Semi-automated approaches also require

human intervention and testing. Even for the case of total automation, the proposed

approach is difficult as it is comprised of multiple layers. Most of these approaches

relied on simple or limited data, which is not the true nature of Knowledge Graphs. Our

approach of ‘ Automated Knowledge Graph creation’ is easy and simple to implement
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as it contains four simple steps of Natural Language Processing, Ontology mapping,

Concept Enrichment, and Neo4j Knowledge Graph Creation. It also contains enriched

information from multiple expert-created ontologies. It overcomes the above-mentioned

limitations.

3.2 NeuroSymbolic AI Approaches

Two alternative NeuroSymbolic AI approaches were what we had suggested. Both

Domain-Specific Knowledge Infusion and Knowledge Graph-based Explainable Predic-

tions fall under this category. The pertinent literature is listed here, along with any

downsides.

3.2.1 Domain-specific Knowledge Infusion

Computer Assisted Coding (CAC) is used to automate the medical billing process and

save medical coders time and effort. Computer Assisted Coding (CAC) or Automated

Medical Coding (AMC) fall into the category of Multi-label classification. For one clinical

note, there are various codes or labels available. The Multi-label classification models

are trained on a more condensed sample, such as the top-20 or top-50 codes. As a result,

they are limited in scope and cannot be generalized. The accuracy of these classification

models has also drawn the attention of researchers.

Convolutional Neural Network (CNN) was employed with an attention mechanism for

the creation of an explainable clinical decision support system (DSS) [67]. Spanish

corpus was used as a training dataset. The confidence and F-1 score were calculated on

the top 50 or top 100 codes as the wider problem domain performed poorly.

The hierarchical label-wise attention Transformer model (HiLAT) [59] was presented

for the explainable prediction of medical codes. To construct a code-specific clinical

note/document representation that was sent to the feed-forward neural network for

medical code prediction, a pretrained transformer model was fine-tuned and a bi-level

hierarchical label-wise attention mechanism was used. ClinicalplusXLNet was created

to perform continuous pretraining from XLNet-Base using Mimic-III data. On the top

50 codes, an F-1 score of 73.5% was obtained.

To increase the multi-label classification’s accuracy in medical a Shallow and Wide
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Attention Convolutional Mechanism (SWAM) was proposed to improve the ability of

CNN-based models to learn from local and low-level medical code features [50]. MIMIC-

III was used to put the method to the test. The results revealed that precision was

enhanced from 0% to 53% on average for the 10% lowest-performing labels. Furthermore,

the method outperformed previous results on the top 50 medical code predictions. For

explainability, the attention mechanism was introduced.

Another comparable approach was presented, in which a Hierarchical Attention Network

(HAN) was used to predict medical codes [45]. The MIMIC-III database was used to

train the model on the top 20 and top 50 ICD codes. The technique was broken down

into three layers: the embedding layer, the hidden layers, and the prediction layer. Along

with Word2vec embedding, label embedding was included, giving the system the name

Hierarchical Label-wise Attention Network (HLAN). As the name implies, the attention

mechanism was induced at both the phrase and word levels. With the addition of label

embedding, overall accuracy improved by nearly 1-2%, as measured by the F-1 score.

A similar approach of a transformer-based architecture called "TransICD" [41] was pro-

posed to discover label interdependence, and a code-wise attention mechanism was used

to learn the code-specific representation of the clinical note or document. The authors

used the label distribution aware margin (LDAM) loss function to deal with the code

frequency imbalance in the dataset. Mimic-III was procured, and an F-1 score of 64.4%

on the top 50 labels was obtained.

For knowledge infusion, an approach known as "G-coder" was put forth, in which MIMIC-

III data was used to train a multi-layer CNN for the prediction of medical codes [37].

In addition to this, adversarial learning and knowledge infusion were carried out. On

the top 50 codes, the model had an accuracy of 69.2%. By mapping to freebase, a tiny

knowledge graph was induced. The resulting graph has 1560 nodes and over 20,000

relationships.

All of the ideas given are useful, but there are some limits. All of these models have

been trained for a specific issue area and cannot be generalised. Furthermore, the models

are dependent on training data and cannot perform on their own. They fail because

of a lack of domain knowledge. Some recent studies attempted to infuse information,

but the knowledge injection was limited to a small portion of knowledge. By combining

domain-specific knowledge graphs with input data, our knowledge consolidation/infusion
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Table 3.2: Computer-Assisted-Coding (CAC) Research with Limitations.

Authors Year Dataset Limitations

Teng, Fei and Yang,

Wei and Chen [37]

2020 MIMIC-III Trained for top-50 codes and

dependence on training data

Dong, Hang and

Suarez-Paniagua [45]

2021 MIMIC-III Trained for top-50, top-20

codes and dependence on

training data

Biswas, Biplob and

Pham [41]

2021 MIMIC-III Trained for top-50 codes and

dependence on training data

Hu, Shuyuan and

Teng [50]

2021 MIMIC-III Trained for top-50 codes and

dependence on training data

Trigueros, Owen and

Blanco[67]

2022 Spanish cor-

pus

Trained for top-50, top-100

codes and dependence on

training data

Liu, Leibo and Perez-

Concha [59]

2022 MIMIC-III Trained for top-50 codes and

dependence on training data

technique overcomes these limitations.

3.2.2 Knowledge Graph-based Explainable Predictions

Explainability is a contemporary criterion that may soon become a legal requirement in

fields where human lives are at stake, such as education, healthcare, law, finance, and so

on. Transparency inclusion in black-box deep learning models necessitates mathematical

model manipulation, which necessitates professional intervention [30].

Neuro-Symbolic AI is an intriguing and rapidly emerging field of study that has attracted

a great deal of attention. It utilises two distinct AI strategies to achieve accuracy and

explainability [51]. Although the terms explainability and interpretability are frequently

used interchangeably, they have separate meanings. The ability of an AI model to

be explicit or transparent about its inner workings is referred to as interpretability,

whereas the ability of an AI model to explain its results or predictions is referred to as

explainability [47]. In this section, we will examine the many approaches developed on

the subject of Neuro-Symbolic AI, as well as the amount of explainability they provide,
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as well as their strengths and weaknesses.

Because of their nature, knowledge graphs are considered a clean data source. The

triplets’ hub contains the subject, object, and predicate. When these graphs are com-

bined with deep learning models, the results can be anticipated more precisely. Authors

[27] coupled KGs with a long-short-term memory (LSTM) model [2] to identify thy-

roid illness. On mental health data, authors [56] performed a superficial infusion of

knowledge graphs with neural networks. An automated knowledge graph-generating

approach [33] was used to create a graph based on the use case of subarachnoid haem-

orrhage. For graph generation, a dataset of 1000 summaries was obtained, along with

ensemble learning to add rupture probability as nodes.

Deep learning models are very reliant on training data. Due to a lack of domain-specific

knowledge, either no forecasts or misleading positive findings are produced. Knowledge

graphs are enriched data sources that can help with problem-solving. Knowledge was

injected both superficially and thoroughly [47] in a variety of use cases. On the one hand,

a self-supervised BERT model was given a brief infusion of domain information from

a drug-abuse ontology [18], mostly to assist the model in comprehending the context.

Shallow and deep knowledge graph infusions, on the other hand, were performed in

educational contexts in an effort to comprehend a student’s performance and identify his

or her inadequate domain knowledge regions. Certain low-level visuals were generated

for clarity in this case. Another strategy similar to process-knowledge infusion was

developed to improve the accuracy of classifiers. It made use of psychometric surveys

(PHQ-9) as well as process knowledge [64].

Some recent study on knowledge consolidation with inputs has been conducted. The goal

is to demonstrate richer knowledge through attention mechanisms in order to increase

explainability. Authors [37] presented a method called "G-coder" that combined a multi-

layer CNN with an attention mechanism. The end result was a knowledge network with

1560 nodes and over 20,000 relations that mapped the ICD-9 description to Freebase

ontology data. To make the terminology and coding results interpretable, the enhanced

knowledge network was integrated with the attention mechanism. The model predicted

the top 50 codes effectively, but the explainability remained limited to the attention

mechanism. In the study of identifying depression symptoms, a graph attention em-

bedding method was used. A psychometric questionnaire (PHQ-9) and patient-written
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text were used to generate a hypergraph, which then allowed embeddings to be created.

An Internet-Psychological Treatment (IDPT) was created by combining a bidirectional

LSTM [4] with an attention mechanism to assist people in dealing with depression while

utilizing fewer resources [53]. Attention was paid to both the node and the edge levels.

A novel concept known as "graph embedding" generates vector representations of graph

facts in a manner similar to word embedding. These embeddings may aid in the accuracy

of model outputs. Graphs and neural networks (GNN) were combined for forecasting the

risk of mental disease [60]. For the advantage of computer specialists, node embedding

and visualization were used to see the model in operation before applying it to the

prediction layer. Link prediction algorithms were utilised in a similar way to build a

drug repurposing strategy. The study established the relationship(s) between a chemical

and a specific target while preserving interpretability and transparency [55].

Knowledge graphs were employed in ways to promote explainability on rare occasions.

Researchers [24] developed a "Knowledge-aware path recurrent network (KPRN)" that

generated recommendations based on knowledge graphs. The graphs’ networks and

connections between diverse items can be utilized to understand not only user prefer-

ences but also the semantics of entities and relationships. It also produced explainable

predictions.

Finally, the papers reviewed in this section coupled knowledge graphs with either ma-

chine learning models or deep learning techniques. They have a few things in common.

In the bulk of these experiments, KGs were utilized prior to model training with the

goal of either adding domain information to improve model performance or showing the

enriched knowledge as an output in the attention layer. The restricted explainability of

knowledge graphs is not their fundamental nature or goal.

Some studies [24, 40, 65], using "name entity recognition" (NER), datasets, and trained

corpora, utilised graphs to explain the results, but they were not in the medical sectors,

such as movies and music. Instead, they were in other fields. None of the aforementioned

research made an attempt to provide predictability-level explainability. None of them

used neuro-symbolic AI to explain the model’s predictions or the attention mechanisms.

Table 3.3 presents a summary of our studied approaches.
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Table 3.3: Neuro-Symbolic AI approaches with Level of explainability.

Authors Neuro-Symbolic Ap-

proach

Deep

Learn-

ing

Model

Graph-

Type

Level

of Ex-

plain-

ability

Chai, Xuqing [27] Knowledge Graph embed-

dings were employed as

training data

LSTM Knowledge

Graph

None

Gaur, Manas and

Gunaratna [56]

Shallow Infusion of

Knowledge Graphs

Neural

Network

Knowledge

Graph

None

Malik, Khalid

Mahmood and

Krishnamurthy

[33]

Emplyed Ensemble Learn-

ing and used its predica-

tions as nodes of graphs

Ensemble

Learn-

ing

Knowledge

Graph

Low

Drance, Martin

[55]

Knowledge Graph Embed-

dings were used

GNN Knowledge

Graph

Low

Sheth, Amit and

Gaur [64]

Infusion of Knowledge Neural

Network

Knowledge

Graph

Low

Lu, Haohui and

Uddin [60]

Graphs employed as input

to Neural Network

GNN Bipartite Low

Gaur, Manas and

Faldu [47]

Knowledge Graph were

used as shallow and deep

infusion

BERT Knowledge

Graph

Moderate

Wang, Xiang and

Wang [24]

Knowledge Graph embed-

dings used

LSTM Knowledge

Graph

High

Teng, Fei and Yang

[37]

Knowledge Graph + Data

Infusion

Multi-

Layer

CNN

Knowledge

Graph

Attention

Mecha-

nism

Ahmed, Usman

and Lin [53]

Knowledge Graph embed-

ding with Bidirectional

LSTM

LSTM HyperGraph Attention

Mecha-

nism
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Chapter 4

Design and Methodology

Chapter 3’s literature highlights pertinent findings and highlights the limitations in the

areas of symbolic AI and deep learning. Three strategies were put forth. The Automated

Creation of a Knowledge Graph and two Neuro-Symbolic methods are used to get over

Deep Learning’s shortcomings. I developed my own dataset and trained the model that

was applied on the approaches I suggest. Additionally, a web application is developed

for end-user comprehension.

The Chapter is set up as follows: The model’s training and dataset preparation processes

are described in Section 4.1. The Automated Knowledge Graph Creation Approach is

illustrated in Section 4.2. The proposed Neuro-Symbolic Approaches are defined in

Sections 4.3 and 4.4, and our developed web application is displayed in Section 4.5.

4.1 Dataset preparation and Model Training

4.1.1 Dataset

For the purpose of model training and technique validation, I procured different datasets.

The datasets were I2B2 (Informatics for Integrating Biology the Bedside) Challenge 2010

[6], MIMIC (Medical Information Mart for Intensive Care) [13], and Codisep (Clinical

Case Coding in Spanish Shared Task (eHealth CLEF 2020) corpus) [34]. While MIMIC

was utilized for model training and testing, Codisep and I2B2 datasets were employed

for testing and validation.

More than 40k health records of patients admitted to the intensive care units of "Beth
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Israel Deaconess Medical Center" between 2001 and 2012 are available in MIMIC, one of

the largest openly accessible databases. The 26 tables that make up MIMIC provide data

on patients’ lab results, diagnoses, demographics, and vital signs. Patients, Procedures,

Services, Lab events, ICU stays, medications, transfers, etc. are all included in the

tables. Each of these tables includes various data, including patient admittance, ICU

stay, disease diagnosis, prescribed medications, and much more.

The clinical free text note is located in the table Noteevents, which is the most crucial one

for us. These contain things like radiological reports, ECGs, and doctor’s prescriptions.

This table served as the primary training tool for our model. There is a CSV (comma-

separated values) version of each MIMIC table. The MIMIC-III database’s overview is

shown in Figure 4.1. MIMIC is originally annotated with ICD-9 Medical codes. ICD-9,

the International Classification of Diseases’ ninth revision, is no longer in use. I created

the dataset for the ICD-10 edition, which has 11 times as many codes. The step of

preparing the dataset is described in the following section.

Figure 4.1: Overview of MIMIC-III Database
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4.1.2 Dataset preparation

I searched for publicly available datasets for ICD-10 but there is no source for them. The

codisep dataset has ICD-10 annotation but there were few discharge summaries, and also

I analyzed wrong annotations too. By wrong annotations, I mean that the annotated

code was not present in the ICD-10-cm library. Hugging Face is an AI community that

contains hundreds to thousands of datasets and models [12]. I procured an already-

trained clinical BERT [66] for annotation of the MIMIC-III dataset with ICD-10 codes.

Figure 4.2: Dataset Preparation

With excellent outcomes, the transformer model was trained on a sizable corpus. Uti-

lizing a real medical coder, I tested the outcomes of this model. The medical coder

gave these outcomes a really good rating. The problem of scalability was the motivation

behind not using this model for predictions. For large summaries, the BERT model was

not scalable in terms of output. This problem served as a barrier and constraint in the

development of an explainable medical code prediction application.
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I used a pre-trained BERT and an algorithm to automatically annotate the MIMIC-III

summaries. Our code was programmed to skip the lengthy summaries and annotate the

ones it could. The MIMIC noteevents table was primarily utilized. The algorithm re-

ceived the 40k+ notes for annotation. The dataset’s creation and annotation took more

than an hour. The dataset was created in the format of “summary__label__code1

code2 code3”.

The trained model might yield some inaccurate results (codes which are not present in

ICD-10 classification). Perhaps the incorrect manual annotation is to blame. To remove

the erroneous codes, I further filtered the results using the ICD-10-cm library. After

annotation, I received nearly 5,000 summaries, with each summary receiving an average

of four codes. Nearly 22k labels were assigned to summaries, compared to 550 unique

labels. The codes weren’t specific to any one block or area of the coding hierarchy;

rather, they were generic.

4.1.3 Model Training

The majority of deep learning models were trained using the out-of-date ICD 9th version.

Since the 10th version is the one that is currently in use, I must change the predictions

to reflect this. I examined the performance of various models [20, 29, 41] and replicated

the findings for each, before selecting a baseline model called the Hierarchical Label-

wise Attention Network (HLAN) [45]. HLAN was chosen because of its predictions and

results that could be explained using the Attention mechanism. The top 20 ICD-10 and

top 50 ICD-9 codes were used to train the model. On both a word- and sentence-level,

the model was delivering explainable results using Attention Mechanism in addition to

predictions.

Instead of using ICD-9 predictions, I adjusted the model for ICD-10 code prediction.

The model was limited to making predictions for COVID-19-related notes because it

was only trained on a limited set of categories. I used 11x–27x more codes to train the

model, which can now predict almost all summaries. For much better outcomes, I used

the hierarchical structure of the medical coding system. For training purposes, about

82k ICD diagnostic codes were obtained. I was able to successfully train the model

and switch it to the ICD 10th version. 3266 summaries were used for training, 800 for

testing, and 800 for validation. Table 5.1 shows a comparison between pretrained and
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fine-tuned models.

4.2 Automated Neo4j Knowledge Graph Creation Frame-

work

It takes a lot of effort and time to create a knowledge graph [63], which calls for assistance

from humans as well as specialists in both the medical and computer science fields. There

are hundreds to thousands of triplets in a knowledge graph, and each triplet consists

of two nodes and one relation. Such a large knowledge base must be created carefully,

and manual creation is likely to contain errors. Any semantic language, including RDF,

OWL, XML, etc., could be used to create a knowledge graph. With the help of a few

simple steps, including data preprocessing, ontology-based information retrieval, concept

enrichment, and Neo4j Knowledge Graph Creation, I was able to automate the difficult

and time-consuming task of creating graphs. For the development of KG, I used the

expert-created Bioportal Ontologies. Below is a detailed definition of each step.

4.2.1 Natural Language Processing

Data from multiple medical concepts, such as diagnosis, prognosis, and prescriptions, are

included in discharge summaries. We must process the data and eliminate words that

are unnecessary for machine processing or KG creation but make sense to humans. To

perform processing, I procured a Natural Language toolkit. I used N-grams, lemmatiza-

tion, stemming, stop-word removal, sentence detection, word/token detection, and other

natural language processing techniques. The steps in relation to medical summaries are

described in more detail below.

Sentence and Word Detection

The sentences in medical notes and discharge summaries typically span multiple lines.

In order to move on, we must find sentences. It is necessary for the following data

preprocessing steps. Sentence completion with characters like ".," "?," "!" and other

punctuation marks was used for sentence detection. Figure 4.3 demonstrates how sen-

tences are created from a paragraph. Words or tokens were detected after sentences

were found. This is accomplished by using white space or other special characters, such
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as commas and brackets. The output includes some information that is necessary and

some that is not.

Stop-word Removal

The stop-word removal module eliminated extraneous and unnecessary words after the

detected words were run through it. The creation of a graph was useless with these

words. The words that were deleted included "am," "is," "a," "to," "through," I "his,"

"with," "some,", "was", etc. The filtered medical words are visible in Figure 4.3 following

stop-word removal.

Lemmatization and Stemming

Natural language processing methods like lemmatization and stemming are used to

determine a word’s root. For instance, "run" serves as the base for "ran". This improves

the results and makes them simpler to comprehend. Figure 4.3 demonstrates how the

words were reduced to their original root form. Words like "wheezing" became "wheeze,"

"rales" became "rale," and vice versa.

N-Grams

All feasible word combinations were obtained using n-grams. We must map these words

to ontologies developed by experts, therefore this step is essential. A four-node N-

gram was used. For instance, there are four words "severe," "acute," "respiratory," and

"syndrome". Together, these words make meaning; apart, they will point in opposite

ways. These words after word detection were in their n=1 form in their original sense.

When n exceeded 2, the form changed to "severe acute," "acute respiratory," "respiratory

syndrome," etc. Acute respiratory syndrome, severe acute respiratory, etc. are the forms

when n=3. Following a scenario analysis, I used N=4 because it is appropriate.

4.2.2 Ontology-based Information Retrieval

The Bioportal Ontologies were then used to map these terms. The technique was left

open-ended. It indicates that I did not limit our approach to mapping and extracting

data from a small number of ontologies. There are benefits and drawbacks to this general

33



Chapter 4: Design and Methodology

strategy. The benefit is that we have a lot of data, which makes it easier to create a

comprehensive graph. And the drawback is that the reader may become confused as

a result of the time and complexity of this vast amount of information. I used the

bioportal’s 1000+ ontologies for information retrieval.

The data that results from mapping was voluminous and includes data from various

sources and in numerous languages. These factors influence the final outcomes in some

way, but the amount of information encourages thorough knowledge graph building and

greater comprehension. Figure 4.3 displays the ontologies to which I mapped the n-

grams. Information retrieval and ontology mapping were performed using the Bioportal

REST API.

4.2.3 Concept Enrichment

Medical ontologies and enriched medical concepts can be found in Bioportal. The ontolo-

gies provide information about medical concepts such as definitions, synonyms, hierar-

chies, perLabel, etc. For instance, Figure 4.3 displays richer data around the concept of

"wheeze." The terms used to describe the symptoms included "asthmatic breath noises,"

"bronchospasm," "rhonchus," "asthmatic breathing," "stridor," "bronchospasm finding,"

"asthmatoid," "increasing exercise," "nocturnal cough," "asthmatoid wheeze," "jackson’s

sign," and "rhonchi," among others. Definitions included "a disorder characterised by a

high-pitched, whistling sound during breathing," "it results from the narrowing or ob-

struction of the respiratory airways," "it is a symptom and a finding during physical

examination," etc., and hierarchy included [’wheezing’. ’is a’, ’adverse effect’], [’wheez-

ing’. ’is a’, ’Respiratory, thoracic and mediastinal disorders], [’Respiratory, thoracic and

mediastinal disorders’, ’is a’, ’Physical health-related concept’]. In order to grasp med-

ical terminology, hierarchy is crucial. For instance, COVID is a virus, and a virus is a

type of microorganism. This results in the concept’s general meaning.

4.2.4 Neo4j Knowledge Graph Creation

For the development and presentation of our graphs, I employed Neo4j, a scalable and

potent visualization tool. Neo4j offers various visualization formats for viewing nodes

and relations. Additionally, it has tools and procedures for handling and processing

graphs. Neo4j Graph query creation was automated. Neo4j creates graphs using the
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Cypher language. The cypher language has its own rules and methods for constructing

nodes and the connections between them [19]. The use of the application of ID to nodes

is likewise subject to various limitations. These constraints were implemented, the

query building process was automated, and the process of creating the Graph was also

automated. The diagram displays a small Neo4j graph built for the "wheeze" concept.

The actual procedure of creating a query is very challenging and time-consuming. I

developed our algorithm to create triplets while adhering to the query structure.

Figure 4.3: Automated Neo4j Knowledge Graph Creation Framework

4.3 Neuro-Symbolic Approach-I

4.3.1 Problem Formulation

Deep learning models forecast with great accuracy, but they have several limits. The

models are accurate, but they rely on training data. They use training data to under-

stand patterns but are unable to predict anything out of the box. As a result, either

a false positive or no findings are obtained. This issue can be overcome by combin-

ing domain-specific knowledge Graphs with discharge summaries, allowing the model to

better analyze the data and make more accurate predictions.

4.3.2 Domain-Specific Knowledge Infusion

We understand things in everyday life based on our prior knowledge. We begin learning

at birth and create a foundation for understanding complex architectures. This indicates

that our prior knowledge aids us in understanding advanced issues. For example, a man
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went to a village and was taking some medicine. Someone sitting nearby inquired as

to why you were taking this medication. I have hypoglycemia, he said. What, the

person exclaimed. It is Diabetes Mellitus, he retorted. The question, "What is this?"

was repeated. I have sugar, is the reply. The first individual then comprehends what

this means. This suggests that in order to help someone understand the context, we

must first understand them or their degree of knowledge.

Figure 4.4: Knowledge Consolidation with Deep Learning

It’s a universal occurrence that everyone observes. I made use of this fundamental

aspect of human nature to improve deep learning models’ accuracy and get around

their drawbacks. The Knowledge Graphs are an augmented source of knowledge since

they have a wealth of connections between the information via rules or triplets. These

information-dense graphs can aid the model in comprehending the semantics of input

discharge summaries. Our system has semantically enhanced each medical term in the

discharge summary.

The HLAN model [45] was trained on the top 50 ICD-9 codes. I examined the model
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and discovered that it was incapable of producing any results for numerous discharge

summaries and, in particular, single medical concepts. It is possible that this is because

the training data was missing this information and the model is unable to grasp the

input. I consolidated the graph to assist the model in comprehending the results. For

example, the synonyms and definitions of a medical concept derived from KG can assist

the model in determining a relevant direction.

Figure 4.4 depicts the effect of KG consolidation with the deep learning model HLAN.

Prior to the incorporation of KG, the model was unable to predict any results. The

semantically enriched KG aided the model in understanding the input and producing

outputs. The illustration depicts the outcomes of the medical concept of "Severe Acute

Respiratory Syndrome" with and without knowledge graph consolidation.

4.4 Neuro-Symbolic Approach-II

4.4.1 Problem Formulation

The introduction of the Attention mechanism is one of the most recent advances in

explainability. In machine translation, the encoding and decoding system receives some

data and highlights some attention words. The question is why those terms were high-

lighted by the model. One possible reason is that they lead to the discovery/prediction

of some output. But why those specific words, and why together? Similarly, what is the

relationship between these words and their output? Unfortunately, the answer is noth-

ing. Deep learning’s black-box nature prevents it from answering such concerns. That

is, the explainable system is not itself explainable. By combining Graphs with a Deep

Learning model and attention mechanism output, I presented another neuro-symbolic

technique to bridge this explainability gap. I suggested a method to use a knowledge

graph to show word-to-word and word-to-code level connections.

4.4.2 Explainable Deep Learning Results

I used fine-tuned HLAN model for ICD-10 forecasts. The discharge summaries served

as the model’s inputs, and the projected labels or medical codes with attention results

served as the model’s output. These terms are highlighted by the model, indicating that

they all have an impact on this prediction. Yet how? Similar to how they will have
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some links if they are highlighted together. Such questions cannot be answered by deep

learning due to their complexity and black-box nature, but they can be by Symbolic AI!

I combined the HLAN model’s output data and used the automatic graph construction

method to do so. This time, the entire summary is represented via a graph rather than

just a single medical concept. Figure 4.5 shows the inputs and ontologies used in Graph

creation.

Figure 4.5: Explainable Knowledge Graph Creation Approach

Semantic Enrichment

Understanding the context and boundaries of certain words is made easier by semantics.

For our second technique, we must comprehend how the highlighted terms relate to one

another and to the predicted medical codes. The inputs for semantic enrichment were

model predict labels and words that were highlighted by an attention method. To extract

the predicted code descriptions, I made use of the ICD-10-cm package [62]. The word

and phrase detection process was skipped. Synonyms, definitions, parent / hierarchy-

level-1, parent / hierarchy-level-2, till parent / hierarchy-level-5 were added to words to

enhance their meaning. For the end user, such rich information can offer a deeper level

of explainability.

Semantic Knowledge Consolidation

The redundant synonyms, definitions, and hierarchical descriptions were removed as dif-

ferent sorts of knowledge pertinent to attention weights and description words were com-
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bined. Additionally, I divided the nodes into categories based on their kinds, such as pa-

tient_summary, medical_code, medical_code_desp_words, model_attention_words,

synonyms, definitions, parent_1, parent_2, parent_3, parent_4, and parent_5. Similar

to this, duplicate relationships and relationship kinds were eliminated. Synonyms, def-

initions, highlighted_words, description_words, parent_level_1, parent_level_2, par-

ent_level_3, parent_level_4, parent_level_5, and connected were the several kinds of

relationships.

Explainable Knowledge Graph Creation

I applied our method for automatically creating knowledge graphs. Due to the diversity

and complexity of the data, knowledge graph generation is a computationally intensive

task, with run-time creation being even more challenging. As each summary is input for

ICD-10 code recommendations in the deep learning model, a specific graph is generated

for that summary. The relationships between the graph nodes aid in our understanding

of context and semantics in general, but the ’connected relationship’ focuses specifically

on how the attention mechanism and model prediction work. In the medical billing codes

prediction, words are given attention weights based on how similar they are. By offer-

ing two different types of explainability—word-to-word connections and word-to-code

connections—I have made it easier for users to understand through graph visualization.

Word-Word Level Connection

Due to the attention mechanism, I received some highlighted words in our situation.

Why does the model highlight them together? Are these words related to one another?

What link exists between these two words? Is it appropriate for the model to highlight

them both together? because they all ultimately result in the predicted label. If they are

predicting one label, then we deduce that they must also be connected to one another.

One patient visited a doctor, for instance, after suffering a knee injury. The doctor

bandaged him up and gave him some painkillers to take. The patient then remarked,

"I also need some hair loss medicine, maybe some vitamins." That was also noted by

the physician on the same prescription. Only words with similar meanings should be

highlighted by the model. The word "hair loss" shouldn’t be highlighted in the knee

injury diagnostic code. It’s incorrect if the model behaves that way. How then should
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we evaluate that? possibly manually. Considering that deep learning cannot explain

why such words are highlighted? And why do they work together?

Symbolic AI enters the picture at this point. To unlock this nature’s mystery, I employed

symbolic AI. I mapped these terms to expert-made ontologies and retrieved the links. It

begins to make sense why the model behaved in this way, even though the linkages may

not be direct. Our method allows end-users to interpret the results by visualizing links

between them, which is the essence of symbolic AI. The strength of such connections

can be utilized to evaluate the performance of the model.

Figure 4.6: Knowledge Graph Simplified Visualization

Word-Code Level Connection

Using attention weights, the deep learning model draws attention to the words and

illustrates their significance. The model aims to convey to the user that these phrases

are interconnected and contribute to the prediction of the medical code in some way.

The questions are, is the model working correctly? If so, how does this prediction result

from these words? What association exists between the label and the words? Such
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inquiries have no solutions. Symbolic AI can provide answers to these inquiries. A

medical code’s description draws a line around its specific domain. I preprocessed the

data, applied ontologies to enrich it, and fetched relationships using words from medical

code descriptions.

4.5 Web Application

We are unable to offer our techniques and methodologies for the benefit of end users.

Not that outside of this field, but computer scientists, can understand these methods. A

web-based tool for code prediction and attention visualisation was made for the benefit

of medical coders and other relevant people. A discharge summary is entered on the

application’s first page, trained model checkpoints are called, and results are displayed

on the second page. The first page of the web application is shown in Figure 4.7, and

the second page is shown in Figure 4.8. The flask-based web application is made in

visual studio.

Figure 4.7: First/Input Page of Web Application

For the explainable visualization of attention results and medical code predictions, the

Knowledge Graphs are consolidated and other pages were added. The process of creating

a graph is quite helpful for comprehending how these deep-learning models forecast.
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Although they can aid in several diagnoses, projections, and related duties, these are

particularly difficult to understand. The knowledge graphs that were actually built for

the various summaries had, on average, 2000 nodes and 3000 relationships. They are

extremely complex and challenging for the end user to view and analyze. They will make

life extremely difficult for the medical coder rather than making the model prediction

simpler.

I employed visualization strategies to leverage Knowledge Graphs to describe the out-

comes. Certain human behaviours were considered when creating the depiction. Humans

tend to notice larger objects first, and colours can also be used to symbolize different

concepts. For instance, red denotes danger, white denotes calm, and bold results indicate

significance. These were utilized to produce the visualization.

Figure 4.8: Second/Output Page of Web Application

I used user-entered terms and codes to query the graph and retrieve results. The links

between them were all shown in the results, and users may limit their view to only

direct or strong connections. You can see from the approach diagram that the trinity

library was used to query the actual graph using Cypher. Using the kglab library, a

basic visualization was created. The shortest path was determined using a variety of

path detection techniques, including Neo4j’s depth-first search and breath-first search

algorithms. The diversity of generated graphs caused these algorithms to perform poorly.

In order to obtain the findings, I used basic Cypher functions. This application will soon

be finished and the results will be reported in a journal paper. The entire application

flow and results are ready. Figure 4.6 provides an overview of this Knowledge Graph

simplification for word-to-word and word-to-code level connections.
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Implementation and Results

This chapter shows the outcomes of our three innovative approaches: Automated Knowl-

edge Graph Creation, Domain-specific Knowledge Infusion, and Explainable Deep Learn-

ing Results.

5.1 Model Training

The dataset was prepared in a specific format. The codes were appended to the last of a

discharge summary with the term "__label__" in between. Figure 5.1 shows a glimpse

of the prepared dataset format.

Figure 5.1: Dataset Format

I trained the baseline HLAN model on ICD-10 codes and obtained an F-1 score of 67.2%
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on the top five codes, with 800 summaries used for testing and 800 for validation. Table

5.1 displays the comparing results. The trained model was slightly less accurate than the

pretrained models, but this was completely expected given that I expanded the problem

domain and acquired 11-27x more medical codes.

Table 5.1: Comparison between pretrained and fine-tuned HLAN model.

Dataset Train Validation Test Label

Count

Score

calcula-

tion

F-1

Score

MIMIC-III (pre-

trained)

8066 1573 1729 50 Top-50 64.1%

MIMIC-III (pre-

trained)

4574 153 322 20 Top-20 74.6%

MIMIC-III (fine-

tuned)

3266 800 800 550 Top-5 67.2%

5.2 Automated Neo4j Knowledge Graph Creation Frame-

work

Our Automated Knowledge Graph creation approach was tested on 80 different medical

concepts. Neo4j was used for graph creation because of its scalability and visualization.

The Bioportal REST API dealt with the standard format of ontologies e.g XML, OWL,

RDF, etc and fetched the enriched data.

There were an average of 10 unique definitions, 15 unique classes, and 20 unique syn-

onyms fetched from BioPortal Ontologies. A knowledge graph of this size can definitely

help us to increase the overall performance of a deep learning model.

The "Neo4j Knowledge Graph Creation" step of our automated approach created the

query for the respective medical concept graph. Our approach has automated the Cypher

query creation process and thus automated the Knowledge graph process. The query

creation is an extremely laborious and burdensome task. A small chunk of the query

(3,749 characters) created for the term "Insomnia" is shown in Figure 5.3. The original

query was made up of nearly 19,881 characters.
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Figure 5.2: Cypher Query for Concept "Insomnia"

Knowledge Graphs are useful in many aspects and one of their major advantages is

their explainable nature through their simple visualisation of nodes and the connec-

tions among them. These graphs apart from other uses can be a source of domain

understanding.

Figure 5.2 shows a generated knowledge graph for the concept of insomnia which is a

sleep disorder. In the figure, the synonyms are presented as blue nodes, classes (till

depth one) as orange, definitions as red, and ontologies as brown nodes. These all nodes

contain enriched information about some medical term. These nodes and relations can

be used to understand this concept in detail and vice versa.
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Figure 5.3: Knowledge Graph for the concept "Insomnia (sleep disorder)"

5.3 Domain-Specific Knowledge Infusion

I assessed HLAN’s performance by combining the enriched medical ideas with the dis-

charge summary. For example, I input the term "Severe Acute Respiratory Syndrome

Coronavirus" and received no results, claiming that "No ICD code predicted," but this

changed when the concept was enriched. The HLAN model predicted "diag code 518.81

(Acute respiratory failure)" after adding the Knowledge Graph. Similarly, HLAN could

not predict any results for the notion of "Polyuria," but with the addition of the knowl-

edge graph, results were "diag code 599.0. (Urinary tract infection, site not specified)".

For them, visualisation also demonstrated the significance of Graph technology. I put

HLAN to the test using over 100 discharge summaries from MIMIC-III (Medical Infor-
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Figure 5.4: Without Knowledge Infusion

mation Mart for Intensive Care) [13] and I2B2 (Informatics for Integrating Biology and

the Bedside) Challenge 2010 [6]. Without the Knowledge Graph Fusion, HLAN gave

findings for 69 summaries. The Knowledge Graph Fusion assisted HLAN in predicting

relevant codes for 82 discharge reports. I used the same amount of synonyms, meanings,

and hierarchies for all ideas to ensure that HLAN remains unbiased and does not favour

certain terms.

Figure 5.5: With Knowledge Infusion

HLAN is unable to predict any ICD codes for specific medical phrases like "hyper-

glycemia," "sclerosis," "hypothyroidism," and "auditory hallucinations," among others.

After using a knowledge graph to enrich these concepts, I looked up 80 distinct medical

terminologies. HLAN was successful in predicting outcomes for 66 of these 80 medical

words. Figure 5.4 and 5.5 shows the results of the model with and without knowledge

infusion with medical terms. To verify the veracity of the findings, I utilised this this

link. Our accuracy was close to 81%.
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5.4 Explainable Deep Learning Results

The outputs of the fine-tuned model were then fed to the "Explainable Knowledge

Graph Creation Approach." The outcomes include expected codes and words that were

highlighted using the attention mechanism.

The BioPortal ontologies were used by the semantic enrichment module to extract the

level 5 hierarchies, synonyms, and definitions for the biomedical concepts. After that, the

semantic data were combined. I found 736 synonyms for each summary. According to

figure 5.4, there were 159 definitions, 562 nodes for Hierarchy 1, 473 nodes for Hierarchy

2, 379 nodes for Hierarchy 3, 327 nodes for Hierarchy 4, and 284 nodes for Hierarchy 5.

On average, the explainable knowledge graph constructed for each summary contained

2900 nodes and 3340 relationships. A graph of this scale can be utilised effectively

for reasoning and explanation. To that purpose, the model’s performance was assessed

using the strength of its connections. The proposed semantic enrichment technique

(synonyms, definitions, hierarchy 1 to hierarchy 5) is critical in detecting word-to-word

and word-to-code level links or relations. They were generated either by string matching

or by considering the semantic relevance of medical ideas.

Figure 5.6: Semantic Enrichment Results. The different types of nodes in the Knowledge

Graph are Synonyms, Definition, Hierarchy_1 to Hierarchy_5.

The model highlights the words that contributed to the prediction of ICD-10 codes when

processing 100 summaries. When I examined these data for word-to-word linkages, I

discovered an average of 176 connections based on synonyms and 75 connections based
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on the definition per summary, as shown in Figure 5.5. Similarly, I discovered that

hierarchical levels of semantic information play an important role in word-to-word link-

ages. Hierarchy 1 generates an average of 39 links or relations, which is much larger

than hierarchy 2 through hierarchy 5. Because of the nature of BioPortal Ontologies,

which is not important at the word-to-word level, there are no or fewer linkages on some

hierarchy levels.

I discovered an average of 52 links based on synonyms and 27 connections based on def-

initions while examining the word-to-code level interactions. Furthermore, I discovered

that hierarchy levels 1 and 2 contribute more to the word-to-code level linkages than

hierarchy levels 3, 4, and 5, as shown in Figure 5.5. As a result, the connections are

significantly less than at the word-to-word level, although this is to be expected given

that the average number of words per discharge summary is 21 but only 4 for code de-

scriptions. Hierarchy 5 revealed 0 links for both levels, but they are included to examine

the differences and decrease in the number of connections.

Figure 5.7: Word-to-Word and Word-to-Code Level Connections

Following that, I assessed the deep learning model’s performance in terms of predictions

and attention mechanism outcomes. The strength of the association between labels-

with-words and words-with-words was evaluated. Experts determined whether the ties

were weak or strong. More than 30 connections were deemed strong, whereas fewer than
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(a) Word-to-Word level connection (b) Word-to-Code level connection

Figure 5.8: Connections Marked by Experts

10 were deemed weak.

The obtained 100 summaries include over 2500 medical ideas. Manual evaluation of their

strong and weak connections is not practicable. To get findings, I used a tiny chunk of

40 randomly generated medical codes and roughly 100 words (Nearly 10 summaries).

Figures 5.6 and 5.7 show the concepts marked by experts. Out of them, 64 of the 100

words had a correct strong, weak, or no connection with the corresponding words. 21

of the 40 labels included were also correct. Equation 5.4.1 has been used to calculate

connection accuracy at various levels, where accuracy equals the number of correct

connection instances divided by the total number of relationships. As a result, I assess

accuracy in terms of strong and weak links.

Accuracy = Correct_Relations/Total_Relations (5.4.1)

It has been discovered that words can have direct or indirect associations (or linkages).

For example, the biomedical notion ’flap’ has a direct association with the word ’graft’

but an indirect tie with the biomedical concept ’anastomosis’.I divided the count in

half for indirect relationships and kept it full for direct relationships. For example,

if ’flap’ and ’anastomosis’ are linked by four nodes, we would consider it as two (in

terms of equivalence to direct relationships). The outcomes of our method were entirely

contingent on the model output. I expected low accuracy because I trained the model

on generic ICD-10 codes rather than unique top 50 labels. In the accuracy calculation,

the average number of words was roughly 200.
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Discussion

6.1 Dataset Preparation

One of the most important tools for all researchers, but particularly for computer scien-

tists, is the dataset. Using the developed and suggested methodologies on the datasets,

all of their efforts and creative ideas can be demonstrated. We require ICD-10 annotated

data because they are currently used by healthcare professionals. Medical coders must

invest their time and effort into manually annotating the data, which takes time and

effort. We discovered a simpler, more practical solution.

We used a model that had already been trained, and we tested and confirmed its findings

using actual medical coders. As a result, we were able to quickly and inexpensively

create our own dataset without having to buy it. The incorrect annotations were also

removed with the aid of medical code filtration. These things are helpful because they

demonstrate that our dataset is accurate and free of errors, which will encourage others

to trust it in the future.

We trained our own model on this dataset, and the outcomes were used to support the

other Neuro-Symbolic AI methods we had previously suggested. This dataset could be

made available for use by other researchers who are encountering similar difficulties due

to the dataset’s unavailability. This data can be used for many other advantages, as

well as the training and validation of many other cutting-edge methods, in addition to

our own benefits.
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6.2 Model Training

We trained a baseline model for ICD-10 codes. Given that they are currently in use, this

is helpful. In addition, we used a general problem domain to train the model. Other

trained models have the drawback of having been trained on a particular issue. For

instance, training on the top-20 and top-50 codes for specific diseases and code blocks like

COVID-19, injuries, heart disease, influenza, etc. Because of this, the model is unable to

predict the occurrence of other diseases. This criterion is good for accuracy calculation,

but its application to end users is limited.

Since medical coders are the intended users of these applications, they can benefit from

them in order to assign the proper codes. Instead of assisting, this specification may

limit their ability to do their jobs. Additionally, these applications can be used for claim

generation by government agencies, insurance companies, and hospital authorities. They

deal with a variety of medical issues on a daily basis, and if these top-20 or top-50 codes

are obtained, this will eventually result in the market’s rejection of CAC applications.

Our trained model, which was trained on a larger problem domain, is presented here. It

has 550 labels, which will aid all pertinent authorities in accepting this application. Our

trained model’s accuracy and F-1 score are somewhat lower than those of other trained

models, but there is a tradeoff between these two factors.

6.3 Automated Knowledge Graph Creation

Knowledge Graphs are semantically enhanced data sources that have numerous benefits

in all spheres of human endeavor. These triplet’s hub can be used for a variety of

things, including fraud detection, entity search, chatbots, knowledge management, drug

repurposing, and recommendation systems. Additionally, because they are NOSQL

forms of data, these have a number of advantages over conventional relational databases.

Despite the fact that they are useful in every aspect of human life, creating them is very

difficult. This calls for expertise outside of computer science and the pertinent field. Our

method for creating them automatically, with only a few simple steps and no human

involvement, is novel and exceptional and has automated this laborious task.
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6.3.1 Data Preprocessing

A filtered source of data with links between various nodes is a knowledge graph. We

need data preprocessing because we used the automatic graph construction method

on discharge summaries, which are unstructured in nature. We used many Natural

Language Processing (NLP) approaches, including sentence detection, word detection,

stop-word removal, stemming, lemmatization, and N-grams, as shown in Figure 4.3.

The outcomes of these were the necessary medical concepts, which are the Knowledge

Graph nodes. This stage is advantageous since we are utilizing a machine, saving people

the trouble of manually cleaning and structuring the data. Additionally, they provide

the data needed for knowledge graphs.

6.3.2 Ontology and Semantic Enrichment

Knowledge graphs are typically mapped to ontologies for semantic augmentation since

they are the data source that provides general information. Due to their professional

creation, we used BioPortal Ontologies in this instance. This is helpful because we are

using data from a reliable source, which will relieve users’ worry.

Our method of conceptually mapping to all 1000+ ontologies has advantages and draw-

backs of its own. The advantages are that we have a wealth of knowledge that will

ultimately assist the users in many ways, but the disadvantage is that the ontologies

supply that enriched information in a number of languages, as illustrated in Figure 5.2.

This presents a challenge for the formulation of cypher queries as well as potential prob-

lems for readers who are unfamiliar with it. However, there are numerous methods to

boost and improve different existing technologies using these data sources.

6.3.3 Cypher Query Creation

Knowledge graphs must be created using a certain language and format. We chose to

utilise Cypher since Neo4j, a fantastic visualisation tool, uses it. In addition, Neo4j offers

access to a number of machine learning and graph embedding algorithms. The cypher

query has a certain format, and creating one is challenging. Each node has a unique id

that cannot contain spaces, non-English characters, special characters, or numbers as

the first character. Our strategy adheres to the format and automates its construction,
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automating this laborious process for computer professionals.

6.4 Domain-Specific Knowledge Infusion

CAC’s applications lie in multi-label classification problems. In artificial intelligence,

classification refers to grouping objects into clusters and dividing them with a line or

hyperplane. They could be linear, non-linear, or one to many dimensions. As the

number of classes or labels increases, the dimensions are increased, and vice versa. This

leads to eventually lowering the accuracy of the classification model. That’s the reason,

that the CAC’s models are trained on top-20, top-50, or top-100 codes. Also, the models

trained on these restricted domains are unable to perform out of the box.

As mentioned in section 3.2.1, a few strategies have been put out in recent years to

address this accuracy issue. Take the term "label interdependence" as an example. We

have developed a novel method for semantically enhancing discharge summaries, which

will eventually aid the model’s comprehension of the context and improve performance.

Our method may be used to enhance the classification accuracy of any deep learning

or machine learning model and can be applied to any medical application. In order

to benefit the relevant users, such as medical coders, healthcare professionals, hospital

staff, insurance companies, and governmental entities, this strategy can be used to get

around some of the constraints of these AI models.

6.5 Artificial Intelligence Explainable Predictions

The most fascinating and noteworthy inventions of the 20th century were artificial intelli-

gence and its subfields, machine learning and deep learning. All age groups are currently

using these AI models, which are applicable to practically all disciplines. Even those

who are unaware of artificial intelligence use it in their regular activities. Among the

many use cases are face lock, route detection, social media suggestions, number plate de-

tection, etc. Despite their widespread use and acceptance across many industries, they

continue to lack credibility in a number of sectors, including healthcare, law, security,

human employment, etc. What then is the obstacle? The primary barrier is these AI

systems’ lack of reasoning abilities. When a person goes to the doctor and is given a

diagnosis of a condition, the doctor can explain why; unfortunately, a machine cannot.
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The biggest obstacle is Black-box deep learning models’ inability to describe how they

operate inside and how they produce outcomes.

Researchers have been particularly interested in explainability, and several novel ideas,

such the attention mechanism, have been put forth. Although the results are very

convincing, certain questions remain. These issues are brought up by the uncertain

outcomes of attention mechanisms. The approach makes an attempt to highlight certain

words to show how they relate to the output, but it is still unable to explain how the

output is related to other highlighted keywords. This calls for the manipulation of deep

learning mathematical models, yet symbolic AI may show to be a superior alternative

strategy. To discover the relationship between these concepts and predictions, we can

employ knowledge graphs that have been semantically enriched.

Our approach of explaining an already explainable system is novel and unique. To the

best of our knowledge, no one has ever conducted research in this area. The use of

knowledge graphs produced from expert-authored ontologies to describe a deep learning

model will assist the relevant agencies to have confidence in these AI applications, which

will result in their widespread acceptance. Any attention mechanism or input for medical

applications can employ the resonance mechanism we proposed.
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Conclusion and Future Work

7.1 Conclusion

The brain behind Symbolic AI, Knowledge Graphs, has many practical applications and

offers many benefits. However, creating them is a laborious and exceedingly difficult

task. Although their automation has been worked on previously, their creation in a

few simple stages has not been accomplished. We processed the data, used ontology

mapping to enrich it, built graphs using query generation, and automated the entire

process in a few straightforward steps.

The many drawbacks of deep learning can be overcome by knowledge graphs and vice

versa. By using the Medical Coding use case, we offered two distinct NeuroSymbolic AI

methodologies to demonstrate the efficacy of hybrid AI. We incorporated input from the

CAC model to the semantically enhanced knowledge graphs and examined the outcomes.

Using knowledge infusion, we were able to increase the model’s accuracy and address a

number of its shortcomings.

Similarly, we explained the model predictions using the graphing technique. The method

was effectively applied to the results of attention mechanisms, and Symbolic AI was used

to provide answers to numerous open-ended queries. The comprehensive graph on the

model output for reasoning was produced using the explainable approach, and the graph

connections were simplified for end-user understanding. These methods can be used

to create graphs, boost accuracy, and produce results that are understandable in any

medical application. Additionally, a modification in the relevant ontologies will make

them applicable to all domains. To the best of our knowledge, no such research has been
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done before, and all of our suggested strategies are novel.

7.2 Future Work

NeuroSymbolic AI also known as Explainable AI (XAI) or Hybrid AI is an emerging

area of research. The extension could be done in various directions but there are a

few things in which we are really interested. Knowledge Graphs in their nature are

explainable but are shallow. They can deliver the knowledge they have, but besides

that, they fall short. The results of DL models can be improved by their integration

with deep learning, however, further research on the intelligence of knowledge graphs

needs to be done. There are several ways to do this. Knowledge Graph embedding is

one of them. The graphs using the embedding methods can be used to answer out of

the box questions in chatbots, can help in intelligent recommendations, work in effective

drug repurposing and vice versa.

The approaches we suggested were compatible with the deep learning model’s input and

output. It was beneficial in many ways. However, Deep Infusion is our goal. Deep

infusion refers to a method of addressing the deep learning model’s internal operations

in order to get around some constraints, clarify internal operations, and reveal black-box

models. The intricacy of these deep learning models may be handled in some way as a

result of the deep infusion, which will produce extremely reliable applications.

User preferences could be taken into account in the development of programmes that

are easy to understand. Our proposed methodologies will be integrated into an EHR

application that we are currently creating, giving us a neutral perspective to improve

them and the ability to add deep data infusions for improved outcomes..
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Glossary

Table 8.1: Terms used in Thesis.

Term Abbreviation

AMC Automated Medical Coding

CAC Computer Assisted Coding

KG Knowledge Graphs

HAN Hierarchical Attention Network

HLAN Hierarchical Label-wise Attention Network

LSTM Long Short-term Memory

OWL Web Ontology Language

RDF Resource Description Framework

API Application Programming Interface

ICD International Classification of Diseases

CPT Current Procedural Therapy

HCPCS Healthcare Standard Procedure Coding System

NLP Natural Language Processing

BERT Bidirectional Encoder Representations from Transformers

EHR Electronic Health Record
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