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Abstract 

Restoring and enhancing underwater images is a significant issue in image processing and computer 

vision. Poor underwater imaging quality is caused by the scattering and absorption of light by underwater 

contaminants. Images taken underwater frequently suffer from quality issues, such as low contrast, poor 

sight (due to the absorption of natural light), blurred details, changing colors, additive noise, blurred 

effects, and uneven illumination, etc. 

The study of underwater image analysis has gained a lot of attention and achieved substantial 

advancements during the past few decades. The current techniques can broaden the application of 

underwater photography while improving image contrast and resolution. Traditional image enhancement 

techniques have some drawbacks when applied directly to underwater optical environments; hence, some 

specific algorithms, such as histogram-based, retinex-based, and picture fusion-based algorithms, are 

proposed. Deep learning has recently shown a strong potential for creating results that are satisfying and 

have the right colors and details, but these methods significantly increase the size of the image processing 

inference models and therefore cannot be applied or deployed directly to the edge devices. 

Recently, Vision Transformers (ViT)-based architectures are producing incredible results. In recent years, 

there has been more interest in transformers. Their interactions between image content and attention 

weights can be thought of as a convolution that changes in space, and their self-attention mechanism is 

good at simulating long-distance dependencies and global features. 

The suggested approach is a pipeline based on a context-aware lightweight vision transformer with the 

goal of improving image quality without sacrificing the naturalness of the image, as well as reducing the 

inference time and size of the model. In this study, we trained a deep network-based transformer model 

on two standard datasets, i.e., Large-Scale Underwater Image (LSUI) and Underwater Image 

Enhancement Benchmark Dataset (UIEB), so that the network becomes more generalized, which 

subsequently improved the performance. Our real-time underwater image enhancement system shows 

superior results on edge devices. Also, we provide a comparison with other transformer-based methods. 

Overall findings indicate that the suggested method has produced underwater images of higher quality 

than the original input underwater images, which had a high noise ratio and more color disruption.  

Keywords: Tokenization, Feature Extraction, Image Enhancement, Underwater Image Restoration, ViTs, 

Computer Vision.  
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Chapter 1 

1. Introduction 

1.1 Overview 

Underwater light propagation is hampered by scattering and absorption, much like light passing 

through the air. However, there is a great deal of absorption in water as compared to air. While in 

the air, the light reduction coefficients are estimated in inverse kilometers, they are measured in 

inverse meters in an underwater environment. When light is severely degraded, it is extremely 

difficult for optical sensors to collect data from a target underwater location. Water, in contrast to 

air, is opaque to all other wavelengths and only permeable to the visible portion of the 

electromagnetic spectrum. The visible spectrum's component wavelengths are also absorbed at 

various rates, with longer wavelengths being absorbed more quickly. It is actually amazing how 

quickly light energy degrades in water. By 150 meters in depth, less than 1% of incident light is still 

present in the middle ocean's extremely clear waters. As a result, the object is harder to see beyond 

a 20-meter distance, and in muddy coastal waters, the visibility drops below the 5-meter threshold, 

as shown below. [27] 

 

Figure 1: Attenuation of Light in Clean and Turbid Water 
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Underwater lighting is typically scarce due to two inevitable realities. One is that light under water 

loses some of its true luminosity, and two is that there is a good probability that light will disperse 

within water media that are full of suspended particles. The portion of light energy that reaches the 

water is quickly absorbed and transformed into heat, which in turn energizes the water molecules, 

causes them to warm up, and causes them to have a tendency to evaporate. [30] Additionally, some 

of the sunlight energy is consumed by the microscopic organisms found in plants that use it for 

photosynthesis. As already said, the part of the light that doesn't get taken up by water molecules 

may not move in a straight line but instead moves randomly in a Brownian motion. As shown below, 

this happens because there are particles in the water that move around.  

 

Figure 2: Underwater Light Scattering and Absorption  

The light beam is reflected and deflected by the dissolved salts, organic and inorganic substances in 

water, especially in sea water. The light beam can also leave the ocean surface and disperse back 

into the atmosphere. There are three basic parts to the light that the camera detects. The direct portion 

of light that is directly reflected from an object when it is not scattered by water. The light beam that 

has a flaw after striking the target item and before it reaches the image sensor is said to have 

undergone forward scattering, i.e., the second component. Typically, this kind of scattering causes 

an image to appear blurry. [9] The third component is backscattering, which occurs when a light 

beam strikes an imaging system without first returning from the object. It only serves to further 

reduce an image's contrast.  
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Figure 3: Components of Camera Light 

In order to evaluate underwater visibility, optical and acoustic imaging methods have traditionally 

been used. Although acoustic sensors have a lesser spatial resolution than optical systems, they have 

the important advantage of being able to penetrate water even more quickly. However, when looking 

for high resolution outputs, acoustic sensors are very big. On the contrary, optical systems have 

lately been used by evaluating the physical impacts of visibility loss, despite some drawbacks such 

low underwater visibility. [23] Adding an artificial light source is one technique to increase visibility 

but this solution has its own drawbacks. 

Aside from the issues with light dispersion and attenuation noted above, artificial light has a 

tendency to illuminate the subject of interest unevenly and typically results in a bright point in the 

middle of the image with darker tones surrounding it. The lighting apparatus is also expensive and 

bulky. Additionally, they needed a steady supply of electricity, either connected to surface ship or 

in the form of batteries. As a result, the traditional image processing methods that work well for 

enhancing terrestrial imaging must be altered or abandoned entirely, and new solutions must be 

developed.  

1.2 Motivation and Problem Statement 

It's a general statement that an image captured in water will always have worse quality. The contrast 

and genuine tone quality required for identifying the subject of interest in the image are lost. The 

efficacy of the algorithms being used to obtain information from the photos is negatively impacted 

by this condition, making it extremely difficult to retrieve near features from the data. Despite the 
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existence of various image improvement algorithms, when used on underwater image regions with 

poor lighting, existing techniques typically provide inaccurate results and unavoidably deteriorate 

some visual artefacts of the image. Researchers have always been impressed by the process of 

constructing and training neural networks, yet there is still considerable opportunity for 

advancement. For instance, the generalizability of existing approaches is likely to be constrained by 

their tendency to bias towards a narrow range of brightness values and scenarios. These networks' 

growing popularity lately sparked the development of novel deep-learning-based models for 

improving underwater images. Therefore, the suggested research intends to increase the quality of 

underwater images using deep learning models. 

1.3 Aims and Objectives 

The following objectives are the focus of the research: 

 Create a cutting-edge algorithm that uses lightweight Vision Transformers to lessen the 

inconsistent attenuation problem that affects underwater photos in many color channels and 

spatial regions. 

 Offer a range of supplementary resources and comparative experimental investigations on 

common datasets using state-of-the-art methodologies to illustrate the capability of our 

proposed paradigm. 

 Carry out a study to assess the effectiveness and efficiency of our methodology by assessing 

the outcomes of improved photographs using objective evaluation. 

1.4 Research Contribution 

To the finest of our knowledge, the methodology and framework presented in this thesis have not 

previously been used in the process of improving the quality of underwater images. The primary 

points of this thesis are: 

 Implementing a novel real-time Underwater Image Enchantment Benchmark (UIEB) model 

based on deep learning methods. The base pipeline of the model is contingent on 

Vision Transformers (ViT) that are structure-aware and are able to capture long range 

dependencies between image patches.  



 
CHAPTER 1: INTRODUCTION 

5 
 

 Authenticating the viability of the proposed model by conducting experimental analysis of 

common datasets on the proposed method as so that the network is accustomed to better 

generalization for performance improvement. 

 In addition, the suggested model is trained on numerous versions to explore the versatility. 

By altering the transformer module's base parameter and preloading the images into the 

model with various analysis strategies, an ablation study is carried out. 

1.5 Thesis Organization 

The thesis has been organized as follows: 

 Chapter 2 gives an overview regarding the related work in the domain of Underwater Image 

Enchantment (UIE). The section 2.1 thoroughly discusses the Physical Model-Based 

techniques used in UIE. Section 2.2 gives briefing about Non-Physical Model Enhancement. 

Section 2.3 gives overview of Underwater Image Enhancement Analysis Using Data-Driven 

Methods and Section 2.4 provides summary of Underwater Image Enhancement Analysis 

Using Deep Learning. The chapter also gives systematic review of the models used in the 

current study. 

 Chapter 3 discusses materials and methodology used for conducting the analysis. It gives an 

overview regarding dataset collection, preprocessing, feature extraction techniques, baseline 

models and discusses the proposed framework. 

 Chapter 4 is results and discussion which presents results of the best baseline models applied 

and their limitations. It also provides an insight of the results improved by applying proposed 

framework for the particular dataset. The comparative analysis of previous studies is also 

presented which shows how classification has improved with application of deep learning 

models. 

 Chapter 5 is conclusion and future work which summarizes the research work, presents the 

limitations of the study and the proposed framework with respect to the UIE, it also suggests 

future direction in the corresponding domain. 
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Chapter 2 

2. Related Work 

This chapter provides a thorough analysis of the literature with an emphasis on several methods for 

improving underwater images and restoring their clarity and quality. The existing UIE techniques can 

generally be divided into three groups: physical model-based i.e., the image restoration techniques, non-

physical based method, and data-driven or deep learning-based techniques. [29] Nonphysical model 

enhancement methods and physical model-based enhancement algorithms are examples of traditional 

underwater image enhancement techniques. The following discussion classifies and groups the various 

technologies and techniques utilized for underwater image enhancement according to their distinctive 

characteristics.  

2.1 Underwater Image Enhancement Analysis Using Physical Model-Based or Image 

Restoration Techniques  

In order to enhance the quality of the image from the imaging principle, an algorithm using the 

physical model examination uses the reverse process of the imaging paradigm to obtain a clear 

image. It is also known as the "image restoration method." These approaches incorporate integral 

imaging, polarization, and dark channel priors.  

While using physical model-based improvement techniques, underwater imaging models are 

extremely important. A particularly popular recovery model is the Jaffe-McGlamery underwater 

imaging model. Using the Jaffe-McGlamery underwater imaging model, which is depicted in Figure 

3, the light obtained by the camera Et was divided into three parts: the light reflected straight from 

an object, Ed; the forward scattered portion, which is small-angle light reflected from a target, Ef; 

and the backscattered light, which is non-target reflected light Eb.  

𝐸𝑡 =  𝐸𝑑 + 𝐸𝑓 + 𝐸𝑏                (1) 

A self-calibrating filter based on a condensed Jaffe-McGlamery model was proposed by Trucco 

and Olmos. Trucco et al. [25] suggested a more straightforward version of the filter to automatically 

modify the image restoration. The ideal filter parameter value is automatically determined by 

gauging global contrast requirements for picture quality evaluation. Based on less backscatter, a 

simplified model could produce results that are more ideal. The polarization was estimated by 
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Ferreira et al. [20] by using the unreferenced mass measure and optimizing the settings using the 

particle swarm algorithm and subsequently improved visual quality and greater adaptability as the 

cost function for restoration. However, the parameter optimization procedure makes the operation 

more time-consuming. 

Meng et al. [16] exploited the color balance and volume approaches for color correction and image 

sharpening. In undersea pictures the color balance changes when the red channel value is close to 

the blue channel. Otherwise, the Dark Channel Prior (DCP) based recovery depending on the 

sharpening method's maximum a posteriori probability (MAP) improves visibility, lessens 

fuzziness, and enhances foreground retention textures but too many new settings added.  

In spite of the significant scattering effect of murky water, integral imaging technology has a 

tremendous impact since it can combine signals from several images. Single-photon imaging with 

a threshold was suggested by Li et al. [14]. A detecting method to separate photon signals from the 

chaotic undersea environment. By using this technique, photos captured in a high-loss underwater 

environment are reconstructed. The Peak Signal to Noise Ratio (PSNR) is theoretically improved 

by applying photon-limited computational techniques and in the high-noise environment. However, 

this technology is expensive to adopt and is dependent on the development of an imaging system. 

Physical model-based UIE can only work well in complex and varied underwater scenes found in 

real life. It is difficult to evaluate numerous parameters at once, and model hypotheses are not 

always reasonable in the complex and dynamic undersea environment.  

2.2 Underwater Image Enhancement Analysis Using Non-Physical Model Enhancement 

There are a number of targeted techniques proposed, including histogram-based, retinex-based, and 

visual fusion-based algorithms, due to the limitations of applying standard picture enhancing 

techniques to the special underwater environment. 

It is clear that retinex has a limited number of direct applications for improving underwater image 

quality. The issue with the enhanced image is either too little contrast or too much exposure. To 

change the color and illumination, it is customary to blend RGB with HSV or other color schemes. 

Additionally, it can be used with other preprocessing or post-processing techniques like filtering, 

contrast stretching, and color correction. This may result in plainly improved visuals. The fact that 



 
CHAPTER 2: RELATED WORK 

8 
 

the best models of this kind of approach frequently have too many parameters is an inherent 

drawback. Various undersea conditions require different parameter settings.  

Underwater image quality can be effectively increased using the fusion technique. These 

techniques, however, call for the acquisition of several fusion weights and images. The solution to 

the issue is in the adoption of effective tactics to get the best fusion weight.  

A Bayesian combined with retinex framework was created by Zhuang et al. [35] for multi-order 

gradient prior’s enhancement of a single underwater picture of illumination and reflection. An 

underwater image formulation with a maximum posteriori color-corrected image is enhanced by 

applying a multi-order gradient, prioritizing lighting and reflectance. This algorithm performs well 

as technique for color correction, maintains naturalness, promotes structures and details. But the 

breakdown and alternative optimization of sub problems take too long to solve. 

Song et al. [22] suggested a technique based on the global stretching and multiscale fusing of dual 

models. White-balancing was used to get rid of the unwanted color variation and show an updated 

image. The model used contrast and spatial signals in combination with the saliency weight 

coefficient method. The red, green, and blue channels are simultaneously stretched globally. There 

are still issues with this method regarding the depth of color model. 

Li et al. [13] proposed a paradigm for underwater hybrid systems. Stretching the histogram while 

using an improved underwater white balance method. Contrast and saturation are increased, 

scattering-related blur is eliminated, color adjustment, haze reduction, and clarity of details are all 

enhanced by creating a variable brightness and saturation enhancement model. 

2.3 Underwater Image Enhancement Analysis Using Data-Driven Methods  

Images can be degraded because of a variety of factors and correcting just one of these factors might 

affect the other. For example, a technique for improving an image's brightness or contrast may not 

be appropriate for images with high saturated areas. As a result, when using image enhancement 

algorithms, many important factors must be considered like sharpness, dynamic range, and 

distortion etc. Recently, data-driven methods that may be considered as machine learning 

technologies in the UIE domain have demonstrated excellent performance on UIE tasks. Several 

models for improving underwater images have already been put forth. Here, we give a brief 

overview recent efforts based on Data-Driven approaches that scientists have looked into thus far.  
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WATER-NET, a gated fusion network, was suggested by Li et al. [12]. The underwater image is 

enhanced using white balance, histogram equalization, and gamma correction algorithms, and the 

final image is produced by integrating the confidence graphs of various enhancement techniques. 

Despite the data' poor quantitative analysis, the reference model performs well in terms of 

generalization and has opportunity for improvement. 

In order to process underwater images, Wang et al. [26] presented a parallel convolutional neural 

network with two parallel branches, a transmission estimation network, and a global ambient light 

estimate network. To avoid the halo effect and maintain edge properties, the network uses 

multiscale estimation and cross-layer connectivity. The contrast improvement, however, is not 

strong enough. 

The adaptive color correction algorithm was implemented by Ding et al. [4] to correct color 

distortion. The color-corrected image was instantly turned into transmission image for repair after 

CNN network was utilized to calculate the depth map. It is necessary to enhance the algorithm's 

real-time performance and robust adaptation. 

Lack of a large dataset with a variety of underwater settings and high-fidelity reference photos is a 

problem for the current data-driven based underwater image enhancement (UIE) algorithms. 

Additionally, the uneven attenuation in various color channels and space regions is not fully taken 

into account for enhanced images. 

2.4 Underwater Image Enhancement Analysis Using Deep Learning Approaches 

Deep learning approaches immediately learn the translation relationship between the source input 

images and the clean underwater image without being constrained by model assumptions or 

previous conditions. 

For the purpose of enhancing underwater images, Guo et al. [7] presented the UWGAN, a new 

multiscale dense generated adversarial network that incorporates residual multiscale dense blocks 

into the generator. Multiscale manipulation, dense cascading, and residual learning, respectively 

were applied to enhance performance, render more detail, and fully exploit features. The 

discriminant uses the spectral normalization calculation method to stabilize discriminant training. 

The algorithm currently lacks real-time and adaptive capabilities. 



 
CHAPTER 2: RELATED WORK 

10 
 

An end-to-end dual generative adversarial network (DuGAN) for improving underwater images is 

proposed by Zhang et al. [32]. In which two discriminators are utilized to complete adversarial 

training toward various portions of images using various training procedures after segmenting the 

images into clear and unclear parts. However, this solution relied on a user-guided way to gather 

reference photos, making it challenging to train with fresh images. 

By learning many samples, the deep learning-based approach can lessen the effect of the 

challenging undersea environment on the outcomes. However, the dataset is crucial, as the existing 

dataset's coverage is still constrained. However, the majority of deep learning-based techniques just 

concentrate on improvement rather than fully integrating the underwater image model.  

Although compared to conventional UIE approaches, deep learning-based UIE methods 

significantly improved. Its further advancement is still constrained by two factors: (1) the uniform 

convolution kernel cannot adequately describe the uneven attenuation of underwater images in 

various color channels and spatial regions; and (2) the CNN-GAN architecture is more focused on 

local features than long-term dependence and global feature modelling.  

Computer vision is undergoing a revolution because of introduction of a new architecture called 

Vision Transformers (ViT). It is based on the self-attention process, which projects vectors created 

by splitting the input image into patches into linear space. One of the most promising methods in 

computer vision today, the Vision Transformers-based architectures are producing incredible 

results. Vision Transformers have attracted increasing amounts of interest recently; their content-

based interactions between image content and attention weights can be understood as spatially 

varying convolution; and their self-attention mechanism is effective at simulating long-distance 

dependencies and global features. Transformers provide a number of advantages over recurrent 

networks, including the ability to simulate lengthy dependencies between input sequence parts and 

support for simultaneous processing of sequence. Transformers, as opposed to Long Short-Term 

memory (LSTM) and convolutional networks, are perfectly suited as set-functions and only need 

minor inductive biases for their design.   

Image Processing Transformer (IPT) is the name of a pre-trained model that Chen et al. [8] proposed 

based on the Transformer architecture. It is capable of restoring images in a variety of ways, 

including super-resolution, denoising, and deraining. IPT has a shared encoder-decoder 

Transformer body as well as many heads and tails that can each do a distinct task independently.  
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As demonstrated in a recent study, image transformer networks have emerged as a formidable rival 

to conventional CNNs in many applications. Denoising, dehazing, and two degrees of up-scaling 

are the four key tasks that the pre-trained image transformer network has been trained to complete. 

The Image Processing Transformer (IPT) network's results demonstrated that the trained IPT 

consistently beat the other, more focused CNNs in the aforementioned tasks. 

A large-scale underwater image (LSUI) dataset was initially created by Peng et al. [18], which 

covers more underwater scenes and better visual quality reference photos than current underwater 

datasets. The collection includes 5004 actual underwater photographs, and as comparison 

references, the matching clear photographs are created. Additionally, based on the attention 

mechanism, the researchers created a channel-wise multi-scale feature fusion transformer 

(CMSFFT) and a spatial-wise global feature modelling transformer (SGFMT), which they then 

integrated into the U-shape Transformer. They also created a multi-color space loss function that 

includes RGB, LAB, and LCH in accordance with the color space selection experiment. 

An innovative underwater picture improvement technique called UDAformer, developed by Shen 

et al. [21], is based on the Dual Attention Transformer Block (DATB), which also includes the 

Channels Self-Attention Transformer (CSAT) as well as Shifted Window Pixel Self-Attention 

Transformer (SW-PSAT). In particular, the extreme and uneven loss of underwater images makes 

conventional underwater image enhancement depending solely on channel self-attention 

insufficient. The effective storing and decoding of underwater picture information is therefore 

proposed using a unique fusion method that combines channel and pixel self-attention. Then, in 

order to increase computational efficiency, the shifted window approach for pixel self-attention is 

suggested. 

Huang et al. [10] unique Adaptive Group Attention (AGA) proposal allows for the dynamic 

selection of visually comparable channels based on dependencies, hence requiring fewer additional 

attention parameters. End-to-end underwater image improvement network is designed using the 

AGA, which is utilized inside the Swin Transformer (ST) module. The multiresolution cascade 

component as well as the channel attention technique are also introduced by the network. However, 

their approach has the following drawbacks. The complexity of the calculation brought on by 

stepwise reinforcement learning results in the average speed performance, and it also produces less-

than-ideal details in areas where black pixels are concentrated. 
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A fusion neural network was presented by Sun et al. [24], which is based on the merging of two 

images that are created from the white-balanced and color-corrected version of the original 

underwater image. In this study, they created two inputs from an underwater image by using the 

white balance (WB) & gamma correction (GC) methods, respectively. The SwinMT module, which 

has two components: a low-frequency feature extraction unit and a high-frequency feature to 

recover high-quality which extracts features in turn. 

Learning-based techniques have advanced significantly in the domain of photo enhancement in 

recent years. The improvement techniques, however, rely on intricate network structures and use 

an excessive amount of processing power. 
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Chapter 3 

3. Methodology and Framework 

Many software-based solutions have been proposed and improved over the years to address two of the 

main problems with degraded underwater photos. But even systems already in place are still susceptible 

to the underwater picture attenuation problem, as well as lack the adaptability to deal with the diversity of 

real-world settings. [19] 

This chapter introduces an enhanced underwater image enhancement method that outperforms the existing 

UIE method. To begin, patches of the source images are created, and these patches are tokenized to create 

token embedding, which are similar to word embedding. The model actively learns token-wise 

dependencies for picture patches rather than directly computing pixel-wise connections. This architecture 

enhances an image with exceptional efficiency. It can also give answers that are more semantically 

relevant than CNNs due to its great efficiency and ability to implicitly understand the semantic structure. 

We carry out a number of ablation investigations in order to determine the most effective Context-Aware 

Vision Transformer (CAViT) settings. 

3.1 Overview of Vision Transformers (ViT) Vision Transformers  

Transformer is a Seq2Seq framework that replaces conventional recurrent neural network used in 

Natural Language Processing (NLP) nearly entirely by introducing a self-attention strategy and 

using position embedding to account for the position information. When Transformers were 

discovered to be so successful in the domain of natural language interpretation in 2020, Google 

experts questioned: "How would they perform with images?". Knowing that the transformer accepts 

word vectors as input, how do we convert an image to a word vector? Using all of the image's pixels 

and placing them "inline" to create a vector is the initial option. Attention has intrinsic complexity 

of 𝑂(𝑁2), which means that to evaluate the complexity of every pixel in relation to every other pixel 

in any low-resolution images like 256x256 pixels, the quantity of calculations would be enormous 

and completely beyond the capabilities of today's technology. [34] Therefore, to make this strategy 

effective it is suggested in the paper "A picture is worth 16x16 words" [6] to split the image into 

patches, then transform each piece into a vector that used a linear projecting that would map the 

patches in a dimensional space.  
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Figure 4:  Underwater Image Divided Into Patches  

The patches are projected linearly to produce vectors, which are then combined with knowledge 

about the patch's location within the picture and fed into a traditional Transformer Encoder. The 

insertion of information regarding the patch's original position inside the image is essential since, 

despite being crucial to completely comprehending the image's content, this knowledge would be 

lost during the linear projection. The result relating to this patch being the one that is taken into 

account and fed into a Multi-Layer Perceptron (MLP). An additional vector is inserted that is 

unrelated of the picture being analyzed and is utilized to get global data on the entire image. 

Learning-based techniques have advanced significantly with in field of photo improvement in recent 

years. However, the implementation of the enhancement approaches on light-weight devices 

becomes significantly more challenging because they depend on complicated network architectures 

and use a lot of Computational resources. The approaches also perform poorly in real-time when 

processing photos with very high resolution. In contrast to earlier research on creating structurally 

varied CNN networks, photo augmentation can be accomplished using a simple self-attentive 

approach for global-local tuning. 

Numerous studies, demonstrate that using global functions alone is unable to offer sufficient and 

versatile enhancing capabilities. A semantic-aware prediction approach is another type of image 

enhancement techniques that teaches the CNN model to calculate translation or transformation 

functions using semantic masks. Because the prediction results in these methods are conditional to 

semantically calculated components like other pixel-wise techniques, models in such methods are 

typically adaptable. 
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3.2 Proposed Underwater Image Enhancement using Context-Aware Lightweight Vision 

Transformers 

We create the CAViT model, which is focused on image improvement tasks and can operate without 

stacking convolution to extract structural data more effectively. Similar to word embedding in NLP, 

patches of the photograph are tokenized and turned into token embedding in our model. CAViT 

actively understands token-wise dependencies for input images rather than directly computing pixel-

wise connections. CAViT   enhances the image with excellent efficiency. Along with being highly 

effective, CAViT can intuitively learn the semantic information and hence produce results that are 

more semantically meaningful than CNNs. Nevertheless, obtaining comparable performance with 

CNN often requires a large amount of training data or extra supervision else cannot perform as 

expected due to the lack of inductive biases. 

Suggested model's overall layout is shown in Figure 7. To start, we flatten an image 𝐼 𝜖 𝑅𝐻 𝑋 𝑊 𝑋 𝐶𝐼  

into a series of tokens 𝐼𝑇  𝜖 𝑅𝐿 𝑋 𝐶𝑇, wherein 𝐶𝐼 & 𝐶𝑇 are the channel counts, respectively. The 

Context-Aware Vision Transformer module will receive the created tokens as inputs and produce 

structural map 𝑆𝐼 𝜖 𝑅𝐿 𝑋 𝐿 𝐶𝑆.  The predicted structural map will be utilized to estimate additional 

transformations for underwater image improvement.  

3.2.1 Feature Maps Extraction (2D-Flattened Patches)  

Given an unprocessed underwater image that was shrunk into the form 𝐼 𝜖 𝑅𝐻 𝑋 𝑊 𝑋 𝐶𝐼, first 

the image was divided into patches of the form 𝑋𝑝𝑎𝑡𝑐ℎ 𝜖 𝑅(𝐻 /𝑃)(𝑊/𝑃)3, where P is the 

patch's size. The shallow embedding feature 𝐹s is then obtained using a linear projection, 

and C is the dimensionality of shallow features. The Context-Aware Transformer module 

will receive the shallow embedded feature to produce deep features 𝐹𝑑  𝜀 𝑅(𝐻 /2𝑃) (𝑊/2𝑃) 2𝐶 

with down sampling. The down sample doubles the features while reducing distortion and 

preserving the structural integrity of the image.  
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Figure 5:  Underwater Image Patches fed into the Vision Transformer Encoder  

A primitive method of turning an image into tokens is to flatten it into raw patches, as 

described earlier. The features 𝐼 𝜖 𝑅𝐻 𝑋 𝑊 𝑋 𝐶𝐼, in this case are reshaped into a series of 

patches and treated as tokens. This approach, meanwhile, will use up a lot of memory. In 

particular, the input token vectors are designed to have a big dimension 𝑡𝑖 𝜖 𝑅𝑃2 𝑋 𝐶𝐼 , 𝑖 =

1,2,3, … , 𝑁, necessitating high training parameters (e.g., 33 M parameters in [8]). An 

alternate approach is to derive input for a sequence using a CNN's feature maps. After 

spatially down sampling, the patches size in this instance can be considered to be 1x1, and 

tokens are extracted using a stacked convolution technique. 

3.2.2 Tokenization Strategy 

With the subsequent process, we put the tokenization pipeline into action to deliver efficient 

real-time image enhancement. As shown in Figure 5, we first flatten all of the resolution 

features into a collection of patches. Behind that, each Patch goes a cascading dimension 

reduction procedure. Then, we extract tokens from each patch in more detail using linear 

embedding learning. The Mean Head method, where Adaptive Average Pooling 

immediately reduces the spatial size followed by the Linear Head Embedding, is used to 

lower memory use with dimension reduction. This was inspired by the squeeze-and-

excitement block [11]. 
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Figure 6: Mean Head / Squeeze-and-Excitation Tokenization Strategy 

Input spatial resolution is shown by the H x W features, while Transformer dimension is 

indicated by the 𝐶𝑖𝑛 features. In Mean heads strategy adaptive average pooling is applied 

to reduce the spatial size before implementing the linear head technique. In Linear Head 

Feature maps are split into patches directly using the linear head technique, which is 

followed by projection and embedding. Similar to [31], we apply a 7 x 7convolution with 

stride 4 and output channels 16 to the picture and then feed output features to the 

aforementioned tokenization modules for more informative representations. By using 

Mean Head, we can decrease the tokenization complexity as much as possible. 

3.2.3 Attention mechanism  

We employed a local global spatial module of the Transformer used in the area of computer 

vision; instead of a two-branch Transformer design, we used a single branch with spatial 

local-global attention to process token sequences. We employ a standard transformer 

module, which includes an MLP with a skip connection and a multi-head self-attention 

module. We choose GELU as the non-linearity function and LayerNorm as the 

normalization. In order to keep position information intact we also add a 1D learning 

position embedding 𝑝 𝜖 𝑅𝐶𝑇/2 to Transformer inputs.  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)  =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ( 
𝑄𝐾′

𝐶
+ 𝑝) 𝑉  (2) 

𝑀𝐿𝑃(𝐿𝑁(𝑇𝑛)) +  𝑇𝑛 ,    𝑛 =  1. . . 𝑁   (3) 
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Specifically, MSA, MLP, and LN stand for multi-head self-attention, multilayer 

perceptron, and layer normalization where N represents the Transformer's depth (number 

of basic transformer blocks). 

 

Figure 7: A Long-Short Range Transformer module is shown in an illustration. 
We use a single branch design that explicitly divides global and local context extraction modules to lessen model 

complexity. We use position embedding and the conventional Transformer design as recommended by [24]. 

In a typical Transform block, a linear layer creates the projections from the input features, 

Query (Q), Key (K), & Value (V), but only accomplishes global spatial interactions. It 

seems sense to substitute a convolution with a kernel size of 3 x 3 for the linear layer in 

order to employ more local information, as this simultaneously reinforces the channel and 

spatial augmentation. In order to cover neighboring tokens for the convolutions 2-D Block 

convolutions are utilized to analyze the rearranged picture tokens as opposed to 1-D 

convolutions, which are used for processing sentences in natural language processing 

(NLP). We embedded the convolution branch using the entire Transformer module rather 

than embedding the convolution inside the inner Transformer module. 

3.3 Underwater Image Datasets 

There are two datasets utilized in this study: 

3.3.1 The UIEB dataset. 

The underwater Image Enhancement Benchmark (UIEB) consists of two subsets of 950 

real-world underwater photos. 890 pairs of raw underwater photographs and the associated 

high-quality reference images, and 60 difficult images without reference. The dataset was 

annotated from the different Internet sites, relevant papers, and video footage and, contains 

a variety of underwater scenes and aquatic animals. To create the high-quality reference 

images, 12 image enhancement techniques were applied to the training dataset. Volunteers 

choose the final, high-quality reference photos.  
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Figure 8: The LSUI Dataset. 

3.3.2 The LSUI Dataset. 

5004 pairs of natural underwater photographs are included in the Large-Scale Underwater 

Image (LSUI) dataset. Compared to the current underwater datasets, it has better reference 

photographs with more varied underwater habitats. Compared to the current ones, the 

images in large-scale underwater image (LSUI) dataset pairings feature richer underwater 

settings (lighting conditions, water kinds, and target categories). 

3.3.3 Preprocessing for CAViT 

According to [3], the training and assessment images are both downsized to 1200 x 900 

pixels depending on their longest side. In order to achieve comparability, the particular 

dataset determines the proportion of test data. To identify the best trained model, the data 

set was split into 80% training examples and 20% validation data. Additionally, random 

cropping, resizing, flipping, and rotating are used to enhance training data. 

3.4 Experimental Analysis of Proposed Framework 

3.4.1 Implement Details 

Pytorch is used to implement the suggested CAViT-UIE along with an NVIDIA NVIDIA-

SMI 460.32.03 GPU and CUDA Version 11.2 without pre-trained networks. The Adam [3] 

optimizer is used, processing 30 epochs with a batch size of 8, with a preset learning rate 

of 1𝑒−4. The default setting was set to use Transformer depth 1 as concluded with multiple 

experiments that incurring the depth of the transformers did not increase any artifacts of 

the suggested pipeline. 
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3.4.2 Hyper parameters Details 

The path embedding size for the network is 32, and the skip path dropping ratio is set to 0.1. The 

scale factor in Q and K is 8, the ratio multiplied in MLP is 4, the head number of Transformer is 

also 8. Each image will be separated into 32 by 32 tokens. The network has a CNN with 7 layers 

and a maximum of 24 output channels (21.87 k parameters). The Transformer dimension (𝐶𝑖𝑛) 

was initially set to be the same 32. Additionally, the internal MLP dimensions remain unchanged. 

And models both predict 24 curves (totaling 8 iterations for 3 channels). 

3.4.3 Loss function  

To objectively evaluate the model performance of the model, we use gradient loss that uses the 

straightforward L1-norm as the loss function. The L1-norm between generated and ground truth 

patches is minimized by employing MAE (Mean Absolute Error) losses during network training.  It 

is advantageous to sharpen the edge of the improved image because the gradient loss not only 

collects low-frequency information, such as the L1 loss, but also by adding a second-order 

constraint it acquires the high-frequency information. L1 gradient loss is stated as follows:  Let 

�̂�and 𝐺 denote the gradient map of 𝑋 ̂and 𝑋, restored images 𝑋 ̂ and the real images 𝑋, respectively.  

𝐿𝑔𝑑 = 𝐸𝐺ˆ ∼𝑄(𝑟),𝐺~𝑄‖ �̂� −  𝐺‖
1

  (4) 

Where Q(r) and Q(g) are the distribution of �̂�and 𝐺, respectively. We recommend minimizing 

overall patch-wise absolute measure of cosine similarity across various patch representations as a 

simple method. We modify the training objective to include the patch-wise cosine loss provided 

the final-layer patch approximation h[L]of an input x: 

𝐿𝑐𝑜𝑠  = 𝜌(ℎ[𝑙])  (5) 

Specifically, this regularization loss reduces overall pairwise cosine similarity among various 

patches. The linear summation of the loss functions for each task results in the total loss function, 

which would be written as: 

 𝐿𝑠𝑢𝑚  =  𝐿𝑐𝑜𝑠𝑠  +  𝐿𝑔𝑑  (6) 
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3.5 Ablation Study – Experimental Analysis  

The White Balancing and Gamma Correction branch tries to improve the appearance of underwater 

images by eliminating undesired color cast brought on by various illuminants. It is employed 

because the underwater images suffer noticeably when water depths are greater than 30 feet. The 

goal of the White Balancing and Gamma Correction branch is to improve the overall contrast and 

brighten up dark areas of the underwater images. The evaluation comparison is explained in the next 

chapter.  

 

 

Figure 9: An overall architecture of the proposed Context-Aware Light weight Vision Transformer with White Balancing and 
Gamma Correction 
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Chapter 4 

4. Results and Discussion 

To ensure that our model may concentrate on obtaining global contexts and reduce computations, we use 

a specific two-module architecture named long-short Range Transformer rather than using single section 

for general information.  According to experimental findings, CAViT can frequently improve these tasks' 

performance while using models that are much less sophisticated, which has major benefits for real-time 

computation on edge devices. 

 Objective Evaluation Metrics 

Non-reference evaluation and fully-reference evaluation are the two basic categories of objective 

assessment methods. A complete reference assessment involves a group of images in "true color" 

and "ideal contrast." The non-reference methods are more appealing because it can be difficult to 

find ground-truth underwater photography photos. Due to the necessity to understand overall Human 

Visual System (HVS) as well as how it perceives the quality as a whole, this task becomes more 

challenging. In this work, we will evaluate our model on both full-reference and no-reference 

assessment techniques.  

4.1.1 Full-Reference Evaluation 

We carry out the assessment using Peak Signal to Noise Ratio (PSNR) and Structural 

Similarity Index Measure (SSIM) measures, that reflect the similarity to the reference, in 

order to objectively evaluate the recovered images with paired reference images provided 

on the dataset. The more similar the structure between images is, the higher the PSNR and 

SSIM values. 

For comparison purposes, both mean square error & peak signal to noise ratio are typical 

measures. The mean square error measures the total square difference between the original 

input image and the final output image. The equation below displays the mean square.  

𝑀𝑆𝐸 =  
1

𝑀 𝑋 𝑁
∑ [𝑙1(𝑚,𝑛) −  𝑙2(𝑚,𝑛)]2

𝑀,𝑁   (7) 
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𝑙1(𝑚,𝑛) − 𝑙2(𝑚,𝑛) stands for the original and improved images, respectively. The image's 

sides are shown in the format MxN, where m and n stand for pixel's x & y values in the 

image's dimensions.  

The greatest practicable signal-to-noise ratio is known as the PSNR. A peak signal-to-noise 

ratio is given by the following equation. 

𝑃𝑆𝑁𝑅 = 2𝑙𝑜𝑔10 (
𝐿−1

𝑅𝑀𝑆𝐸
)  (8) 

Root mean squared error is referred to as RMSE. Lower mean square error as well as a 

high peak signal to noise ratio denote the best final image, respectively. 

Three crucial elements are extracted from an image via the Structural Similarity Index 

(SSIM) metric; Structure, Contrast and Luminance. These three elements serve as the 

foundation for the comparison of the two photos. And finally, the SSIM score is given by, 

𝑆𝑆𝐼𝑀(𝑥, , 𝑦) = [𝑙(𝑥, 𝑦)] α. [𝑐(𝑥, 𝑦)]β . [𝑠(𝑥, 𝑦)]γ  (9) 

where α > 0, β > 0, γ > 0 denote the relative importance of each of the three components.  

4.1.2 No-Reference Evaluation 

It is a challenging undertaking to fairly and thoroughly evaluate UIEs for non-

reference testing data. UIQM focuses on underwater image color measure (UICM), 

underwater image sharpness measure (UISM), and underwater image contrast 

measure (UIConM). Better visual perception is indicated by a higher UIQM score. 

The equation for the underwater image quality measure (UIQM), which combines 

the measures of color, sharpness, and contrast, is provided by: 

UIQM =  α · U ICM +  β · U ISM +  γ · U IConM  (10) 

The weight coefficients used to balance the values of the three measures are α, β 

and γ. These settings are often configured to be 0.0282, 0.2953, and 3.5753. 

 Underwater Image Colorfulness Measure (UICM) 
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The majority of underwater photographs suffer from color casting, which 

worsens as depth increases and exhibits variable attenuating ratios depending 

on the color. Due to the fact that red has the shortest wavelength and generally 

disappears first, while blue and green wavelengths decay more slowly, 

underwater scenes frequently exhibit a green or blue tinge. In addition, as was 

already noted, the light attenuation greatly diminishes an image's hues. Both 

Red-Green (RG) and Yellow-Blue (YB) color components are thus evaluated 

by the UICM in order to gauge the effectiveness of color correcting algorithms. 

 Underwater Image Sharpness Measure (UISM) 

The corners of a picture are reflected in sharpness, and finely caught 

photographs are likely to exhibit superior sharpness. However, because of 

backscatter and absorption, photographs taken underwater suffer from extreme 

blurring and distortion. The Operator is first used on each color component to 

create edge maps, which are then used to measure the sharpness. Then, to 

determine the grayscale edge maps, the resulting edge maps are multiplied by 

the original color component. 

 Underwater Image Contrast Measure (UiconM) 

Contrast is an underwater visual performance factor. Backscattering is typically 

to blame for the contrast reduction in underwater photos. 

4.2 Experimental Analysis of Proposed Transformer Models 

On both UIEB dataset and LUSI dataset, we carried out extensive trials. The ability of Vision 

Transformers to learn important information even at the lowest layers, as opposed to CNN, allows 

them to stand out from the competition. CNN can only extract high-level information from the last 

layers. As a result, the datasets are shrunk additionally by eliminating redundant scenes. For visual 

comparison, we selected a sampling of each type's most representative photographs. 

For the UIEB 300 corresponding original and reference images denoted as Train-U are prepared as 

the training dataset in the training process of the model.  Additionally, remaining 90 photos from 

the UIEB dataset, designated as Test-U90, are the testing data. These testing dataset Test-U90 are 

used as the Full-Reference testing dataset as the images pair are included in the dataset originally.  
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For the Non-Reference testing dataset, the Challenging Set of UIEB dataset is being utilized. The 

Challenging Dataset contain 60 images for which the reference images are not included due to the 

complexity of the Underwater scenes. The Dataset is denoted as the Test-U60 testing dataset. There 

are five different underwater environments in Test-U60 scenes that exhibit high backscattering and 

color variations include those that are reddish, yellowish, greenish, bluish, and hazy. 

The LSUI collection includes 5004 actual underwater pictures with more numerous undersea 

sceneries (water kinds, lighting conditions and target groups) as well as comparison references, are 

presented. Moreover, it offers the intermediate transmission map and semantic segmentation for 

each unprocessed underwater photo. The LUSI dataset containing 1500 images denoted as Train- L 

is being utilized as the training images for the proposed transformer models. And the rest 70 images 

demoted as Test-L70 are utilized as the Full-Reference testing dataset for the proposed dataset. The 

all obtained statistical results are discussed in the following sections.  

4.2.1  Evaluation on Multiple Dataset  

 

 

 

 

 

 

 

 

 

 

 

 

Comparisons of CAViT and CAViTG denote the model with/without gamma correction. 

We report the model size and corresponding average PSNR and SSIM on LUSI and UIEB 

Training Parameters for LUSI training dataset Train-L and UIEB training 

dataset Train-U 

 Tokenization Branches Epochs Batch 

Size 

No. of 

Features 

CAViT Adaptive Average 

Pooling (Mean Head 

Strategy) 

Single 

Branch 

Model 

30 8 24 

CAViTG Adaptive Average 

Pooling (Mean Head 

Strategy) 

Single 

Branch 

Model 

30 8 24 

Table 1: Training Parameters 
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evaluation sets. The best model must give its performance high in PSNR value, low MSE 

value, high SSIM value and high UIQM values. 

LUSI Full-Reference Test on Test Set Test-L70 

 Training Time 

(s) ↓ 

Parameters 

(K) ↓ 

PSNR (dB) ↑ SSIM ↑ 

CAViT 2273.31 s 21.87 K 24.80 0.93 

CAViTG 10253.25 s 21.87 K 25.76 0.95 

Table 2: Full-Reference Test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 

Figure 10: Enhancement results of CAViT and CAViTG  trained on LUSI underwater datasets. (a): Input images. (b): 
Enhanced results using the model trained on the Train-L dataset. (c): Enhanced results using the model trained 
with Gamma Correction component on the Train-L dataset. (d): Reference images (recognized as ground truth 

(GT). 
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LUSI Non-Reference Test on Test Set Test-L70 

 UICM ↑ UISM ↑ UIConM ↑ UIQM ↑ 

CAViT 5.188 5.59284 0.1937 2.4904 

CAViTG 5.588 5.79 0.1913 2.69 

Table 3: Non-Reference Test 

LUSI Inference Results 

 Runtime 

Latency (s) ↓ 

Parameters 

(K) ↓ 

PSNR 

(dB) ↑ 

SSIM ↑ MSE ↓ 

CAViT 0.566 s 21.87 K 23.81 0.967 270.689 

CAViTG 0.659 s 21.87 K 23.89 0.969 265.188 

Table 4: Inference Results 

 

 

 

 

 

 

UIEB Full-Reference Test on Test Set Test-U90 

 Time (s) ↓ Parameters (K) ↓ PSNR (dB) ↑ SSIM ↑ 

CAViT 1057.23 s 21.87 K 21.37 0.89 

Figure 11: Inference results. (a): Input images. (b): Enhanced results using the model trained on the Train-L dataset. 
(c): Enhanced results using the model trained with Gamma Correction component on the Train-L dataset. (d): 

Reference images (recognized as ground truth (GT). 

(a) (b)

 

(c) (d) 
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CAViTG 4174.406 s 21.87 K 23.54 0.96 

Table 5: Full-Reference Test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UIEB Non-Reference Test on Test Set Test-U90 

 UICM ↑ UISM ↑ UIConM ↑ UIQM ↑ 

CAViT 8.25 7.162 0.248 3.233 

CAViTG 7.89 7.893 0.281 3.290 

Table 6: Non-Reference Test 

 

(a) 

(b) 

(c) 

(d) 

Figure 12: Enhancement results of CAViT and CAViTG  trained on UIEB underwater datasets. (a): Input 
images. (b): Enhanced results using the model trained on the Train-U dataset. (c): Enhanced results using 

the model trained with Gamma Correction component on the Train-U dataset. (d): Reference images 
(recognized as ground truth (GT). 
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UIEB Inference Results 

 Runtime 

Latency (s) ↓ 

Parameters 

(K) ↓ 

PSNR (dB) 

↑ 

SSIM ↑ MSE ↓ 

CAViT 0.44 s 21.87 K 25.49 0.981 183.83 

CAViTG 0.77 s 21.87 K 26.36 0.981 150.178 

Table 7: Inference Results  

 

 

 

 

 

4.3 Comparative Analysis of Various UIE Methods  

To demonstrate our performance superiority, we compare the CAViT Model with 6 UIE approaches. 

It contains comparison of different data-driven techniques: WaterNet [12], U-Trans [18], Ucolor 

[2], FUnIE [15], UIE-DAL [17] and UGAN [1]. The top results are bold. This analysis includes both 

the Non-Reference and Full Reference evaluation techniques. As well as the visual results are 

presented at the end to fully understand the metrics and demerits of each method.  

 

Methods 

Test U-90 No. of 

Parameters ↓ 

Time ↓ 

PSNR ↑ SSIM  ↑ 

WaterNet [12] 19.81 0.86 24.81M 0.61s 

U-Trans [18] 22.91 0.91 65.6M 0.07s 

(a) (b) (c) (d) 

Figure 13: Inference results. (a): Input images. (b): Enhanced results using the model trained on the Train-U 
dataset. (c): Enhanced results using the model trained with Gamma Correction component on the Train-U 

dataset. (d): Reference images (recognized as ground truth (GT). 
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Ucolor [2] 20.78 0.87 157.4M 2.75s 

FUnIE [15] 19.45 0.85 7.019M 0.09s 

UIE-DAL [17] 16.37 0.78 18.82M 0.07s 

UGAN [1] 20.68  0.84 57.17M 0.05s 

Ours 23.54 0.96 21.87K 0.44s 

Table 8: Quantitative comparison of different UIE methods on the full-reference testing dataset. 

 

 

 

 

 

 

 

Methods 
Test U-60 

UIQM ↑ 

WaterNet [13] 0.92 

U-Trans [18] 0.85 

Ucolor [2] 0.84 

FUnIE [2] 1.03 

UIE-DAL [17] 0.72 

PSNR 28.20 
 

Figure 14: Visual comparison of enhancement results sampled from the Test-U90 (UIEB) dataset. From left to right are raw 
underwater images, FUnIE[15], UGAN[1], Ucolor[2], U-Trans [18] and our CAViT. the reference image recognized as ground truth 

(GT). The highest PSNR value is marked in yellow. 
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Table 9: Quantitative Comparison among different UIE methods on the non-reference testing dataset. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

UGAN [1] 0.86 

Ours 2.37 

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 15: Enhancement results of different methods for Test-C60. The images 
represent underwater scenes of the yellowish, greenish- bluish colors. (a)Raw 

images. (b) WaterNet [12]. (c) Ucolor [2]. (d) U-Trans [18]. (e) Proposed Model. 



 
CHAPTER 5: CONCLUSION AND FUTURE WORK 

32 
 

Chapter 5 

5. Conclusion and Future Work 

5.1 Conclusion 

This chapter, briefly summarizes the efforts, limitations, and recommendations for future studies. After 

explaining the conceptual approach, conducting experiments, and reviewing the findings the final 

observations and expositions are discussed. The goal of the project is to create a model that performs better 

than cutting-edge approaches. Underwater image improvement and repair are essential for many practical 

uses such as underwater tasks including exploration, monitoring, and recovery carried out by autonomous 

or semiautonomous robots, and this presents a significant challenge for computer vision and image 

processing. In this paper, we introduce Context-Aware Vision Transformer (CAViT), a unique and 

portable deep learning model for improving underwater image quality. The suggested techniques provide 

quick inference with less memory consumption. To assess Context-Aware Vision Transformer (CAViT) 

settings, we undertook numerous tests. The proposed Context-Aware Vision Transformer (CAViT) is 

shown to be efficient and effective when compared to previous state-of-the-art work through quantitative 

and qualitative results. 

5.2 Limitations  

By learning many samples, the methodology based on deep neural algorithms can lessen the effect of the 

complicated undersea environment. However, the dataset is crucial, as the existing dataset's coverage is 

still constrained. Deepest learning-based techniques, put more emphasis on improving full integration of 

the underwater imaging model. Therefore, maximizing the spatial features can bear good generalization 

performance. 

5.3 Future Work 

The network can be trained using perception-related loss function and introduce factors that are consistent 

with human interpretation, which will make the network more effective across wider range of scenarios. 

Additionally, in order for the network to handle the loss of detailed data while taking into consideration 

speed, researchers can use the network's multi scale context features more frequently and specifying the 

step-wise reinforcement learning techniques while improving real-time performance and strengthen 

research on underwater video enhancement technology.
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