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Abstract

Software Bug Prediction is an active research area and is being widely explored with
the help of Machine Learning. Since bug prediction is now considered as an important
measure of SDLC, we need to have optimized techniques for making predictive mod-
els. Presently transfer learning and ensemble learning approaches are being researched
much. However, previous studies are not sufficient in this regard. So in this paper a
framework is created by using multiple techniques to explore their effectiveness when
combined in one model. The techniques involved feature selection which is used to re-
duce the dimensionality and redundancy of features and select only the relevant ones;
transfer learning is used to train and test the model on different datasets to analyze
how much of the learning is passed to other dataset; and ensemble method is utilized
to explore the increase in performance upon combining multiple classifiers in a model.
Four NASA and four Promise datasets are used in the study, the results of which show
an increase in the performance of the model by providing better AUC-ROC values when
different classifiers were combined in the model. Thus revealing that use of amalgam of
techniques such as used in this study, feature selection, transfer learning and ensemble
methods prove helpful in optimizing the software bug prediction models and provide

high performing, useful end model.

Keywords: Software bug prediction, Transfer learning, Ensemble learning method, Fea-

ture selection, Machine Learning
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CHAPTER 1

Introduction

1.1 Introduction

In this era, trend is shifting towards automating the process and procedures. For this
reason, software development industry has thrived and more emphasis is being placed
on quality software production. Bug prediction techniques are help developers concen-
trate on parts of code/software that are particularly prone to have bugs. This helps to
efficiently allocate resources in testing and fixing of error prone modules and hence pro-
ducing high quality product at lower cost. Technically bug/defect predictor is a model
of machine learning which is applied on historical software metrics to predict defects in
software modules. This efficiency of model is based on the quality of provided training
data and the classification technique used. This chapter will provide a walk through the
importance and need of Software Bug Prediction (SBP) in todays time and technology
and how it can impact the success of a software and software based products. The
problem statement is also discussed in this chapter, for which the main contributions
and methodology used in this research project is elaborated while the thesis outline is

described at the end of chapter.

1.2 Software Bug Prediction — the need of time/Importance of SBP

Each day in the world of Information Technology (IT) brings new changes; new software
releases, new version of applications or languages, or entirely new techniques and pro-
grams. The world is rapidly shifting towards software-based products thus drastically

increasing our reliance on software. Software houses and companies work hard to meet
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the need and develop high-end software products. However, often a software crisis or
failure occurs due to increased complexity, short time to market and high customer de-
mands consuming resources like time and budget. This situation gives rise to the idea of
successful, error-free software putting emphasis on quality software production. Many
models, principles and techniques are followed to achieve this notion such as small itera-
tions, documentations, user interaction and well-organized process; still some inevitable

bugs occur causing a great distress to the software users and owners.

Testing the whole software system completely and thoroughly is practically not possible
especially with the limited testing resources [1]. The unexpected behavior of a system
against the provided requirements show the presence of bug, and by promptly identi-
fying them, developers can efficiently allocate testing resources and enhance a system’s
architectural design by determining the high-risk system components. [2]. The figure

below represents the bug prediction phase and detection phase in a conventional style.

Software Requirement Study

Bug {}

Prediction

Phases Software Design

¢

Implentation

e

Software Testing

: Bug
Detection

Phase
Release and Maintenance

Figure 1.1: Phases of Bug Prediction and Detection
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In order to mitigate these defects an analysis of predicting them before they are born
is necessary. This inspires the birth of Software Bug Prediction methods, which can
forecast the software bugs in initial stages of development, increasing the efficiency and
performance of the final product. These methods are used to help developers concen-
trate on parts of code/software that are particularly prone to have bugs. It also helps
in efficient allocation of resources in testing and fixing of error prone modules hence

producing high quality product at reduced cost.

For this purpose, machine-learning models have proved to be very effective in achieving
required results. These models are applied on historical software metrics data to predict
defects in software modules. They help narrowing down and reducing the testing hard-
ships of faulty modules by identifying such modules of software system, whose chances of
being fault-prone are higher [3]. Yet the efficiency of model depends on certain factors
like dataset being used, its quality, used features and the choice of machine learning
classification technique used. One of the key factor for success criteria of bug prediction
methods involves the prediction of the correct occurrence of bug and understanding the
SDLC process flow. Any stage of SDLC can make use of Machine Learning algorithms
for bug prediction, be it identifying problems, planning and design, development, testing
phase, deployment and maintenance irrespective of the type of SDLC model employed
[4].

Prediction models serve a great advantage in development environments as once incor-
porated, they can give feedback to the developers while they are in the development
process. This might give rise to the notion that models are 100 % accurate, but in
actual expecting 100% accuracy of prediction is unreasonable.Additionally, these mod-
els function differently depending on the dataset, which frequently results in conflicting
fault predictions in a software project [3]. These models are constructed in ways to
achieve excellence, yet false prediction are unavoidable. The false predictions are differ-
entiated in two main categories, one where clean code gets classified as defected while
the other one in which a defected code gets classified as clean code [5]. During such a
situation trusting a model becomes difficult therefore, we need to obtain the best model
that compensates for fake/false predictions [1]. Efforts have been made to examine the
accuracy and complexity of models, although there are no standard benchmarks for
comparing models. This brings about the compelling utilization of ensemble method

for software bug prediction, as it uses various methods for the provided dataset to give
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better prediction results. According to observations, various methods have resulted in
varied levels of prediction performance, but none of them have consistently delivered
the most accurate predictions across various datasets. In this regard, there was a lot of
theoretical and empirical evidence in favor of using the ensemble method to get better
results for fault prediction. The ensemble method promises to improve fault prediction

by reducing the shortcomings of individual methods. [3].

1.3 Problem Statement

The world is rapidly shifting towards software-based products, increasing our reliance on
software drastically. Software development industry follows a lot of models, principles

and techniques to achieve error-free software still some inevitable bugs occur.

e To mitigate the software bugs many ML techniques are devised by researchers but

no optimized technique is found among all of them.

e Machine learning based software bug prediction methods require certain measures
and parameters to train the models but how we can optimize and generalize the

performance of the model is an open research area.

1.4 Research Questions

This research is focused on creating an optimized model to help predict bugs in software

and answers following research questions:

e What ML techniques are widely used to develop software bug prediction models?

e What impact does Ensemble Learning technique has, on the efficiency of a model

in comparison to the individual classifiers?

e What is the effect of cross project bug prediction on a model?

1.5 Main Contributions

A novel machine learning approach is devised after conducting extensive research on

the developed models and approaches and evaluated the results using comparison. In
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order to optimize the model we used the ensemble-learning method to create the model
that will help in the cross project bug prediction. Cleaned datasets were chosen for the
research and feature selection technique was carefully applied on them to curate the best
features for our model. In Chapter 3, we have discussed the detail of our implementation

and Chapter 4 will walk us through the results and experiments.

1.6 Methodology

The research aims to develop a novel model for software bug prediction based on machine
learning techniques and method. Four major steps are involved in this research: Cleaning
the dataset followed by Feature Selection, leading towards training the source dataset
with individual classifiers and then with ensemble learning method to draw a comparison
between both the performances and finally testing the performance of trained model on
the target dataset. A general Architecture Diagram in Figure 1.2 explains the overall

project. The detailed framework architecture is shown in Chapter 3.

Historical Data

Preprocessing

Source
Project

Training st
esfing

Prediction
Model

Figure 1.2: General Structure of a Machine Learning Model
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1.7 Thesis Outline

The research for such a system is a multi-step process and below is the breakdown of

this research.

Chapter 1 Introduction: An overview of software, need of software defect prediction
in software industry concluding with research framework and questions.

Chapter 2 Literature Review: Provides a complete journey of exploration in the
discipline of software bug prediction. A review of datasets, preprocessing of data, se-
lection of features and approaches used for it and classification techniques of software
defect prediction. (Problem Statement & Research Objectives).

Chapter 3 Technical Approach: How the software defect prediction will use the
learning insight of machine learning algorithms for the system. The theoretical descrip-
tion of our model. The detail of implementation of the system using WEKA has been
presented in this chapter following the complete details.

Chapter 4 Experimentation and Results: has been presented in this chapter and
the results are discussed.

Chapter 5 Conclusion and Future Work: The said section gives a recap of the

entire work done along with providing future direction for research.



CHAPTER 2

Literature Review

2.1 Introduction

This chapter discusses these previous approaches used for software bug prediction, ma-
chine learning and prediction techniques. Cross-Project Bug Prediction has, lately, been
considered as a very sought-after trend in the industry of software bug prediction. There
is numerous work done in the past about bug prediction and the likes. The quantity
of source code errors has been predicted using a variety of metrics. The frequency of
source code errors has been predicted using a variety of metrics. The majority of the
previous research on software fault prediction is restricted to using comparison meth-
ods for analysis of each machine learning technique. Some of them employed only a few
techniques and offered the contrast between them and others suggested methods as an
extension of prior work. The literature survey also reveals that the use of combination

of techniques gives better results.

2.2 Software Bug Prediction (SBP) Approaches

There are various approaches to create software bug prediction models mainly depend-
ing on factors like the required output, availability of datasets, features in a dataset,
ML classifiers etc. The previous models often ignored some of the above-mentioned
factors, which made them less effective. Later on, with the rapid growth of complexity
of a software, the area of software bug prediction gained much popularity and turned

into a sought-after research area in software engineering field. Many researchers are
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attracted towards this field proposing a variety of techniques, framework and models
for bug prediction. Additionally, there are researchers working on enhancing the models
and techniques already in use. The field of software bug prediction still suffers from a
lot of ambiguity, despite numerous efforts. Although numerous models and frameworks
have been proposed, each method has its own limitations. Bugs are detected by a va-
riety of machine learning algorithms, and datasets are made accessible to the public
so that researchers can carry out their experiments without worrying about data. For
machine learning techniques to be useful in bug prediction, it is necessary to examine
the experimental evidence gathered from previous studies [6].

The figure 2.1 shows what normally is included in literature review in the area of SBP.
Often times there are surveys or reviews conducted, discussions of previously used tech-
niques, their goods and bads, the latest trends and famous topics as all this is very much

required for a researcher to conduct a relevant and fruitful research project.

Highlights new
Svstematic Literature and widely used

Reviews \ trends
Literature Review in
the Domain of SBP

Proposed technique /

improvements, Discussion of

new frameworks/ software and
methods. performance metrics

Figure 2.1: Literature Review in the domain of Software Bug Prediction

The following is a list of related works in SBP field displayed in table 2.1 below. The
table shows the year and aim of study, the methodology used to conduct it and the
advantages and disadvantages of the used method. The table gives a quick idea to the

reader about the mentioned study and its usefulness.
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Although individual classifiers have given good performance in predicting number of
defects but scholars are trying to devise hybrid frameworks to further improve defect

prediction accuracy.

2.3 Machine Learning Techniques

From the literature review we explored that various frameworks and methods have been
proposed to perform bug prediction by combining data preprocessing, F'S, data sampling,
and machine learning classifiers in a systematic manner to build models. The review
of past work has given us some insight about the widely and commonly used measures
in this domain which are shown in the table 2.2 below. Researchers have preferred
them in order to ease the evaluation of the performance of their work. Apart from
the mentioned approaches, different kinds of preprocessing methods are utilized in the
cleaning of data and feature selection or feature ranking methods are also utilized to
reduce the dimensionality of dataset. After data cleaning, different classifiers are applied

on the dataset, either individual classifiers or ensemble methods, to train the model.

Table 2.2: Widely used tools in SBP

Dataset NASA, PROMISE, SOFTLAB, Relink, AEEEM
Performance Measures AUC, Accuracy, MCC, F-measure, Recall and Precision

Tool used WEKA, Python, MATLAB, sklearn, LIBSVM, KEEL

2.4 Summary

This chapter sheds light on the work done previously, in the domain of software bug
prediction, the approaches, methods, advantages and limitations of their work is shown.
The widely used dataset, tools and approaches for creating a prediction model has also

been considered.
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CHAPTER 3

Proposed Approach

3.1 Introduction

This chapter gives details regarding introduction to proposed solution, its theoretical
concept and what best ways should be opted to utilize this technique. The framework
of the architecture of the research project is also discussed both, diagrammatically and
theoretically. It discusses the technique utilized and its implementation details. There
is a detailed analysis of the used data set, its availability, features, relevancy of features
and metrics. The machine learning classifier, tools, and performance metrics used in
this study are also explained. This part will be concluded with proposition of optimized

machine learning technique that will help predict software bugs with greater accuracy.

3.2 Theoretical Concept of the Proposed System

As the undertaken research project involves model with optimized technique for software
bug prediction, it requires clean dataset with relevant features, efficient classifier and
valid training and testing of model. For this purpose, two distinct methods are brought
together to build the model more robust and novel among the previously built models

seen in the literature survey. These two methods are discussed as follows:

e Transfer Learning employing cross project defect prediction

e Ensemble based method
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3.2.1 Transfer Learning

The technique of transfer learning is unique in its form as it helps to save knowledge
gathered from solving one problem and applies it to a related but different problem.
We can also say that a model created for one task can be used as the basis for another
through transfer learning. For example, the knowledge acquired to identify light vehicles
can be applied to identify heavy vehicles as well. Thus, this technique serves as a great
way to solve research problems in machine learning domain.

In this study the focus is on the cross-company bug prediction situation where source
data and target data belongs to various companies/projects. [20]. The model is built
using one project considered as source project and employed for prediction on another
project called target project [16]. The set of features present in both of the projects are

kept same but we employ feature selection approach to reduce irrelevant features.

3.2.2 Ensemble Technique

The Ensemble learning technique utilizes multiple classifiers in building a model for
classification in order to improve the overall performance and efficiency of bug prediction.
It also improves the capability of generalization of the model and decreases the problem
of class imbalance. Different data is trained with different classifier so that each classifier
generates its own classification error. However, not all classifiers produce the same set
of corresponding errors. The ensemble learning methods can reduce biased learning
caused by class imbalance classification by combining these classifiers through certain
mechanisms. In this scenario, the ensemble learning techniques of boosting (Bst) and

bagging (Bag) are widely used [21].

3.3 Framework Architecture

To make our software prediction model we opted transfer learning while training our
model where cross project defect prediction is utilized. Our experiment is based on two

phases where our main objective is to:

1. Analyze different techniques and

2. Chose optimal measures for defect prediction
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For this purpose, the Figure 3.1 shows the framework architecture. It discusses the major
aspects involved in creating the model. The chosen datasets are passed through feature
selection process to extract the best and most relevant features as high dimensionality
of dataset often ruin the results. From the newly curated datasets, we choose source
project in order to train it on our classifier and then test the model with a different target
project. The performance results of the model will reveal the most suitable classifiers

and techniques for this research.

Classifier Construction
for Prediction Model

adividual Classifier Ensemble Method

Dataset
AdaBoost
Naive Bayes - NB

WASA MDP Datazet
PROMISE Dasaset Datasets
- 148
' J48 - MLP
Preprocess and :
load the data Bagging
- MLP e

-8
-MLP

Random Forest

Figure 3.1: Framework Architecture

3.4 Data Sets

The performance of proposed framework is assessed on four NASA benchmark datasets
and four datasets from Promise Repository. These datasets are publicly available and
consist of historical data of software modules. Many studies have utilized these datasets
in their researches and this is the primary reason of our interest in them as it will be
easier to compare our results with them. They include several features and a known
output class that determines the defectiveness of an instance. Based on data available
for other features, this output class is predicted by the prediction model. The datasets
have many projects with various attributes, sizes, and defective rates that helps to check

the generality of research [21].
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3.4.1 NASA MDP Dataset

From the NASA MDP Dataset, which is freely accessible on PROMISE Software En-

gineering Repository, we selected CM1, MW1, PC1, and PC2. The features shown in

Table 3.1 belong to this dataset. McCabe and Halstead feature extractors of source

code provide data from software for storage management that is used for receiving and

processing ground data. In an effort to objectively characterize code features associated

with software quality, these features were defined in the 1970s. [15].

Table 3.1: Features in NASA Dataset

1D FEATURE NAME ID FEATURE NAME

1. LOC_BLANK 20. HALSTEAD_EFFORT

2. BRANCH__COUNT 21. HALSTEAD_ERROR_EST

3. CALL_ PAIRS 22. HALSTEAD_LENGTH

4. LOC_CODE_AND_COMMENT 23. HALSTEAD_LEVEL

5. LOC_COMMENTS 24. HALSTEAD_ PROG_TIME

6. CONDITION__COUNT 25. HALSTEAD_VOLUME

7. CYCLOMATIC_ _COMPLEXITY 26. MAINTENANCE_SEVERITY

8. CYCLOMATIC_DENSITY 27. MODIFIED__CONDITION__COUNT
9. DECISION_COUNT 28. MULTIPLE__CONDITION__COUNT
10. DECISION__DENSITY 29. NODE__COUNT

11. DESIGN__COMPLEXITY 30. NORMAL_CYCLOMATIC_COMPLEXITY
12. DESIGN__DENSITY 31. NUM__OPERANDS

13. EDGE_COUNT 32. NUM__OPERATORS

14. ESSENTIAL_COMPLEXITY 33. NUM__UNIQUE_OPERANDS

15. ESSENTIAL_DENSITY 34. NUM__UNIQUE__OPERATORS

16. LOC_EXECUTABLE 35. NUMBER_ OF_LINES

17. PARAMETER__COUNT 36. PERCENT_COMMENTS

18. HALSTEAD_CONTENT 37. LOC_TOTAL

3.4.2 Promise Dataset

The data in Promise dataset refers to open-source Java systems from which we chose

ant-1.7, camel-1.6, ivy-2.0 and xalan-2.4. The features present in them are shown in
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table 3.2. The table shows all of the twenty features present in the dataset. The first

column displays the feature ID while the second and third column shows the feature

name and detail respectively. These IDs are used in another table to show the selected

features which are used in this study.

Table 3.2: Features in PROMISE Dataset

ID FEATURE NAME FEATURE DETAIL

1.  wmec Weighted methods per class

2. dit Depth of inheritance tree

3.  noc Number of children

4.  cho Coupling between object classes

5. rfc Response for a class

6. lcom Lack of cohesion in methods

7. ca Afferent couplings

8. ce Efferent couplings

9. npm Number of public methods

10. lcom3 Lack of cohesion in methods, different from LCOM
11. loc Lines of code

12. dam Data access metric

13. moa Measure of aggregation

14. mfa Measure of functional abstraction

15. cam Cohesion among methods of class

16. ic Inheritance coupling

17. cbm Coupling between methods

18. amc Average method complexity

19. max_cc Maximum McCabe’s cyclomatic complexity
20. avg cc Average McCabe’s cyclomatic complexity

3.4.3 Preprocessing

First step in the proposed framework is data preprocessing. [22] provides NASA datasets

in two versions. The version of the dataset known as DS’ includes instances that are

inconsistent and duplicated, whereas the version known as DS’ is a cleaner version..
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Originally, these datasets were available at NASA website; however, they are removed

from this source. Backup of 12 cleaned NASA datasets are available at [23]. We have

taken 4 cleaned and widely used datasets from the available datasets at [23] which

include CM1, MW1, PC1, PC2. Previous studies have already discussed and used these

cleaned versions of datasets in their experiments. The other four datasets have been

taken from PROMISE repository available at [24]. They contain 20 Object Oriented

metrics as independent features and defect-proneness of class as dependent variable.

The criteria of cleaning as stated in [22] is shown in Table 3.3.

Table 3.3: Cleaning Criteria of NASA Dataset

Sr. CATEGORY OF DATA QUALITY DESCRIPTION

No

1. Identical cases For this case various instances have similar
values for all features together with class
label

2. Inconsistent cases In this situation there are two or more in-
stances which have same values for all fea-
tures except for class label.

3. Cases with missing values This case refers to instances which hold
one or more missing observations.

4. Cases having conflicting feature val- An instance has two or more metric values

ues that go against some referential integrity

constraint in this case.

5. Cases with implausible values This case refers to instances that defy

some integrity constraint. For example,

value of LOC being 1.1

3.4.4 Feature selection

In recent years, feature selection technique is vastly implemented in building software

defect prediction models as the high-dimensionality of features can disturb the perfor-

mance of model therefore we select such features that appear relevant and similar to the

class. This way the performance of model can be boosted and made reliable.
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For our study, we have employed feature subset selection using CFS (correlation-based
feature selection). It evaluates the redundancy between different features and analyze
their individual predictive ability. In order to get the optimal subset of features, Best-
first search is applied. Features with more relevancy to class are preferred over the
features irrelevant to other features. While using the datasets in our prediction model
we only use the shared features of each source and target dataset as the feature numbers
are not the same in all datasets.

The features that are selected from each dataset are listed in Table 3.4. The table rep-
resents dataset name, ID of selected feature and number of total selected features. The
ID list in table 3.1and 3.2 shows the ID of selected feature for NASA and PROMISE

datasets respectively.

Table 3.4: Features in NASA Dataset and PROMISE Dataset after feature selection

DATASET SELECTED FEATURE ID No. OF
NAME SELECTED
FEATURE
CM1 5, 16, 18, 34, 36 5
MW1 1, 3, 5, 13, 18, 27, 29, 35, 37 9
NASA
PC1 1,4,5,8,16, 17, 18, 30 8
PC2 5,17, 29 3
Ant-1.7 4, 5,6, 11, 15, 18, 19 7
Xalan-2.4 4,5, 6,10, 11, 17, 19 7
PROMISE

Camel-1.6 2,3,4,6,7,9, 15, 16, 17, 18, 20 11
Ivy-2.0 1,4,5,8,9, 11, 13, 18 8

3.5 Machine Learning Classifier

A classifier is an algorithm, or the set of rules used to categorize or classify data whereas
a model is the end result or the outcome of the classifier’s machine learning. The training
of the model is carried out using classifier, which also helps in the classification of data.
In the scenario of this study, this step consists of choosing individual classifiers that
were mostly used in artificial intelligence and the integration of well-known algorithm

to form an ensemble-learning model.
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In the first step, we chose three individual classifiers i.e., Naive Bayes, Decision Tree
(J48) and Multi-Layer Perceptron (MLP). These are said to be frequently used clas-
sifiers and give efficient performance in the prediction of defects [2, 9]. In the second
step, we propose ensemble-learning method with transfer learning where we train the
base classifier with multiple classifiers used in the first step to create a model. For en-
semble method we used Random Forest, and the meta classifiers included Bagging and
AdaBoost.

The source dataset after passing through preprocessing and feature selection phase was
trained using these individual classifiers and then with ensemble method. Trained model
was then tested on target dataset to see which classifier achieved better accuracy values.

The Individual Classifiers used in this study are descried below:

3.5.1 Naive Bayes (NB)

The Naive Bayes classifier lies on the Bayes rule of conditional probability. It considers
all the attributes important and independent thus analyzes each attribute individually
[2]. Tt is the most simple yet strong Bayesian Network model and can achieve great

accuracy level.

3.5.2 J48

This technique is based on Quinlan’s C4.5 decision tree algorithm which is said to be
implemented in Weka in java and works on the algorithm developed by Ross Quinlan
known as ID3 and has more features that can tackle the issues which were not dealt by

ID3 [25).

3.5.3 Multi Layer Perceptron (MLP)

MLP is based on neural network and works on back propagation in order to train
classifier. The Input layer and output layer consists of various hidden layers that include
sigmoid function. The hidden layers contain biased neuron except output layer, which

is nonlinear function of the input [25].
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3.5.4 Bagging

The Bagging (Bootstrap Aggregating) constructs every ensemble member by taking
different datasets and then the average is combined to make predictions. In bagging,
the results of combined model give better performance than one single model. Bagging-
based methods use bootstrapped replicas of training data in building different classifiers

[21].

3.5.5 Boosting

Boosting is another ensemble method and Adaboost is considered a well-known algo-
rithm of Boosting family. During each round of iteration, a new model is created while
multiple iterations are performed with different example weight. Since the weight of
incorrectly classified classes can increase, this overfitting will be given a greater weight
in the subsequent iteration. In this manner the series of the classifier work well together,

and voting brings them all together. [2].

3.5.6 Random Forest

Random Forest which is considered as an ensemble classifier approach. The algorithm
of decision tree chooses the features randomly as the process of pruning is not carried
out at each node of the tree. RF is considered as a fast classifiers and the one that can

handle large number of input features/attributes [2].

3.6 Performance Metrics

The efficiency of prediction model is evaluated using certain evaluation criteria and
are generated through confusion matrix, which includes Accuracy, Recall, Precision,
and Area Under Receiver Operating Characteristics Curve (AUC-ROC), F-measure etc.
However in this study AUC-ROC, one of the most widely used performance metric [9], is
used. The effectiveness of machine learning models can be measured using these metrics

[26].
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3.6.1 Confusion Matrix

A particular table known as the confusion matrix is used to evaluate the performance of
machine learning algorithms. Every column of the matrix depicts the instance belonging
to the predicted class whereas every row shows the actual class instance or vice versa.
By reporting the number of True Positives (TP), False Positives (FP), True Negatives
(TN), and False Negatives (FN), this matrix provides a concise representation of the

testing algorithm’s output [4].

Prediction outcome

P n total
True False
pl P/
Positive Negative
g § False True
b3 o n’ N’
w Positive Negative
total P N

3.6.2 Accuracy

The ratio of the correctly predicted instances to the total number of instances by the

classifier is called accuracy. It measures the hit and miss of the classifier.

TP+ TN
TP+TN+ FP+FN

Accuracy =

3.6.3 Precision

The proportion of correctly predicted positive instances by the classifier out of all the

positively classified instances is labeled as precision.

TP

P .. __ =
recitsion TP+ FP
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3.6.4 Recall

The ratio of correctly classified positive instances to the actual number of positive in-
stances for a particular class. It is also referred to as true positive rate or sensitivity
and it counts the number of hits of the classifier for the class.

TP

Recall = m

3.6.5 AUC-ROC

The probability curve provides a visual representation of the trade-off between the true
positive rate and the false positive rate. This curve is called as ROC (Receiver Operat-
ing Characteristic). The classifier’s ability to differentiate between positive and negative

classes is measured by the Area Under Curve (AUC).

1+TP—-FP

AUC =
uc 5

Since accuracy is regarded as a poor performance metric for imbalanced defect datasets,
we use the most widely used metric to estimate the performance of each classifier, the

area under the ROC curve - AUC as the performance metric in our study.

3.7 Tools

In this study experiments are performed using Weka, an open source data mining tool un-
der GNU (General Public License), developed in Java language at University of Waikato,
New Zealand. As a collection of machine learning algorithms with a variety of tools for
data preparation, classification, regression, clustering, association rules mining, and vi-
sualization, this tool has been widely used in data mining studies.[27].

Weka is preferred usually due to the ease it provides because of its graphical user inter-
face. It contains numerous algorithms from which any of choice can be selected, their
parameters can be tuned and finally run on desired dataset. One dataset can have dif-
ferent models applied on it and the output that meets the requirement can be chosen.
Most of the functions are found in-built therefore the researcher does not have to worry
about learning languages and focus on his work alone.

Weka requires the input in the formatting of Attribute-Relational File Format while
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the filename should have the extension of .arff. The results/output achieved are easily
readable and can also be visualized. Thus, the machine learning models can easily be
developed quickly with the use of Weka. The figure 3.2 and 3.3 shows the interface of
Weka.

&3 Weka GUI Chooser - O >
Program Visualization Tools Help
Applications
[ 1
Explarer

WEKA

The University
of Waikato

Experimenter

knowledgeFlow

Waorkbench
Waikato Environment for Knowledge Analysis
Version 3.8.5
te) 1999 - 2020 simple CLI

The University of Waikato
Hamilton, Mew Zealand

Figure 3.2: Weka Graphical User Interface
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3.8 Summary

This section concludes and briefly highlights the major parts of the chapter. The chapter
includes the theoretical approach we have used to make this model. We have discussed
the creation of model that involves preprocessing, feature subset selection, transfer learn-
ing and ensemble learning method. We mentioned the data sets, all of their features and
then after carrying out feature selection, the chosen features are stated. We discussed
the classifiers used in the making of model and the performance metrics which will used

to calculate the efficiency of model. In short we have reviewed the technical approach

Figure 3.3: Weka Explorer

to make the software defect prediction model.
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CHAPTER 4

Results and Discussion

4.1 Introduction

In this chapter the discussion about results given by the model that is created in chapter
3. All the implementation details are provided in the previous chapter. This chapter
reveals the results of the proposed model and explains that which technique performed
well on the dataset. It also describes the optimization of the techniques used in order to
gain better performance and hence better result. The evaluation is done in the form of
comparison between the results achieved by both the methods (individual and ensemble).
This chapter concludes with the analysis of the achieved results which is shown in the

form of table and also demonstrated on line chart and box plot graphs.

4.2 Results Overview

Table 3.1 shows all features present in CM1, MW1, PC1, PC2 dataset while Table
3.2 shows all features present in ant-1.7, camel-1.6, ivy-2.0, xalan-2.4. As the datasets
had high dimensionality which could effect the end results so we conducted feature
subset selection. Therefore, the Table 3.4 contains the selected features from NASA
and PROMISE datasets. These features will provide us the basis to conduct transfer

learning across projects.

The result tables below discusses the results for individual base classifiers and the en-
semble based method where the defect prediction carried from the source project to
the target project is represented by ‘Source — Target’ For instance, ‘CM2 — PC1’

shows that CM2 is considered as the source project while PC1 is taken as the target
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project. The results of both the individual and ensemble based method for each dataset

are shown in one table as it will be easier for comparison.

Since accuracy sometimes give biased results so we took AUC values as the performance
metric instead of accuracy. The values marked bold are the highest ones among all the

classifiers.

4.2.1 Results Discussion of NASA Dataset

Performance results of NASA datasets are revealed in the Table 4.1. We can easily eval-
uate the comparison of performance between the individual classifiers and the ensemble
method. Apart from a few cases we have noticed that when we trained our model with
source dataset and changed the target dataset to test the model, our results with en-
semble method are significantly improved. However in two cases the individual classifier

outperformed the ensemble method.

e When CM1 is kept as source dataset and target dataset chosen to be are MW1,
PC1 and PC2, we see that the model performed well with Bagged NB and twice
with Random Forest respectively. These results with PC2 as target dataset were
quite compromising with individual classifiers but they got much better with en-

semble method.

e With MW1 as source dataset and CM1, PC1, PC2 as target dataset, we see that
the model performed well with NB as individual classifier, and twice with Random
Forest respectively. Here NB gave better results to MW1 — CM1, altough the

results with RF and Bagged MLP are almost near.

e PC1 being the source dataset and CM1, MW1, PC2 as target dataset, Bagged
J48, NB and Random Forest gave good results respectively. Here again NB as

individual classifier outperformed when MW1 was used for training the model.

e When PC2 is kept as source dataset and target dataset chosen to be are CMI,
MW1 and PC1, we see that the model performed well with Boosted J48 and twice
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with Bagged MLP respectively.

4.2.2 Results Discussion of PROMISE Dataset

To analyze the performance results of PROMISE datasets we refer the table 4.2. Here
again we can see the comparison of performance between the individual classifiers and
the ensemble method where we observe the model showed good results with ensemble
method but deviation is also seen three times where individual classifier outperformed.

Rest we see ensemble method taking the charge. To go into detail explanation we get:

e Ant 1.7 is taken as source dataset and target dataset chosen to be are Camel 1.6,
Xalan 2.4, Ivy 2.0 where the highest values came from NB, J48 and with Random
Forest respectively. Here we notice that when model is trained on Ant 1.7 dataset,
it performed well with individual classifiers twice and once with ensemble Random
Forest. This reveals that with some more feature tweaking and parameter tuning

we can get better result with ensemble as well.

e With Xalan 2.4 as source dataset and Camel 1.6, Ant 1.7 and Ivy 2.0 as target
dataset, we see that the model performed well with MLP as individual classifier,

and twice with Bagged MLP respectively.

e Ivy 2.0 being the source dataset and Ant 1.7, Xalan 2.4, Camel 1.6 as target
dataset showed that Bagged NB, Random Forest and Bagged MLP outperformed

all other classifiers respectively.

e When Camel 1.6 is kept as source dataset and target dataset are Ant 1.7, Xalan 24

and Ivy 2.0, we see that the model performed well with Bagged NB all the times.

31



CHAPTER 4: RESULTS AND DISCUSSION

66L°0 TEL0 9.0 0LS°0  ¥EL0  80G0] €9L°0 SPL0 0050 9GL0 10d < ¢od| Tl
€9L0 1690  G9G°0 0850 0LG°0  00S0]  ©S90  €0S0  00S°0  65G0  TMIN < gOd| 11
8VL0 7990 690 FI90  FSLO 9670  €FL0  T090 0050  9£9°0 TND < tdod| 0T
99L°0  GEL0  €6L°0 GEL0 1890  89L°0f CE80  TIL0D 6680 €180 ¢od < 10d| 6
GgL’0 €990 8PL0  ¥E90  86F0 €950 SPL0  ©S90 1890  SGL0  TMIN < 1D0d| 8
7690 62L0 6890 F990 6690 €850 G690 ¢0L0 08¢0  FLY0 WO« 10d| L
0690 €89°0  €9L°00 6L5°0 FLO0  LEL0] 86L0 OPL0 TSSO 98L0  @Od <~ IMM| 9
L69°0 €90 €9L°0 9890 8990  F6S0  96L°0 9850  S8F'0  L9L0 IO < TMIN| G
8.0 8F9°0  GTL0 1690 8F90  ¥69°0 60L0  Lg90  9FF0  65L0  TNO < TMN| P
67V8°0  ¥8G'0  FOP0  0S€°0  Le80  98%0 GG80 SPT0  I6V0 010 cod <~ 1WO| €
9¥L'0  ¥8G'0 0690 €120 1990  80L0 L6L0O  0SL0 680  LGL°0 10d < TND| G
0640 8190 GLL0 €790 €590  ¥950 8PL0  FOL0 0050  80L0  TMIN < TWNO| T
Suidseq ysooqepy A4, dTIN  8¥r aN

ON

POYIdIN SquuIasuy SISYISSE[D) [enpPIAIPU] | 7206uD [ < 904no0g| IS

10seIR( VSVN JO SHNSOY T O[qeL

32



CHAPTER 4: RESULTS AND DISCUSSION

G090  G6S°0 8190 ¥ES0  86V0 89S0 LSS0 ¥8SO  SPS0 090 91— pww) < (g —fiay gl
G06'0  ¢S6°0 0180 F¥E6'0 €960 @e80 G860 FI980  T08°0 GIS0  FE—uppX < 0¢—fia]] CTT
89L°0  9FL'0  LLLO 6990  L0L0  TOLO|  9LL0 GIL0  LEL0  69L°0 LT =y < 0¢—fia] 01
2690  6F9°0  9FL0 G590 8G90  0L9°0| STL0 6890 ¥E€I0 L0 0T —fial < 91— pwwyl 6
€99°0 P90 80L°0 8€9°0  LLG0 0290 6F90 00L0 €090 8690 VG — uprpx < 9T —pPwn)y '8
889°0  GP9'0  98L°0| 9990  F6S0  L99°0  @S90  FELO 9890  GTLO LT — Y < 91— pwn)y L
6c8°0  6LL°0 TI80 9.0 FP90 0290 S0L0 SeL0 8PL0 OIS0 0C—fief <y —uvpx| 9
€180 @LL0 T8L0 8€L0 €890  F090| 0080 @IS0 29L0  66L°0 LTIV < Fg—unppx| G
6790 €090 926°0 88%°0 €950 2060 €8G°0] S0L0 €290 8290 9T — jpwn) + yg—uvpx| ¥
68L°0  ¥6L0  ¥8LO| ©9L0  L6LO  OPL0  86L0 LF9O  OPL0  0SLO 0¢—fia] < L T—uy| ¢
LLL0 6EL0  GEL0l  LTL0  L080  T99°0  @SL0  FSL0 0380 G690 VG — uppy < LT —Uy| g
9090 0650 6650 2990 29S0  FES0  88G0, ¢6V0  FIS0 1060 9T —pwn) < LT—uy| T
Surddeq jsooqepy 9 JdTIN idN aN|

ON

POYISTA S[quuasur] SI9[ISSe[) [enplAIpuU] gobuD [, < 90u4n0gG| IS

jose)e(] 9SIWOIJ JO SHNSY :Z'F [qeL

33



CHAPTER 4: RESULTS AND DISCUSSION

4.3 Result Analysis

Performance of machine learning model is dependent on so many factors. Our goal here
is to check if optimizing the model using multiple classifiers works well. A comparative
analysis of individual classifiers and ensemble based method shows that generally the
use of multiple classifiers as in ensemble methods performed better as compared to
the individual ones across all the datasets. However, our results indicate that minor

deviations are there which are actually reveal different dimensions of a prediction model.

The varying nature of work of the selected classifiers were taken into consideration as
Naive Bayes works on probability, J48 which is a trimmed version of C4.5 decision tree
[28], MLP which is an artificial neural network, Random Forest that consists of decisions
trees while using bagging and feature randomness during classification, Bagging and
Adaboost are the ensemble learning methods. So these all classifiers perform different
yet are strong to give us good insight of our model performance. Although with our
currently used datasets, J48 and Adaboost has not performed very well whereas Bagged

NB, Bagged MLP and Random Forest has given good results.

The Line chart plots, attained by all classifiers, of ROC-AUC scores are shown in the
Figure 4.1 and 4.2. The x-axis shows the AUC values while the y-axis displays the
iterations carried out by different datasets. The graph reveals the change in AUC
values when a classifier is used to train each dataset and demonstrates their trends.
For instance, Random Forest and bagging MLP classifiers performed well on multiple
NASA datasets as shown in Figure 4.1 , while Bagging MLP and Naive Bayes classifiers
achieved the highest ROC-AUC scores for Promise datasets as displayed in Figure 4.2.

Also, it makes it abundantly clear that there is no one predominant classifier, which
may be due to the nature of datasets. At some point one classifier performed better
while in some places other outperformed it. This may be due to the nature of classifier
used to train or test a particular dataset or even the nature of dataset that was trained
on the classifier and also the dataset that was tested with it. The variations are there,

however, Random Forest and Bagged NB outperformed the most number of times.

In order to further review our results and outcome, we performed box-plot examina-
tion of the results obtained. The Box-plot review is considered as a non-parametric test

which presents variation in the samples without doing any self assumption related to the
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statistical distribution of the data (Benjamini, 1988). Figure 4.3 and 4.4 demonstrate
the results got from the analysis of box-plot for NASA and Promise datasets respec-
tively. The diagrams of Box-plot yields the minimum, maximum, first quartile and third
quartile values of a sample whereas the median value is shown by the center of the box-
plot. The box-plot for NASA dataset as show in Fig. 4.3 reveals much variations as
all the boxes are of varying heights, their medians are different too. and box-plot for

Promise dataset as shown in Fig. 4.4 has some stable values.

4.4 Summary

The findings we get show that there was vulnerability in the performance of classifiers, as
certain classifiers exhibited good performance in some datasets however compromised in
others. Therefore, our outcomes suggest that detection of software defects should make
use of ensembles as predictive models. Our results also indicate that minor deviations are
there which can be corrected with few more optimizations such as tuning of parameters,

class balancing and feature selection using different techniques.
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CHAPTER 5

Conclusion and Future Work

An overview of the whole study is provided in this chapter. It also describes the con-

clusion and gives an insight to future research work.

The major objective of this thesis is to prepare a machine learning model that will be
used for software bug prediction in the development of a software. The main task these
models perform include the prediction of bugs when the software happens to be in its
initial stages rather than in the testing phase where ruling out bugs becomes very ex-
pensive and often results in chaos.

To address this objective the state-of-the-art traditional methods and machine learning
algorithms were studied to discover out the best suitable results for the particular prob-
lem, out of which an amalgam of Transfer Learning and Ensemble Learning Method was

selected.

5.1 Conclusion

The framework comprised of feature selection, transfer learning and classification through
individual classifiers and then through ensemble methods, so that we can compare both
ways. Four cleaned NASA datasets and four Promise datasets are taken to carry out
the experiment. The afore-mentioned dataset was chosen for further comparisons due
to the fact that the majority of related works utilized these datasets to evaluate the
performance of their software bug prediction techniques.

For feature subset selection we used Best-First search while using CFS (correlation-based

feature selection). It helped in analyzing the redundancy between different features and
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evaluate the predictive ability of each individual feature. The model was developed in
WEKA due to its flexibility, inbuilt functions and various supporting libraries to com-
plete this task.

The findings show that the use of multiple classifier mostly gives good results than us-
ing individual classifier. So we compared the results by using individual NB, J48, MLP
and ensemble methods that included Random Forest, Adaboost and Bagging where the
latter two served as meta classifier with NB, J48 and MLP as their base classifier. ROC-
AUC curve was used as the performance metric.

Evaluation is carried out by comparing the performance score of all classifiers used
within the framework to see the high performing classifier. The results reflected better
performance of ensemble methods as compared to all classifiers.

One of the major observations made during the development and analysis is that in
order to get the best of results we need to have a fine tuned data set, which is itself a
very tedious and important job to do. In creating the software bug prediction model
using ML, one must know the core task is to prepare the dataset with good features for
our model to be trained and optimized on and choosing excellent classifiers to increase

the predictive ability of the model.

5.2 Future Work

Future work will involve investigation of other approaches of Machine Learning for the
undertaken model. This endeavor will lead to better results in terms of generating defect

prediction. Future research can be performed in several directions:

1. Parameters and their optimization have a huge influence on the performing ability
of a model. Parameter tuning can be performed to check any improvement in

performance.

2. Various combinations of Feature Selection and data sampling techniques can be

investigated.

3. Datasets from different domains can be used in transfer learning to analyze the

efficiency of model.
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