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Abstract

Software Bug Prediction is an active research area and is being widely explored with

the help of Machine Learning. Since bug prediction is now considered as an important

measure of SDLC, we need to have optimized techniques for making predictive mod-

els. Presently transfer learning and ensemble learning approaches are being researched

much. However, previous studies are not sufficient in this regard. So in this paper a

framework is created by using multiple techniques to explore their effectiveness when

combined in one model. The techniques involved feature selection which is used to re-

duce the dimensionality and redundancy of features and select only the relevant ones;

transfer learning is used to train and test the model on different datasets to analyze

how much of the learning is passed to other dataset; and ensemble method is utilized

to explore the increase in performance upon combining multiple classifiers in a model.

Four NASA and four Promise datasets are used in the study, the results of which show

an increase in the performance of the model by providing better AUC-ROC values when

different classifiers were combined in the model. Thus revealing that use of amalgam of

techniques such as used in this study, feature selection, transfer learning and ensemble

methods prove helpful in optimizing the software bug prediction models and provide

high performing, useful end model.

Keywords: Software bug prediction, Transfer learning, Ensemble learning method, Fea-

ture selection, Machine Learning
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Chapter 1

Introduction

1.1 Introduction

In this era, trend is shifting towards automating the process and procedures. For this

reason, software development industry has thrived and more emphasis is being placed

on quality software production. Bug prediction techniques are help developers concen-

trate on parts of code/software that are particularly prone to have bugs. This helps to

efficiently allocate resources in testing and fixing of error prone modules and hence pro-

ducing high quality product at lower cost. Technically bug/defect predictor is a model

of machine learning which is applied on historical software metrics to predict defects in

software modules. This efficiency of model is based on the quality of provided training

data and the classification technique used. This chapter will provide a walk through the

importance and need of Software Bug Prediction (SBP) in todays time and technology

and how it can impact the success of a software and software based products. The

problem statement is also discussed in this chapter, for which the main contributions

and methodology used in this research project is elaborated while the thesis outline is

described at the end of chapter.

1.2 Software Bug Prediction – the need of time/Importance of SBP

Each day in the world of Information Technology (IT) brings new changes; new software

releases, new version of applications or languages, or entirely new techniques and pro-

grams. The world is rapidly shifting towards software-based products thus drastically

increasing our reliance on software. Software houses and companies work hard to meet

1



Chapter 1: Introduction

the need and develop high-end software products. However, often a software crisis or

failure occurs due to increased complexity, short time to market and high customer de-

mands consuming resources like time and budget. This situation gives rise to the idea of

successful, error-free software putting emphasis on quality software production. Many

models, principles and techniques are followed to achieve this notion such as small itera-

tions, documentations, user interaction and well-organized process; still some inevitable

bugs occur causing a great distress to the software users and owners.

Testing the whole software system completely and thoroughly is practically not possible

especially with the limited testing resources [1]. The unexpected behavior of a system

against the provided requirements show the presence of bug, and by promptly identi-

fying them, developers can efficiently allocate testing resources and enhance a system’s

architectural design by determining the high-risk system components. [2]. The figure

below represents the bug prediction phase and detection phase in a conventional style.

Figure 1.1: Phases of Bug Prediction and Detection
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Chapter 1: Introduction

In order to mitigate these defects an analysis of predicting them before they are born

is necessary. This inspires the birth of Software Bug Prediction methods, which can

forecast the software bugs in initial stages of development, increasing the efficiency and

performance of the final product. These methods are used to help developers concen-

trate on parts of code/software that are particularly prone to have bugs. It also helps

in efficient allocation of resources in testing and fixing of error prone modules hence

producing high quality product at reduced cost.

For this purpose, machine-learning models have proved to be very effective in achieving

required results. These models are applied on historical software metrics data to predict

defects in software modules. They help narrowing down and reducing the testing hard-

ships of faulty modules by identifying such modules of software system, whose chances of

being fault-prone are higher [3]. Yet the efficiency of model depends on certain factors

like dataset being used, its quality, used features and the choice of machine learning

classification technique used. One of the key factor for success criteria of bug prediction

methods involves the prediction of the correct occurrence of bug and understanding the

SDLC process flow. Any stage of SDLC can make use of Machine Learning algorithms

for bug prediction, be it identifying problems, planning and design, development, testing

phase, deployment and maintenance irrespective of the type of SDLC model employed

[4].

Prediction models serve a great advantage in development environments as once incor-

porated, they can give feedback to the developers while they are in the development

process. This might give rise to the notion that models are 100 % accurate, but in

actual expecting 100% accuracy of prediction is unreasonable.Additionally, these mod-

els function differently depending on the dataset, which frequently results in conflicting

fault predictions in a software project [3]. These models are constructed in ways to

achieve excellence, yet false prediction are unavoidable. The false predictions are differ-

entiated in two main categories, one where clean code gets classified as defected while

the other one in which a defected code gets classified as clean code [5]. During such a

situation trusting a model becomes difficult therefore, we need to obtain the best model

that compensates for fake/false predictions [1]. Efforts have been made to examine the

accuracy and complexity of models, although there are no standard benchmarks for

comparing models. This brings about the compelling utilization of ensemble method

for software bug prediction, as it uses various methods for the provided dataset to give

3



Chapter 1: Introduction

better prediction results. According to observations, various methods have resulted in

varied levels of prediction performance, but none of them have consistently delivered

the most accurate predictions across various datasets. In this regard, there was a lot of

theoretical and empirical evidence in favor of using the ensemble method to get better

results for fault prediction. The ensemble method promises to improve fault prediction

by reducing the shortcomings of individual methods. [3].

1.3 Problem Statement

The world is rapidly shifting towards software-based products, increasing our reliance on

software drastically. Software development industry follows a lot of models, principles

and techniques to achieve error-free software still some inevitable bugs occur.

• To mitigate the software bugs many ML techniques are devised by researchers but

no optimized technique is found among all of them.

• Machine learning based software bug prediction methods require certain measures

and parameters to train the models but how we can optimize and generalize the

performance of the model is an open research area.

1.4 Research Questions

This research is focused on creating an optimized model to help predict bugs in software

and answers following research questions:

• What ML techniques are widely used to develop software bug prediction models?

• What impact does Ensemble Learning technique has, on the efficiency of a model

in comparison to the individual classifiers?

• What is the effect of cross project bug prediction on a model?

1.5 Main Contributions

A novel machine learning approach is devised after conducting extensive research on

the developed models and approaches and evaluated the results using comparison. In

4



Chapter 1: Introduction

order to optimize the model we used the ensemble-learning method to create the model

that will help in the cross project bug prediction. Cleaned datasets were chosen for the

research and feature selection technique was carefully applied on them to curate the best

features for our model. In Chapter 3, we have discussed the detail of our implementation

and Chapter 4 will walk us through the results and experiments.

1.6 Methodology

The research aims to develop a novel model for software bug prediction based on machine

learning techniques and method. Four major steps are involved in this research: Cleaning

the dataset followed by Feature Selection, leading towards training the source dataset

with individual classifiers and then with ensemble learning method to draw a comparison

between both the performances and finally testing the performance of trained model on

the target dataset. A general Architecture Diagram in Figure 1.2 explains the overall

project. The detailed framework architecture is shown in Chapter 3.

Figure 1.2: General Structure of a Machine Learning Model
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Chapter 1: Introduction

1.7 Thesis Outline

The research for such a system is a multi-step process and below is the breakdown of

this research.

Chapter 1 Introduction: An overview of software, need of software defect prediction

in software industry concluding with research framework and questions.

Chapter 2 Literature Review: Provides a complete journey of exploration in the

discipline of software bug prediction. A review of datasets, preprocessing of data, se-

lection of features and approaches used for it and classification techniques of software

defect prediction. (Problem Statement & Research Objectives).

Chapter 3 Technical Approach: How the software defect prediction will use the

learning insight of machine learning algorithms for the system. The theoretical descrip-

tion of our model. The detail of implementation of the system using WEKA has been

presented in this chapter following the complete details.

Chapter 4 Experimentation and Results: has been presented in this chapter and

the results are discussed.

Chapter 5 Conclusion and Future Work: The said section gives a recap of the

entire work done along with providing future direction for research.

6



Chapter 2

Literature Review

2.1 Introduction

This chapter discusses these previous approaches used for software bug prediction, ma-

chine learning and prediction techniques. Cross-Project Bug Prediction has, lately, been

considered as a very sought-after trend in the industry of software bug prediction. There

is numerous work done in the past about bug prediction and the likes. The quantity

of source code errors has been predicted using a variety of metrics. The frequency of

source code errors has been predicted using a variety of metrics. The majority of the

previous research on software fault prediction is restricted to using comparison meth-

ods for analysis of each machine learning technique. Some of them employed only a few

techniques and offered the contrast between them and others suggested methods as an

extension of prior work. The literature survey also reveals that the use of combination

of techniques gives better results.

2.2 Software Bug Prediction (SBP) Approaches

There are various approaches to create software bug prediction models mainly depend-

ing on factors like the required output, availability of datasets, features in a dataset,

ML classifiers etc. The previous models often ignored some of the above-mentioned

factors, which made them less effective. Later on, with the rapid growth of complexity

of a software, the area of software bug prediction gained much popularity and turned

into a sought-after research area in software engineering field. Many researchers are
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Chapter 2: Literature Review

attracted towards this field proposing a variety of techniques, framework and models

for bug prediction. Additionally, there are researchers working on enhancing the models

and techniques already in use. The field of software bug prediction still suffers from a

lot of ambiguity, despite numerous efforts. Although numerous models and frameworks

have been proposed, each method has its own limitations. Bugs are detected by a va-

riety of machine learning algorithms, and datasets are made accessible to the public

so that researchers can carry out their experiments without worrying about data. For

machine learning techniques to be useful in bug prediction, it is necessary to examine

the experimental evidence gathered from previous studies [6].

The figure 2.1 shows what normally is included in literature review in the area of SBP.

Often times there are surveys or reviews conducted, discussions of previously used tech-

niques, their goods and bads, the latest trends and famous topics as all this is very much

required for a researcher to conduct a relevant and fruitful research project.

Figure 2.1: Literature Review in the domain of Software Bug Prediction

The following is a list of related works in SBP field displayed in table 2.1 below. The

table shows the year and aim of study, the methodology used to conduct it and the

advantages and disadvantages of the used method. The table gives a quick idea to the

reader about the mentioned study and its usefulness.
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Although individual classifiers have given good performance in predicting number of

defects but scholars are trying to devise hybrid frameworks to further improve defect

prediction accuracy.

2.3 Machine Learning Techniques

From the literature review we explored that various frameworks and methods have been

proposed to perform bug prediction by combining data preprocessing, FS, data sampling,

and machine learning classifiers in a systematic manner to build models. The review

of past work has given us some insight about the widely and commonly used measures

in this domain which are shown in the table 2.2 below. Researchers have preferred

them in order to ease the evaluation of the performance of their work. Apart from

the mentioned approaches, different kinds of preprocessing methods are utilized in the

cleaning of data and feature selection or feature ranking methods are also utilized to

reduce the dimensionality of dataset. After data cleaning, different classifiers are applied

on the dataset, either individual classifiers or ensemble methods, to train the model.

Table 2.2: Widely used tools in SBP

Dataset NASA, PROMISE, SOFTLAB, Relink, AEEEM

Performance Measures AUC, Accuracy, MCC, F-measure, Recall and Precision

Tool used WEKA, Python, MATLAB, sklearn, LIBSVM, KEEL

2.4 Summary

This chapter sheds light on the work done previously, in the domain of software bug

prediction, the approaches, methods, advantages and limitations of their work is shown.

The widely used dataset, tools and approaches for creating a prediction model has also

been considered.
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Chapter 3

Proposed Approach

3.1 Introduction

This chapter gives details regarding introduction to proposed solution, its theoretical

concept and what best ways should be opted to utilize this technique. The framework

of the architecture of the research project is also discussed both, diagrammatically and

theoretically. It discusses the technique utilized and its implementation details. There

is a detailed analysis of the used data set, its availability, features, relevancy of features

and metrics. The machine learning classifier, tools, and performance metrics used in

this study are also explained. This part will be concluded with proposition of optimized

machine learning technique that will help predict software bugs with greater accuracy.

3.2 Theoretical Concept of the Proposed System

As the undertaken research project involves model with optimized technique for software

bug prediction, it requires clean dataset with relevant features, efficient classifier and

valid training and testing of model. For this purpose, two distinct methods are brought

together to build the model more robust and novel among the previously built models

seen in the literature survey. These two methods are discussed as follows:

• Transfer Learning employing cross project defect prediction

• Ensemble based method

16
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3.2.1 Transfer Learning

The technique of transfer learning is unique in its form as it helps to save knowledge

gathered from solving one problem and applies it to a related but different problem.

We can also say that a model created for one task can be used as the basis for another

through transfer learning. For example, the knowledge acquired to identify light vehicles

can be applied to identify heavy vehicles as well. Thus, this technique serves as a great

way to solve research problems in machine learning domain.

In this study the focus is on the cross-company bug prediction situation where source

data and target data belongs to various companies/projects. [20]. The model is built

using one project considered as source project and employed for prediction on another

project called target project [16]. The set of features present in both of the projects are

kept same but we employ feature selection approach to reduce irrelevant features.

3.2.2 Ensemble Technique

The Ensemble learning technique utilizes multiple classifiers in building a model for

classification in order to improve the overall performance and efficiency of bug prediction.

It also improves the capability of generalization of the model and decreases the problem

of class imbalance. Different data is trained with different classifier so that each classifier

generates its own classification error. However, not all classifiers produce the same set

of corresponding errors. The ensemble learning methods can reduce biased learning

caused by class imbalance classification by combining these classifiers through certain

mechanisms. In this scenario, the ensemble learning techniques of boosting (Bst) and

bagging (Bag) are widely used [21].

3.3 Framework Architecture

To make our software prediction model we opted transfer learning while training our

model where cross project defect prediction is utilized. Our experiment is based on two

phases where our main objective is to:

1. Analyze different techniques and

2. Chose optimal measures for defect prediction
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For this purpose, the Figure 3.1 shows the framework architecture. It discusses the major

aspects involved in creating the model. The chosen datasets are passed through feature

selection process to extract the best and most relevant features as high dimensionality

of dataset often ruin the results. From the newly curated datasets, we choose source

project in order to train it on our classifier and then test the model with a different target

project. The performance results of the model will reveal the most suitable classifiers

and techniques for this research.

Figure 3.1: Framework Architecture

3.4 Data Sets

The performance of proposed framework is assessed on four NASA benchmark datasets

and four datasets from Promise Repository. These datasets are publicly available and

consist of historical data of software modules. Many studies have utilized these datasets

in their researches and this is the primary reason of our interest in them as it will be

easier to compare our results with them. They include several features and a known

output class that determines the defectiveness of an instance. Based on data available

for other features, this output class is predicted by the prediction model. The datasets

have many projects with various attributes, sizes, and defective rates that helps to check

the generality of research [21].
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3.4.1 NASA MDP Dataset

From the NASA MDP Dataset, which is freely accessible on PROMISE Software En-

gineering Repository, we selected CM1, MW1, PC1, and PC2. The features shown in

Table 3.1 belong to this dataset. McCabe and Halstead feature extractors of source

code provide data from software for storage management that is used for receiving and

processing ground data. In an effort to objectively characterize code features associated

with software quality, these features were defined in the 1970s. [15].

Table 3.1: Features in NASA Dataset

ID Feature Name ID Feature Name

1. LOC_BLANK 20. HALSTEAD_EFFORT

2. BRANCH_COUNT 21. HALSTEAD_ERROR_EST

3. CALL_PAIRS 22. HALSTEAD_LENGTH

4. LOC_CODE_AND_COMMENT 23. HALSTEAD_LEVEL

5. LOC_COMMENTS 24. HALSTEAD_PROG_TIME

6. CONDITION_COUNT 25. HALSTEAD_VOLUME

7. CYCLOMATIC_COMPLEXITY 26. MAINTENANCE_SEVERITY

8. CYCLOMATIC_DENSITY 27. MODIFIED_CONDITION_COUNT

9. DECISION_COUNT 28. MULTIPLE_CONDITION_COUNT

10. DECISION_DENSITY 29. NODE_COUNT

11. DESIGN_COMPLEXITY 30. NORMAL_CYCLOMATIC_COMPLEXITY

12. DESIGN_DENSITY 31. NUM_OPERANDS

13. EDGE_COUNT 32. NUM_OPERATORS

14. ESSENTIAL_COMPLEXITY 33. NUM_UNIQUE_OPERANDS

15. ESSENTIAL_DENSITY 34. NUM_UNIQUE_OPERATORS

16. LOC_EXECUTABLE 35. NUMBER_OF_LINES

17. PARAMETER_COUNT 36. PERCENT_COMMENTS

18. HALSTEAD_CONTENT 37. LOC_TOTAL

3.4.2 Promise Dataset

The data in Promise dataset refers to open-source Java systems from which we chose

ant-1.7, camel-1.6, ivy-2.0 and xalan-2.4. The features present in them are shown in
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table 3.2. The table shows all of the twenty features present in the dataset. The first

column displays the feature ID while the second and third column shows the feature

name and detail respectively. These IDs are used in another table to show the selected

features which are used in this study.

Table 3.2: Features in PROMISE Dataset

ID Feature Name Feature Detail

1. wmc Weighted methods per class

2. dit Depth of inheritance tree

3. noc Number of children

4. cbo Coupling between object classes

5. rfc Response for a class

6. lcom Lack of cohesion in methods

7. ca Afferent couplings

8. ce Efferent couplings

9. npm Number of public methods

10. lcom3 Lack of cohesion in methods, different from LCOM

11. loc Lines of code

12. dam Data access metric

13. moa Measure of aggregation

14. mfa Measure of functional abstraction

15. cam Cohesion among methods of class

16. ic Inheritance coupling

17. cbm Coupling between methods

18. amc Average method complexity

19. max_cc Maximum McCabe’s cyclomatic complexity

20. avg_cc Average McCabe’s cyclomatic complexity

3.4.3 Preprocessing

First step in the proposed framework is data preprocessing. [22] provides NASA datasets

in two versions. The version of the dataset known as DS’ includes instances that are

inconsistent and duplicated, whereas the version known as DS’ is a cleaner version..
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Originally, these datasets were available at NASA website; however, they are removed

from this source. Backup of 12 cleaned NASA datasets are available at [23]. We have

taken 4 cleaned and widely used datasets from the available datasets at [23] which

include CM1, MW1, PC1, PC2. Previous studies have already discussed and used these

cleaned versions of datasets in their experiments. The other four datasets have been

taken from PROMISE repository available at [24]. They contain 20 Object Oriented

metrics as independent features and defect-proneness of class as dependent variable.

The criteria of cleaning as stated in [22] is shown in Table 3.3.

Table 3.3: Cleaning Criteria of NASA Dataset

Sr.

No

Category of Data Quality Description

1. Identical cases For this case various instances have similar

values for all features together with class

label

2. Inconsistent cases In this situation there are two or more in-

stances which have same values for all fea-

tures except for class label.

3. Cases with missing values This case refers to instances which hold

one or more missing observations.

4. Cases having conflicting feature val-

ues

An instance has two or more metric values

that go against some referential integrity

constraint in this case.

5. Cases with implausible values This case refers to instances that defy

some integrity constraint. For example,

value of LOC being 1.1

3.4.4 Feature selection

In recent years, feature selection technique is vastly implemented in building software

defect prediction models as the high-dimensionality of features can disturb the perfor-

mance of model therefore we select such features that appear relevant and similar to the

class. This way the performance of model can be boosted and made reliable.
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For our study, we have employed feature subset selection using CFS (correlation-based

feature selection). It evaluates the redundancy between different features and analyze

their individual predictive ability. In order to get the optimal subset of features, Best-

first search is applied. Features with more relevancy to class are preferred over the

features irrelevant to other features. While using the datasets in our prediction model

we only use the shared features of each source and target dataset as the feature numbers

are not the same in all datasets.

The features that are selected from each dataset are listed in Table 3.4. The table rep-

resents dataset name, ID of selected feature and number of total selected features. The

ID list in table 3.1and 3.2 shows the ID of selected feature for NASA and PROMISE

datasets respectively.

Table 3.4: Features in NASA Dataset and PROMISE Dataset after feature selection

Dataset

Name

Selected Feature ID No. of

Selected

Feature

NASA

CM1 5, 16, 18, 34, 36 5

MW1 1, 3, 5, 13, 18, 27, 29, 35, 37 9

PC1 1, 4, 5, 8, 16, 17, 18, 30 8

PC2 5, 17, 29 3

PROMISE

Ant-1.7 4, 5, 6, 11, 15, 18, 19 7

Xalan-2.4 4, 5, 6, 10, 11, 17, 19 7

Camel-1.6 2, 3, 4, 6, 7, 9, 15, 16, 17, 18, 20 11

Ivy-2.0 1, 4, 5, 8, 9, 11, 13, 18 8

3.5 Machine Learning Classifier

A classifier is an algorithm, or the set of rules used to categorize or classify data whereas

a model is the end result or the outcome of the classifier’s machine learning. The training

of the model is carried out using classifier, which also helps in the classification of data.

In the scenario of this study, this step consists of choosing individual classifiers that

were mostly used in artificial intelligence and the integration of well-known algorithm

to form an ensemble-learning model.
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In the first step, we chose three individual classifiers i.e., Naïve Bayes, Decision Tree

(J48) and Multi-Layer Perceptron (MLP). These are said to be frequently used clas-

sifiers and give efficient performance in the prediction of defects [2, 9]. In the second

step, we propose ensemble-learning method with transfer learning where we train the

base classifier with multiple classifiers used in the first step to create a model. For en-

semble method we used Random Forest, and the meta classifiers included Bagging and

AdaBoost.

The source dataset after passing through preprocessing and feature selection phase was

trained using these individual classifiers and then with ensemble method. Trained model

was then tested on target dataset to see which classifier achieved better accuracy values.

The Individual Classifiers used in this study are descried below:

3.5.1 Naïve Bayes (NB)

The Naïve Bayes classifier lies on the Bayes rule of conditional probability. It considers

all the attributes important and independent thus analyzes each attribute individually

[2]. It is the most simple yet strong Bayesian Network model and can achieve great

accuracy level.

3.5.2 J48

This technique is based on Quinlan’s C4.5 decision tree algorithm which is said to be

implemented in Weka in java and works on the algorithm developed by Ross Quinlan

known as ID3 and has more features that can tackle the issues which were not dealt by

ID3 [25].

3.5.3 Multi Layer Perceptron (MLP)

MLP is based on neural network and works on back propagation in order to train

classifier. The Input layer and output layer consists of various hidden layers that include

sigmoid function. The hidden layers contain biased neuron except output layer, which

is nonlinear function of the input [25].
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3.5.4 Bagging

The Bagging (Bootstrap Aggregating) constructs every ensemble member by taking

different datasets and then the average is combined to make predictions. In bagging,

the results of combined model give better performance than one single model. Bagging-

based methods use bootstrapped replicas of training data in building different classifiers

[21].

3.5.5 Boosting

Boosting is another ensemble method and Adaboost is considered a well-known algo-

rithm of Boosting family. During each round of iteration, a new model is created while

multiple iterations are performed with different example weight. Since the weight of

incorrectly classified classes can increase, this overfitting will be given a greater weight

in the subsequent iteration. In this manner the series of the classifier work well together,

and voting brings them all together. [2].

3.5.6 Random Forest

Random Forest which is considered as an ensemble classifier approach. The algorithm

of decision tree chooses the features randomly as the process of pruning is not carried

out at each node of the tree. RF is considered as a fast classifiers and the one that can

handle large number of input features/attributes [2].

3.6 Performance Metrics

The efficiency of prediction model is evaluated using certain evaluation criteria and

are generated through confusion matrix, which includes Accuracy, Recall, Precision,

and Area Under Receiver Operating Characteristics Curve (AUC-ROC), F-measure etc.

However in this study AUC-ROC, one of the most widely used performance metric [9], is

used. The effectiveness of machine learning models can be measured using these metrics

[26].
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3.6.1 Confusion Matrix

A particular table known as the confusion matrix is used to evaluate the performance of

machine learning algorithms. Every column of the matrix depicts the instance belonging

to the predicted class whereas every row shows the actual class instance or vice versa.

By reporting the number of True Positives (TP), False Positives (FP), True Negatives

(TN), and False Negatives (FN), this matrix provides a concise representation of the

testing algorithm’s output [4].
ac
tu
al

va
lu
e

Prediction outcome

p n total

p′ True

Positive

False

Negative
P′

n′ False

Positive

True

Negative
N′

total P N

3.6.2 Accuracy

The ratio of the correctly predicted instances to the total number of instances by the

classifier is called accuracy. It measures the hit and miss of the classifier.

Accuracy = TP + TN

TP + TN + FP + FN

3.6.3 Precision

The proportion of correctly predicted positive instances by the classifier out of all the

positively classified instances is labeled as precision.

Precision = TP

TP + FP
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3.6.4 Recall

The ratio of correctly classified positive instances to the actual number of positive in-

stances for a particular class. It is also referred to as true positive rate or sensitivity

and it counts the number of hits of the classifier for the class.

Recall = TP

TP + FN

3.6.5 AUC-ROC

The probability curve provides a visual representation of the trade-off between the true

positive rate and the false positive rate. This curve is called as ROC (Receiver Operat-

ing Characteristic). The classifier’s ability to differentiate between positive and negative

classes is measured by the Area Under Curve (AUC).

AUC = 1 + TP − FP

2

Since accuracy is regarded as a poor performance metric for imbalanced defect datasets,

we use the most widely used metric to estimate the performance of each classifier, the

area under the ROC curve - AUC as the performance metric in our study.

3.7 Tools

In this study experiments are performed usingWeka, an open source data mining tool un-

der GNU (General Public License), developed in Java language at University of Waikato,

New Zealand. As a collection of machine learning algorithms with a variety of tools for

data preparation, classification, regression, clustering, association rules mining, and vi-

sualization, this tool has been widely used in data mining studies.[27].

Weka is preferred usually due to the ease it provides because of its graphical user inter-

face. It contains numerous algorithms from which any of choice can be selected, their

parameters can be tuned and finally run on desired dataset. One dataset can have dif-

ferent models applied on it and the output that meets the requirement can be chosen.

Most of the functions are found in-built therefore the researcher does not have to worry

about learning languages and focus on his work alone.

Weka requires the input in the formatting of Attribute-Relational File Format while
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the filename should have the extension of .arff. The results/output achieved are easily

readable and can also be visualized. Thus, the machine learning models can easily be

developed quickly with the use of Weka. The figure 3.2 and 3.3 shows the interface of

Weka.

Figure 3.2: Weka Graphical User Interface
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Figure 3.3: Weka Explorer

3.8 Summary

This section concludes and briefly highlights the major parts of the chapter. The chapter

includes the theoretical approach we have used to make this model. We have discussed

the creation of model that involves preprocessing, feature subset selection, transfer learn-

ing and ensemble learning method. We mentioned the data sets, all of their features and

then after carrying out feature selection, the chosen features are stated. We discussed

the classifiers used in the making of model and the performance metrics which will used

to calculate the efficiency of model. In short we have reviewed the technical approach

to make the software defect prediction model.
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Results and Discussion

4.1 Introduction

In this chapter the discussion about results given by the model that is created in chapter

3. All the implementation details are provided in the previous chapter. This chapter

reveals the results of the proposed model and explains that which technique performed

well on the dataset. It also describes the optimization of the techniques used in order to

gain better performance and hence better result. The evaluation is done in the form of

comparison between the results achieved by both the methods (individual and ensemble).

This chapter concludes with the analysis of the achieved results which is shown in the

form of table and also demonstrated on line chart and box plot graphs.

4.2 Results Overview

Table 3.1 shows all features present in CM1, MW1, PC1, PC2 dataset while Table

3.2 shows all features present in ant-1.7, camel-1.6, ivy-2.0, xalan-2.4. As the datasets

had high dimensionality which could effect the end results so we conducted feature

subset selection. Therefore, the Table 3.4 contains the selected features from NASA

and PROMISE datasets. These features will provide us the basis to conduct transfer

learning across projects.

The result tables below discusses the results for individual base classifiers and the en-

semble based method where the defect prediction carried from the source project to

the target project is represented by ‘Source → Target’. For instance, ‘CM2 → PC1’

shows that CM2 is considered as the source project while PC1 is taken as the target
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project. The results of both the individual and ensemble based method for each dataset

are shown in one table as it will be easier for comparison.

Since accuracy sometimes give biased results so we took AUC values as the performance

metric instead of accuracy. The values marked bold are the highest ones among all the

classifiers.

4.2.1 Results Discussion of NASA Dataset

Performance results of NASA datasets are revealed in the Table 4.1. We can easily eval-

uate the comparison of performance between the individual classifiers and the ensemble

method. Apart from a few cases we have noticed that when we trained our model with

source dataset and changed the target dataset to test the model, our results with en-

semble method are significantly improved. However in two cases the individual classifier

outperformed the ensemble method.

• When CM1 is kept as source dataset and target dataset chosen to be are MW1,

PC1 and PC2, we see that the model performed well with Bagged NB and twice

with Random Forest respectively. These results with PC2 as target dataset were

quite compromising with individual classifiers but they got much better with en-

semble method.

• With MW1 as source dataset and CM1, PC1, PC2 as target dataset, we see that

the model performed well with NB as individual classifier, and twice with Random

Forest respectively. Here NB gave better results to MW1 → CM1, altough the

results with RF and Bagged MLP are almost near.

• PC1 being the source dataset and CM1, MW1, PC2 as target dataset, Bagged

J48, NB and Random Forest gave good results respectively. Here again NB as

individual classifier outperformed when MW1 was used for training the model.

• When PC2 is kept as source dataset and target dataset chosen to be are CM1,

MW1 and PC1, we see that the model performed well with Boosted J48 and twice
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with Bagged MLP respectively.

4.2.2 Results Discussion of PROMISE Dataset

To analyze the performance results of PROMISE datasets we refer the table 4.2. Here

again we can see the comparison of performance between the individual classifiers and

the ensemble method where we observe the model showed good results with ensemble

method but deviation is also seen three times where individual classifier outperformed.

Rest we see ensemble method taking the charge. To go into detail explanation we get:

• Ant 1.7 is taken as source dataset and target dataset chosen to be are Camel 1.6,

Xalan 2.4, Ivy 2.0 where the highest values came from NB, J48 and with Random

Forest respectively. Here we notice that when model is trained on Ant 1.7 dataset,

it performed well with individual classifiers twice and once with ensemble Random

Forest. This reveals that with some more feature tweaking and parameter tuning

we can get better result with ensemble as well.

• With Xalan 2.4 as source dataset and Camel 1.6, Ant 1.7 and Ivy 2.0 as target

dataset, we see that the model performed well with MLP as individual classifier,

and twice with Bagged MLP respectively.

• Ivy 2.0 being the source dataset and Ant 1.7, Xalan 2.4, Camel 1.6 as target

dataset showed that Bagged NB, Random Forest and Bagged MLP outperformed

all other classifiers respectively.

• When Camel 1.6 is kept as source dataset and target dataset are Ant 1.7, Xalan 24

and Ivy 2.0, we see that the model performed well with Bagged NB all the times.
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4.3 Result Analysis

Performance of machine learning model is dependent on so many factors. Our goal here

is to check if optimizing the model using multiple classifiers works well. A comparative

analysis of individual classifiers and ensemble based method shows that generally the

use of multiple classifiers as in ensemble methods performed better as compared to

the individual ones across all the datasets. However, our results indicate that minor

deviations are there which are actually reveal different dimensions of a prediction model.

The varying nature of work of the selected classifiers were taken into consideration as

Naive Bayes works on probability, J48 which is a trimmed version of C4.5 decision tree

[28], MLP which is an artificial neural network, Random Forest that consists of decisions

trees while using bagging and feature randomness during classification, Bagging and

Adaboost are the ensemble learning methods. So these all classifiers perform different

yet are strong to give us good insight of our model performance. Although with our

currently used datasets, J48 and Adaboost has not performed very well whereas Bagged

NB, Bagged MLP and Random Forest has given good results.

The Line chart plots, attained by all classifiers, of ROC-AUC scores are shown in the

Figure 4.1 and 4.2. The x-axis shows the AUC values while the y-axis displays the

iterations carried out by different datasets. The graph reveals the change in AUC

values when a classifier is used to train each dataset and demonstrates their trends.

For instance, Random Forest and bagging MLP classifiers performed well on multiple

NASA datasets as shown in Figure 4.1 , while Bagging MLP and Naive Bayes classifiers

achieved the highest ROC-AUC scores for Promise datasets as displayed in Figure 4.2.

Also, it makes it abundantly clear that there is no one predominant classifier, which

may be due to the nature of datasets. At some point one classifier performed better

while in some places other outperformed it. This may be due to the nature of classifier

used to train or test a particular dataset or even the nature of dataset that was trained

on the classifier and also the dataset that was tested with it. The variations are there,

however, Random Forest and Bagged NB outperformed the most number of times.

In order to further review our results and outcome, we performed box-plot examina-

tion of the results obtained. The Box-plot review is considered as a non-parametric test

which presents variation in the samples without doing any self assumption related to the
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statistical distribution of the data (Benjamini, 1988). Figure 4.3 and 4.4 demonstrate

the results got from the analysis of box-plot for NASA and Promise datasets respec-

tively. The diagrams of Box-plot yields the minimum, maximum, first quartile and third

quartile values of a sample whereas the median value is shown by the center of the box-

plot. The box-plot for NASA dataset as show in Fig. 4.3 reveals much variations as

all the boxes are of varying heights, their medians are different too. and box-plot for

Promise dataset as shown in Fig. 4.4 has some stable values.

4.4 Summary

The findings we get show that there was vulnerability in the performance of classifiers, as

certain classifiers exhibited good performance in some datasets however compromised in

others. Therefore, our outcomes suggest that detection of software defects should make

use of ensembles as predictive models. Our results also indicate that minor deviations are

there which can be corrected with few more optimizations such as tuning of parameters,

class balancing and feature selection using different techniques.
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Figure 4.1: Line Chart for NASA Dataset

Figure 4.2: Line Chart for Promise Dataset
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Figure 4.3: Boxplot for NASA Dataset

Figure 4.4: Boxplot for Promise Dataset
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Conclusion and Future Work

An overview of the whole study is provided in this chapter. It also describes the con-

clusion and gives an insight to future research work.

The major objective of this thesis is to prepare a machine learning model that will be

used for software bug prediction in the development of a software. The main task these

models perform include the prediction of bugs when the software happens to be in its

initial stages rather than in the testing phase where ruling out bugs becomes very ex-

pensive and often results in chaos.

To address this objective the state-of-the-art traditional methods and machine learning

algorithms were studied to discover out the best suitable results for the particular prob-

lem, out of which an amalgam of Transfer Learning and Ensemble Learning Method was

selected.

5.1 Conclusion

The framework comprised of feature selection, transfer learning and classification through

individual classifiers and then through ensemble methods, so that we can compare both

ways. Four cleaned NASA datasets and four Promise datasets are taken to carry out

the experiment. The afore-mentioned dataset was chosen for further comparisons due

to the fact that the majority of related works utilized these datasets to evaluate the

performance of their software bug prediction techniques.

For feature subset selection we used Best-First search while using CFS (correlation-based

feature selection). It helped in analyzing the redundancy between different features and
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evaluate the predictive ability of each individual feature. The model was developed in

WEKA due to its flexibility, inbuilt functions and various supporting libraries to com-

plete this task.

The findings show that the use of multiple classifier mostly gives good results than us-

ing individual classifier. So we compared the results by using individual NB, J48, MLP

and ensemble methods that included Random Forest, Adaboost and Bagging where the

latter two served as meta classifier with NB, J48 and MLP as their base classifier. ROC-

AUC curve was used as the performance metric.

Evaluation is carried out by comparing the performance score of all classifiers used

within the framework to see the high performing classifier. The results reflected better

performance of ensemble methods as compared to all classifiers.

One of the major observations made during the development and analysis is that in

order to get the best of results we need to have a fine tuned data set, which is itself a

very tedious and important job to do. In creating the software bug prediction model

using ML, one must know the core task is to prepare the dataset with good features for

our model to be trained and optimized on and choosing excellent classifiers to increase

the predictive ability of the model.

5.2 Future Work

Future work will involve investigation of other approaches of Machine Learning for the

undertaken model. This endeavor will lead to better results in terms of generating defect

prediction. Future research can be performed in several directions:

1. Parameters and their optimization have a huge influence on the performing ability

of a model. Parameter tuning can be performed to check any improvement in

performance.

2. Various combinations of Feature Selection and data sampling techniques can be

investigated.

3. Datasets from different domains can be used in transfer learning to analyze the

efficiency of model.
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